
Development of GPU-based Strategies for

Finite Element Simulation of Elastoplastic

Problems

Synopsis Report

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Utpal Kiran

Roll No. 176103028

DEPARTMENT OF MECHANICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

June 2023



1 INTRODUCTION

1 Introduction

Elastoplasticity is a physical phenomenon in which materials deform elastically up to a

certain threshold limit and plastically afterwards. The elastic deformation is temporary

and can be recovered, but plastic deformation remains even after the load is removed.

The elastoplastic behavior is commonly observed in materials of practical interest like

metals, soil, rocks, polymers, biological tissues, etc. which are often subjected to high

loads and pressure during service, often leading to yielding. A carefully performed

elastoplastic analysis plays a key role in the design and manufacturing of engineering

components, allowing for judicious decision about strength of solids so that an optimum

use of resources can be made. In certain industrial applications, like metal forming,

plastic deformation is intentionally introduced to obtain desired material properties and

build products of various shapes. An efficient elastoplastic analysis can help researchers

better understand natural occurrences like earthquakes, where very limited experiments

could be performed. Some other application areas where elastoplasic analysis plays a

decisive role are crashworthiness, fracture mechanics, and geophysical applications,

among many others.

Finite element method (FEM) is the standard numerical technique for simulating

elastoplastic problems (de Souza Neto et al. 2008). An efficient finite element analysis

of elastoplastic problems is of great importance because it permits reliable estimation

of the strength and deformation of solids and structures under various loading condi-

tions. However, realistic simulation of various physical processes like metal forming

or geophysical problems requires complex large-scale three dimensional (3D) models.

The finite element computation for large-scale 3D models having millions or billions of

degrees of freedom (DOFs) can be very expensive and may lead to huge computational

time. In addition, the nonlinear nature of elastoplastic problems makes it necessary to

use an incremental-iterative solution approach where FEM is used iteratively. In such

a scenario, the processing time of a large-scale 3D elastoplastic simulation may be too

large to be useful for practical purposes. The large computational time associated with

elastoplastic simulation is reduced by employing a large number of compute resources

in the form of parallel computing (Bhardwaj et al. 2002, Adams et al. 2004).

Graphics processing unit (GPU)-based computing has become popular in recent

1



1 INTRODUCTION

times for parallel computing across various disciplines. The primary reasons for its

rising popularity are massive parallelism, high memory bandwidth, high performance-

to-cost ratio and improvements in programmability. In addition, GPUs are the an-

swer to modern day challenges of increasing energy demands, as they deliver more

performance-per-watt than a CPU. Originally developed for gaming applications, mod-

ern advancements in GPU technology have led to its applicability in a wide range of

sectors like image and video processing, machine learning and artificial intelligence

(AI), high performance computing (HPC), etc. In the field of scientific computation,

GPUs have evolved to take a prominent place as a co-processor or accelerator to speed

up compute intensive parts of scientific codes. The popular numerical methods like

FEM, computational fluid dynamics (CFD), molecular dynamics (MD), etc. have al-

ready seen great speedups due to GPU acceleration. However, running an application

on a GPU is not as straightforward as a CPU. It requires architecture dependent par-

allel programming strategies along with fine tuning of several parameters to reach peak

performance of the hardware. The GPUs have been found more suitable for tasks that

involve high computation and less memory usage. This has led to a renewal of inter-

est in many numerical algorithms that had been considered obsolete due to their high

computational requirements.

Despite the existence of numerous efforts aimed at achieving parallel implementa-

tion of elastoplastic analysis on computing clusters, very few of them make use of GPU

hardware. A comparative analysis of iterative solvers for elastoplasticity over a GPU

cluster is presented by Khalevitsky et al. (2016), where performance achieved over six

GPUs was found equivalent to hundred CPUs. He et al. (2017) proposed a GPU-based

strategy for elastoplastic reanalysis, performing computation of elemental matrices on

the GPU and assembly of the global tangent matrix on the CPU. A significant amount

of speedup with respect to the CPU is reported, even when an expensive CPU-GPU

data transfer step is involved. Recently, GPU implementation of elastoplastic sim-

ulation for perfectly plastic material is presented by Prabhune & Suresh (2020) for

additive manufacturing applications with a matrix-free approach. Although very few

previous works are found for elastoplastic analysis, there is an adequate amount of

literature discussing GPU implementation of FEM in the context of various applica-

tions. However, elastoplasticity brings additional challenges to GPU implementation.

