
Reducing Off-Chip Miss Penalty by Exploiting
Underutilised On-Chip Router Buffers

Abhijit Das, Abhishek Kumar and John Jose
Dept. of Computer Science and Engineering, Indian Institute of Technology Guwahati, India

{abhijit.das, abhishek18a, johnjose}@iitg.ac.in

Abstract—The era of data driven applications expose lim-
ited on-chip caching in modern Tiled Chip Multi-Processors
(TCMPs). Some applications suffer from frequent last level cache
(LLC) miss and travel off-chip to fetch data and instructions.
Off-chip miss penalty is very expensive as it severely hampers
application execution time. Modern Network-on-Chip (NoC)
based TCMPs employ input buffered routers for scalable commu-
nication bandwidth. In this work, we exploit underutilised buffers
of NoC routers to store recently evicted LLC blocks. While
these blocks are locally stored, future data requests for such
blocks are directly replied from the NoC router. Local reply from
routers avoid off-chip travel and significantly reduces LLC miss
penalty. To make sure that such storage of evicted LLC blocks
does not create NoC congestion, we incorporate block forwarding
and dropping using dynamic router buffer contention updates.
We experimentally validate that our proposed optimisations
significantly reduces LLC miss penalty and improves overall
system performance. We achieve a maximum system speedup
of up to 13% and an average system speedup of 7%.

Index Terms—Miss Penalty, Last Level Cache (LLC), Cache
Coherence, Network-on-Chip (NoC), Virtual Channel (VC)

I. INTRODUCTION

In the era of data driven applications, the demand for

information processing is increasing exponentially. The in-

creasing demand is driving a parallel increase in the number

of processing cores in Tiled Chip Multi-Processors (TCMPs).

It is indeed visible in the industry for example with Intel

Xeon Phi Processors featuring 64-72 cores [1]. With ever

increasing cores in modern TCMPs, Network-on-Chip (NoC)

communication usually plays a very significant role in data

access latency. Nevertheless, for data access requests that

travel off-chip memory banks, the role of NoC is limited.

Existing literature argues that NoC resource utilisation is very

low, with an average injection rate of around 5% [2][3][4].

Exploiting underutilised NoC resources to improve data access

latency for off-chip accesses is an interesting area to explore.

Due to the usage of relatively simpler Out-of-Order (OoO)

processing cores, modern TCMPs including Intel Xeon Phi

Processors [5], use only two levels of on-chip caching. In

these processors, L2 serves as the last level cache (LLC)

and communicates with the off-chip memory banks for data

transfer. On-chip caches are usually small due to their asso-

ciated cost and hence going to the off-chip memory banks

for fetching data is inevitable. With data driven applications,

going off-chip for data is even more common. Current NoC

based TCMPs like Intel Xeon Phi Processors [5] have private,

write-back L1 caches and a shared distributed, write-back

NoC

Processor

L1 D Cache

NIC

L1 I Cache

L2 Cache Bank
(LLC)

PE: Processing Element

MC

MCMC

MC

PEPE R R

LLC

PE

RRPE

PE

PE

R

PE

PEPE

R

R R R R

R

R

Directory
(DIR)

L1 CTLR LLC/DIR CTLR

Figure 1: Conceptual view of an NoC based TCMP

LLC with directory. When an L1 cache miss occurs, the data

request reaches the corresponding LLC bank. When an LLC

miss occurs, the data request reaches the corresponding off-

chip memory bank through memory controller (MC) as shown

in Figure 1. The requested data is fetched from the off-chip

memory and forwarded to the corresponding LLC bank and

then to L1 cache to resume execution. The entire communica-

tion is packet based and is done through the underlying NoC.

The time required to replace an existing cache block in LLC

with an incoming cache block is called LLC miss penalty.

It is also known as off-chip miss penalty as the incoming

block is fetched from off-chip memory. Since LLC is small in

size, it fills up quickly and all subsequent LLC miss always

evicts a valid cache block. As per the coherence directory

information, the LLC/Directory controller (LLC/DIR CTLR)

decides whether to discard the block (clean) or send it to off-

chip memory for write-back (dirty). However for applications

with good temporal locality of reference, a recently evicted

LLC block, if requested again needs to be re-fetched from the

off-chip memory. The LLC miss penalty is generally in order

of hundreds of clock cycles. This severely hampers application

execution time and degrades overall system performance.

Modern NoC based TCMPs employ input buffered routers

for scalable on-chip bandwidth [6][7]. In-transit packets on

their way to destination are stored in the buffers of interme-

diate routers to take part in routing and arbitration decisions.

However, an experimental analysis on real application-based

workloads show that the average buffer utilisation of NoC

routers is very low except during peak network congestion

(Section II-B). In this work, we attempt to exploit empty

buffers of NoC routers in a way that increases their utilisation

230

2020 IEEE 38th International Conference on Computer Design (ICCD)

2576-6996/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCD50377.2020.00049

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

 186

 188

 190

 192

 194

 196

ast
ar

bz
ip2

cac
tus

ADM
cal

cu
lix

Gem
sF

DTD

gro
macs

na
md

om
ne

tpp
sop

lex

xa
lan

cb
mk

Ave
rag

e

A
ve

ra
ge

 L
LC

 M
is

s
Pe

na
lty

 (c
yc

le
s)

SPEC CPU2006 Benchmarks

(a) LLC miss penalty

 94.2

 94.4

 94.6

 94.8

 95

 95.2

ast
ar

bz
ip2

cac
tus

ADM
cal

cu
lix

Gem
sF

DTD

gro
macs

na
md

om
ne

tpp
sop

lex

xa
lan

cb
mk

Ave
rag

e

V
C

 A
va

ila
bi

lit
y

in
 L

oc
al

 In
pu

t P
or

t (
%

)

SPEC CPU2006 Benchmarks

(b) VC availability in local input port

 10

 20

 30

 40

 50

 60

ast
ar

bz
ip2

cac
tus

ADM
cal

cu
lix

Gem
sF

DTD

gro
macs

na
md

om
ne

tpp
sop

lex

xa
lan

cb
mk

Ave
rag

eA
ve

ra
ge

 R
e-

re
fe

re
nc

e
Ti

m
e

(x
10

00
 c

yc
le

s)

