
Improving Inference Latency and Energy of
Network-on-Chip based Convolutional Neural

Networks through Weights Compression

Giuseppe Ascia∗, Vincenzo Catania∗, John Jose†, Salvatore Monteleone‡, Maurizio Palesi∗, and Davide Patti∗
∗ Dept. of Electrical, Electronic and Computer Engineering, University of Catania, first.last@dieei.unict.it

† Dept. of Computer Science and Engineering, Indian Institute of Technology Guwahati, johnjose@iitg.ac.in
‡ CY Advanced Studies & ETIS Lab, CY Cergy Paris Université, ENSEA, CNRS, salvatore.monteleone@u-cergy.fr

Abstract—Network-on-Chip (NoC) based Convolutional Neu-
ral Network (CNN) accelerators are energy and performance
limited by the communication traffic. In fact, to run an inference,
the amount of traffic generated both on-chip and off-chip to
fetch the parameters of the network, namely, filters and weights,
accounts for a large fraction of the energy and latency. This paper
presents a technique for compressing the network parameters
in such a way to reduce the amount of traffic for fetching the
network parameters thus improving the overall performance and
energy figures of the accelerator. The lossy nature of the proposed
compression technique results in a degradation of the accuracy of
the network which we show being, nevertheless, widely justified
by the achievable latency and energy consumption improvements.
The proposed technique is applied to several widespread CNN
models in which the trade-off accuracy vs. inference latency and
inference energy is discussed. We show that up to 63% inference
latency reduction and 67% inference energy reduction can be
achieved with less than 5% top 5 accuracy degradation without
the need of retraining the network.

Index Terms—Deep neural network accelerator;
weights compression; approximate deep neural network;
accuracy/latency/energy trade-off.

I. INTRODUCTION

Many applications in the realm of natural language process-

ing, visual data processing and speech and audio processing,

are nowadays very effectively implemented by means of

convolutional neural networks (CNN) [1]. Unfortunately, even

the inference task sometimes requires computation capabil-

ities and memory availability that are usually not available

in resource constrained devices, including, mobile terminals

and IoT edge devices. High computation and/or high mem-

ory demanding tasks are usually carried out in the cloud,

making internet connectivity the limiting factor [2]. Due

to the higher cost in terms of latency and energy which

characterizes communication as compared to computation, the

current trend is trying to compute as much as possible locally

and parsimoniously using the internet. Thus, more and more

mobile systems-on-chip (SoCs) are integrating accelerators

for making it possible the execution of compute-intensive

tasks, traditionally realized in the cloud, into the chip. The

ever more use of deep learning based techniques in many

domains, is pushing research and industry toward the design

and development of high performance, low cost, high energy

efficient Artificial Neural Network (ANN) accelerators [3].

Fig. 1: Traffic generated in a convolutional layer: (1) load

filters input feature map, (2) dispatch them to PEs, (3) store

the output feature map into main memory.

The reference architecture of such accelerators is a many-

core system in which cores are high parallel arithmetic spe-

cialized processing elements (PEs) interconnected by means of

a Network-on-Chip (NoC) [4], [3]. The amount of parameters

in typical CNN models can be as much as hundreds of

megabytes as compared to the kilobytes scale memory usually

available into accelerator. Thus, the high data volume i) to

fetch network parameters and input feature maps from the

main memory, ii) to dispatch them to PEs and, iii) storing back

the output feature map into the main memory (Fig. 1), has a

tremendous impact on both performance and energy metrics.

Thus, reducing the amount of memory space needed to store

the network parameters would improve the performance and

the energy efficiency of the accelerator.

In this paper, we present a compression technique aimed

at reducing the memory occupied by the parameters of the

network, and, consequently, the amount of both on-chip and

off-chip communication traffic. The proposed compression

technique is lossy, in the sense that the compressed parameters

when decompressed to be used by the PEs might not be exactly

the same as the original ones (i.e., before the compression).

54

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00017

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

However, thanks to the forgiving nature [5] of NN based

applications, and the tunable compression ratio vs. approxi-

mation level provided by the proposed compression technique,

interesting trade-off in the space accuracy vs. inference latency

vs. inference energy consumption can be achieved.

Overall, the proposed compression technique:

1) Allows to reduce the memory footprint of an already

designed and trained CNN without the need of retraining

allowing the mapping into memory constrained devices

(Sec. IV-B).

2) Can be applied on top of model compression approaches,

including, parameter pruning and sharing, low-rank fac-

torization, knowledge distillation, etc. [6] (Sec. IV-D).

