
Approximate Wireless Networks-on-Chip

Giuseppe Ascia, Vincenzo Catania,
Salvatore Monteleone, Maurizio Palesi, and Davide Patti

Dept. of Electrical, Electronic and Computer Engineering
University of Catania

Catania, Italy
first.last@dieei.unict.it

John Jose
Dept. of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati, Assam, India

johnjose@iitg.ac.in

Abstract—Thanks to the forgiving nature of the emerging
recognition, mining and synthesis applications, approximate com-
puting (AC) has been recently rediscovered as a viable technique
for improving the performance of computing systems. Although
the application of AC techniques has, in several cases, an indirect
positive effect on the performance of the on-chip communication
sub-system, there are only few works aimed at proposing AC
techniques specifically designed to improve the efficiency of
the on-chip communication fabric. This paper introduces the
concept of approximate communication in the context of wireless
network-on-chip (WiNoC) architectures. This paper presents a
technique through which the programmer can annotate those
data structures of an application that, whenever affected by
errors, do not impact the functionality of the application itself
but only the quality of its outputs. Based on this annotation, the
communications induced by the access to such data structures
are realized with a reduced energy effort that, however, results
to an increase of the probability for the data to be affected
by errors. The underlying hardware mechanisms enabling the
energy versus reliability trade-off are based on the dynamic link
voltage swing and on the dynamic transmitting power tuning of
the wired links and wireless transmissions, respectively. Both the
hardware and software components needed for supporting the
proposed technique are presented. The technique is assessed on
a set of representative benchmarks and the energy saving vs.
application output quality is discussed.

Index Terms—Approximate communication, wireless network-
on-chip, energy saving

I. INTRODUCTION

In the emerging multi/manycore architectures the intercon-
nection network plays a key role. In [1] it has been shown
how the fraction of time spent in communication for several
representative exascale parallel applications rapidly increases
as the number of processing elements increases. As it can be
observed from Figure 1 [2], the time spent in communication
is as limited as 10% below 64 processors but it quickly
increases over 50% for most of the considered applications
as the number of computing cores reaches that in current
manycore architectures in the market. If we relate such fraction
of time spent in communication with Amdahl’s law, it is
evident how communication issues might represent a primary
bottleneck for applications that target extreme parallelism.
Similar observations might be done for what it concerns en-
ergy consumption issues. Indeed, the on-chip communication
system accounts for a significant fraction of the total energy
budget. The increasing gap between gates and wires for which,
as technology geometries shrink, transistors becomes more and
more efficient in terms of speed and energy whereas wires
becomes more and more slow and power hungry [3], has paved
the way through the Network-on-Chip (NoC) paradigm.

Recently, emerging communication technologies, including,
wireless NoC (WiNoC) [4], have been proposed as a viable
solution for the addressing scalability limitations, in terms of

This work was funded in part by Univ. of Catania, DIEEI, under DEDuCE
project.

Fig. 1. Fraction of time spent in communication in multi-core systems
with different processor count under different representative exascale parallel
applications.

communication latency, due to the increasing network diame-
ter [5]. A WiNoC augments the underlying wired NoC with a
number of wireless interfaces enabling single-hop on-chip long
range communications. Wireless on-chip data communication
links with multi GigaHertz bandwidth in millimeter-wave
bands have been fabricated and demonstrated [6]. Although
WiNoC architectures open a new dimension in the design
space allowing new optimization opportunities, communica-
tion energy related issues still represent an open issue. This
paper focuses on the improvement of the communication
energy efficiency in WiNoC architectures.

