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ABSTRACT

We are in an era of highly data-intensive applications, and the exist-
ing memory technologies are inadequate to meet their challenges.
Non-Volatile Memories (NVMs) have emerged as a cost-effective
alternative to the conventional SRAM based Last Level Caches
(LLC) and DRAM-based main memories; however, they suffer from
limited write endurance. Applications having non-uniform writes
will cause heavily written blocks to fail faster than lightly written
blocks, thereby reducing the lifetime of NVMs. Most of the mod-
ern processors use split organization in the first level cache and
unified organization in the subsequent cache levels. Our proposed
approach, ViSC (Virtually Split Cache) explores the write varia-
tion across the data and instruction blocks by virtually splitting
unified LLC for wear-leveling. The logical mapping of LLC ways
into instruction and data is interchanged periodically to distribute
the writes uniformly. Our experimental results show that ViSC
reduces the write variations significantly and improves the lifetime
of NVMs by 1.94, 2.06, and 1.72 times for unicore, dual-core, and
quad-core, respectively, by incurring negligible power and area
overheads.

CCS CONCEPTS

« Computer systems organization — Embedded hardware.

KEYWORDS

Cache partitioning; Write variation; Intra-set variation; lifetime
enhancement

ACM Reference Format:

S. Sivakumar, T.M. Abdul Khader, and John Jose. 2021. Improving Lifetime
of Non-Volatile Memory Caches by Logical Partitioning . In Proceedings of
the Great Lakes Symposium on VLSI 2021 (GLSVLSI °21), June 22-25, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3453688.3461488

1 INTRODUCTION

We live in an era where technology is seamlessly integrated to our
daily lives. With the emergence of multi-core processors, powerful
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Table 1: Write endurance for different memory technologies

SRAM > 100
HDD > 1015
SLC Flash || 10% — 10°
DRAM > 100

PCM 108 - 10°
STT-RAM || > 107
ReRAM 1011

handheld devices with high computing capability gained more pop-
ularity. These devices can smoothly run multiple applications in
parallel. The data-intensive nature of many of the modern applica-
tions demands cost-effective and energy-efficient memory systems.
Conventional memory technologies (SRAM/DRAM) suffer from
low packaging densities, and high leakage power [1]. In this con-
text, non-volatile memory (NVM) technologies like STT-RAM (Spin
Transfer Torque RAM), PCM (Phase Change Memory), and ReRAM
(Resistive RAM) are explored to cater to the growing demands of
applications and devices. They exhibit more stable mechanisms
for storing data compared to SRAM and DRAM based memories.
NVMs intrinsically have higher latency and consume more energy
to overwrite existing data. Even though they have zero leakage
power and very high packing densities, they have limited write
endurance. Write endurance can be defined as the maximum num-
ber of writes a memory cell can withstand before it is worn out.
Table 1 shows typical write endurance values for various memory
technologies [1].

If NVM is used for implementing cache memory, applications
with non-uniform write patterns can cause some portion (sets or
ways) of the cache memory to be heavily written compared to
others [2]. We can broadly classify write variations in a cache as
inter-set and intra-set variations. The write variation across the
sets of cache memory is called inter-set variation, while the write
variation across the ways of a given set is called intra-set variation.
Along with the limited write endurance of NVMs, write variations
generated by the applications also affect the performance of NVMs.
Researchers have explored different ways to address these write
variations to minimise its impact on memory lifetime. These ap-
proaches can be broadly classified into write overhead minimization
[1] [3] and wear-leveling approaches [4] [5]. Write overhead mini-
mization approaches reduce the write traffic and hence increases
the lifetime of memory cells. Wear-leveling approaches make the
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write distribution more uniform and thereby reduce intra-set and
inter-set variations.

