

Automatic Recognition of FEC Code and Interleaver Parameters in a Robust Environment

Swaminathan R*, A. S. Madhukumar*, Wang Guohua^, and Ting Shang Kee^ *School of Computer Science and Engineering ^Temasek Laboratories Nanyang Technological University Singapore

Email : sramabadran@ntu.edu.sg

Outline of the Presentation

- Classification of Error Correcting Codes and Estimation of Interleaver Parameters
 - Introduction
 - Parameter estimation : Non-erroneous scenario
 - Code classification
 - Parameter estimation : Erroneous scenario
 - Simulation Results
- Blind Reconstruction of Reed-Solomon Encoder and Interleavers Over Noisy Environment
 - Introduction
 - RS Code Parameter Estimation Algorithms
 - Joint RS code and Interleaver Parameter Estimation Algorithms
 - Simulation Results

Part 1: Classification of Error Correcting Codes and Estimation of Interleaver Parameters

Swaminathan R and A.S.Madhukumar, ``Classication of error correction codes and estimation of interleaver parameters in a robust environment", IEEE Transactions on Broadcasting, vol. 63, no. 3, pp. 463 - 478, Sept. 2017.

Introduction

- Channel encoding/decoding have become an integral part of modern digital communication systems
- Efficient encoding and decoding methods have been proposed to control and correct the errors introduced by the noisy channel
- Interleaver plays a vital role in communication and storage systems to distribute the burst errors

Introduction

- Reconstructing an unknown code from the observation of noisy codewords problem is related to cryptanalysis
- > This is called the code reconstruction problem in the literature
- An observer wants to extract information from a noisy data stream where the error correcting code used is unknown
- This problem arises in a non-cooperative context where observing a binary sequence originating from an unknown source
- Accurate information about the parameters of encoding scheme is required at the receiver to decode FEC codes
- Non-cooperative scenario: Parameters are either not known or only partially known at the receiver
- > Applications:
 - Military and spectrum surveillance system,
 - Signal intelligence (SIGINT) (intelligence gathered by interception of signals)
 - Adaptive modulation and coding (AMC)
 - Cognitive radio

Introduction

- Military surveillance may involve decoding an adversary's received data when the underlying channel code is not known
- AMC communication systems: Control channel will signal the AMC parameters to the receiver
- Blind recognition lead to conservation of channel resources
- AMC Wireless sensor networks (WSNs) : Reduces transmission overheads and total energy consumption of WSNs
- Designing separate decoder for every application is a costly and a tedious process
- It is essential to design an intelligent receiver system which adapts itself to any applications

Motivations

The main motivations are given as follows:

- It is essential to blindly reconstruct channel encoder using the intercepted sequences acquired from remote sensing through aircraft and satellite
- Code classification techniques were proposed only for nonerroneous scenario
- Code classification algorithm to classify among block, convolutional coded and uncoded has not been proposed
- Previously proposed block interleaver parameter estimation algorithms were restricted only to estimation of interleaver period

Contributions

The main contributions are as follows:

- Automatic recognition of type of FEC codes
- To differentiate among block coded, convolutionally coded, and uncoded data, algorithm is proposed for noisy scenario
- Algorithm is also given for estimating code and Interleaver
 parameters
- Code dimension k and Codeword length n are the estimated code parameters of block and convolutional codes
- Interleaver period β , Number of columns (N_c), and Number of rows (N_r) are the estimated matrix-based block interleaver parameters in the presence of bit errors
- Discussion is restricted to matrix-based block interleaver

Generic Block Diagram

Block Interleaver

- Error correcting codes provide protection against random errors and interleaver provides protection against error bursts
- A block interleaver receives a block of symbols rearranges them without removing any of the symbols
- Matrix-based block interleaver stores each block of data symbols
 row-wise and sends column-wise for transmission
- Interleaver period information alone is not sufficient to deinterleave the data stream
- The size of the interleaver matrix or interleaver period is given by $\beta = N_r \times N_c$, N_r - Number of rows and N_c - Number of Columns

Block Interleaver/de-interleaver

Code classification (with interleaver) without the presence of bit errors:

- This can be done by using Rank-based methodology
- Reshape the column wise intercepted data stream into a matrix form of size $a \times b$, where $a = 2 \times b$
- The rank of the data matrix S in GF (2) is computed by varying the number of columns *b* using Gauss elimination process

Convolutional Code:

- If β = γ. n and while varying b, if b = α. β, where α and γ are positive integers, then rank deficiency will be observed and Rank ρ(S) = α. γ. k + m and rank ratio p = $\frac{\rho(S)}{b} = r + \delta$, where δ→0 as b→∞
- If β ≠ γ. n and while varying b, if b = α. lcm(n, β), then rank deficiency will be observed and $\rho(S) = \alpha. \gamma. k + m$
- For the case when $b \neq \alpha$.β and $b \neq \alpha$.lcm(n,β), the data matrix will have full rank i.e. $\rho(S) = b$ and p = 1

Block Code :

- If β = γ. n and while varying b, if b = α. β, then rank deficiency will be observed and ρ(S) = α. γ. k and rank ratio $p = \frac{\rho(S)}{h} = r$
- If β ≠ γ.n and while varying b, if b = α.lcm(n, β), then rank deficiency will be observed and $\rho(S) = \alpha. \gamma. k$
- For the case when $b \neq \alpha$. β and $b \neq \alpha$. $lcm(n, \beta)$, the data matrix will have full rank i.e. $\rho(S) = b$ and p = 1.

Uncoded:

> Irrespective of the value of b, full rank will be obtained and rank ratio will be unity.

