
Networks-on-Chip based Deep Neural Networks
Accelerators for IoT Edge Devices

Abstract—The need for performing deep neural network infer-
ences on resource-constrained embedded devices (e.g., Internet
of Things nodes) requires specialized architectures to achieve
the best trade-off among performance, energy, and cost. One
of the most promising architectures in this context is based on
massive parallel and specialized cores interconnected by means
of a Network-on-Chip (NoC). In this paper, we extensively eval-
uate NoC-based deep neural network accelerators by exploring
the design space spanned by several architectural parameters
including, network size, routing algorithm, local memory size,
link width, and number of memory interfaces. We show how
latency is mainly dominated by the on-chip communication
whereas energy consumption is mainly accounted by memory
(both on-chip and off-chip). The outcome of the analysis, thus,
pushes toward a research line devoted to the optimization of the
on-chip communication fabric and the memory subsystem for
performance improvement and energy efficiency, respectively.

Index Terms—Deep Neural Network accelerator, Network-on-
Chip, Performance evaluation, Energy analysis, Design space
exploration, IoT edge devices.

I. INTRODUCTION

During the past few years, there has been a trend inversion
from offloading as much as possible toward the cloud to
moving back to the edge and terminal nodes. The main
motivation of such inversion is related to the communication
cost. If we consider a typical Internet of Things (IoT) sce-
nario characterized by the three main tasks, namely, sensing,
analyzing and classifying, and transmitting, we can observe
as follows: sensing usually involves several kinds of sen-
sors, including, MEMS Inertial Measurement Units (IMUs),
MEMS microphones, ULP imagers, and EMGs/ECGs/EITs
which work in the range of 100 µW to 2 mW; the analysis
and classification task is usually implemented by means of
microcontrollers working in the range of 1 to 10 mW at 1
to 25 MOPS; Finally, short range transmission at medium
bandwidth or long rang transmission at low bandwidth require
active power levels in the order of 50 mW. Based on this,
the current trend is that of enriching the functionality and
the duties of the local node to reduce the frequency and/or
the amount data to be transmitted for being processed in the
cloud.

Many current applications in the context of agriculture,
health monitoring, surveillance, structural monitoring, etc., are
more and more often implemented by means of machine learn-
ing approaches based on the use of deep learning techniques.
Deep neural networks (DNNs) represent one of the most

This work was supported in part by the Piano per la Ricerca 2016/2018
DIEEI Universitá degli Studi di Catania.

widespread solutions applied in the aforementioned domains.
Although the training phase of a DNN is the most time
consuming and computational demanding task as compared
to the inference phase, the latter is still over the compu-
tational capabilities provided by traditional microcontroller
based devices. To tackle with this gap, several neural network
accelerators have been proposed to work in-tandem with the
microcontroller/microprocessor aimed at improving perfor-
mance and power metrics, including, latency, throughput, and
energy efficiency while executing DNN inferences [1].

As the complexity of DNNs increases, one can expect the
emergency of scalable DNN accelerator platforms in which
many DNN accelerators are connected into the same chip by
means of an on-chip communication network [2]. This paper
presents an experimental analysis aimed at identifying the
main elements of a NoC-based DNN accelerator which mostly
impact its performance and energy metrics. The analysis is
focused on exploring the design space spanned by a set
of architectural elements, including, network size, routing
algorithm, number of memory interface, local memory size,
and links size. Two of the most common neural networks
architectures, namely, LeNet-5 [3] and VGG-16 [4] are con-
sidered in the experiments as they are representative of two
different level of complexity (approx 60 K parameters for
LeNet and 138 M parameters for VGG-16). The outcome of
the analysis is that the on-chip communication account for a
relevant faction of the total inference latency whereas energy
consumption is dominated by the memory sub-system (both
on-chip and off-chip).

The rest of the paper is organized as follows. The next sec-
tion reviews works related to the design and implementation
of accelerators for deep neural network inferences. Sec. III
discusses how a convolutional neural network is mapped
on a NoC-based architecture. The experimental analysis is
discussed in Sec. IV. Finally, Sec. V concludes the paper.