3) Thanks to its tunable compression ratio nature, it allows

to play in the multi-objective design space accuracy vs.
latency vs. energy, giving the designer the freedom of

selecting the most appropriate Pareto point for his/her

current needs (Sec. IV-C).

The rest of the paper is organized as follows. Sec. II

reviews recent techniques for compacting and accelerating

CNN models. After presenting a motivational example aimed

at showing the impact of communication traffic induced for

fetching the model parameters during an inference, Sec. III

presents the proposed compression technique. It is then applied

to several CNN models and assessed in Sec. IV. Finally, Sec. V

draws conclusion and outlines future work.

II. RELATED WORK

In recent years, we have observed an ever more usage of

deep learning based applications in many different contexts.

Unfortunately, current neural network models require compu-

tational and memory capabilities that, in many cases, exceed

that of portable devices with limited resources (e.g., memory,

CPU, energy, bandwidth). This problem calls for joint solu-

tions from different disciplines, including, machine learning,

optimization, computer architectures, data compression, etc..
As this paper is devoted on a new compression technique, in

this section we review recent works on compressing neural

networks.

Based on [6], model compression and acceleration for

deep neural networks can be classified into four categories,

namely, parameter pruning and sharing, low-rank factoriza-

tion, transferred/compact convolutional filters, and knowledge

distillation. Methods based on parameters pruning and sharing

try to remove parameters that are not crucial to the model

performance. The common practice is pruning redundant, non-

informative weights in a pre-trained CNN model [7], [8].

Thus, pruning schemes typically produce connection pruning

in CNNs. Quantization and binarization techniques are usually

classified into the parameter pruning and sharing techniques

category. Network quantization compresses the original net-

work by reducing the number of bits required to represent

weights with a consequent reduction of the memory footprint

for storing the network parameters [9]. Another advantage is

the possibility of using arithmetic hardware modules working

on lower data width, with a consequent improvement in

silicon area and energy consumption. Extremizing quantization

techniques, binarization allows to represent weights with just a

single bit [10], [11]. Methods based on low-rank factorization

aim at reducing the convolutional layer by tensor decomposi-

tion which is motivated by the fact that there is a significant

amount of redundancy in the 4D tensor [12]. As convolution

operations contribute to the bulk of most computation in deep

CNNs, reducing the convolution layer has a positive impact

on the performance of the network. In [13], [14] the authors

propose the use of transferred convolutional filters to compress

CNN models. The basic idea is exploiting the equivariant

group theory for applying transform to layers or filters to

compress the whole network model. The last category of

compression technique uses knowledge distillations [15], [16]

to compress deep and wide networks into shallower ones. The

compressed model mimics the function learned by the complex

model.

Most of the aforementioned works require the accurate

analysis of the original network, its transformation and re-

training, either, incremental or from scratch. Conversely, the

proposed compression technique is of general applicability and

does not require any re-training phase. More important, it can

be applied on top of other compression techniques to further

improve the compression ratios.

III. COMPRESSION TECHNIQUE

A. Motivational Example

To have an idea of how the memory traffic impacts the

latency and energy metrics, we perform a layer level analysis

during the execution of a CNN inference. The normalized

latency and energy breakdown layer by layer for LeNet-5

is shown in Fig. 2. (Please also refer to Sec. IV for the

experimental setup and simulation models.) As it can be

observed, main memory access is the main responsible for

the inference latency. The on-chip communication system, to-

gether with main memory determines the energy consumption

of the accelerator.

The same conclusions can be drawn also for the other CNNs

that will be considered in the experimental section. Reducing

the memory traffic and on-chip communication volume would

have a positive impact on both latency and energy metrics.

Thus, in the next subsection, we present a new compression

technique aimed at attaining such goal.

B. Lossy Compression of CNN Parameters

Several data compression techniques have been proposed

in literature. The general idea is that of exploiting spatial

redundancy characteristics and statistical properties, usually

found into a data set, for the sake of compression. For instance,

in vector graphics images, repetitive patterns of pixels with

the same RGB components are very frequent and run length

encoding provides high compression ratios. In our case, the

data set is formed by the model parameters that, unfortunately,

do not expose any redundancy or statistical property. In fact,

their entropy is so high that makes unsuitable the application

of any traditional compression technique. For instance, Fig. 3

55

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

0.8

CONV1 AVG-POOL2 CONV3 AVG-POOL4 FC5 FC6

Memory Computation Communication

LeNet-5, Normalized Inference Latency

0.0

0.2

0.4

0.6

0.8

CONV1 AVG-POOL2 CONV3 AVG-POOL4 FC5 FC6

Main Mem (leak) Main Mem (dyn) Local Mem (leak)
Local Mem (dyn) Computation (leak) Computation (dyn)