The L1 cache uses split organization (separate I and D caches) to
avoid memory conflicts when instruction and data are accessed at
the same clock cycle. It is seen that the unified caches offer a higher
hit rate than a split cache of the same size because the number of
instructions and data that can be accommodated in a unified cache
is dynamically adjusted based on the access pattern. Most of the
modern processors use private split cache architecture for L1 caches
and shared unified design for the higher-level caches. However, few
processors have a private split cache in L2 also. When NVMs are
used in L1 caches, D-cache wears out faster than I-Cache as the
data blocks are heavily written compared to the instruction blocks.
Studies show that in an L1 split cache, on an average, D-cache has
472 times more writes than I-cache [6]. This clearly shows the heavy
write variation between data and instruction. As mentioned before,
instructions and data are kept together in unified last-level caches
in multi-core processors. We observe that the blocks that store data
are heavily written compared to blocks that store instruction.

In this work, we make the following major contributions:

e We analyse write variations in the last level unified NVM
cache in run time and draws meaningful conclusions.

e We propose Virtually Split Cache (ViSC), which can reduce
the intra-set variation, thereby increasing its lifetime. This
is done by logically splitting the ways of unified last-level
NVM cache into I and D caches and periodically interchange
its logical mapping to attain wear-leveling.

o We evaluate ViSC on gem5 cycle-accurate simulator [7] using
SPEC 2006 benchmarks [8]. Our experiments show that ViSC
improves 72%, 106% and 94% average relative lifetime for
quad-core, dual-core, and uni-core processor based systems,
respectively.

The rest of the paper is organized as follows. Section 2 covers
the related work in write variation management in NVMs, followed
by motivation for the proposed work in Section 3. Our proposed
technique ViSC is described in Section 4. We discuss the simula-
tion framework and results in Section 5 and conclude the paper in
Section 6.

2 RELATED WORK

Write variations occur at different levels of the cache memory hier-
archy (from L1 to LLCs) and also at different granularity (ways to
sets). i*WAP (inter/intra-set Write variation-Aware cache Policy)
has two features; namely, Swap-Shift to reduce inter-set variation
and Probabilistic Set Line Flush to reduce intra-set variations [9].
In the Swap-Shift feature, whenever the number of writes to a par-
ticular set exceeds a threshold value, the contents of that set are
swapped with the neighbouring set by exchanging the set IDs and
invalidating their data. Probabilistic Set Line Flush uses a global
counter to measure the total write count to the cache memory
and invalidates the line whose write counter is saturated. This is
performed under the assumption that the probability of a hotline
saturating the counter is high. This invalidation further allows the
hotline to be replaced by a cold line and migrate to a different loca-
tion. EqualWrites [10] is another technique that addresses intra-set
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Figure 1: Average and maximum writes per way of vari-
ous SPEC CPU 2006 benchmarks: Height difference between
bars of a given benchmark indicates intensity of write level
variations.

variations happening in non-volatile caches. It records the number
of writes to each cache block. It identifies the location of the hot
data blocks and redirects the future writes to a cold block.

The concept of write restriction window for reducing intra-set
variations is a promising approach despite its hardware overhead
[5]. Static write restricted window divides the cache into different
logical windows, and one among them is selected as write restricted
window, serving only read operation. All the write operations to
the write restricted window is redirected to other windows that
are not write restricted. Selection of the write restricted window is
made periodically in a round-robin fashion. If the cache ways that
are already heavily written are not included in the write restricted
window, they may get penalised again. Dynamic windows based
on write count and threshold value give better performance [2].

3 MOTIVATION

To understand the write variations in LLC, we model a unicore
processor in gem5 [7] with two levels of cache and 8 GB main
memory. We use 32 KB, 4-way set associative L1-I and L1-D caches.
The 512 KB L2 cache (LLC) is 8-way set associative. Both L1 and
L2 caches use 64 B blocks. Simulations are run using various SPEC
CPU 2006 benchmarks [8]. We record the average and the maximum
number of writes to each way of LLC and plot the results in Figure
1. We can observe that there is a considerable difference between
average and maximum writes per way of LLC. We can see that
except for few applications like soplex, the average maximum writes
in a way is much more than the average writes in a way. This evident
variation shows that if we use an NVM-based LLC the heavily
written ways will wear out fast due to the limited endurance of
NVMs, thereby reducing the entire LLC lifetime. Therefore, we need
techniques to facilitate wear-leveling by distributing the writes of
such heavily written ways among the other lightly written ways.
State-of-the-art wear-leveling techniques can be broadly classi-
fied into proactive and reactive approaches. Reactive approaches
trigger wear-leveling when the write count of a memory cell sur-
passes a predetermined threshold value [9] [4] [5][11] while proac-
tive approaches have their wear-leveling mechanism always active.
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Figure 2: L1 cache - LLC interaction through the proposed
ViSC module

