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Abstract—Packet based Network-on-Chip (NoC) connect tens
to hundreds of components in a multi-core system. The routing
and arbitration policies employed in traditional NoCs treat all
application packets equally. However, some packets are critical
as they stall application execution whereas others are not. We
differentiate packets based on a metric called slack that captures
a packet’s criticality. We observe that majority of NoC packets
generated by standard application based benchmarks do not have
slack and hence are critical. Prioritising these critical packets
during routing and arbitration will reduce application stall and
improve performance. We study the diversity and interference
of packets to propose a policy that prioritises critical packets
in NoC. This paper presents a slack-aware re-routing (SAR)
technique that prioritises lower slack packets over higher slack
packets and explores alternate minimal path when two no-slack
packets compete for same output port. Experimental evaluation
on a 64-core Tiled Chip Multi-Processor (TCMP) with 8×8
2D mesh NoC using both multiprogrammed and multithreaded
workloads show that our proposed policy reduces application
stall time by upto 22% over traditional round-robin policy and
18% over state-of-the-art slack-aware policy.

Index Terms—Quality-of-Service (QoS), slack estimation,
adaptive routing, input selection, stall time reduction

I. INTRODUCTION

After the paradigm shift towards multi-core systems, limi-
tation in global wires, shared buses and monolithic crossbars
are exposed. Packet based NoCs now connect tens to hundreds
of components in TCMP based multi-core systems. NoCs are
scalable and reliable with predictable and well controlled com-
munication properties [1]. The most fundamental challenges in
the design of general purpose TCMPs include devising effi-
cient resource sharing and scheduling policies. Behaviour and
interference of applications for fundamental shared resources
like NoC [2][3][4], last level cache (LLC) [5][6][7] and mem-
ory bandwidth [8][9][10] are explored in different capacities.
NoC trivially becomes the most critical shared resource as it
is the communication backbone for the entire system. Even
other shared resources including LLC and memory bandwidth
are dependent on NoC directly or indirectly. We explore the
impact of NoC because it has various hidden and indirect
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but significant performance defining factors. Important factors
include queueing delay, memory level parallelism (MLP),
irregular traffic patterns and unpredictable application inter-
ferences. These network-level factors can have a significant
impact on the application-level performance.

A TCMP generally consists of processing elements or-
ganised as tiles. Each processing element houses a simple
processor, a private L1 cache and a slice of shared distributed
L2 cache. Typically, each L1 cache miss triggers an NoC
request packet and corresponding reply packet. In an NoC,
packets of different applications mainly interact with one
another in the routers. The arbitration policy in these routers
decide which application’s packet is to be prioritised over
others when they request the same output port. Traditional
arbitration includes round-robin and age-based policies which
are application oblivious, i.e. they treat all application packets
equally. However, applications can be heterogeneous in nature
with different QoS requirements and hence each of these
packets will have different impact on the application-level
performance. One of the main reasons for this differential
impact is the presence of MLP. Servicing multiple memory
requests in parallel reduces the application stall time and
criticality of each of these requests to the application depends
on MLP to a large extend.

Consider the following example: Assume that an application
issues two network requests (cache misses), one after another,
first to a distant tile in the network, and second to a closer
tile. The application can continue execution only after the
reply of these requests are received. The first request packet
travels far and hence take more time to return, whereas the
second request packet travels less and come back before the
first packet. Even after the second reply packet arrives, the
application continues to stall because the first reply packet is
expected. Clearly, the second packet is less critical and can
be delayed for multiple cycles without adding any stall to the
application’s execution. This is because the latency of second
packet is hidden under the first packet, which takes more time.
Thus, the delay tolerance of each packet can be different with
respect to its impact on the application’s performance.

We study the diversity and interference of packets to design
packet-aware NoCs for general purpose TCMPs. We differ-
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entiate packets based on a metric called slack which is a
measure of packet’s criticality. Slack of a packet is defined as
the number of cycles the packet can be delayed in the network
without affecting application execution [3]. Therefore, packets
with available slack (slack-1) are non-critical compared to
the packets with no available slack (slack-0). Increasing the
latency of slack-0 packets stalls application execution.