An ever more significant number of emerging applications
can be classified under the umbrella of recognition, mining
and synthesis (RMS) applications [7]. Such applications have
been shown to possess a forgiving nature [8] towards the im-
precision/errors affecting parts of data or computation during
their execution. Indeed, errors affecting different data of an
application have different impact on the application results.
For instance, in a graphical application, imprecision/error
affecting a variable storing the RGB components of a pixel
will affect the quality of the image but not the functionality
of the application. In many cases, the application developer
is aware of the sensitivity of the results with respect to
certain variables/data structures. Such knowledge can be used
to annotate those data structures for which the application is
resilient to errors/imprecision/approximation involving them.
An approximation aware run-time system can thus trade
off results accuracy versus various non-functional metrics,
including, performance, energy, reliability, etc.. In a NoC
based multi/many-core system, the communication system is
responsible for the delivery of data exchanged by the nodes of
the network (e.g., computational cores, memory controllers).
The idea behind this work is to make the communication
system aware of the application error tolerance capability

XXXIII Conference on Design of Circuits and Integrated Systems (DCIS)

978-1-7281-0171-2/18/$31.00 ©2018 IEEE

!

with respect to the data involved in current communications.
By exploiting such information, the communication channels
are run-time configured for trading off communication energy
saving and application results degradation. To do so, both the
router and wireless interface architectures are augmented with
a logic which allows to trading-off communication energy for
communication reliability. Specifically, dynamic link voltage
swing tuning is used as mechanism for saving the energy con-
sumption of wired links whereas dynamic transmitting power
variation is used as mechanism for saving energy consumption
of wireless communications. The proposed HW/SW technique
is assessed on a set of representative parallel benchmarks
showing that up to 30% of communication energy can be saved
without of (or with a negligible) impact on the application
specific quality metrics.

II. RELATED WORK

The majority of approximate computing techniques pro-
posed in literature explore the trade-off between perfor-
mance/energy and accuracy with reference to the solely com-
puting subsystem. With the evermore increasing presence of
manycore architectures based on the NoC design paradigm,
the attention devoted to the on-chip communication system
competes with the computational counterpart. The rationale
behind the fact that an ever-increasing number of emerging
applications possess a “forgiving nature” which make them
little sensitive to the imprecision on data and computation can
be extended even to communications.

Approximate communication can be considered as a sub-
section of the larger approximate computing field [2], [9].
Indeed, approximate computing techniques, when applied,
generally have an impact on communication metrics. For
instance, at software level, general techniques like loop per-
foration [10] and thread fusion [11] reduce the number of
message transmitted. Other common techniques, including
lossy data compression [11], precision scaling [12], and data
sampling [13] reduce the size of communication messages.
Further other techniques, including algorithm selection and
parameter adjustment [14] indirectly determine a reduction of
both the number and the size of communication messages. It
is also worth mentioning approximate computing techniques
operating at architectural level which indirectly have a positive
impact on communication efficiency metrics. Among them, ap-
proximate value prediction [15] and fuzzy memoization [16],
allow to reduce the number of messages whereas the use of
neural accelerators [17] allows to reduce both the number and
the size of messages.

Although the aforementioned techniques, that have been
proposed in the context of approximate computing, have
an indirect (positive) impact on the communication sub-
system, specifically designed techniques aimed at improving
the power/performance figures of the communication sub-
system have been proposed in literature. Basically, we can
classify approximate communication techniques taking into
account the specific overhead they try minimizing, namely,
synchronization and communication overhead. Techniques de-
signed for tackling the performance and scalability limita-
tion due to synchronization overhead are mainly based on
relaxing synchronization. In [18] authors propose to relax a
subset of the synchronization points and to exploit implicit
noise tolerance of RMS applications. Techniques aimed at
reducing the communication overhead can be further divided
into compression and load value prediction based techniques.
Compression based techniques [11] aim at removing redundant
data effectively increasing the density of data to be com-
municated. Value prediction based techniques [15], based on

the observation that many applications exhibit significant data
value locality, seek to exploit this predictability for reducing
memory traffic.

The aforementioned works are all based on the reduction
of the network traffic (by means of dropping, compressing,
estimating information) and thus require additional logic to
recover, uncompress, and predict communication content. The
technique proposed in this paper, instead, does not impact the
characteristics of the traffic into the network but selectively
configures at run-time the network resources to tailor the
reliability requirements of the actual communication flow
based on its error tolerance as specified by the application
developer. Further, due to the fact the the proposed technique
does not impact the network traffic, it is general and can
be used in conjunction with several of the above discussed
techniques.