Communication (leak) Communication (dyn)

LeNet-5, Normalized Inference Energy

Fig. 2: Normalized latency and energy breakdown layer by layer for LeNet-5.

shows the entropy of the weights of different CNNs as

compared to that of random data and that of a text file. As

the entropy measures the equiprobability regardless of real

unpredictability, the entropy of random data can be considered

as an upper bound whereas that of a text file (which is usually

characterized by a high level of redundancy) is shown for the

sake of comparison. As it can be observed, the entropy of CNN

weights is very similar to that random numbers thus showing

that, traditional compression techniques would not be effective

in compressing such data. Another problem is that compressed

information have to be decompressed before being used. In our

case, compressed weights and filters must be decompressed

on the fly before being delivered to the PEs. Unfortunately,

traditional compression techniques rely on the use of software

implemented decompression algorithms usually hardly to be

implemented in hardware. Based on the above considerations,

we designed a new lossy compression technique specifically

tailored to compress high entropy data set.

Let W = {w1, w2, . . . , wn} be the succession of model

parameters to be compressed. Let us partition the succes-

sion W in sub-successions such that each sub-succession is

monotonic. That is, W = {M1,M2, . . . ,Mm} where Mi is a

monotonic sub-succession Mi = {wfi , wfi+1, . . . , wli} where

fi and li are the indexes of the first and last element of the

monotonic sub-succession Mi, respectively. For each mono-

tonic sub-succession Mi, we calculate the linear regression

using the least squares criterion on points (j, wfi+j) with

j = 0, 1, . . . , li − fi. Thus, for each Mi we have the two

coefficients of the line which minimize the mean squared error

between the points in Mi and the points of the line. Let mi

and qi be the coefficient of such line for the points of the

monotonic sub-succession Mi. Thus, instead of storing into

memory the original wi, i = 1, 2, . . . , n model parameters,

we can store, for each monotonic sub-succession, three pa-

rameters: the two coefficients of the line and the length of

the sub-succession. A pictorial description of the compression

technique is shown in Fig. 4. As it can be observed, the original

18 model parameters are clusterized into 6 clusters Mi each

of them represented by the line computed by means of the

least squares method applied to the parameters into Mi.

It should be pointed out that, the effectiveness of the

proposed compression technique depends on the amount of

monotonic sub-successions found into the succession of model

parameters. The worst case is shown in Fig. 5(a) in which

model parameters are pair by pair inversely monotonic. Here,

the compression ratio is 1 as m will be equal to n/2. To

increase the compression ratio, we relax the strict sense mono-

tonic definition by introducing a tolerance threshold represent-

ing the maximum difference among two subsequent elements

of the succession within which the monotonic criterion can be

relaxed. Formally, we say that a succession {w1, w2, . . . , wn}
is monotonic decreasing in the weak sense with tolerance

threshold δ if:

wi > wi+1 ∨ |wi − wi+1| ≤ δ ∀ i = 1, 2, . . . , n− 1. (1)

Thus, by replacing the strict sense monotonic definition with

the weak sense monotonic definition for the construction of the

monotonic sub-successions Mi, the average size of the clusters

increases with a consequent increase of the compression ratio.

For instance, considering the worst case scenario shown in

Fig. 5(a), the use of the weak sense monotonic definition

results to a single cluster as shown in Fig. 5(b).

C. Decompression Unit

After compression, the original model parameters are re-

placed with compressed model parameters in the form of

pairs 〈mi, qi〉. Compressed model parameters have to be

decompressed before being used by PEs. The decompression

of a pair 〈mi, qi〉 involves the computation of the linear

expression mix+qi when x is made to vary from 0 to |Mi|−1.

The decompressed model parameters will be, of course, an

approximation of the actual model parameters. In contrast

to compression which is performed off-line, decompression

is critical as it must be performed on the fly and must not

impact latency. The linear expression computation involves

multiplication operation which is expensive. Fortunately, the

decompressed model parameters need to be generated in

sequence allowing to avoid multiplication. That is, for a

56

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

En
tr

op
y

0

5

10

15

20

Random Text file LeNet-5 AlexNet VGG-16 MobileNet Inception-v3 ResNet50

Fig. 3: Entropy of random data, text file, and weights of different CNNs.

Fig. 4: Pictorial description of the compression technique.

(a) (b)

Fig. 5: Compression using the strict sense monotonic criterion (a) and the weak sense monotonic criterion with tolerance

threshold δ.

57

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

given compressed model parameter 〈mi, qi〉, the uncompressed

model parameters are computed as follows:

w̃1 = qi

w̃j = w̃j−1 +mi, j = 2, 3, . . . , |Mi| (2)

thus, no multiplication but just accumulation operations are

needed for decompression.