We propose an NoC architecture that prioritises critical
packets in the network by a slack-aware re-routing (SAR)
technique. Our SAR routers prioritise lower slack packets over
higher slack packets like in Aergia [3]. But when two slack-0
packets have a port conflict, we re-route one of them through
an alternate minimal path towards destination. Experimental
analysis show that our policy effectively improves application-
level performance compared to the existing policies. Our main
contributions of this paper can be summarised as follows:

• We estimate slack of cache miss requests at runtime based
on MLP of predecessor misses and incorporate this slack
value on NoC packets as a priority.

• We adopt a look-ahead routing to facilitate re-routing of
slack-0 packets through alternate minimal paths.

• We modify baseline routers to prioritise lower slack
packets during routing and arbitration and re-route slack-
0 packets when the desired output port is unavailable.

• We qualitatively and quantitatively compare our proposal
to traditional round robin and state-of-the-art Aergia [3]
policies to assess the performance.

II. MOTIVATION

Modern TCMPs employ different MLP based methods like
out-of-order execution, runahead execution etc. to reduce the
penalty of load misses. These methods basically issue parallel
memory requests with an intention to overlap future load
misses with current load misses. If the application’s behaviour
shows MLP in NoC, the latencies of outstanding packets
overlap and introduce slack cycles.

A. Exploiting Slack and its Diversity

If the NoC routers are aware of the available slack, they
can take routing and arbitration decisions by prioritising lower
slack packets. We identify few cases where exploiting slack
information of packets can reduce application stalls.

Case 1: Interference between Different Slack Packets:
Consider a 64-core TCMP as given in Figure 1. Two appli-
cations, one in Core-A (tile 57) and other in Core-B (tile 46)
run simultaneously. Core-A encounters two load misses and
generates two packets (A0 and A1). The first packet A0 is sent
to tile 7 and is not preceded by any outstanding packet, hence
it has a latency of 13 hops and a slack of 0 hops. In the next
cycle, the second packet A1 is sent to tile 40 with a latency
of 3 hops. Since packet A1 is preceded (and thus overlapped)
by the 13-hops packet A0, it has a slack of minimum 10 hops
(13 - 3 hops). Similarly, for Core-B the first packet B0 has
a latency of 7 hops and a slack of 0 hops while the second
packet B1 has a latency of 3 hops and a slack of 4 hops.
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Figure 1: Illustrative example of slack
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Figure 2: Slack-0 packets in SPEC CPU2006 benchmarks

Packets A0 and B1 interfere at 2 points (tiles 47 and 39)
as shown in Figure 1. A traditional application oblivious
slack-unaware routing and arbitration policy that prioritises
B1 over A0 degrades the application-level performance as A0
is more critical than B1. In contrast if the NoC is slack-
aware, it will prioritise packet A0 over B1 and reduce the
stall time of Core-A without actually increasing the stall
time of Core-B. Workload characteristics in Aergia shows
that there exists sufficient diversity in slack of packets across
various benchmarks [3]. This observation led to the slack-
aware routing techniques in NoC [11][12].

Case 2: Interference between Slack-0 Packets: Consider
another two applications in Core-C (tile 16) and Core-D (tile
18) which also run simultaneously with Core-A and Core-B
on the same 64-core TCMP as shown in Figure 1. Core-C
generates a packet C0 with a latency of 7 hops and a slack
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of 0 hops. While Core-D generates a packet D0 that has a
latency of 5 hops and a slack of 0 hops.

Packets C0 and D0 also interfere at 3 points (tiles 18, 19 and
20) as shown in Figure 1. Since both C0 and D0 are equally
most critical, delaying either of them degrades the application-
level performance. In this case, as per Aergia [3] only one of
the packets will get productive port and other will be delayed
at least for 1 cycle. There are cases where slack-0 packets are
delayed upto 8 cycles due to this port conflict. In contrast if
the NoC is slack-aware and can forward one of the slack-0
packets through an alternate minimal path, both C0 and D0
can progress in parallel. This reduces the stall time of both
Core-C and Core-D.

Figure 2 presents the percentage of slack-0 packets in a
representative set of 18 SPEC CPU2006 benchmarks. This set
is a mix of heterogeneous applications with different network
related characteristics. X-axis lists all the benchmarks and Y-
axis shows the percentage of slack-0 packets in them. A trend
is clearly visible. Most of them have more than 50% slack-0
packets. Therefore, an NoC architecture with simple slack-
aware routing policy [3] will not guarantee performance. We
observe from a 64-core workload mix running on an 8x8 2D
NoC that there are upto 34% cases where two slack-0 packets
have port conflicts in the NoC routers. We address this issue
with a novel re-routing technique.

