
Enhancing Lifetime of Non Volatile Memory
Caches by Write Aware Techniques

S.Sivakumar, Mani Mannampalli, and John Jose

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, India

sivakumar@iitg.ac.in, mani.mannampalli@gmail.com, johnjose@iitg.ac.in

Abstract. Traditional memory technologies, such as SRAM, suffers from
limited package density and high leakage power. Applications are getting
increasingly memory hungry in the age of big data. Non-volatile mem-
ories such as STTRAM, PCM, and ReRAM emerged as attractive con-
tenders to replace traditional SRAM based memories. They have high
density and zero leakage power. However, they have a limited write en-
durance. Non-uniform write patterns in applications can shorten the life
of non-volatile memories. Traditional cache block replacement strategy
like LRU leads some cache blocks to be accessed more frequently than
others, accelerating the wear out of the cache. We present a Write Aware
Last Level Non-Volatile Cache (WALL-NVC), which improves the life-
time up to 5.84x for unicore, 3.34x for dual core and 4.11x for quad
core system. It reduces intraset write variation in last-level caches upto
98.91%, 90.11%, and 94.12% for unicore, dual core, and quad-core sys-
tems, respectively using write distribution and NVM friendly replace-
ment mechanism.

Keywords: Non Volatile Memory · Wear leveling · Lifetime improve-
ment · Write variation.

1 Introduction

In the current world, data processing is an inevitable necessity. The amount
of data that a processing unit has to handle has expanded significantly in re-
cent years due to technological advancements, growing popularity of IoT-based
devices, social media, and video streaming platforms. We expect the trend of
data-intensive applications to continue for the years to come. Applications that
run from handheld devices to supercomputers require greater processing power
and memory than before. Because of their poor package density and high leakage
power, traditional memory technologies such as SRAM are inadequate to handle
this demand for large on-chip memory.

Spin Transfer Torque RAM (STT-RAM) [1], Phase Change RAM (PCRAM)[2],
and Resistive RAM (ReRAM)[3] are all promising non-volatile technologies that
can replace conventional memories. They feature a high package density and little
leakage power, making them ideal for realising large memories [4]. However, these



2 S.Sivakumar et al.

emerging non-volatile technologies have a significant drawback in terms of write
latency and write endurance. The maximum number of writes a memory cell can
withstand before it permanently wears out is termed as write endurance. When
non-volatile memories are used in applications with non-uniform write patterns,
some memory cells wear out faster than others. Absence of write-aware cache
replacement policies can result in frequent writes to some cache blocks can also
force memory cells to wear out soon. These circumstances highlight the need
for a system that reduces the amount of writes or distributes them evenly when
using nonvolatile memories at various levels of the memory hierarchy. Our work
aims to extend the life of non-volatile memory when it is employed as a last-
level cache. EqualWrites [7], a state-of-the-art wear leveling techniques which
reduce the intraset write variation and improve lifetime, compare LRU and ran-
dom replacement policy for cache blocks. Both of these policies, however, are
not customised for NVMs. Replacement plans like Refresh Aware Replacement
Policy (RFR) [8] help to extend the life of NVMs. However, they are difficult
to implement because they are designed for write-optimized cache memory and
do not work with traditional wear levelling schemes. We believe a more NVM-
friendly replacement policy combined with a good wear levelling method can
greatly boost lifetime.

In this work, we make the following major contributions:

– We analyse write variations in the last level NVM cache and draws mean-
ingful conclusions.

– We propose Write Aware Last level Non Volatile Caches (WALL-NVC),
which can reduce the intra-set variation, thereby increasing its lifetime.

– For WALL-NVC, we use an NVM-friendly replacement policy called Least
Recently Used Cold Block (LRU-CB), which also contributes to increase the
lifetime.

– We test WALL-NVC using SPEC 2006 [5] benchmarks on the gem5 cycle-
accurate simulator [6], and find that our proposed method outperforms other
state-of-the-art solutions.

