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Abstract—System-on-Chips (SoCs) are designed using differ-
ent Intellectual Property (IP) blocks from multiple third-party
vendors to reduce design cost while meeting aggressive time-to-
market constraints. Designing trustworthy SoCs need to address
the increasing concerns related to supply-chain security vulner-
abilities. Malicious implants on IPs, such as Hardware Trojans
(HTs) are one of the significant security threats in designing trust-
worthy SoCs. It is a major challenge to detect Trojans in complex
multi-processor SoCs using conventional pre- and post-silicon
validation methodologies. Packet-based Network-on-Chip (NoC)
is a widely used solution for on-chip communication between IPs
in complex SoCs. The focus of this paper is to enable trusted NoC
communication in the presence of potentially untrusted IPs. This
paper makes three key contributions. (1) We model an HT in NoC
router that activates misrouting of the packets to initiate a denial
of service, delay of service, and injection suppression. (2) We
propose a dynamic shielding technique that isolates the identified
HT infected IP. (3) We present a secure routing algorithm to
bypass the HT infected NoC router. Experimental results on
HT infected NoC demonstrate that the proposed method reduces
effective average packet latency by 38% in real benchmarks and
48% in synthetic traffic patterns. Our method also increases
throughput and reduces effective average deflected packet latency
by 62% in real benchmarks and 97% in synthetic traffic patterns.

Index Terms—Hardware Trojan, Network-on-Chip Security

I. INTRODUCTION

With the widespread commercialization of safety-critical

real-time systems, semiconductor industries have started pay-

ing more attention to robust hardware-based security. Due

to time-to-market and cost considerations, many products

still rely on the supply chain to perform various activities,

including design automation of specific components as well

as manufacturing of integrated circuits. Functional security of

these devices can be compromised due to the involvement of

potentially untrusted third-parties during the design cycle [1]

[2]. While there are various forms of supply-chain vulnerabil-

ities, malicious implants in circuits, also known as Hardware

Trojans (HTs) [3] [4], is one of the major security threats

in modern System-on-Chips (SoCs). These HTs can create

security vulnerabilities as well as functional inconsistencies

in the SoC [1]. Some of the HTs are hard to detect, subtle

in their operation and are sophisticated to the extent that they

can even bypass the root-of-trust techniques that secure device

firmware [2] [5]. Given that SoCs are used in a wide variety of
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embedded and IoT devices, it is critical to enable trustworthy

computing using potentially untrusted components in SoCs.

Packet-based Network-on-Chip (NoC) provides the on-

chip communication infrastructure for modern Multi-Processor

System-on-Chips (MPSoCs). NoC provides connectivity be-

tween a wide variety of components in an MPSoC such as

processor cores, GPUs, memories, converters, controllers, I/O,

etc. Today’s NoCs provide more emphasis on performance,

scalability and backward compatibility than security [6] [7].

Due to its positional advantage, NoC is a prime target for

attackers to insert HTs. Consequently, NoC routers, being the

communication backbone of MPSoCs, becomes most vulner-

able to security threats. HT infected NoC routers can lead

to denial of service [8], information leakage [9], high jack-

ing [10], unauthorized memory access [11], etc. They directly

or indirectly result in bandwidth depletion and performance

degradation of the entire system. Detection and mitigation

of HTs on NoCs impose unique challenges [12] [13]. One

of the popular HTs that exists in an NoC router misroute

packets to trigger a DoS attack [14]. A runtime detection

algorithm that uses the incoming direction of the packets

detects the location of such HT infected routers. However,

it assumes that the operating system will provide shielding

to ensure protection. Such a hardware-software solution can

lead to unacceptable performance overhead, whereas a simple

hardware-only approach will give a better action response.

Motivated by the impact of such an HT infected NoC router

and the limitations in the existing work, we propose an HT

threat model with runtime detection as well as mitigation at

the hardware level. To the best of our knowledge, there are

no prior efforts that consider runtime detection, shielding and

bypassing of NoC based Trojans at the same time.