III. SAR ARCHITECTURE

Our proposed SAR routers perform online estimation of
slack and alternate minimal path for routing and arbitration.

A. Slack Estimation

We estimate slack with respect to outstanding network
transactions (L1 miss requests). We define slack of a packet
as the difference between the maximum expected latency of
its predecessor (i.e. any outstanding packet that was injected
before this packet) and its own expected latency with proper
adjustments on injection time. This latency is based on the
minimum distance to be traversed in the network by a packet.

Literature has other indirect metrics like L2 cache access
status (hit or miss), number of miss predecessors (predecessors

Inter_Dest
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Figure 4: Alternate minimal path re-routing

of a packet that are L2 cache miss) etc. which also correlates
with slack and criticality of packets. However, such estima-
tions become computation (hit/miss predictor) and storage ex-
pensive (miss predecessor’s list). We intuitively assume all L2
cache access are hits and avoid the off-chip slack computation
as it is irregular and cannot be quantised accurately.

We modify the structure of L1 miss status handling registers
(MSHRs) to include predecessor related information. Before
a cache miss request packet is injected into the network, slack
is computed using this information from MSHRs. The slack
is then quantised as a 1-bit value (Slack) and stored in the
packet header. All the slack-0 packets are quantised as 0 and
all higher slack packets are quantised as 1. This Slack bit is
used to enable priority based routing and arbitration.

B. Minimal Path Estimation

Slack based priority policy is used to make sure that a slack-
0 packet is not delayed in any router. But when two slack-0
packets compete in a router for a single output port one has to
be delayed. Rather than delaying a slack-0 packet, we explore
the possibility of assigning another productive port to one of
the slack-0 packets by re-routing. Re-routing is a technique
where a packet is forwarded to an intermediate router within
the minimal quadrant of current router and destination router.
This makes sure both the conflicting slack-0 packets get a
productive port. SAR routers use some additional metrics to
estimate alternate minimal path for packet forwarding.

When a packet with destination router T leaves a router S
to N (N is neighbour of S), two 1-bit metrics; Quadrant and
Region is computed and quantised in its header. Quadrant and
Region bits indicate the relative position of T with respect to
N. If N and T are on an axis of the N, i.e. on the same row
or same column then the Quadrant bit is set to 0 else 1 as
shown in Figure 3. If Quadrant=1 then Region=0 indicates T
is in upper region of N and Region=1 indicates T is in lower
region of N. If Quadrant=0 then Region bit is irrelevant. This
Quadrant and Region bit update happens on each router before
the packet moves to its crossbar stage. Region helps to identify
an alternate minimal path towards destination if the desired
output port is not available at N. A packet with Quadrant bit
set to 1 can be re-routed at N.
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Figure 5: SAR priority vector

Slack
0 Slack-0 packets
1 All other packets

Quadrant
0 Destination is on axis (X/Y) of N
1 Destination is on quadrant

Region
0 Destination is on upper region
1 Destination is on lower region

Inter Dest 000 - 111 Last router in Y direction if YX routing is used at N

Red Flag
0 Packet is not re-routed
1 Packet is re-routed

Loc Port
0 Nothing
1 Packet is sent to local port at Inter Dest

Table 1: SAR priority vector description

Another metric called Inter Dest stores the address to be
used for re-routing using alternate minimal path. It is the last
router in Y direction from N if YX routing is used to reach
destination of the packet. Figure 4 shows Inter Dest (router I)
with an example and verifies its position on the minimal path
towards destination. For our evaluation of an 8×8 2D mesh,
a 3-bit Inter Dest along with a 1-bit Red Flag is used. Only
the column number (3-bits) is stored, as Inter Dest (router I)
is on the same row as that of actual destination (router T). If
the Red Flag bit is 0, Inter Dest is invalid.

Another 1-bit metric Loc Port is used for deadlock preven-
tion (will be discussed when deadlock is addressed). An 8-bit
SAR priority vector (as shown in Figure 5) that incorporates
all the above discussed metrics is added on the head flit of each
packet. Table 1 describes the fields of SAR priority vector.