2



1 INTRODUCTION

Due to its nonlinear nature, an incremental-iterative procedure is required that in-

volves repeated use of the FEM procedure. This requires GPU implementation of the

complete pipeline of FEM, which is again less discussed in the literature. Apart from

the solution of linear system of equations, the computation of elemental matrices and

their assembly into a global tangent matrix, computation of elemental force vectors

and computation of stress and strain constitute important stages in elastoplastic anal-

ysis. In addition, elastoplastic analysis suffers from a well-known branching issue in

parallel implementation due to the presence of both elastic and plastic states during

the simulation process.

Matrix-free iterative solvers with GPU acceleration provide additional opportunities

for reduction of simulation timings of elastoplatic analysis. In a matrix-free iterative

solver, the computation of sparse matrix vector multiplication (SpMV) with the global

tangent matrix is replaced by the matrix-free computation of SpMV using constituent

elemental matrices. The elemental matrices are small, dense and provide better mem-

ory access than sparse storage formats in SpMV. The matrix-free SpMV has a distinct

advantage over the assembly-based SpMV for voxel-based mesh. For problems with

simple geometry in 3D, a voxel-based mesh is a kind of structured mesh that consists

of linear cubic elements having the same size and orientation, generating the elemental

tangent matrices of the same value in FEM. This property allows matrix-free SpMV

computation for linear elastic problems with only one elemental tangent matrix, dra-

matically reducing the memory requirement to a minimum. On the other hand, the

assembly-based implementation still needs to construct the global tangent matrix and

therefore can not take full advantage of the voxel-based mesh. In the literature, matrix-

free solvers with GPU acceleration have been effectively used to reduce the execution

timings of FEM-based engineering simulations (Pikle et al. 2018). However, there

is not much in the literature that discusses the application of matrix-free solvers to

elastoplasticity.

In this work, a GPU-based framework to perform end-to-end computation in elasto-

plastic analysis is presented. The incremental-iterative solution approach to elastoplas-

tic analysis is implemented in the form of a CPU-based loop that launches multiple

compute kernels on the GPU to perform all the computations. The expensive CPU-

GPU data transfer is completely avoided inside the computational loop, as all the

3



2 GPU ACCELERATION OF ASSEMBLY-BASED ELASTOPLASTICITY
SOLVER

computations are performed on the GPU. Wherever applicable, the proposed parallel

strategies use a coloring method to avoid data race conditions. In order to achieve

the best performance on the GPU, the thread divergence issue is prevented in all the

proposed strategies. The objectives of the thesis can be summarized as follows:

� Development of a GPU-based parallel framework for elastoplastic analysis. It

entails development of parallel strategies for all expensive steps in elastoplatic

analysis, like computation of elemental matrices and their assembly, computation

of internal force vectors and their assembly, and computation of stress using

radial-return method (Simo & Hughes 1998).

� Development of matrix-free CG iterative solver for elastoplasticity applicable to

all-hexahedral unstructured mesh.

� Development of matrix-free CG iterative solver for elastoplasticity applicable to

voxel-based structured mesh.

� Performance evaluation of the proposed strategies over large-scale benchmark

problems of elastoplasticity. The performance results are evaluated over problems

involving associated flow rule and isotropic linear strain hardening with von Mises

yield criteria.

In the following discussions, the proposed strategies and highlights of the associated

outcomes are presented.

2 GPU acceleration of assembly-based elastoplas-

ticity solver

The current work presents a novel GPU-based framework for elastoplastic analysis

using FEM. The primary goal is to minimize the wall-clock timings for elastoplastic

simulation by implementing all expensive steps on the GPU. The main computation is

performed inside the Newton-Raphson iteration which is implemented using a CPU-

based loop. The compute kernels for GPU are launched for every expensive step that

appears inside the Newton iteration. The user-defined CUDA kernels are developed

4



2 GPU ACCELERATION OF ASSEMBLY-BASED ELASTOPLASTICITY
SOLVER

to implement steps like computation of elemental matrices and their assembly, com-

putation of internal force vectors and their assembly and computation of stress on

the GPU. The other simpler steps like computation of unbalanced force, updating the

external force vector, evaluation of termination criteria, etc. are implemented on the

GPU using algebraic operations provided in THRUST library. The solution of linear

system of equations is done by CUSP and Ginkgo (Anzt et al. 2022) library, though

any other suitable library may also be used. It is noted that there is no expensive data

transfer with the CPU inside the Newton iteration.