In this paper, we model an HT on an NoC router that

misroutes packets in the network and initiates DoS attack

on a specific set of processing elements. Furthermore, mis-

routing packets at times also create injection suppression that

propagates across various routers, taking the system to a near

halt. To secure NoC from such misrouting HTs, we propose a

technique called Trojan Aware Routing (TAR), which consists

of three main phases. In the first phase, we deploy a runtime

detection mechanism that tracks for routing violation and

exposes the HT infected NoC router. After detection, the

second phase employs a dynamic shielding mechanism that

isolates the HT infected NoC router from the rest of the

978-1-4673-9030-9/20/$31.00 2020 IEEE



HT

56

48

40

32

24

16

8

0

63

55

47

39

31

23

15

7

NW N

W

SW

E

SES

NE

Fig. 1: 8×8 mesh NoC with an HT at router 35

network. With the shielding enabled, the third (final) phase

uses a bypass algorithm that route packets in the network

isolating the HT infected NoC router. In this paper, we make

the following significant contributions:

• We implement packet misrouting on NoC to model an

HT that leads to denial of service, delay of service, and

injection suppression.

• Our Trojan-aware routing dynamically detects a misrout-

ing HT, shields it and route packets bypassing it.

• We experimentally demonstrate that our approach effec-

tively mitigates DoS and injection suppression.

II. THREAT MODEL

In our threat model, we consider an HT that tampers the

routing algorithm employed in NoC routers to enable mis-

routing. When triggered, the HT maliciously assigns a wrong

output port to the head flit of a packet. As a result, all the flits

of that packet also get misrouted due to wormhole routing.

This can move the packet away from its destination and can

cause either denial of service (DoS) or injection suppression

or both. DoS is a scenario where a packet gets indefinitely

delayed in the path and never reaches its destination. Injection

suppression scenario is a by-product of DoS where new flits

cannot be injected into the network due to unavailability of

router input buffers. Sometimes the packet may reach the

destination after few cycles of extra delay. Usually, NoC

packets carry cache miss requests, cache miss replies, evicted

cache blocks, and coherence messages. An infected NoC

router with the proposed HT can misroute these packets and

degrade the application-level performance of latency-critical

applications. Such type of HTs can be added to an NoC IP at

any of the phases of an IC life cycle, including specification

phase, design phase, and fabrication phase [3] [15].

In this work, we assume that the proposed HT enters the

NoC IP during the pre-silicon stage, either by an attacker

having access to the system design or by an untrusted third

party EDA tool. An adversary can activate any number of such

HTs in the NoC. However, activating multiple HTs can create

an unusual variation in energy and power consumption and

hence may be easily noticed (detected). To make it hard to

get detected, we model the NoC with HT deployed in a single

NoC router. The detection is made even harder by assuming

that the proposed HT is intermittently malicious and internally

triggered [3] [16]. The proposed HT threat model is as follows:

An NoC packet P can be represented as:

P = {F p
head ‖ F

p
body1 ‖ F

p
body2 ‖ ... ‖ F

p
bodyn ‖ F

p
tail} (1)

where F
p
i are the flits of packet P such that:

F
p
head = [{SRC, DEST, CTRL MSG}]

F
p
body = [{CTRL MSG}, {Data}]

F
p
tail = [{CTRL MSG}, {Data}]

Path of packet P from source to destination can be given as:

P = {Rsrc, . . . Rk−1, Rk, Rk+1, . . . Rdest} (2)

where Ri denotes router i on the NoC. Let RAi denote the

routing algorithm employed in router Ri. We can infer from

Equation (1) and (2) that for a packet P ,

RAk(F
p
head) = Rk+1 (3)

where for packet P , the routing algorithm employed in router

Rk will assign the next router as Rk+1.

Let HT denotes our proposed threat model such that

HT (RAk) = RA∗

k and

RA∗

k(F
p
head) = R∗

k+1
where

R∗

k+1
6= Rk+1

Consider an 8×8 mesh NoC shown in Fig. 1. Based on the

location of HT (router 35, shown in red), we divide the

NoC into eight regions: N , E, S, W , NE, SE, SW and

NW . When triggered, the impact of HT varies based on the

source and destination regions of packets. We categorize the

behaviour and impact of the proposed HT threat model into

two cases. We explain them using two specific examples.