C. Router Microarchitecture Modification

Architectural block diagram of SAR router microarchi-
tecture is presented in Figure 6. Like a generic 2D mesh
baseline router, SAR router also has 5 input and 5 output
ports/channels; one from each direction (east, west, north and
south) and one from the local tile (through network interface).
North and south input ports have additional demultiplexers (D1
and D2) to redirect packets to local input port. Multiplexers
(M1/M2/.../Mn) in local input port send the re-routed packets
to the appropriate VCs. SAR routers use XY routing and
wormhole switching where only the head flit participates in
routing and arbitration. We use round-robin policy in baseline
routers and slack-aware re-routing policy in SAR routers for
performance comparison.

The Routing Computer (RC), VC Arbiter (VA) and Switch
Arbiter (SA) units are same as that of baseline routers. Two
additional units Packet Pre-processor (PP) and Look Ahead
Re-router (LR) facilitates the technique of SAR.
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Figure 6: SAR router microarchitecture

Packet Pre-processor Unit (PP): This unit is an addition
to the baseline routers and works in parallel across all input
ports. The fields in SAR priority vector is used by this unit for
initiating re-routing operations for every incoming head flits.
This unit works in conjunction with 4-bit Output Port Select
(OPS) structure to identify port conflicts of slack-0 packets.
PP unit identifies all slack-0 packets and direct them towards
productive output ports by enabling re-routing if required and
possible. The working of PP unit is presented in Algorithm 1.

Algorithm 1: Working of Packet Pre-processor unit (PP)
Input : 8-bit SAR priority vector,

Output Port Select (OPS), destination (T)
Output: Identification of minimal output port

Loc Port = 0
if Slack == 0 && Quadrant == 1 then

if desired output port (E/W) not marked on OPS then
Mark East (E) or West (W) output port on OPS

else if Region == 0 && N not marked on OPS then
Mark North (N) output port on OPS
Swap column bits of T with Inter Dest
Red Flag = 1

else if Region == 1 && S not marked on OPS then
Mark South (S) output port on OPS
Swap column bits of T with Inter Dest
Red Flag = 1

else
break

else
break

Look Ahead Re-router Unit (LR): This is another ad-
ditional unit in SAR routers. LR unit uses the next router



information from RC unit and calculates alternate minimal
path related metrics in advance only to be used by the PP unit
of the next router. Algorithm 2 describes the working of LR
unit in proposed SAR routers.

Algorithm 2: Working of Look Ahead Re-router unit (LR)
Input : 8-bit SAR priority vector,

next router (N), destination (T)
Output: Quadrant, Region and Inter Dest

if Slack == 0 then
if T == N && Red Flag == 1 then

Replace column bits of T with Inter Dest
Red Flag = 0
Loc Port = 1

else if T != N then
row diff = row of T - row of N
col diff = column of T - column of N
if row diff == 0 ‖ col diff == 0 then

Quadrant = 0
else

Quadrant = 1
if row diff > 0 then

Region = 0
else

Region = 1
Temp Dest = N + row diff * network radix
Inter Dest = column bits of Temp Dest

else
break

else
break

LR unit works in parallel with VA and SA units since the
metrics it calculates are used only by the next router. Since
LA unit is not in the critical path of router pipeline it incurs
no additional delay.

In our SAR routers, each virtual channel has an extra
priority field which stores the 1-bit Slack value of the head
flit when it reserve the channel. This field is used by the body
flits for priority based arbitration. An illustrative example of
packet re-routing from router D is given in Figure 7. For packet
C0, the dashed line through routers D, P, and T indicate the
original path and the solid line through routers D, I and T
indicate the re-routed path.

D. Comparison and Design Challenges

We compare the effectiveness of our technique with Aer-
gia [3] that estimates slack in packets and prioritises lower
slack packets over higher slack packet during VC and switch
arbitration. Aergia also uses batching to prevent higher slack
packets from starvation.

All the same slack packets within a batch are treated as
equal in Aergia and prioritised at random. But we have
seen in Figure 2 that almost across all benchmarks slack-0
packets dominate. Hence, Aergia suffers from performance
degradation when one slack-0 packet is prioritised over other.
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Figure 7: Illustrative example of slack-aware re-routing

In contrast, our SAR policy works similar to Aergia to priori-
tise lower slack packets but also re-routes slack-0 packets in
alternate minimal path when required. We do not use batching
to prevent starvation as our 1-bit slack based priority does not
add any significant unfairness to the proposed architecture.
Our proposal can be used as a complimentary policy with any
other packet prioritisation technique.