Reason for rank deficiency:

- *n* output convolutionally coded data symbols depend on *k* present and *m* previous input uncoded data symbols
- α . *n* output coded data symbols depend on α . *k* present and *m* previous input uncoded symbols (i.e. α . *k* + *m* symbols)
- If convolutionally coded data is block interleaved and if $b = \alpha \times \beta$ with $\beta = \gamma \times n$, then α . γ codewords in a particular row will depend on α . γ . k + m symbols
- It is also applicable to all other rows of S
- For block codes, it is to be noted that n output coded data symbols depend only on k input uncoded data symbols unlike convolutional codes, since m = 0
- The message and parity bits of α . γ codewords in all the rows will be properly aligned in the same column

- After converting S into F through Gauss elimination process, when b = α × β, there will be only α. γ. k + m non-zero or independent columns out of b columns
- Hence, the deficient rank value is obtained

Convolutional Code

- The inequality $\alpha.\gamma.k + m < b$ holds true or the rank deficiency can be obtained only when $\alpha \ge \alpha_{\min}$ or $b \ge b_{\min}$
- The expressions for α_{\min} and b_{\min} are derived as follows: After substituting $b = \alpha . \gamma . n$, the inequality can be written as

$$\alpha.\gamma.k + m < \alpha.\gamma.n$$

After rearranging,

$$\alpha.\gamma.n.\left(1-\frac{k}{n}\right) > m$$
$$\alpha.\gamma.n > \frac{n}{n-k}m$$
$$\alpha > \frac{m}{\gamma.(n-k)}$$

The minimum value of α , denoted by α_{\min} , is given by

$$\alpha_{\min} = \operatorname{floor}\left(\frac{m}{\gamma.(n-k)}\right) + 1$$

 b_{\min} is given by

$$b_{\min} = \alpha_{\min}.\beta$$

Block codes:

- The inequality $\alpha.\gamma.k < b$, where $b = \alpha.\gamma.n$, remains true irrespective of α , since k < n
- Hence, $\alpha_{\min} = 1$ and $b_{\min} = \beta$ for block codes

Estimation of code rate r and interleaver period β :

- Interleaver period β (i.e. for the case when β is a multiple of n) or lcm (n, β) (i.e. for the case when β is not a multiple of n) can be identified by observing the difference between the successive number of columns with rank deficiency
- Let $b = \alpha.\gamma.n$ and $b' = (\alpha+1).\gamma.n$ indicate the two rank deficient columns and their difference is given by

$$\lambda' - b = (\alpha + 1).\gamma.n - \alpha.\gamma.n$$

= $\gamma.n$
= β or $\operatorname{lcm}(n,\beta)$

• The difference between two successive rank deficient values $\rho(S)$ and $\rho'(S)$ is given by

$$\rho'(S) - \rho(S) = ((\alpha + 1).\gamma.k + m) - (\alpha.\gamma.k + m)$$
$$= \gamma.k$$

• The code rate r can be estimated as follows:

$$\frac{\rho'(S) - \rho(S)}{b' - b} = c$$

• For block codes, the above steps are applicable for estimating r by assuming m=0.

Convolutional Code (without interleaver):

- While varying *b*, if *b* = α. *n* and *b* > *b_{min}*, then rank deficiency will be observed and Rank $\rho(S) = \alpha \cdot k + m$ and rank ratio $p = \frac{\rho(S)}{b} = r + \delta$
- If b ≠ α. n or b < b_{min}, the data matrix will have full rank i.e. $\rho(S) = b$ and p = 1

Block Code (without interleaver)

► If
$$b = \alpha$$
. *n*, then $\rho(S) = \alpha$. *k* and rank ratio $p = \frac{\rho(S)}{b} = r$

 \succ If *b* ≠ *α*.*n*, then *ρ*(S) = *b* and *p* = 1

- $b = \alpha \times n$ and $b' = (\alpha + 1) \times n$ indicate the two rank deficient columns and the difference b' b gives the value of codeword length *n*.
- The difference between rank values corresponding to rank deficient columns gives the estimate of code dimension *k*.

Uncoded

While varying b, full rank will be obtained irrespective of b, as the incoming uncoded symbols are independent of each other

TABLE I

MINIMUM NUMBER OF COLUMNS REQUIRED TO OBTAIN THE FIRST RANK DEFICIENT MATRIX FOR DIFFERENT CONVOLUTIONAL CODES

No.	Code rate (r)	n	k	Y	b _{min}	g_i^j
1				3	6	[5,7]
2				4	8	[15,17]
3				5	10	[23,35]
4				6	12	[65,57]
5	1/2	2	1	6	12	[75,53]
6				7	14	[133,171]
7				8	16	[345,237]
8				9	18	[561,753]
9				10	20	[1167,1545]
10				11	22	[2335,3661]
11	1/3	3	1	4	6	[13,15,17]
12				7	12	[133,165,171]
13				10	15	[1117,1365,1633]
14	1/4	4	1	7	12	[133,171,117,165]

Code Classification

• The incoming data symbols with or without interleaver can be classified easily from the rank ratio equations

Convolutional Code:

- The deficient rank ratio will be much greater than *r* for lower values of *b*.
- As b increases, deficient rank ratio will tend to remain constant slightly above r
- Deficient rank ratio will decay rapidly for smaller values of *b*
- For larger values of b, it will approximately remain constant slightly above r

Block Code:

• Deficient rank ratio will remain constant at r

Uncoded:

• Rank ratio will remain constant at unity for all values of b

- The all-zero-column-based rank evaluation is limited to nonerroneous scenario
- Due to erroneous bits, dependent columns will not get converted into all-zero-columns
- This would result in full rank for both convolutional and block codes and code classification cannot be performed
- Erroneous scenario: Rank calculation will be performed based on the number of zeros in each columns
- Dependent and independent columns (rank) can be segregated
- Reason: If *c*th column is dependent, then the number of zeros in that particular column will be smaller compared to the independent columns.

- Notations: Let us denote the column echelon form of data matrix S_j as F_j , j denotes the iteration number, N denotes the number of iterations, $\omega_j(c)$ denotes the zero-ratio in c^{th} column of F_j , $\gamma(c)$ denotes the average of $\omega_j(c)$ over N iterations, and $data(\cdot)$ refers to an array of binary data symbols.
- $R_j = data(1 + (j-1)b : ba + (j-1)b)$
- Reshape R_j into a matrix S_j of size $a \times b$
- Convert S_j into F_j using Gauss elimination process
- Compute $\omega_j(c)$ in each column of F_j , where $c \in \{1, 2, ..., b\}$
- Form a row vector $A_j = [\omega_j(1) : \omega_j(b)]$
- Repeat the above steps for N iterations
- Accumulate all the row matrices into a single matrix A of size $N \times b$, where $A = [A_1; A_2; A_3; \cdots A_N]$
- Compute B = mean(A), where $B = [\gamma(1) : \gamma(b)]$ and $\gamma(c) = \frac{\sum_{j=1}^{N} \omega_j(c)}{N}$