SPEC CPU2006 Benchmarks

(c) Re-reference time of evicted LLC blocks

Figure 2: Key observations and motivation for the proposed architecture

and positively impacts system performance. When evicted,

dirty blocks of an LLC bank reach the local router to travel

over the NoC to reach off-chip memory for write back;

we propose to delay their travel. We temporarily disable

arbitration of such evicted blocks to delay their travel and keep

them stored in local router buffers. We also propose to store

some of the evicted, clean blocks in local routers, which are

otherwise discarded. Since the buffer utilisation is low, these

blocks can be kept stored in local routers without inducing

any NoC congestion. When a recently evicted LLC block is

re-referenced, we propose to arrange a quick reply with the

stored block from the local router. These optimisations help

to avoid the off-chip miss penalty and improve overall system

performance. We make the following major contributions:

1) Local Store: We propose an NoC architecture that

identifies evicted, dirty LLC blocks in local router

buffers and disables their arbitration. We also make some

evicted, clean LLC blocks reach the local router and get

stored in available buffers. Both clean and dirty LLC

blocks are stored in local routers for as long as possible.

2) Local Reply: We propose an optimisation such that

during the time an evicted LLC block is locally stored,

a re-reference request for the same block can be locally

replied from the router. With local replies, we avoid off-

chip miss penalty and improve system performance.

3) Block Forward and Drop: We forward the locally

stored dirty LLC blocks for write-back towards their

destination using two approaches based on router buffer

contention. We discard the stored clean LLC blocks as

they need not be forwarded for write-back. This way,

we make sure that locally storing evicted LLC blocks

does not create injection suppression for others.

II. BACKGROUND AND MOTIVATION

A. LLC Miss Penalty

Latest NoC based TCMPs like Intel Xeon Phi Processor

(2016) [5], Princeton Piton Processor (2015) [8], MIT Scorpio

Processor (2014) [9] and others use two levels of on-chip

caching. Data driven, memory-intensive applications expose

this limited on-chip caching and result in frequent LLC misses.

The time required to replace an existing cache block in LLC

with an incoming block is called LLC miss penalty. In NoC

based TCMPs, LLC miss penalty can be given as:

Miss PenaltyLLC = Ton−chip + Toff−chip (1)

where

aTon−chip = tRequest
LLC/DIR CTLR−MC + tReply

MC−LLC/DIR CTLR

(1a)

bToff−chip = tRequest
MC−MEM + tReply

MEM−MC (1b)

cTon−chip << Toff−chip (1c)

where tij is the time taken by message i to travel distance

j, for example tRequest
LLC/DIR CTLR−MC is the time taken by an

off-chip data request to travel from LLC/Directory controller

(LLC/DIR CTLR) to the memory controller (MC) (Figure 1).

Figure 2a shows the average LLC miss penalties for dif-

ferent SPEC CPU2006 benchmarks. The average LLC miss

penalty for the presented benchmarks is around 190 cycles

which is very expensive. As given in equation (1c), LLC

miss penalty is dominated by the off-chip data transfer time

between MC and memory (MEM). Off-chip data transfer time

is usually in hundreds of cycles, whereas on-chip data transfer

time is only in tens of cycles. Hence, the role of NoC based

on-chip data transfer in LLC miss penalty is minimum. In

another observation from Figure 2a, the LLC miss penalty is

very similar for all the presented benchmarks. It is attributed

to the fact that after acquiring the shared data bus, off-chip

transfer time is almost fixed. Since off-chip data transfer time

dominates in LLC miss penalty, it remains similar across

benchmarks. On-chip congestion and delay in NoC routers

owing to application behaviour have negligible impact.

Observation 1:

LLC miss penalty is expensive and application obliv-

ious with limited role of NoC and its resources.

B. VC Availability

NoC based systems use routers to communicate the transfer

of packets from their source to destination. NoC routers

have three design alternatives: buffered, minimally buffered

and bufferless; each with different pros and cons. Modern

TCMPs employ input buffered NoC routers for scalable on-

chip bandwidth [6][7]. Packets coming through different input

ports (north, east, south, west and local) gets stored in the

available buffers of virtual channels (VCs) and take part in

routing and arbitration decisions. VC availability in NoC based

TCMPs can be represented as:

231

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

V C Availabilityn =
Cycles when n V Cs are Free

Total Execution Cycles
(2)

Figure 2b shows the VC availability in local input port of

NoC routers for different SPEC CPU2006 benchmarks. As the

average injection rate of these multiprogrammed benchmarks

is only around 5%, except during peak NoC congestion, at

least one VC is always free (≈ 95%). The observation in

Figure 2b is in sync with the conclusions in the literature

about low buffer utilisation with real applications [2][3][4].

Observation 2:

NoC based TCMPs use input buffered routers for worst

case bandwidth, but buffers (VCs) are underutilised.

C. Motivation

The concept of caching is governed by the principle of

locality of reference; temporal and spatial. Applications with

good temporal locality of reference may request for recently

evicted cache blocks in LLC. The duration from the eviction

of an LLC block to the request of the same block in future

is called re-reference time. Figure 2c shows the average re-

reference time for different SPEC CPU2006 benchmarks. For

example, in a 64-core NoC based TCMP running a memory-

intensive benchmark GemsFDTD, an evicted LLC block is re-

referenced within an average time of 22213 cycles. Across all

benchmarks, on average, within an interval of around 37000

cycles, an evicted LLC block is re-referenced. For all the

observations presented in Figure 2a, 2b and 2c, we run 64

copies of the same benchmark in a 64-core NoC based TCMP.

