CENTENARY CONFERENCE, 2011 - ELECTRICAL ENGINEERING, INDIAN INSTITUTE OF SCIENCE, BANGALORE 1

Exploring Sparse Representation Classification for
Speaker Verification in Realistic Environment

Haris B C and R. Sinha
Department of Electronics and Electrical Engineering,
Indian Institute of Technology Guwahati
Guwabhati -781039, India
email: {haris, rsinha} @iitg.ernet.in

Abstract—We address the problem of speaker verification
(SV) by exploiting discriminative classification ability of the
sparse representation. The proposed sparse representation based
speaker verification (SR-SV) system uses dictionary created
with the mean supervectors derived from adapted GMMs. For
classification purpose, the sparse coefficients obtained by the I'
minimization are used employing different scoring methods. The
SV systems are developed using the speech data collected in
realistic environments with multiple sensors. On comparing with
standard 1024 mixture GMM-UBM system, we find that 128
mixture GMM based SR-SV system performs better for all of
the four sensors data considered.

Index Terms—speaker verification, sparse representation,
GMM mean supervectors.

I. INTRODUCTION

The goal of the speaker verification (SV) algorithms is to
authenticate persons from their voice samples. Its main appli-
cations are in person authentication and in forensic science.
The state-of-the-art SV systems are based on either the adapted
Gaussian mixture models with universal background model
(GMM-UBM) [1] or the support vector machines (SVM) over
the GMM mean supervectors [2] for modeling the speakers.
Mel-frequency cepstral coefficients (MFCC) are the most
commonly used features and are also combined with supra-
segmental informations such as prosody and speaking style
for improved performance.

The recent works in this area are concentrated toward ad-
dressing the problem of mismatch in sensors, environment and
language and changes across sessions. Different approaches
developed to address this problem include various techniques
like score/handset/test normalization [3], feature mapping [4],
nuisance attribute projection [5], speaker model synthesis [6],
and joint factor analysis (JFA) [7].

In last few years, there is a lot of interest generated about
sparse representation and compressive sensing which provide
a new directions to signal processing research. Recently the
discriminative abilities of the sparse representation have also
been exploited in various areas of the pattern recognition [8],
[9]. In sparse representation, a target vector is expressed as
a sparse linear combination of columns of an overcomplete
matrix representing the target signal space. The overcomplete
matrix is commonly referred to as the ‘dictionary’ and its
columns as ‘atoms’ in the sparse representation literature. The
dictionary can be created broadly in two ways either by the use

of model of the data (e.g., wavelets, curvelets etc.) or by the
use of data-driven approaches like k-SVD. A detailed survey
of dictionary creation for sparse presentation can be found
in [10]. The sparse solution to the linear system of equations
formed by the dictionary and the target vector can be obtained
by the convex optimization using /;-norm minimization. The
greedy search methods like matching pursuits or LASSO
(least absolute shrinkage and selection operator) are used
for this purpose. For classification, the dictionary consists of
training examples from all classes. The classification is then
performed by comparing the norm of sparse coefficients or
the sparse representation error across different classes. Sparse
representation based classification using GMM supervectors
has recently been explored for speaker identification [11] and
face video verification [12]. In this work, we explore the sparse
representation based classification for speaker verification task
on a database collected in realistic environments.

The organization of the paper is as follows: In the Section II,
we review the recent works in the area of sparse representation
based classification and describe implementation details of the
speaker verification system. The details of the database and
the experimental setup are given in Section III followed by
the discussion of result of the proposed speaker verification
method in Section IV. The paper is concluded in Section V.

II. CLASSIFICATION BASED ON SPARSE REPRESENTATION

In this section we first briefly review the sparse representa-
tion based classification approach as proposed for the face
identification task in [8] and its adaptation for face video
verification task in [12]. It is followed by description of our
proposed method for speaker verification.