2 Related Work

As previously stated, write endurance refers to the maximum number of writes
that a nonvolatile memory may withstand before failing. High write variation ap-
plications, as well as malicious apps that target NVMs’ limited write endurance,
can significantly reduce their lifetime. Several lifetime enhancement strategies
were proposed in the past which can be broadly divided into two categories: write
avoidance and write distribution techniques. In write avoidance techniques, we
reduce the number of writes to the NVM using write avoidance strategies such as
early termination, inversion, and encoding. We try to evenly spread writes across
the memory in write distribution techniques so that a few memory cells do not
wear out at a faster pace than others due to frequent writing to them. Write
variation can occur within a set (intraset write variation) or across sets (interset
write variation). EqualWrites [7] is a strategy for reducing intraset variation by



Enhancing Lifetime of NVM Caches by Write Aware Techniques 3

swapping frequently written hot blocks with less frequently written cold blocks
within a set. EqualChance [9] is a wear levelling technique that involves changing
the physical location of a frequently written data block on a regular basis. An-
other solution is i2WAP [10], which reduces intraset and interset write variations
through probablistic flushing of frequently written blocks and set swapping. Un-
like traditional replacement policies like LRU, which focus on increasing write
pressure on write-intensive blocks, replacement policies like RCR, RFR, FCR,[8]
and others prioritise endurance.

3 Motivation

To study the write variations of different applications, we analyse maximum and
average writes to LLC for unicore architecture. To facilitate this, we model these
architectures in gem5 [6] with two levels of cache and main memory. For L1-I
and L1-D caches, we use 32 KB, 4-way set associative configuration. The 512-KB
unified L2 cache is 8-way set associative and we use 8 GB main memory. The
block size is 64 bytes. The number of kilo writes per 1 billion instruction window
for selected benchmarks from the SPEC CPU2006 suite [5] is shown in Figure
1. We plot the maximum writes per way as well as average writes across ways.
Our study shows that write variations can occur within a set and also across the
set. This reinforces the need for good wear leveling policy for NVM based LLC.

Fig. 1: Average and maximum writes per way (Kilo writes per 1 billion instruc-
tions) of various SPEC CPU 2006 benchmarks: Height difference between bars
of a given benchmark indicates intensity of write level variations.

The write variation that occurs within a set is is quantified using the co-
efficient of intraset variation (IntraV ). Write variation that occurs across sets
is quantified using the coefficient of interset variation (InterV ). IntraV and



4 S.Sivakumar et al.

InterV are given below.

IntraV =
100

N.Writeavg

N∑
k=1

√∑M
l=1 (Wk,l −

∑M
m=1

Wk,m

M )
2

M − 1
(1)

InterV =
100

Writeavg

√∑N
k=1 (

∑M
l=1

Wk,l

M −Wavg)
2

N − 1
(2)

where N is number of sets in cache.
M is the number of ways in a set.
Wk,l is the write count in set k and way l.
Writeavgis average write count given by

Writeavg =

∑N
k=1

∑M
l=1 Wk,l

N.M
(3)

Low IntraV and InterV values suggest more evenly distributed writes within
and across the cache sets, respectively. The Writeavg shows the average number
of writes in the cache memory. Popular cache replacement policies, such as Least
Recently Used (LRU), Pseudo LRU, and others, consider the most recent use of a
cache block into account while choosing a victim block for replacement. However,
in non-volatile memories where write endurance is a major concern, the number
of writes to the victim block can impact the cache memory’s lifetime. To the best
of our knowledge, state-of-the-art wear-leveling techniques do not study the role
of replacement policy in improving the lifetime. EqualWrites which reduces the
intraset write variation compare between LRU and Random replacement policy.
However, both of these policies are not custom made for NVMs. This inspires us
to investigate how to effectively combine a wear levelling technique and a better
replacement policy tailor made to enhance the endurance of NVM caches.

4 Write Aware Last Level Non-Volatile Cache

To improve the lifetime of NVM while running applications having non-uniform
writes and protecting them against targeted malicious attacks by repeated writes
to specific blocks, we propose Write Aware Last Level Non-Volatile Cache (WALL-
NVC). Unlike most of the state-of-the-art wear leveling techniques, WALL-NVC
is a dual-stage wear leveling technique. The first stage is a new Least Recently
Used Cold Block (LRU-CB) replacement policy, that takes care of selecting a
better victim block for cache replacement in NVMs. The second stage employs
a traditional write distribution strategy that works in tandem with LRU-CB to
increase lifetime. The following sections discuss these stages in detail.