Evicted, clean LLC blocks are discarded whereas dirty LLC

blocks are sent over the NoC to the off-chip memory bank for

write-back. To reach their destination for write-back, evicted,

dirty LLC blocks enter the local router through the local input

port as packets. We call them LLC write-back packets. They

get stored in the available VC buffers to take part in routing

and arbitration decisions. In this work, we propose to delay the

travel of LLC write-back packets and keep them stored in the

local NoC router buffers for as long as possible. During the

time an LLC write-back packet is locally stored, a re-reference

request for the same LLC block can be locally replied. We

also propose to bring some of the evicted, clean LLC blocks

to the local router and keep them stored in buffers to improve

our chances of local reply. As shown in Figure 2b, there

are sufficient free VCs available in the local input port of

NoC routers. So, keeping the evicted LLC blocks (clean and

dirty) locally stored will not create injection suppression for

other packets. As given in equation (1), LLC miss penalty

is dominated by the off-chip transfer time and the role of

NoC is limited. With direct reply of LLC blocks from the

local router, we propose to avoid off-chip transfer time. Our

proposed optimisations have the potential to reduce LLC miss

penalty, thereby increasing overall system performance.

Proposed Solution:

Store evicted LLC blocks in underutilised NoC router

buffers (VCs) and upon re-reference, generate local

replies from the routers to reduce LLC miss penalty.

Crossbar

North
PE

West
South
East

North

Input Unit

VC 3

VC 2

VC 1

VC 0

PE

West
South

East

Switch Allocator
(SA)

VC Allocator
(VA)

Credits
Credits

R: Router

Route Compute
(RC)

Store, Reply,
Forward & Drop

(SRFD)

MC

NoC

LLC/DIR
CTLR

Data and
Coherence Message R R Data and

Coherence Message

Figure 3: Illustration of the proposed router microarchitecture

Table 1: MOESI Directory Protocol - Stable states of LLC

State Description
I Invalid everywhere; LLC and all the private L1 caches

S Valid, but not exclusive, not owned and not dirty

ILS Invalid in LLC, but locally held in S state by one or more L1 caches

E Valid, exclusive, owned but not dirty

ILE Invalid in LLC, but locally held in E state by one of the L1 caches

O Valid, owned and potentially dirty but not exclusive

ILO Invalid in LLC, but locally held in O state by one of the L1 caches

M Valid, exclusive, owned and potentially dirty.

ILM Invalid in LLC, but locally held in M state by one of the L1 caches

III. PROPOSED ARCHITECTURE

In this section, we explain the working of our proposed

architecture. We consider MOESI directory protocol with non-

inclusive LLC, and the stable states of LLC are presented

in Table 1. Directory is distributed and co-located with the

corresponding LLC bank (refer Figure 1). LLC/Directory con-

trollers (LLC/DIR CTLRs) are responsible for maintaining on-

chip coherence. Memory controllers (MCs) acts as an interface

to off-chip memory banks and maintains off-chip coherence

(when applicable). A simple, conceptual illustration of the

communication between an LLC/DIR CTLR and an MC with

our proposed router microarchitecture is given in Figure 3. The

memory hierarchy dictates that L1 cache controller (L1 CTLR)

communicates with LLC/DIR CTLR which communicates

232

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

Table 2: LLC/DIR Controller - Block replacement. RE-

PLACEMENT: block replacement, ACK-PUT: acknowledge-

ment from MC for PUT request, PUTE/PUTO/PUTM: write-

back request for E/O/M state, DATA: evicted block, INV: in-

validation, REQ: L1 requester, DIR: directory, MEM: memory

REPLACEMENT ACK-PUT

1 S

Remove REQ from Sharers,

Store Block State to DIR,

Deallocate Block / ILS

2 E Send PUTE to MEM / EIA

3 EIA Stall
Clear Owner,

Deallocate Block / I

4 EIA Stall

Add a Store Flag as SET,

Add a Dirty Flag as RESET,

Send DATA to MEM,

Clear Owner,

Deallocate Block / I

5 O Send PUTO to MEM / OIA

6 OIA Stall

Send DATA to MEM,

Send INV to All Sharers,

Clear Sharers,

Clear Owner,

Deallocate Block / I

7 OIA Stall

Add a Store Flag as SET,

Add a Dirty Flag as SET,

Send DATA to MEM,

Send INV to All Sharers,

Clear Sharers,

Clear Owner,

Deallocate Block / I

8 M Send PUTM to MEM / MIA

9 MIA Stall

Send DATA to MEM,

Clear Owner,

Deallocate Block / I

10 MIA Stall

Add a Store Flag as SET,

Add a Dirty Flag as SET,

Send DATA to MEM,

Clear Owner,

Deallocate Block / I

11 I, ILS, ILE, ILO, ILM: Explanation of transitions is out of scope

DestSrc StoreAddr Dirty S X

Figure 4: Modified message/packet header

with MC for data and coherence. An L1 CTLR can not bypass

the LLC/DIR CTLR to communicate with MC directly. We use

the table-based method popularised by Nagarajan et al. [10] to

explain the working of MOESI directory protocol. Explaining

the protocol for all the possible states and events are beyond

the scope of this paper. Hence, we limit the explanation to only

the states and events that are related to our proposed work.

A. Local Store: Keeping Evicted LLC Blocks in Router Buffers

On a replacement, a valid cache block is evicted from

an LLC bank. Table 2 presents the transitions and actions

performed at an LLC/DIR CTLR on a block replacement.

A blank entry in the table indicates that the corresponding

transition is either impossible or irrelevant for our discussion.

A shaded row i is the modified and proposed version of row

i−1 to implement our optimisations. For example, in Table 2,

row 4 is the modified and proposed version of row 3. Within an

entry in a shaded row, only the bold actions are additionally

performed along with the existing actions to implement the

optimisations. A transient state XY Z denotes that a block is

transitioning from a stable state X to another stable state Y
and the transition is waiting for an event Z.

With MOESI directory protocol, a valid cache block evicted

from an LLC bank can be either clean (S/E) or dirty (O/M).

