
Source Hotspot Management in a
Mesh Network on Chip

Sujay B Shaunak1, Shashank S Rao1, Ajay S1, Satya Sai Krishna Mohan G1,
Krutthika H K1, Ananda Y R2, and John Jose2

1 Dept. of ECE, Dayananda Sagar College of Engineering, Bengaluru, India
2 MARS Lab, Dept. of CSE, Indian Institute of Techonology Guwahati, India

{sujayshaunak, shashankrao729, ajaysrinivasa96, sai.krishna521}@gmail.com
{krutthika.hk09, yrananda}@gmail.com, johnjose@iitg.ac.in

Abstract. Network-on-Chip helps to accomplish greater throughput in
multi-core chips. In a multi-core chip, each core parallelly processes mul-
tiple applications thereby increasing the overall processing capability of
the chip. One of the major concern in this field is managing congestion
on the network. There are many reasons for congestion, one of them is
hotspots, which has been considered in this paper. The applications on a
multi-core architecture that operates on large amount of data and com-
putation may create hotspots. These hotspots introduce congestion on
the network and increase the latency of packets that pass through them.
Our solution to hotspots, identify the source hotspots and decrease in-
flow of packets into the hotspots, thereby reducing the network pressure
where hotspots are present. The congestion control scheme is a thresh-
old based approach that dynamically evaluates the presence of hotspots
on the network and a routing algorithm to effectively route the packets
away from the hotspots. Our experimental results show that the packets
are routed away from the source hotspots and the packet latency of the
network is effectively reduced.

Keywords: Congestion Management · Odd-Even routing · Threshold

1 Introduction

The necessity for better performance is satisfied by increasing the number of
processing cores on the chip. These multi-cores upon connecting on the con-
ventional bus architecture lead to scalability issues. The time required for each
core to be bus master and complete their transaction on the bus, would increase
exponentially with increase in the number of cores. To tackle this issue and to
simultaneously increase the number of cores on a chip, the concept of Network on
Chip (NoC) was introduced [14]. There are many network topologies like mesh,
torus, hypercube, octagon and fat-tree [15]. Using NoC architectures, the cores
address cache misses and coherence transactions. Each router has a connection
to one or many cores which routes the various packets of cache misses and co-
herency issues, concurrently. A router is a device that comprises of input/output



2 Sujay et al.

ports along with buffers to hold packets and the logic used to route the packets
through the network. The packets that are generated follow a certain path to
reach its destination core through the network of routers. The routing algorithm
takes into consideration the information present in the packet and determines
the next router a packet has to hop to depending on the routing algorithm. In
classical XY routing algorithm, the packet first travels in the X (Horizontal)
direction, then travels in the Y (Vertical) direction.

A major concern with any algorithm is that, as the traffic on the network
increases the latency of the packets also increase. Latency is the time taken for
the traversal of the packet from its initialization, till it’s retirement. There is also
a high possibility that the packet can be deadlocked: the packet cannot make
for progress from a router because it is unable to obtain a buffer space in the
downstream router. There is also a problem of livelock of the packets: the packet
is continuously hoping from router to router but making no progress towards the
destination. To overcome livelocks, the implementation of priority-based routing
shows promising results. To avoid deadlocks, different routing algorithms with
turn restrictions like North-last or East-first, odd-even are proposed.

In a real-time multi-core environment many applications can run simultane-
ously on different processing cores. Depending on the application, the number
of cache misses generated by a single core may vary. When there are very few
of those packets generated, most routing algorithm will be able to handle these
packets without any deadlocks or livelocks. But, when there is an increase in
the number of packets generated, traffic on the network increases which creates
congestion. Congestion can be characterized by burstiness, injection distribution
and hop distance. Burstiness is characterized by the rate of packet generation
from a specific processing core (High, Moderate or Low). Injection distribution
is characterized by the localization of traffic (Hot-Spot or Evened-Out). Hop dis-
tance is characterized by the proximity of the destination to the source (Local
or Global) [1].