The high level description of the decompression unit is

shown in Fig. 6. Inputs are the compressed model parameters

pair 〈mi, qi〉 and the number of approximated model param-

eters |Mi| to be generated. The control unit is a simple two

state FSM which allows to generate the approximated model

parameters. In the Init state, the first approximated model

parameter w̃1 = qi in generated, whereas in Run state, the

subsequent approximated model parameters w̃j are computed

as in Eq. (2).

IV. EXPERIMENTS

A. Experimental Setup and Evaluation Flow

The reference architecture used in the experiments is a NoC

based CNN accelerator inspired to the Simba chiplet [4], in

which the decompression unit presented in subsection III-C is

embedded in each PE, as shown in Fig. 7. The NoC is a mesh

with 16 nodes where the nodes in the corners host the memory

interfaces whereas the rest are PEs. Links are 64-bit wide

and the operating clock frequency is set to 1 GHz. Each PE

includes 8 KB of local memory and 8 parallel lanes of vector

multiply-accumulate (MAC) units. Each vector MAC performs

an 8-way dot product and accumulates the partial sum into the

accumulation buffer every cycle. The experimental platform is

a simulated parameterized NoC-based Deep Neural Network

that allows to assess different architectural configurations in

terms of performance and energy [17]. The RTL models of the

PE and router have been synthesized with Synopsis Design

Compiler and mapped on a 45 nm CMOS LVT library from

Nangate [18]. The links have been modelled with HSPICE

and the parasitics extraction from layout has been made

using Cadence Virtuoso. The power figures collected by the

circuit level analysis have been used to back-annotate the

cycle-accurate NoC simulator [19]. For memory, both local

and main memory, we used CACTI [20] to estimate the

energy consumption (both leakage and dynamic) and timing

information.

We use the evaluation flow shown in Fig. 8 for assessing the

performance, energy, and accuracy figures when the proposed

compression technique is applied on different CNN models.

The network model is first trained and then assessed on a

test dataset to compute the top 5 accuracy of the original

CNN model. The block Layer Selection selects the layer to

be compressed (see below for details). The parameters of the

selected layer are extracted and compressed for a user provided

δ value. The compressed parameter are then decompressed

to replace the original parameters obtaining the approximated

network model, which is tested on the same test dataset

obtaining the top 5 accuracy of the approximated CNN model.

TABLE I: Fraction of the parameters accounted by layers

selected for compression.

Network no. params Layer Type Fraction
Model x1000 name

LeNet-5 62 dense 1 FC 80%
AlexNet 24,000 dense 2 FC 70%
VGG-16 138,000 dense 1 FC 77%
MobileNet 4,250 conv preds CONV 19%
Inception-v3 23,850 pred CONV 9%
ResNet50 25,640 fc1000 FC 8%

The compressed model parameters replace the original model

parameters to obtain the compressed network model. Finally,

both the original and the compressed network models are

simulated using the appropriate configuration of the simulation

platform.

Regarding the Layer Selection block, the layer with the

largest number of parameters and more in depth located is

selected. In fact, in a preliminary analysis we found that,

network accuracy decreases as soon as we compress layers

close to the inputs and as soon as we increase the number of

compressed layers. For this reason, in this work we decided

to limit the compression to only one layer. Fig. 9 shows the

sensitivity analysis for LeNet-5 and AlexNet. The sensitivity of

a layer measures the impact on the accuracy when the weights

of the layer are perturbed. As it can be observed, the sensitivity

of the layers close to the input of the network is higher than

that of the deepest layers. Thus, it justifies the layer selection

policy of selecting the deepest and the larger (in terms of

number of parameters) layer.

B. Compression Assessment

Before evaluating the impact on the accuracy of the network

due to the approximation of the model parameters induced by

the lossy nature of the proposed compression technique, let

us first analyze the compression ratio achievable for different

CNN models. We consider six representative network models,

namely, LeNet-5, AlexNet, VGG-16, MobileNet, Inception-

v3, and ResNet which cover a wide spectrum in terms of

complexity both in the number of layers and number of

parameters.

Tab. II reports the compression efficiency for different

tolerance thresholds. For each network model, column δ is

the tolerance threshold used for compression. It is reported as

percentage of the max amplitude of the model parameters.