They use runtime analysis on writes and use a counter-based hard-
ware logic to restrict the writes happening to the hot lines or swap
the contents of hot and cold lines. Write restriction mechanisms
affect the performance of the memory access and incur additional
hardware overheads to overcome the endurance limitations. This
motivates us to explore the low overhead proactive approaches
further with the goal to optimize it.

4 PROPOSED WORK

We observe that the cache blocks holding instruction are less written
than the cache blocks holding data. To alleviate intra-set write
variation in unified caches, we propose a wear-leveling approach,
ViSC (Virtually Split Cache). Here, we make necessary architectural
modifications on a unified cache to behave like a split cache. We
split the NVM-based unified LLC virtually into the instruction
and data cache space at the way level granularity. Hence, ways in
each set are partitioned for instruction and data. For an m-way set
associative cache, for each set, k ways can be reserved for storing
instruction and rest (m-k) ways for storing data.

The block diagram of the proposed ViSC architecture is given in
Figure 2. We can see that the proposed ViSC module is attached to
the LLC controller. Every L1 cache miss that reaches the LLC con-
troller is forwarded to the ViSC module for necessary background
check and update. The ViSC module has a swapping interval timer
that is used to make instruction ways to be marked as data ways.
This process is coordinated and controlled by the swapping module.
It generates necessary signals to mark the current k-ways used for
storing instruction as data ways and new k-ways to store instruc-
tion. This reassignment and swap of ways between instruction and
data is known as set reorganization. The swapping module triggers
set reorganization at regular intervals using a suitable timer. When
there is a write request to LLC, it checks whether the time elapsed
since the last set reorganisation is greater than a predetermined
threshold value. If so, the swapping module is invoked. Given that
data ways are heavily written (hot ways), changing them to less
written instruction ways (cold ways) curtails the number of writes
and reduces the write variation. Algorithm 1 gives an overview of
various operations done in the ViSC module.

L1 caches generally use the split organization to reduce structural
hazards in the instruction pipeline while accessing memory for

Algorithm 1: Operational steps in ViSC module

instr_start = 0 \ \first way of instruction ways;

data_start = 3 \\first way of data ways;

cache_assoc = 8 \\cache associativity;

num_inst_ways =3 \\number of instruction ways;

tp: time elapsed since last set reorganisation, increments
every clock cycle;

threshold = 100000;

List instruction_way_list : List of ways reserved for
instructions sequentially from instr_start. Size = 3;

List data_way_list : List of ways reserved for data;
sequentially from data_start. Size = 5;

repeat

for every L2 cache request R and block B do

if R==read then
‘ normal read operation;

else

if t;, > threshold then

swap(instruction_way_list,data_way_list);

instr_start = (instr_start+num_inst_ways) %
cache_assoc;

data_start = (data_start+num_inst_ways) %
cache_assoc;

instruction_way_list = {instr_start, instr_start+1,
instr_start+2 };

data_way_list = {data_start, data_start+1,
data_start+2, data_start+3, data_start+4 };

normal write operation;

else

end
normal write operation;

end

end

until end of execution

swap (instruction_way_list,data_way_list)

{

foreach instruction_way_list[i], 0 <= i < num_inst_ways
do
temp=instruction_way_list[i];
instruction_way_list[i]=data_way_list[i];
data_way_list[i] =temp ;
}tp=0;
end

instruction and data in the same clock cycle. Other levels of cache
have unified organization where the instruction and data coexist
in the same cache. We now discuss our proposed architecture in
detail. Consider an 8-way set associative L2 cache with a virtual
splitting of three instruction ways (k=3) and five data ways (8-3=5).
Unlike L1 split caches that usually have equal-sized instruction and
data caches, ViSC may have unequal partitioning for the L2 cache.
This is motivated by the fact that in a unified cache, more space
is needed for data as memory footprint of data is large. In ViSC,
due to the logical partitioning, each set has three instruction ways
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Table 2: Simulation parameters