Assume that we have k distinct classes and n; examples
available for training the *" class. Let the m-dimensional
feature vector be designated as v;; € R™, where i is
the index of the class, ¢« = 1,2,...,k and j is the in-
dex of the training example, j = 1,2,...,n;. All training
examples of the i'" class are combined to form a matrix
A; = [Vi1, Vi, ..oy Vin,] € R™*™i Tt is assumed that an
example y belonging to i*" class can be approximated as:

Y = @i1Vi1 + oV + 0 Qi Vip, (D

where o;; are the real scalar quantities. For the classification
purpose, an overcomplete dictionary is formed by concatenat-
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ing all class matrices as follows:

A =[A}, Ay, ..., Ayl € R, nzZﬁll n;g (2

Now y is represented as linear combination of all n columns
of the overcomplete dictionary A:

y = Ax 3)

where x € R™ is a vector of unknown coefficients. The
solution to these coefficients is found using /;-norm minimiza-
tion [13]

(1

With the assumption given by Equation (II), X will be sparse

and ideally all nonzero coefficients should correspond to the

atoms from the class of y only. But in practice the atoms other

than those of the class of y also have nonzero coefficients. As

a result the identification is done by finding the representation
errors corresponding to each of the class matrix A;.

min |y — Adi(%)]2 ®)

X = argmin ||x||; subjectto Ax=y (4)

where ¢;(x) is a new vector whose only nonzero entries are
the entries in x that are associated with the class ¢. Following
the above mentioned procedure, the speaker identification is
also reported using the GMM mean supervector as the feature
vector on TIMIT database [11].

In addition to this, the GMM mean supervector based
sparse classification for the face video verification is also
explored [12]. In this work, the dictionary for verifying each
claim is created as,

A =[A, Ay (6)

where A; and A, are formed by the target training super-
vectors and a set of fixed non-target background training
supervectors, respectively. For verification purpose, the score
of the testing samples were proposed to be computed with two
decision criteria based on [! norm ratio and /2 norm residual
ratio as given below:

M1 : ! norm ratio = ||61(%)||1/[|%]|1 @)
: . — Ada(X)|l2

M2 : [? residual ratio = Hy—2A (8)

ly — Ad1(%)]|2

A. Implementation details of speaker verification system

Following the above discussed verification approach we ex-
plored the speaker verification using GMM mean supervectors.
In speaker verification systems, usually the speaker models are
developed using large (1-2k) number of mixtures Gaussian
models and also the features are of dimensions as high as
39. As a result, doing full greedy searches over such large
size dictionary was not feasible with our limited compute
resources. SO0 we have tried an alternate method as discussed
below.

Our implementation of the speaker verification system dif-
fers from the one discussed in Section II in the following two
aspects:

o The verification of a target speaker is done in presence
of all other remaining target speakers unlike using any

fixed set of non-target background speakers and so our
dictionary contains all the target speaker supervectors.

o For finding the sparse representation of a target, the
maximum number of sparse coefficients is restricted
to the number of training examples available for each
speaker.

For scoring purpose we first tried the above described scor-
ing methods M1 and M2. It was noticed that the classification
performances obtained with these scoring methods turned out
to be quite imbalanced with respect to miss and false alarm
probabilities. The reasons for this behavior is discussed in
Section IV and we have also proposed an alternate scoring
method to address this problem.

III. DATABASE AND EXPERIMENTAL SETUP

For the experiments, we have used the IITG-MV speaker
recognition database, a locally collected speech data to study
the impact of different variabilities on the speaker recognition
task due to multi-sensor, multi-lingual, multi-style and multi-
environment conditions. The details of the IITG-MV speaker
recognition database can be found in [14]. The database
contains two sets each having two recording sessions. Each set
contains 100 speakers, with 50 speakers common across both
sets. The first set is collected in office-environment involving
multiple sensors, multiple languages,and different speaking
styles (conversational and read speech) and it is referred to
as the IITG-MV Phase-1. The second set differs from the first
one in data collected in uncontrolled environments such as
laboratories, hostel rooms and corridors etc., while keeping the
other variabilities unchanged and is referred to as the IITG-
MV Phase-II. In Phase-I, the speech data collection was done
in a small office room with electric fan and air conditioner
switched on. The data was collected in parallel with a headset
microphone connected to a tablet PC, the built-in microphone
of another tablet PC, two mobile phones of different make with
voice recording facility and one digital voice recorder (DVR).
The Phase-II dataset contains speech from 70 male and 30
female subjects. For collecting the data, the same devices as
in Phase-I were employed. In contrast to Phase-I data set, the
Phase-II data set contains data which is recorded after passing
through a wireless mobile channel. In this work we have used
the MV Phase-II data.

