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Studies on the α- and β-phenomena, terms coined by Bouard & Coutanceau (J.
Fluid Mech., vol. 101, pp. 583–607) for the flow past an impulsively started circular
cylinder, have been confined only to the very early stages of the flow. In this paper,
besides making a comprehensive in-depth analysis of these phenomena for a much
longer period of time, we report the existence of some tertiary vortex phenomena
for the first time, which we term the sub-α- and sub-β-phenomena. The mechanism
of unsteady flow separation at high Reynolds numbers for the flow past a circular
cylinder developed in the last two decades has been used to understand these flow
phenomena. The flow is computed using a recently developed compact finite difference
method for the biharmonic form of the two-dimensional Navier–Stokes equations for
the range of Reynolds number 500 6 Re 6 10 000. We specifically choose Re = 5000
to describe the interplay among the primary, secondary and tertiary vortices leading
to these interesting vortex dynamics. We also report a β-like phenomenon which is
very similar to the β-phenomenon, but slightly differs in details. We offer a new
perception of the α-phenomenon by defining its existence in a strong and weak sense
along with a clearer characterization of the β-phenomenon. Apart from numerical
computation, a detailed theoretical characterization using topological aspects of the
boundary layer separation leading to the secondary and tertiary vortex phenomena has
also been carried out. We compare our numerical results with established experimental
and numerical results wherever available and an excellent match with the experimental
results is obtained in all cases.
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1. Introduction
The flow past an impulsively started circular cylinder has caught the attention of the

fluid dynamics community for well over a century because of its intriguing physics
and wide range of practical applications. It is well known that for high Reynolds
numbers, flow separation for this problem takes place at a very early stage. With
the appearance of secondary and subsequent tertiary vortices the flow field in the
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vicinity of the solid surface gives rise to complex, intriguing structures with fascinating
interplay between them. One such set of remarkable structures can be seen during the
α- and β-phenomena, the origin of which dates back to the laboratory experiments
of Bouard & Coutanceau (1980). Though they mention the computation of Thoman
& Szewczyk (1969) giving an indication of the α-phenomenon in their work back in
the late 1960s, the term was first coined by Bouard & Coutanceau (1980) after nearly
a decade later. Notwithstanding their existence over the last three decades, very little
in-depth analysis of these two phenomena is available in the literature.

Flow past a circular cylinder for Re > 6 is known for the formation of two
symmetric vortices behind the cylinder almost immediately after the impulsive start.
These vortices are stronger and larger for higher Re. For 47 < Re < 190 the flow
is essentially two-dimensional and is characterized by the formation of a regular
von Kármán vortex street in the wake. With an increase in Re the flow becomes
three-dimensional and the advent of various modes of instabilities drives the turbulent
transition point upward. It is well documented that depending on the laboratory setup,
for Re ∈ [400, 2× 105], after an initial duration of laminar flow, transition to turbulence
proceeds toward the direction of the circular cylinder and takes place in the shear
layers. However, Kelvin–Helmholtz instability of separated shear layers is considered
to be essentially two-dimensional and the transition of the boundary layer flow to
turbulence begins only at Re= 2× 105 (Singh & Mittal 2004). One of the aims of this
work is to capture the underlying mechanism of unsteady separation in the shear layer
and explain some interesting hitherto unreported phenomena related to the formation
of secondary and tertiary vortices.

There are several experimental and numerical studies that indicate the existence
of the α-phenomenon in the range 800 6 Re 6 5000 during the early stages of the
flow (see Bouard & Coutanceau 1980; Loc 1980; Coutanceau & Defaye 1991). For
this range of Re, when the primary vortex is still stable, as time progresses, the
streamlines close to the cylinder initially deviate from the surface causing a bulge
pattern eventually giving rise to a secondary eddy. This eddy grows in size to such an
extent that it touches the boundary of the main eddy, thereby splitting the main one
into two parts and isolating the region of the wake next to the separation point where
another secondary eddy becomes visible. In the words of Bouard & Coutanceau (1980)
‘these two secondary eddies are equivalent in size and strength and constitute a pair
of secondary eddies’. This is what is known as the α-phenomenon, which is clearly
evident for Re = 3000 at time t = 2.5 as shown in figure 1(a). On the other hand,
for certain Reynolds numbers, just after the start of the flow, a very thin recirculating
wake is formed; but soon afterwards, the core of this recirculating zone rotates in
one piece with a speed which is much faster than the other part of the separated
zone, forming a vortex which gains strength and size with time. After a while, this
vortex separates the initial wake into two parts where the one situated near the point
of separation is occupied by a pair of secondary eddies. This phenomenon is clearly
exemplified by the flow patterns for Re= 9500 at time t = 1.0 depicted in figure 1(b).

Over the years, both these phenomena have been numerically validated by several
studies. However, almost all of them are confined to the study of the α-phenomenon
for Reynolds numbers 3000 and the β-phenomenon for 9500. Moreover all of them
(Loc 1980; Loc & Bouard 1985; Chang & Chern 1991; Sengupta & Sengupta 1994;
Chou & Huang 1996; Sanyasiraju & Manjula 2005; Kalita & Ray 2009) were
limited to only a few snapshots of the secondary vortices at certain times without
discussing the evolution of the vortices at length. Also, detailed analysis of successive
occurrences of these two phenomena one after another which is typical of certain high
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(a) (b)

FIGURE 1. (a) The α-phenomenon (for Re= 3000 at time t = 2.5) and (b) the
β-phenomenon (Re= 9500 at time t = 1.0): the streamlines are generated from our own

computation.

Reynolds numbers has failed to catch the attention of the computational fluid dynamics
community. Note that despite being in the laminar regime, the region of occurrence of
these phenomena is rich in vortex structures and is rapidly changing. The evidence of
this can be gauged from the surface vorticity distribution which contains several peaks
and troughs of local maxima and minima. Although Koumoutsakos & Leonard (1995)
indicated the presence of some tertiary vortex phenomena for Re = 3000 and 9500, to
the best of our knowledge, there has been no detailed discussion on the formation and
development of vortices beyond the secondary level. Note that the strength and size of
these vortices being very small, accurately collecting data on these structures through
experimental visualization is also tricky.

Earlier experimental studies by Coutanceau for Re = 4500 (Coutanceau & Defaye
1991) and for Re = 5000 (Bouard & Coutanceau 1980) clearly show that the α-
phenomenon is preceded by the β-phenomenon for Re = 4500 and 5000. Note that
though one can witness the presence of the β-phenomenon in the experimental
visualization of Bouard & Coutanceau (1980) for Re = 9500 for the very early
stages of the flow, no further information was available for the remainder of the
flow. Likewise, the experimental visualization of Coutanceau & Defaye (1991) for
Re = 10 000 was inconclusive on the occurrence of the α-phenomenon following
the β-phenomenon. Bouard & Coutanceau (1980) mention some indication of the α-
phenomenon for Reynolds number as high as 40 000 in the numerical work of Thoman
& Szewczyk (1969). However, the streamlines plotted by them did not provide enough
evidence for such a conclusion; the same can be said about the simulation of Chou
& Huang (1996) for the same Re. In the same vein, Chang & Chern (1991) claimed
the existence of the α-phenomenon in their simulation for Re = 9500, 20 000 and 105

without their numerical visualization substantiating this. The shroud over the existence
of the α-phenomenon in the early stages of the flow for higher Re was due to the fact
that the studies mentioned above did not provide any data that can prove the closeness
of the strength of the vortices constituting this phenomenon.

