
Introduction to Approximation
Algorithms

Dr. Gautam K. Das

Departmet of Mathematics
Indian Institute of Technology Guwahati, India

gkd@iitg.ernet.in

February 19, 2016

Outline of the lecture

I Background
I Definition of approximation algorithms
I Some examples of approximation algorithms
I Polynomial time approximation scheme (PTAS)
I Conclusion

Optimization Problem

1. In mathematics and computer science, an optimization problem is the
problem of finding the best solution from all feasible solutions.

2. The objective may be either min. or max. depending on the problem
considered.

3. A large number of optimization problems which are required to be
solved in practice are NP-hard.

4. For such problems, it is not possible to design algorithms that can find
exactly optimal solution to all instances of the problem in polynomial
time in the size of the input, unless P = NP.

Copying with NP-hardness

I Brute-force algorithms
1. Develop clever enumeration strategies.
2. Guaranteed to find optimal solution.
3. No guarantees on running time.

I Heuristics
1. Develop intuitive algorithms.
2. Guaranteed to run in polynomial time.
3. No guarantees on quality of solution.

I Approximation algorithms
1. Guaranteed to run in polynomial time.
2. Guaranteed to get a solution which is close to the optimal solution

(a.k.a near optimal).
3. Obstacle : need to prove a solution’s value is close to optimum value,

without even knowing what the optimum value is !

Approximation Algorithm : Definition

Given an optimization problem P , an algorithm A is said to be an
approximation algorithm for P , if for any given instance I , it returns an
approximate solution, that is a feasible solution.

Types of approximation

P An optimization problem
A An approximation algorithm
I An instance of P

A∗(I) Optimal value for the instance I
A(I) Value for the instance I generated by A

1. Absolute approximation
I A is an absolute approximation algorithm if there exists a constant k

such that, for every instance I of P, |A∗(I)−A(I)| ≤ k.
I For example, Planar graph coloring.

2. Relative approximation
I A is an relative approximation algorithm if there exists a constant k

such that, for every instance I of P, max{A
∗(I)
A(I) , A(I)A∗(I)} ≤ k.

I Vertex cover.

Examples we discuss in this lecture

1. Vertex Cover
2. Traveling Salesman Problem
3. Bin Packing

1) Vertex Cover

Instance An undirected graph G = (V ,E).
Feasible Solution A subset C ⊆ V such that at least one vertex of every

edge of G belongs C .
Value The value of the solution is the size of the cover, |C |,

and the goal is to minimize it.

Example

(a) (b)

(c) (d)
Figure: (a) An undirected graph (b) A trivial vertex cover (c) A vertex cover (d)
An other vertex cover

Greedy algorithm 1

1. C ← ∅
2. pick any edge (u, v) ∈ E .
3. C = C ∪ {u, v}
4. remove all edges incident on either u or v from E .
5. repeat the process till all edges are removed from E .
6. return C .

Algorithm 1 with an example

(a) (b) (c)

(d) (e) (f)

A C

B

Figure: Execution of algorithm 1

- |C | = 6 (blue vertices) and |C ∗| = 3 (red vertices)
- However if we had picked the edge (B,C) we would have |C | = 4

Performance analysis of algorithm 1

1. The edges picked by the algorithm is a maximal matching (say M),
hence C is a vertex cover.

2. The algorithm runs in time polynomial of input size.
3. The optimum vertex cover (say C ∗) must cover every edge in M.
4. Hence C ∗ contains at least one of the end points of each edge in M,

implies |C ∗| ≥ |M|.
5. |C | = 2 ∗ |M| ≤ 2 ∗ |C ∗|, where C ∗ is an optimal solution.
6. Thus there is a 2-factor approximation algorithm for vertex cover

problem.

Tight example : Kn,n

1

2

3

n

1

2

3

n

... ...

Figure: Complete bipartite graph kn,n: a tight example for algorithm 1

- Size of any maximal matching of this graph = n, hence |M| = n.
- So, our algorithm always produces a cover C of size 2n.
- But, clearly the optimal solution size = n.

Greedy algorithm 2

1. C ← ∅
2. take a vertex v ∈ V of maximum degree (tie can be broken arbitrarily).
3. C = C ∪ {v}
4. remove all edges incident on v from E .
5. repeat the process till all edges are removed from E .
6. return C .

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Algorithm 2 with an example

Figure: Execution of algorithm 2

Performance analysis of algorithm 2
Generalizing the previous example

k! vertices of degree k

k! vertices of degree 1
k!
k−1 vertices of degree k − 1

k!
k vertices of degree k

· · · · · · · · · · · ·

· · ·

· · ·

1. The vertices picked by the algorithm forms a vertex cover.
2. The algorithm runs in polynomial time of input size.
3. Optimum solution C ∗ contains all top vertices, |C ∗| = k!.
4. Solution C given by algorithm 2 contains all bottom vertices.
5. Hence |C | = k!(1

k + 1
(k−1 + · · ·+ 1) ≈ k! log k = log k|C ∗|

Open problem

I Design an approximation algorithm which gives a better approximation.
I A better approximation ratio for the vertex cover problem by

[Karakostas, 2009] (Ratio : 2− 1√
log n

)

I There is no α-approximation algorithm for vertex cover with α < 7
6

unless P = NP [Håstad, 2001].