CPU 2 GHz, Uni-core, Dual-Core, Quad- Core, ALPHA

L1 Cache Private, 32KB, SRAM Split cache,

64 B block, 4-way set associative

L2 Cache Shared 512KB, 8-way set associative, 64 B block

8 GB

Main Memory

Table 3: Benchmark categories

Category Benchmark
Low namd, soplex, calculix, astar, gromacs
Mid milc, libquantum, sjeng, bzip2
High leslie3d, Ibm, mcf, hmmer

where the instructions brought from the main memory are placed
and data in the remaining five ways.

Figure 3 shows the instruction and data ways mapping in the
initial phase and after subsequent reorganisations. Initially, when
the cache warms up, Way 0, Way 1, and Way 2 are instruction
ways. Instructions blocks mapped to this set are stored to any of
these ways and data are be stored to the rest of the ways. We fix a
threshold time to 100,000 clock cycles. After the expiry of threshold
time, a reorganization will happen, and ways 3, 4 and 5 will be
the instruction ways as shown in the figure. Similarly, at regular
intervals, instruction ways and data ways are sliding across the
given 8-ways in a circular manner.

All read requests to LLC are serviced normally. However, for
write requests, ViSC checks whether the time since last cache
reorganisation has crossed the threshold value. In such a case,
set reorganisation process is initiated by swapping the contents
of the current instruction/data way to the corresponding new
data/instruction way. This swapping and copying process in the L2
cache happens in the background and is not in the critical path for
instruction execution. The processor is still executing by accessing
instruction and data from the L1 cache. We know that the instruc-
tion ways in ViSC are written only when a block is copied from the
main memory to the L2 cache. However, the data ways are written
not only during an L2 cache miss and subsequent bringing of the
new block from main memory to L2 but also during write back and

write through operations from L1 cache. L1-I cache block evictions
do not create a write operation on the L2 cache. We observe that
the dirty cache block evictions from the L1 cache have a significant
share of writes on data ways of the L2 cache of ViSC. Since we
reorganize I and D ways in ViSC, the number of writes in each way
of a cache set gets balanced. As mentioned before, for an m-way
set associative cache, different possible logical split up of instruc-
tion ways (k) and data ways (m-k) are possible. For an 8-way set
associative cache we found that k=3 exhibits the best performance.

5 SIMULATION SETUP AND RESULT
ANALYSIS

We model ViSC on gemb5 [7], a cycle-accurate simulator and eval-
uate its performance using SPEC CPU 2006 benchmark suite [8].
Ruby module is used to simulate memory module and MESI proto-
col models cache coherence operations. LRU policy is adopted for
cache replacement. We simulate ViSC for quad, dual and uni-core
systems using the configuration given in Table 2. Based on WPKI
values (Writes Per Kilo Instructions), we categorise our benchmarks
into low, mid, and high as shown in Table 3. We study the impact on
a lifetime under various threshold time values and plot the results
in Figure 4. Threshold time of 100,000 cycles gives better perfor-
mance for benchmarks with very high write variation and very
low variation, and this reasoned us to fix the threshold time as
100,000 cycles. We analyse the lifetime of ViSC and Dynamic Win-
dow Write Restriction (DWWR) [2] and compare them with the
un-optimized baseline system. We consider a normal NVM-based
L2 cache that does not have any write balancing approach as the
baseline. DWWR divides sets into equal-sized windows and dy-
namically enforce write restriction on heavily written ways. We
consider only the DWWR technique for comparison as it had better
performance than techniques such as PoLF, WAD, Equal chance,
and SWRR [2].

We estimate relative lifetime by using the inverse of maximum
write count to a block of memory. Figure 5, Figure 6 and Figure
7 shows the relative lifetime comparison in uni-core, dual-core
and quad-core systems, respectively. We observe that for uni-core
and dual-core systems, across all benchmarks, ViSC significantly
improves NVM-based LLC’s lifetime by its logical partition of in-
struction and data ways. In multi-core systems, the write imbalance
created by one core may get automatically balanced by the writes
of another core. This restricts the performance of ViSC to few work-
loads in a quad-core system.