Clean blocks are usually dropped, and dirty blocks are for-

warded towards off-chip memory bank for write-back. To

evict a dirty block, LLC/DIR CTLR initiates a write-back

request (PUTO/PUTM) to send over the NoC towards off-

chip memory bank as given in rows 5 and 8 of Table 2. After

receiving such a request, MC replies with an acknowledgement

(ACK-PUT) to receive the evicted block for write-back. When

an ACK-PUT message reaches the LLC/DIR CTLR, it evicts

the dirty block and sends the block for write-back to the off-

chip memory as a DATA message (rows 6 and 9 of Table 2).

Our first optimisation targets these write-back DATA messages

on their way to the destination. These messages are marked

with a 1-bit flag Store in their header for identification, as

shown in Figure 4. Related modifications in the LLC/DIR

CTLR are given in rows 7 and 10 of Table 2. All the messages

travel as packets through the underlying NoC to reach their

destination. They enter NoC through the local router which

is connected to their tile, get stored in the available buffers

of VCs and take part in routing and arbitration decisions. An

additional Store, Reply, Forward & Drop (SRFD) unit (refer

Figure 3) in the local router checks the Store flag of all the

buffered packets. We consider two-stage NoC routers (1: RC,

2: VA and SA) where SRFD unit works in parallel with the

Route Compute (RC) unit. So, while SRFD unit checks the

Store flag of a packet, RC unit calculates the route for the

same packet in parallel. If the Store flag is found SET for

a packet, SRFD unit disables its VC and switch arbitration

(VA and SA). This packet is an evicted, dirty LLC block

(DATA message of PUTO/PUTM) which remains stored in

the local router unless forwarded for write-back (explained in

Section III-C). Both LLC/DIR CTLR and MC are unaware of

the proposed optimisation of local store. For LLC/DIR CTLR,

the DATA message is on its way or already reached the off-

chip memory for write-back. On the other side, since MC sent

an acknowledgement (ACK-PUT) to receive the evicted LLC

block for write-back, it expects the block (DATA message)

and believes that the DATA message is on its way.

Evicted, clean LLC blocks are usually not sent for write-

back as the off-chip memory has the same version of such

blocks. If a valid cache block evicted from an LLC bank

is clean, it is either in S or E state (refer Table 1). To

evict a block which is in S state, LLC/DIR CTLR silently

updates the directory and deallocates the LLC block without

communicating with the MC (row 1 of Table 2). Since the LLC

is non-inclusive, evicting a block from an LLC bank does not

invalidate other sharers of the block. The corresponding state

233

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

of the block in MC is not required to change (already in S),

and hence no intimation from LLC/DIR CTLR is necessary.

However, to evict a clean block which is in E state, LLC/DIR

CTLR needs to communicate with the MC. Even though the

block is clean, it is a single copy without any sharers. So,

deallocating the LLC block requires the state to be updated to I

in both, directory and the MC. The LLC/DIR CTLR initiates a

write-back request (PUTE) as given in row 2 of Table 2. Upon

receiving a PUTE message, the MC updates the corresponding

state of the block to I and sends an ACK-PUT. When LLC/DIR

CTLR receives an ACK-PUT message, it updates the directory

and deallocates the LLC block (row 3 of Table 2). Since the

evicted block is clean, LLC/DIR controller does not send the

block for write-back, and the MC never expects it. Our next

optimisation proposes to store these evicted, clean LLC blocks

which are in E state, in the local router buffers. We initiate a

special write-back DATA message of PUTE, set its Store flag

in the header and send it towards off-chip memory (row 4 of

Table 2). SRFD unit in the local router identifies the message

based on the Store flag and keep it stored there for as long as

possible. All the DATA messages of PUTE, PUTO and PUTM

are also marked with an additional 1-bit flag Dirty to facilitate

local reply (explained in Section III-B). The detailed working

of the additional SRFD unit is presented in Algorithm 1.

B. Local Reply: Responding to Block Requests from Routers

On a cache miss, the corresponding LLC bank requests

the block from the off-chip memory. Table 3 presents the

transitions and actions performed at an LLC/DIR CTLR on

a block miss. Based on the type of miss, LLC/DIR CTLR

issues either a read request (GETS) or a write request (GETX)

to send over the NoC towards off-chip memory bank as

given in rows 1, 7 and 11 of Table 3. After receiving such

a data request, MC fetches the requested block from off-

chip memory and forwards it to the LLC/DIR CTLR. As per

the request, LLC/DIR CTLR may receive the block either in

shared (DATA) or exclusive (EX-DATA) state. Our optimi-

sation identifies GETS/GETX messages when they reach the

local router to travel over the NoC to their destination. We

mark GETS by a 1-bit flag S and GETX by a 1-bit flag X in the

message header as shown in Figure 4. Related modifications

in the LLC/DIR CTLR is given in rows 2, 8 and 12 of Table 3.

For a new packet entering the local router with S flag

SET (GETS message), SRFD unit compares its requested

address with the addresses of non-empty VCs. One of the non-

empty VCs may have the requested block stored as a packet

when it was evicted from the LLC in the recent past (DATA

message of PUTE/PUTO/PUTM). If a match is found, we can

generate a local reply to the GETS message with a stored

DATA message. SRFD unit swaps the source and destination

of the matched DATA message (stored packet) with the GETS

message (request packet) and drop the request packet, as given

in Algorithm 1. The new destination of the stored packet is

the same LLC bank from where it was evicted. The stored

packet is now enabled for VC and switch arbitration, which

were disabled to keep it stored in the local router. Since the

Algorithm 1: Working of SRFD Unit

Input : VC information, modified packet header
Output: Local store or reply, block forward or drop

1 Notations:
2 n: Number of virtual channels (V C)

3 P j
i : Packet in V Ci where j ∈ {new, stored}

4 if Pnew
i [Store] == SET then

5 /* Local store of DATA message of PUT(E/O/M) [III-A] */
6 Disable VA and SA for Pnew

i
7 else if Pnew

i [S] == SET then
8 /* Local reply to GETS message [III-B] */
9 for ∀VCk where V Ck �= NULL do

10 if P stored
k [Addr] == Pnew

i [Addr] then
11 P stored

k [Src] = Pnew
i [Dest]

