
Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Introduction to Algorithms

Arijit Bishnu
(arijit@isical.ac.in)

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

Kolkata 700108, India.

Talk at Indian Institute of Technology, Guwahati,
February 15, 2016.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Organization

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Some basic idea

Geometric series sum

What is a + a · r + a · r2 + . . .+ a · rn in terms of O(??) when
r < 1, or r > 1?

If r = 1, then the sum is a(n + 1); else if r > 1, the last term
dominates; and if r < 1, the first term dominates.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Some basic idea

Geometric series sum

What is a + a · r + a · r2 + . . .+ a · rn in terms of O(??) when
r < 1, or r > 1?

If r = 1, then the sum is a(n + 1); else if r > 1, the last term
dominates; and if r < 1, the first term dominates.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Some basic idea

Geometric series sum

What is a + a · r + a · r2 + . . .+ a · rn in terms of O(??) when
r < 1, or r > 1?

If r = 1, then the sum is a(n + 1); else if r > 1, the last term
dominates; and if r < 1, the first term dominates.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Geometric series sum and throwing away a constant fraction

An algorithm discards 1/3 of whatever objects it is processing
and recurses on the remaining 2/3rd and suppose that in each
call, the algorithm does not spend more than a constant time
for each element. What is the overall time?

cn + (2/3)cn + (2/3)2cn + . . .+ (2/3)icn + . . .+ 1

=

dlog3/2 ne∑
i=0

(2/3)icn ≤
∞∑
i=0

(2/3)icn = 3cn = θ(n)

The guiding divide and conquer recurrence

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Geometric series sum and throwing away a constant fraction

An algorithm discards 1/3 of whatever objects it is processing
and recurses on the remaining 2/3rd and suppose that in each
call, the algorithm does not spend more than a constant time
for each element. What is the overall time?

cn + (2/3)cn + (2/3)2cn + . . .+ (2/3)icn + . . .+ 1

=

dlog3/2 ne∑
i=0

(2/3)icn ≤
∞∑
i=0

(2/3)icn = 3cn = θ(n)

The guiding divide and conquer recurrence

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Geometric series sum and throwing away a constant fraction

An algorithm discards 1/3 of whatever objects it is processing
and recurses on the remaining 2/3rd and suppose that in each
call, the algorithm does not spend more than a constant time
for each element. What is the overall time?

cn + (2/3)cn + (2/3)2cn + . . .+ (2/3)icn + . . .+ 1

=

dlog3/2 ne∑
i=0

(2/3)icn ≤
∞∑
i=0

(2/3)icn = 3cn = θ(n)

The guiding divide and conquer recurrence

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Ω, Lower bound

Omega, Ω

T (n) is omega g(n), T (n) = Ω(g(n)), if for sufficiently large n,
the function T (n) is bounded from below by a constant multiple of
g(n).

Formal definition

T (n) = Ω(g(n)), if there exist constants d > 0 and n1 ≥ 0 so that
∀n ≥ n1, we have T (n) ≥ d · g(n).
Note that the definition requires a constant d to exist that works
for all n; d cannot depend on n.

Relation between O and Ω

f (n) = Ω(g(n)) if and only if g(n) = O(f (n)).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Ω, Lower bound

Omega, Ω

T (n) is omega g(n), T (n) = Ω(g(n)), if for sufficiently large n,
the function T (n) is bounded from below by a constant multiple of
g(n).

Formal definition

T (n) = Ω(g(n)), if there exist constants d > 0 and n1 ≥ 0 so that
∀n ≥ n1, we have T (n) ≥ d · g(n).
Note that the definition requires a constant d to exist that works
for all n; d cannot depend on n.

Relation between O and Ω

f (n) = Ω(g(n)) if and only if g(n) = O(f (n)).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Ω, Lower bound

Omega, Ω

T (n) is omega g(n), T (n) = Ω(g(n)), if for sufficiently large n,
the function T (n) is bounded from below by a constant multiple of
g(n).

Formal definition

T (n) = Ω(g(n)), if there exist constants d > 0 and n1 ≥ 0 so that
∀n ≥ n1, we have T (n) ≥ d · g(n).
Note that the definition requires a constant d to exist that works
for all n; d cannot depend on n.

Relation between O and Ω

f (n) = Ω(g(n)) if and only if g(n) = O(f (n)).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Exercises on O and Ω

Exercise on O

log(n!) =
n∑

i=1
log i ≤

n∑
i=1

log n = O(n log n)

Exercise on Ω

log(n!) =?