II. RELATED WORK

In the last few years, many works have been conducted
for accelerating DNNs by means of GPGPU [4], FPGAs [5],
and ASIC implementations [6]. The need for scalability has
suggested the use of the NoC paradigm as backbone for
interconnecting specialized DNN accelerator cores. An an-
alytical evaluation and comparison of different configurable
interconnect architectures for NNs is presented in [7]. The
authors found that multicast mesh NoC provides the highest
performance/cost ratio and consequently it is the most suitable

Giuseppe Ascia∗, Vincenzo Catania∗, Salvatore Monteleone∗, Maurizio Palesi∗, Davide Patti∗, John Jose†
∗University of Catania, Italy

Email: firstname.lastname@dieei.unict.it
†Indian Institute of Technology, Guwahati, India

Email: †johnjose@iitg.ac.in

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

978-1-7281-2949-5/19/$31.00 ©2019 IEEE 227

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

interconnect architecture for a configurable neural network
implementation. A large-scale DNN accelerator which uses a
mesh based interconnection network for data transfer is used
in DianNao accelerator [8]. A hierarchical NoC architecture
for spiking NN is proposed in [9] to overcome the lack
of modularity and poor connectivity shown by traditional
neuron interconnect implementations based on shared bus
topologies. At the extreme spectrum of communication fabric,
IBM Truenorth [10] employs a 256 × 256 crossbar into the
neurocore and a mesh NoC for inter-core communication.
Communication latency and throughput have a strong impact
on the overall performance of the NN. Scatters, gathers, and
local communications which characterize the traffic generated
in the different layers of a DNN have been considered for
generating a network tailored to optimize such communication
patterns [11]. The proposed architecture outperform conven-
tional NoC architectures in terms communication latency,
throughput, energy and cost. Traditional NoC architecture is
considered in [2] to implement NoC based DNN accelerators
in which the communication traffic is reduced by adopting a
new sparsified parallelization technique that exploits the noise-
tolerance feature of deep learning algorithms to enable the NN
to learn a configuration that is very suitable to be parallelized
on a NoC.

In the above works, the aspects related to the NoC as com-
munication fabric for supporting the data movement among the
NN processing elements is often only marginally investigated.
In this work, we explore several architectural parameters of the
NoC, including, network size, number of memory interfaces,
routing algorithm, local memory size, to assess their impact
on NN inference latency end energy consumption of the NoC
based NN accelerator.

III. NOC-BASED DEEP NEURAL NETWORK

A. Reference Architecture

We consider as reference NoC-based DNN accelerator ar-
chitecture a mesh-based NoC in which a node can be either a
memory interface (MI) or a processing element (PE). The PE
is specialized in performing the computational kernels used
by the three types of layers which form the DNN, namely,
convolutional layer, max/avg layer, and fully connected layer.
The next sub-sections will discuss how each type of layer is
mapped into the NoC focusing on identifying the data flows
both intra-NoC (among the PEs) and off-NoC (among the
NoC-based DNN accelerator and the main memory).

B. Convolutional Layer

A convolutional layer takes in input the input feature map
and a set of filter. Each filter is convolved with the input feature
map to generate a channel of the output feature map. Fig. 1
shows the traffic generated for processing a convolutional layer
with six filters. The example shows a 4× 4 mesh with fifteen
PEs and one MI. The top part of the figure shows the traffic
generated to load the input feature map from the main memory.
The MI sends the input feature map to the PEs involved in this
layer. We consider a 1 : n mapping between PEs and filters,
that is, a PE can process multiple filters. In the example, each

Fig. 1. Traffic generated for processing a convolutional layer. Loading of
the input feature map (top), loading of the filters (middle), storing the output
feature map (bottom).

filter is sent to a specific PE (middle part of the figure). Finally,
each PE has all the ingredients to compute a channel of the
output feature map that is store back to the main memory
(bottom part of the figure). The output feature map, will be
the input feature map for the next layer of the NN.

It should be pointed out that, the last phase shown in Fig. 1
can be skipped. In fact, each of the PEs active at a generic
layer has in its local memory a number (one in the example) of
channels of the output feature map. Thus, the PE involved in
the subsequent layer, can obtain the input feature map from the
PEs that computed the previous layer. That is, the input feature
map for layer i is spread over the PEs used for processing the
layer i − 1. Based on this, with exception of the first layer,
the access to the main memory for loading the input feature
map can be avoided. This case is shown in Fig. 2 for layer i
and layer i + 1. The output feature map of layer i is spread
over the six PEs, i.e., each channel of the output feature map
is stored into the local memory of a PE. In layer i + 1 there
are eight filters and each of them has to be applied to the
input feature map whose six channels are stored into the local
memory of the six PEs (one channel per PE) shown in blue
in the figure. In order to apply the filter, each the eight PEs
needs the complete input feature map (all the six channels).
Thus each of the six PEs (represented in blue in the figure)
sends its feature map channel to the other seven PEs. Doing
so, all the eight PEs can apply their respective filter.