• Evaluate $\rho(b)$ as follows: $\rho(b) = \operatorname{card} \left(c \in \{1, 2, ..., b\} \mid \gamma(c) < \Gamma^{\operatorname{th}} \right)$ and $p(b) = \frac{\rho(b)}{b}$

Matrix Size Estimation:

<u>Step 1:</u> **Requires** $\partial = lcm(n,\beta)$ or β and **assumes** N_r' and $N_c' > 1$

<u>Step 2:</u>

for $i = 1: n_max$ Get possible combinations of two factors N_r ' and N_c' that satisfy $N_r' \times N_c' = \frac{\partial}{i}$

end

- <u>Step 3</u>: Fix Number of columns as a multiple of interleaver period (i.e. $Ncol = \alpha \times \partial$, where $\alpha > 1$)
- <u>Step 4</u>: De-interleave and evaluate mean of $\gamma(c)$ for all possible values of $[N_r' N_c']$

Step 5:
$$[N_r^{est}, N_c^{est}] = \underset{N'_r, N'_c}{argmax}(\mu'(b)), \text{ where } \mu'(b) = \frac{\sum_{c=1}^b \gamma(c)}{b}$$

Fixing Threshold: Analytical approach

- Data matrix S is converted into a column echelon form F using modified GJETP as follows: $S \cdot \chi = F$, where χ is a permutation matrix
- Columns in χ corresponding to all-zero columns in F is known as kernel of S i.e. S.d=0, where $d = [d_1d_2 \cdots d_b]^T$
- XOR of the column elements in S with column index i corresponding to $d_i = 1$ is equal to 0
- Otherwise, there should be even number of ones in the column positions of S corresponding to $d_i = 1$, such that S.d = 0
- Erroneous scenario: XOR of the column elements in S with index i corresponding to $d_i = 1$ will not be equal to zero due to odd number of ones
- The number of ones $\phi_j(c)$ in c^{th} dependent column of F_j is a RV denoted by B_c^j
- $\phi_j(c)$ follows a binomial distribution with parameters a and P_c^j (i.e. $B_c^j \sim \mathcal{B}(a, P_c^j)$), where P_c^j denotes the probability of getting ones in c^{th} dependent column of F_j

Fixing Threshold: Analytical approach

• The probability of getting ones in c^{th} dependent column of F_j is given by

$$\begin{split} P_c^j &= 1 - \sum_{l=0}^{floor\left(\frac{z_j^c}{2}\right)} \left(\begin{array}{c} z_j^c \\ 2l \end{array}\right) \, p_e^{2l} \, (1-p_e)^{z_j^c - 2l} \\ &= \frac{1 - (1-2 \, p_e)^{z_j^c}}{2} \, , \end{split}$$

where z_j^c denotes the hamming weight of c^{th} column in column permutation matrix χ_j and p_e denotes the BER value

- Binary symmetric channel (BSC) model is assumed for calculating the threshold value
- The number of ones $\phi_j(k)$ in k^{th} independent column of F_j is also a RV denoted by D_k^j and it follows $\mathcal{B}(a, P_k^{''})$
- $P_k^{''} = 0.5$. Reason: Probability of ones and zeros appearing in an independent column is equally likely
- For larger values of a, binomial RVs B_c^j and D_k^j can be approximated as normal RVs
- $B_c^j \sim \mathcal{N}(a.P_c^j, a.P_c^j.(1-P_c^j))$ and $D_k^j \sim \mathcal{N}(\frac{a}{2}, \frac{a}{4})$, where $\mathcal{N}(\mu, \sigma^2)$ denotes the normal distribution with mean μ and variance σ^2 .
- The mean value of N different normal RVs B_c^j is also a RV denoted by μ_c
- μ_c also follows normal distribution with mean and variance $\frac{a q}{N}$ and $\frac{a r}{N^2}$, where $q = \sum_{j=1}^{N} P_c^j$ and $r = \sum_{j=1}^{N} P_c^j \cdot (1 P_c^j)$
- Mean value of N different normal RVs D_k^j is denoted by μ'_k also follows normal distribution with mean and variance $\frac{a}{2}$ and $\frac{a}{4N}$

Fixing Threshold: Analytical approach

• The probability of mis-detection of either dependent or independent column is given by

$$P_{\text{md}} = Pr\left(\frac{\mu_c}{a} > \Gamma^{\text{th}} \mid c^{\text{th}} \text{column is dependent}\right) + Pr\left(\frac{\mu'_k}{a} < \Gamma^{\text{th}} \mid k^{\text{th}} \text{column is independent}\right)$$

• By substituting the normal PDF

$$P_{\rm md} = \int_{a\Gamma}^{\infty} \frac{N}{\sqrt{2\pi a r}} \exp\left(-\frac{N^2(\mu_c - \frac{a q}{N})^2}{2 a r}\right) d\mu_c$$
$$+ \int_{-\infty}^{a\Gamma} \frac{\sqrt{2N}}{\sqrt{\pi a}} \exp\left(-\frac{2N(\mu'_k - \frac{a}{2})^2}{a}\right) d\mu'_k$$

- The expression for Γ_{opt}^{th} , which minimizes P_{md} , can be derived by differentiating P_{md} and equating it to zero
- After simplification, Γ^{th} is given by

$$\Gamma_{\rm opt}^{\rm th} = \frac{-\gamma - \sqrt{\gamma^2 - (\alpha \, \Delta)}}{\alpha}$$

where $\alpha = Na(4r - N)$, $\gamma = Na(q - 2r)$, and $\Delta = raN - aq^2 - r \ln\left(\frac{4r}{N}\right)$

- Exact BER value p_e need not be known to evaluate Γ_{opt}^{th}
- We can fix a maximum value for BER p_e^{\max} depending upon the environment and calculate $\Gamma_{opt}^{th} \rho(S)$
- The same optimal threshold values work well for the case when $p_e \leq p_e^{\max}$.