12 P stored
k [Dest] = Pnew

i [Src]
13 Deallocate V Ci to drop Pnew

i
14 Enable VA and SA for P stored

k

15 else if Pnew
i [X] == SET then

16 /* Local reply to GETX message [III-B] */
17 for ∀VCk where V Ck �= NULL do
18 if P stored

k [Addr] == Pnew
i [Addr] then

19 if P stored
k [Dirty] == SET then

20 P stored
k [Src] = Pnew

i [Dest]
21 P stored

k [Dest] = Pnew
i [Src]

22 Deallocate V Ci to drop Pnew
i

23 Enable VA and SA for P stored
k

24 else
25 Deallocate V Ck to drop P stored

k

26 /* Forward/Drop of DATA message of PUT(E/O/M) [III-C] */
27 for ∀VCk , if V Ck �= NULL do
28 /* Defensive vacate */

29 if ∃VCk where P stored
k [Store] == SET then

30 if P stored
k [Dirty] == SET then

31 Enable VA and SA for P stored
k

32 else
33 Deallocate V Ck to drop P stored

k

34 /* Aggressive vacate */

35 if ∀VCk , P stored
k [Store] == SET then

36 if P stored
k [Dirty] == SET then

37 Enable VA and SA for P stored
k

38 else
39 Deallocate V Ck to drop P stored

k

destination LLC bank is connected to the very same router, the

stored packet gets ejected out of the router through the local

output port. Avoiding off-chip travel to fetch the requested

block significantly reduces LLC miss penalty. In essence, we

satisfy a GETS message with a matching DATA message of

PUTE/PUTO/PUTM stored in the local router.

For a new packet entering the local router with X flag

SET (GETX message), SRFD unit performs the same steps

but with an additional check. When a match is found for the

requested block in the local router, we have to make sure that

the matched block (stored packet) is in exclusive state. SRFD

unit checks the Dirty flag of the stored packet to identify if it is

a DATA message of PUTO/PUTM and not PUTE (explained

in Section III-D). If the Dirty flag is SET, a local reply with

the matched DATA message can be generated from the router.

If a match is found in the local router but the Dirty flag is

not SET (DATA message of PUTE), then the GETX message

needs to travel off-chip to fetch the requested block. We drop

234

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

Table 3: LLC/DIR Controller - Block miss. GETS: read request from L1, GETX: write request from L1, DATA: shared block

from off-chip memory, EX-DATA: exclusive block from off-chip memory, CAN-PUT: cancel PUT request for coherence

GETS GETX DATA EX-DATA
1 I Send GETS to MEM / ISD Send GETX to MEM / IMD

2 I
Add an S Flag as SET,

Send GETS to MEM / ISD

Add an X Flag as SET,

Send GETX to MEM / IMD

3 ISD Stall Stall
Send DATA to REQ,

Add REQ to Sharers / ILS

Send EX-DATA to REQ,

Clear Sharers,

Make REQ the Owner / ILE

4 ISD Stall Stall

If (Store == SET) {
Send CAN-PUT to MEM }
Send DATA to REQ,

Add REQ to Sharers / ILS

If (Store == SET) {
Send CAN-PUT to MEM }
Send EX-DATA to REQ,

Clear Sharers,

Make REQ the Owner / ILM

5 IMD Stall Stall

Send EX-DATA to REQ,

Clear Sharers,

Make REQ the Owner / ILM

6 IMD Stall Stall

If (Store == SET) {
Send CAN-PUT to MEM }
Send EX-DATA to REQ,

Clear Sharers,

Make REQ the Owner / ILM

7 S
Send Data to REQ,

Add REQ to Sharers
Send GETX to MEM / SMD

8 S
Send Data to REQ,

Add REQ to Sharers

Add an X Flag as SET,

Send GETX to MEM / SMD

9 SMD Stall Stall

Send EX-DATA to REQ,

Send INV to Sharers except REQ,

Clear Sharers,

Make REQ the Owner / ILM

10 SMD Stall Stall

If (Store == SET) {
Send CAN-PUT to MEM }
Send EX-DATA to REQ,

Send INV to Sharers except REQ,

Clear Sharers,

Make REQ the Owner / ILM

11 ILS
Forward GETS to Owner,

Add REQ to Sharers
Send GETX to MEM / SMD

12 ILS
Forward GETS to Owner,

Add REQ to Sharers

Add an X Flag as SET,

Send GETX to MEM / SMD

13 E, ILE, O, ILO, M, ILM: Explanation of transitions is out of scope

the matched DATA message of PUTE before forwarding the

GETX message towards memory to avoid creating a stale copy

of the block. SRFD unit takes care of this operation as given in

lines 24-25 of Algorithm 1. We can satisfy a GETX message

with a matching DATA message of PUTO/PUTM only and

not of PUTE as it may violate cache coherence.

C. Block Forward and Drop: Releasing Stored Blocks

The evicted LLC blocks can not be kept stored in local

routers forever as they might create injection suppression

during on-chip congestion. Our optimisation is about exploit-

ing underutilised router buffers and not create buffer (VC)

unavailability. If a new packet can not be injected into the

local router due to VC unavailability, we immediately take a

suitable action to vacate one of the VCs where an evicted

LLC block is stored. Based on the local input port buffer

contention, we implement two ways of vacating a VC occupied

by the evicted LLC blocks; defensive and aggressive. When

all the VCs are full, defensive approach dictates that if any

one of the VCs contains a stored LLC block (DATA message

of PUTE/PUTO/PUTM), a VC needs to be vacated. However,

with aggressive approach, only when all the VCs are full with

stored LLC blocks, a VC is vacated by the SRFD unit (refer

Algorithm 1). When multiple VCs have stored LLC blocks,

we vacate the oldest of them. After we identify the VC to be

vacated, the Dirty flag helps us to decide whether to forward

235

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

or drop the LLC block stored in that VC. If the VC has a dirty

LLC block (DATA message of PUTO/PUTM), it needs to be

forwarded towards off-chip memory for write-back. We enable

the VC and switch arbitration for the stored block which were

disabled when we kept it stored in the VC buffer. If the VC

has a clean LLC block (DATA message of PUTE), it is silently

dropped as off-chip memory has the same version of the block.