The formation of the recirculation zones leading to the phenomena described above
is preceded by separation on the surface of the cylinder and is directly associated
with the spontaneous generation of a singularity in the solution of governing equations
in the boundary layer. This issue was settled in the early 1980s (Dommelen & Shen
1980) which led to extensive use of numerical techniques later on for Navier–Stokes
equations in order to characterize the process of unsteady separation in the viscous
incompressible flow past a solid wall. Numerical methods have been used to explain
the abrupt eruption of boundary layers associated with unsteady flows at high Re.
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In one of the pioneering works using boundary layer interaction, Sarpkaya & Schoafft
(1979) presented and compared characteristics of various flow properties along with
that of a vortex street. Applying numerical techniques, Peridier, Smith & Walker
(1991) concluded that in the case of a plane wall, the adverse pressure gradient due
to the vortex leads to the development of a recirculation zone in the viscous flow in
the vicinity of a surface. In such a situation the boundary-layer flow focuses rapidly
toward an eruption along a band which is very narrow in the streamwise direction. The
authors also concluded that the solution in the boundary layer develops a separation
singularity and evolves towards a terminal stage which is generic in two-dimensional
unsteady flows. Later Cassel, Smith & Walker (1996) demonstrated that prior to this
singularity the flow in the vicinity of the separation point becomes unstable at the
onset of interaction with the external inviscid flow and argued that this instability
should also be present within conventional unsteady interacting boundary layers. A
detailed study of abrupt eruption of the boundary layers at high Re for flow past a
circular cylinder was carried out by Koumoutsakos & Leonard (1995). They provided
insight into the interactions between vortical structures and a wall, and identified
the underlying mechanism for drag change. The authors captured with remarkable
accuracy the square-root singularity as depicted by the drag coefficient at the very
onset of the flow. But their computations differ from the experimental results at later
times and have not been able to capture tertiary vortices, which may be attributed to
the inherent problem that the vortex methods have in dealing with diffusion and the
no-slip boundary condition. Numerical solutions of the Navier–Stokes (N–S) equations
show that in the flow regime such as Re = 104, the locally thickening boundary layer
in the vicinity of the eruption provokes a two-stage interaction between the viscous
boundary layer and the outer inviscid flow (Obabko & Cassel 2002). The flow here
experiences a large-scale interaction followed by a small-scale interaction due to spike
formation. Obabko & Cassel (2002) have concluded that the large-scale interaction
controls the overall evolution of unsteady separation and splits the primary eddy into
multiple corotating eddies which later merge together before being lifted away. Note
that splitting of the primary eddy into multiple corotating eddies for Re = 9500 has
been observed in the experimental study of Bouard & Coutanceau (1980) and was
termed the β-phenomenon for flow past a circular cylinder.

It is well known that a topological classification provides guidelines for
identification of structures in any flow. Bifurcations near a critical point on a stationary
plane based on topological considerations were studied by Bakker (1989). Ma &
Wang (2002) presented a survey of a new dynamical systems theory pertaining to the
topology of two-dimensional incompressible flows and its application to geophysical
fluid dynamics. This was followed by a detailed theoretical study of the streamline
topologies close to a solid wall for incompressible viscous flows by Ghil et al.
(2004) and Ghil, Ma & Wang (2005). Using the boundary layer separation theory
based on the structural bifurcation concept, they showed that structural bifurcation
occurs whenever a degenerate singular point for vorticity appears on the boundary. In
recent times, investigations from the topological point of view by considering a Taylor
expansion of the velocity field were also carried out for incompressible fluid near a
non-simple degenerate critical point close to a stationary wall (see Gurcan, Deliceoglu
& Bakker 2005).

In the present work, we make an in-depth analysis of these two phenomena by
computing the flow for a large range of Reynolds numbers 500 6 Re 6 10 000 in
the early stages of the flow and also computing the flow up to the post vortex
shedding period for Re = 1000 and 5000. We show the complete evolution of the
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flow for Re = 5000 and in the process, show the existence of two new tertiary
vortex phenomena, which we term the sub-α- and sub-β-phenomena, and which have
not been reported earlier. The newly developed theory of bifurcation depending on
the topological structure of a two-dimensional non-divergent vector field has been
applied to accurately predict recirculation areas and their time of inception as well
as generation of vorticity. We also report the existence of a β-like phenomenon
for 800 6 Re 6 3000, which has frequently been mistaken for the β-phenomenon.
To emphasize our findings we invoke the unsteady separation mechanism along the
surface of the cylinder that explains the formation of a recirculation region followed by
a narrow eruption of near-wall fluid.

This paper is organized in the following way. In § 2, we provide an outline of
the governing equations and the discretization procedure. The validation of the code
is discussed in § 3. Section 4 contains detailed discussions on the flow and the new
vortex phenomena. Section 5 deals with the discussion on the formation of primary,
secondary and tertiary vortices based on the boundary layer separation theory and the
viscous–inviscid interaction studies. Finally, in § 6, we offer a few concluding remarks.

2. Computational formulation and methods
Here, unsteady two-dimensional Navier–Stokes equations are solved using the

biharmonic pure streamfunction (Kalita & Sen 2012a,b) formulation. The formulation
and auxiliary conditions are presented next.

2.1. The governing equation and formulation
The unsteady two-dimensional incompressible viscous flows are governed by the N–S
equations. In a Cartesian (x, y) coordinate system, the non-dimensional primitive
variable form of these equations for the problem of flow past a circular cylinder
having unit radius, along with the equation of continuity can be written as:

1
2
∂V
∂t
+ (V ·∇)V =−∇p+ 2

Re
1V , (2.1)

∇ ·V = 0. (2.2)

Here V = (u, v) is the non-dimensional velocity vector and p is the pressure. The
Reynolds number Re is defined as Re = DU∞/ν where D = 2a is the diameter of
the cylinder, U∞ is the free-stream velocity and ν kinematic viscosity. The non-
dimensionalization has been carried out following Bouard & Coutanceau (1980).
Introducing vorticity ω = ∇ × V = −∂yu + ∂xv and applying the curl operator ∇×
to the momentum equation (2.1) we get

1
2
∂ω

∂t
+ (V ·∇)ω = 2

Re
1ω. (2.3)

Using streamfunction ψ , which can be obtained from (2.2), we get

ω =−1ψ, (2.4)

along with (u, v) = ∇⊥ψ = (ψy,−ψx). Equations (2.3) and (2.4) are together known
as the streamfunction–vorticity form of the N–S equations. Traditionally, the primitive
variable and streamfunction–vorticity formulations of the N–S equations have been the
most popular approaches for computing viscous incompressible fluid flows. For flows
in two dimensions, the streamfunction–vorticity formulation is more popular for its
computational economy; it requires handling of only two unknowns as opposed to
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three in the case of primitive variables. Furthermore, it ensures exact satisfaction of
the mass conservation equation. However, the main difficulty lies with the vorticity
boundary conditions which are artificial in nature. A better approach could be to use
the fourth-order biharmonic streamfunction formulation of the N–S equations. This can
be achieved by eliminating ω from (2.3) and (2.4) and is given as

1
2
∂

∂t
(1ψ)+ [(∇⊥ψ) ·∇]1ψ = 2

Re
12ψ. (2.5)

This formulation for the time-dependent N–S system in rectangular planar domains has
existed (Goodrich & Sox 1989) for almost two decades. However the application of
compact schemes to this formulation started with the pioneering work of Kupferman
(2001), but a close look at the literature (Kupferman 2001; Ben-Artzi et al. 2005;
Gupta & Kalita 2005; Ben-Artzi, Croisille & Fishelov 2006; Kalita & Gupta
2010) suggests that computations of flows using the biharmonic formulation has
been restricted to only rectangular domains. Recently Kalita & Sen (2012a,b) have
extended this scheme to domains beyond rectangular. Note that many challenging
and interesting physical problems involve viscous, incompressible fluid flow in
geometrically complex regions. Curvilinear coordinate systems generated to maintain
coordinate lines coincident with the boundaries provide the key to the development of
finite difference solutions of PDEs on regions with arbitrarily shaped boundaries.