The baseline UBM-GMM based speaker verification system
was developed and tested using procedure similar to laid
down for NIST SRE-03 evaluations [15]. The training data
set contains 100 speech segments of 2 minutes each from the
first session recordings. The test set contains 1000 segments
of speech, derived from the second session recording of the
same data set with 10 segments for each speaker. The segments
are of length varying from 30 to 45 seconds. Similar to NIST
SRE-03 protocol, each test segment is tested against 11 models
out of which one is a true trial. This makes a total of 11,000
test trials with a true trial to false trial ratio equal to 0.1. For
building the UBM, we have used 10 hours of speech data from
50 speakers from IITG-MV Phase-I data set which are who
are not common with speakers of Phase-II data set.

The speaker models were created by adapting only the mean
parameters of the UBM using maximum a posteriori (MAP)
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approach with the speaker specific data. All speech data used
is sampled at 8§ kHz with 16 bits/sample resolution and was
analyzed using a Hamming window of length 20 ms, frame
rate of 100 Hz and pre-emphasis factor of 0.97. The MFCC
feature vectors of 39 dimension were used to parameterize
the speech data. Each feature vector comprised of Cy to Cy3
static MFCC and their first and second order derivatives. To
remove the non-speech portions from input data, an energy
based voice activity detector with fixed threshold was used.
The cepstral mean subtraction and variance normalization
was applied on all features so as to reduce the effect of
mismatch in channel. For sparse representation based speaker
verification, the training speech of 2 minutes duration was
further segmented into 4 parts to get sufficient number of
training examples from the available data. Each of these
training samples and the test samples were used to adapt the
UBM to get corresponding supervectors. For finding out the
performance of the SV systems, the detection error trade-
off (DET) curves were plotted using the verification scores.
The equal error rates (EER) noted from the DET curves are
used to evaluate the speaker verification performance in all
conditions. The GMM-UBM and sparse representation based
speaker verification systems were developed with the help of
the hidden Markov model toolkit.

IV. RESULTS AND DISCUSSION

The initial sparse representation based speaker verification
(SR-SV) system is developed using speaker supervectors de-
rived from the MAP adapted UBM of size 1024 mixtures. The
performances in terms of DET plots for the SR-SV systems
using M1 and M2 scoring methods on headset recorded data
are given in Figure 1. The figure also shows the performance
of the standard GMM-UBM system with 1024 mixtures for
contrast. It is to note that with both the scoring methods the
SR-SV system has performed significantly poor compared to
GMM-UBM system. Before addressing the poor performance
obtained with the SR-SV system further, we first highlight
the imbalanced performances with respect to to miss and
false alarm probabilities obtained with M/ and M2 scoring
methods. In case of M1, as the maximum number of sparse
coefficients is limited to the number of training examples in
our case, a large number of the impostor trials would result
in a score equal to zero. In case of M2, for impostor trials
the denominator error dominates and so the scores turns out
to be a small positive number. As a result, the variance of
the false scores in both of the cases are found to be very
small compared to that of the true scores and this explains the
imbalanced performance noted in the DET curve. The same
can be verified from the histograms of true and false trails
shown in Figure 2 for each of the DET plots in Figure 1.
To address the above discussed issue, we also developed an
alternate scoring method based on [? norm residual ratio as
discussed in the following subsection.

