
GPU-based Strategies for Accelerating Topology

Optimization of 3D Continuum Structures using

Unstructured Mesh

Synopsis Report

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Shashi Kant Ratnakar

146103004

Under Supervision of

Dr. Deepak Sharma

to the

DEPARTMENT OF MECHANICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

June, 2022



1 Introduction

Various industries and engineering disciplines require lightweight structures that can be man-

ufactured with the lesser amount of material while still fulfilling their strength and structural

performance requirements [1, 2, 3]. One of the viable methods to develop such structures is

structural topology optimization. It is an application of optimization that enables the design

engineers to optimally distribute the material within a design space, taking into consideration

the given loads, boundary conditions, and other performance constraints. The ultimate re-

sult is a topology that is sufficiently robust while making efficient use of the limited material

available, striking a balance between desired strength and material costs.

Structural topology optimization is a well established field and various methods have been

developed in the literature. One of the most popular methods is solid isotropic material with

penalization (SIMP) [4]. The computational steps of a typical SIMP-based structural topology

optimization include meshing, finite element analysis (FEA), objective function computation,

sensitivity analysis, mesh-independency filter, and design variable update. Among them, FEA

is the most computationally expensive process, and other computational steps require signifi-

cantly less time than FEA. As a result, a majority of contemporary research in the literature

prioritizes accelerating FEA solver by leveraging the massively parallel architecture of graphics

processing units (GPUs) for reducing the overall computational time [5, 6, 7]. In some studies,

the entire structural topology optimization has been performed in parallel [8, 9]. GPU has

been the preferred hardware because it offers a low-cost solution for accelerating data-parallel

applications such as topology optimization.

From the literature, it is found that GPU can speedup topology optimization by many-folds.

However, performing various computational steps of topology optimization on GPU brings a

new set of challenges. The first major challenge is the development of efficient kernel that can

harness the massive parallelism of GPU. This is achieved by ensuring optimal load distribution

among the GPU threads, and avoiding situations such as thread divergence, thread idling, and

race-condition. The other challenge involves the efficient use of GPU memories, such as using

shared memory for inter-thread communications, minimizing global memory read operations

etc. It is also observed that majority of the studies devoted to GPU-based acceleration of

topology optimization use structured meshes. Structured meshes are efficient for discritizing

the structures with regular domain geometry. GPU implementation are also easier to handle

when structured meshes are used. However, the domain geometry of many applications can be

complex, irregular, and can have curved boundaries. In such cases unstructured meshes are

used for better representation of design domain. Unstructured meshes pose a couple of addi-

tional computational challenges on GPU, such as a huge memory space requirement for storing

elemental and connectivity data, and proper load balancing among GPU threads. Although a

number of studies has used unstructured meshes, there are several research gaps in the area,

1



such as developing efficient GPU-based strategies for optimal thread allocation and reduced

memory transactions to speedup the FEA solver on GPU using unstructured meshes. In this

thesis, some of these major challenges of GPU-based acceleration of FEA solver for structural

topology optimization are addressed.

The aim of this thesis is to develop an efficient GPU-based FEA solver for topology optimiza-

tion of large-scale 3D continuum structures using unstructured meshes. The preconditioned

conjugate gradient (PCG) FEA solver used in this thesis adopts a matrix-free approach where

the system of linear equations is solved at the elemental level by GPU threads. The thesis

later focuses on enhancing the computational performance of the GPU-based matrix-free PCG

solver by tackling the challenges posed by unstructured meshes on GPU. This is accomplished

through creating efficient thread allocation strategies that ensure a balanced computational

load among GPU threads, as well as GPU-specific data storage formats that optimize data

accesses on the GPU while reducing CPU-GPU data transfer. The following are the objectives

of the thesis.

1. Develop a GPU-based matrix-free FEA solver for structural topology optimization using

unstructured meshes.

2. Develop efficient thread allocation strategies for matrix-free FEA solver.

3. Develop novel data storage and data access patterns for matrix-free FEA solver.

4. Performance analysis of the proposed GPU-based matrix-free FEA solver over benchmark

problems and comparing with the state-of-the-art.