Neither the MC sent any acknowledgement to receive the

block, nor the LLC/DIR CTLR sent the block for write-back.

DATA message of PUTE is a special message generated for

our optimisation; to give more scope for local reply.

D. Maintaining Cache Coherence

When an evicted, dirty LLC block is sent for write-back, the

LLC/DIR CTLR invalidates all its sharers (if exists) and clear

the directory entry (refer rows 6 and 9 of Table 2). Thus, when

we keep such blocks (DATA messages of PUTO and PUTM)

stored in the local router, no one else has copy of the blocks.

MC is expecting these blocks for write-back and believes that

they are on the way. As per the memory hierarchy, a new

request for any of these blocks reaches the same LLC/DIR

CTLR from where they were evicted. LLC/DIR CTLR issues

a new request (GETS/GETX) for the block towards the same

MC. When the request reaches the local router and a local

reply is generated, the stored block is sent back to the same

LLC bank for where it was evicted. While generating local

replies with the stored blocks (DATA messages of PUTO and

PUTM), we need to preserve their states as they are dirty.

So, irrespective of the type of request (GETS or GETX), a

local reply is always generated in M state. This makes sure

that the block can not be discarded and will be eventually

sent for write-back. When LLC/DIR CTLR receives a block

in the form of a DATA or EX-DATA message, we perform an

additional check of the Store flag (rows 4, 6 and 10 of Table 3).

If the Store flag is found SET, LLC/DIR CTLR learns that the

block has come from the local router (local reply). MC was

expecting the block for write-back and now we have generated

a local reply with the block. So, we make LLC/DIR CTLR

send a CAN-PUT message to the MC. With the CAN-PUT

message, MC knows that the evicted block will not reach for

write-back and updates the state to M to maintain coherence.

When a clean block which is in E state is evicted, we make

LLC/DIR CTLR generate a special DATA message towards

off-chip memory (row 4 of Table 2). Neither the LLC/DIR

CTLR sent the message for write-back, nor the MC expects

it. The purpose of this message is to keep the evicted, clean

LLC block stored in the local router and improve the scope of

local reply. Since the block is clean and not required to be sent

for write-back, a local reply with such a stored block (DATA

message of PUTE) is always generated in S state. Hence, a

DATA message of PUTE can generate local replies to only

GETS messages and not GETX messages. Upon receiving the

local reply, LLC/DIR CTLR issues a CAN-PUT message to

the MC. Since the MC was not expecting anything, when a

CAN-PUT arrives it understands that a local reply is generated

in S state and updates its record to maintain coherence.

Table 4: Simulation configuration

Processor 64 OoO x86 cores

L1 Cache 16KB, 4-way, 64B blocks, private, split

L2 Cache 128KB×64 cores, 8-way, 64B blocks, shared

Memory Bank 4; one located at each corner

Cache Coherence MOESI distributed directory

NoC 8×8 2D mesh, 4 VCs/port, 128-bit flit channel

Routing 2-stage routers, X-Y dimension-order routing

Packets 1-flit for control packets, 5-flit for data packets

Benchmarks SPEC CPU2006 (Multiprogrammed)

Table 5: Application scheduling for various workload mixes

Mix Benchmark Instances
M1 GemsFDTD(64)

M2 gromacs(64)

M3 astar(16) cactusADM(16) omnetpp(16) soplex(16)

M4 astar(16) calculix(16) GemsFDTD(16) soplex(16)

M5 bzip2(16) calculix(16) gromacs(16) xalancbmk(16)

M6 cactusADM(16) calculix(16) GemsFDTD(16) omnetpp(16)

M7 cactusADM(16) namd(16) omnetpp(16) xalancbmk(16)

IV. EXPERIMENTAL ANALYSIS

We consider the following architectures for evaluation:

• Baseline: Without any optimisation.

• DB-Defensive: Store evicted, dirty LLC blocks in local

router and use defensive block forward.

• DB-Aggressive: Store evicted, dirty LLC blocks in local

router but use aggressive block forward.

• CB+DB-Aggressive: Store both clean and dirty LLC

blocks in local router and use aggressive block forward.

A. Simulation Framework and Workloads

We model the baseline and proposed architectures on event-

driven gem5 simulator [11]. Our system configuration is

similar to Intel Xeon Phi Processor 7235 [12] with shared

and distributed L2 cache (LLC). Due to certain limitations in

gem5, we could not exactly model the cache configuration of

Intel Xeon Phi Processor 7235. Our cache configuration is not

chosen to give undue advantage to the proposed optimisations.

Rather, it challenges the optimisations with a hit rate of

around 95% for all the benchmarks we used. Our system

configuration is presented in Table 4 for reference. We modify

GARNET [13] module in gem5 to implement our modified

router microarchitecture. We modify MOESI CMP directory

protocol in Ruby to implement and maintain cache coherence.