4.1 LRU-CB Replacement Policy

To the best of our knowledge, the impact of cache block replacement policy on the
write endurance of NVM based caches is not explored so far by any wear leveling



Enhancing Lifetime of NVM Caches by Write Aware Techniques 5

mechanisms. A good cache replacement policy for NVMs should enhance write
endurance and reduce intra-set write variation. Ideally it should preserve the
hottest blocks and prevent frequent evictions while reducing the write variation
across blocks. When the cache hit rate is high, the number of replacements is less;
hence the impact of replacement policies is minimal. Traditional replacement
policies like LRU and Psuedo LRU do not consider the write count of the block
while selecting a victim block. To meet these objectives, we propose a simple
NVM friendly cach block replacement policy called as Least Recently Used Cold
Block (LRU-CB).

The basic concept of LRU-CB policy is to choose a block from the set that
is less frequently written as the victim block, thereby making writes to the set
more uniform. To ensure that the blocks are not evicted frequently, a weighted
aggregate average of each block’s LRU age and write index is calculated. The
block with the lowest aggregate average is picked as the victim block. To facilitate
this, we attach a write counter to each block. When one of the write counters in a
set reaches its saturation value, the write counters of blocks of that set are bitwise
right-shifted. This downgrading of the counter value forces the least significant
bit (LSB) of the counter to be lost, resulting in a minor loss of precision. This
ensure that the respective values of write counters are downgraded (with a small
error margin) before getting wrap around. We study the impact of LRU-CB by
running different benchmarks and find that LRU-CB marginally improves the
lifetime of NVM caches.This marginal improvement demonstrates the necessity
for a complementary technique to LRU-CB in order to increase its performance.

4.2 Impact of LRU-CB with Write Distribution

Write-aware replacement policies have a limited impact on the endurance of
NVM caches while running applications with high L1 cache hit rates as they
trigger fewer evictions. Write distribution policies increase lifetime by distribut-
ing writes evenly. Lifetime of NVM caches can be extended by combining a good
wear levelling policy with a write-aware replacement policy rather than doing so
separately.

We compare the effectiveness of EqualWrites technique with the pseudo LRU
policy and LRU-CB in order to verify the impact of LRU-CB when used in
conjunction with a standard state-of-the-art wear levelling technique. Figures 2,
3 and 4 show the relative lifetime, intraset variation and hit rate of NVM caches,
respectively while running different benchmarks in SPEC CPU 2006 suite. From
the graphs we can observe that EqualWrites with LRU-CB increases the lifetime
of L2 cache upto 1.39x than the combination of EqualWrites with psuedo LRU.
LRU-CB reduces the intraset variation upto 83.08% without affecting the hit
rate. This improvement is visible across all benchmarks thereby ascertaining
that LRU-CB is a better cache block replacement algorithm for NVM caches.



6 S.Sivakumar et al.

Fig. 2: Comparison of relative lifetime of NVM based L2 cache using EqualWrites
with Pseudo LRU and LRU-CB replacement policies.

Fig. 3: Comparison of Intraset variation of NVM based L2 cache using Equal-
Writes with Pseudo LRU and LRU-CB replacement policies.

4.3 Write Distribution in WALL-NVC

LRU-CB policy improves the performance of EqualWrites technique. But this
comes with a high overhead. This is because LRU-CB needs extra counters apart
from ones used for EqualWrites. This motivated us for the need for wear leveling
policy that reduces the intraset variation and improves lifetime and synergizes
with LRU-CB. Like other popular wear leveling techniques, WALL-NVC also
works on the principle of redirection of the writes from hot blocks to cold blocks.

Each set of an n-way set associative WALL-NVC has (n + 1) counters: one
set counter and n block counters. For each write hit to WALL-NVC, the cor-
responding set and block counter are updated. Once the set counter reaches a
prefixed threshold T , it selects a write redirection target among blocks of that
set. Block with least writes is preferred as the redirection target, and hence it
selects the block with zero write count. Swapping is initiated between the ac-



Enhancing Lifetime of NVM Caches by Write Aware Techniques 7

Fig. 4: Comparison of hit rate of NVM based L2 cache using EqualWrites with
Pseudo LRU and LRU-CB replacement policies.

cessed block and redirection target blocks, if such block is available. If target
block is invalid, instead of swapping, it writes to the target block and invali-
dates hot line. If a block with zero write count is unavailable, If the target is
not found, all counters (including set counter) are decreased by the value of the
least written block, which delays write redirection for a few more writes. This is
done to prevent unnecessary write redirections when the write pattern to the set
is more uniform. Note that decreasing the block counter value does not affect
its functionality. Moreover, decreasing the counter also delays the need for the
bitwise right shift operation of counters for replacement victim selection, which
improves the precision of the technique.