Case 1: Consider a packet P1 with source S1 on its way to

destination D1 reaches router 35 as shown in Fig. 2. Instead

of forwarding P1 to router 43 as per XY routing, the HT

misroutes P1 to router 34. P1, upon reaching router 34,

follows XY routing, and reaches back to router 35. Note that

destination D1 is at router 59 which is on the same column

as that of HT infected router 35. As per XY routing, P1 can

reach destination D1 only through router 35, which is infected.

Hence router 35 will always misroute and P1 can never reach

destination D1, leading to a DoS like attack on NoC. From

Fig. 1 we can see that source S1 is in region E and destination

D1 is in region N . Thus, inter-region communication of type

E −→ N will create a DoS like scenario here. To generalise,

for all inter-region communication where the destination router

is on the same column as that of HT infected router 35, a

DoS attack like scenario will arise. A DoS attack like scenario

arises when there is a packet movement between the following
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Fig. 2: Illustration of diverse HT impacts

regions: E −→ N , E −→ S, W −→ N , W −→ S NE −→ S,

NW −→ S, SE −→ N , SW −→ N .

In this illustrative example, packet P1 will be trapped in

a ping-pong behaviour between router 35 and its neighbor

routers 27, 34, and 36 since router 35 will never forward P1
to router 43. Packets are buffered in VCs of routers while

taking part in routing and arbitration decisions. Prolonged

ping-pong of P1 leads to VC unavailability in neighboring

routers and propagates the effect to others by back-pressure.

Eventually, a scenario of injection suppression arises in the

entire system. When the traffic is high, unavailability of NoC

resources due to the ping-pong effect also leads the system into

a deadlock. Fig. 3 shows how the proposed HT threat model

creates injection suppression in an 8×8 NoC while running the

uniform random synthetic traffic. As injection rate increases,

the impact of the proposed HT escalates, and results in more

injection suppression and eventually a deadlock.

Case 2: Consider another packet P2 in Fig. 2 with source

S2 on its way to destination D2 reaches router 35. Instead of

forwarding P2 to router 36 (as per XY routing), the activated

Trojan at router 35 misroutes P2 to router 27. Following XY

routing, router 27 now forwards packet P2 to router 28. Since

the destination D2 is not in the same column as that of router

35, packet P2 can eventually reach the destination. However,

getting misrouted by router 35 delays the arrival of packet

P2 at destination D2. This is a scenario of delay of service

attack. From Fig. 1 we can see that source S2 is in region

W and destination D2 is in region NE. Thus inter-region

communication of type W −→ NE creates a delay of service.

To generalise, a delay of service attack like scenario will arise

when there is a communication between the following regions:

E −→ W , E −→ NW , E −→ SW W −→ E, W −→ NE,

W −→ SE.

III. TROJAN AWARE ROUTING (TAR)

Our proposed TAR technique is employed in every router

on NoC. TAR involves three phases: Detection, Shielding, and

Bypass. The working of these phases is described as follows:
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Fig. 3: HT triggered injection suppression

A. Phase 1: Trojan Detection

We use XY routing where a packet travels along the X

direction and reach the same column as that of destination.

Then, the packet travels along the Y direction to reach the

destination. Let P be a packet with source S(x1, y1) and

destination D(x2, y2). As per XY routing, when P reaches

an intermediate router R(x, y), it will be forwarded along X

direction until (x < x2). When P reaches a router where

(x == x2), it changes the direction and starts travelling along

Y direction until (y < y2). When P reaches a router where

(y == y2), it reaches destination D(x2, y2). The XY routing

algorithm decides the output port for a packet based on the

position of destination router with respect to the current router.

The routing algorithm does not consider the input port of the

packet and its previous router for its routing decisions. Our

proposed HT threat model exploits this feature of the routing

algorithm and enables misrouting. Now, even if a packet is

misrouted and reaches a router where it should not have

reached as per XY routing, the employed routing algorithm

will never be able to detect it. The packet will be forwarded

to destination without knowing the misrouting that lead the

packet to this router.

