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Abstract—Multiple cores in a tiled multi-core processor are
connected using a network-on-chip mechanism. All these cores
share the last-level cache (LLC). For large-sized LLCs, generally,
non-uniform cache architecture design is considered, where
the LLC is split into multiple slices. Accessing highly shared
cache blocks from an LLC slice by several cores simultaneously
results in congestion at the LLC, which in turn increases the
access latency. To deal with this issue, we propose a congestion
management technique in the LLC that equips the NoC router
with small storage to keep a copy of heavily shared cache
blocks. To identify highly shared cache blocks, we also propose
a prediction classifier in the LLC controller. We implement our
technique in Sniper, an architectural simulator for multi-core
systems, and evaluate its effectiveness by running a set of parallel
benchmarks. Our experimental results show that the proposed
technique is effective in reducing the LLC access time.

I. INTRODUCTION

Processor designers can embed hundreds of cores in modern

tiled multi-core processor [1]–[3] as shown in Figure 1. As

the number of cores increases, the underlying bus-based com-

munication system faces scalability issues and architectural

bottlenecks. For massively parallel applications with huge

communication requirements, a bus-based communication sys-

tem may not provide the required bandwidth. To resolve this

problem, a scalable interconnection system called Network-on-

Chip (NoC) [4]–[6] is used to communicate between different

cores and the cache hierarchy. Modern tiled multi-core proces-

sors use non-uniform cache architecture (NUCA) [7] for cache

block mapping to the LLC slices. Cache blocks are mapped to

the LLC slices using a static non-uniform cache architecture

(S-NUCA) or a dynamic non-uniform cache architecture (D-

NUCA) [7], [8]. Conventional S-NUCA schemes use a few

bits in the set index portion of the physical address to identify

the LLC slice location for a given address. Hence a particular

block is always statically mapped to an LLC slice called the

home node for that block. Such mapping restrictions are not

there in the D-NUCA that allows block relocation nearer to the

processing cores at run-time. Accesses to cache blocks in the

LLC slices that are physically closer to the requesting core

take less time than accesses to cache blocks mapped to far

away LLC slices. The access times are also dependent on the

congestion level and the arbitration policy in the underlying

NoC framework. Liu et al. [9] observed that even though

Fig. 1: A tiled multi-core processor with network-on-chip.

there exist very few shared data blocks in a multi-threaded

application, these blocks are accessed frequently.

In a tiled multi-core processor connected via distributed

communication mechanism like NoC, the cores cannot see

other’s read-write activity. Copies of cache blocks in different

private L1 caches are kept coherent using a directory based

cache coherency protocol [10], [11]. Accessing shared data

involves a crucial number of coherence communication mes-

sages exchanged across the underlying NoC. The coherence

protocol and the underlying NoC play a significant role in

determining the latency of servicing an LLC request. When

many cores request the same LLC data simultaneously, the

number of read requests reaching the respective LLC slice

will be significantly higher, leading to hotspot formation and

subsequent congestion around the tile containing that LLC

slice. Reducing the service time of such demand requests from

the cores is of utmost importance in ensuring application-level

performance. Lightweight directory-based coherence protocol

implementations are considered in the past [10], [11]. Stor-

ing data and coherence information in underlying NoC can

facilitate faster access to data [12]–[14]. To the best of our

knowledge, there are no works to reduce congestion caused by
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Fig. 2: Distribution of shared read data accesses to the LLC

as a function of sharer-length. The classification is done at the

cache block granularity.

multiple simultaneous requests for shared blocks at the LLC

slices, which we will explore in this paper. Our technique

intelligently identifies and makes copies of heavily shared

cache blocks in the NoC router of the respective home node,

which in turn reduces queueing delay in the LLC access

thereby reducing the average access time.

We make the following contributions in this paper:

• We propose a congestion management technique in the

LLC by keeping highly shared blocks in the network. We

use small storage inside the network router to keep copies

of these blocks.

• We propose a prediction classifier in the LLC controller

to track and identify cache block sharing patterns so that

the LLC controller can insert these cache blocks into the

network storage.

• We use the reuse rate of the cache blocks in the network

storage to track and control the pollution.