To understand the working of WALL-NVC we use an illustration of a four-
way set associative cache block of WALL-NVC having a threshold value, T=50.
Each cache set is associated with a set counter and four block counters which
keep track of the write count of each set and block, respectively. Let us consider
a specific set A whose four blocks are B0, B1, B2, and B3. Consider an instance
where the values of set counter and block counters of A are shown as in the
first row in Figure 5. Write hit in a block increments block counter and A’s set
counter. Once the set counter reaches the threshold value (50), it searches for a
write redirection target for heavily written block (B2). Since there is no target
block with zero counts, the values of all block counters and the set counter are
decremented by the value of least count (here it is 2 for B3) to create a block
with zero counts. After the decrement operation, the cache is operated normally
by incrementing the counters on write hits. When the set counter reaches the
threshold again and write redirection is initiated; the redirection takes place by
swapping the contents of most written block (B2) with least written block (B3)
by swapping their contents using swap module. As B2 and B3 are valid blocks,
write redirection results in an extra write in B2 and B3 and set counter is reset.



8 S.Sivakumar et al.

Fig. 5: Sample counter updating of WALL-NVC for threshold value, T=50

Table 1: System Configurtaion

CPU 1 GHz, Uni-core, Dual-Core, Quad- Core, ALPHA

L1 Cache Private, 32 KB, SRAM based split cache,
64 B block 4-way set associative

L2 Cache Shared 512 KB, NVM based unified cache
64 B block, 8-way set associative

Main Memory 8 GB

5 Experimental Setup and Result Analysis

We use gem5 [6], a cycle-accurate event based open source architectural simula-
tor, to model and evaluate the performance of the last level WALL-NVC cache
on unicore, dual-core and quad-core system architecture. Ruby module is used
for simulating memory module, and MESI protocol is used for maintaining cache
coherence. Details of the system configuration are given in Table 1.

We use the SPEC CPU 2006 benchmarks [5] to evaluate the performance of
state-of-the-art techniques as well as WALL-NVC. Based on number of Writes
Per Kilo Instruction (WPKI) to last level cache, these benchmarks are classified
into three categories: Low (WPKI ≤ 9), Mid (10 ≤ WPKI ≤ 29), and High
(WPKI ≥ 30) as shown in Table 2. This classification helps us to understand the
impact of the existing and proposed techniques for applications having different



Enhancing Lifetime of NVM Caches by Write Aware Techniques 9

Table 2: Benchmark Classification based on WPKI

Category Benchmark

Low namd (Nd), soplex (So), calculix (Ca), astar (As), gromacs (Gr)

Mid milc (Mi), libquantum (Lq), sjeng (Sj), bzip2 (Bz)

High leslie3d (Ls), lbm (Lb), mcf (Mc), hmmer (Hm)

write characteristics. For architectural modeling in unicore system, we assign one
benchmark instance to the core. For dual-core and quad-core architectures we
create workloads by mixing instances of two and four benchmarks, respectively.
We run these benchmarks and workload categories on an unoptimised NVM
LLC (baseline), two state-of-the-art write balancing approaches: EqualWrites
technique and EqualChance technique and the proposed WALL-NVC with a
threshold value T=50 (WALL-NC50).

5.1 Performance Analysis

Fig. 6: Comparison of IntraV for various NVM architectures in unicore system.
(shorter the bar, the better)

Figure 6 shows the comparison of intraset variation (IntraV ) for various
architectures under study in unicore systems. We can clearly see that for bench-
marks leslie3d, lbm, mcf, milc and bzip2 the writes are happening more or less
uniformly across different ways of a set there by having lower IntraV for all
architectures. This behavior is more prominent in benchmarks with Mid and
High WPKI. In some low WPKI benchmarks like namd, calculix and gromacs
there is a great improvement in IntraV that we could achieve. So we conclude



10 S.Sivakumar et al.

Fig. 7: Comparison of lifetime for various NVM architectures normalised to base
configuration in unicore system. (taller the bar, the better)

that the write variance depends a lot on pattern of write hits on a given set than
number of writes over a period of time. However, we can see that WALL-NC50
gives a low write variance irrespective of benchmarks classification that makes
it suitable add-on to NVM caches.