To identify packet misrouting and HT infected router, we

add a detection module, a 1-bit alert flag and a 3-bit alert dir

at every NoC router. alert flag is set only if the neighbor

is identified as an HT infected router and reset otherwise.

alert dir either denotes no direction or the direction where the

HT is detected; north, east, south, or west. In the illustrative

example shown in Fig. 2, packet P1 is forwarded to router

34 because of the misrouting at router 35. With the detection

module in place, router 34 knows that P1 has entered through

east input port from router 35. Analyzing the position of

destination D1 at router 59 with respect to router 35, the

detection module concludes that XY routing is violated and P1
is misrouted. Router 34 sets its alert flag and updates alert dir

as east since router 35 misrouted packet P1 and hence must

be an HT infected router. alert flag and alert dir are also used

in the subsequent phases of shielding and bypass routing.

B. Phase 2: Dynamic Shielding

Once the HT is detected by one of its neighbors (27, 34, 36,

or 43), a dynamic shielding protocol is activated. The router

that detects the HT, generates a special alert flit to be sent

to its neighbors about the detection of the HT. We call such

routers as generators. Neighbors upon receiving the alert flit
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Fig. 5: Working of dynamic shielding in TAR

propagates the message further by creating a propagation flit.

We call such routers as propagators. The structure of these

special flits is very similar to normal flits, as shown in Fig. 4.

Alert flit contains a 1-bit msg dir indicating the direction

an alert flit needs to be forwarded by generators. A 3-bit

DHT alert dir indicates the direction an alert flit needs to be

forwarded by propagators. The alert message also contains a 3-

bit NHT alert dir which indicates the direction where the HT

is detected. Fig. 4 presents all the possible values for different

fields of the alert flit. When the message of HT detection is

propagated among all the neighboring routers using alert and

propagation flits, each router accordingly updates its alert flag

and alert dir. This results in a shield creation around the

HT that successfully isolates the HT infected router from the

rest of the network. The third and final phase of TAR uses

this shielding to route packets by bypassing the isolated HT

infected router.

With an illustrative example shown in Fig. 5, we explain the

working of our dynamic shielding phase. From the previous

phase of HT detection, let us assume that router 34 has

identified router 35 as an HT infected router. alert flag in

router 34 is now set to 1 and alert dir as 100 (East). As

shown in Fig. 5, router 34 generates two alert flits, GN and

GS . With an alert message {msg dir = 0, DHT alert dir =

100, NHT alert dir = 011}, alert flit GN is forwarded from

router 34 to router 42, where msg dir = 0 indicates GN to be

forwarded in clockwise direction. DHT alert dir = 100 (East)

in GN indicates that upon reaching router 42, the message

needs to be propagated in East direction. Router 42 generates

a propagation flit PE with an alert message {msg dir = 0,

DHT alert dir = 000, NHT alert dir = 011} to be forwarded
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Fig. 6: Working of bypass algorithm in TAR

to router 43. When PE reaches router 43, NHT alert dir = 011

(South) indicates that the HT is detected in South direction

of router 43; which is router 35. alert flag and alert dir are

updated as 1 and south respectively in router 43 which can be

a generator for other neighbors. Similarly, GS and PE ′ also

propagates the message of HT detection to other neighbors.

Here, 27, 34, 43, and 36 are generator routers and 26, 42,

44, and 28 are propagation routers. The message propagation

continues from both sides until a logical shield is created

around the HT infected router. In this example, the shield is

completed when alert dir is set for router 27 as north, router

34 as east, router 43 as south, and router 36 as west. After the

end of dynamic shielding, the detected HT infected router is

isolated from rest of the network.

C. Phase 3: Trojan Bypass

The final phase of TAR implements a bypass routing

mechanism, as presented in Algorithm 1. When a packet

arrives at a router, bypass mechanism checks the alert flag

and alert dir of that router. Only if the alert flag is set and

alert dir matches with the desired output port direction of the

packet, bypass routing is activated. In all other cases, a packet

follows normal XY routing to reach its destination.

We explain the working of Trojan bypass algorithm with an

illustration, as shown in Fig. 6. We consider the same example

as that in Fig. 2 for the sake of simplicity and continuity. A

packet P1 with source S1 on its way to destination D1 reaches

router 36. After the completion of shielding in the previous

phase, router 36 has its alert flag set and alert dir as west.