Our novel research proposal is trying to address source hotspot traffic. In
source hotspot traffic, one or more routers produce a higher number of packets
in comparison to others routers in the network. This results in higher traffic
through a certain router. If the packets are routed through these routers, the
congestion increases causing higher latency of the packets. Unless the only path
for a packet is through the hotspot, the packet should be routed to any of the
other possible paths to reach its destination. Thus, the latency of the deflected
packets is improved. To validate our work, we are simulating our algorithm on
cycle accurate simulator BookSim2.0 [16]. The benchmark suite we are using to
support our test results is SPEC CPU 2006 benchmark. In addition, hardware
implementation has been done for the proposed algorithm by using Zedboard
hardware FPGA kit and Xilinx Vivado 2016.2.

The paper is organized as follows. Section II discusses the related works.
Section III describes the motivation. Section IV discusses the proposed algorithm
and implementation details. Section V gives the result and analysis. At the end,
Section VI concludes the work.



Source Hotspot Management in a Mesh Network on Chip 3

2 Related Works

Link et al. [3] proposes to dynamically reconfigure the hotspot inducing compu-
tations to different cores periodically so as to even-out the thermal impact of the
hotspots on the chip. Though the dynamic shifting of the hotspot does even-out
the temperature, this technique cannot be applied to multithreaded applications
as the resources needed for the applications cannot be split off to another core.
Kakoulli et al. [9], proposed an Artificial Neural Network to predict where a
hotspot might occur and using DOR-XY routing to resolve the hotspot. They
claim that their algorithm works with an accuracy ranging from 65% to 92%
with the overhead of the neural network not exceeding 5.06%. [8] provides an
improvement to their previous paper [9] by reducing the network latency and
enhancing the throughput by 81% for an overall hardware overhead of 11.4%.

Gupte et al. [10] proposed hot modules being swapped with cool modules to
decrease the thermal effect on the chip. This method employs swapping of a hot
module with any cool module available on the design under the consideration
of only a single hotspot. [5] introduces Weighted Order Toggle which assigns
weights to the links and sets the source-destination pairs as XY or YX routed to
minimize network capacity for certain routing algorithms. They claim to balance
the load on the links by repeated reconfiguration.

3 Motivation

Congestion that is encountered in single set turn restriction algorithms, such
as north-last and east-first are non-existent in Odd-Even algorithm. Due to the
above reason we choose Odd-Even algorithm. Considering a single set turn re-
striction algorithm like north-last, when traffic increases on the network the
number of packets converging at a single router to travel north as their last turn
increases. This in turn increases the congestion along that column which affects
the latency of the packets traversing through or along that column. Just with
turn restrictions that are present in Odd-Even routing algorithm, the problem
of deadlock is avoided.

Alfaraj et al. [11] proposed HOPE (HOtspot PrEvention) algorithm which
throttles packets at the source if the packet is destined to a destination hotspot.
The hotspot is measured by checking if the destination router is receiving more
flits than a certain threshold and then flags it as a hotspot. In [2] the hotspot
mitigation proposed addresses destination hotspots. The technique used to cal-
culate if a router is a hotspot or not is to use a single counter per port (four
counters per router) and increment the counter if the packet is destined for that
router or not. This counter value is compared to a fixed value and the router is
flagged as a hotspot if the value is greater than the fixed value. The drawback in
these techniques is, if the injection rate of the packets increases, then the number
of packets on the network and the packets destined to a single router would sig-
nificantly increase, thereby always flagging the router as a hotspot. This would
cause a major problem on the network.



4 Sujay et al.

We have come up with a new approach to address the hotspot problem. This
provides motivation to find a solution effectively to avoid hotspots in the path
of the packet and decrease the latency thereby decreasing the network latency.