To evaluate the performance, we consider SPEC CPU2006

multiprogrammed benchmarks to mimic a modern NoC based

TCMP running multiple applications in parallel. We create

two different types of workloads with varying misses per

kilo instructions (MPKIs) and re-reference interval (refer Fig-

ure 2c) to run on all the 64 cores of the system, as given in

Table 5. First type runs 64 copies of the same benchmark

on all the 64 cores (1×64: 64). The second type runs a

random combination of 4 different benchmarks with 16 copies

each (4×16: 64). By separately profiling each benchmark,

we choose a smaller representative window of instructions

236

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

M1 M2 M3 M4 M5 M6 M7 Average

Lower the better

N
or

m
al

is
ed

 L
LC

 M
is

s
Pe

na
lty

SPEC CPU2006 Benchmark Mixes

Baseline
DB-Defensive

DB-Aggressive
CB+DB-Aggressive

Figure 5: LLC Miss Penalty

 0.8

 0.85

 0.9

 0.95

 1

 1.05

M1 M2 M3 M4 M5 M6 M7 Average

Lower the better

N
or

m
al

is
ed

 N
et

w
or

k
St

al
l T

im
e

SPEC CPU2006 Benchmark Mixes

Baseline
DB-Defensive

DB-Aggressive
CB+DB-Aggressive

Figure 6: Network Stall Time

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

M1 M2 M3 M4 M5 M6 M7 Average

Higher the better

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

Baseline
DB-Defensive

DB-Aggressive
CB+DB-Aggressive

Figure 7: Speedup

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

M1 M2 M3 M4 M5 M6 M7 Average

Higher the better

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

CB+DB-Aggressive-2VC
CB+DB-Aggressive-4VC
CB+DB-Aggressive-6VC

Figure 8: Variation of number of VCs

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

M1 M2 M3 M4 M5 M6 M7 Average

Higher the better

N
or

m
al

is
ed

 S
pe

ed
up

SPEC CPU2006 Benchmark Mixes

DB-Aggressive
CB+DB-Aggressive
CB+DB-NoCorner

Figure 9: No local store in corner routers

to have a tractable simulation time. We evaluate the baseline

and proposed architectures for performance, storage, area and

power. Our results are normalised with respect to the baseline.

B. Performance Evaluation

LLC Miss Penalty: It is defined as the number of cycles

required to replace an existing cache block in LLC with

an incoming block. LLC miss penalty directly reflects the

effectiveness of the proposed local reply optimisation. Figure 5

shows the normalised LLC miss penalty with respect to the

baseline architecture. With local replies, the proposed archi-

tectures reduce LLC miss penalty for all the workload mixes.

In general, CB+DB-Aggressive architecture performs better,

as with more locally stored blocks (both clean and dirty), it

has more scope of local replies. However, for mixes M3 and

M7, CB+DB-Aggressive perform relatively less compared to

other proposed architectures. Mixes M3 and M7 contains high

MPKI valued benchmarks like astar, soplex and xalancbmk
which frequently inject packets into the network. As a result,

the evicted LLC blocks are not able to stay stored in the local

routers for long. A maximum reduction of 9% in LLC miss

penalty is achieved by one of our proposed architectures.

Network Stall Time: It is defined as the number of cycles

the processor stalls waiting for a network packet. Network

stall time helps us to understand how storing LLC blocks

in local routers impact the NoC communication. Figure 6

shows the normalised network stall time with respect to the

baseline architecture. As expected, across all the workloads,

our proposed architectures significantly reduce network stall

time. With local reply from the NoC routers, we avoid both on-

chip and off-chip travel time as given in equation (1). Avoiding

on-chip travel time indirectly translates into reduced network

stall time. However, occupying VC buffers for long may affect

NoC communication during peak network congestion. To

avoid such a scenario, we proposed a defensive and an aggres-

sive block forward/drop approach. DB-Defensive performs sig-

nificantly better than DB-Aggressive and CB+DB-Aggressive
architectures for mixes M1 and M7. GemsFDTD having the

highest MPKI value among the presented benchmarks is run

on all the 64 cores in M1. Since M1 frequently injects network

packets from all the 64 cores, the routers are flooded with

packets. DB-Aggressive and CB+DB-Aggressive architectures

vacate a VC for new packet injection only when all the VCs

are occupied by evicted LLC blocks. As a result, new packets

suffer an injection delay that increases the network stall time.

Speedup: We use total instructions per cycle (IPC) of the

system to compare speedup between baseline and the proposed

architectures. Figure 7 shows the normalised speedup with

respect to the baseline architecture. From the improvements

in LLC miss penalty and network stall time, the increase in

system speedup with the proposed architectures is intuitive.

We achieve a maximum system speedup of 13% and an

average system speedup of 7% for the presented workloads.

In general, CB+DB-Aggressive performs well across all the

workloads with a few exceptions. Mix M1 performs the best

with DB-Defensive architecture among all the workloads. M1

running GemsFDTD benchmark has a very small re-reference

interval of only around 22000 cycles (refer Figure 2c). How-

ever, frequent network packet injection and the delay due

to aggressive vacate approach in the other two architectures,

DB-Defensive performs better. Mix M2 runs a low MPKI

valued benchmark gromacs, that has the largest re-reference

interval. Since CB+DB-Aggressive stores maximum evicted

LLC blocks for the longest duration, infrequent LLC block

re-references by M2 are also locally replied. The other two

architectures suffer performance degradation, as mix M2 being

a light workload can not reap the benefits of local replies. One

of the main reasons for mix M7 to perform well across all the

architectures is the composition of benchmarks with low re-

reference interval. cactusADM has one of the lowest (quickest)

re-reference interval among all the presented benchmarks.

C. Sensitivity Analysis on Design Parameters

As our optimisation is based on storage of evicted LLC

blocks in buffers of VCs, we also explore the impact of number

of VCs per port on system performance. For all the results

discussed so far, we have considered number of VCs as 4

(as presented in Table 4). However, in Figure 9, we show that

237

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

varying number of VCs will have different implications on the

system performance. Based on the available number of VCs in

a system, our optimisations achieve appropriate improvement.

While understanding the VC availability (refer Figure 2b),

we find that corner routers have fewer free VCs compared to

others. The unavailability of free VCs can be attributed to the

presence of MCs in the corners servicing continuous requests.

Since our optimisation is about exploiting free VCs, we do

not benefit much in the corner routers. To explore further, we

design a heterogeneous architecture called CB+DB-NoCorner
where the corner routers do not participate in local store and

reply. Figure 8 shows the comparison of system speedup for

CB+DB-NoCorner with other architectures.

D. Storage, Area and Power Evaluation

We use 4 additional bits (Store, Dirty, S and X) in the packet

header (refer Figure 4) to facilitate the working of SRFD unit.

However, a typical packet header is much smaller than the

channel bandwidth; hence we can accommodate the additional

4 bits in the header without any storage overhead. We use

DSENT [14], integrated with gem5 to evaluate the area and

power of 8×8 2D mesh NoC in our proposed architectures. In

DSENT, we use 22nm processor technology at 1GHz operating

frequency. The addition of SRFD unit in the routers incur

a negligible area overhead of 1.69% and a leakage power

overhead of 1.92% compared to the baseline routers. However,

due to improvement in overall system performance, we achieve

4.21% reduction in dynamic power compared to the baseline

routers. Since SRFD unit works in parallel to the RC unit

(refer Section III-A), it is not in the critical path of execution.

