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Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

O, Upper bound

Any function considered here is f : N→ R+ ∪ {0}.

Big-Oh, O

T (n) is order f (n), T (n) = O(f (n)), if for sufficiently large n, the
function T (n) is bounded above by a constant multiple of f (n).

Formal definition

T (n) = O(f (n)), if there exist constants c > 0 and n0 ≥ 0 so that
∀n ≥ n0, we have T (n) ≤ c · f (n).
Note that the definition requires a constant c to exist that works
for all n; c cannot depend on n.

Exercise

What is O(1)?

Is 2n = O(2n−1)?

What is 1 + r + r2 + . . .+ rn in terms of O(r??)?
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Some basic idea

Geometric series sum

What is a + a · r + a · r2 + . . .+ a · rn in terms of O(??) when
r < 1, or r > 1?

If r = 1, then the sum is a(n + 1); else if r > 1, the last term
dominates; and if r < 1, the first term dominates.
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Geometric series sum and throwing away a constant fraction

An algorithm discards 1/3 of whatever objects it is processing
and recurses on the remaining 2/3rd and suppose that in each
call, the algorithm does not spend more than a constant time
for each element. What is the overall time?

cn + (2/3)cn + (2/3)2cn + . . .+ (2/3)icn + . . .+ 1

=

dlog3/2 ne∑
i=0

(2/3)icn ≤
∞∑
i=0

(2/3)icn = 3cn = θ(n)

The guiding divide and conquer recurrence

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).
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Ω, Lower bound

Omega, Ω

T (n) is omega g(n), T (n) = Ω(g(n)), if for sufficiently large n,
the function T (n) is bounded from below by a constant multiple of
g(n).

Formal definition

T (n) = Ω(g(n)), if there exist constants d > 0 and n1 ≥ 0 so that
∀n ≥ n1, we have T (n) ≥ d · g(n).
Note that the definition requires a constant d to exist that works
for all n; d cannot depend on n.

Relation between O and Ω

f (n) = Ω(g(n)) if and only if g(n) = O(f (n)).
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Exercises on O and Ω

Exercise on O

log(n!) =
n∑

i=1
log i ≤

n∑
i=1

log n = O(n log n)

Exercise on Ω

log(n!) =?

Exercise on Ω

log(n!) =
n∑

i=1
log i ≥

d n
2
e∑

i=1
log
(

n
2

)
= dn2e log

(
n
2

)
= Ω(n log n)
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Θ, Asymptotically tight bound

Theta, Θ

T (n) is theta h(n), T (n) = Θ(h(n)), if for sufficiently large n, the
function T (n) is bounded from both above and below by a
constant multiple of h(n).

Formal definition

T (n) = Θ(h(n)), if and only if T (n) = O(h(n)) and
T (n) = Ω(h(n)).

Exercise

How many constants you need for Θ?

Any constant function is O(1), Ω(1) and Θ(1).
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Properties of asymptotic growth rates

Transitivity

If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).

If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).

Exercise

Is 2n = O(1)?

Sums of functions

Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions
such that fi = O(h), ∀i . Then f1 + f2 + · · ·+ fk = O(h).
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o, Asymptotically tight bound

Small-Oh, o

T (n) = o(f (n)), if for sufficiently large n, the function T (n)
becomes insignificant relative to f (n).

Formal definition

T (n) = O(f (n)), if for every constant c > 0, there exists a n0 ≥ 0
so that ∀n ≥ n0, we have T (n) < c · f (n).
Note that the definition is for all constants c > 0.

Exercise

Suggest a function that is o(1).
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Binary search

The guiding recurrence

Probe at the middle and based on the comparison, recurse on
one half. The guiding recurrence is

T (n) ≤

{
1 if n = 1

T (bn/2c) + 1 if n ≥ 2
.

This recurrence solves to ?
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Merge Sort
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Mergesort

What is the guiding recurrence?

T (n) ≤

{
0 if n = 1

2T (n/2) + n − 1 if n ≥ 2
.
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Integer multiplication

Let x and y be two n-bit strings. We want to find x × y = xy .

Let x = xL ◦ xR and y = yL ◦ yR , where xL, xR , yL, yR be
n/2-bit strings.

xy = (2n/2xL + xR)(2n/2yL + yR)
= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

(Significant operations are 4 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 4T (n/2) + O(n).)