4 Proposed Work

The conventional method we consider is minimal Odd-Even routing algorithm
[12]. In this algorithm the packet is always routed to take a minimal path from
source to destination, adhering to the turn restrictions. This algorithm does not
take into account the presence of source hotspots when routing a packet. This
causes the packets to pass through a hotspot, thereby increasing the latency of
those packets unnecessarily. This problem can be solved by identifying the source
hotspots and rerouting the packets away from the hotspots. These approaches
form the basis of our algorithm.

Fig. 1: Architectural changes proposed in the router.

Our simple approach proposes the usage of two counters for every port of
each router as shown in Fig.1, one to count the number of incoming packets
originating from the neighboring router (Counter A) and the other to count the
number of incoming packets that do not originate from the neighboring router
(Counter B). We use 2 conditions to flag a router as a hotspot. If both the
conditions are satisfied only then the router is flagged as a hotspot. Firstly, we
use a fixed value (hotspot threshold; HT) to check if Counter A is greater than
HT. Secondly, we use a ratio of Counter A to Counter B which if exceeds a fixed
ratio (ratio threshold; RT), flag that router as hotspot.



Source Hotspot Management in a Mesh Network on Chip 5

Algorithm 1 Algorithm for HAV (Hotspot AVoidance)

Input: Current core (cur) (Cx, Cy), Destination core (dest) (Dx, Dy), Source core
(src), incoming packets from neighboring cores, CW = cycle window, HT = hotspot
threshold, RT = ratio threshold, CA [E/W/N/S] = Counter A, CB [E/W/N/S] =
Counter B and inport = input port packet came through

Output: Destination core router for all the incoming packets
if src is from one of the immediate neighbor routers then

Increment CA for (east/west/north/south) the respective port
else

Increment CB for (east/west/north/south) the respective port
end if
Calculate possible output ports from Algorithm 2
if (cur cycle % CW == 0) then

if CA ≥ HT AND (CA : CB) ≥ RT then
Flag that neighbour as hotspot

end if
end if
if Number of output ports in Outputs > 1 AND hotspot is present then

Mask the hotspot in Outputs
end if

(a) Conventional Algorithm. (b) Proposed Algorithm.

Fig. 2: Comparison of paths taken by proposed and conventional algorithm.

In reference to Fig. 2a and Fig. 2b, the following situations have been con-
sidered and the routes taken in the proposed and conventional algorithm have
been explained.

1. Packet 1 (Src: 4, Dest: 23): Follows 4 → 5 → 6 → 7 → 15 → 23 in the
conventional method. As there is a hotspot in router 6 the proposed method
avoids it by taking 4 → 5 → 13 → 14 → 15 → 23 which still has a minimal
number of hops.



6 Sujay et al.

2. Packet 2 (Src: 11, Dest: 8): Follows 11 → 10 → 9 → 8 in the conventional
method. As there is a hotspot in router 9 the proposed method avoids it by
taking 11 → 10 → 2 → 1 → 0 → 8 which takes 2 more hops than the
minimal number of hops.

3. Packet 3 (Src: 18, Dest: 42): Follows 18 → 26 → 34 → 42 in the con-
ventional method. As there is a hotspot in router 34 the proposed method
avoids it by taking 18 → 26 → 25 → 33 → 41 → 42 which takes 2 more hops
than the minimal number of hops.

4. Packet 4 (Src: 44, Dest: 47): Follows 44 → 45 → 46 → 47 in the con-
ventional method. As there is a hotspot in router 46 the proposed method
avoids it by taking 44 → 45 → 37 → 38 → 39 → 47 which takes 2 more hops
than the minimal number of hops.

5. Packet 5 (Src: 56, Dest: 52): Follows 56 → 57 → 58 → 59 → 51 → 52
in the conventional method. As there is a hotspot in router 58 the proposed
method avoids it by taking 56 → 57 → 49 → 50 → 51 → 52 which still has
a minimal number of hops.