We assume that the physical (x, y) plane can be transformed into a computational
(ξ, η) plane by a conformal transformation of the form z = z(θ), z = x + iy and
θ = ξ + iη (i=√−1), then equation (2.5) in the computational plane reduces to

∂

∂t
1ψ = a(ξ, η)12ψ + b(ξ, η, ψξ , ψη)1ψξ + c(ξ, η, ψξ , ψη)1ψη

+ d(ξ, η, ψξ , ψη)1ψ (2.6)

where

a(ξ, η)= 4
ReJ

, b(ξ, η, ψξ , ψη)= 2
J

(
−4C

Re
− ψη

)
, (2.7)

c(ξ, η, ψξ , ψη)= 2
J

(
−4D

Re
+ ψξ

)
,

d(ξ, η, ψξ , ψη)= 2
J

(
2E

Re
+ Cψη − Dψξ

)
,

 (2.8)

C = Jξ
J
, D= Jη

J
, E = 2C2 + 2D2 − Jηη

J
− Jξξ

J
, (2.9)

J being the Jacobian of the transformation. The components of velocity in the
transformed plane are

u= 1
J
(ψηxξ − ψξxη), v = 1

J
(−ψξyη + ψηyξ ). (2.10)

The benefit of using (2.5) is threefold: (i) difficulties associated with primitive
variables arising mainly because of pressure are avoided; (ii) use of artificial vorticity
boundary conditions is avoided and (iii) iterations involve only a single variable (ψ).
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Whenever vorticity ω needs to be computed, it can be post-processed by solving the
Poisson equation in the transformed plane given by

1ψ =−Jω. (2.11)

2.2. Discretization procedures
It is well known that compact schemes provide much higher resolution than explicit
higher-order upwind schemes, thus enabling one to obtain numerical solutions with
significantly enhanced accuracy. Such an approach will have two major advantages:
(i) the coefficient matrix resulting from the system of linear equations after
discretization will have a smaller bandwidth; and (ii) no modification will be
needed at grid points near the boundaries, thus facilitating easier and at times exact
implementation and satisfaction of the boundary conditions. We use the following
discretizations for space derivatives 12ψ and 1ψ :

12
hψi,j = δ4

ξψi,j + 2δ2
ξ δ

2
ηψi,j + δ4

ηψi,j + O(h2), (2.12)

1hψi,j = δ2
ξψi,j + δ2

ηψi,j + O(h2). (2.13)

Here δ4
ξ denotes the Stephenson finite difference operator (Stephenson 1984) defined as

δ4
ξψi,j ≡ 12

h2
(δξψξi,j − δ2

ξψi,j), (2.14)

δ2
ξ and δξ being the usual second-order central difference operators. Compatible Padé

approximations for ψξ and ψη may be chosen as:

ψξi,j =
(
δξψi,j − h2

6
δ2
ξψξi,j

)
+ O(h4), ψηi,j =

(
δηψi,j − h2

6
δ2
ηψξi,j

)
+ O(h4). (2.15)

Having obtained second-order approximations for space derivatives of (2.6), our
next step is to discretize time derivative and obtain a stable numerical scheme. We
introduce the weighted time-average parameter λ such that tλ = (1− λ)t(n)λ + λt(n+1)

λ for
0 6 λ6 1, and approximate (2.6) as:

1hψ
(n+1)
i,j =1hψ

(n)
i,j + δt(1− λ)[ai,j1

2
hψ

(n)
i,j + bi,j1hψ

(n)
ξi,j
+ ci,j1hψ

(n)
ηi,j

+ di,j1hψ
(n)
i,j ] + δtλ[ai,j1

2
hψ

(n+1)
i,j

+ bi,j1hψ
(n+1)
ξi,j
+ ci,j1hψ

(n+1)
ηi,j
+ di,j1hψ

(n+1)
i,j ]. (2.16)

Varying λ provides a class of integrators, for example forward Euler for λ = 0,
backward Euler for λ = 1 and Crank–Nicolson for λ = 1/2. Using the last option,
we obtain an O(h2; δt2) accurate scheme for (2.6).

2.3. Solution of algebraic systems of equations
We now discuss the solution of algebraic systems associated with the finite difference
approximation (2.16). Introducing the notation

Ψ = (ψ1,1, ψ1,2, . . . , ψm,n)
T, (2.17)

the resulting system of equations for λ= 1/2 in matrix form is

M1Ψ
(n+1) = F1(Ψ

(n), Ψ
(n)
ξ , Ψ (n)

η , Ψ
(n+1)
ξ , Ψ (n+1)

η ). (2.18)
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For a grid of size m× n, the matrix M1 has dimension mn. Due to the compact nature
of our scheme M1 is a banded matrix with nine non-zero diagonals. Also Ψ (n), Ψ (n)

ξ ,
Ψ (n)
η , Ψ (n+1), Ψ (n+1)

ξ , Ψ (n+1)
η are all mn component vectors. At any time step, once

Ψ (n) has been approximated, Ψ (n)
ξ and Ψ (n)

η can be obtained by solving the tridiagonal
systems

M2Ψ
(n)
ξ = F2(Ψ

(n)), M3Ψ
(n)
η = F3(Ψ

(n)) (2.19)

respectively. Equations (2.19) are the corresponding matrix forms of relations (2.15).
Thus the main objective now is to solve (2.18), thereby evaluating unknown vector
Ψ (n+1). But a difficulty arises due to the presence of the (n + 1)th time level gradients
of Ψ on the right-hand side of (2.18) as those quantities will be available only after
solving for the streamfunction at the (n + 1)th time level. To overcome this difficulty
we adopt a predictor–corrector approach. By setting λ= 0 in (2.16) we get a first-order
time-accurate formula which has the matrix representation

M4Ψ
(n+1)
old = F4(Ψ

(n), Ψ
(n)
ξ , Ψ (n)

η ). (2.20)

Here M4 is a matrix with only five non-zero diagonals and we have the advantage that
Ψ (n+1) can be estimated directly. Thus we have the following algorithm:

(i) predict Ψ (n+1)
old using (2.20);

(ii) predict Ψ (n+1)
ξold

, Ψ (n+1)
ηold

using (2.19);

(iii) correct Ψ (n+1)
new using (2.18);

(iv) correct Ψ (n+1)
ξnew , Ψ (n+1)

ηnew
using (2.19);

(v) if ‖Ψ (n+1)
new − Ψ (n+1)

old ‖< ε then Ψ (n+1) = Ψ (n+1)
new ;

(vi) Ψ (n+1)
old = Ψ (n+1)

new , goto step (iii).

As the direct solution of any of the above linear system is impractical all the
computations were performed using the biconjugate gradient stabilized (BiCGStab)
method where, thanks to the compact grid, it is easy to implement matrix vector
multiplication M1Ψ without the need of storing all the entries of the matrix M1. The
convergence criterion for BiCGStab iteration based on the norm of the residual was set
at 10−8 and the stopping criterion for the corrector was set at 10−12.

2.4. Description of the problem and corresponding initial and boundary conditions
We assume the cylinder to be of unit radius placed in an infinite domain. A uniform
grid spacing is employed along the cross-radial θ -direction and non-uniform grid
spacing in the radial r-direction with clustering around the surface of the cylinder
using the transformation x = e(πξ) cos(πη), y = e(πξ) sin(πη). The domain over which
the solution of (2.6) is obtained is an annular one with inner radius unity and outer
radius R∞. We non-dimensionalize the flow variables by taking x = x∗/a, y = y∗/a,
u = u∗/U∞, v = v∗/U∞, t = t∗U∞/D, Re = DU∞/ν; u∗, v∗ are the dimensional
velocities along the x∗-, y∗- directions respectively and ν is the kinematic viscosity.
D= 2a is the diameter of the cylinder. The biharmonic equation (2.6) then reduces to

Re
π2e2πξ

4
∂

∂t
1ψ =12ψ −

(
4π+ Re

2
ψη

)
1ψξ + Re

2
ψξ1ψη

+ 2π
(

2π+ Re

2
ψη

)
1ψ. (2.21)
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The corresponding finite difference approximation with λ= 1/2 is given by

Re
π2e2πξi

4
1hψ

(n+1)
i,j = Re

π2e2πξi

4
1hψ

(n)
i,j

+ δt
2

[
12

hψ
(n)
i,j −

(
4π+ Re

2
ψ (n)
ηi,j

)
1hψ

(n)
ξi,j

+ Re

2
ψ
(n)
ξi,j
1hψ

(n)
ξi,j
+ 2π

(
2π+ Re

2
ψ (n)
ηi,j

)
1hψ

(n)
i,j

]
+ δt

2

[
12

hψ
(n+1)
i,j −

(
4π+ Re

2
ψ (n+1)
ηi,j

)
1hψ

(n+1)
ξi,j

+ Re

2
ψ
(n+1)
ξi,j

1hψ
(n+1)
ξi,j
+ 2π

(
2π+ Re

2
ψ (n+1)
ηi,j

)
1hψ

(n+1)
i,j

]
. (2.22)

This is the discretized equation we intend to use for numerical simulation.
We estimate the boundary conditions for the streamfunction and its first-order

derivatives as follows.

(a) On the surface of the cylinder ξ = 0, u= v = 0⇒ ψξ = 0, ψη = 0, ψ = 0.