Starvation: When we evaluate our proposed SAR architec-
ture we observe that our 1-bit slack based priority does not
add any significant unfairness to the system when compared
to traditional round-robin policy. Thus, we do not use any ad-
ditional metric for starvation prevention. Our proposed policy
can always be extended with techniques like batching [2][3].

Livelock: In SAR routers, a packet always travels on a
minimal path towards destination whether or not it is re-
routed. Lower slack packets are prioritised over higher slack
packets and slack-0 packets are re-routed through alternate
minimal path; but forward progress is always ensured. Hence,
the proposed SAR architecture is livelock free.

Deadlock: Our SAR routers use XY routing where packets
are first routed in X direction followed by Y direction. How-
ever, when a packet is re-routed through an alternate minimal
path, it takes an early Y-direction as shown in Figure 7 (rather
than routers D, P, and T, packet C0 takes routers D, I, and T).
After reaching Inter Dest (router I), if the packet attempts to
take X-direction again, then it violates XY routing which may
lead to deadlock. To prevent this situation, a 1-bit Loc Port
is used in SAR priority vector. When Loc Port is set to 1,
the packet after reaching router I is sent to the local input
port VC. The demultiplexers (D1 and D2) placed in north and
south input ports will extract the packet and add it to local port



Processor 64 OoO x86 cores

L1 cache 32KB, 4-way, 64B lines, private

L2 cache 512KB×64 cores, 16-way, 64B lines, shared SNUCA

NoC 8×8 2D mesh, 4 VCs/port, 128-bit flit channel

Packets 1-flit request, 5-flit reply

Benchmarks SPEC CPU2006 (multiprogrammed), PARSEC (multithreaded)

Table 2: Simulation configuration

# Benchmark Slack-0% MPKI # Benchmark Slack-0% MPKI

1 cactusADM 25.47 Low 8 gobmk 66.15 High

2 soplex 29.82 Low 9 libquantum 68.03 Low

3 povray 32.73 Low 10 milc 70.12 Low

4 specrand 45.25 Low 11 blackscholes 44.59 Low

5 namd 50.49 Low 12 ferret 46.72 High

6 lbm 52.14 High 13 streamcluster 48.28 Low

7 bzip2 52.36 High 14 x264 48.65 High

Table 3: Benchmark characteristics

VC via multiplexers (M1/M2/.../Mn). From this local input
port, the packet can take X-direction towards destination like
a newly injected packet. Thus, even though we use both XY
and YX routing by incorporating local port VC, we prevent
deadlock in the proposed SAR architecture.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental framework, the
metrics and application workloads used for performance eval-
uation and the trade-offs in the choice of design parameters.

A. Simulation Setup

We implement the proposed SAR architecture on cycle-
accurate, trace-driven BookSim [13] simulator. The memory
traces are generated by event-driven gem5 simulator with
Ruby [14]. We extend the Ruby memory model on gem5 and
modify the structure of L1 MSHR to include latency based
slack calculation. Every newly injected packet refers these
modified MSHR entries to get predecessor related information.
Modified router microarchitecture is modelled in BookSim to
enable slack-aware re-routing policy for priority based routing
and arbitration. BookSim driven by gem5 traces forms the
simulation framework for our performance evaluation. Table 2
provides the configuration details of our simulation including
processor, cache and NoC parameters.

B. Evaluation Metrics

We evaluate the existing and proposed policies using differ-
ent performance metrics. We define network stall time (NST)
as the number of cycles an application stalls waiting for a
network packet. We assume all L2 access are hits as we want
to identify the effects of NoC alone. We define usage wait time
(UWT) as the number of cycles a reply packet waits from
arrival at the source tile until being used by an application.
UWT shows how early or late reply packets arrive at the
source tile than necessary. We also define a metric called reply
difference time (RDT) as the number of cycles between the
arrival of first and last flits of the reply packet at the source
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tile. RDT shows how long an application may stall due to the
delayed arrival of remaining flits of a packet after the head flit
has arrived. Ideally, we need lower NST, UST and RDT for
better application-level performance.