Please note that, the underlying assumption behind the
above discussion is that, the local memory into the PEs is
enough large to store at least one channel of the feature map.
If this hypothesis is not met, the output feature map is stored

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

228

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The output feature map generated in layer i is spread over the blue
PE. Each blue PE sends its feature map channel to the rest of the PEs active
in the forthcoming layer i+ 1.

back to the main memory.
From the computational point of view, the basic operations

performed in this layer are Multiply And Accumulate opera-
tions (MAC operations) used to perform dot-products of the
convolution among the filter mapped in the PE and data of
the feature map. The amount of MAC operations depends on
the filter size, the size of the input feature map and the stride
used in the considered convolutional layer.

C. Pooling Layer

For a pooling layer, both average pool and max pool, there
is a 1 : n mapping between PEs and feature map channels,
that is, a PE can process multiple feature map channels. In this
case, there is no PE to PE traffic as each PE works on the input
feature map channel currently stored in its local memory. If
the local memory is not large enough to store the entire feature
map channel, the latter is fetched from the main memory
resulting in memory to PEs traffic. From the computational
point of view, the operations performed in this layer are either
average or max operations among data in the input feature
map. The amount of such operations depends on the size of
the input feature map, the scale and stride parameters of the
layer.

D. Fully Connected Layer

In a fully connected layer, the output neurons have a number
of inputs equal to the size of the input feature map. We
consider a 1 : n mapping between PEs and neurons, that is, a
PE can process multiple neurons. Thus, each PE needs to fetch
from the main memory a number of weights corresponding to
the size of the input feature map as shown in Fig. 3.

From the computational point of view, the operations in-
volved in this layer are mainly MAC operations used perform
dot-products among data of the input feature map and the

Fig. 3. A fully connected layer in which each neuron is mapped to a PE.

TABLE I
DESIGN SPACE CONSIDERED IN THE EXPERIMENTS.

Parameter Values

Network size 3× 3, 4× 4, 5× 5, ..., 10× 10
Routing algorithm XY, Odd-Even
Clock frequency 1 GHz
Local memory per core 1, 2, ..., 256 KB
No. of memory interfaces 1, 2, ..., 8
Link width 32, 64, 128, 256, 512 bit

weights for each of the neuron mapped on the PE. The amount
of MAC operations depends on the number of neurons of the
layer and the size of the input feature map.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup
The experimental platform is a simulated parameterized

NoC-based Deep Neural Network that allows to assess dif-
ferent architectural configurations in terms of performance
and energy. For the computational part, we have developed a
simplified version of DianNao [8] which has been integrated
into the processing element module of Noxim [12] cycle-
accurate NoC simulator. The RTL models of the PE and router
have been synthesized with Synopsis Design Compiler and
mapped on a 45 nm CMOS LVT library from Nangate [13].
The links have been modelled with HSPICE and the parasitics
extraction from layout has been made using Cadence Virtuoso.
The power figures collected by the circuit level analysis have
been used to back-annotate the simulator. The considered
design space in the experiments is reported in Tab. I. For
memory, both local and main memory, we used CACTI [14] to
estimate the energy consumption (both leakage and dynamic)
and timing information.

B. Experiments Overview
The analysis is organized as a per-layer analysis and a global

analysis. The first one is aimed at analyzing how each specific

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

229

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

layer affects the considered metrics, whereas the second one
is focused on the overall behaviour of the network still as
respect to the considered metrics. The considered metrics refer
to the fraction of time and energy spent in communication,
computation, and memory access, the memory traffic, and
the PEs utilization. The analysis is carried out on a set
of architectural configurations belonging to the design space
reported in Tab. I.

With regard to the considered neural networks, we selected
two convolutional neural networks, namely, LeNet-5 [3] and
VGG-16 [4]. LeNet-5 counts approx 60 K parameters and 6
layers, whereas VGG-16 count approx 138 M parameters and
20 layers. Their selection has been guided by the fact that can
be considered as representative in the complexity spectrum.