(b) Far upstream u = U∞, v = 0 ⇒ ψξ = πe(πξ) sin(πη), ψη = πe(πξ) cos(πη) and
ψ = e(πξ) sin(πη) which corresponds to the potential flow.

(c) Far downstream we use the Neumann condition that ∂Vr/∂ξ = 0 = ∂Vt/∂ξ .
The one-sided second-order approximation translates these conditions to,
ψηimax,j

.= (4eπhψηimax−1,j − e2πhψηimax−2,j)/3, ψξimax,j

.= (4eπhψξimax−1,j − e2πhψξimax−2,j)/3
respectively.

It should be noted here that once the vortex shedding starts, one needs to use
convective boundary condition ∂ψ/∂t+U∞∂ψ/∂x= 0 for ψ in the downstream. When
asymmetry is about to set in the flow, the potential boundary condition downstream of
the flow for ψ was replaced by a convective boundary condition and was found to be
quite efficient. Moreover, for flows with higher Re, the convective boundary condition
at the very initial stage of flow does not work well. Thus if one wishes to simulate a
flow from very beginning to the final vortex shedding stage, an ideal choice will be to
march the first few iterations (say) till non-dimensional time t = 0.25 with the potential
boundary condition and then to proceed with the convective boundary condition. As
far as the initial condition is concerned we have started with ψ = 0 everywhere except
at the boundary as also ψξ = ψη = 0 everywhere except at the upstream boundary.

The drag D on the surface of a cylinder of radius r in a fluid of density ρ is
D = ρrU2

∞CD, where CD is the non-dimensional drag coefficient. In terms of a pure
streamfunction the formula for CD (Kalita & Sen 2012a,b) can be written as

CD = 2
Reπ2

∫ 2

0
(3πψξξ − ψξξξ ) sin(πη) dη. (2.23)

Similarly the lift coefficient is CL = (2/Reπ2)
∫ 2

0 (3πψξξ − ψξξξ ) cos(πη) dη. Following
Chang & Chern (1991) the surface pressure P at each point on the surface of the
cylinder can be obtained by integrating the momentum equation (2.1) radially from
infinity to the cylinder surface. Prescribing the value of pressure to be zero at infinity,
finally in the transformed (ξ, η) plane it can be expressed exclusively in terms of the
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flow axis between experimental (Bouard & Coutanceau 1980), numerical (Loc 1980) and the
present results at t = 3.0 for Re= 1000, 3000 and 5000.

streamfunction as

P(η)=
∫ ∞

0

(
− 2
ReJ

(ψξξη + ψηηη)+ 1
2
∂ψη

∂t
− ψξ

J
(ψξξ + ψηη)

)
dξ + 1

2
. (2.24)

All the above integrals have been evaluated by using Simpson’s one-third formula.
Also, the expressions for pressure gradients on the surface of the cylinder can be

obtained from momentum equation (2.1). In terms of the pure streamfunction they are

pr = 2
Re

ψξξη

π3
and pθ = 2

Re

(−ψξξξ + 2πψξξ
π3

)
, (2.25)

subscripts r and θ denoting derivatives along the radial and cross-radial directions
respectively.

3. Validation of the code
3.1. Comparison with earlier results

The finite difference scheme described in the previous section is validated by
comparing our numerical results with available experimental and numerical results.
First, in figure 2(a–d), our computed streamlines for Re = 5000 at t = 2.0 and t = 2.5
are compared with the experimental visualization of Bouard & Coutanceau (1980).
Our numerical simulation is an excellent match with the experiments and is much
closer to the experiments than the numerical simulations of Sengupta & Sengupta
(1994) and Sanyasiraju & Manjula (2005) obtained through compact schemes. As
mentioned in the introduction, not many quantitative numerical results are available
for Re = 5000. The only quantitative experimental result available is the velocity
distribution on the flow axis at time t = 3.0 provided by Bouard & Coutanceau (1980);
we compare this with our numerical results in figure 2(e) and once again they are
an excellent match. As our narrative will also include some description of the flow
for Re = 1000 and 3000, we have included the comparison of our numerical results
for Re = 3000 with the experimental results of Bouard & Coutanceau (1980) and
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the numerical results of Loc (1980) for Re = 1000 for the same instant of time in
figure 2(e). The slight disparity between Loc’s (1980) result and ours could be from
the fact that he used a very coarse grid (81× 41) for his computation compared to ours
(271× 451).

Further, we compare our computed pressure distribution on the surface of the
cylinder for Re = 3000 at different times with those of Chang & Chern (1991) in
figure 3. Note that the θ range in figure 3(b) is reversed in order to match with Chang
& Chern (1991) where θ is defined in a direction opposite to the one used by us. Once
again, a very close resemblance can be seen between these figures.

In order to test the robustness of our code, we also compute the energy spectra
for Re = 1000 and 5000 for the fully developed flow and present them in figure 4(a).
Note that in two dimensions the inverse cascade drives energy from small to spatially
smooth and large eddies. The phenomenon involves an interplay between small and
large scales. For both the Re values considered here, a very close resemblance between
the graph of k−3 versus k and that of E(k) versus k can be seen. Also indicated in
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FIGURE 5. Schematic diagram of the vortex structures. The letters P, S and T denote primary,
secondary and tertiary vortices respectively.

the figure is the k−5/3 variation below the energy injection wavenumber. Both these
observations are in conformity with the existing theory (Singh & Mittal 2004).

3.2. Outer boundary location and mesh convergence
In order to study the influence of grid size and the location of the outer boundary on
the characteristics of the flow, computations are carried out on five meshes of sizes
181×451 with R∞ u 12, 196×601 with R∞ u 8, 271×451 with R∞ u 43, 261×801
with R∞ u 8 and 301× 1201 with R∞ u 5. The time step for the first three meshes is
5 × 10−4, and 1.0 × 10−4 for the remaining two. Except for the third grid, R∞ is kept
small as we are interested in the flow only in the vicinity of the surface of the cylinder
at the earlier stages of the flow; the third grid is specifically chosen for examining the
flow in the post vortex shedding period. In table 1, we show the separation angle θS,
the wake length L and the location of the centre of the upper primary vortex (x̄, ȳ)
at different times computed on these five grids. The maximum differences (which are
computed for all the times presented in the table, taken two grids at a time) in θS, L
and x̄ values are below 5 % in all the cases. However, for a better resolution of the
flow, the results presented in the subsequent sections correspond to mesh M5 for t 6 10
and M4 beyond that except when the time history of the drag and lift coefficients is
discussed in the post shedding period, when we use M3. In figure 4(b) we present the
surface vorticity distribution at times t = 1.0 and t = 10.0 on the first three grids; once
again one can see that they are extremely close to each other.

4. Observations and new vortex phenomena
First we shall provide a detailed description of the interplay between the primary

and secondary vortices leading to the so-called α- and β-phenomena. Next, we will
examine the hitherto unreported interplay amongst the primary, secondary and tertiary
vortices. Finally, we shall reflect upon some distinct features of the β-phenomenon that
have escaped the attention of the earlier studies. Readers can refer to figure 5 for a
schematic diagram of the vortex structures where the letters P, S and T denote primary,
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ȳ)

(1
.9

48
8,

0.
77

16
)
(1
.9

55
6,

0.
77

42
)
(1
.9

45
4,

0.
77

02
)
(1
.9

45
4,

0.
77

01
)
(2
.0

17
7,

0.
77

28
)

T
A

B
L

E
1.

E
ff

ec
t

of
th

e
m

es
h

si
ze

an
d

th
e

ou
te

r
ra

di
us

lo
ca

tio
n

on
th

e
ch

ar
ac

te
ri

st
ic

s
of

th
e

flo
w

(t
he

se
pa

ra
tio

n
an

gl
e
θ S

,
th

e
w

ak
e

le
ng

th
L

an
d

th
e

lo
ca

tio
n

of
th

e
ce

nt
re

of
th

e
up

pe
r

pr
im

ar
y

vo
rt

ex
(x̄
,
ȳ)
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secondary and tertiary vortices respectively: the primed letters denote vortices on the
lower half of the cylinder while non-primed ones refer to vortices on the upper half.
A better understanding of the location of these vortices is provided by the vorticity
distribution curve in figure 14 in § 4.4 where several zones have been marked over the
surface of the cylinder.

