## Intro to Laboratory Equipments

- Basic Electronic Components:
  - Resistor, Capacitor, Diode, Transformer,
  - Transistor, Opamp,
- Breadboard
- Function Generator
- Digital Multimeter
- Cathode Ray Oscilloscope

#### Resistors

- Passive two-terminal compotent that is used to provide electrical resistance in the circuits
- Construction: carbon-composition/ film/ pile, metal/metal oxide film, wire-wound
- Type: Fixed-value \( \)

Variable (Potentiometer)







# **Color Coding of Resistors**



## Capacitors

- Passive two-terminal compotent that stores energy in its magnetic field
- Types: fixed, variable; ceramic, mica, electrolytic
- Large caps show value with unit, for small caps just show digits-letter & value is computed as





## Inductors

- Passive two-terminal compotent that stores energy in its magnetic field
- Types: fixed and variable
- Core types: air, iron/steel, ferrite









# **Color Coding for Axial Inductor**



#### **Diodes**

Two-terminal component with asymmetric

transfer characteristics



Common types: normal, zener, LED







### Transformer

- A device that transfers energy by inductive coupling between two or more of its windings
- Centre-tapped transformer: useful in making symmetrical positive & negative power supply





#### **Transistor**

 Transistor is semiconductor devide that used to amplify and switch electronic signals



Typical NPN transistors
you may find in lab





## Operational Amplifier (OPAMP)

 A dc coupled high gain electronic voltage amplifier with differential input and usually single output



Pin diagram of LM741 IC



#### **Breadboard**

 A solderless base for prototyping electronic circuits. Shown below is 400-points breadboard



# Internal Connections in a Breadboard



## **Example Circuit Realization**







# DC Power Supply

 Multi o/p (5V,±15V,32V) regulated DC power supply



#### **Function Generator**

 An electronic device that generates differerent types of waveforms over wide ranges of freqs



## **Digital Multimeter**

Can measure AC/DC voltage, AC/DC current,
Resistance. Manual control model is used in the lab



# Cathode Ray Oscilloscope

 An electronic equipment which traces a V-t graph, with 'V' on Y-axis and 't' on x-axis



# Internal Circuitry of a CRO



#### Front Panel Controls of a CRO

 Screen has 8 div on Y-axis, 10-div on X-axis with each div being 1 cm square



## Setting up

Check all controls & put them in these positions



## Setting up contd.

 Set both VOLTS/DIV control to 1V/DIV and TIME/DIV control to 0.2 s/DIV



 Now switch ON the power button; green LED glows; you will see a 'trace' small bright spot moving slowly across the screen

#### Y-Position & Timebase Control

- Locate Y-POS 1 control, adjust trace to move horizontally across the screen
- With 10 div horizontally across the screen and TIME/DIV set to 0.2 s/DIV; trace would be taking 0.2 x 10 = 2 s to cross the screen
- On rotating TIME/DIV clockwise, the trace starts moving faster and around 10 ms/DIV it appears as continuous bright line due to persistence of vision

#### **VOLT/DIV Control**

 It determines the vertical scale of graph draw on the CRO screen



## Connector



## **Checking the Calibration of CRO**

 Insert a BNC plug to input of channel 1 and connect the clip at other end as shown