C. Per-layer Analysis

Fig. 4 shows the fraction of time spent in each layer
for LeNet-5 and VGG-16. The platform is configured as a
8 × 8 mesh in which four MIs are located into the four
corners of the NoC, links are 256 bits wide and PE local
memory is 32 KB. The fraction of time is broken into its
three components, namely, communication, computation, and
memory. As it can be observed, the communication dominates
the latency. This true for every layer for LeNet-5 whereas,
for VGG-16, the communication latency is low in the inner
convolutional layers. This is due to the fact that, the feature
size after the second max-pool layer drastically decreases.
Thus, it results in a reduction of the PE to PE traffic for
reconstructing the input feature map starting from the partial
output feature maps that are spread over the active PEs in
the previous layer. The fully-connected (FC) layer in LeNet-5
dominates the latency as the amount of weights to be fetched
from the memory and dispatched to the PEs is much larger
than the amount of traffic generated by the fetch of the filters
and the feature maps in the other layers. In VGG-16, although
FC layers account for a significant fraction of the latency, this
is dominated by the second and third layer where the size of
the feature maps is much larger than that of filters. Thus, the
traffic generated to deliver the input feature maps to the PEs
and that to store the output feature maps to the main memory
(because it does not fit the local memory), result in a major
impact on the latency.

Fig. 5 shows the fraction of energy consumed in each
layer for LeNet-5 and VGG-16. Here the energy consumption
is dominated by the memory, both local memory and main
memory. For LeNet-5 the main memory contribution is mainly
located to the FC layer due to the great amount of weights
to be fetched as respect to the filters used in CONV layers.
Further, the small size of the feature maps can be stored into
the local memory reducing the traffic to the main memory. This
explains how the second energy contribution is due to the local
memory. In VGG-16, energy spent in local memory dominates
in CONV layers. The main memory energy contribution is
localized in the first layers in which the feature size is too
big to fit the local memory size. After the second MAX-
POOL layer, the amount of memory to store the feature map

Fig. 4. Fraction of time spent in each layer.

Fig. 5. Fraction of energy consumed in each layer.

drastically reduces limiting the amount for traffic to and from
the main memory.

Fig. 6 shows the normalized memory traffic in each layer
for LeNet-5 and VGG-16. As expected, FC layers are the main
responsible for the traffic with the main memory.

Fig. 7 shows the number of active PEs and the normalized
load of PEs per layer. For LeNet-5 all the available 60 PEs
are used only in FC layers whereas VGG-16 utilizes all the
available PEs in each layer. As expected, the highest PE
utilization is in correspondence of CONV layers and it is low
in FC layers.

D. Impact of Local Memory Size

The local memory into the PEs has a strong impact on both
latency and energy metrics. Fig. 8 shows the normalized la-
tency per inference for different local memory sizes for LeNet-
5 and VGG-16. We use the same platform configuration as for

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

230

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Normalized memory traffic per layer.

Fig. 7. PE utilization: number of active PEs and normalized load of PEs per
layer.

the per-layer analysis above in which the local memory size
is made to vary from 1 KB to 256 KB. As it can be observed,
the low complexity of LeNet-5 does not show any latency
improvement for local memory size larger than 2 KB. On the
contrary, the local memory requirement demanded by VGG-16
is larger than 16 KB to obtain important latency improvements
but the latter becomes not relevant above 128 KB.

The energy trends are shown in Fig. 9. As the local memory
size increases, the total energy consumption decreases till an
inversion point after that it start to increase. The inversion
point is at 2 KB for LeNet-5 and 16 KB for VGG-16. It is

Fig. 8. Normalized latency per inference for different local memory size.

Fig. 9. Normalized energy per inference for different local memory size.

due to the fact that, although as local memory size increases
the main memory accesses decrease, the energy per access
to the local memory increases. Thus there is a optimal local
memory size beyond which the main memory energy saving
is less than the local memory per access energy.

E. Impact of NoC Size

As the NoC size increases, the number of available PEs al-
lows to parallelize the computation in each layer. However, the
average communication distance increases with a consequent
negative impact on the communication component. Fig. 10
shows the normalized latency per inference for different NoC
size. We use the same platform configuration as for the per-
layer analysis above in which the NoC is made to vary from

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

231

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Normalized latency per inference for different NoC size.

3 × 3 to 10 × 10. For LeNet-5 it has been shown that, with
exception of FC layers, at most 16 PEs are used (see Fig. 7).
For this reason, starting from 4×4 NoC no appreciable latency
variation is observed. In fact, starting from 4×4 NoC, there is
not any appreciable reduction of computation latency while the
communication latency increases. For VGG-16, the minimum
communication latency is observed for 4 × 4 NoC and the
overall minimum latency is for 6×6 NoC. Starting from such
NoC size, the decrease of the computation latency due to the
higher number of available PEs is less than the increase of
communication latency.

