INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Department of Electronics & Electrical Engineering EE102: Basic Electronics Laboratory

Expt.No.2: Verification of Circuit Theorems

Objectives:

1. To verify the Superposition Theorem, the Thevenin's Theorem and the Maximum Power Transfer Theorem

Materials Required:

- 1. Equipment: Breadboard, Multi-Output DC Power Supply, Oscilloscope
- 2. Components: 10Ω (1), 560Ω (1), $1k\Omega$ (3), $2.2k\Omega$ (3), $3.9k\Omega$ (1), $4.7k\Omega$ (1)

Precautions and Guidelines:

- 1. Make sure the ground terminals of the oscilloscope probes and power supplies are connected together in the circuit.
- 2. While switching on the set-up, switch on the oscilloscope first, followed by the power supply.

Pre-Lab Work:

- 1. For the circuit shown in Fig. 1, find the voltage V_c across resistance R where $V_1 = 10V$, $V_2 = 5V$ (and zero source resistances).
- 2. Calculate the Thevenin's voltage and resistance as seen into terminals A-B of the circuit given in Fig. 2. Find the value of the maximum power that can be delivered to the load R_L .

Part A: Superposition Theorem

- 1. Assemble the circuit shown in Fig. 1. Use 0-32V and 5V sources of the multioutput DC power supply for realizing voltage sources V_1 and V_2 in the circuit. For the safety of resistors, do not apply more than 20V from 0-32V source.
- 2. To verify the superposition theorem for the voltage V_C across the resistance R, take the measurements as appropriate and fill Table 1. Verify that voltage V_C for Case-I is the sum of voltages obtained in Case-II and Case-III.

	V ₁ (Volt)	V ₂ (Volt)	V _A (Volt)	V _B (Volt)	V _C (Volt)			
Case-I	10	5						
Case-II	10	0						
Case-III	0	5						
Table 1								

Part B: Thevinin's Theorem

- 1. Assemble the circuit as shown in Fig. 2. Remove load R_L and measure the open circuit voltage across terminals A-B (V_{OC}) with help of the oscilloscope.
- 2. Connect a small resistance of 10 Ω across terminals A-B and measure the voltage drop V_{10 Ω}.
- 3. Calculate the values the values of V_{Th} and R_{Th} and fill Table 2.

Part C: Maximum Power Transfer Theorem

- 1. Modify the circuit with a small resistance of 10Ω connected in series with the load R_L between terminals A-B as shown in Fig. 3. The voltage drop across terminals C-B (Channel 2) is to be used to infer the current through the load (I_L). The voltage drop across terminals A-B (Channel 1) is to be approximated for the voltage drop across the load R_L .
- 2. Make measurements by varying the value of the load resister R_L as in Table 3. Calculate the power consumed by the load in each case.

					Ch1
R_L (Ω)	V _A (Volt)	V _C (Volt)	I _L (A)	Power (Watt)	(`` ─ (
560					\leq_{R_1}
1000					Ch2
2200					
3900					
4700					B
					≢ Fig. 3

Part D: Lab Report

Prepare and submit a lab report as specified in the general instructions regarding the lab. Include the answers to the following questions in the report:

- 1. How accurate is the verification of superposition theorem in Part A? Why?
- 2. Is there a difference between the theoretical values of $V_{\rm Th}$ and $R_{\rm Th}$ and the measured value? Why?
- 3. Compare the measured values of power consumed by each load as in Part C and the theoretical maximum for power transfer and explain.