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ABSTRACT
One of the most promising architectures for performing deep neural
network inferences on resource-constrained embedded devices is
based on massive parallel and specialized cores interconnected by
means of a Network-on-Chip (NoC). In this paper, we extensively
evaluate NoC-based deep neural network accelerators by exploring
the design space spanned by several architectural parameters. We
show how latency is mainly dominated by the on-chip communica-
tion whereas energy consumption is mainly accounted by memory
(both on-chip and off-chip).
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1 INTRODUCTION
The inference phase of Deep Neural Networks (DNNs) is still over
the computational capabilities provided by traditional microcon-
troller based devices. To tackle with this gap, several neural network
accelerators have been proposed aimed at improving performance
and power metrics, including, latency, throughput, and energy effi-
ciency while executing DNN inferences [5], [7], [2], [4].

As the complexity of DNNs increases, one can expect the emer-
gency of scalable DNN accelerator platforms in which many DNN
accelerators are connected into the same chip by means of an on-
chip communication network [6], [3], [1], [8]. In the previous works,
the aspects related to the NoC as communication fabric for sup-
porting the data movement among the NN processing elements
is often only marginally investigated. This paper presents an ex-
perimental analysis aimed at identifying the main elements of a
NoC-based DNN accelerator which mostly impact its performance
and energy metrics. The analysis is focused on exploring the design
space spanned by a set of architectural elements, including, number
of memory interface, local memory size, and links size. VGG-16 [5]
(approx 138 M parameters) is considered in the experiments. The
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Figure 1: Traffic generated for a convolutional layer.

outcome of the analysis is that the on-chip communication account
for a relevant faction of the total inference latency whereas en-
ergy consumption is dominated by the memory sub-system (both
on-chip and off-chip).

2 NOC-BASED DEEP NEURAL NETWORK
We consider as reference NoC-based DNN accelerator architecture a
mesh-based NoC in which a node can be either a memory interface
(MI) or a processing element (PE) which computes one the three
types of layers which form the DNN, namely, convolutional layer,
max/avg layer, and fully connected layer.

A convolutional layer takes in input the input feature map and a
set of filter to generate a channel of the output feature map. The left
part of Fig. 1 shows the traffic generated to load the input feature
map from the main memory. The MI sends the input feature map
to the PEs involved in this layer. Each filter is sent to a specific PE
(middle part of the figure). Finally, each PE computes a channel
of the output feature map that is store back to the main memory
(right part of the figure). The output feature map, will be the input
feature map for the next layer.

It should be pointed out that, the last phase shown in Fig. 1 can
be skipped. In fact, each of the PEs active at a generic layer has in
its local memory a number (one in the example) of channels of the
output feature map. Thus, the PE involved in the layer i can obtain
the input feature map from the PEs that computed the layer i − 1.
Based on this, with exception of the first layer, the access to the
main memory for loading the input feature map can be avoided.

Please note that, the underlying assumption behind the above
discussion is that, the local memory into the PEs is enough large to
store at least one channel of the feature map. If this hypothesis is
not met, the output feature map is stored back to the main memory.

For a pooling layer, a PE can process multiple feature map chan-
nels. In this case, there is no PE to PE traffic as each PE works on
the input feature map channel currently stored in its local memory.
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Figure 2: Fraction of time spent and energy consumed in
each layer.

Figure 3: Normalized latency and energy per inference for
different local memory size.

If the local memory is not large enough to store the entire feature
map channel, the latter is fetched from the main memory resulting
in memory to PEs traffic.

In a fully connected layer, the output neurons have a number of
inputs equal to the size of the input feature map. A PE can process
multiple neurons. Thus, each PE needs to fetch from the main
memory a number of weights corresponding to the size of the input
feature map.

3 EXPERIMENTAL ANALYSIS
The experimental platform is a simulated parameterized NoC-based
Deep Neural Network that allows to assess different architectural
configurations in terms of performance and energy.

VGG-16 [5] is considered in our experiments. It counts approx
138 M parameters and 20 layers.

Fig. 2 shows the fraction of time spent and energy consumed in
each layer for VGG-16. The platform is configured as a 8×8mesh in
which four MIs are located into the four corners of the NoC, links
are 256 bits wide and PE local memory is 32 KB. The fraction of
time is broken into its three components, namely, communication,
computation, and memory. As it can be observed, the communica-
tion dominates the latency. For VGG-16 the communication latency
is low in the inner convolutional layers. This is due to the fact
that, the feature size after the second max-pool layer drastically
decreases. Although FC layers account for a significant fraction of
the latency, this is dominated by the second and third layer where
the size of the feature maps is much larger than that of filters.

The energy consumption is dominated by the memory, both
local memory and main memory. Energy spent in local memory
dominates in CONV layers. The main memory energy contribution
is localized in the first layers in which the feature size is too big to
fit the local memory size.

Fig. 3 shows the normalized latency and energy per inference
for different local memory sizes.As it can be observed, the local
memory requirement demanded by VGG-16 is larger than 16 KB to
obtain important latency improvements but the latter becomes not
relevant above 128 KB.

As the local memory size increases, the total energy consumption
decreases till an inversion point after that it start to increase. The
inversion point is at 16 KB for VGG-16. It is due to the fact that,

Figure 4: Normalized latency and energy per inference for
different number of MIs.

although as local memory size increases the main memory accesses
decrease, the energy per access to the local memory increases.
Thus there is a optimal local memory size beyond which the main
memory energy saving is less than the local memory per access
energy.

Fig. 4 shows the normalized latency and energy per inference
for different number of MI, from 1 to 8. As the number of memory
interfaces increases the average distance between PEs and MIs
decreases. Thus, the communication component of the latency for
memory accesses decreases. As it can be observed, the latency
reduction passing from 1 MI to 8 MIs is almost 80% VGG-16.

As the number of MIs increases, the energy consumption de-
creases. For VGG-16 the energy consumption is dominated by local
memory.

4 CONCLUSION
In this paper, we have evaluated NoC-based deep neural network
accelerators in terms of inference latency and energy consumption
for two convolutional neural networks when several architectural
parameters are made to vary. Overall, we found that, the NoC is the
main responsible for inference latency whereas memory (both local
and main memory) is the main contributor for energy consumption.
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