Fig. 11 shows the trend of energy as NoC size increases.
For LeNet-5, the energy slightly increases due to the increase
of the average communication distance which increases the
communication component of the energy. In VGG-16, as NoC
size increases, the greater availability of local memory slightly
reduces the traffic to main memory but not enough to save
energy as compared to the increase of the communication and
local memory components. For LeNet-5 the local memory and
main memory energy components are almost the same whereas
for VGG-16 the local memory energy component dominates.
This behaviour is due to the fact that, as we have observed in
the per-layer analysis, in LeNet-5 the energy consumption is
dominated by main memory during the FC layer whereas the
energy component of local memory if moderate but present in
all the remaining layers. Thus, the overall energy consumption
of the two components roughly equalize. Conversely, in VGG-
16, considering again the per-layer analysis, it can be observed
that the local memory energy components is relevant in all
the CONV layers and due the higher number of layers than
LeNet-5, the energy contribution of the local memory overall
dominates.

Fig. 11. Normalized latency per inference for different NoC size.

F. Impact of Routing Algorithm

There are primarily three kinds of traffic flows generated
when a DNN is mapped into a NoC, namely, scatter, gather,
and local. Scatter flow is the traffic distribution from memory
to PEs to deliver input feature maps and weights. Based on
the considered parallelization scheme, feature map distribution
results in broadcast communication flows whereas weights
distribution results in unicast communication flows. Gather
flow is the traffic distribution from PEs to memory for storing
back the output feature map. Thus, based on what we found in
the previous subsection, the amount of local memory in each
PE determines the gather traffic volume. The gather traffic is
an hot-spot traffic as destinations are MIs which are few as
compared to the number of PEs. Finally, local flow is the traffic
distribution among PEs (broadcast traffic) due to dispatch the
computed output feature map channels among PEs. Even in
this case, the amount of local traffic depends on the local
memory size. In fact, if the channels of the output feature map
computed by a PE do not fit the local memory size, they are
stored into the main memory and then distributed to the PEs
through the scatter flow. It is known that the routing algorithm
has a relevant impact on the communication latency. Further,
the difference among routing algorithms are highlighted as
network size and communication patterns change. To assess
the impact of the routing algorithm in our analysis, in Fig. 12
we show the percentage latency reduction when we pass from
a deterministic XY routing to an adaptive Odd-Even [15]
routing. We consider different NoC sizes and different local
memory sizes as the latter determines the distribution of the
three traffic flows described above. In LeNet-5, as NoC size
increases and exceeds 5 × 5 size and for local memory size
greater than 2 KB, the use of Odd-Even starts to improve the
latency. In VGG-16, the impact of routing algorithm is more
evident (up to 30% of latency reduction) and, as in LeNet-
5, starts for 5 × 5 NoC size. It is interesting to observe that,

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

232

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Latency reduction when passing from XY to Odd-Even routing
algorithm for different NoC sizes and different local memory sizes.

after 64 KB of local memory the improvement due to the use
of Odd-Even decay. This is due to the fact that, the amount
of gather flow decreases thus eliminating the hot-spot traffic
to the MIs. In fact, it is known that Odd-Even is effective in
attenuating the impact of hot-spot traffic thus, as the hot-spot
component of the traffic reduces, the difference among XY
and Odd-Even attenuates.

G. Impact of Memory Interfaces
As the number of memory interfaces increases the average

distance between PEs and MIs decreases. Thus, the com-
munication component of the latency for memory accesses
decreases. This trend is shown in Fig. 13 in which the number
of MIs is made vary from 1 to 8 and the platform is configured
as for the per-layer analysis. As it can be observed, the latency
reduction passing from 1 MI to 8 MIs is almost 50% and 80%
for LeNet5 and VGG-16, respectively. As LeNet-5 uses at
most 16 PEs in all the layers with exception of the FC layers,
a slowdown in communication latency reduction after 3 MIs is
observed. For VGG-16, in which all the available PEs are used
in any layer, the communication latency reduction is relevant
up to 8 MIs. Further, even if no visible from the figure (as
the latency is dominated by the communication component),
there is a increase of computation latency due to the fact that,
since the NoC size is fixed, as the number of MIs increases,
the number of PEs decreases accordingly.