2) Traveling salesman problem (TSP)

I The TSP describes a salesman who must travel between n cities.
I The order in which he visits cities does not matter and he visits each

city during his trip, and finishes where he was at first.
I Each city is connected to other cities by airplanes, or by road or

railway.
I The salesman wants to keep the travel cost he travels as low as

possible.

Reducing TSP to graph problem

Instance A complete weighted undirected graph G = (V ,E) with
non-negative edge weights.

Feasible Solution Find a cycle that visits each vertex exactly once.
Value The value of the solution is the sum of the weights

associated with edges in the cycle, and the goal is to find
a cycle whose total weight is minimum.

Example

C1

C2

C5

C3

C4

100

85

65

110

20

66

101

31

Example

C1

C2

C5

C3

C4

100

85

65

110

20

66

101

31

∞

∞

Example

C1

C2

C5

C3

C4

100

85

65

110

20

66

101

31

∞

∞

Hardness

1. Bad news : Hard to approximate !
I For any c > 1, there is no polynomial time algorithm which can

approximate TSP within a factor of c, unless P = NP.
I In fact, the existence of an O(2n) - approximation algorithm would

imply that P = NP.
I A simple reduction from Hamiltonian cycle.

2. Good news : Easy to approximate if edge weights satisfy triangle
inequality.

I The triangle inequality holds in a (complete) graph with weight
function w on the edges if for any three vertices u, v , x in the graph
w(u, v) ≤ w(u, x) + w(x , v).

I TSP with triangle inequality is also known as (a.k.a) Metric TSP.
I Metric TSP is still NP-hard, but now we can approximate.

Algorithm 1 : Nearest addition algorithm
1. Start with a tour T , which initially includes two closest nodes

u, v ∈ V and let S = {u, v}.
2. Repeat until |S| = n

(a) Find a node vj ∈ V \ S that is closest to S. Let vj is closest to the
node vi ∈ S; further vk ve the node following vi in T .

(b) Update T by detouring vivk by vivjvk , and set S = S ∪ {vj}

10

2030 12

40

10

2030 12

40

10

2030 12

40

10

2030 12

40

10

2030 12

40

10

2030 12

40

Analysis of Algorithm 1

1. The algorithm is closely related to Prim’s MST algorithm.
2. The edges identified form a MST.
3. The cost of the optimal tour is at least the cost of MST on the same

input.
4. The cost of the tour on the first two nodes vi and vj is exactly 2ci ,j .
5. Consider an iteration in which a node vj is inserted between nodes vi

and vk in the current tour.
6. Increase in the length of the tour is ci ,j + cj,k − ci ,k .
7. But, by the triangle inequality cj,k ≤ cj,i + ci ,k

8. Increase in cost in this iteration is at most ci ,j + cj,i = 2ci ,j .
9. Hence the final tour has cost at most twice the cost of the MST.

10. Thus Algorithm 1 is a 2-factor approximation algorithm.

Algorithm 2 : Double tree algorithm

1. Compute a MST.
2. Replace each edge of MST by two copies of itself.
3. Find an Eulerian tour.
4. Shortcut the tour to get a Hamiltonian cycle.
5. Return the Hamilton cycle.

Example

C1

C2

C5

C3

C4

100

85

65

110

20

66

101

31

Example

C1

C2

C5

C3

C4

65
20

66
31

Example

C1

C2

C5

C3

C4

65

20

66
31

20
65

31

66

Example

C1

C2

C5

C3

C4

65

20

66
31

20
65

31

66 C1, C3, C4, C3, C5, C3, C2, C3, C1

Eulerian tour

Example

C1

C2

C5

C3

C4

20

66

C1, C3, C4, C3, C5, C3, C2, C3, C1

Eulerian tour

Hamilton Cycle

C1, C3, C4, C5, C2, C1

110

85

100

Analysis of Algorithm 2

1. Let C ∗ be the cost of an optimal tour.
2. The cost of MST ≤ C ∗

3. Cost of the Eulerian tour ≤ 2C ∗.
4. Cost of the Hamilton cycle ≤ Cost of the Eulerian tour (by triangle

inequality).
5. Thus Algorithm 2 is a 2-factor approximation algorithm.

Some results

1. It is possible to get approximation factor 1.5 (Christofide’s algorithm).
2. Unless P = NP, for any constant α < 220

219 ≈ 1.0045, no
α-approximation algorithm for metric TSP exists.

3) Bin Packing

Instance n items with sizes a1, a2, . . . , an (0 < ai ≤ 1).
Feasible Solution A packing in unit-sized bins.

Value The value of the solution is the number of bins used, and
the goal is to minimize the number.