As per XY routing, the desired output port of packet P1 at

router 36 is west which matches with the alert dir of router

36. Now the Trojan bypass algorithm initiates and reroutes

packet P1 away from the HT infected router 35 as presented

in Part I of Algorithm 1. Packet P1 is rerouted from router 36

to router 44, and Part II of Algorithm 1 is initiated since 44 is

a propagation router. Now, packet P1 is forwarded from router

44 to router 43, and from there it directly reaches destination

D1 at router 59.



Algorithm 1: Trojan bypass

Input : Packet header
Output: Output port direction of a flit
Terminology
xdiff : x difference between destination & current router.
ydiff : y difference between destination & current router.
in dir: Input port direction of a flit.
out dir: Output port direction of a flit.
maxCredit(out dir1, out dir2): returns out dir with more VCs.

/*Part I: Mitigation by generator routers */

if alert flag is SET then

if xdiff 6= 0 && ydiff 6= 0 then

if alert dir 6= EAST then

if xdiff > 0 && in dir 6= EAST then
out dir = EAST

else if alert dir 6= WEST then

if xdiff < 0 && in dir 6= WEST then
out dir = WEST

else if alert dir == EAST || WEST then

if ydiff < 0 then
out dir = SOUTH

else
out dir = NORTH

else if xdiff == 0 then
if (ydiff > 0 && alert dir == NORTH) ||
(ydiff < 0 && alert dir == SOUTH) then

out dir = maxCredit(EAST,WEST )

else if ydiff == 0 then
if (xdiff > 0 && alert dir == EAST ) ||
(xdiff < 0 && alert dir == WEST ) then

out dir = maxCredit(NORTH,SOUTH)

else if alert dir 6= NORTH then

if ydiff > 0 && in dir 6= NORTH then
out dir = NORTH

else if alert dir 6= SOUTH then

if ydiff < 0 && in dir 6= SOUTH then
out dir = SOUTH

/*Part II: Mitigation by propagation routers */
else if alert flag is RESET then

if (xdiff < 0 && in dir == WEST ) ||
(xdiff > 0 && in dir == EAST ) then

if ydiff < 0 then
out dir = SOUTH

else
out dir = NORTH

else if xdiff < 0 && in dir == SOUTH then
out dir = WEST

else if xdiff > 0 && in dir == NORTH then
out dir = EAST

Since destination D1 is in the same column as that of HT

infected router 35, it becomes impossible for P1 to reach D1
using the conventional approach and resulted in a DoS like

scenario. With the Trojan bypass algorithm in place, now P1
can reach its destination, thus mitigating the impact of DoS.

Since packet like P1 is not trapped in the network anymore,

our bypass routing also diminishes the possibility of injection

suppression. Similarly, packet P2 with source S2 on its way

to destination D2 reaches router 34. Instead of forwarding to

router 35 which is HT infected, router 34 reroutes P2 towards

router 42. The Trojan bypass algorithm rerouted packet P2

in such a way that it reaches destination D2 without any

additional delay. Hence, the delay of service scenario created

by the proposed HT threat model is mitigated by intelligent

bypassing. Please note that router 35 misroutes only those

packets that are passing through it. Hence, even after bypassing

is activated, the packets whose source/destination is router

35 will continue to come out of/go into router 35, thus not

hampering the application executing in the infected core. Due

to the nature of runtime detection, when an HT is detected, it

might have already misrouted first few flits of some packets

while rest of the flits are on the way. Intuitively, it seems that

the bypassing algorithm will not allow the rest of the flits to

travel to the HT infected router in order to avoid misrouting.

However, this situation will not arise since only the head flit

takes part in routing and arbitration. Hence, if a head flit is

already misrouted before HT detection, all the following flits

will go through the same route. After HT detection, when such

a misrouted head flit comes out of the HT infected router due

to the ping-pong effect, it will never enter the HT again due

to the employed bypassing. Hence, even misrouted flits will

eventually reach their respective destination.

Rerouting packets using the bypass algorithm violates nor-

mal XY routing and creates a possibility for network deadlock.