4.1. Primary and secondary vortex phenomena
Figure 6(a–l) depicts the evolution of primary and secondary vortices for Re = 5000
and the occurrence of α- and β-phenomena in the process. At time approximately
t = 0.25, a pair of symmetric vortices is clearly visible behind the cylinder. With time,
this pair of vortices grows symmetrically in size where one is the mirror image of the
other with respect to x-axis. The core of the primary vortex lying above the x-axis
(denoted by P in figure 5) gathers strength as time progresses and moves downstream
in an upward direction (figure 6a,b). Note that unless otherwise stated the description
of the flow will pertain to only on the top half of the cylinder as the flow maintains
its symmetry till a certain time. Meanwhile, at around time t = 0.85, the secondary
phenomenon starts with the second separation on the surface of the cylinder as can
be seen in figure 6(b). This separation leads to the formation of a secondary vortex
(S1 in figure 5) that starts growing in size (see figure 6b–d) which can also be seen
from the three alternately rotating zones of vorticity on the surface of the cylinder in
figure 14(a). At around t = 1.0 this secondary vortex becomes prominent (figure 6c),
dividing the primary vortex into two chambers, one of which is the core. Nevertheless
the weaker part (S2 in figure 5; we shall also refer to it as the arm of the primary
vortex) maintains some communication with its core part. For some time both the
core and the secondary vortex acquire strength (see figure 6c,d) and the channel
of communication between the two parts of the primary vortex becomes narrow at
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for Re= 5000.

time t u 1.1 (figure 6d). But as the primary vortex becomes bigger in size again, both
its parts (namely P and S2) start getting stronger and engulf the secondary vortex S1

from left and right, reducing its strength and size at time t u 1.35 (figure 6e). This is
what Bouard & Coutanceau (1980) described as the β-phenomenon.

A very short time thereafter, the arm S2 of the primary vortex gets reduced in
size and strength (t = 1.45, figure 6f ) and is re-aligned to the main primary vortex
to form one main vortex again (t = 1.7, figure 6g). Then, the secondary vortex S1

grows in strength again and splits the main primary vortex again to recreate the arm.
The arm S2 grows in size and strength side by side with the other secondary vortex
S1 (figure 6h,i) and eventually they are almost equal in size and strength (t = 2.5,
figure 2(c,d). They constitute what Bouard & Coutanceau (1980) described as ‘a pair
of secondary vortices’ and which is the α-phenomenon. Both these secondary vortices
S1 and S2 continue to grow in size and strength (figure 6i,j).

During the time considered above, the main primary vortices also grow in size
and strength more rapidly than the secondary ones and their centres shift downstream
(figures 6k and 8b). The upper and lower primary vortices lose their symmetry about
the x-axis at the tail of the wake even though the formations just behind the cylinder
still maintain their symmetry till t = 20.0 (figure 6k) including the pair of secondary
vortices responsible for the α-phenomenon. In the meantime the upper and lower
primary vortices alternately exceed each other in size and strength while the free
stream keeps on slowly sweeping their centres downstream. The lower primary vortex,
while growing in size, pushes the upper primary vortex upwards and breaks it into
two parts for a very short time. When the upper primary vortex becomes completely
detached from the surface of the cylinder and is no longer available to cushion the
vortices S1 and S2, the free stream finally sweeps these secondary vortices away. This
is when no trace of the so-called α-phenomenon can be seen at the top half of the
surface of the circular cylinder for the first time after its inception (figure 6l). The
breaking in symmetry in the flow which eventually leads to the shedding of vortices
can also be seen from figure 7 where the time histories of drag (CD) and lift (CL)
coefficients are shown till t = 47.5; once shedding is activated, the mean value of CD

is observed to be 1.41.
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Meanwhile, at the bottom half of the cylinder, the ‘pair of secondary vortices’,
because of the cushion still provided by the lower primary vortex, continues to exist.
At the same time the secondary vortices S′1 and S′2 begin to grow in size, pushing the
lower primary one, and the α-phenomenon structure is broken.

It is well known that the magnitude of the streamfunction values at the centres of
the vortices is a good indication of their respective strengths. We present the time
history of the strengths of the secondary vortices constituting the α-phenomenon in
terms of the streamfunction values at their centres in figure 8(a); note that the ψ

values at the centre of S2 are actually negative. This is probably the first time the
strength of the secondary vortices constituting the α-phenomenon has been quantified.
At t = 2.5, their strengths become almost equal to each other for the first time and
then again in the vicinity of t = 4.0. It is interesting to note that most of the time,
while the vortices S1 and S2 look equivalent in size, their strengths are quite different
from each other as can be seen from figure 8(a). This is also true for figure 1 where
streamlines are depicted for Re = 3000 at time t = 2.5 (the Re value and the instant
at which Bouard & Coutanceau 1980 coined the term α-phenomenon); here S1 and
S2, despite looking almost equal in size, have ψ values 0.0280649 and −0.0445097
respectively at their centres. A natural consequence of this observation is to redefine
the α-phenomenon, which exists:

(i) in the strong sense when the secondary vortices forming the ‘pair of vortices’ are
not only equivalent in size, but also when their strengths are almost equal to each
other at least once during the evolution of the flow;

(ii) in the weak sense when the secondary vortices forming the ‘pair of vortices’ are
only equivalent in size.

The x, y phase-planes of these secondary vortex centres along with that of the primary
vortex P are shown in figure 8(b). From the figure it is clear that the centres of S1

and S2 remain clustered near the surface of the cylinder while one can see a gradual
upward downstream movement of the centre of P.
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Re= 5000.

4.2. Tertiary vortex dynamics
4.2.1. The sub-α- and sub-β-phenomenon

Next, we provide a detailed discussion on the tertiary vortex dynamics, again for
Re= 5000 which, to the best of our knowledge has not been reported elsewhere. From
t u 1.2 onwards, a similar event parallel to the β-phenomenon can be observed with
the formation of a tertiary vortex T3 (see figure 5) on the surface of the cylinder
cushioned by the secondary vortex S2. A close look at figure 6(e) reveals that this
vortex makes its appearance somewhere around θ = 60◦; note that during this time
the centre of secondary vortex S1 moves down to the position θ = 36◦ on the surface
of the cylinder. This new tertiary vortex, while slowly growing in size and strength,
almost replicates the role played by S1 for the primary vortex P (see figure 6f at
t = 1.45): it splits S2, the arm of primary vortex, into two parts T3 and T4 (figures 5
and 9a), thus creating a phenomenon which we term the sub-β-phenomenon. We
define this phenomenon as where a secondary vortex, part of which is bounded by
the free stream, is split by the tertiary vortex cushioned by it. This sub-β-phenomenon
persists till t = 1.6 when the secondary vortex S2 and its arm coalesce back into
one vortex. The tertiary vortex T3 persists up to t = 2.4 and disappears afterwards to
resurface again at t = 2.75. This leads to another sub-β-phenomenon which is clearly
seen at t = 3.15 (figure 9b) and persists till t = 4.0 after which S2 and its arm once
again coalesce back to form one single vortex.

Meanwhile one can observe another event analogous to the α-phenomenon occurring
at the secondary and tertiary level as early as t u 1.25; here one can glimpse a
tertiary vortex T2 (figures 5 and 6e) at the location θ = 43◦ which in fact was formed
at t = 1.116 (more on this in § 5) when the strength of the secondary vortex S1

surrounding it has a maxima with ψ = 0.0353114 at its centre that leads to an adverse
pressure gradient. Within a short period of time, at around t = 1.45 this tertiary
vortex grows in strength and size and splits the secondary vortex into two parts T1

(we shall also refer to it as the arm of S1) and T2 (figures 5 and 10a) auguring a
phenomenon which we term the sub-α-phenomenon. We define this phenomenon as
one where two tertiary vortices form ‘a pair of tertiary vortices’ which are either
equivalent in strength or size. At time t = 1.65, this tertiary vortex T2 merges with
the secondary one and the split part T1 of the secondary vortex S1 gets re-attached.
Eventually the parts of this secondary vortex coalesce back into one vortex (figure 6g).
This phenomenon is seen again at time t = 2.545, 3.715, 5.55 and 8.0 (figure 10b,c);
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FIGURE 10. The streamlines representing sub-α-phenomenon at (a) t = 1.45, (b) t = 3.715
and (c) t = 8.0 for Re= 5000.