Fixing Threshold: Histogram approach

- The optimal threshold value can also be fixed by plotting the histogram for zero-ratio or non-zero-ratio
- A range of possible threshold values, which segregate the dependent and independent columns, is obtained
- From the range of possible values, a safe optimal threshold value is fixed
- The same optimal threshold value is applicable for all the other values of *b* to classify the dependent and independent columns

- Various transmission standards specify the allowable BER for a given quality of service (QOS)
- For example, the post-FEC BER requirement for desirable operation of DVB receiver is 2×10^{-4}
- Considering the BER values together with the allowances of coding gain, the pre-FEC BER values for acceptable performance will be usually greater than 10⁻³
- Considering these factors, we have taken a safe value of 10⁻² as the BER threshold to account the worst case scenario
- The overall performance of the algorithm is extensively tested within the range of 5 \times 10⁻³ to 6 \times 10⁻²

• Variation of rank ratio p with b for B(7,4) assuming BER = 0

• Variation of rank ratio p with b for B(7,4) assuming BER = 5×10^{-3}

Rank values are obtained using algorithm proposed for non-erroneous scenario

- Rank ratio p versus number of columns b for C(3, 1, 7)[133, 165, 171] with BER = 2×10^{-2} .
- Rank ratio p versus number of columns b for B(6,3) with BER = 10^{-2}

Rank values are obtained using algorithm proposed for erroneous scenario: Histogram approach

- Rank $\rho(S)$ versus number of columns b for C(3, 1, 4)[13, 15, 17] with BER $= 2 \times 10^{-2}$.
- Rank $\rho(S)$ versus number of columns b for B(7,4) with BER = 10^{-2}

By plotting rank ratio versus number of columns, code classification can be performed and by plotting rank versus number of columns, n and k can be identified

- Histogram plot for mean(A) considering b = 48, C(3, 1, 7)[133, 165, 171], and BER = 2×10^{-2} .
- Histogram plot for mean(A) considering b=42, B(6,3), and BER = 10^{-2}

(a) Fig. 1 : Γ_{opt}^{th} can be fixed between 0.53 to 0.56 (b) Fig. 2 : Γ_{opt}^{th} can be fixed between 0.55 to 0.57

- Variation of rank ratio p with b for B(6,3) considering block interleaver assuming $N_r=3$, $N_c=3$, and BER = 10^{-2} .
- Variation of zero mean ratio $\delta'(b)$ with all possible values of $[N'_r \ N'_c]$ for B(6,3) considering block interleaver assuming $N_r = 3$, $N_c = 3$, and BER $= 10^{-2}$

- Variation of rank ratio p with b for C(3,1,7)[133,165,171] considering block interleaver assuming $N_r=4$, $N_c=3$, and BER = 2×10^{-2} .
- Variation of zero mean ratio with all possible values of $[N'_rN'_c]$ for C(3, 1, 7)[133, 165, 171]considering block interleaver assuming $N_r=4$, $N_c=3$, and BER = 2×10^{-2}

- Histogram plot for mean(A) assuming b=36, $N_r=4$, $N_c=3$, C(3, 1, 7)[133, 165, 171], and BER = 2×10^{-2} .
- Histogram plot for mean(A) assuming b=36, $N_r=3$, $N_c=3$, B(6,3), and BER = 10^{-2}
 - Fig. 1 : Γ_{opt}^{th} can be fixed between 0.52 to 0.59
 - Fig. 2 : Γ_{opt}^{th} can be fixed between 0.54 to 0.7

• As the BER increases, the range for choosing threshold value decreases and incorrect value will change the rank ratio characteristics of the block and convolutional codes

[41-
BER	FEC codes	Number of rows	Γ^{tn}
	C[2,1,3], C[2,1,4]		
	C[2,1,5], C[2,1,6]		
	C[2,1,7], C[3,1,4]	$a = 20 \times b$	0.55
10^{-2}	C[3,1,7], C[3,1,11]		
	C[4,1,7], C[4,1,10]		
	B(8,5), B(7,4)		
	B(6,3), B(3,2)		
	C[2,1,3], C[2,1,4]		
2×10^{-2}	C[2,1,5], C[3,1,4]	$a = 20 \times b$	0.55
	C[3,1,7], C[4,1,7]		
	C[4,1,10]		
	B(8,5), B(7,4)		
	B(6,3), B(3,2)		
	C[2,1,6], C[3,1,11]	$a = 50 \times b$	0.52
	C[2,1,7]	$a\!=\!70\! imes b$	0.51

TABLE II THRESHOLD VALUES $\Gamma^{\text{th}}_{\text{opt}}$ FOR VARIOUS TEST CASES

Variation of Rank ratio with respect to number of columns for uncoded data symbols assuming $BER = 10^{-2}$

(a)

(b)

- (a) Accuracy of estimation of rate 1/2 convolutional codes considering QPSK constellation by varying SER values
- (b) Accuracy of estimation of block interleaver parameters for different M-QAM modulation schemes by varying SER values assuming $N_r = 4$, $N_c = 3$, and C(3, 1, 4)[13, 15, 17]

Discussions

- The code classification in the presence of interleaver can be performed with 100 % accuracy until BER ≤ 2 × 10⁻² based on histogram approach
- When BER > 2 $\times 10^{-2}$, the proposed methodology fails to classify the incoming data symbols
- Reason: Unique rank ratio characteristics will change drastically due to more number of erroneous bits
- However, the estimation of interleaver parameters are observed to be successful until BER of 6 $\times 10^{-2}$
- For BER > 6×10^{-2} , the proposed algorithm (histogram approach) fails to recognize the interleaver parameters
- For the case without interleaver, the histogram approach fails to recognize the type of FEC codes for BER > 4 $\times 10^{-2}$
- If optimal threshold value is fixed based on analytical approach, then code classification can be performed with 100% accuracy until BER of 5 $\times 10^{-3}$
- For BER > 5 \times 10⁻³, optimal threshold based on the analytical approach fails to classify the incoming symbols
- However, interleaver parameters can be estimated correctly until BER of 2 $imes 10^{-2}$

- Variation of rank ratio p with b for B(8,5) considering block interleaver assuming $N_r = 4$, $N_c = 4$, and BER = 6×10^{-2}
- Variation of zero mean ratio $\delta'(b)$ with all possible values of $[N'_r \ N'_c]$ for B(8,5) considering block interleaver with $N_r = 4$, $N_c = 4$, and BER = 6×10^{-2}