The computation of the elemental tangent matrix is done by associating one thread

with one element of the mesh. Each thread makes extensive use of the local memory

space for storage of intermediate variables and computation results. For a linear hex-

ahedral element, the computation is done inside a loop over all the Gauss points, and

elemental tangent matrix is accumulated into the local memory. Considering the lim-

ited memory available with a GPU, the proposed strategy does not store the elemental

matrices into global memory. It rather assembles them into a global tangent matrix.

The assembly is done directly into a CSR sparse storage format in the GPU memory

that can be readily used with any linear solver. The issue of data race conditions dur-

ing parallel assembly is handled by the coloring method. The strategy for computation

of elemental tangent matrix is extended to compute the internal force vectors and its

assembly into a global vector. The current work also proposes a GPU-based strategy

for the computation of stresses using the radial-return method. The comparison of

execution timings with sequential CPU implementation reveals speedups in the range

20.4×–69.7× for computation of elemental matrices and assembly, 47.2×–66.1× for

computation of stresses using the radial-return method and 53.7×–67.3× for computa-

tion of internal force vectors and their assembly. In wall-clock timings, speedups in the

range 1.4× to 7.2× are obtained with respect to sequential CPU implementation using

GPU-based linear solver. Finally, as a result of the proposed strategies, the proportion

of the iterative linear solver timings in wall-clock timings of the GPU implementation

reaches up to 98.9% for the finest mesh consisting of 5.1 million DOFs. As shown

in Fig. 1, the collective time spent in other steps is marginally smaller than that of

the linear solver for all three examples. This contrasts with the CPU implementation,

where time consumed in steps other than the linear solver is also substantial.

5



3 GPU-BASED MATRIX-FREE STRATEGIES FOR UNSTRUCTURED MESH

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5 L1 L2 L3 L4 L5 P1 P2 P3 P4 P5

%
 o

f 
to

ta
l

Solver
Assembly
Stress
Internal forces

others

Plate with holesL-bracketCube

Figure 1: Execution timings breakup of the proposed assembly-based solver for cube,
L-bracket and plate with holes examples. Here C1, L1 and P1 are the coarsest mesh,
whereas C5, L5 and P5 are the finest mesh.

3 GPU-based matrix-free strategies for unstructured

mesh

The wall-clock timings of the assembly-based elastoplasticity solver are found to be

bounded by the performance of iterative linear solver. The execution timings of an

iterative solver is largely determined by the performance of the SpMV implementation.

A SpMV operation performs multiplication of a sparse matrix stored in specialized

storage formats (CSR, COO, ELL, etc.) with a vector. These sparse storage formats

reduce the storage requirement of a sparse matrix, but introduce an irregular memory

access pattern that degrades performance on the GPU. In the present work, various

methods for matrix-free computation of SpMV on GPU are explored, and a matrix-free

CG solver for elastoplasticity is developed.

The matrix-free SpMV is implemented on the GPU using node-by-node (NbN),

DOFs-by-DOFs (DbD) and element-by-element (EbE) strategies, and their perfor-

mances are studied. The NbN , DbD and EbE strategies are taken from the literature

and modified according to proposed optimizations for best performance on the GPU. In

the present work, an EbEsym strategy that works with only symmetric part of elemen-

tal tangent matrices is proposed. For elasticity problems using quadrilateral elements,

approximately 5× speedup was observed over the NbN , 2.8× over the DbD and 1.4×

6



4 GPU-BASED MATRIX-FREE STRATEGIES FOR STRUCTURED MESH

C1 C2 C3 C4 C5
100
200

400

600

800

1000

1200

1400

1600

1800

(a) 2D cantilever beam.

L1 L2 L3 L4 L5
500

1000

1500

2000

2500

3000

3500

4000

4500

(b) 2D L-bracket.

Figure 2: GPU memory utilization by various matrix-free strategies. Here, C1 and L1
are the coarsest mesh, and C5, L5 are the finest mesh.

over the EbE matrix-free strategy by the proposed EbEsym strategy. The EbEsym

strategy is found to have the most efficicent memory access. As a consequence of using

the symmetric part of the elemental matrices, the overall memory footprint of the pro-

posed EbEsym strategy is reduced by 1.5× as compared to the EbE strategy. Figure 2

shows the variation of memory consumption with mesh refinement for two benchmark

examples. It is noted that the performance of all matrix-free strategies is found limited

by memory access due to the large number of elemental tangent matrices associated

with unstructured mesh.