= 2nxLyL + 2n/2{(xL + xR)(yL + yR)− xLyL− xRyR}+ xRyR

(Significant operations are 3 n/2-bit multiplications and O(n)
left shifts and additions; recurrence is
T (n) ≤ 3T (n/2) + O(n).)
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A few recursions

A divide and conquer recursion

The recursion T (n) = 2T (n/2) + O(n) solves to
T (n) = O(n log n).

Another divide and conquer recursion

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

A few recursions

A divide and conquer recursion

The recursion T (n) = 2T (n/2) + O(n) solves to
T (n) = O(n log n).

Another divide and conquer recursion

The recursion T (n) = T (c1n) + T (c2n) + O(n) where c1 and c2

are constants and c1 + c2 < 1 solves to T (n) = O(n).



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Solving the previous recurrence T (n) ≤ 3T (n/2) + O(n)

Let us look at the recursion tree formed by the pattern of the
recursive calls.

At each successive level, the size of the subproblems get
halved.

At (log2 n)-th level, the subproblem size is 1 and the recursion
ends. The height of the tree is log2 n.

At depth k, there are 3k subproblems, each of size n/2k .

Total time spent at depth k is 3kO( n
2k ) = (3

2)kO(n).

The above is a geometric series with common ratio greater
than 1. So, the last term (k = log2 n) should matter. The last
term is O(3log2 n) ≈ O(nlog2 3) ≈ O(n1.59).
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Recurrence

Master theorem

If T (n) = aT (dn/be) + O(nd) for some constants a > 0, b > 1,
and d ≥ 0, then

T (n) ≤


O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

.

Proof idea

The k-th level of the tree is made up of ak subproblems, each of
size n/bk . The total work done is ak · O( n

bk )d = O(nd) · ( a
bd )k .

The three cases now follow from the idea of the sum of a
geometric series.
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Lower bound on comparison based sorting

The model of computation is the decision tree model.

Observation

Time complexity in the worst case is the length of a longest path
from the root to a leaf, which is the height of the decision tree.
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Lower bound on worst case of comparison based sorting

Lower bound on worst case of comparison based sorting is
Ω(n log n)

Let ` be the number of leaves in T and let h be its height.

The number of vertices at level h, which are leaves, is at most
2h.

Since, ` ≥ n!, n! ≤ ` ≤ 2h. Therefore, h ≥ log n!.

h ≥ log n! =
n∑

i=1
log i = Ω(n log n).

Lower bound on average case of comparison based sorting

Lower bound on average case of comparison based sorting is also
Ω(n log n)
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Quicksort and heapsort

Quicksort

The worst case time complexity of quicksort is O(n2).

Heapsort

The worst case time complexity of heapsort is O(n log n).
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Average case analysis of quicksort

We will assume that the input elements are distinct and
w.l.o.g. we also assume that the numbers to be sorted are
A = {1, 2, . . . , n}.

All permutations are equally likely. This ensures that any
number in A is equally likely to be the pivot.

Let T (n) denote the number of comparisons done by the
algorithm on an average on A.

We average over all possible inputs and the expression is
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Average case analysis of quicksort

T (n) = (n − 1) +
1

n

n∑
i=1

(T (i − 1) + T (n − i))

Since,
n∑

i=1

T (n−i) = T (n−1)+T (n−2)+· · ·+T (0) =
n∑

i=1

T (i−1)

We have T (n) = (n − 1) +
2

n

n∑
i=1

T (i − 1).

This recurrence solves to O(n log n)

Average case time complexity of quicksort

Average case time complexity of quicksort is O(n log n).
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Linear time sort(!)

What happened to the lower bound of Ω(n log n)?

Counting sort

Let L = {a1, . . . , an} be a list of n numbers where each ai is
an integer in the range 0 to k for some integer k .

The sorting can be done in O(n + k) time. When k = O(n),
then it is Θ(n).

Counting sort is a stable sort.
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Counting sort

Input: A = {2, 5, 3, 0, 2, 3, 0, 3}

Do a hashing type operation on an auxiliary array C of size k
to find frequency. C = {2, 0, 2, 3, 0, 1}
Find cumulative frequency of C . C = {2, 2, 4, 7, 7, 8}
Start from the end of A; use the number to hash to C ; use
that number of C to hash to a location of B and write the
number you picked up from A. (Indexing is from 0.) Reduce
that location of C by 1.