TABLE III
COMPARISON OF ACCURACY OF ESTIMATION OF
DIFFERENT METHODOLOGIES

Test case	Actual	Estimated number of dependent columns for		
	No. of	b = 48 (% of Accuracy)		
	dependent		•	
	columns			
	for $b = 48$			
		Fixing	Fixing	Fixing
		rth	rth	rth
		_ opt	_ opt	¹ opt
		based on	based	based on
		(25)	on [6,	histogram
			eq.(A.4)]	approach
C(2,1,3)	22	19	15	22 (100%)
		(86.4%)	(68.2%)	
C(2,1,4)	21	17 (81%)	17 (81%)	21 (100%)
C(3,1,4)	29	28	26	29 (100%)
		(96.6%)	(89.7%)	
C(3,1,7)	26	23	23	26 (100%)
		(88.5%)	(88.5%)	
C(3,1,10)	23	16	16	23 (100%)
		(82.6%)	(82.6%)	
C(4,1,7)	30	29	26	30 (100%)
		(96.7%)	(86.7%)	

NANYANG TECHNOLOGICAL

UNIVERSITY

0

- Histogram approach: Distribution of mean value of number of zeros in each columns has been predicted accurately.
- Analytical approach: Approximated the binomial distribution of mean value of number of zeros to normal distribution
- The performance degradation is mainly due to the approximation of binomial to normal distribution
- All the three methodologies are compared by keeping the computation time constant

Conclusions

- Innovative algorithms for joint estimation of type of FEC codes and block interleaver parameters have been proposed
- Firstly, estimation of interleaver period along with code classification among block, convolutional coded, and uncoded data symbols is performed
- After that while de-interleaving, rest of the block interleaver parameters are estimated
- It can be concluded that the deficient rank ratio remains constant at *r* for block codes
- For convolutional codes, the deficient rank ratio decays rapidly and remain approximately constant slightly above r
- Moreover, irrespective of the number of columns, full rank is obtained for uncoded data stream
- To justify the proposed claims, simulation results for recognizing the type of FEC codes and interleaver parameters are shown

Part 2: Blind Reconstruction of Reed-Solomon Encoder and Interleavers Over Noisy Environment

Swaminathan R, A.S.Madhukumar, Wang Guohua, and Ting Shang Kee, ``Blind reconstruction of Reed-Solomon encoder and interleavers over noisy environment", IEEE Transactions on Broadcasting, vol. 99, no. PP, pp. 1 - 16, Early Access, 2018

Motivations

The main motivations are given as follows:

- Non-cooperative scenario: It is mandatory to recognize the code and interleaver parameters at the receiver
- To propose an intelligent receiver system which adapts itself to any specific applications
- Previously proposed algorithm in [R1] for blind reconstruction of RS encoder can recognize only codeword length
- LLR-based technique [R2]: Assumes a predefined candidate set of RS encoders at transmitter and receiver
- The bit position adjustment parameter to achieve time synchronization is not recognized in [R1] and [R2]

[R1] Y. Zrelli, M. Marazin, R. Gautier, E. Rannou, and E. Radoi, "Blind identification of code word length for non-binary error-correcting codes in noisy transmission," *EURASIP J. Wireless Commun. Netw.*, vol. 2015, no. 43, pp. 1–16, 2015
[R2] H. Zhang, H.-C. Wu, and H. Jiang, "Novel blind encoder identification of Reed-Solomon codes with low computational complexity," in *Proc. IEEE GLOBECOM*, Atlanta, GA, USA, 2013, pp. 3294–3299

Motivations

- Block interleaver parameter estimation algorithms were restricted to convolutional encoded data.
- Only Interleaver period was estimated for non-binary RS codes [R3]
- Algorithms are not proposed for estimating all block interleaver parameters for non-binary codes
- Bit/symbol position adjustment parameter to achieve time synchronization is not estimated
- What is the probability of correct detection of RS code and block interleaver parameters using blind estimation algorithms ?

Contributions

The main contributions are given as follows:

- Innovative algorithms are proposed for the blind recognition of RS encoder (with and without block interleaver)
- Estimated RS code parameters: codeword length n, code dimension k, number of bits per symbol m, primitive polynomial p, and generator polynomial g(x)
- Estimated interleaver parameters: Interleaver period β and number of rows N_r and columns N_c of block interleaver matrix
- An innovative approach for synchronization compensation through appropriate bit/symbol positioning is discussed
- Simulation results are given for different test cases validating the proposed algorithms
- Performance of the algorithm in terms of accuracy of estimation is given and compared with the prior works

Generic Block Diagram

Blind reconstruction of RS encoder

Reed-Solomon Codes

- RS codes are different from binary linear block codes and hence, the parameter estimation is slightly different
- The code symbols generated from RS codes belong to GF(q), where $q = 2^m$ and $m \ge 3$
- Let α be a primitive element of GF(q) such that $\alpha^{q-1} = 1$
- In the case of t' error correcting (n, k) RS codes, $\alpha, \alpha^2, ..., \alpha^{2t}$ are the roots of g(X) with degree n k, which is given by

$$g(X) = (X - \alpha) (X - \alpha^2) \dots (X - \alpha^{2t})$$

- For RS codes, n = q 1 and n k = 2t
- Parameters to be estimated are n, k, m, primitive polynomial used for generating the Galois field (GF), and g(X)
- g(X) can be estimated by recognizing n and k, since n k = 2t and $\alpha, \alpha^2, \dots, \alpha^{2t}$ are the roots of g(X)

Algorithm 1: Estimation of RS code parameters - Noiseless case

- Notations: Let ϕ denotes the adjustment of bit position to achieve synchronization. $a, b, \rho(m, p, \phi)$, and $\rho'(m, p, \phi)$ denote the number of rows, columns, rank, and rank ratio of data matrix S, respectively
- Assumptions: $a \ge 2b$, $m \in [m_{\min}, m_{\max}]$, $p \in [p_{\min}, p_{\max}]$, and $\phi \in [0, ((q-1)m) 1]$
- p = primpoly(m, 'all')
- Shift the binary data symbols by ϕ bit positions and convert the same into non-binary symbols
- Create a GF array from the non-binary data symbols using primitive polynomial p
- Reshape the RS encoded GF array elements into a data matrix S of size $a \times b$, where b = q 1
- Convert S into F using finite-field Gauss elimination process
- Compute $\rho(m, p, \phi)$ from the number of non-zero columns in F
- Compute $\rho'(m, p, \phi) = \rho(m, p, \phi)/b$
- Obtain $[m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}}] = \underset{m, p, \phi}{\operatorname{argmin}} (\rho'(m, p, \phi)), n_{\text{est}} = 2^{m_{\text{est}}} 1$, and $k_{\text{est}} = \rho(m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}})$