III. DESCRIPTION OF THE PROPOSED TECHNIQUE

The technique proposed in this paper to improve the energy
efficiency of WiNoC architectures in the context of error tol-
erant applications [8] is based on the use of a communication
system that allows to dynamically tuning the transmission en-
ergy based on the error tolerance characteristics of the current
communication. Since the reliability level of a communication
is a function of the transmission energy, a reduction in energy
will result in a reduction from a nominal reliability level, to a
lower reliability level.

We consider a programming paradigm similar to [19] in
which the software developer specifies, by means of pragma
annotation, those variables which if affected by errors do not
impact the functionality of the application but just the quality
of the results. For instance, a #pragma resilient(w,
rl) indicates that the access to w can be performed with
a reliability level rl. Such reliability level is measured in
terms of the experienced bit error rate (BER) to access the
data. Indeed, data accesses induce communication messages
among processing cores and the memory controller cores.
The reliability level is correlated to communication energy
consumption, that is, higher the reliability requirement (i.e.,
lower BER), higher will be the energy consumption for
accessing the information.

The next sub-sections provide the details on how the system
architecture is augmented to expose a reliability knob and on
how such knob is tuned at run-time to provide the energy
versus reliability trade-off in accessing the data structures as
per developer specifications.

A. Dynamic Link Voltage Swing Circuitry

For the wired network, we propose the tuning of the links
voltage swing as mechanism for trading off communication
energy and communication reliability. Figure 2 shows the
circuitry for implementing the dynamic link voltage swing.
The circuitry is instanced for each output port of the router. As
it can be observed, the bit-line is preceded by a chain formed
by a demultiplexer, two tapered buffers as line drivers and two
tristate buffers. The tristate buffers are based on transmission
gate logic. With this solution, if the select input is high (low),
the full (low) swing path is active and the low (high) swing
path is disconnected by the high impedance state introduced
by the tristate buffer. The level restorer circuit (similar to the
sense amplifier in RAM memories) restores the signal at full
swing if the signal on the line is set to low swing, or maintains
the original swing if the signal is in full swing mode. By acting
on the Sel input of the circuit, the link is configured to operate
either at reliable mode or unreliable/low energy mode.

!

!

Fig. 2. Architecture of the dynamic link voltage swing circuitry.

TABLE I
HSPICE SIMULATION RESULTS FOR A BIT-LINE OF THE LINK.

Conventional Configurable
VDDH VDDH VDDL

Technology 1.1 V, 10 metal, 45 nm CMOS LVT
Interconnect
(Metal 7)

Width 0.4 µm, Space 0.32 µm, Length 2.8 mm

Rwire 225 Ω, Cwire 946 fF
Supply 1.1 V 1.1 V 0.6 V
Worst case total delay 214 ps 410 ps
Avg. Energy/Transition 512 fJ 527 fJ 152 fJ
BER 1.3E-17 1.3E-17 3.8E-6

Table I summarizes the characteristics of the the dynamic
link voltage swing circuitry. The design has been targeted to
work at a clock frequency of 2 GHz (which is the target clock
speed of our baseline router). The analysis has been carried
out with HSPICE using a 45 nm CMOS LVT library from
Nangate [20] which provides 10 metal layers. The parasitics
extraction from layout has been made using Cadence Virtuoso.
The table compares the conventional link using a single VDDH
voltage swing, with the proposed configurable link supporting
two voltage swing levels, VDDH and VDDL. We considered
a conventional VDDH of 1.1 V and a VDDL of 0.6 V
which determine a BER of 1.3E-17 and 3.8E-6, respectively.
The worst case total delay of the proposed configurable link
increases but it is still below the clock period of the baseline
router. The energy per bit of the proposed configurable link
increases less than 3% when it works at VDDH. This is due to
the overhead introduced by the reconfiguration logic. However,
when it works at VDDL the link energy saving is close to 70%.