Vortex
centre

t = 1.450 t = 2.545 t = 3.715 t = 5.500 t = 8.000 t = 20.55

T1 0.00159542 0.00215581 0.00170425 0.000908059 0.000761779 0.0002712467
T2 −0.00120229 −0.00247031 −0.0004427 −0.000910168 −0.000237116 −0.000280849

TABLE 2. Streamfunction ψ values at the centres of the tertiary vortices constituting the
sub-α-phenomenon for Re= 5000.

these instances correspond to the times when the strengths of these tertiary vortices
forming the sub-α-phenomenon are closest to one another in magnitude (see table 2).
Note that till now, the appearance of these tertiary vortices was almost symmetric
about the x-axis with similar occurrences at the lower half of the cylinder as well.
After a long period of time, they reappear again at around t = 20.0, when the flow
is distinctly asymmetric, this time only on the top half of the cylinder with a much
reduced strength (see table 2). However, they persist for a much longer interval of time
of around 2.0. Figure 10 and table 2 clearly indicate that the sub-α-phenomenon also
exists both in the strong and weak sense. Note that in all the cases, the tertiary vortices
T1, T2, T3 and T4 are much smaller in size and weaker in strength than their secondary
counterparts S1 and S2. Note that in figures 9 and 10 the dotted lines correspond to
negative contour values.

4.2.2. The sub-α-phenomenon preceded by the sub-β-phenomenon
The sub-α- and sub-β-phenomena described above occurred in isolation where

neither the sub-β-phenomenon led to the sub-α-phenomenon nor was the sub-α-
phenomenon preceded by the sub-β-phenomenon. We have already seen in § 4.1 that
for Re = 5000, the α-phenomenon is preceded by the β-phenomenon. Likewise, we
also found that at times the sub-α-phenomenon is preceded by the sub-β-phenomenon.
However, the duration of such an occurrence is very short. We observed it for the
very early stages of the flow for Re = 8000 in the time range 1.0 6 t 6 1.4. Here, the
tertiary vortex T3 appears at around t = 1.0 and becomes clearly visible at t = 1.1 as
can be seen from figure 11(a). It grows in size and strength and splits the secondary
vortex S2 into two parts T3 and T4 leading to the formation of a pair of tertiary vortices
(figure 11b,c). At t = 1.3, the ψ values at the centres are −0.0113653 and 0.0098353.
A similar sequence of events is again observed during 1.9 6 t 6 2.3. The tertiaries T3

and T4 remain persistent approximately till t = 4.5. Note that the difference between
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FIGURE 11. The sub-β-phenomenon followed by the sub-α-phenomenon: (a) t = 1.1,
(b) t = 1.2 and (c) t = 1.3 for Re= 8000.

the sub-β-phenomenon described here and the one in § 4.2.1 is that the secondary
vortex S2 and its arm do not coalesce to form one single vortex again.

The occurrence of the sub-α-phenomenon preceded by the sub-β-phenomenon is
also seen for Re = 9500 and Re = 10 000 in the very early stages of the flow in the
vicinity of t = 1.0 and then again around t = 2.0.

4.3. β-like phenomenon
Bouard & Coutanceau (1980) coined the terms α- and β-phenomena probably because
of the resemblance of the vortex structures to the Greek letters α and β (figure 1).
Though their description of the α-phenomenon did not have any ambiguity, the β-
phenomenon deserves more in-depth examination as there is much more to it than
has been described by them. For example, while portraying the β-phenomenon, they
have stated that the structure of the vortex pair (constituting the β-phenomenon)
is roughly similar to that for the α-phenomenon which ‘however differ in details’.
However, they did not discuss these details. They also report experimental evidence
that the α-phenomenon is in the range of 800 6 Re 6 5000 and we have already seen
that the α-phenomenon is preceded by the β-phenomenon for Re = 5000. This may
give the impression that in order for the α-phenomenon to take place, it must be
preceded by the β-phenomenon. In this section, we shall show that this is not the case,
which, in the process will also enable us to provide a distinct characterization of the
β-phenomenon.

In figure 12, we show the events leading to the α-phenomenon for Re = 3000.
Here at time t = 1.5, one can clearly see the secondary vortex splitting the main
primary vortex into two parts. The arm of the main primary vortex is reduced in
size gradually (t = 1.75) and after a while starts growing again (t = 2.0) leading to
the formation of two secondary vortices of almost equal size and strength and hence
the α-phenomenon (t = 2.25). Though figure 12(a–c) indicates a β-like phenomenon,
an important component is missing here. Once split by the secondary vortex, the
main primary vortex and its arm still remain detached; here the ‘forewake’ has not
completely vanished to form a ‘main wake’, unlike the one described by Bouard &
Coutanceau (1980) for Re = 9500. The same sequence of events can also be seen for
Re= 5000 in figure 6(f,g).

A detailed study of the development of primary and secondary vortices depicted
through the vorticity field was carried out by Koumoutsakos & Leonard (1995)
for Re = 3000 and 9500. Analogous to the formation and subsequent development
of secondary vortices for Re = 3000 as reported above, the authors captured the
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generation of secondary vortices, which in turn attempt to penetrate the primary vortex
field somewhere between t = 2.0 and 3.0. At later times they have also detailed an
increase in the drag coefficient due to the increase in the strength of the primary
vortex. The results depicted by us using streamline contours on a relatively coarser
grid are in good agreement with the findings of Koumoutsakos & Leonard (1995)
where up to a million computational elements were used.

Note that the formation of the secondary vortex S1 which pushes the primary vortex
P to split into two parts, gives rise to a bulge-like shape to the main vortex during this
time (see figures 1b, 6d,e). This is however absent during the splitting of the primary
vortex at the early stages for Re= 3000 (figure 12b,c). It is worth mentioning here that
the sub-β-phenomenon which preceded the sub-α-phenomenon described in § 4.2.2 is
more reminiscent of the β-like phenomenon than the β-phenomenon as the arm of the
secondary vortex S2 (S′2) does not get re-attached to its main vortex S2 again.

4.4. Multiple separation zones
The formation of the primary, secondary and tertiary vortices gives way to multiple
separation zones on the surface of the cylinder. For Re = 5000, as early as t = 1.35
(figure 13a), one can see the occurrence of multiple separation zones which become
more distinct at t = 2.9 (figures 6i and 13b). Also for higher Re, for which the
computation is indeed challenging and more interesting, the flow includes more
tertiary recirculation zones on the surface at quite early stages as can be seen from
figure 13(c) for Re= 10 000 at t = 2.5. A similar portrayal of the development, roll-up
and eventual detachment of the primary vortex from the body was also depicted by
Koumoutsakos & Leonard (1995), but for Re= 9500. The effect of such a detachment
on secondary vortices and its shape at time t = 2.5 have been discussed by the authors
as well. However, for complete understanding one needs to carefully examine the
vorticity distribution on the surface of the cylinder. The extent and size of these
vortices can be gauged by the alternate positive and negative values of vorticity on
the surface of the cylinder. Moreover, the time of birth of the secondary and tertiary
vortices can be found by accurately computing the instant when the curve of surface
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vorticity touches the ω = 0 line; more on this will be detailed in § 5. For example,
though one can actually see the existence of a secondary vortex for Re = 5000 in
figure 6(b) at time t = 0.9 in the vicinity of θ = 45◦, the surface vorticity distribution
graph in figure 14(a) suggests that the birth of this vortex actually takes place between
t = 0.80 and 0.85. Likewise the several zones over which these secondary and tertiary
vortex phenomena occur, their appearance, disappearance, symmetry (when the curve
is plotted over the whole 0◦ 6 θ 6 360◦ range) and shift can also be better recognized
from these curves. For example, the vorticity curves in figure 14(b–d) clearly depict
the zones described in the schematic diagram of the vortex structures on the upper
half of the cylinder in figure 5. Interestingly, at t = 2.9, one can see the simultaneous
occurrence of sub-β-, sub-α- and α-phenomena leading to the formation of thirteen
separation zones on the surface of the cylinder (see figure 6i). Multiple separation
zones persist at subsequent times as well (figure 14d).

5. Structural bifurcation and unsteady flow separation
The predictions of the locations and the timings of the primary, secondary and

tertiary vortex phenomena, and flow separation discussed in the previous sections
were mainly based on qualitative observations. However, in order to establish accurate
timings and precise locations of the separation points and the subsequent recirculation
zones, more rigorous analytical tools are required.