4 GPU-based matrix-free strategies for structured

mesh

Several engineering problems consist of relatively simple geometry that can be dis-

cretized with a structured mesh. In many cases, a structured mesh can be obtained

with linear cubic elements having the same shape and size, referred to as voxel-based

mesh. In such cases, the elemental tangent matrix remains the same for all the elements

of the voxel-based mesh. The computation of SpMV for a linear elastic problem using

the voxel mesh can be done with only one elemental tangent matrix. However, the

presence of both elastic and plastic states in elastoplastic analysis makes the situation

challenging. The determination of the plastic state is dependent on the local values of

internal variables. This leads to unique elemental tangent matrices for elements be-

longing to the plastic zone. In addition, the presence of two types of states introduces

7



4 GPU-BASED MATRIX-FREE STRATEGIES FOR STRUCTURED MESH

branching issues in parallel SpMV computation.

In the present work, two strategies for SpMV computation in elastoplasticity, namely

the single kernel strategy and the improved split kernel strategy, are proposed. Both

the proposed strategies avoid thread divergence by restructuring the computation ac-

cording to elements in elastic and plastic zones. To achieve efficient memory access,

one common elemental tangent matrix is used for all the elements in the elastic zone,

and individual elemental matrices are used for all the elements in the plastic zone. For

effective implementation on GPU, both the proposed strategies are implemented on

GPU using NbN , DbD and EbE strategies and their performance is compared. Since

standard NbN , DbD and EbE strategies cannot be used directly for elastoplasticity,

modifications are proposed to improve the performance so that they can be used with

the proposed strategies. The performance evaluations are done over multiple large-

scale benchmark examples from elastoplasticity over different levels of mesh refinement

and different amounts of plasticity. The single kernel NbN strategy is found to be up

to 2.25× faster than the GPU-based strategy in the literature for low percentage of

plasticity. For moderate to high amounts of plasticity, the proposed single kernel DbD

strategy is found achieving up to 2.6× speedups over strategy from the literature. Fur-

ther, EbE strategies are found better than NbN and DbD strategies in both the single

kernel and improved split kernel strategy. As shown in Fig. 3, the proposed matrix-

free solver is found to be up to 2× faster than the GPU optimized assembly-based

elastoplasticity solver in terms of wall-clock timings.

 0

 1

 2

 3

 4

 5

0 5 10 15 20 25 30

S
p

ee
d
u

p

% Plasticity

C1
C2
C3
C4
C5

(a) Cantilever beam

 0

 1

 2

 3

 4

 5

0 5 10 15 20 25 30 35

S
p

ee
d
u

p

% Plasticity

L1
L2
L3
L4
L5

(b) L-bracket

 0

 1

 2

 3

 4

 5

0 5 10 15 20 25

S
p

ee
d
u

p

% Plasticity

H1
H2
H3
H4

(c) Plate with square holes

Figure 3: Speedups by the proposed matrix-free elastoplasticity solver over assembly-
based elastoplasticity solver.

8



5 ORGANIZATION OF THE THESIS

5 Organization of the Thesis

The thesis is organized in six chapters as follows.

� Chapter 1 presents a brief introduction of elastoplastic simulation and associ-

ated challenges, followed by survey of literature. Then, the research gaps are

discussed followed by the objectives of the thesis.

� Chapter 2 provides the background for theory of elastoplasticity and its numer-

ical solution using FEM. The numerical procedure for the estimation of stresses

in finite element framework is also discussed. This is followed by description of

sequential CPU implementation.

� Chapter 3 discusses the proposed GPU framework for assembly-based elasto-

platic solver. GPU-based strategies are presented for the computation of elemen-

tal tangent matrices and their assembly, computation of internal force vectors

and their assembly, and computation of stresses using the radial return method.

The performance of the proposed framework is discussed for both structured as

well as unstructured meshes by applying it over various 3D benchmark examples.

� Chapter 4 presents the matrix-free SpMV strategies for elastoplastic problems

with unstructured mesh. A novel strategy is proposed that exploits the sym-

metry of elemental tangent matrices to reduce memory access and improve the

performance.