B. Dynamic Transmitting Power Transceiver

In WiNoCs a Wireless Interface (WI) is used to enable
a conventional router to connect the wireless medium. The
reference architecture for a WI is shown in the top part Fig-
ure 3. It consists of three main parts, namely, antenna, analog,
and digital modules. The digital domain includes the channel
access token controller (used to implement the radio access
control mechanism [21]) and the serializer/deserializer. The
analog domain includes the Amplitude-Shift Keying or On-
Off Keying (ASK-OOK) which is the most used modulation
technique in mm-wave WiNoCs [5], [22], [23]. Although, for
a given bit error rate, the ASKOOK modulation requires a
higher transmitting power than that required by other modu-
lation techniques (e.g., the quadrature amplitude modulation
(QAM) [24]), and has a poor spectral efficiency, its hardware
implementation is simple (low area overhead as compared with
QAM) and tailored to be applied in the on-chip context.

Fig. 3. Architecture of the dynamic transmitting power wireless interface.

The bottom part of Fig. 3 shows the dynamic transmitting
power transceiver in which the conventional power amplifier is
replaced with an variable power amplifier [25], [26] supporting
two different transmitting power level, namely, conventional
and reduced. We consider a zigzag antenna modeled and char-
acterized with Ansoft HFSS [27] (High Frequency Structural
Simulator) for obtaining the scattering parameters to compute
the wireless medium attenuation. Based on this, the minimum
transmitting powers for two considered BER levels, have been
computed. Specifically, considering a data rate of 16 Gbps
and a conventional reliability level corresponding to a BER of
10

−12 we found that the average energy per bit is 1.47 pJ/bit.
For the low-energy and unreliable wireless communication we
found that for a BER of 10

−6 the average energy per bit is
1.0 pJ/bit.

C. Control Mechanism

Both the dynamic link voltage swing and dynamic trans-
mitting power WI have an input, Sel in Figs. 2 and 3, used
for selecting the expected reliability level for transmitting the
current information. As discussed at the beginning of the
section, the software developer annotates the source code with
pragma directives which inform the compiler that a particular
data can be accessed with a certain reliability level. Access

!

!

TABLE II
CONFIGURATION PARAMETERS ADOPTED IN THE REFERENCE

ARCHITECTURE

Parameter Value

Number of cores 64
Number of memory controllers 4
Controllers positions 0, 7, 56, 63
L1I (size, bsize, assoc) 64K, 16, 4
L1D (size, bsize, assoc) 64K, 32, 4
L2 (size, bsize, assoc) 512K, 64, 8

Cache Protocol
Private L1/L2
DRAM directory MSI

Flit width 64 bit
Packet Size 64 bytes
Flits/Port Buffer 4

to data not annotated with any pragma directive is considered
as reliable, whereas, access to data declared in a pragma is
unreliable (with a certain reliability level) in the specified
scope of the pragma. In the rest of the paper, we consider
a single reliability level. Data involved in pragma declarations
will be manipulated through load and store instructions that
induce communication messages (among processing cores and
memory controller cores) which require less energy effort but
a higher BER.

To implement the mechanism, the header flit of the packet
reserves one single bit (reliability bit) for marking the packet
as either reliable (and energy-hungry) or unreliable (and
energy-efficient). Thus, communications induced by load/store
access to pragma annotated data simply by properly setting
the reliability bit. Routers traversed by the packets use the
reliability bit of the header flit to configure the output link
or the wireless interface through which the packet will be
routed. Indeed, the reliability bit is used as a driver for the
Sel input port of the dynamic voltage swing link and dynamic
transmitting power logic described in the previous subsection.
Please note that, even if the packet is marked as unreliable,
the header flit will be always transmitted in reliable mode as
it contains control information which is not error tolerant.