Exercise on Ω

log(n!) =
n∑

i=1
log i ≥

d n
2
e∑

i=1
log
(

n
2

)
= dn2e log

(
n
2

)
= Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Exercises on O and Ω

Exercise on O

log(n!) =
n∑

i=1
log i ≤

n∑
i=1

log n = O(n log n)

Exercise on Ω

log(n!) =?

Exercise on Ω

log(n!) =
n∑

i=1
log i ≥

d n
2
e∑

i=1
log
(

n
2

)
= dn2e log

(
n
2

)
= Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Exercises on O and Ω

Exercise on O

log(n!) =
n∑

i=1
log i ≤

n∑
i=1

log n = O(n log n)

Exercise on Ω

log(n!) =?

Exercise on Ω

log(n!) =
n∑

i=1
log i ≥

d n
2
e∑

i=1
log
(

n
2

)
= dn2e log

(
n
2

)
= Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

o, Asymptotically tight bound

Small-Oh, o

T (n) = o(f (n)), if for sufficiently large n, the function T (n)
becomes insignificant relative to f (n).

Formal definition

T (n) = O(f (n)), if for every constant c > 0, there exists a n0 ≥ 0
so that ∀n ≥ n0, we have T (n) < c · f (n).
Note that the definition is for all constants c > 0.

Exercise

Suggest a function that is o(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

o, Asymptotically tight bound

Small-Oh, o

T (n) = o(f (n)), if for sufficiently large n, the function T (n)
becomes insignificant relative to f (n).

Formal definition

T (n) = O(f (n)), if for every constant c > 0, there exists a n0 ≥ 0
so that ∀n ≥ n0, we have T (n) < c · f (n).
Note that the definition is for all constants c > 0.

Exercise

Suggest a function that is o(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

o, Asymptotically tight bound

Small-Oh, o

T (n) = o(f (n)), if for sufficiently large n, the function T (n)
becomes insignificant relative to f (n).

Formal definition

T (n) = O(f (n)), if for every constant c > 0, there exists a n0 ≥ 0
so that ∀n ≥ n0, we have T (n) < c · f (n).
Note that the definition is for all constants c > 0.

Exercise

Suggest a function that is o(1).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Binary search

The guiding recurrence

Probe at the middle and based on the comparison, recurse on
one half. The guiding recurrence is

T (n) ≤

{
1 if n = 1

T (bn/2c) + 1 if n ≥ 2
.

This recurrence solves to ?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Binary search

The guiding recurrence

Probe at the middle and based on the comparison, recurse on
one half. The guiding recurrence is

T (n) ≤

{
1 if n = 1

T (bn/2c) + 1 if n ≥ 2
.

This recurrence solves to ?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Binary search

The guiding recurrence

Probe at the middle and based on the comparison, recurse on
one half. The guiding recurrence is

T (n) ≤

{
1 if n = 1

T (bn/2c) + 1 if n ≥ 2
.

This recurrence solves to ?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Binary search

The guiding recurrence

Probe at the middle and based on the comparison, recurse on
one half. The guiding recurrence is

T (n) ≤

{
1 if n = 1

T (bn/2c) + 1 if n ≥ 2
.

This recurrence solves to ?

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Merge Sort

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Mergesort

What is the guiding recurrence?

T (n) ≤

{
0 if n = 1

2T (n/2) + n − 1 if n ≥ 2
.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Integer multiplication

Let x and y be two n-bit strings. We want to find x × y = xy .

Let x = xL ◦ xR and y = yL ◦ yR , where xL, xR , yL, yR be
n/2-bit strings.

xy = (2n/2xL + xR)(2n/2yL + yR)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

(Significant operations are 4 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 4T (n/2) + O(n).)

= 2nxLyL + 2n/2{(xL + xR)(yL + yR)− xLyL− xRyR}+ xRyR

(Significant operations are 3 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 3T (n/2) + O(n).)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Integer multiplication

Let x and y be two n-bit strings. We want to find x × y = xy .

Let x = xL ◦ xR and y = yL ◦ yR , where xL, xR , yL, yR be
n/2-bit strings.

xy = (2n/2xL + xR)(2n/2yL + yR)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

(Significant operations are 4 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 4T (n/2) + O(n).)

= 2nxLyL + 2n/2{(xL + xR)(yL + yR)− xLyL− xRyR}+ xRyR

(Significant operations are 3 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 3T (n/2) + O(n).)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Integer multiplication

Let x and y be two n-bit strings. We want to find x × y = xy .

Let x = xL ◦ xR and y = yL ◦ yR , where xL, xR , yL, yR be
n/2-bit strings.

xy = (2n/2xL + xR)(2n/2yL + yR)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

(Significant operations are 4 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 4T (n/2) + O(n).)