That is, δ = x% means that the δ used in Eq. (1) is

x× [max(W)−min(W)] /100 where W is the set of model

parameters. As only one layer is compressed (see IV-A),

the table reports two compression ratio columns. CR is the

compression ratio referred to the compressed layer, whereas

Weighted CR is the overall compression ratio weighted among

all the model parameters. Column Mem fp reduction reports

the percentage of memory footprint reduction due to com-

pression. Finally, column MSE reports the mean squared error

between the original model parameters and the approximated

model parameters. Tab. I reports, for each network model,

58

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: High level description of the decompression unit: datapath on the left, and FSM of the control uniting on the right.

Fig. 7: Reference architecture of the NoC based CNN accel-

erator.

the total number of parameters, the name and the type of the

compressed layer, and the fraction of parameters of that layer

as respect to the total parameters.

For LeNet-5, we compress the first fully connected layer,

which accounts for the 80% of the total model parameters.

Over 2x of CR is obtained starting from δ = 15% with a

MSE in the order of 10−4 which corresponds to the 0.03%

of the variation range of the model parameters for that layer.

For AlexNet we compress the second fully connected layer

which accounts for the 70% of the total model parameters.

The CR is almost the same of that found for LeNet-5, but

the MSE is in the order of 10−6 even for a δ of 20%. For

VGG-16, we compress the first fully connected layer which

accounts for the 77% of the total model parameters. Here we

limit the δ variation to 8% as, even if the MSE is low, the

top 5 accuracy (see next subsection) rapidly fall for higher

δ values. For the same δ the CR is higher than what we

found for LeNet-5 and AlexNet. Up to almost 5x memory

footprint reduction is obtained for a δ of 8%. For MobileNet

TABLE II: Compression efficiency for different network mod-

els and different tolerance thresholds.

Network δ CR Weighted Mem fp MSE
Model CR reduction

LeNet-5 0% 1.21 1.17 14% 5.90e-5
5% 1.38 1.30 24% 8.80e-5
10% 1.74 1.58 39% 1.38e-4
15% 2.50 2.17 57% 2.01e-4
20% 4.02 3.36 74% 2.55e-4

AlexNet 0% 1.21 1.15 12% 9.23e-7
5% 1.51 1.35 24% 1.69e-6
10% 2.38 1.97 41% 3.04e-6
15% 4.77 3.63 55% 4.25e-6
20% 11.44 8.28 64% 4.96e-6

VGG-16 0% 1.21 1.16 13% 3.63e-8
2% 1.43 1.32 22% 5.62e-8
4% 1.94 1.70 36% 8.97e-8
6% 3.04 2.51 50% 1.25e-7
8% 5.28 4.18 61% 1.57e-7

MobileNet 0% 1.21 1.05 4% 1.40e-5
2% 1.42 1.10 7% 2.06e-5
4% 1.87 1.21 11% 3.20e-5
6% 2.74 1.42 15% 4.49e-5
8% 4.31 1.80 19% 5.59e-5

Inception-v3 0% 1.22 1.02 2% 4.16e-6
5% 1.65 1.06 3% 7.97e-6
10% 2.82 1.16 5% 1.37e-5
15% 5.46 1.38 7% 1.83e-5
20% 11.42 1.89 8% 2.12e-5

ResNet50 0% 1.21 1.02 2% 4.40e-6
2% 1.76 1.06 4% 8.03e-6
4% 3.31 1.18 6% 1.33e-5
6% 6.57 1.45 7% 1.71e-5
8% 12.79 1.94 8% 1.95e-5

59

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Block diagram of the evaluation flow.

we compress the last convolutional layer which accounts for

only 19% of the total parameters. For this reason, even if the

compression ratio for this layer is as high as 4.3x for a δ
of 8%, the weighted compression rate is as low as 1.8x. It

should be pointed out that, MobileNet can be considered as

an already compressed network model in which parameters

are more uniformly distributed among the layers than the

other considered network models. Similar results are found

for Inception-v2 and ResNet50. As the analysis is limited to

the compression of a single layer, and due to the fact that such

layer accounts for less than 10% of the total parameters, the

higher weighted compression rate is less than 2x even if the

layer compression rate is greater than 10x.

C. Accuracy vs. Latency vs. Energy

We have seen how the proposed compression technique

allows high compression ratios and low approximation levels

of the model parameters in terms of MSE. The approximation

of the model parameters impacts the accuracy of the network.

On the other side, the reduced memory footprint reduces both

the communication and memory traffic, with a consequent

improvement of latency and energy figures. In this subsection,

we assess the trade-off accuracy vs. inference latency vs.
inference energy.