• If $b = n_{\text{est}} = 2^{m_{\text{est}}} - 1$, then rank deficiency will be obtained. $\rho(m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}})$ and $\rho'(m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}})$ for $b = n_{\text{est}}$ are, respectively, given by

$$\begin{array}{lll} \rho(m_{\mathrm{est}}, p_{\mathrm{est}}, \phi_{\mathrm{est}}) &=& k_{\mathrm{est}}, \\ \rho'(m_{\mathrm{est}}, p_{\mathrm{est}}, \phi_{\mathrm{est}}) &=& \frac{k_{\mathrm{est}}}{b} \!=\! r \end{array}$$

• If b is a multiple of n_{est} (i.e. $b = \alpha . n_{\text{est}}$), then the deficient rank value is given by $\alpha . k_{\text{est}}$. However, if $b \neq \alpha . n_{\text{est}}$, then full rank will be obtained.

Explanation:

- The output n data symbols depend only on k input symbols in the case of RS codes
- Therefore, $\alpha . n_{\text{est}}$ output symbols of S depend on $\alpha . k_{\text{est}}$ input symbols
- When $b = \alpha . n_{est}$, then α codewords in all the rows will be aligned properly in the same column
- If the data and parity symbols in all the rows are aligned properly in the same column, linear relation is satisfied in all the rows
- $\bullet\,$ There will exist linear relations between columns in S
- After converting S into F through finite field Gauss elimination process, all $\alpha.(n_{\text{est}} k_{\text{est}})$ dependent columns will be eliminated, which will give rise to rank deficiency

Structure of data matrix for the case when (a) b = n and (b) $b \neq n$

- If data and parity symbols are segregated in different rows and are not aligned properly in the same column, then the linear relation will be affected
- S will behave like a random matrix and will not have any dependent columns
- After converting S into F, no dependent columns will be eliminated and full rank will be obtained.

- Variation of rank ratio and rank versus number of columns for RS(7, 3, 3, 11) considering non-erroneous case
- Variation of rank ratio and rank versus number of columns for RS(7, 3, 3, 11) considering SER= 3×10^{-2}

Parameter Estimation: Noisy case

- The dependent columns in S will be converted into all-zerocolumns in F using finite-field Gauss elimination process
- The Algorithm 1 proposed for non-erroneous scenario fails for erroneous scenario, since full rank will be obtained
- Rank-deficient matrix under erroneous channel conditions will have less number of non-zero elements compared to the full-rank matrix
- Therefore, the rank-deficient data matrix is identified based on evaluating the non-zero-mean-ratio in the case of erroneous scenario

Algorithm 2: Estimation of RS code parameters - Noisy case

- Notations: The mean and normalized mean values of number of non-zero elements in c^{th} column of F are denoted as $\sigma(c, m, p, \phi)$ and $\sigma'(c, m, p, \phi)$, respectively
- p = primpoly(m, 'all')
- Shift the binary data symbols by ϕ bit positions and convert the same into non-binary symbols
- Create a GF array from the non-binary data symbols using primitive polynomial p
- GF array is created using primitive polynomial p from the non-binary data symbols
- RS encoded GF array elements are reshaped into S of size $a \times b$, where b = q 1
- Using finite-field Gauss elimination process, S is converted into F
- Evaluate $\sigma(c, m, p, \phi)$, where $c \in \{1, 2, ..., b\}$ and obtained values are normalized with respect to maximum value
- Calculate the normalized non-zero-mean-ratio, which is given by $\mu'(m, p, \phi) = \frac{\sum_{c=1}^{b} \sigma'(c, m, p, \phi)}{b}$
- Obtain $[m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}}] = \underset{m, p, \phi}{\operatorname{argmin}} (\mu'(m, p, \phi))$ and $n_{\text{est}} = 2^{m_{\text{est}}} 1$

Discussions

- The rank deficiency will be observed for correct values of $m, p, and \phi$
- Since rank-deficient data matrix will have less number of non-zero elements, $\mu'(m_{\text{est}}, p_{\text{est}}, \phi_{\text{est}})$ will be smaller compared to other possible combinations of $[m, p, \phi]$
- Code and generator polynomials of RS codes have equal number of roots and is given by $n-k\!=\!2t$
- By finding the number of roots of code polynomial, $n_{\text{est}} k_{\text{est}}$ is identified
- k_{est} can be recognized from $n_{\text{est}} k_{\text{est}}$
- After recognizing the number of roots of code polynomial, g(x) is obtained

Simulation parameters

Table 1: Simula	tion parameters		
Modulation schemes	BPSK, QPSK, 8-PSK,		
	8-QAM 16-PSK, 16-		
	QAM, 32-QAM, 64-		
	QAM, 256-QAM		
Symbol error rate	0.001 to 0.1		
(SER)			
Signal-to-noise ratio	$\geq 5 \text{ dB}$		
(SNR)			
Number of rows	a=2b (for non-		
	erroneous case) and		
	a > 2b (for erroneous		
	case)		
RS Codes tested	RS(7, 3, 3, 11),		
	RS(15, 7, 4, 19),		
	RS(15, 9, 4, 19),		
	RS(15, 11, 4, 19),		
	RS(31, 15, 5, 37),		
	RS(31, 19, 5, 37),		
	RS(31, 23, 5, 37),		
	RS(63, 45, 6, 67),		
	RS(255, 127, 8, 285)		
Block interleaver pa-	(a) $N_r = 15$ and $N_c = 7$		
rameters	(b) $N_r = 5, N_c = 2, \text{ and }$		
	$d = 4$ (c) $N_r = 5$ and		
	$N_c = 6$		

- We assume a = 2b for non-erroneous case and a > 2b for erroneous case
- Higher the number of rows, better is the accuracy for erroneous case
- If the receiver starts at Δ^{th} position of t^{th} RS code word, then frame synchronization is achieved by shifting $\phi = (tm(q-1)+1) - (\Delta M_1 - M_1 + 1)$ bit positions, where $M_1 = \log_2 M$

Variation of $\rho'(m, p, \phi)$ with respect to $[m, p, \phi]$ for RS(63, 45, 6, 67) assuming 64-QAM scheme, $\Delta = 6$, and non-erroneous scenario