= 2nxLyL + 2n/2{(xL + xR)(yL + yR)− xLyL− xRyR}+ xRyR

(Significant operations are 3 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 3T (n/2) + O(n).)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Integer multiplication

Let x and y be two n-bit strings. We want to find x × y = xy .

Let x = xL ◦ xR and y = yL ◦ yR , where xL, xR , yL, yR be
n/2-bit strings.

xy = (2n/2xL + xR)(2n/2yL + yR)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

(Significant operations are 4 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 4T (n/2) + O(n).)

= 2nxLyL + 2n/2{(xL + xR)(yL + yR)− xLyL− xRyR}+ xRyR

(Significant operations are 3 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 3T (n/2) + O(n).)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

A few recursions

A divide and conquer recursion

The recursion T (n) = 2T (n/2) + O(n) solves to
T (n) = O(n log n).

Another divide and conquer recursion

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

A few recursions

A divide and conquer recursion

The recursion T (n) = 2T (n/2) + O(n) solves to
T (n) = O(n log n).

Another divide and conquer recursion

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO(n
2k) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Recurrence

Master theorem

If T (n) = aT (dn/be) + O(nd) for some constants a > 0, b > 1,
and d ≥ 0, then

T (n) ≤

O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

.

Proof idea

The k-th level of the tree is made up of ak subproblems, each of
size n/bk . The total work done is ak · O(n

bk)d = O(nd) · (a
bd)k .

The three cases now follow from the idea of the sum of a
geometric series.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Recurrence

Master theorem

If T (n) = aT (dn/be) + O(nd) for some constants a > 0, b > 1,
and d ≥ 0, then

T (n) ≤

O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

.

Proof idea

The k-th level of the tree is made up of ak subproblems, each of
size n/bk . The total work done is ak · O(n

bk)d = O(nd) · (a
bd)k .

The three cases now follow from the idea of the sum of a
geometric series.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on comparison based sorting

The model of computation is the decision tree model.

Observation

Time complexity in the worst case is the length of a longest path
from the root to a leaf, which is the height of the decision tree.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on comparison based sorting

The model of computation is the decision tree model.

1 : 2

2 : 3 1 : 3

a1 < a2 < a3

a3 < a2 < a1a1 < a3 < a2 a3 < a1 < a2 a2 < a3 < a1

a2 < a1 < a31 : 3 2 : 3

a1 > a2

a1 > a3

a2 > a3

Observation

Time complexity in the worst case is the length of a longest path
from the root to a leaf, which is the height of the decision tree.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on comparison based sorting

The model of computation is the decision tree model.

1 : 2

2 : 3 1 : 3

a1 < a2 < a3

a3 < a2 < a1a1 < a3 < a2 a3 < a1 < a2 a2 < a3 < a1

a2 < a1 < a31 : 3 2 : 3

a1 > a2

a1 > a3

a2 > a3

Observation

Time complexity in the worst case is the length of a longest path
from the root to a leaf, which is the height of the decision tree.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Quicksort and heapsort

Quicksort

The worst case time complexity of quicksort is O(n2).

Heapsort

The worst case time complexity of heapsort is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Average case analysis of quicksort

We will assume that the input elements are distinct and
w.l.o.g. we also assume that the numbers to be sorted are
A = {1, 2, . . . , n}.

All permutations are equally likely. This ensures that any
number in A is equally likely to be the pivot.

Let T (n) denote the number of comparisons done by the
algorithm on an average on A.

We average over all possible inputs and the expression is

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Average case analysis of quicksort

We will assume that the input elements are distinct and
w.l.o.g. we also assume that the numbers to be sorted are
A = {1, 2, . . . , n}.
All permutations are equally likely. This ensures that any
number in A is equally likely to be the pivot.

Let T (n) denote the number of comparisons done by the
algorithm on an average on A.

We average over all possible inputs and the expression is

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Average case analysis of quicksort

We will assume that the input elements are distinct and
w.l.o.g. we also assume that the numbers to be sorted are
A = {1, 2, . . . , n}.
All permutations are equally likely. This ensures that any
number in A is equally likely to be the pivot.

Let T (n) denote the number of comparisons done by the
algorithm on an average on A.

We average over all possible inputs and the expression is

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Average case analysis of quicksort

We will assume that the input elements are distinct and
w.l.o.g. we also assume that the numbers to be sorted are
A = {1, 2, . . . , n}.
All permutations are equally likely. This ensures that any
number in A is equally likely to be the pivot.

Let T (n) denote the number of comparisons done by the
algorithm on an average on A.