Fig. 10 shows, for each network model, the accuracy vs.
inference latency and the accuracy vs. inference energy for

different δ values. Inference latency and inference energy are

normalized as respect to the inference latency and inference

energy of the original network model, respectively. In each

graph, the first data series refers to the original network

model whereas the other series are for the compressed (i.e.,
approximated) network models. The latter, are referenced with

suffix x-δ, where x stands for approximated and δ is the

considered δ value. Accuracy is reported on the left y-axes,

whereas latency and energy are reported on the right y-

axes. Both latency and energy are breakdown into their sub-

components. Latency is breakdown into three sub-components,

namely, memory, communication, and computation. Energy is

breakdown into six sub-components, namely, communication,

computation, local memory, main memory, and, for each of

them, both dynamic (dyn) and leakage (leak) components are

reported.

LeNet-5 results are shown in Figs. 10a and 10b. Please

60

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

Se
ns

iti
vi

ty

0.00

0.25

0.50

0.75

1.00

L1 L2 L3 L4 L5

LeNet-5

Se
ns

iti
vi

ty

0.00

0.25

0.50

0.75

1.00

L1 L2 L3 L4 L5 L6 L7 L8

AlexNet

Fig. 9: Normalized sensitivity degree of each layer for LeNet-5 and AlexNet.

notice that, since this is a relatively simple network where

accuracy is computed on the classification of 10 different

classes of hand-written digits [21], a top5 accuracy would

make no sense, and thus a top1 accuracy has been used instead.

As in the previous Table II, five different δ values ranging from

0% to 20% are considered. Test accuracy degrades by just

1.7% for a δ of 15% with a corresponding latency reduction

close to 50%. If an accuracy degradation of 7% is tolerated,

up to 60% of latency reduction can be obtained. Energy

saving ranges from 13% to 60% and it is mainly due to

communication and main memory energy reduction. Similar

savings are observed for AlexNet in Figs. 10c and 10d. With

an accuracy degradation of less than 2% up to 58% latency

reduction and 54% energy saving can be obtained with a δ
of 20%. For VGG-16, Figs. 10e and 10f, it is interesting to

notice that almost 50% of latency reduction and 40% energy

reduction can be obtained with a negligible impact on the

accuracy which is less than 1% for delta values up to 5%.

For MobileNet, Inception-v3, and ResNet50, the energy and

latency saving as less evident of what found for the rest of

network models. The main reason is related to the fact that

the analysis is carried out by compressing a single layer of the

network. Thus, as MobileNet, Inception-v3, and ResNet50 are

very deep, the selected layer for compression does not account

for a significant fraction of the total parameters making the

compression less effective.

Compressing multiple layers with the appropriate δ value

would improve the results. The definition of a technique for

the selection of the set of layers to be compressed and the

appropriate compression level to be used for each of them with

the aim of maximizing the compression ratio under accuracy

constraints is left as future work.

D. Applying Compression on Quantized Network Models

A significant feature of the proposed compression technique

is that of being agnostic with respect to the considered network

model. Consequently, it can be applied on-top of an already

compressed network, allowing a further compression factor.

Some of the most used compression techniques are based on

data quantization, in which shorter fixed-point representation

of weights allows to significantly reduce memory footprint and

computation resources [22]. To demonstrate the effectiveness

of the proposed technique, we will apply it on top of a

TensorFlow Lite quantization, introduced by Google as part

of the DeepMind project [23]. TensorFlow Lite consists of

a set of tools aimed at running low-latency and small-binary

size network models on embedded and IoT devices. This tool

is well known for achieving good gains in terms of size and

performance with minimal impact on accuracy, making it a

perfect candidate for applying the proposed compression on

top of it.

Starting from a pre-trained model, TensorFlow Lite quanti-

zation uses a tool (TensorFlow Lite converter) that loads the

HDF5 model of the network i.e., weights and structure, and

compressing it according to the chosen optimization model. In

particular, TensorFlow Lite supports a reduction of precision

of the weights from full floating point to half-precision (16

bits), or even 8-bits integers. In this work, in particular, we

will refer to the hybrid 8-bit integer representation, in which

floating point values of tensors are approximated according to

the formula real value = (int8 value−zero point)×scale.

This is a quite aggressive setup, useful to stress the applica-

bility of the proposed approach. For further details about the

considered quantization scheme, please refer to [24].

Table III shows the compression efficiency and accuracy

obtained when the above quantization technique (QT) is

applied, along with the results obtained when the proposed

compression technique applied on top the quantized network.

The LeNet-5, AlexNet, and VGG-16 networks are analysed

to represent small, medium, and large network quantization

use cases. Specifically, for each network, the values on the

two leftmost columns are referred to the TensorFLow Lite

quantized network (QT), while the two rightmost columns

(Weighted CR, Top-5 Accuracy) report the same value ob-

tained when applying the proposed compression with different

δ values. As can be observed, LeNet-5 accuracy remains

almost unaltered when small δ values are applied, degrading

when δ values around 20% are considered. Similar results are

obtained for AlexNet and VGG-16, where mid-level δ values

still introduce compression with a reasonable accuracy loss.