� Chapter 5 discusses two novel matrix-free SpMV strategies for elastoplastic

problems, namely single kernel strategy and improved split kernel strategy for

efficient usage of voxel-based structured mesh. Both the proposed strategies

are implemented on GPU a using node-based and element-based parallelization

strategies and performance is compared for various benchmark examples.

� Chapter 6 concludes the thesis with a note on scope for future research.

9



REFERENCES REFERENCES

References

Adams, M. F., Bayraktar, H. H., Keaveny, T. M. & Papadopoulos, P. (2004), Ultra-

scalable implicit finite element analyses in solid mechanics with over a half a billion

degrees of freedom, in ‘SC’04: Proceedings of the 2004 ACM/IEEE Conference on

Supercomputing’, IEEE, pp. 34–34.

Anzt, H., Cojean, T., Flegar, G., Göbel, F., Grützmacher, T., Nayak, P., Ribizel,

T., Tsai, Y. M. & Quintana-Ort́ı, E. S. (2022), ‘Ginkgo: A modern linear operator

algebra framework for high performance computing’, ACM Transactions on Mathe-

matical Software 48(1), Article no. 2.

Bhardwaj, M., Pierson, K., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J.,

Farhat, C. & Lesoinne, M. (2002), Salinas: A scalable software for high-performance

structural and solid mechanics simulations, in ‘SC’02: Proceedings of the 2002

ACM/IEEE Conference on Supercomputing’, IEEE, pp. 35–35.

de Souza Neto, E. A., Perić, D. & Owen, D. R. J. (2008), Computational Methods for

Plasticity: Theory and Applications, John Wiley & Sons, Ltd.

He, G., Wang, H., Huang, G., Liu, H. & Li, G. (2017), ‘A parallel elastoplastic re-

analysis based on GPU platform’, International Journal of Computational Methods

14(05), Article no. 1750051.

Khalevitsky, Y. V., Burmasheva, N. V., Konovalov, A. V. & Partin, A. S. (2016),

‘Comparative study of Krylov subspace method implementations for a GPU cluster

in elastoplastic problems’, AIP Conference Proceedings 1785(1), Article no. 040024.

Pikle, N. K., Sathe, S. R. & Vyavhare, A. Y. (2018), ‘GPGPU-based parallel computing

applied in the FEM using the conjugate gradient algorithm: a review’, Sādhanā

43(7), Article no. 111.

Prabhune, B. C. & Suresh, K. (2020), ‘A fast matrix-free elasto-plastic solver for pre-

dicting residual stresses in additive manufacturing’, Computer-Aided Design 123, Ar-

ticle no. 102829.

Simo, J. C. & Hughes, T. J. R. (1998), Computational Inelasticity, Springer-Verlag,

New York.

10



Journal Publications

� Kiran, U., Sharma, D. & Gautam, S. S. (2024), ‘An efficient framework for

matrix-free SpMV computation on GPU for elastoplastic problems’, Mathematics

and Computers in Simulation 216, 318–346.

� Kiran, U., Sharma, D. & Gautam, S. S. (2023), ‘A GPU-based framework for

finite element analysis of elastoplastic problems’, Computing 105, 1673–1696.

� Kiran, U., Gautam, S. S. & Sharma, D. (2020), ‘GPU-based matrix-free finite

element solver exploiting symmetry of elemental matrices’, Computing 102(9),

1941–1965.

� Kiran, U., Sharma, D. & Gautam, S. S. (2023), ‘Development of GPU-based

matrix-free strategies for large-scale elastoplasticity analysis using conjugate gra-

dient solver’, International Journal of Numerical Methods in Engineering (Under

review).

Conference Publications

� Kiran, U., Gautam, S. S. & Sharma, D. (2022), ‘Accelerating finite element

assembly on a GPU’, International Conference on Future Learning Aspects of

Mechanical Engineering (FLAME - 2022), Amity University, Noida, 3–5th Au-

gust.

� Kiran, U., Sanfui, S., Ratnakar, S. K., Gautam, S. S. & Sharma, D. (2019),

‘Comparative analysis of GPU-based solver libraries for a sparse linear system

of equations’, In Advances in Computational Methods in Manufacturing: Select

Papers from ICCMM 2019, Springer, Singapore, pp. 889-897.

Other Publication

� Ratnakar, S. K., Kiran, U., & Sharma, D. (2022), ‘Acceleration of structural

topology optimization using symmetric element-by-element strategy for unstruc-

tured meshes on GPU’, Engineering Computations 39(10), 3354-3375.