A. Alternate scoring method

As noted, in case of scoring methods M/ and M2, most of
the false trials produce similar scores. To avoid this problem,
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Fig. 1. DET curves for SR-SV systems using different scoring methods along
with that of GMM-UBM system on headset condition data using a UBM of
1024 mixtures.
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Fig. 2. Histograms of true and false trial scores corresponding to the DET
plots shown in Figurel.

we define an alternate scoring method as the ratio between the
two representation errors of the test vector y obtained by using
the two dictionaries A and A;. The dictionary A contains the
training supervectors all target speakers whereas the dictionary
A contains the training supervectors of the claimed speaker
only. The test vector y is represented using dictionaries A and
A, by finding greedy projections X and Xy respectively. The
proposed scoring metric is defined as:

ly — A%}
[y — Ar%al|2
In case of the above scoring method, for the true trials the
representation error using dictionaries A and A; are expected
to be approximately same which gives a score near to 1 and
for the false trials the representation error using A; dominates
which gives a smaller score. In Figure 1 and 2 the DET plot
and histogram of scores for the SR-SV system with scoring
method M3 are also shown. It can be noted from the plot
that, the DET curve corresponding to the M3 scoring method
is balanced with respect to miss and false alarm probabilities
without any degradation in the EER value.

On further exploration about the cause of the poor perfor-
mance of SR-SV system we noted that there is high coherence
among the atoms of the dictionary. The high coherence is
attributed to the fact that due to small amount of the data
per speaker training segment, large number of the mixtures of

M3 : Score =

€))
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TABLE II
Speaker verification performance for SR-SV systems with supervectors created using UBMs of different size along with that of GMM-UBM system of
different sizes for contrast purpose.

Train-Test EER (in %)

Sensor Conditions Sparse Classification with GMM Supervectors GMM-UBM

Size of UBM — 32 ] 64 [ 128 | 256 [ 512 | 1024 1024 T 128

Headset 9.29 8.86 8.70 9.36 1048 | 11.83 | 9.39 11.02
Mobile 9.84 9.66 9.57 10.03 | 11.74 | 14.36 | 14.27 | 15.44
Tablet PC 13.82 | 13.18 | 12.74 | 12.92 | 1391 | 16.17 | 13.00 | 13.27
Voice Recorder 13.95 | 12.82 | 12.28 | 12.74 | 13.37 | 16.06 | 12.37 | 14.00

the UBM model remain unadapted. To verify this hypothesis
we trained smaller size UBMs and then derived the speaker
supervectors by their adaptation. With the smaller number of
mixture it is expected that most of them would get adapted
thus result in reduced coherence among the atoms. The max-
imal coherence across speakers in the dictionary for different
dimension supervectors are given in Table I. It is to note that,
as expected the coherence does reduce with reducing size
of the supervectors. Further the performance of the SR-SV
system is evaluated for these different size supervectors and
is given in Table II for different sensor condition datasets. We
note that the best performance is obtained with SV system
developed from 128 size UBM model which turn out to be
better than those for GMM-UBM of 1K mixture size, for all
sensor conditions. For the contrast, we have also given the
performance for GMM-UBM system with 128 mixture size
which is expectedly significantly degraded compared to 128
mixture based SR-SV system.

TABLE I
Table showing the maximal mutual coherence among speaker supervectors
created using UBMs of different size.

Size of UBM
Max. mut. coh.

32
0.91

64
0.91

128
0.92

256
0.94

512
0.96

1024
0.98

V. CONCLUSIONS

In this paper we have reported the performance of a speaker
verification system developed using the sparse representation
framework as the classifier. The training and test speech
samples with variable duration were represented as fixed
length GMM mean supervectors created by adaptation of a
UBM. The test supervectors were represented in terms of the
dictionary created using all training supervectors. The sparse
solution to the corresponding coefficients was used to identify
the class of the test vector. The SV systems are developed
using the speech data collected in realistic environments with
multiple sensors and the results were compared against that
of a standard GMM-UBM system in terms of EER. for all of
the four sensors data considered, the SR-SV system based on
128 mixture GMM was found working better than the standard
GMM-UBM systems developed using mixtures up to 1024.

In future we would like to explore the methods of de-
signing dictionaries with lesser coherence and compare the
performance of the proposed method with SVM based speaker
verification system employing the GMM mean supervectors.

In addition to this we would also like to explore the use of
joint factor analysis methods to improve the performance for
mixed sensor cases.
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