• Experimental results for a 64-core system demonstrate

that our technique reduces the overall LLC access time on

average by 16% and the LLC energy by 21% compared

to a baseline system.

II. MOTIVATION

We define sharer-length of a cache block as the number

of cores accessing the cache block (at the LLC) before it

is evicted from the LLC or before it is updated (through

a write request). The higher the sharer-length, higher is the

demand for the cache block in the LLC. Figure 2 plots the

number of sharers to cache blocks in the LLC as a function

of sharer-length for various applications taken from Ligra,

SpecOMP and NPB benchmark suites [15]–[17]. For example,

in application BC, out of the total read accesses, 18% (blue)

is to the blocks having one sharer-length. Similarly, 66%

(orange) of the read accesses is to the blocks having a sharer-

length of 2 to 9, and the rest is to the blocks where the sharer-

length is greater than 9. We can observe that almost half of the

applications (first half of Figure 2) have 40% of the accesses

to the shared blocks with sharer-length between 2 and 9. Some

of them also have more than 30% of the accesses to the blocks

with sharer-length more than 9. Retrieving data from the LLC

includes queuing delay and access delay. So, the queuing delay

increases for the higher sharer-length. Since every LLC access

is due to an L1 cache miss, such an increase in queuing

Fig. 3: Heatmap of read accesses by cores to 64 LLC slices.

delay causes miss penalty increase as well, which may affect

application performance. One of the potential solution to tackle

this is to place heavily shared blocks in a place outside the

LLC where the queuing delay is absent or minimal.

Figure 3 shows the heatmap of KCore application taken

from the Ligra benchmark suite. Various heatmap colors

indicate the relative difference in the number of read accesses

(during Region of Interest) across different tiles as mentioned

in the right side legend. Similar heatmap graphs are obtained

for around 50% applications that we studied. In many bench-

mark applications, we observe a good number of read accesses

to a small set of LLC slices shown by red color in Figure 3. As

shown in the legend, the red tiles get roughly ten times more

read requests than orange tiles. Another interesting observation

is that the accesses to these red tiles are for a very few shared

cache blocks. So if these highly demanded cache blocks are

kept in a place outside the LLC, the impact of such hotspots

inside the LLC can be reduced.

Considering the above two scenarios, we explore the pos-

sibility of keeping high sharer cache blocks in convenient

storage inside the NoC router.

III. RBC: ROUTER BUFFER CACHE

We propose router buffer cache (RBC), wherein we keep a

set of buffers inside the NoC router to store a copy of highly

shared cache blocks. We also propose a prediction classifier in

the LLC controller to track and identify cache block sharing

patterns and frequency. This runtime classifier allows inserting

those cache blocks that demonstrate high sharing at the LLC

into the RBC. When a cache block gets evicted from the RBC,

the LLC classifier gets the reuse rate of that block in the RBC

for improving its prediction accuracy.

When multiple cores request the same cache block, all the

requests get queued up at the home node. All these requests

have to wait for the previous one to finish, which incurs

queuing delay, directory lookup, and data access latency before

they get dequeued. If the RBC keeps the blocks that are

requested by multiple cores: 1) access to the same block will
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not incur data access latency from the LLC, and 2) each

request takes less time to finish, which in turn reduces the

queuing delay.

Figure 4 shows the protocol operation of the RBC design.

Apart from the normal operation, the LLC controller and the

NoC router with an RBC perform the tasks as explained in

the subsections below.

Rd/Wr 
Hit

Refer the LLC and supply 
block after performing 
necessary coherence 

operation

Forward the reply 
block from the RBC

Update sharer 
information in the LLC

Rd hitRd/Wr Miss

Wr hit

Invalidate the 
block in the RBC

Inform the LLC for regular 
invalidation of sharers

Request from a core reaches the RBC 

End

Supply block or give write 
permission to requester

Fig. 4: RBC protocol operation.

A. Read Requests
When a read request reaches the home node router, it checks

for the requested block in the RBC. If the block is found,

it is sent to the requester as a reply packet consisting of

multiple flits from the home node router. The router marks

the request as serviced and inserts it into the LLC queue so

that the LLC updates the sharer-information in the directory.