At low injection rates even if Counter A and Counter B is less in number
and satisfies the ratio threshold (RT), the router is not flagged as hotspot due
to not meeting with the hotspot threshold (HT) constraint, which means that
the overall traffic on the network is not high enough for the router to become
a hotspot. Whereas, at high injection rate, considering the hotspot threshold
(HT) condition being satisfied, if the ratio of the counters is not met, which
effectively tells us that the congestion on the network is evened-out, the router
is not flagged as a hotspot. We observe the network for a fixed number of cycles
which is defined as cycle window (CW) and at the end of every cycle window
we evaluate the counters and flag routers as hotspots if necessary conditions are
met. While checking for the hotspot, we normalize the counters so as to not lose
the history of the packet count. The periodicity of this check and identification of
hotspot depends on the number of cycles we monitor the network (cycle window;
CW). The hotspot routers that were flagged remain in the same state till the
next cycle window, when the conditions are checked again. Using this method,
we can accurately identify source hotspots.

Utilizing Odd-Even turn restrictions we have modeled our algorithm to func-
tion minimally and actively avoid hotspots if present in the path of the packet.
On encountering a hotspot, the algorithm makes the packet consider the non-
minimal paths. Our routing algorithm calculates the possible output ports and
assigns priority based on the minimality of the port with respect to the destina-
tion. By default the packet will take the minimal path following the Odd-Even
turn restrictions. If the minimal path has a hotspot the packet takes an alter-
native path. In the case of only one available path, that single path is taken
irrespective of a hotspot existing in that path or not. Outputs in Algorithm 2 is
a set of the possible output ports a packet can take from a given router.



Source Hotspot Management in a Mesh Network on Chip 7

Algorithm 2 Algorithm for route calculation

if cur == dest then
The current node is the destination node

else if Cy == Dy then
if not (inport == west and (Cx%2) == 0) then

Add (north/south) appropriately to the set of Outputs
end if
Add west to the set of Outputs

else if Cx == Dx then
Add (east/west) appropriately to the set of Outputs
if not ((inport == west AND (Cx%2) == 0) OR (Dy > Cy AND (Dy%2) == 0)
OR (Dy < Cy AND (Cy%2) == 1) then

Add (north/south) appropriately to the set of Outputs
end if

else if (Dx > Cx AND Dy > Cy) then
if not ((DyCy) == 1 AND (Cy%2) == 1) then

Add east to the set of Outputs
end if
if not (inport == west and (Cx%2) == 0) then

Add north to the set of Outputs
end if
Add west to the set of Outputs

else if (Dx > Cx AND Dy < Cy) then
if not (Dy < Cy AND (Cy%2) == 1) then

Add (north/south) appropriately to the set of Outputs
end if
Add west to the set of Outputs

else if (Dx < Cx AND Dy > Cy) then
if not ((DyCy) == 1 AND (Cy%2) == 1) then

Add east to the set of Outputs
end if
if not (inport == west and (Cx%2) == 0) then

Add south to the set of Outputs
end if
Add west to the set of Outputs

else if (Dx < Cx AND Dy < Cy) then
if not (Dy < Cy AND (Cy%2) == 1) then

Add north to the set of Outputs
end if
if not (Cy%2) == 1) then

Add south to the set of Outputs
end if
Add west to the set of Outputs

end if
Note: For a concise representation, the algorithm we have mentioned above does
not include boundary conditions. The algorithm also does not include the logic for
not sending a packet back through the same port it came in through. Both these
conditions are considered and included in our simulation setup and results.



8 Sujay et al.

5 Experimental Work

5.1 Simulation setup and workload details

We implement our proposed algorithm on BookSim 2.0, a cycle accurate Network
on Chip simulator. This software is versatile in configuring routing algorithm,
router functionality, and flow control. We have run our simulations on an 8x8
mesh NoC with Hotspot injection. Hotspot injection is the type of synthetic
injection of packets. This injection selects a set of routers randomly, which is
flagged as hotspot. These routers inject a large number of packets for a set
duration of time. This process is repeated to simulate sustained source hotspot
formation. We use a uniform random traffic pattern to decide a destination
for the packet which has been created by hotspot injection. The conventional
method we have considered is Odd-Even minimal routing algorithm [12].