IV. EXPERIMENTS

A. Simulation Setup and Evaluation Flow

In this section, in order to assess the effectiveness of the
proposed approach on real-world scenarios, we take into con-
sideration a set of four applications representative of different
RMS workloads, such as financial analysis, computer graphic,
data mining, and physics. We assume a 8 × 8 mesh-based
NoC architecture which is simulated by using the Graphite
Multicore Simulator [28]. The most relevant architectural
parameters are reported in Table II. Each parallel thread of
the application is mapped onto a single core, and a traditional
shared-memory model is assumed, with the space of DRAM
equally split among the 4 memory controllers placed at the
corners of the mesh topology [29].

As first step, the application source code is annotated in
order to explicitly specify the data structures suitable for
approximate communication. Each annotation consists of an
address, marking the begin of the annotated memory region,
and a size, denoting the extension of the region. The purpose
of this annotation process is twofold: first, the knowledge
of region boundaries will allow a later detection of memory
references candidate for approximation, and second, informa-
tion about annotated data structure could be used to inject an
artificial bit error rate to estimate the effects of approximate
communication on the final outputs. Details of such annota-
tions, along with the data input used, are provided in the next

subsection when describing the application set. It should be
pointed out that, in this work, each annotation has been done
manually, by means of a static analysis of source code in order
to determine the “role” of each data structure. A conservative
approach has been adopted, annotating for approximation only
those data structures clearly related to the input workload,
following the main assumption of the forgiving nature of RMS
application scenario. Nevertheless, such annotation process
could be automatized and extended in future developments,
further increasing the scope of applicability of approximate
communications.

Once the application simulation is completed, the trace of
the packet transmissions is obtained. In particular, we modified
Graphite Multicore Simulator in order to gather the traces
of the packets sent to the memory controllers and use the
annotated regions to detect which data reference is candidate
for approximate communication. Indeed, the annotation of
each data structure contains data about the address and the
extension of the region to be annotated. In this way, we
are able to use the packet traces to detect which packets
would carry data entirely falling in one of the annotated (i.e.,
approximable) regions.

Finally, the traces are used to feed the Noxim [30] simulator
to obtain the power/performance figures, as reported in the the
next subsections. Four different NoC scenarios are considered:
wired-only communication (NoC), wireless-enabled (WiNoC),
and the approximate communication version of both, namely,
Approx NoC and Approx WiNoC. With regard to the wireless-
enabled NoCs, a natural choice was to assume that Wireless
Interfaces are placed in the same locations of memory con-
trollers, that is, in the four mesh corners. Also, a wireless usage
policy was chosen so that when the distance (number of hops)
to the destination is above a given threshold (five hops, in this
case), the packet is redirected towards the nearest node that
can provide a single-hop direct connection to the destination.

B. Application Set and Annotated Data Structures

A set of application representative of different RMS work-
loads has been annotated and simulated to generate the com-
munication traces and annotation information. In particular,
we considered the following applications [31]:

• streamcluster: The input workload used consists
of 8, 192 points, with 64 dimensions per point, 1020
centers, and a maximum of 1,000 intermediate centers.
The annotated data structure (data) is a multidimensional
vector storing the coordinates of the points to be used
as inputs. Each annotated region consist of 256 bytes
required for storing the 64 dimensions of each point
encoded as a floating point value of 4 bytes, for a
total of 8192 regions. To evaluate simulation results the
percentage of misplaced points (points placed in the
wrong cluster) has been taken into account.

• blackscholes: A portfolio of 4096 financial deriva-
tive options has been used as input. Two data structures
have been annotated: optiondata a 36 bytes floating point
structure, and prices (4 bytes floating point), for a total of
147,456 bytes and a 16,384 bytes, respectively. Results
are evaluated considering the average percentage change
in prices.

• canneal: The input workload used consists of 10,000
swaps per temperature step, 2,000 start temperature, and
100,000 netlist elements. The annotation has been per-
formed on the netlist element, inside the getRandomEle-
ment() function that each thread uses to pseudo-randomly
pick one new netlist element per iteration, for a total of

!

!

160,000 instances of 64 bytes netlist elements. The metric
evaluated is the percentage variation of the total routing
cost.