With regard to compression ratios, all the three networks,

although being already compressed by the quantization pro-

cess, still show an opportunity for a further compression. In

conclusion, these results confirm that the compression oper-

ated by the proposed approach acts on a different/orthogonal

aspect of the information loss, that is, the monotonic trend of

61

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

To
p

1
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

LN5 LN5x-0 LN5x-5 LN5x-10 LN5x-15 LN5x-20

Memory Computation Communication Test Accuracy

(a) LeNet-5 accuracy vs. latency.

To
p

1
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
En

er
gy

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

LN5 LN5x-0 LN5x-5 LN5x-10 LN5x-15 LN5x-20

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Test Accuracy

(b) LeNet-5 accuracy vs. energy.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

AN ANx-0 ANx-5 ANx-10 ANx-15 ANx-20

Memory Computation Communication Top 5 Accuracy

(c) AlexNet accuracy vs. latency.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
En

er
gy

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

AN ANx-0 ANx-5 ANx-10 ANx-15 ANx-20

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Top 5 Accuracy

(d) AlexNet accuracy vs. energy.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

V16 V16x-0 V16x-1 V16x-2 V16x-3 V16x-4 V16x-5 V16x-6 V16x-7

Memory Computation Communication Top 5 Accuracy

(e) VGG-16 accuracy vs. latency.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
En

er
gy

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

V16 V16x-0 V16x-1 V16x-2 V16x-3 V16x-4 V16x-5 V16x-6 V16x-7

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Top 5 Accuracy

(f) VGG-16 accuracy vs. energy.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

MN MNx-0 MNx-1 MNx-2 MNx-3 MNx-4 MNx-5 MNx-6 MNx-7 MNx-8

Memory Computation Communication Top 5 Accuracy

(g) MobileNet accuracy vs. latency.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
En

er
gy

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

MN MNx-0 MNx-1 MNx-2 MNx-3 MNx-4 MNx-5 MNx-6 MNx-7 MNx-8

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Top 5 Accuracy

(h) MobileNet accuracy vs. energy.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iv3 Iv3x-0 Iv3x-5 Iv3x-10 Iv3x-15 Iv3x-20

Memory Computation Communication Top 5 Accuracy

(i) Inception-v3 accuracy vs. latency.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
En

er
gy

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iv3 Iv3x-0 Iv3x-5 Iv3x-10 Iv3x-15 Iv3x-20

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Top 5 Accuracy

(j) Inception-v3 accuracy vs. energy.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
fe

re
nc

e
La

te
nc

y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

RN50 RN50-x0 RN50-x2 RN50-x4 RN50-x6 RN50-x8

Memory Computation Communication Top 5 Accuracy

(k) ResNet50 accuracy vs. latency.

To
p

5
Ac

cu
ra

cy

N
or

m
al

iz
ed

 In
er

en
ce

 E
ne

rg
y

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

RN50 RN50-x0 RN50-x2 RN50-x4 RN50-x6 RN50-x8

Main Mem (leak) Main Mem (dyn) Local Mem (leak) Local Mem (dyn)
Computation (leak) Computation (dyn) Communication (leak)

Communication (dyn) Top 5 Accuracy

(l) ResNet50 accuracy vs. energy.

Fig. 10: Accuracy vs. inference latency vs. inference energy for the original network model and compressed/approximated

network models for different δ values.

62

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Compression efficiency for different network

models and different tolerance thresholds.

Network Quantization Technique (QT) QT + Proposed Technique
Model Weighted Top-5 δ Weighted Top-5

CR Accuracy CR Accuracy

LeNet-5 2.41 0.9867 0% 2.62 0.9871
5% 2.76 0.9864

10% 3.00 0.9788
15% 3.31 0.9603
20% 3.68 0.8747

AlexNet 2.10 0.9794 0% 2.24 0.9794
5% 2.38 0.9794

10% 2.66 0.9794
15% 2.95 0.9735
20% 3.15 0.9029

VGG-16 2.26 0.8560 0% 1.21 0.8559
5% 2.35 0.8528
7% 3.88 0.8327
8% 5.47 0.7526

10% 10.27 0.1699

serialized representation of the weights, which is independent

from quantization or any other transformation operated on the

bits representing each weight.