The boundary layer separation theory proposed by Ghil et al. (2004, 2005) is
based on the the structural bifurcation concept. As the two-dimensional incompressible
viscous flow past an impulsively started circular cylinder also undergoes the process
of bifurcation in its topological structure several times, it could prove to be a very
efficient tool in predicting the exact location of the recirculation zones and precise
time of their formation. Note that the newly developed theory has not so far been used
to characterize the flow field associated with an impulsively started circular cylinder.
We will endeavour to do this in order to have a detailed theoretical understanding
of primary, secondary and tertiary vortex dynamics, and the interplay amongst them.
The study of Ghil et al. (2004) showed the existence of an adverse pressure gradient
in the neighbourhood of a bifurcation point (P∗,T∗) by utilizing the relation between
vorticity and pressure in the solutions of the N–S equations and applying the Hopf
Lemma (Evans 2002) for subharmonic functions. For a fluid flow governed by the
N–S equations (2.1)–(2.2) with a no-slip boundary condition on the solid wall, the
conditions for the separation of flow at a point P∗ on the surface of a wall at time T∗
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are given as follows:

ω(P∗,T∗)= 0,
∂ω

∂τ
(P∗,T∗)= 0,

∂2ω

∂τ 2
(P∗,T∗) > 0,

∂ω

∂t
(P∗,T∗) < 0, (5.1)

where ω is the vorticity in (2.3), t the time, and τ is the direction tangential to the
wall. It is assumed that a structural bifurcation occurs at time T∗, the normal derivative
of the velocity field ∂V/∂n (n being the direction normal to the wall) has a degenerate
singular point P∗ on the wall and the shear flow is downward. When the flow is
upward, the last two inequalities in (5.1) undergo change of signs. When (5.1) holds
true:

(i) structural bifurcation occurs in the local structure of V at the boundary point P∗ as
t crosses T∗;

(ii) an adverse pressure gradient in the direction of the tangent to the surface is present
at P∗.

Likewise, the high-Reynolds-number flow separation theory of Dommelen & Shen
(1980) for an impulsively started circular cylinder, the boundary layer solutions by
Peridier et al. (1991) and N–S simulations of Obabko & Cassel (2002) illustrate
essentially the same phenomena in the flow induced by a vortex above a surface. Most
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of the recent studies on the flow induced by a vortex above a surface are based on the
theoretical description of unsteady separation resulting from the interaction between
the viscous boundary layer and the outer inviscid flow (Cassel et al. 1996; Cassel
2000; Brinckmanand & Walker 2001; Obabko & Cassel 2002, 2005; Brinkerhoff
2011).

The following discussion pertains to the formation of the primary, secondary and
tertiary vortices for Re= 5000 when they appear in the flow field for the first time.

5.1. The first structural bifurcation
In figure 15(a), we plot the vorticity distribution on the surface of the cylinder at
time t = 0.15 and t = 0.20. Note that as the flow variables are periodic on the
surface of the cylinder for 0 6 θ 6 2π, the θ range on the surface of the cylinder
is shown as −π 6 θ 6 π so as to get a clear picture of the vorticity distribution in
the neighbourhood of the point (x, y) = (1, 0). This figure clearly indicates that no
vortex is formed at time t = 0.15 while the vorticity curve crossing the zero vorticity
line more than once is a clear indication of the formation of a recirculation zone
on the surface at t = 0.20. In figure 16(a) we show the pair of symmetric vortices
just formed behind the cylinder at time t = 0.25 by streamlines in the original (x, y)
plane and while in figure 16(b) the streamtraces are plotted in the transformed (ξ, η)
plane with a magnified ξ -axis in order to get a clear view of the vortices being
formed and the direction of the flow. Following (5.1), while the formation of the
primary recirculation zone on the upper half of the cylinder with a downward flow
requires that ω has a local minimum at a degenerate singular point (P∗,T∗), ω must
have a local maximum at such singular points for the formation of the primary
recirculation zone at the lower half with an upward flow direction. Since the formation
of the wake behind an impulsively started cylinder at moderately high Re starts with
the inception of two symmetric recirculation zones at the same instant of time at
θ = 0◦ (Bouard & Coutanceau 1980; Loc 1980; Coutanceau & Defaye 1991), the
vorticity distribution curve on the surface of the cylinder at that particular instant must
look like the one shown in figure 15(b), which is consistent with the observations
made by Bakker (1989) and according to our computation is obtained at time
t = 0.1625. As noted in earlier work (Bakker 1989) our observations also show that
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point (1, 0) is a hyperbolic saddle point (see Gurcan et al. 2005) and the pressure
gradient pθ along the wall will vanish there due to symmetry (figure 15b: pθ is scaled
up in order to make it comparable with ω).

5.2. The second structural bifurcation
As time goes on and as is obvious from figures 6(a,b) and 14(a), the secondary vortex
is formed between t = 0.80 and 0.85. The primary vortices that had earlier formed
behind the cylinder grow in size and strength which produces an adverse pressure
gradient and thus leading the way for the formation of a secondary vortex (see
figure 6b). In figure 17(a), we show the distribution of vorticity ω (which is scaled
down in order to make it comparable with the pressure and pressure gradient), the
pressure p and pressure gradient pθ along the surface of the cylinder at time t = 0.828.
It is clear from this figure that the vorticity reaches zero at (θ, t) = (44.8◦, 0.828)
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as a local minimum in space and decreases in time, that is, ω(44.8◦, 0.828) = 0,
(∂ω/∂θ)(44.8◦, 0.828) = 0, (∂2ω/∂θ 2)(44.8◦, 0.828) > 0. In figure 17(b), we show the
time history of the vorticity at the point θ = 44.8◦ on the surface; this figure clearly
shows that (∂ω/∂t)(44.8◦, 0.828) < 0. Thus all the conditions given by (5.1) are
satisfied, confirming that the second structural bifurcation occurs at time t = 0.828 at
θ = 44.8◦ on the surface of the cylinder. When t < 0.828, there is no singular point
for vorticity in the neighbourhood of θ = 44.8◦ as can be seen from figure 14(a)
for t = 0.80 and the local structure of the streamfunction is as seen in figure 6(a).
When t = 0.828, there is one degenerate singular point for vorticity at θ = 44.8◦ which
decrease with time in the neighbourhood of t = 0.828 as seen in figure 17(b). When
t > 0.828, one can see two isolated singular points θ1 u 39.23◦ and θ2 u 50.12◦ for
vorticity on the solid surface as can be seen from figure 18(a) at time t = 0.90. The
zoom plots of streamfunction and vorticity contours in figure 18(b,c) now clearly show
the formation of the secondary recirculation zone. Likewise, the vertical velocity in
figure 18(d) shows that the near-boundary flow is indeed reversed between θ1 and θ2.

The formation of this secondary vortex can also be explained in the light of
viscous–inviscid interaction as outlined by Obabko & Cassel (2002). In order to
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determine when this viscous–inviscid interaction first begins, the pressure gradients in
the direction of the cylinder surface are followed as time progresses. In figure 19, we
plot pθ on the surface of the cylinder in the time range 0.25 6 t 6 0.50 at an interval
of 1t = 0.05. One can clearly see that the pressure gradient begins changing in the
vicinity of its minimum, where the streamlines abruptly change direction in order to
pass over the recirculation region. Note that the region of this minimum pressure
gradient is in the neighbourhood of θ = 44.8◦ where the second separation eventually
occurs.

Obabko & Cassel (2002) defined unsteady separation as the onset of a finite time
singularity from the point of view of unsteady boundary layer equations. According
to them the formation of this singularity coincides with the onset of viscous–inviscid
interaction. In the later stages, after the formation of the first recirculation zone, the
boundary layer is concentrated in a narrow region that forms on the upstream side
of the recirculation zone. Since the fluid particles at the separation point are rapidly
compressed in the streamwise direction, they elongate in the direction normal to the
wall. The elongation of the fluid particles in the normal direction leads to the growth
of a sharp spike leading to what is called the spike formation. In figure 20(a–d), we
track the development of the secondary vortices which finally leads to the so-called
β-phenomenon. Here, in the left-hand column (i), we present combined streamfunction
and vorticity contours at times t = 0.45, 0.70, 0.80 and 1.0 in the (r, θ) plane where
the extent of the r scale has been reduced in order to show the evolution of the
flow more clearly within the boundary layer, which is O(Re−1/2). These plots are
accompanied in column (ii) on the right by the corresponding vorticity, pressure and
pressure gradient distributions along the surface of the cylinder. For a better view,
the vorticity values are scaled down in order to bring them within the range of the
pressure and pressure gradient.