• radiosity: The input used is the room model descrip-
tion included as standard workload in the SPLASH-2
benchmark suite. The annotated data structures consists
of two main elements: elemvertex buf.col, a data structure
encoding the three RGB components as 4 bytes floating
point values, and elemvertex buf.vertex, a data structure
encoding the 3-dimensional coordinates of each vertex of
the polygons describing the 3D model of the scene. Each
of these two structure occupies 12 bytes, for a total of
65,535 regions and 786,420 annotated bytes size each.
Since this application produces an image as output, the
evaluation is made by means of the average root mean
square applied to corresponding pixels of the precise and
approximate output images.

C. Results and Discussion

In Figure 4 are shown the normalized energy consump-
tions for the four applications being considered, obtained by
feeding the Noxim simulator with the traffic traces obtained
from Graphite simulations, assuming the same configuration
parameters already shown in Table II when describing traces
generation. Four different NoC scenarios are considered: wired
communication only (NoC), wireless-enabled (WiNoC), and
the approximate communication version of them (Approx NoC
and Approx WiNoC).

A first observation is that enabling approximation results
in energy savings that are not homogeneously distributed.
Firstly, there is a different impact that seems to depend on
the type (wired/wireless) of network considered: on average,
NoC/Approx NoC pairs show a relative gain that is bigger
than WiNoC/Approx WiNoC comparisons. In particular, wired
NoCs gains range from a 10% of streamcluster applica-
tion up to a 40% saving of canneal, while the impact of
approximation results lower when comparing WiNoC/Approx
WiNoC cases. Of course, this is an indirect consequence
of using wireless-enabled networks, that, by reducing the
number of hops required, also partially reduce the advantage
of using approximate low power communications on longer
paths. Nevetheless, fixed a given approximation policy (e.g.,
enabled or not) and an application, wireless-enable networks
still show better behaviors than their NoC counterparts.

Considering again the impact of enabling approximate
communications, a second aspect that can be observed in
Figure 4 is the not negligible variance of the results across
the different applications. Considering , for example, the case
of wireless-enable networks (red/green bars), the impact of ap-
proximate communication in terms of savings varies, being 7%
for streamcluster, 22% for blackscholes, 11% in
radiosity, and 30% in canneal. Indeed, the only knowl-
edge of the details about the annotated regions suitable for ap-
proximate communication, as described in Subsection IV-A, is
not sufficient to evaluate how effective will be the actual usage
of approximate communication. In particular, assuming a given
amount of annotated memory regions, it is the dynamic behav-
ior of the application the dictates “how much” such regions
will be referenced in memory requests, thus providing chances
of applying approximate communications. Such measurement
of the actual applicability of approximate communications on
the whole memory references are shown as the rightmost
bars (Perc Approx) for each benchmark of Figure 4. These
values, ranging from a 20% of streamcluster to more
than 50% for canneal, reflect the fraction of requests sent

to the controllers referring to addresses that match annotated
the annotated regions. While a detailed analysis of the dynamic
behavior of memory reference is not within the scope of this
work (interested reader can refer to [32]) an intuitive expla-
nation of such variance can still be provided. In particular,
remembering the shared memory/private cache architecture
assumed in Table II, a primary impact can be surely attributed
to the parallelization model of the application. For example,
let us consider a large workload mapped in the main memory,
accessed in its entire amount by every node performing the
parallel computation. In this case, local caches could never be
large enough to avoid main memory references, thus increasing
request to the controllers and (possibly) the potential use of
approximate communications. As a counterexample, the same
large workload mapped in memory could be logically split in
several slices, accessed separately and independently by each
node: in this case, private local cache could be sufficient to
avoid most of memory requests, thus reducing the packets sent
to the memory controllers and thus the potentially related ap-
proximate communications. Finally, for sake of completeness,
Table III summarizes in numerical form the results that have
been already visually presented in Figure 4 along with other
information, including, the percentage of approximated data
structures, and the faction of energy spent for both wired and
wireless communications.