To ensure deadlock prevention, we employ the concept of

intermediate destination [17]. When packet P2 is rerouted

from router 34 to router 42, it starts travelling in the Y

direction. However, when it travels from router 42 to router 43,

P2 violates XY routing, since turning X from Y direction is

prohibited. Using the concept of intermediate destination [17],

router 42 is made the new destination for packet P2. Now,

after getting rerouted from router 34, packet P2 reaches router

42 and gets ejected into its local output port, since 42 is the

new destination. Only after router 42 finds out that P2 is

meant for destination D2 at router 62, it re-injects P2 as a

new packet destined for D2. Packet P2 now follows normal

XY routing like any other packet to reach the destination. The

ejection of packet P2 and re-injection as a new packet from

the intermediate destination 42 makes sure that XY routing is

not violated thus eliminating deadlock.

IV. EXPERIMENTS

We evaluate the performance of TAR using effective average

packet latency, effective average deflected packet latency,

throughput, and injection suppression avoidance.

A. Experimental Setup and Workloads

We implement the baseline system (normal NoC without

any HT), NoC with an HT infected router, as well as the

proposed TAR using the event-driven simulator, gem5 [19].

We use the garnet framework in gem5's ruby memory model

for implementing the NoC. Our baseline system is a traditional

8×8 2D mesh NoC with 5 VCs per input port and uses

a 128-bit flit channel for inter-router communication using

XY routing. To model the Trojan, we modify the routing

module such that there exists a single HT router in the NoC

at any given point in time. The shielding approach and bypass



TABLE I: Workload categorization using SPEC CPU 2006 benchmark mixes.

Workload Workload Pattern: name of benchmark (number of instances) Workload Characteristics

M1 leslie3d (16) lbm (16) GemsFDTD (16) mcf (16) 100% High MPKI
M2 sjeng (16) bzip2 (16) omnetpp (16) sphnix (16) 100% Low MPKI
M3 soplex (32) astar (32) 100% Medium MPKI
M4 leslie3d (8) bzip2 (8) omnetpp (16) sjeng( 8) GemsFDTD(8) lbm (8) mcf (8) 50% High MPKI, 50% Low MPKI
M5 sjeng (8) bzip2 (8) sphnix (16) soplex (16) astar (16) 50% Low MPKI, 50% Medium MPKI
M6 leslie3d (8) bzip2 (8) omnetpp (16) sjeng( 8) soplex (8) astar ( 16) 50% High MPKI, 50% Low MPKI
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Fig. 7: Performance analysis with synthetic traffic patterns. For latency plots given in (a), (b), (d), & (e), lower the line better

and for throughput plots in (c) & (f), higher the line the better.
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Fig. 8: Performance analysis with SPEC CPU 2006 benchmark mixes. TAR reduces effective average packet latency and

deflected packet latency over HT, and maintains a comparable throughput as that of baseline. For latency plots (a) & (b),

lower the bar the better and for throughput plot (c), higher the bar the better.

algorithm is done in garnet with all micro-architectural and

functional specifications, as discussed in Section 3.

To evaluate the performance and NoC-specific parameters,

we run standard synthetic traffic patterns uniform random,

and bit complement by varying the injection rate. We also

analyze the proposed system using real application workloads

consisting of SPEC CPU 2006 benchmarks. We model a 64-

tile TCMP, each with a simple CPU core and a 32 KB, 4-

way set associative, 64-byte block, private L1 cache. Each tile

has a 256 KB, 16-way associative, 64-byte block, shared L2

cache. L2 cache sets are mapped to various tiles using the

SNUCA technique. We assign a SPEC CPU 2006 benchmark

application to each of the 64 core to model a TCMP simulation

framework. L1 cache misses trigger NoC packets, which get

routed from the source tile to the destination tile to which the

corresponding L2 cache sets are mapped. Similarly, the reply

packets also travel through the NoC. We use a 1-flit request

packet and 5-flit reply packets.

We study the performance of the NoC under different

network loads by grouping the SPEC CPU 2006 benchmarks

based on their Misses Per Kilo Instructions (MPKIs). We

classify the benchmarks into High MPKI (greater than 40),

Medium MPKI (less than 40 but greater than 20), and Low

MPKI (less than 20). Here we use leslie3d, lbm, GemsFDTD,

and mcf under High MPKI, soplex and astar under Medium

MPKI, and sjeng, bzip2, omnetpp, and sphinx under Low



MPKI. With the help of this classification, we form six

categories of workloads; M1, M2, M3, M4, M5, and M6, each

having 64 benchmark instances, as given in Table I.