It is known that the primary vortices formed at the rear of the cylinder produce
a strong adverse pressure gradient (Koumoutsakos & Leonard 1995). As can be seen
from figure 20(ai,bi), at time t = 0.45 the primary vortex grows in size normal to the
surface in the r-direction and is moving upstream against the free stream. This leads to
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changes in the pressure gradient pθ in the vicinity of the primary vortex (figure 20aii)
which is more apparent in figure 20(bii) at time t = 0.70 with the formation of a
local maximum around θ = 44.8◦. The onset of viscous–inviscid interaction at this
time leads to the formation of a very small spike (see the vorticity contours in
figure 20bi) approximately around θ = 30◦ which grows normal to the surface in
the r-direction. This can be clearly seen from the streamlines in figure 20(ci) at
time t = 0.80 when the large-scale interaction has accelerated the spike formation
process. At this time the pressure gradient exhibits a minimum at θ u 28.5◦ followed
immediately by a local maximum at θ u 36◦ in the large-scale interaction region
(see figure 20cii). In this region, pθ > 0, which is locally adverse with respect to
the flow beneath the recirculation region near to the surface. This rapid increase in
pθ in the near-wall flow direction causes the flow across the boundary layer to be
compressed in the θ -direction. This results in an accelerated growth of the spike in
the r-direction in the region of rapid change in pressure gradient. This eventually
leads to the formation of the secondary vortex which is obvious from figure 20(d i)
near θ = 44.8◦ at t = 1.0. This recirculation zone is also evident from the vorticity
distribution on the surface around θ = 44.8◦ where one can see a small region of
negative vorticity. We next proceed to document the formation of the tertiary vortex.
The work of Koumoutsakos & Leonard (1995) indicated that the secondary vortices
already present in turn will induce tertiary vortical regions on the surface of the
cylinder. However, a clear depiction of the creation of tertiary structures could not be
seen in their documentation.

5.3. Formation of the tertiary vortex
Next, we explain the formation of tertiary vortices T2 and T3 (refer to figure 5,
the schematic diagram, and figure 6e, the streamlines at t = 1.35) with the help
of figure 21 where we present combined streamline and vorticity contours, and the
distribution of pressure gradient pθ along the surface of the cylinder in the close
range 0 6 θ 6 90◦. As explained in figure 20(d), at time t = 1.0, the presence of
the secondary vortex leads to the formation of a local minimum in pθ at θ u 43.20

(see figure 21aii) which is analogous to the formation of a local maximum (but
opposite in direction) in pθ induced by the large-scale interaction that had led to
the formation of the secondary vortex. In a similar way, the local minimum in pθ
caused by the secondary recirculation region becomes locally adverse, that is negative
at t = 1.35 around θ u 45◦ (see figure 21bii) and leads to the formation of the
tertiary recirculation region T2 near θ u 43.2◦. The same mechanism applies during
the formation of the tertiary recirculation region T3 around θ u 60◦ (see figure 21bi
and figure 6e). The local maximum in pθ at θ u 60◦ having a negative value (see the
close up in figure 21aii) become locally adverse at time t = 1.35 (see figure 21bii)
with a positive value and having a local maximum at θ u 60◦ where one can
clearly see a tertiary recirculation zone (figure 21bi). The tertiary vortices T2 and
T3 eventually lead to the sub-α-phenomenon in figure 10 and sub-β-phenomenon in
figure 9 respectively.

In figure 22(a,b), we show the distribution of vorticity ω (which is scaled down
again in order to make it comparable with pressure and pressure gradient), the pressure
p and pθ along the surface of the cylinder at time t = 1.116 and t = 1.233 respectively.
These graphs correspond to the formation of tertiary vortices T2 and T3 described
above. The corresponding time histories of the vorticity at θ = 43.2◦ and θ = 60◦ are
shown in figure 23(a,b). Both figures 22 and 23 are consistent with the conditions
given by (5.1). Note from figures 22(a) and 23(a) that vorticity at θ = 43.2◦ has a
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FIGURE 22. Distribution of vorticity ω, pressure p and the pressure gradient pθ along the
surface of the cylinder at the time of the formation of the tertiary vortices: (a) t = 1.116 and
(b) t = 1.233.
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FIGURE 23. Time history of vorticity at the points (a) θ = 43.2◦ and (b) θ = 60◦ on the
cylinder surface.
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FIGURE 24. Combined streamfunction and vorticity contours showing spike formation
before the separation leading to the tertiary vortices: (a) t = 1.115 at θ = 43.2◦ and
(b) t = 1.23 at θ = 60◦.

local maximum and it is increasing with respect to time in the vicinity of t = 1.116.
This is because of the reversal in the direction of the flow as opposed to those
in figures 22(b), 23(b) and 17. Thus the third and fourth structural bifurcations
which are accompanied by the formations of the tertiary vortices T2 and T3 occur
at (θ, t) = (1.116, 43.2◦) and (1.233, 60◦) respectively. Again the unsteady separation
leading to the creation of the tertiary vortices is preceded by the spike formations
as can be seen in figure 24(a,b) showing streamlines and vorticity contours, which is
once again indicative of viscous–inviscid interaction.

Note that all our observations from our computations on the timings of the
formation of the secondary and tertiary vortices and their location on the cylinder
surface are consistent with the studies on boundary layer separation theory by Ghil
et al. (2004) and the observations of Obabko & Cassel (2002) related to unsteady
separation induced by a vortex.
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6. Conclusion
In this study, we make an in-depth analysis of the intriguing structures that can be

seen during α- and β-phenomena which are typical of the flow past an impulsively
started circular cylinder at moderately high Reynolds numbers. The flow is computed
by solving the biharmonic form of the Navier–Stokes equations using a recently
developed compact finite difference scheme. In the process, we have also reported
some tertiary vortex phenomena which we term sub-α and sub-β, which, to the best
of our knowledge have not been reported earlier. We have shown that apart from
occurring in isolation, sometimes the sub-α-phenomenon is preceded by the sub-β-
phenomenon. Moreover, we have also reported a β-like phenomenon which closely
resembles the β-phenomenon, but slightly differs in its formation. For the first time,
the existence of these phenomena has been quantified by providing the strength of
the vortices at different instants of time. Also, we have provided a new perception of
the α-phenomenon by defining its existence in a strong and weak sense along with
a clearer characterization of the β-phenomenon. The fascinating interplay between
the secondary and tertiary vortices has been presented through the depiction of the
distribution of vorticity and pressure gradient over the surface of the cylinder which
also demonstrates the presence of several separation zones throughout the evolution of
the flow.

Apart from the qualitative comparison, a detailed analysis has been carried on the
topological structures of the primary, secondary and tertiary recirculation zones using
the boundary layer separation theory based on the structural bifurcation concept. For
the first time, using a recently developed theory a rigorous portrayal of transitions
in the topological structure for the problem of flow past a circular cylinder has been
presented.

We have also used the theory of unsteady flow separation which is based on the
viscous–inviscid interaction to predict precisely the time of inception and the position
of the recirculation zones. This has emphatically established the existence of tertiary
vortices on the surface of the cylinder which eventually leads to the new tertiary
phenomena reported by us. Our computation has revealed that for 800 6 Re 6 3000,
which was thought to be filled with the α-phenomenon in the early stages of the
flow, the secondary vortices responsible for this phenomenon are never equivalent in
strength; the α-phenomenon exists only in the weak sense from Re = 1000 onwards
in this range. Likewise, contrary to some earlier studies reporting the α-phenomenon
for Re > 9500 in the early stages, we cannot see the equivalence of the secondary
vortices either in size or in strength. Interestingly, the range of Reynolds numbers
4000 6 Re 6 8000 where the α-phenomenon is preceded by the β-phenomenon is also
the range where the α-phenomenon exists in the strong sense. The secondary and
tertiary vortex dynamics for even higher Reynolds numbers which is likely to reveal
some more interesting features will be discussed in a separate paper in the near future.
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