Finally, Table IV-C reports, for each application, the error
for the specific accuracy metric. As it can be observed,
the impact on the accuracy metric is negligible for all the
considered applications.

V. CONCLUSIONS

In this paper, we have presented an approximate com-
munication technique for improving the energy efficiency of
WiNoC architectures. We have proposed the use of dynamic
link voltage swing for reducing the energy consumption of
NoC links and dynamic transmitting power modulation for
reducing the energy consumption of wireless communications.
By means of a pragma based annotation of the application
code, the load and store induced communications related to
error tolerant data are recognized by the underlying commu-
nication fabric which selects the appropriate link voltage swing
level and transmitting power of links and wireless interfaces
involved in that communications. The proposed technique has
been assessed on a set of representative benchmarks and the
energy saving versus application accuracy trade-off has been
discussed. Overall, up to 30% of total communication energy
saving has been observed without any appreciable impact on
the accuracy metrics.

REFERENCES

[1] K. Bergman et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO),
Tech. Rep 15, Tech. Rep., 2008.

[2] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and
U. Karpuzcu, “Approximate communication: Techniques for reducing
communication bottlenecks in large-scale parallel systems,” ACM Com-
put. Surv., vol. 51, no. 1, pp. 1:1–1:32, Jan. 2018.

[3] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in ACM/IEEE Design Automation Conference, Las
Vegas, Nevada, USA, 2001, pp. 684–689.

[4] K. Chang, S. Deb, A. Ganguly, X. Yu, S. P. Sah, P. P. Pande, B. Belzer,
and D. Heo, “Performance evaluation and design trade-offs for wireless
network-on-chip architectures,” J. Emerg. Technol. Comput. Syst., vol. 8,
no. 3, pp. 23:1–23:25, Aug. 2012.

[5] S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo, “Wireless
NoC as interconnection backbone for multicore chips: Promises and
challenges,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 2, no. 2, pp. 228–239, 2012.

!

!

Fig. 4. Normalized communication energy and percentage of approximated data.

TABLE III
DETAILED SIMULATION RESULTS.

Application Perc. Energy∗ Avg Hops count Energy∗ WiNoC Energy∗ Approx WiNoC
Approx NoC Approx NoC NoC WiNoC Wired Wireless Total Wired Wireless Total

streamcluster 12.1% 1.00 0.91 5.3 3.0 0.17 0.76 0.93 0.15 0.71 0.86
blackscholes 38.5% 1.00 0.73 6.9 3.1 0.15 0.57 0.72 0.11 0.45 0.56
radiosity 19.2% 1.00 0.86 6.9 3.0 0.14 0.56 0.70 0.12 0.50 0.62
canneal 55.6% 1.00 0.60 7.0 2.5 0.11 0.52 0.63 0.07 0.37 0.44

∗All energy values are normalized with respect to the wired NoC energy consumption.

TABLE IV
PERFORMANCE METRICS.

Application Metric Value

streamcluster % of misplaced points 0.04
blackscholes Average % change in prices 2.08 · 10

−5

radiosity Average root mean square 3.2 · 10
−4

canneal % variation of the total routing cost 0.23

[6] J.-J. Lin, H.-T. Wu, Y. Su, L. Gao, A. Sugavanamand, J. E. Brewer, and
K. K. O, “Communication using antennas fabricated in silicon integrated
circuits,” IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1678–
1687, 2007.

[7] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar,
V. W. Lee, A. D. Nguyen, and M. Smelyanskiy, “Convergence of
recognition, mining, and synthesis workloads and its implications,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 790–807, May 2008.

[8] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proceedings of the 52Nd Annual Design Automation Conference, 2015,
pp. 120:1–120:6.

[9] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“Approx-noc: A data approximation framework for network-on-chip
architectures,” SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 666–
677, Jun. 2017.

[10] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
service profiling,” in ACM/IEEE International Conference on Software
Engineering, 2010, pp. 25–34.