Since this process is not on the read request critical path, the

queuing and directory access delays do not affect the miss

penalty associated with the cache miss request. The RBC keeps

only those blocks that are in ‘S’ state. So, whenever there is

a hit in the RBC, the replied block will also be kept in ‘S’

state in the requester L1 cache. The router also keeps track of

the number of hits of each block in the RBC using saturating

counters. This information is used to control pollution, which

is described later in Section III-E.

On the other hand, if the RBC does not contain the block,

the request is inserted into the home node queue. The LLC

controller processes these requests like in a traditional cache

coherent tiled multi-core processor system. However, here we

explore the suitability of the cache block to be promoted to the

RBC. The details of this process are discussed later in Section

III-C. On an LLC miss, the cache block is brought in from

the off-chip memory as usual.

B. Write Requests
When a write request (occurred due to a write miss in the L1

cache) reaches the home node router, it first looks up its RBC

for the requested block. If it is a hit, the router invalidates

that block in the RBC, and we insert the request into the

home node queue. The home node controller sends invalidation

Fig. 5: Sharing pattern of blocks belonging to same page. ST

is set to 5.

requests to all the sharers of that block. After receiving the

acknowledgment from all the sharers, it sends the block with

write permission on it to the requested core.

When it is an upgrade request that occurred due to a write

operation on a block in ‘S’ state in the requester’s L1 cache,

the LLC will give the write permission without supplying the

block. All other processes regarding invalidation of sharers

(except the requester) are the same as those of a write request

mentioned above. For a write or an update request that results

in an RBC hit, before inserting it into the home node queue,

we invalidate the corresponding blocks in the RBC. This

ordering (RBC invalidate followed by enqueueing in the home

node) must be strictly enforced to avoid future immediate read

requests operating on stale data due to an RBC hit.

C. Block Insertion Strategy
In our experiment, we consider a block as a high-sharer

block if the number of sharers to the block exceeds a sharer-

threshold (ST). We identify the page numbers of such blocks

and add them to the history table. The history table can store

up to 4-page numbers, and it uses the LRU replacement policy

to select a victim. This history table identifies the blocks to

be placed in the RBC. Ideally, the RBC should contain blocks

that have maximum sharers. These blocks should remain in

the RBC to get the maximum number of hits before they

are evicted out. Based on our observation, we identify that

if a page contains a high-sharer block, there is a very high

probability that other blocks in the page also are high-sharer

blocks. Figure 5 classifies the sharing pattern of shared blocks

belonging to the same page with at least one block having

sharers greater than ST. Red shows the fraction of such blocks

that have sharers greater than ST, and blue shows the fraction

of blocks that have sharers less than ST. To summarise the

findings given in Figure 5 if there exists at least one high-

sharer block in a page, on an average 90% of the cache blocks

in the same page are also high-sharer blocks.

When the LLC controller gets a read request to a block that

is in Exclusive (E) state, it indicates that this block is getting

a new sharer (the state moves from E to S). A reference to the

history table will reveal whether any other block in the same

page as that of the requested block has many sharers. If we

get a page number hit in the history table, we conclude that

the requested block may also have a high number of sharers
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in the future. Observations made from Figure 5 supplement

this conclusion. Hence, during history table hits, the requested

block is copied to the RBC such that future read requests

can be serviced from there. If we could not find a match in

the history table, the block is sent to the requester without

inserting it into the RBC. Our experimental results (to be

discussed later) also reconfirm the fact that such promotion

of blocks from the LLC to the RBC is effective in handling

future read requests.

In most of the applications, the number of shared blocks

is low, and mostly they belong to the same page. For all the

benchmarks that we tested, a history table with four entries is

enough to store the page numbers of highly shared blocks.