We compared our method with a set of multi-programmed workloads. We
have used Gem5 simulator [18] to model the 64 core (8x8 mesh) CMP setup
with CPU cores, cache hierarchy, and coherence protocols. Each core contains
an out-of-order x86 processing unit with 64KB, dual ported, unified and private
L1 cache. There is a shared L2 cache with a total size of 32MB. The block size
of L1 and L2 are 32 bytes and 64 bytes, respectively.

We built 25 multi-programmed workloads, each with 64 applications selected
from the SPEC CPU 2006 benchmark suite on gem5 simulator. We classified
these workloads into 5 mixes (WL1 to WL5) based on the type of network
injection intensity. The L1 cache misses that generate NoC packets are fed into
BookSim2.0 simulator to simulate the operations on the network.

In our setup WL1 consists of applications (bwaves and bzip2) which have less
number of hotspot events. Workloads WL2 and WL3 contains applications with
low hotspot events (bzip2 and gcc) and applications with high number of hotspot
events (mcf and leslie3d). Lastly, WL4 and WL5 comprises of applications with
solely high hotspot events (lbm, mcf , leslie3d and calculix).

5.2 Analysis Under Synthetic Workloads

(a) Sensitivity analysis for
Hotspot threshold (HT)

(b) Sensitivity analysis for
Ratio threshold (RT)

Fig. 3: Sensitivity analysis



Source Hotspot Management in a Mesh Network on Chip 9

In Fig.3 we can see the comparison of our algorithm to the conventional algorithm
in BookSim2.0. We consider the predefined hotspot threshold (HT) as 16, 32 and
64 while keeping the ratio threshold (RT) constant at 2:1 in Fig.3a. In Fig.3b
we consider the ratio threshold (RT) as 1:1, 2:1 and 4:1 while maintaining the
predefined hotspot threshold (HT) value at 32. In Fig.3a, the latency values for
different hotspot thresholds are relatively similar. At higher injection rates, the
latency for HT at 16 increases drastically due to false detection of hotspots.
Similarly, the latency for HT at 64 increases by a small margin due to false
hotspot identification. The threshold of 32 gives us the optimal result of lower
latency. In Fig. 3b, the latency for RT at 2:1 is the highest while the RT at 1:1
and 4:1 give an optimal result.

In both the scenarios of changing the ratio threshold and hotspot threshold
value, our algorithm provides better average latency in all the conditions. The
difference between latencies when the ratios and thresholds change, is negligible.
But, it can be observed that different ratios and different thresholds perform
better at different injection rates.

5.3 Analysis Under Real Workloads

(a) Average latency. (b) Latency of affected flits.

(c) Average number of hops. (d) Number of deflected flits.

Fig. 4: Performance parameters for SPEC CPU 2006 benchmark.



10 Sujay et al.

Fig. 4 shows the simulation results of our algorithm on SPEC CPU 2006
benchmark using BookSim2.0. Fig. 4a shows the overall average packet latency.
It can be seen that the average latency of our algorithm is lesser than the average
latency of the conventional algorithm. Fig. 4b shows the latency of flits that pass
through the hotspot in the conventional algorithm and latency of flits that are
deflected in the proposed algorithm. Fig. 4c shows the average number of hops
of the flits that are affected. Comparing Fig. 4b and Fig. 4c it is clear that while
the latency of affected flits decreases, there is an increase in average number of
hops. This is due to the fact that packets are taking a longer path to avoid the
hotspots and since the hotspots are avoided the latency is decreased. Fig. 4d
shows the number of flits that are deflected in the proposed algorithm.