(a) Variation of normalized non-zero-mean-ratio $\mu'(m,p)$ with [m,p] for RS(255, 127, 8, 285) coded data symbols assuming 256-QAM scheme and SER=2× 10^{-3}

(b) Variation of normalized non-zero-mean-ratio $\mu'(m, p, \phi)$ with $[m, p, \phi]$ for RS(31, 15, 5, 37) coded data symbols assuming 16-QAM scheme, $\Delta = 2$, and SER= 10^{-2}

(a) Accuracy of estimation of RS codes $\mathrm{RS}(15,9,4,19)$ for different $M\text{-}\mathrm{QAM}$ schemes

(b) Accuracy of estimation of RS codes $\mathrm{RS}(15,9,4,19)$ for different $M\text{-}\mathrm{PSK}$ schemes

(a) Accuracy of estimation of RS codes assuming $n\!=\!15,\ m\!=\!4,\ p\!=\!19,$ and 16-QAM scheme for different values of code dimension k

(b) Accuracy of estimation of RS codes assuming n=15, m=4, p=19, and 16-QAM scheme for different values of code dimension k

(a) Accuracy of estimation of RS codes with 16-QAM scheme for different values of codeword length \boldsymbol{n}

(b) Performance comparison of the proposed algorithm with the algorithm proposed in [4]

[4] H. Zhang, H-C. Wu, and H. Jiang, ``Novel blind encoder identification of Reed-Solomon codes with low computational complexity," in proc. IEEE GLOBECOM, 2013, pp. 3294-3299.

Table 1: Comparison of probability of correct detection of RS code $\mathrm{RS}(15,7,4,19)$

SER	Probability	Probability
	of detection	of detection
	[2]	(proposed
		algorithm)
0.001	1	1
0.01	1	1
0.05	1	1
0.075	0.52	0.92
0.1	0	0.40

Proposed algorithm outperforms existing algorithm

[2] A. Zahedi and G-R. Mohammad-Khani, ``Reconstruction of a non-binary block code from an intercepted sequence with application to Reed-Solomon codes," IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, VOL.E95-A, no. 11, pp. 1873--1880, Nov. 2012.

Helical Scan Interleaver

- Helical Scan Interleaver uses a fixed size matrix, arranges input symbols across rows, and outputs all the symbols without using default value or values from previous call
- Interleaver parameters (similar to block interleaver): Number of columns (N_c), Number of rows (N_r), Helical array step size (d), Interleaver period (β)

Helical Scan Interleaver [1] $N_r = 6$, $N_c = 4$, d = 1, $\beta = 24$

Generic Block Diagram

• The generic block diagram for blind recognition of interleaver and RS code parameters is given as follows:

Algorithm 3: Estimation of interleaver period - Noiseless case

- Notations: The rank and rank ratio of S are denoted by $\rho(m, p, b)$ and $\rho'(m, p, b)$, respectively
- Assumptions: $a \ge 2b$, $b \in [b_{\min}, b_{\max}]$, $m \in [m_{\min}, m_{\max}]$, and the incoming bit stream is RS encoded and block interleaved
- p = primpoly(m, 'all')
- Convert the incoming RS coded and block interleaved binary data symbols into the respective elements of GF using p
- Reshape the RS encoded GF elements into a data matrix S of size $a \times b$
- Convert S into F using finite-field Gauss elimination process
- Compute $\rho(m, p, b)$ from the number of non-zero columns in F
- Compute $\rho'(m, p, b) = \rho(m, p, b)/b$
- Obtain $[m_{est}, p_{est}, b_{est}] = \underset{m, p, b}{\operatorname{argmin}} (\rho'(m, p, b))$ and $n_{est} = 2^{m_{est}} 1$

If β is a multiple of *n* i.e. $\beta = \gamma \cdot n$ and $b = \alpha' \cdot \beta$, then the rank deficiency will be obtained. The deficient rank and rank ratio are, respectively, given by

$$\rho(m_{\text{est}}, p_{\text{est}}, b_{\text{est}}) = \alpha' \cdot \gamma \cdot k_{\text{est}},
\rho'(m_{\text{est}}, p_{\text{est}}, b_{\text{est}}) = \frac{\rho(m_{\text{est}}, p_{\text{est}}, b_{\text{est}})}{b} = r.$$
(1)

However, if $b \neq \alpha' \cdot \beta$, then full rank will be obtained.

If β is not a multiple of n, then rank deficiency will be obtained for $b = \alpha' \cdot \operatorname{lcm}(n, \beta)$. Assuming $\operatorname{lcm}(n, \beta) = \Gamma \cdot n$, the deficient rank and rank ratio values are, respectively, given by

$$\rho(m_{\text{est}}, p_{\text{est}}, b_{\text{est}}) = \alpha' \cdot \Gamma \cdot k_{\text{est}},
\rho'(m_{\text{est}}, p_{\text{est}}, b_{\text{est}}) = \frac{\rho(m_{\text{est}}, p_{\text{est}}, b_{\text{est}})}{b} = r.$$
(2)

However, if $b \neq \alpha' \cdot \operatorname{lcm}(n, \beta)$, then full rank will be obtained.

- From Algorithm 3, $\beta_{\text{est}} = b_{\text{est}}$ for the case when β is a multiple of n
- For the case when β is not a multiple of n, $lcm(n_{est}, \beta_{est}) = b_{est}$
- β_{est} or $\text{lcm}(n_{\text{est}}, \beta_{\text{est}}) = b_{\text{est}}$ is applicable when $\rho'(m_{\text{est}}, p_{\text{est}}, b_{\text{est}})$ is the only minimum value in the search space
- If there are multiple values of b for which $\rho'(m, p, b)$ is minimum, then the difference between successive number of columns with rank deficiency gives the estimate of β_{est} or $\text{lcm}(n_{\text{est}}, \beta_{\text{est}})$
- Let $b = \alpha' \cdot \beta$ and $b' = (\alpha' + 1) \cdot \beta$ denote two successive columns with deficient rank values for the case when $\beta = \gamma \cdot n$
- From b' b, the interleaver period β is identified
- lcm(n, β) is identified from b' b for the case when $\beta \neq \gamma \cdot n$ and lcm(n, β) = $\Gamma \cdot n$