V. CONCLUSIONS

In this work, we introduced a technique for compressing

neural network parameters in such a way to reduce the memory

and communication traffic. The proposed technique has been

applied to several widespread CNN models to investigate the

trade-off accuracy vs. inference latency vs. inference energy

consumption. We show that up to 63% inference latency

reduction and 67% inference energy reduction can be achieved

with less than 5% top 5 accuracy degradation without the need

of retraining the network.

In our analysis we have applied the proposed compression

technique to a single layer of a CNN (the deepest and that

with the highest number of parameters). Compressing more

than a single layer with the appropriate δ value would improve

the results. Thus, future work will be devoted on defining a

technique aimed at selecting the set of layers to be compressed

and, for each of them, the appropriate compression level to be

used according to the most profitable energy/latency/accuracy

trade-off.

VI. ACKNOWLEDGEMENT

This work has been supported by the following institu-

tions/grants: (i) the Italian Ministry of Economic Development

(MISE) within the research program “UE-PON Imprese e

Competitività 2014-2020 Contratto di sviluppo M9 (CDS

000448)” - CUP: C32F18000100008; (ii) the Institute of

Advanced Studies of the CY Cergy Paris Université (formerly

Université de Cergy-Pontoise) under the Paris Seine Initiative

for Excellence (“Investissements d’Avenir” ANR-16-IDEX-

0008); (iii) the DIEEI at University of Catania within the

research program “Piano per la Ricerca 2016/2018”.

The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

REFERENCES

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Survey, vol. 51, no. 5,
pp. 92:1–92:36, Sep. 2018.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, Dec 2017.

[3] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, June 2019.

[4] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. S. Emer, C. T. Gray, S. W. Keckler, and B. Khailany,
“A 0.11 pj/op, 0.32-128 tops, scalable multi-chip-module-based deep
neural network accelerator with ground-reference signaling in 16nm,”
in Symposium on VLSI Circuits, June 2019, pp. C300–C301.

[5] S. Venkataramani, K. Roy, and A. Raghunathan, “Approximate com-
puting,” in International Conference on VLSI Design and 2016 15th
International Conference on Embedded Systems, Jan 2016, pp. 3–4.

[6] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017.

[7] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1, 2015, pp. 1135–1143.

[8] K. Ullrich, E. Meeds, and M. Welling, “Soft Weight-Sharing for Neural
Network Compression,” arXiv e-prints, Feb 2017.

[9] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network
quantization,” CoRR, vol. abs/1612.01543, 2016.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
ECCV, 2016.

[11] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural net-
works with weights and activations constrained to +1 or -1,” CoRR, vol.
abs/1602.02830, 2016.

[12] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
CoRR, vol. abs/1404.0736, 2014.

[13] S. Zhai, Y. Cheng, W. Lu, and Z. M. Zhang, “Doubly convolutional
neural networks,” in Proceedings of the 30th International Conference
on Neural Information Processing Systems, 2016, pp. 1090–1098.

[14] T. S. Cohen and M. Welling, “Group equivariant convolutional net-
works,” CoRR, vol. abs/1602.07576, 2016.

[15] P. Luo, Z. Zhu, Z. Liu, X. Wang, and X. Tang, “Face model compression
by distilling knowledge from neurons,” in Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, 2016, pp. 3560–3566.

[16] A. K. Balan, V. Rathod, K. Murphy, and M. Welling, “Bayesian dark
knowledge,” CoRR, vol. abs/1506.04416, 2015.

[17] G. Ascia, V. Catania, J. Jose, S. Monteleone, M. Palesi, and D. Patti,
“Analyzing networks-on-chip based deep neural networks,” in Interna-
tional Symposium on Networks-on-Chip, oct 2019.

[18] I. NanGate, “NanGate 45nm open cell library,” 2008. [Online].
Available: http://www.nangate.com

[19] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Cycle-
accurate network on chip simulation with noxim,” ACM Transactions on
Modeling and Computer Simulation, vol. 27, no. 1, pp. 4:1–4:25, Nov.
2016.

[20] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). Washington, DC, USA: IEEE Computer Society, Dec 2007, pp.
3–14.

[21] Y. LeCun and C. Cortes, “MNIST handwritten digit
database,” http://yann.lecun.com/exdb/mnist/. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[22] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in International Conference on Architectural Support
for Programming Languages and Operating Systems. New York, NY,
USA: ACM, 2014, pp. 269–284.

[23] G. DeepMind, “Tensorflow lite.” [Online]. Available:
https://www.tensorflow.org/lite/

[24] Google, “Post training quantization.” [Online]. Available:
https://www.tensorflow.org/model optimization/guide/quantization

63

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on June 14,2021 at 16:43:39 UTC from IEEE Xplore. Restrictions apply.