To quantify the write variation, we use two parameters, namely;
coefficient of intra-set variation (IntraV) and coefficient of inter-set
variation (InterV) defined as follows,

1 iJ S (Wi - gM_ Wem)®

IntraV = - (1)
N.Writegyg p M-1
N M Wi 2
1 2oy sy w1 — Waog)
InterV = - J k=1 Zi=1 M i (2)
Writegug N-1

Where N is number of sets in cache.
M is the number of ways in a set.
W1 is the write count in set k and way L
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Figure 4: Life time improvement of various benchmarks for
different threshold values (taller the bar, the better)
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Figure 5: Comparison of lifetime improvement for DWWR
and ViSC for unicore systems normalised to base configura-
tion (taller the bar, the better)
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Figure 6: Comparison of lifetime improvement for DWWR
and ViSC for dual-core system normalised to base configu-
ration (taller the bar, the better)

Writegygis average write count given by

Sl 2 Wiy )
N.M

IntraV is defined as the coefficient of variation of the average write
count within cache sets and InterV is defined as the average of
the CoV of the write counts across a cache set. Lower the value of
IntraV and InterV better the write distribution within and across
the sets. Writegyy shows the average number of writes taking place
in the cache memory

Writegog =
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Figure 7: Comparison of lifetime improvement for DWWR
and ViSC for quad-core system normalised to base configu-
ration (taller the bar, the better)
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Figure 8: Comparison of intra-set variation for DWWR and
ViSC for uni-core system (shorter the bar, the better)
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Figure 9: Comparison of intra-set variation for DWWR and
ViSC for dual-core system (shorter the bar, the better)

Figure 8, Figure 9 and Figure 10 shows the intra-set write varia-
tions in uni-core, dual-core, and quad-core systems, respectively.
ViSC gives the best performance for benchmarks and workloads
having high intra-set variations whereas gives reasonably good
performance compared to DWWR for workloads having medium
and low intra-set write variations. For data-intensive applications,
ViSC gives the best performance owing to the fact that some ways
of LLC are reserved only for instructions. In write restriction strate-
gies such as DWWR, a portion of LLC is inaccessible for the write
operation, whereas in ViSC, entire cache memory is available for
the write operation. Because of the non-restrictive write approach,
ViSC is able to minimize the number of writes per way and hence
the improvement in lifetime.
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Figure 11: Comparison of relative lifetime for varying the
count of I and D ways in the L2 cache of uni-core system
(higher the bar, the better)
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Figure 12: Comparison of intra-set variation for varying the
count of I and D ways in the L2 cache of uni-core system
(shorter the bar, the better)

ViSC has very minimal power and area overhead, 0.20% and
0.15%, respectively, owing to additional threshold timer and 67B
memory that is used to swap the contents of instruction and data
ways during the way reorganisation. We conduct a study by varying
the number of ways for instruction (k) and data (8-k) as shown in
Figure 11 and Figure 12. Based on this, we fix k as 3.

6 CONCLUSION

Write variations at the inter-set level and intra-set level substan-
tially reduce the lifetime of NVM caches. We proposed ViSC, a
technique that efficiently reduces the intra-set variation occuring
within the sets of LLC. The key contribution of this paper is the
concept of virtually splitting the L2 cache into data and instruction
ways. Since data cache is heavily written and instruction cache is
written exiguously, change in the logical mapping of instruction
and data ways periodically is proposed in order to distribute the
writes uniformly. Our technique shows significant improvement of
the intra-set variation with negligible hardware and power over-
heads over the baseline architecture and the state-of-the-art DWWR
technique. To improve ViSC further, whenever write intensive ap-
plications run, cache reorganisation can be made more frequent
and vice versa by adjusting the switching interval. ViSC technique
has a huge potential in enhancing the lifetime of NVM-based LLCs
in modern multi-core processors.
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