In workload 1 (WL1), the average latency of the conventional method and
proposed method is similar and also less, in comparison with the other workloads.
The number of hotspots in this workload is also less along with the injection rate.
The latency of affected flits is lower in the proposed algorithm as the hotspots
are detected and avoided. For the low number of flits that are on the network at
any point in time, the hotspots are correctly being identified and avoided.

In workload 2 (WL2), the number of hotspots increase and in turn the number
of flits deflected increases. The same pattern in workload 1 (WL1) can be seen
in the latency of deflected flits. The latency of affected flits in the proposed
algorithm is lesser since it does not pass through hotspots whereas the average
hops of affected flits increases and non-minimal paths are taken occasionally.

In workload 3 (WL3), the average latency between conventional and proposed
method is almost equal. This is due to the drastic increase in the average number
of hops. Due to this, the latency of the affected flits shows minimal change as
compared to other workloads.

In workload 4 and 5 (WL4 and WL5), the difference in latency of affected
flits between conventional and proposed algorithm is high since our algorithm
gives the most optimal result. The injection rate in these workloads allows the
algorithm to run at its best as the number of false detection of hotspot and
undetected hotspots is the least compared to other workloads.

5.4 Hardware Analysis

With improvement in latency and throughput, the need to estimate the area and
power overheads is essential. We calculate the area and power of our algorithm
by modelling a router on Zedboard FPGA development kit [19] using Xilinx
Vivado 2016.2 [20]. The data and control flows of the proposed router design is
as follows. First, the packets received in the input buffers are checked.We then
calculate the possible outputs ports using our routing algorithm with Odd-Even
turn restrictions (Algorithm 2). We apply our hotspot aware counting algorithm
(Algorithm 1). We assign input priority to all the packets from all the different
directions by choosing one output port. Finally, we assign the output priority of
the packets based on age. We implement the above logic in Verilog, synthesize
and run the implementation of the design on Xilinx simulator. We then generate
the bitstream and run our design on the Zedboard FPGA. We generate the area



Source Hotspot Management in a Mesh Network on Chip 11

and power reports of both our design and the conventional methodology. We
compare the area and power overheads below.

Table 1: Hardware implementation details

Look Up Flip-Flops Power

Tables(LUTs) (FF) Consumed (mW)

Conventional 580 155 124

Method

Proposed 722 195 126

Method

We obtain a clock cycle time of 10ns with 50% duty cycle for our algorithm.
We have compared the area and power values with the minimal Odd-Even router.
Our algorithm has an overhead of 1.61% in power, 11.82% in Look-Up Tables and
2.96% in Flip Flops. This is because of the additional counters and combinational
logic used for detection and avoidance of hotspot routers.

6 Conclusion and Future Works

Our paper proposed a method to manage the congestion created by the source
hotspots. We explained the need for two check parameters for effective hotspot
detection. We further discussed the problems that are encountered using a single
check parameter and how our two check parameters of fixed hotspot threshold
and fixed ratio threshold actively combats them. The proposed algorithm yielded
better latency performance with mostly same number of hops but at the expense
of a slight area and power increase. The benchmark simulation results showed
that the latency of the packets that pass through the hotspot are improved,
along with the overall average latency.

Our design can be extended to accommodate a variable threshold value and
variable ratio threshold for the counters to more effectively and adaptively rec-
ognize hotspots. The results of the proposed algorithm implementation depend
highly on the location of the hotspot. The conventional method works similar to
ours when the location of hotspots is not critical but fails when the location of
the hotspots is critical. Odd-Even routing algorithm has a few conditions where
the turn restrictions prevent the packets from avoiding the hotspot. Improve-
ments can be made in respect of changing the routing algorithm to a better
deadlock free algorithm with turn restrictions that favours hotspot avoidance.