Figure 7 shows comparison of lifetime for various architectures under study
normalized to baseline in unicore systems. The inverse of the maximum write
count to an LLC block is used to calculate lifetime. As expected we observe
that benchmarks with high WPKI have limited improvement in lifetime due to
the heavy writes to LLC. Compared to the baseline architecture, on an aver-
age WALL-NVC (T=50) improves lifetime by 2.90x and show 1.16x and 1.18x
improvement compared to EqualWrites and EqualChance, respectively.

We also analyse the performance of our technique on dual-core and quad-
core systems as well. WALL-NC50 shows an average lifetime improvement of
NVM by 2.25x and 1.63x compared to baseline systems for dual-core and quad-
core, respectively, as shown in Figure 10 and Figure 11. It improves 1.07x on
dual-core systems when compared to EqualWrites and 1.02x when compared to
Equalchance. Lifetime improvement of 1.10x and 1.02x are achieved for quad-
core systems, respectively. Similarly we plot the intraset variation in dual-core
and quad-core systems in Figure 8 and Figure 9, respectively. Since multicore
framework needs more than one benchmark to run depending on number of
core, we create workload consisting of benchmark mixes. Depending on WPKI
values of the constituent benchmarks we create workloads marked as Low, Mid,
Low-High, Mid-High etc. On careful analysis we find that due to the multiple
applications accessing the shared NVM based LLC, the write variation created
by writes of one core gets reduced by writes from other core. Hence, we could
achieve only minor improvement in the lifetime improvement using Mid-High
workloads in dual core and quad-core systems.



Enhancing Lifetime of NVM Caches by Write Aware Techniques 11

Fig. 8: Comparison of IntraV for various NVM architectures in dual-core system.
(shorter the bar, the better)

Fig. 9: Comparison of IntraV for various NVM architectures in quad-core sys-
tem. (shorter the bar, the better)

5.2 Sensitivity Analysis

We study the impact of the threshold value (T ) by experimenting with five
different values, T={10, 30, 50, 70, 100}. Based on the endurance improvement
and associated overhead, we fix the default value of T as 50. We also conduct a
detailed sensitivity analysis on various threshold values. Table 3 shows the mean
lifetime improvement with respect to baseline and intraset write variation, using
different threshold values in WALL-NVC.

Another parameter that can impact the performance of the proposed archi-
tecture is the weightage given to LRU-CB while selecting a victim block for cache
replacement. As discussed earlier, we compute the weighted aggregate average
of each cache block using its LRU age and write count index. We explore two
variants: (a) 80% for LRU age and 20% for write count index-0.2W and (b) 60%
for LRU age and 40% for write count index - 0.4W. We compare these two vari-



12 S.Sivakumar et al.

Fig. 10: Comparison of lifetime for various NVM architectures normalised to base
configuration in dual-core system. (taller the bar, the better)

Fig. 11: Comparison of lifetime for various NVM architectures normalised to base
configuration in quad-core system. (taller the bar, the better)

ants in a unicore system. The results for IntraV , relative lifetime wit respect to
baseline and LLC hit rate are given in Figure 12, 13, and 14, respectively. We
can see that 0.2W gives 1.13 time lifetime improvement and 2.16% improvement
in IntraV than 0.4W. We could also observe that there is not much impact on
hit rate for these two variants in any benchmarks. Since 0.2W and 0.4W are
better than baseline, we propose that a minimum weightage to LRU-CB (0.2W)
should be given to get a suitable victim block. At the same time overemphasize
to write count index (0.4W) diminishes the role of LRU age.

5.3 Overhead Analysis

WALL-NVC employs two types of counters: a set counter for each set and a
block counter for each block. It also necessitates the use of a swapping module
to swap the contents of hot and cold data blocks. The swapping module has 64



Enhancing Lifetime of NVM Caches by Write Aware Techniques 13

Table 3: Relative lifetime improvement (LT) and IntraV of WALL-NVC for
different threshold values

Unicore Dual-core Quad-core
LT IntraV LT IntraV LT IntraV

Baseline 1 32.41 1 15.85 1 10.22

10 2.32 6.55 2.08 7.28 1.31 6.58

30 2.54 2.46 2.63 1.48 1.68 0.34

50 2.90 1.85 2.25 1.65 1.63 1.17

70 2.56 4.08 2.23 2.59 1.59 1.43

100 2.57 4.20 2.35 2.26 1.53 1.52

Fig. 12: Comparison of IntraV for WALL-NC50 variants in uni-core system.
(shorter the bar, the better)