D. Replacement Policy and Eviction Strategy

When the RBC is full, an existing block needs to be evicted

to make space for the new block. A replacement policy is used

to select this victim block. This replacement policy plays a

crucial role in the performance of the RBC. The RBC should

evict a block that has the least chance of getting a hit in

the future. In our RBC design, we use the LRU replacement

policy to find a victim block. A block becomes hotspot in the

LLC when multiple cores request that block within a small

time window. These blocks have to be kept in the RBC as

long as there are frequent read accesses from the cores. When

the number of read accesses on a block in the RBC reduces

significantly within a time window, the block will become a

potential candidate for victim block. In the LRU replacement

policy, when a block is not getting hits, it is pushed to the

LRU position. These blocks should get evicted out soon. When

we evict a block from the LLC, the LLC controller sends an

invalidation to all its sharers as well as to the RBC to maintain

coherency.

The RBC communicates only with its local LLC controller.

The LLC controller promotes blocks to the RBC and invali-

dates blocks in the RBC. The router also communicates hits

of the evicted blocks back to the LLC controller for pollution

control. This communication between the RBC and the LLC

controller is through injection and ejection channels of the

router. Since this does not generate any new packets into the

network, there is no additional communication overhead.

E. RBC Pollution Control

Insertion of a new block to the RBC can cause pollution as

cores may request evicted blocks. When pollution increases,

we incur the wastage of energy without any performance

benefits. Our design also takes care of RBC pollution control.

When a block is evicted from the RBC, the router com-

municates the number of hits for that particular block to the

home node controller. We make use of a two-bit saturating

counter per RBC entry to track the number of read hits. Upon

eviction, if this hit counter value associated with victim block

is less than 3, it indicates that this block was not a suitable

candidate to be kept in the RBC. Alternatively, it can be due to

a sharer footprint that is larger than RBC size. This can help

Fig. 6: Proposed router microarchitecture.

in determining whether the newly created blocks are causing

pollution in the RBC.

To reduce RBC pollution, we have to control the blocks that

are getting promoted to the RBC. Since the blocks created in

the RBC is dependent on the history table, removing entries

from the table will help in reducing the blocks that get hit

in the table. When the LLC controller detects pollution, it

can either remove a couple of the most recently used (MRU)

entries from the table or it can clean the entire table so that

no new blocks will get created in the RBC for some time.

F. Page Partitioning
The proposed classifier stores the page numbers of the high-

sharer blocks in the history table that helps in identifying

which blocks to move from the LLC to the RBC. A single

block from a page decides whether the rest of the blocks in

that page are eligible for getting promoted to the RBC. In

some applications, this leads to pollution that can be controlled

by the pollution control logic discussed in Section III-E.

However, we observe that pollution re-occurs after some time

as the history table gets populated. We address this issue by

restricting the number of blocks affected by a high-sharer

block in a page. Rather than considering all the shared blocks

in a page for RBC allocation, we divide a page into four

zones. If a block from a given zone inside a page becomes a

high-sharer block, only the blocks belonging to that zone are

eligible to be promoted to the RBC. We observe that pollution

reduces significantly by this zonal page partitioning.

G. Router Microarchitecture
We consider a two-stage router pipeline design as the

baseline system [18]. Figure 6 shows the proposed router

design. The router contains an 8-entry RBC. When we promote

a cache block from the LLC to the RBC, we divide it into

multiple flits and store in the RBC so that when there is a hit

in the RBC, the router can directly send the flits to the local

input port without having to convert the cache block into flits.

Our proposed router has two pipeline stages: route com-

putation (RC) and RBC lookup in stage 1 and speculative

virtual channel (VC) allocation and switch allocation in the

other. The routing unit computes the output channel for the

head flit. In the VC allocation stage, the router allocates VC
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Architectural Parameter Value
Cores 64 cores @ 2.66GHz,

Out-of-order, superscalar
Processor Word Size 64 bits
Page Size 4KB

Memory Subsystem
L1-I Cache per core 32 KB, 4-way, 64B block, 2 cycle latency
L1-D Cache per core 32 KB, 4-way, 64B block, 2 cycle latency
LLC per core 512 KB, 16-way, 64B block,

2 cycle tag latency, 8 cycle data latency
Directory Protocol Invalidation-based MESI [20]
Main Memory 16 controllers

NoC
Hop Latency 3 cycles (2-router, 1-link)
Routing X-Y routing
Topology 8x8 Mesh
Flit Size 8 B

RBC
Size 576 B (8 blocks; 9 flits each) ,

fully associative

TABLE I: Architectural parameters used for evaluation.

for the head flit in the downstream router. When multiple flits

are competing for the same output port, the switch allocation

stage decides the winner. The winning flit moves through the

crossbar during the switch traversal stage and reaches the

output port to perform the link traversal. We added the RBC

lookup in the router pipeline. The RBC lookup is possible only

if the request flit completes the route computation operation,

which also ensures that the RBC is checked for those request

flits that has reached the home node.