7 Acknowledgement

This work is supported in part by a grant from DST Government of India,
SERB-ECR scheme (project number ECR/2016/212)



12 Sujay et al.

References

1. C. Wang, W. Hu and N. Bagherzadeh, ”Scalable load balancing congestion-aware
Network-on-Chip router architecture”, Journal of Computer and System Sciences,
vol. 79, no. 4, pp. 421-439, 2013.

2. R. S. Reshma Raj, A. Das and J. Jose, ”Implementation and analysis of hotspot
mitigation in mesh NoCs by cost-effective deflection routing technique,” IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), Abu Dhabi,
2017, pp. 1-6, 2017.

3. G. M. Link and N. Vijaykrishnan, Hotspot prevention through runtime reconfigu-
ration in network-on-chip, Design, Automation and Test in Europe (DATE), 2005,
pp. 648-649.

4. W. Huang et al., HotSpot: a compact thermal modeling methodology for early-stage
VLSI design, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 5, pp. 501-513, 2006.

5. R. Gindin et al., NoC-Based FPGA: Architecture and routing, International Sym-
posium on Networks-on-Chip (NOCS), 2007, pp. 253-264.

6. L. Wang et al., A degree priority routing algorithm for irregular mesh topology
nocs, International Conference on Embedded Software and Systems (ICESS), 2008,
pp. 293-297.

7. H. Wang et al., Thermal management via task scheduling for 3D noc based multi-
processor, International SoC Design Conference (ISOCC), 2010, pp. 440-444.

8. E. Kakoulli et al., HPRA: A pro-active hotspot-preventive high-performance rout-
ing algorithm for networks-on-chips, International Conference on Computer Design
(ICCD), 2012, pp. 249-255.

9. E. Kakoulli et al., Intelligent hotspot prediction for network-on-chip based multicore
systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 3, pp. 418-431, 2012.

10. A. Gupte and P. Jones, Hotspot mitigation using dynamic partial reconfiguration
for improved performance, International Conference on Reconfigurable Computing
and FPGAs (ReConFig), 2009, pp. 89-94.

11. N. Alfaraj et al., HOPE: Hotspot congestion control for clos network on chip,
International Symposium on Networks-on-Chip (NOCS), 2011, pp. 17-24.

12. M. Tang, X. Lin and M. Palesi, ”The Repetitive Turn Model for Adaptive Routing,”
IEEE Transactions on Computers, vol. 66, no. 1, pp. 138-146, 2017.

13. Wen-Chung Tsai, Kuo-Chih Chu, Yu-Hen Hu, Sao-Jie Chen, Non-minimal, turn-
model based NoC routing, Microprocessors and Microsystems, Volume 37, Issue 8,
Part B, 2013, Pages 899-914, ISSN 0141-9331.

14. L. Benini, G. De Micheli. ”Networks on chips: a new SoC paradigm Computer”,
IEEE, Vol 35, pp. 70 - 78, Jan 2002.

15. Tatas, K., Siozios, K., Soudris, D. and Jantsch, A. (2014), Designing 2D and 3D
Network on-Chip Architectures, 1st ed, New York: Springer-Verlag, 265.

16. N. Jiang et al., A detailed and flexible cycle-accurate network-on-chip simulator,
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), 2013, pp. 86-96.

17. B. Nayak, J. Jose and M. Mutyam, ”SLIDER: Smart Late Injection DEflection
Router for mesh NoCs,” 2013 IEEE 31st International Conference on Computer
Design (ICCD), Asheville, NC, 2013, pp. 377-383.

18. Binkert, N., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.,
Wood, D., Beckmann, B., Black, G., Reinhardt, S., Saidi, A., Basu, A., Hestness, J.,



Source Hotspot Management in a Mesh Network on Chip 13

Hower, D. and Krishna, T. (2011). The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2), p.1.

19. Zedboard.org Zedboard. Available at: http://www.zedboard.org/product/zedboard
20. Xilinx.com Xilinx. Available at: http://www.xilinx.com/products/design-

tools/vivado