[11] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“Sage: Self-tuning approximation for graphics engines,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2013, pp.
13–24.

[12] M. A. Anam, P. N. Whatmough, and Y. Andreopoulos, “Precision-
energy-throughput scaling of generic matrix multiplication and discrete
convolution kernels via linear projections,” in IEEE Symposium on
Embedded Systems for Real-time Multimedia, Oct 2013, pp. 21–30.

[13] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
hadoop: Bringing approximations to mapreduce frameworks,” SIGARCH
Comput. Archit. News, vol. 43, no. 1, pp. 383–397, Mar. 2015.

[14] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,”
SIGPLAN Not., vol. 46, no. 3, pp. 199–212, Mar. 2011.

[15] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in
IEEE/ACM International Symposium on Microarchitecture, Dec 2014,
pp. 127–139.

[16] G. Keramidas, C. Kokkala, and I. Stamoulis, “Clumsy value cache: An
approximate memoization technique for mobile gpu fragment shaders,”
in Workshop on Approximate Computing, 2015.

[17] B. Grigorian and G. Reinman, “Accelerating divergent applications on
simd architectures using neural networks,” ACM Transactions Architec-
ture Code Optimization, vol. 12, no. 1, pp. 2:1–2:23, Mar. 2015.

[18] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing with uncer-
tainty,” in ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability, 2012, pp. 51–60.

[19] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” SIGPLAN Not., vol. 46, no. 6, pp. 164–174, Jun.
2011.

[20] “NanGate 45nm open cell library.” [Online]. Available:
http://www.nangate.com

[21] M. Palesi, M. Collotta, A. Mineo, and V. Catania, “An efficient radio
access control mechanism for wireless network-on-chip architectures,”
Journal of Low Power Electronics and Applications, vol. 5, no. 2, pp.
38–56, 2015.

[22] D. DiTomaso, A. Kodi, S. Kaya, and D. Matolak, “iWISE: Inter-
router wireless scalable express channels for network-on-chips (nocs)
architecture,” in Annual Symposium on High Performance Interconnects.
Santa Clara, California, USA: IEEE Computer Society, 2011, pp. 11–18.

[23] S. Deb, K. Chang, M. Cosic, A. Ganguly, P. P. Pande, D. Heo, and
B. Belzer, “Enhancing performance of network-on-chip architectures
with millimeter-wave wireless interconnects,” in IEEE International
Conference on Application-specific Systems Architectures and Proces-
sors, 2010, pp. 73–80.

[24] L. Couch, Digital and Analog Communication Systems. Pear-
son/Prentice Hall, 2007.

[25] S. Kaushik, M. Agrawal, H. K. Mondal, S. H. Gade, and S. Deb, “Path
loss-aware adaptive transmission power control scheme for energy-
efficient wireless noc,” in International Midwest Symposium on Circuits
and Systems (MWSCAS), Aug. 2017, pp. 132–135.

[26] A. Mineo, M. Palesi, G. Ascia, and V. Catania, “Exploiting antenna
directivity in wireless noc architectures,” Microprocessors and Microsys-
tems, vol. 43, pp. 59–66, 2016.

[27] ANSYS. (2014, Jul.) Ansoft HFSS. [Online]. Available:
http://www.ansys.com/”

[28] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010,
pp. 1–12.

[29] W. Choi, K. Duraisamy, R. Kim, J. Doppa, P. Pande, D. Marculescu, and
R. Marculescu, “On-chip communication network for efficient training
of deep convolutional networks on heterogeneous manycore systems,”
IEEE Transactions on Computers, vol. 67, no. 5, pp. 672–686, 2018,
cited By 0.

[30] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Improv-
ing energy efficiency in wireless network-on-chip architectures,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 14, no. 1,
2017.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in
Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’95. New York, NY, USA: ACM, 1995, pp.
24–36. [Online]. Available: http://doi.acm.org/10.1145/223982.223990

[32] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on Mod-
eling, Benchmarking and Simulation, June 2009.

!

!