Algorithm 4: Estimation of interleaver period - Noiseless case

- Notations: Mean value and normalized mean value of number of nonzero elements in c^{th} column of F - $\sigma(c, m, p)$ and $\sigma'(c, m, p)$. Normalized non-zero-mean-ratio - $\mu'(m, p, b)$
- Assumptions: $a \ge t b, b \in [b_{\min}, b_{\max}], m \in [m_{\min}, m_{\max}]$
- p = primpoly(m, 'all')
- Convert the incoming RS coded and block interleaved binary data symbols into the respective elements of GF using p
- Reshape the RS encoded GF array elements into a data matrix S of size $a \times b$
- Convert S into F using finite-field Gauss elimination process
- Evaluate $\sigma(c, m, p)$, where $c \in \{1, 2, ..., b\}$, and normalize the obtained values with respect to the maximum value
- Calculate normalized non-zero-mean-ratio $\mu'(m, p, b)$, where $\mu'(m, p, b) = \frac{\sum_{c=1}^{b} \sigma'(c, m, p)}{b}$
- Obtain $[m_{\text{est}}, p_{\text{est}}, b_{\text{est}}] = \underset{m,p,b}{\operatorname{argmin}} (\mu'(m, p, b))$ and $n_{\text{est}} = 2^{m_{\text{est}}} 1$

Algorithm 5: Estimation of rest of interleaver parameters

- Notations : $\zeta_{\text{est}} = \text{lcm}(n_{\text{est}}, \beta_{\text{est}}), \phi'$ symbol position adjustment to achieve synchronization, d helical array step size, and Normalized non-zero-mean-ratio of F for matrix-based and helical scan interleavers $\mu'(N'_r, N'_c, \phi')$ and $\mu'(N'_r, N'_c, d, \phi')$
- Assumptions : $a \ge t b, \phi' \in [0, \zeta_{est} 1], d \in [1, N'_r 1]$
- Convert the incoming RS coded and block interleaved binary data symbols into the respective elements of GF using p_{est}
- Get all possible values of δ' that satisfy $lcm(n_{est}, \delta') = \zeta_{est}$
- Get all possible combinations of two factors N'_r and N'_c that satisfy $N'_rN'_c = \delta'$
- Shift the coded and interleaved non-binary symbols by ϕ' symbol positions
- De-interleave using N'_r and N'_c in the case of matrix-based block interleaver
- De-interleave using N'_r , N'_c , and d in the case of helical scan interleaver
- Fix b as a multiple of n_{est}
- Reshape the RS encoded GF elements into a data matrix S of size $a \times b$
- Convert S into F using finite-field Gauss elimination process

Algorithm 5 – Contd.

- Evaluate $\mu'(N'_r, N'_c, \phi')$ for all possible values of N'_r and N'_c in the case of matrix interleaver
- Evaluate $\mu'(N'_r, N'_c, d, \phi')$ for all possible values of N'_r , N'_c , and d in the case of helical scan interleaver
- Matrix-based block interleaver: Obtain $[N_r^{\text{est}}, N_c^{\text{est}}, \phi_1^{\text{est}}] = \operatorname*{argmin}_{N'_r, N'_c, \phi'} (\mu'(N'_r, N'_c, \phi'))$
- Helical scan interleaver: Obtain $[N_r^{\text{est}}, N_c^{\text{est}}, d^{\text{est}}, \phi_1^{\text{est}}] = \operatorname*{argmin}_{N'_r, N'_c, d, \phi'} (\mu'(N'_r, N'_c, d, \phi'))$
- Matrix-based block interleaver: Shift ϕ_1^{est} symbol positions and deinterleave using N_r^{est} and N_c^{est}
- Helical scan interleaver: Shift ϕ_1^{est} symbol positions and de-interleave using N_r^{est} , N_c^{est} , and d^{est}
- Identify the number of roots of generator polynomial and estimate n k
- Obtain k_{est} from n-k
- Obtain the generator polynomial g(x)

- Variation of $\mu'(m, p, b)$ with [m, p, b] for RS(7, 3, 3, 11) and matrix-based block interleaver assuming $N_r = 15$, $N_c = 7$, 8-PSK scheme, $\Delta = 4$, and SER= 8×10^{-3} .
- Variation of $\mu'(N'_r, N'_c, \phi')$ with $[N'_r, N'_c, \phi']$ for RS(7, 3, 3, 11) assuming $N_r = 15, N_c = 7, 8$ -PSK scheme, $\Delta = 4$, and SER= 8×10^{-3}

- Variation of $\mu'(m, p, b)$ with [m, p, b] for RS(15, 7, 4, 19) and helical scan interleaver assuming $N_r = 5$, $N_c = 2$, d = 4, 16-PSK scheme, $\Delta = 17$, and SER=10⁻²
- Variation of $\mu'(N'_r, N'_c, d, \phi)$ with $[N'_r, N'_c, d, \phi]$ for RS(15, 7, 4, 19) and helical scan interleaver assuming $N_r = 5$, $N_c = 2$, d = 4, 16-PSK scheme, $\Delta = 17$, and SER= 10^{-2}

Simulation Results

Table 1: Comparison of probability of correct detection of interleaver period for RS code RS(7, 3, 3, 11)

BER	Probability	Probability
	of correct	of correct
	detection $[1]$	detection
		(proposed
		algorithm)
0.006	0.85	1
0.009	0.37	1
0.015	0.1	1

Proposed algorithm outperforms existing algorithm

[1] L. Lu, K. H. Li, and Y. L. Guan, ``Blind detection of interleaver parameters for non-binary coded data streams," in Proc. IEEE ICC, 2009, pp. 1--4.

Conclusions

- Blind estimation algorithms have been proposed for estimating RS code and block interleaver parameters based on rank deficiency and normalized non-zero-mean-ratio values
- The bit/symbol positioning adjustment is also integrated with the proposed code parameter estimation algorithms
- The simulation studies show that the proposed algorithms can successfully estimate RS code and block interleaver parameters for various test cases
- Accuracy of estimation plots are shown for different *M*-QAM and *M*-PSK schemes, code dimension, and codeword length values

Observations:

- It has been inferred that the accuracy of parameter estimation improves with decrease in code dimension and codeword length values
- The lower modulation order schemes perform better then the higher modulation order schemes
- The proposed algorithm for noisy environment consistently outperforms
 the algorithms proposed in the prior works.

Thank you