C. Application Categories and Characteristics

We use both multiprogrammed (MP1–MP7) and multi-
threaded (MT1–MT4) application workloads for performance
evaluation. For multiprogrammed workloads, we use SPEC
CPU2006 benchmarks where each core runs a separate appli-
cation. For multithreaded workloads, we use PARSEC bench-
marks where each core runs a separate process/thread but of a
single application. In total we study 14 different benchmarks,
10 multiprogrammed and 4 multithreaded.

To evaluate our proposal, we create different workloads
of varying network characteristics with SPEC CPU2006 and
PARSEC benchmarks. We estimate percentage of slack-0
packets to identify the criticality of benchmarks. We also
calculate misses per kilo instructions (MPKIs) to estimate the
network load contributed by the respective benchmarks. The
characteristics of benchmarks are presented in Table 3. The
workload formation is presented in Table 4 with description.
For example, workload MP1 consists of 32 instances of high
MPKI benchmarks (16 cores run bzip2 and another 16 cores
run lbm) and 32 instances of high slack-0% benchmarks (16
cores run milc and another 16 cores run libquantum).

V. PERFORMANCE EVALUATION

We compare SAR to baseline round robin and state-of-the-
art Aergia policies based on NST, UWT and RDT for both
multiprogrammed and multithreaded application workloads.
The plotted result for each workload is averaged over 8
different spatially scheduled combinations. We also present
router critical path, area and power overheads of SAR routers.

A. Effect on NST

Figure 8 shows the normalised NSTs of workloads with
respect to the baseline round-robin policy. Round-robin delay
packets during port conflicts irrespective of their load and crit-
icality. This is because local round-robin policy is application-
oblivious. SAR reduces stall time for all workloads. Significant
reduction in stall time can be seen for workload mixes of



Workload Representative Benchmark Combinations Workload Characteristics

MP1 bzip2(16) lbm(16) milc(16) libquantum(16) 32 high-MPKI with 32 high-slack-0% benchmarks

MP2 bzip2(16) lbm(16) cactusADM(16) soplex(16) 32 high-MPKI with 32 low-slack-0% benchmarks

MP3 specrand(16) namd(16) milc(16) libquantum(16) 32 low-MPKI with 32 high-slack-0% benchmarks

MP4 specrand(16) namd(16) cactusADM(16) soplex(16) 32 low-MPKI with 32 low-slack-0% benchmarks

MP5 milc(16) libquantum(16) cactusADM(16) soplex(16) 32 high-slack-0% with 32 low-slack-0% benchmarks

MP6 milc(16) libquantum(16) gobmk(16) povray(16) 48 high-slack-0% with 16 low-slack-0% benchmarks

MP7 cactusADM(16) soplex(16) povray(16) gobmk(16) 16 high-slack-0% with 48 low-slack-0% benchmarks

MT1 blackscholes(64) 64 threads of the benchmark; 1 per core

MT2 ferret(64) 64 threads of the benchmark; 1 per core

MT3 streamcluster(64) 64 threads of the benchmark; 1 per core

MT4 x264(64) 64 threads of the benchmark; 1 per core

Table 4: Core-wise application scheduling for various workload mixes
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Figure 9: Effect on usage wait time (UWT)

high load and high slack critical benchmarks. We observe
highest NST reduction (22% over round-robin and 18% over
Aergia) for workload MP6 as it consists of 75% of slack-0
rich benchmarks (refer Table 4). Similarly, for MP1 also we
see a very good NST reduction as it is a mix of high load and
high slack critical benchmarks. In MP3 we achieve only 5%
reduction over Aergia because it has fewer port contentions
due to low rate of packet injection (low MPKI benchmarks).

For multithreaded workloads (MT1–MT4), due to the inher-
ent DNUCA based assignment of L2 address space, majority
of L1 cache misses travel less to corresponding L2 cores.
This results in either no slack or very little slack for cache
misses. Hence there are very less opportunities to apply slack-
aware re-routing leading to marginal NST reduction with our
technique. Even Aergia gets little improvement on 3 out of 4
multithreaded workloads.

B. Effect on UWT

Figure 9 shows the normalised UWTs of workloads with
respect to the baseline round-robin policy. A reply packet has
UWT if it reaches the source tile earlier than needed. While
the packet has reached, at least one of its predecessors is
still in the network. This might happen by penalising peer
packets during port conflict at intermediate routers. Another
possibility of having a UWT is that the packet may have
very high slack which is not fully used during port conflicts.
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Figure 10: Effect on reply difference time (RDT)

By our prioritisation technique a slack-1 packet will never
delay a slack-0 packet. We observe that SAR reduces UWT
significantly. It varies from 5% reduction over round-robin in
MP3 to 25% reduction over round-robin in MP1.