Example

Example

Algorithm 1: First Fit

1. Place the items in the order in which they arrive.
2. Place the next item into the lowest numbered bin in which it fits.
3. If it does not fit into any open bin, start a new bin.

Ex: Consider the set of items
S = {0.4, 0.8, 0.5, 0.1, 0.7, 0.6, 0.1, 0.4, 0.2, 0.2} and bins of size 1

0.4

0.5

0.1

0.8

0.1

0.7

0.2

0.6

0.4

0.2

Figure: Packing under First Fit

Analysis of First fit algorithm

1. Let C ∗ be the optimum number of bins.
2. Suppose our algorithm uses C bins.
3. Then, at least (C − 1) bins are more than half full (since we never

have two bins less than half full).

4. C ∗ ≥
n∑

i=1
ai >

C−1
2 =⇒ 2C ∗ > C − 1 =⇒ 2C ∗ ≥ C (as all are integers)

5. Hence 2-factor

Algorithm 2: Next fit algorithm

1. Place the items in the order in which they arrive.
2. Place the next item into the current bin if it fits.
3. If it does not, close that bin and start a new bin.

Ex: Consider the set of items
S = {0.4, 0.8, 0.5, 0.1, 0.7, 0.6, 0.1, 0.4, 0.2, 0.2} and bins of size 1

0.4

0.8

0.5

0.1

0.7
0.6

0.1

0.4

0.2

0.2

Figure: Packing under Next Fit

Algorithm 3: Best fit algorithm

1. Place the items in the order in which they arrive.
2. Place the next item into that bin which will leave the least room left

over after the item is placed in the bin.
3. If it does not fit in any bin, start a new bin.

Ex: Consider the set of items
S = {0.4, 0.8, 0.5, 0.1, 0.7, 0.6, 0.1, 0.4, 0.2, 0.2} and bins of size 1

0.4

0.5

0.1

0.8

0.1

0.7

0.2

0.6

0.4

0.2

Figure: Packing under Best Fit

I Algorithm 2 and Algorithm 3 are 2-factor approximation algorithms.
I All the 3 algorithms are heuristics.
I Unless P = NP, there can not exist a α-approximation algorithm for

the bin packing problem for any α < 3
2 .

- Reduction from Partition problem

Polynomial time approximation scheme (PTAS)

1. A PTAS is a family of algorithms {Aε}.
2. There is an algorithm for every ε > 0.
3. {Aε} is a (1 + ε)- approximation algorithm for minimization problems.
4. {Aε} is a (1− ε)-approximation algorithm for maximization problems.
5. The running time is required to be polynomial in n for every fixed ε

but can be different for different ε.
6. As the ε decreases the running time of the algorithm can increase

rapidly, e.g., O(n 2
ε).

7. We have a Fully PTAS (FPTAS) when its running time is polynomial
not only in n but also in 1

ε
, e.g., O((1

ε
)3n2).

8. Bin Packing and MTSP can not admit a PTAS unless P = NP. Why?
9. However there is a PTAS for Euclidean TSP (given a set P of points

in the Euclidean plane, find a tour of minimum of cost that visits all
the points of P [Arora, 1996]).

Shifting Strategy [Hochbaum and Maass, 1985]

Figure: Points in the plane in an enclosed area

Shifting Strategy [Hochbaum and Maass, 1985]

D

Figure: Covering the points with minimum number of disks of diameter D

Shifting Strategy [Hochbaum and Maass, 1985]

D

Figure: The area I is subdivided into vertical strips of width D

Shifting Strategy [Hochbaum and Maass, 1985]

D D D

l ×D

Figure: Groups of l consecutive strips

Shifting Strategy [Hochbaum and Maass, 1985]

D D D

Figure: After first shift

Shifting Strategy [Hochbaum and Maass, 1985]

D D D

Figure: After second shift

Shifting Strategy [Hochbaum and Maass, 1985]

D D D

Figure: After third shift

Conclusion

1. Basics of approximation.
2. Need of approximation algorithms.
3. Some examples, Vertex cover, TSP, and Bin packing.
4. PTAS

Some books

1. The Design of Approximation Algorithms by David P. Williamson and
David B. Shmoys, First Edition, 2011.

2. Geometric Approximation Algorithms by Sariel Har-Peled, First
Edition, 2011.

3. Approximation Algorithms by Vijay V. Vazirani, First Edition.

References I

Arora, S. (1996).
Polynomial time approximation schemes for euclidean tsp and other
geometric problems.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual
Symposium on, pages 2–11. IEEE.

Håstad, J. (2001).
Some optimal inapproximability results.
Journal of the ACM (JACM), 48(4):798–859.

Hochbaum, D. S. and Maass, W. (1985).
Approximation schemes for covering and packing problems in image
processing and VLSI.
Journal of the ACM (JACM), 32(1):130–136.

Karakostas, G. (2009).
A better approximation ratio for the vertex cover problem.
ACM Transactions on Algorithms (TALG), 5(4):41.

Thank You!