B. Effective Average Packet Latency

To analyse the effect in packet latency with HT triggering

and mitigation, we use average packet latency (APL), which

is defined as the number of cycles required for a packet to

reach its destination. As the average packet latency on an

HT infected NoC shows inconsistent values at higher injection

rates due to packet loss and injection suppression, we apply a

more realistic metric effective average packet latency (EAPL)

[16] which is defined as follows:

EAPL = APL ∗
Packets EjectedwithoutHT

Packets EjectedwithHT

(4)

Fig. 7a and 7d shows the effective average packet latency

using uniform random and bit complement traffic patterns. As

expected, when the injection rate increases, packet latency also

increases in the baseline, HT infected NoC, and TAR. But we

observe that the rate of latency increase in the case of HT

infected NoC is significantly higher than the other two. This

is due to the deflection of packets by HT router and subsequent

DoS as well as the delay of service scenario. However,

TAR reduces effective average packet latency significantly

compared to HT infected NoC. Since TAR uses HT bypassing

to secure communication, the majority of packets that are

supposed to travel through the HT have to take an extra few

hops to reach the destination. Thus, we note an increase in

effective average packet latency for synthetic traffic patterns

by 16% compared to baseline. We also analyze the effective

average packet latency using real workloads as shown in

Fig. 8a. Across all benchmark mixes, HT triggering increases

packet latency by an average of 87% over the baseline. TAR

exhibits a reduction in the effective average packet latency

by 38% with respect to HT infected NoC, but a minor 7%

increase with respect to baseline due to bypass routing.

C. Effective Average Deflected Packet Latency

Average deflected packet latency (ADPL) is defined as the

average packet latency of those packets which are meant to

travel through the HT infected router. Consider a router R

that is going to be HT infected. To calculate the ADPL in the

baseline, we consider the packets that are passing through R.

In the case of an HT infected NoC, ADPL is calculated for

only those packets that suffer Trojan-induced deflection at R.

For calculation of ADPL in TAR, we consider the packets

that are deflected by the neighbors of R while applying the

bypass algorithm. Similar to effective average packet latency,

to get meaningful latency values, we use effective average

deflected packet latency (EADPL) which is defined as follows:

EADPL = ADPL∗
Deflected Packets EjectedwithoutHT

Deflected Packets EjectedwithHT
(5)

Fig. 7b and Fig. 7e shows the effective average deflected

packet latency using uniform random and bit complement
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Fig. 9: Virtual channel (VC) availability

traffic patterns, respectively. We observe that as the injec-

tion rate increases, effective average deflected packet latency

increases significantly on the HT infected NoC. With HT

triggering, few packets deflected by HT enter into a ping-pong

state between its neighbors. Eventually, some of these packets

move out of this state and reach the destination. This leads to

an increase in the deflected packet latency. As the injection rate

increases, this ping-pong effect reduces the available router

buffers, which, in turn, increases the deflected packet latency.

We observe that TAR reduces the effective average deflected

latency significantly with the help of a bypassing algorithm.

While analyzing the results, we observe that TAR reduces

average deflected packet latency by 97% compared to HT

infected NoC. However, due to the bypass-induced deflection

of packets, TAR shows an average of 38% increase in the

deflected packet latency over the baseline.

We also analyze effective average deflected packet latency

in real application workloads using SPEC CPU 2006 bench-

mark mixes, as shown in Fig. 8b. Experimental results show

that across all benchmark mixes, TAR reduces the average

deflected packet latency by 62% over HT infected NoC, and

increases by 40% over the baseline.

D. Throughput

We also analyze the impact of HT on the throughput of

NoC. Throughput is defined as the number of packets that

have reached its destination per router per clock cycle. In

baseline and TAR, almost all injected packets are ejected after

passing through the NoC, whereas in HT infected NoC this

delivery rate is less than 75%. Here few packets are stuck

in the routers due to the ping-pong effect. This leads to a

lack of free VC buffers in neighboring routers and can block

new packet injections. This injection suppression together

with ping-pong effect reduces the throughput. Our analysis

(Fig. 7c and Fig. 7f) shows the difference in throughput across

various techniques. In the case of real benchmark simulations

(Fig. 8c), across various mixes, HT infected NoC receives an

average of 80% fewer packets compared to baseline. However,

TAR suffers only 6% throughput reduction over the baseline.