V. RELATED WORK

One of the first works by Mizrahi et al. [15] attempted to

change the abstraction of NoC from communication to storage.

They proposed to migrate the data cache entirely in the NoC

routers. Going forward in the same line, Eisley et al. [16]

decoupled data and coherence and proposed to keep only the

coherence directories in NoC. Yanamandra et al. [17] com-

bined the goodness of both and proposed to keep frequently

used cache blocks along with the coherence directories. There

is another work by Wang et al. [18] which is also focused

on in-network cache and coherence. However, almost all the

proposed optimisations require additional storage in the NoC

routers. Recently, Jindal et al. [19] proposed to reuse a design-

for-debug (DFD) storage hardware as extended VCs in routers.

Existing literature argues that NoC router buffers are under-

utilised. For example, SPLASH-2 benchmarks have an average

router utilisation of less than 20% [20]. The era of power

aware NoC designs explored bufferless and minimally buffered

routers [21][22]. Now, the trend is more towards application

and computation aware NoC designs [23][24]. Irrespective

of the promising design alternatives, input buffered NoC

routers are employed in modern TCMPs for scalable on-chip

bandwidth [6]. In a new and promising attempt, Das et al. [25]

proposed to exploit idle buffers of NoC routers to store dirty

blocks evicted from private L1 caches. Whereas, our work can

be thought of as an implementation of victim caching [26] for

LLC; using underutilised VCs to reduce off-chip miss penalty.

VI. CONCLUSION

In this work, we proposed a set of NoC based TCMP

architectures to reduce LLC miss penalty. We used the un-

derutilised buffers of NoC routers to keep evicted LLC blocks

stored. Future references to these evicted blocks, now stored

in local routers are directly replied from the routers. Local

reply avoids off-chip travel to fetch a block and significantly

reduces LLC miss penalty. We also proposed two approaches

to forward/drop the locally stored LLC blocks in due time and

avoid injection suppression. Since the number of evicted LLC

blocks are way more than what can be accommodated in local

routers, we explore nearby storage in the future work.

REFERENCES

[1] (2017) Intel Xeon Phi 72x5 Processor Family. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/series/132784/intel-
xeon-phi-72x5-processor-family.html

[2] N. Barrow-Williams et al., “A Communication Characterisation of
SPLASH-2 and PARSEC,” in IISWC, 2009.

[3] P. Gratz and S. W. Keckler, “Realistic Workload Characterization and
Analysis for Networks-on-Chip Design,” in CMP-MSI, 2010.

[4] R. Hesse et al., “Fine-Grained Bandwidth Adaptivity in Networks-on-
Chip using Bidirectional Channels,” in NOCS, 2012.

[5] A. Sodani et al., “Knights Landing: Second-Generation Intel Xeon Phi
Product,” in IEEE Micro, 2016.

[6] B. K. Daya et al., “Quest for High-Perf. Bufferless NoCs with Single-
Cycle Express Paths and Self-Learning Throttling,” in DAC, 2016.

[7] G. Michelogiannakis et al., “Evaluating Bufferless Flow Control for On-
Chip Networks,” in NOCS, 2010.

[8] J. Balkind et al., “OpenPiton: An Open Source Many-Core Research
Framework,” in ASPLOS, 2016.

[9] B. K. Daya et al., “SCORPIO: A 36-Core Research Chip Demonstrating
Snoopy Coherence on a Scalable Mesh NoC with In-Network Ordering,”
in ISCA, 2014.

[10] V. Nagarajan et al., A Primer on Memory Consistency and Cache
Coherence. Morgan & Claypool, 2020.

[11] N. Binkert et al., “The gem5 Simulator,” SIGARCH CAN, 2011.
[12] (2017) Intel Xeon Phi Processor 7235. [Online]. Available:

https://ark.intel.com/content/www/us/en/ark/products/128694/intel-
xeon-phi-processor-7235-16gb-1-3-ghz-64-core.html

[13] N. Agarwal et al., “GARNET: A Detailed On-Chip Network Model
inside a Full-System Simulator,” in ISPASS, 2009.

[14] C. Sun et al., “DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic NoC Modeling,” in NOCS, 2012.

[15] H. E. Mizrahi et al., “Introducing Memory Into The Switch Elements
Of Multiprocessor Interconnection Networks,” in ISCA, 1989.

[16] N. Eisley et al., “In-Network Cache Coherence,” in MICRO, 2006.
[17] A. Yanamandra et al., “In-Network Caching for Chip Multiprocessors,”

in HiPEAC, 2009.
[18] J. Wang et al., “Network Caching for CMPs,” in IPCCC, 2009.
[19] N. Jindal et al., “Enhancing Network-on-Chip Performance by Reusing

Trace Buffers,” IEEE TCAD, 2020.
[20] H. Farrokhbakht et al., “SMART: A Scalable Mapping and Routing

Technique for Power-Gating in NoC Routers,” in NOCS, 2017.
[21] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing in On-Chip

Networks,” in ISCA, 2009.
[22] C. Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for

Energy-Efficient Interconnect,” in NOCS, 2012.
[23] A. Das et al., “Critical Packet Prioritisation by Slack-Aware Re-routing

in On-Chip Networks,” in NOCS, 2018.
[24] K. Sangaiah et al., “SnackNoC: Processing in the Communication

Layer,” in HPCA, 2020.
[25] A. Das et al., “Exploiting On-Chip Routers to Store Dirty Cache Blocks

in Tiled Chip Multi-Processors,” in ISVLSI, 2020.
[26] N. P. Jouppi, “Improving Direct-Mapped Cache Perf. by the Addition of

a Small Fully-Associative Cache and Prefetch Buffers,” in ISCA, 1990.

238

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on February 25,2022 at 10:58:27 UTC from IEEE Xplore. Restrictions apply.