IV. EVALUATION METHODOLOGY

We evaluate our proposed design on a 64-core tiled multi-

core processor system. Table I shows the default architec-

tural parameters used in our evaluations. All experiments are

performed using the Sniper multi-core simulator [19]. We

model all the mechanisms and protocol overheads discussed

in Section III. We consider one RBC per router that can

accommodate eight cache blocks. We store each cache block

as a sequence of 9 flits (1 head and eight body flits). In addition

to the fixed 2-cycle latency in the NoC routers, network

link contention delays are also modeled to get performance

statistics.

We evaluate our proposed design using standard multi-

threaded benchmark from Ligra [15], NPB [17] and SPEC

OMP 2012 [16]. We run these applications to completion and

take their average for ten runs during Region of Interest (RoI)

for reporting statistics.

V. EXPERIMENTAL ANALYSIS

We analyse the response of each L1 cache miss and conduct

an in-depth analysis of the fraction of requests responded from

the RBC and the LLC.

A. Impact on Serving the L1 Cache Misses

Figure 7 plots the percentage of RBC hits, LLC hits,

and LLC misses (DRAM hits) from the total number of L1

cache misses. Across the majority of benchmarks, we see

Fig. 7: L1 cache miss type breakdown.

a significant number of RBC hits, which indicates that the

proposed scheme of promoting shared cache blocks from the

LLC to the RBC is giving good rewards. On average, 20% of

read requests are serviced by the RBC.

We also observe that the RBC hit ratio is very low for a

few benchmarks. Benchmarks EP, FT, Bwaves, and Smith-
waterman have very few shared cache blocks, and private

cache blocks dominate in these benchmarks. Since the RBC

technique works by high-sharer blocks, the above-mentioned

benchmarks are expected to show poor RBC hits as shown

in Figure 7. RBC8 represents our proposed technique with an

RBC capacity of 8 cache blocks. Benchmarks CF and DC
have a significant number of cache blocks that are eligible

to be kept in the RBC. But due to the limited size of the

RBC, every such block cannot be accommodated in it. So

there is a significant reduction in the RBC hit ratio for these

two benchmarks. We analyse the high RBC hit rate (around

70%) of IS benchmark and find that it has a very few high-

sharer blocks. So IS benchmark can accommodate most of

these high shared-length blocks in the RBC.

B. Impact on the LLC Access Time

We consider the RBC that can accommodate eight cache

blocks. However, the RBC size of 8 may not be the best design

choice for all the benchmarks. The number of high-sharer

blocks will vary across benchmarks, and hence the demand

for the RBC size also varies. Figure 8 plots a comparative

study of the LLC access time split-up for various RBC sizes

over the baseline tiled multi-core processor. RBC8, RBC16,

and RBC32 represent our proposed technique with an RBC

capacity of 8, 16, and 32 cache blocks, respectively. The

base bar represents a conventional tiled multi-core processor

without an RBC. The LLC access time consists of queuing

delay, tag access delay, data access delay, and bus delay.

Queuing delay is the time a request waits in the LLC queue

to access the requested block. Tag access delay is the time

taken for the LLC controller to access the tag array. Data

access delay is the time taken by the LLC controller to access

the block from LLC. Bus delay is the time taken by the bus

to transfer the requested block from the LLC to the LLC

controller.