As the number of MIs increases, the energy consumption
decreases as shown in Fig. 14. For LeNet-5 the energy
consumption is equally dominated by local memory and main
memory whereas local memory dominates in the case of VGG-
16. This is due to the fact that, the number of active PEs for
VGG-16 is higher than that for LeNet-5, thus local memory is
much more utilized in VGG-16. For the same motivation the
energy contribution of the computing components is higher in
the case of VGG-16 than LeNet-5.

Fig. 13. Normalized latency per inference for different number of MIs.

Fig. 14. Normalized energy per inference for different number of MIs.

H. Impact of Link Width

As the link width of the NoC increases, the communica-
tion bandwidth increases with a consequent improvement of
communication latency. Fig. 15 shows the normalized latency
per inference when the platform is configured like in the case
of the per-layer analysis and in which the link width is made
to vary from 32 bits to 512 bits. Since the communication
component is the major contributors to the global latency, as
expected, as link width increases, the global latency decreases
almost proportionally.

For what it concerns energy, Fig. 16 shows that there is
no appreciable variation in energy consumption as the link
width increases. In fact, as link width increases, the energy
consumption of the router increases but the energy per port per

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

233

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 15. Normalized latency per inference for different link width.

Fig. 16. Normalized energy per inference for different link width.

bit decreases. Thus, the communication energy decreases but
its low contribution as respect to the other energy contributions
is marginal.

V. CONCLUSION

In this paper, we have evaluated NoC-based deep neural
network accelerators in terms of inference latency and energy
consumption for two convolutional neural networks, namely,
LeNet-5 and VGG-16, when several architectural parameters,
including, NoC size, routing algorithm, number of memory
interfaces, link width, and local memory size, are made to
vary. Overall, we found that, the NoC is the main responsible
for inference latency whereas memory (both local and main
memory) is the main contributor for energy consumption.
Although the analysis has been carried out at a relative high

level of abstraction, the following conclusions can be drawn.
To improve the performance in terms of inference latency, it
is essential to focus on the communication sub-system. To
improve the energy efficiency of the system, particular effort
should be devoted on the memory sub-system by reducing the
memory traffic and/or making memory access more energy
efficient.

REFERENCES

[1] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, Nov 2018.

[2] K. Zou, Y. Wang, H. Li, and X. Li, “Learn-to-scale: Parallelizing deep
learning inference on chip multiprocessor architecture,” in IEEE/ACM
Proceedings of Design, Automation and Test in Europe conference
(DATE). -: IEEE, March 2019, pp. 1172–1177.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, Jun 2017.

[5] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning:
Automatic generation of fpga-based learning accelerators for the
neural network family,” in Proceedings of the 53rd Annual
Design Automation Conference, ser. DAC ’16. New York,
NY, USA: ACM, 2016, pp. 110:1–110:6. [Online]. Available:
http://doi.acm.org/10.1145/2897937.2898003

[6] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional
network accelerator,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 11, pp. 2461–2475, Nov 2017.

[7] D. Vainbrand and R. Ginosar, “Network-on-chip architectures for neural
networks,” in ACM/IEEE International Symposium on Networks-on-
Chip. -: IEEE, May 2010, pp. 135–144.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in International Conference on Architectural Support
for Programming Languages and Operating Systems. New York, NY,
USA: ACM, 2014, pp. 269–284.

[9] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley, and
B. McGinley, “Scalable hierarchical network-on-chip architecture for
spiking neural network hardware implementations,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2451–2461,
Dec 2013.

[10] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. N. ans Pallab Datta, G.-J. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson,
and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537–1557, Oct 2015.

[11] H. Kwon, A. Samajdar, and T. Krishna, “Rethinking nocs for spatial
neural network accelerators,” in IEEE/ACM International Symposium on
Networks-on-Chip. New York, NY, USA: ACM, 2017, pp. 19:1–19:8.

[12] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Cycle-
accurate network on chip simulation with noxim,” ACM Transactions on
Modeling and Computer Simulation, vol. 27, no. 1, pp. 4:1–4:25, Nov.
2016.

[13] I. NanGate, “NanGate 45nm open cell library,” 2008. [Online].
Available: http://www.nangate.com

[14] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). Washington, DC, USA: IEEE Computer Society, Dec 2007, pp.
3–14.

[15] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Transactions on Parallel Distributed Systems, vol. 11, no. 7, pp. 729–
738, 2000.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

234

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI. Downloaded on May 11,2020 at 11:42:36 UTC from IEEE Xplore. Restrictions apply.