We average over all possible inputs and the expression is

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Average case analysis of quicksort

T (n) = (n − 1) +
1

n

n∑
i=1

(T (i − 1) + T (n − i))

Since,
n∑

i=1

T (n−i) = T (n−1)+T (n−2)+· · ·+T (0) =
n∑

i=1

T (i−1)

We have T (n) = (n − 1) +
2

n

n∑
i=1

T (i − 1).

This recurrence solves to O(n log n)

Average case time complexity of quicksort

Average case time complexity of quicksort is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Linear time sort(!)

What happened to the lower bound of Ω(n log n)?

Counting sort

Let L = {a1, . . . , an} be a list of n numbers where each ai is
an integer in the range 0 to k for some integer k .

The sorting can be done in O(n + k) time. When k = O(n),
then it is Θ(n).

Counting sort is a stable sort.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Linear time sort(!)

What happened to the lower bound of Ω(n log n)?

Counting sort

Let L = {a1, . . . , an} be a list of n numbers where each ai is
an integer in the range 0 to k for some integer k .

The sorting can be done in O(n + k) time. When k = O(n),
then it is Θ(n).

Counting sort is a stable sort.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Linear time sort(!)

What happened to the lower bound of Ω(n log n)?

Counting sort

Let L = {a1, . . . , an} be a list of n numbers where each ai is
an integer in the range 0 to k for some integer k .

The sorting can be done in O(n + k) time. When k = O(n),
then it is Θ(n).

Counting sort is a stable sort.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Linear time sort(!)

What happened to the lower bound of Ω(n log n)?

Counting sort

Let L = {a1, . . . , an} be a list of n numbers where each ai is
an integer in the range 0 to k for some integer k .

The sorting can be done in O(n + k) time. When k = O(n),
then it is Θ(n).

Counting sort is a stable sort.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}

Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}
Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}
Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}
Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}

Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}
Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}
Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}
Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}

Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}
Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}
Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}
Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}
Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}
Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}
Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.

With each real number xi , we associate the point (xi , x
2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Selection

Median finding

We can find the median or any k-th largest element of a set of
elements in Θ(n) time.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Deterministic selection

Figure: The schematic for selection algorithm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

A digression
into Probability

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Expectation

Random variable

A function defined on a sample space is called a random variable.
Given a random variable X , Pr [X = j] means X ’s probability of
taking the value j .

Expectation – “the average value”

The expectation of a random variable X is defined as:
E [X] =

∑∞
j=0 j · Pr [X = j]

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Randomized Quick Sort

RandQSORT(A, p, q)

1: If p ≥ q, then EXIT.

2: While no central splitter has been found, execute the following
steps:

2.1: Choose uniformly at random a number r ∈ {p, p + 1, . . . , q}.
2.2: Compute s = number of elements in A that are less than A[r],

and
t = number of elements in A that are greater than A[r].

2.3: If s ≥ q−p
4 and t ≥ q−p

4 , then A[r] is a central splitter.

3: Position A[r] in A[s + 1], put the members in A that are
smaller than the central splitter in A[p . . . s] and the members
in A that are larger than the central splitter in A[s + 2 . . . q].

4: RandQSORT(A, p, s);

5: RandQSORT(A, s + 2, q).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Fact: One execution of Step 2 needs O(q − p) time.

Question: How many times Step 2 is executed for finding a
central splitter ?

Result:

The probability that the randomly chosen element is a central
splitter is 1

2 .

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Recall “Waiting for success”

If p be the probability of success of a random experiment, and we
continue the random experiment till we get success, the expected
number of experiments we need to perform is 1

p .

Implication in Our Case

The expected number of times Step 2 needs to be repeated to
get a central splitter (success) is 2 as the corresponding
success probability is 1

2 .

Thus, the expected time complexity of Step 2 is O(n)

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Finding the k-th largest

Median Finding

Similar ideas of getting a central splitter and waiting for success
bound applies for finding the median in O(n) time.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Outline

1 Asymptotic Notation

2 Recursion

3 Sorting

4 Reduction for Lower Bounds

5 Selection

6 Dynamic Programming

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.
The algorithm takes O(nm) time by filling up a table of size
nm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.
The algorithm takes O(nm) time by filling up a table of size
nm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.
The algorithm takes O(nm) time by filling up a table of size
nm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.
The algorithm takes O(nm) time by filling up a table of size
nm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.

The algorithm takes O(nm) time by filling up a table of size
nm.

Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j] = 0.

If i , j > 0 and ai = bj , then L[i , j] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j] = max{L[i , j − 1], L[i − 1, j]}.
The algorithm takes O(nm) time by filling up a table of size
nm.

	Asymptotic Notation
	Recursion
	Sorting
	Reduction for Lower Bounds
	Selection
	Dynamic Programming