Across all the benchmarks in Figure 8, we observe that

the base design (i.e., without RBC) has a high fraction of

the LLC access time spent on queuing delay. This is because

every L1 miss request reaches the LLC controller and waits
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Fig. 8: LLC access time breakdown. Results are normalized to that of the base tiled multi-core processor.

for its turn until all its predecessors are serviced. The RBC

design significantly reduces this queuing delay as the router

services most of the requests by eliminating the LLC access

in its critical path. Even though a block gets serviced from

the RBC, we add the request to the LLC queue for updating

sharer information in the directory structure. However, the

service time of such request is very short as updating sharer

information in directory takes significantly less time compared

to data access from the LLC. So, the subsequent requests

reaching the LLC queue experience less queuing delay.

In general, if an application has a large number of high-

sharer blocks, a large RBC is required. A large RBC keeps

a block in it long enough to service all accesses to it before

it gets evicted by a new block, which is evident from the

benchmark CF that reduces the access time of shared blocks

with an increase in the RBC size. Most of the blocks of CF
are high-sharer blocks. RBC32 performs better than RBC16

and RBC8 because of this reason. The behavior of benchmarks

Triangle and LU is also similar due to the same reason.

If an application has a few high-sharer blocks, a small RBC

is sufficient to get a decent reduction in the access time. We

observe that many benchmarks exhibit the behavior of multiple

read requests (maybe from different cores), followed by a

write request from a core. Under this circumstance, the block

gets invalidated (due to the coherence operation) in the RBC

before it even gets evicted. The RBC gets populated again

upon subsequent read requests to the invalidated block. This

invalidation operation on a cache block cannot be eliminated

even by using a larger RBC. Benchmarks like KCore, Fma3d
and PageRank show more or less the same LLC access time

under varying RBC sizes. A significant number of benchmarks

under study show access patterns that have blocks with sharer-

length less than 9. We empirically conclude that an RBC of

size 8 is an optimal choice.

Figure 9 plots the reduction in the average memory access

time (AMAT) of various benchmarks using the RBC8 design.

For benchmarks such as BC, BFS, CG, etc., that achieve a

good reduction in the LLC access time, there is an apparent

reduction in the AMAT as compared to the baseline. Overall,

there is a 5% reduction in the AMAT. We can observe that

reduction in the AMAT is not proportionately translated to a

decrease in execution time due to overlap of memory.

C. Impact on the LLC Hotspot

The primary motivation for proposing the RBC design is

to eliminate hotspots in the LLC slices occurring due to

simultaneous memory access requests. When we observe the

number of LLC read requests across various benchmarks, we
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find that for KCore benchmark, the non-uniformity across tiles

is high. Figure 10 shows the heat map of Kcore benchmark

on a baseline tiled multi-core processor and a tiled multi-core

processor with the RBC design. We can see that most of the

requests are towards three of the LLC slices (tiles, which are

red in Figure 3). Almost all of these requests are towards

high-sharer blocks and a high number of writes. Because of

this access pattern, the RBC design gives a good performance

improvement. Figure 3 shows a significant reduction in the

number of accesses to the LLC slices that are hotspots in the

baseline. There is around 60% reduction in the number of

LLC accesses with the proposed technique. Queuing time at

the LLC is reduced by 65%. Overall there is an 80% reduction

in LLC access time. We observe similar trends in most of

the multi-threaded applications. Heat map analysis of various

benchmarks concludes our findings that the RBC design can

effectively reduce hotspot formation in the LLC slices.

VI. TIMING AND AREA OVERHEAD ANALYSIS

Fig. 9: Reduction in the average memory access time.

To compare hardware timing and area overhead of the

new router with respect to existing router designs, we have

implemented them in Verilog HDL. First, we synthesized

both the designs using Xilinx Vivado 2016.2 IDE followed

by post synthesis simulation. The simulation was done using

custom designed testbenches. Furthemore, the RBC block was

seperately synthesized and programmed into Kintex 7 series

FPGA board to verify its intended functionality as buffer

cache. Next to design a real concrete model, both the baseline

and the proposed designs were synthesized using Synopsys

design compiler (2017.09-SP4) with 45nm CMOS library to

determine ASIC level critical path and area overhead analysis.

The baseline design consists of a 2-stage pipeline for the

NoC router. The stage-1 performs route computation and the

stage-2 performs VC and switch allocation. In addition to the

above two stages, for our design an RBC lookup is necessary.