Working on the example, pick up 3 from A; go to 3rd location
of C ; there is 7; go to 7th location of B, write 3. B and C
looks like B = {x , x , x , x , x , x , 3, x} and C = {2, 2, 4, 6, 7, 8}.
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Lower bounds by reduction

Convex hull problem

Given a set of points P = {p1, . . . , pn}, compute the smallest
convex set that contains P.

Lower bound for convex hull

We are to sort the real number X = {x1, . . . , xi , . . . , xn}.
With each real number xi , we associate the point (xi , x

2
i ) in

the 2D plane.

Any algorithm for finding convex hull will give the output
sorted by their x-coordinates.

Read the x-coordinates of the points on the convex hull to get
the sorted order of X .

Thus, convex hull has a lower bound of Ω(n log n).
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Selection

Median finding

We can find the median or any k-th largest element of a set of
elements in Θ(n) time.
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Deterministic selection

Figure: The schematic for selection algorithm.
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A digression
into Probability
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Expectation

Random variable

A function defined on a sample space is called a random variable.
Given a random variable X , Pr [X = j ] means X ’s probability of
taking the value j .

Expectation – “the average value”

The expectation of a random variable X is defined as:
E [X ] =

∑∞
j=0 j · Pr [X = j ]
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Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j ] = (1− p)(j−1) · p.

So, the expectation of X , E [X ] =
∑∞

j=0 j · Pr [X = j ] = 1
p .



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j ] = (1− p)(j−1) · p.

So, the expectation of X , E [X ] =
∑∞

j=0 j · Pr [X = j ] = 1
p .



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j ] = (1− p)(j−1) · p.

So, the expectation of X , E [X ] =
∑∞

j=0 j · Pr [X = j ] = 1
p .



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j ] = (1− p)(j−1) · p.

So, the expectation of X , E [X ] =
∑∞

j=0 j · Pr [X = j ] = 1
p .



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j ] = (1− p)(j−1) · p.

So, the expectation of X , E [X ] =
∑∞

j=0 j · Pr [X = j ] = 1
p .



Asymptotic Notation Recursion Sorting Reduction for Lower Bounds Selection Dynamic Programming

Randomized Quick Sort

RandQSORT(A, p, q)

1: If p ≥ q, then EXIT.

2: While no central splitter has been found, execute the following
steps:

2.1: Choose uniformly at random a number r ∈ {p, p + 1, . . . , q}.
2.2: Compute s = number of elements in A that are less than A[r ],

and
t = number of elements in A that are greater than A[r ].

2.3: If s ≥ q−p
4 and t ≥ q−p

4 , then A[r ] is a central splitter.

3: Position A[r ] in A[s + 1], put the members in A that are
smaller than the central splitter in A[p . . . s] and the members
in A that are larger than the central splitter in A[s + 2 . . . q].

4: RandQSORT(A, p, s);

5: RandQSORT(A, s + 2, q).
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Analysis of RandQSORT

Fact: One execution of Step 2 needs O(q − p) time.

Question: How many times Step 2 is executed for finding a
central splitter ?

Result:

The probability that the randomly chosen element is a central
splitter is 1

2 .
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Recall “Waiting for success”

If p be the probability of success of a random experiment, and we
continue the random experiment till we get success, the expected
number of experiments we need to perform is 1

p .

Implication in Our Case

The expected number of times Step 2 needs to be repeated to
get a central splitter (success) is 2 as the corresponding
success probability is 1

2 .

Thus, the expected time complexity of Step 2 is O(n)
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Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).
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Finding the k-th largest

Median Finding

Similar ideas of getting a central splitter and waiting for success
bound applies for finding the median in O(n) time.
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Longest common subsequence

Given two strings A and B of lengths n and m respectively over an
alphabet set Σ, determine the length of the longest subsequence
that is common to both A and B.
Let A = zxyxyz and B = xyyzx and Σ = {x , y , z}. The LCS is
xyyz and the length is 4.

Let A = a1a2 · · · an and B = b1b2 · · · bm. Let L[i , j ] denote
the LCS of a1a2 · · · ai and b1b2 · · · bj .

If i = 0 or j = 0, then L[i , j ] = 0.

If i , j > 0 and ai = bj , then L[i , j ] = L[i − 1, j − 1] + 1.

If i , j > 0 and ai 6= bj , then
L[i , j ] = max{L[i , j − 1], L[i − 1, j ]}.
The algorithm takes O(nm) time by filling up a table of size
nm.
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