E. Injection Suppression Avoidance

Due to the ping-pong effect, the number of packets pro-

cessed around the HT infected router is very high. This can

block the router VCs of HT, its neighbors and subsequent

back pressure leading to injection suppression, as shown in



Fig. 3. We study the average number of input VCs available

on the NoC router during continuous time intervals T1 to T8,

while simulating uniform random traffic at pre-saturation load

and the results are given in Fig. 9. We observe that as the

simulation progresses, the impact of HT results in a fewer

number of input VCs being available in the routers. When the

simulation reaches close to T4, input VC availability becomes

zero, which indicates the injection suppression in the whole

network. TAR ensures that none of the packets is under DoS

attack, and the packets are deflected by its one-hop neighbor

with the help of our shielding approach. This keeps the input

VC availability as close as possible to the baseline, which

prevents injection suppression in the network.

F. Overhead Analysis

Timing Overhead: We implement the standard 3-stage

pipelined input buffered router where the stages are (1) buffer

write and route computation, (2) VC allocation and switch

allocation, and (3) switch traversal. The detection module used

in TAR works in parallel with the route computation stage

to identify whether the previous router is HT infected. Our

dynamic shielding phase is completely independent and works

in parallel with the normal router operation. Trojan bypass

routing is an additional feature in the existing XY routing

algorithm which works in the route computation stage. Since

none of the phases of TAR execution lies in the critical path

of the router pipeline, we confirm that TAR enabled NoC can

function at the same operating frequency.

Hardware Overhead: An additional circuitry is used for

the detection and mitigation of HT. 1-bit alert flag and 3-bit

alert dir used in each NoC router incurs a storage overhead

of 4-bits per router and only 32B (4-bits × 64-core) for the

entire system. We use DSENT [18] to evaluate the area and

power of 8×8 2D mesh NoC with TAR. In DSENT, we use

22nm processor technology at 1GHz operating frequency. The

addition of a detection module and alert flit generator incur

a negligible area overhead of 2.78% and a leakage power

overhead of 3% compared to the baseline router.

V. RELATED WORK

Several survey articles [2] are published about threats and

challenges associated with securing hardware systems. Re-

searchers in the hardware security domain are adopting new

technologies for securing NoC based MPSoCs [19]. The data

protection technology [11], which is suitable for dynamic

and reconfigurable systems, ensures secure memory access in

NoCs. Li et. al. [3] discusses various on-chip and off-chip

monitoring techniques for HT attacks that could affect the

behavior and performance of ICs. Travis et. al. [12] presents

an HT model that generates DoS attack by inspecting the links

in NoC. The system makes use of the vulnerabilities of the

error correction code to cause the DoS attack. It is configured

with a switch-to-switch mitigation technique to obfuscate the

data in the packet. Three-layer protection mechanism [8],

which uses data scrambling, data integrity protection, and node

obfuscation technique, can be used to prevent side-channel

attacks by HTs located in NoC routers. HT models can also

target vital fields in an NoC packet. A pre-planned shuffling

pattern can impede these attacks in runtime [20]. There exist

HTs that infect IP to launch attacks such as DoS, flooding to

waste bandwidth, and high communication latency, which can

result in network saturation [21]. These can be detected and

localized by monitoring packet arrival curves.

VI. CONCLUSION

NoC technology gained popularity in MPSoCs due to its

ability to separate transport, transaction, and physical layers.

The security of NoC routers is vital. An HT infected NoC

router can deteriorate the performance of applications running

in the system. In this work, we model an HT that performs

misrouting and lead to DoS, delay of service, and injection

suppression in the network. We proposed a Trojan-aware

routing that can effectively detect and bypass Trojan infected

components to enable trusted communication in the presence

of untrusted components. Experimental results show that TAR

mitigates such HT attacks with graceful degradation in system

performance. The proposed system improves throughput and

shows a substantial reduction in average packet latency and

deflected packet latency compared to HT infected NoC.
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