The critical path delay of stage-1 and stage-2 is 0.69 ns

and 0.99 ns, respectively. The maximum path delay of RBC

lookup module is 0.23 ns. We observed that previous works

[18] report similar critical path for stage-1 and stage-2 of our

baseline design. It is interesting to observe that the total time to

perform route computation (stage-1 with 0.69 ns), and RBC

lookup (0.23 ns) is 0.92 ns which is even smaller than the

critical path of stage-2 (0.99 ns). We find that the additional

module that is added in stage-1 is not affecting the critical path

because the 2-stage pipeline router determines the critical path

of the router pipeline. Hence, the proposed lightweight RBC

Fig. 10: Heat map of KCore benchmark application.

lookup module that is placed after the routing function module

will operate well within the time slack available between the

routing function latency and the router cycle time.

In regards to area overhead, the RBC buffers and history ta-

ble add Non-combinational area overhead of 0.12%. Similarly,

the RBC controller logic adds a combinational area overhead

of about 0.29% compared to the baseline L2 cache tile. Thus,

we expect that the total area overhead is about 0.41% of a

typical L2 cache tile.

VII. RELATED WORK

Eisley et al. [13] propose to implement the cache coherence

protocol within the network by incorporating directories inside

the network routers. In this protocol, a cache fill from the

home node stores the coherence information in each router

along the routing path. This enables the router to redirect the

future L1 misses from other cores to nearest sharer. Aditya

et al. [14] build upon the above work [13] by adding a small

data store to the network that stores data being transported

along with cache coherence protocol inside the router. This

enables the router to service requests for data that they hold

directly without going to the home node. This technique stores

all the shared data along the intermediate routers which can

cause pollution in a small sized cache. Similarly, Jinglei et al.

[21] propose a network victim cache architecture that removes

the directory from the shared LLC and keeps the sharer-

information of blocks recently accessed by the L1 cache in

the Network Interface Component (NIC). The space saved is

used as a victim cache. Jinglei et al. [12] also propose three

network caching designs: Network Directory Cache (NDC)

design where the directory cache is integrated with the NIC to

store the sharer-information of recently accessed shared LLC

blocks; Network Shared Cache (NSC) design where a data

cache is integrated into the NIC along with the NDC to reduce

the L1 access latency; Network Victim Cache (NVC) design

where victim cache is integrated into the NIC to reduce the

number of accesses to the home node.
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All the above related works that use in-network cache

coherence [13] propose storing coherence information in the

network. The main idea behind these works is to place

the tag and/or shared data in the routers on the response

path. However, there are two major caveats in these designs

with respect to conventional directory-based protocol. First,

replication of the tag and data blocks in the routers reduces

the effective caching space available inside the network. Next,

the invalidation traffic generated is high due to replacement

of the same coherence information stored in multiple routers.

Furthermore, the pressure on the neighbouring private L1

caches will also be high because the requesting core now

reads the cache block from the closest sharer rather than

the home node. Hence, manufacturers prefer directory based

protocol over network coherence protocol to achieve cache

coherence [22]–[24]. Our work is based on directory-based

protocol that is an industry standard. We make use of the

network storage to reduce the congestion in LLC slices without

shifting the directory to the network (or bringing data close to

the requester).

VIII. CONCLUSION

As the last level cache (LLC) is shared and distributed

in tiled multi-core processors, accessing shared cache blocks

from different cores can become a bottleneck. To overcome

this issue, we proposed an intelligent caching mechanism,

namely, RBC, in the NoC routers, where we stored highly

shared cache blocks from the LLC. To identify highly shared

cache blocks, we proposed a prediction classifier in the LLC

controller. We also suggested a pollution control mechanism

for RBC. We implemented our proposed technique using a

multi-core simulator. We evaluated our technique’s effective-

ness by running a set of parallel benchmarks and provided

a detailed experimental analysis. Experimental results showed

that RBC with just eight entries reduces overall LLC access

latency by 16% when compared to a system without RBC. We

also showed that our technique reduces hotspots at the LLC

slices. We conclude that our technique is instrumental in deal-

ing with shared cache blocks in tiled multi-core processors.
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