For multithreaded workloads, SAR perform much better
than Aergia which uses multi-bit slack value with batching.
Results show that even with single-bit slack value without
batching we can avoid starvation. In our case any slack above
0 whether it is between 1 and 5 (low slack) or above 5 (high
slack), all are represented as slack-1 packets. In MT2 we find
that low slack packets are over-penalised leading to higher
UWT than round-robin and Aergia. In MT1, MT3 and MT4
all slack-0 and slack-1 packets are received just in time.

C. Effect on RDT

Since we consider 128-bit flit channel and 64B cache lines
(blocks), every 1-flit cache miss request packet generates a
5-flit reply packet (1 head flit, 4 body flits) that bring the
cache block from L2 tile to the L1 tile. Application can resume
execution only if all the four body flits of reply packet reach
the source tile. Our technique facilitates forwarding body flits
of reply packets as soon as possible. Hence RDT is a very
important metric that contribute to performance evaluation.
Figure 10 shows the normalised RDTs of workloads with
respect to the baseline round-robin policy. In our prioritisation
policy, reply flits get forwarded without any interleaving. Due



to which the body and tail flits reach the source tile without
much delay. Aergia too have good RDT reduction on an
average. SAR achieves an average RDT reduction of 14% over
Aergia in multiprogrammed workloads.

For multithreaded workloads since there is not much slack
diversity; all the packets are more or less equal and hence the
reply packets are received just in time. Round-robin performs
better than Aergia because there is no slack diversity. The
unnecessary level of slack based priority and negative effects
of batching is the reason for this behaviour.

D. Effect on Router Critical Path, Area and Power

We implement SAR router microarchitecture in Verilog
and synthesize using Synopsys Design Compiler with 65nm
cell library to obtain timing characteristics. We assume 65nm
technology for an NoC operating at 1GHz frequency with an
inter-router link delay of 1 cycle. We use the traditional 2-
cycle pipelined router with first cycle for PP and RC units
(refer Figure 6). Even though PP is in the critical path, the
combined combinational delay of PP and RC is 7% lower
than the combined combinational delay of VA and SA units
that constitute the second cycle stage. Our LR unit works in
parallel to VA and SA units. The experimental observation that
VA and SA stage determines the pipeline latency is already
established [15]. Hence, SAR routers can be operated with the
same pipeline frequency. Our additional units incur a router
area overhead of 1.7% and static energy consumption of 2.1%.

We compute the dynamic power dissipation estimates of
SAR using Orion 2.0 [16]. Dynamic power consumption of
NoC using SAR is 7.5% lower than using Aergia routers due to
effective re-routing and reduction in latency of slack-0 packets.
This compensates for the minor area and hardware overhead.

VI. RELATED WORK

Criticality: Available literature has proposals that target
criticality of data and instructions [17][18][19][20]. Cache
miss criticality is explored with MLP based proposals [21][22].
Memory scheduling is explored with bank level paral-
lelism [23][24]. Slack based criticality is studied for both
performance and power optimisation [3][11][12]. But the
impact of slack-0 packets are not observed before.

Prioritisation: Other than traditional round-robin and age-
based prioritisation, literature also has QoS [25][26][27] and
application-aware [2][4][28] prioritisation policies. There are
prioritisation proposals based on latency-sensitivity of NoC
packets [29][30]. While most of the available proposals aimed
for guaranteed service or fairness, our aim is to reduce applica-
tion stall time and improve system performance. Furthermore,
available proposals assign static priority to improve real-time
performance. In contrast, our proposal computes dynamic
priority for routing and arbitration.

VII. CONCLUSION

By understanding the diversity and interference of packets
we propose a policy that prioritises critical packets in NoC.
We present SAR, a slack-aware re-routing technique that

prioritises lower slack packets over higher slack packets and
re-routes slack-0 packets through alternate minimal path to-
wards destination. Experimental analysis show that our policy
improves system performance over existing policies for both
multiprogrammed and multithreaded workloads. The perfor-
mance gain is achieved with only a negligible area and static
power overhead. We believe SAR routers can be good design
alternative for TCMPs that run time critical applications.
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