Fig. 13: Comparison of relative lifetime for WALL-NC50 variants in uni-core
system. (taller the bar, the better)



14 S.Sivakumar et al.

Fig. 14: Comparison of LLC hit rate for WALL-NC50 variants in uni-core system.
(taller the bar, the better)

buffers, each of which is 64 bytes in size that incurs a total storage overhead
of 2%. The SRAM based counters and swap buffers incurs a maximum power
and area overhead of 0.47% and 1.47%, respectively when compared with base-
line configuration. The cache block replacement policy, LRU-CB uses the same
counters for victim selection; hence it does not incur any additional overhead.

6 Conclusion

Limited write endurance of NVM is always a critical challenge. In this paper, we
proposed a new architecture called as WALL-NVC that used a write distribution
policy and an NVM friendly Least Recently Used Cold Block cache replacement
policy to improve lifetime of NVM caches. We observed that both the write
distribution policy as well as the write aware replacement policy contributed
equally to the improved performance. Experimental results showed that with
minimal area and power overhead, our technique improved the lifetime for uni-
core, dual-core, and quad-core systems. To achieve further lifetime improvement,
we look forward to incorporate a dynamic adaptive replacement policy based on
run time inputs. Dynamic power-gating can be also be applied to adapt diverse
write patterns of applications.

References

1. P. Chi, S. Li, Yuanqing Cheng, Yu Lu, S. H. Kang and Y. Xie, ”Architecture design
with STT-RAM: Opportunities and challenges,” 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016, pp. 109-114, doi: 10.1109/ASP-
DAC.2016.7427997.

2. H. -. P. Wong et al., ”Phase Change Memory,” in Proceedings of the IEEE, vol. 98,
no. 12, pp. 2201-2227, Dec. 2010, doi: 10.1109/JPROC.2010.2070050.



Enhancing Lifetime of NVM Caches by Write Aware Techniques 15

3. H. Akinaga and H. Shima, ”Resistive Random Access Memory (ReRAM) Based on
Metal Oxides,” in Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, Dec.
2010, doi: 10.1109/JPROC.2010.2070830.

4. S. Mittal and J. S. Vetter, ”A Survey of Software Techniques for Using Non-Volatile
Memories for Storage and Main Memory Systems,” in IEEE Transactions on Par-
allel and Distributed Systems, vol. 27, no. 5, pp. 1537-1550, 1 May 2016, doi:
10.1109/TPDS.2015.2442980.

5. John L. Henning, ”SPEC CPU2006 benchmark descriptions”,
SIGARCH Comput. Archit. News 34, 4 (September 2006), 1–17.
doi:https://doi.org/10.1145/1186736.1186737

6. Nathan Binkert et al., ”The gem5 simulator”.SIGARCH Comput. Archit. News 39,
2 (May 2011), 1–7. DOI:https://doi.org/10.1145/2024716.2024718

7. S. Mittal and J. S. Vetter, ”EqualWrites: Reducing Intra-Set Write Variations
for Enhancing Lifetime of Non-Volatile Caches,” in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 103-114, Jan. 2016, doi:
10.1109/TVLSI.2015.2389113.

8. Puneet Saraf and Madhu Mutyam, ”Endurance enhancement of write-optimized
STT-RAM caches”, In Proceedings of the International Symposium on Memory
Systems (MEMSYS ’19). Association for Computing Machinery, New York, NY,
USA, 101–113, 2019 doi:https://doi.org/10.1145/3357526.3357538

9. S. Mittal and J. S. Vetter,”EqualChance: Addressing Intra-set Write Variation
to Increase Lifetime of Non-volatile Caches”, 2nd Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (INFLOW 14),Oct 2014 .

10. J. Wang, X. Dong, Y. Xie and N. P. Jouppi, ”i2WAP: Improving non-volatile
cache lifetime by reducing inter- and intra-set write variations,” 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA),
2013, pp. 234-245, doi: 10.1109/HPCA.2013.6522322.

11. X. Dong, C. Xu, Y. Xie and N. P. Jouppi, ”NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp.
994-1007, July 2012, doi: 10.1109/TCAD.2012.2185930.