In the following sections, the strategies proposed to achieve the objectives of the thesis are

discussed in brief.

2 GPU-based Matrix-Free FEA Solver for Structural Topology

Optimization using Unstructured Mesh

The first objective of this thesis is to develop a GPU-based matrix-free PCG solver tailored

to efficiently handle the unstructured meshes on the GPU. The PCG solver is then used in a

SIMP method-based structural topology optimization framework for large-scale 3D continuum

structures that are discretized using unstructured meshes. The proposed framework takes a

generalized approach by considering unstructured mesh regardless of domain geometry. The

meshing is done using the ANSYS R16.1 APDL module using 8−noded hexahedral elements

for all examples considered in the thesis, and the mesh data is imported into the framework.

The focus is on executing entire FEA efficiently on GPU. The matrix-free PCG FEA solver is

used in this thesis that consists of two types of operations: sparse matrix-vector multiplications

2



(SpMV) and vector arithmetic operations. Initial experiments show that SpMV operations on

GPU are more complex and consume 80% − 99% of the solver’s execution time, as compared

to other vector arithmetic operations. In the literature, the following two types of GPU-based

SpMV strategies can be found.

1. element-by-element (ebe) [10]: One compute thread of GPU is assigned to each ele-

ment of FE mesh [6]. However, this strategy suffers with race-condition when more than

one thread try to access and modify the same memory location, ultimately producing

inconsistent results. The coloring method or atomic operation can be used for alleviating

this issue.

2. node-by-node (nbn) [5]: A single thread computes the state for all degree-of-freedoms

(DoF) of a node. This strategy requires access to data of neighboring elements. Since

each node performs its computation independently, there is no race-condition observed

[11].

An ebe−strategy is proposed for the matrix-free PCG solver. Since the proposed strategy is

developed for unstructured meshes, SpMV requires the elemental stiffness matrices of all finite

elements. They are stored in the GPU global memory along with the connectivity data. The

thread assigned to an element reads its connectivity matrix from the global memory, performs

the multiplication, and finally writes back the result into the output vector. The atomics

feature of CUDA is used to handle the inherent problem of race-condition that arises during

write operations. The connectivity data of the elements is stored in the GPU’s local memory,

thereby reducing the number of global memory read operations. When tested over a variety of

benchmark problems, the proposed GPU-based ebe−strategy shows speedup of 3× − 5× over

the CPU-based matrix-free solver.

Next, an nbn−strategy is also proposed in which a customized nodal connectivity storage

format is developed to enable the efficient access of neighborhood data by the compute thread.

This customized connectivity is referred to as the ‘reverse - connectivity matrix,’ and is created

by performing a search operation through the connectivity matrix for each node. Although

conducting a search operation for each node consumes a lot of time, it is only required once at

the beginning of the optimization process. The computations at the node level are independent

of one another and therefore, no race-condition is observed. The GPU-based nbn−strategy

shows speedup of 2.5× − 4× over its CPU-based matrix-free version.

It is observed that the nbn− strategy requires significantly higher execution time than the

ebe− strategy. One of the reason is the additional time required in creating the reverse - con-

nectivity matrix. Each node can be associated with different number of neighboring elements

in unstructured mesh. For the nbn− strategy, this causes an imbalanced computational load

across GPU threads, diminishing overall computational performance on GPU. The GPU mem-

ory requirement of nbn− strategy is also found significantly higher than the ebe− strategy.

3



The execution time of the other computational steps of topology optimization is minuscule

compared to FEA solver. The findings of the first objective show that the ebe− strategy is

a better suited SpMV strategy for unstructured mesh in terms of computational performance,

as long as the race condition issue is handled adequately.

3 Efficient Thread Allocation Strategies for Matrix-Free FEA

Solver

According to the literature and the results from previous section, SpMV operations of matrix-

free PCG solver using unstructured meshes involve a large number of floating-point operations

as well as access to connectivity and elemental data. As a result, it is essential to execute

SpMV efficiently in order to enhance the computational performance of the PCG solver. In the

second objective of the thesis we focus on developing appropriate thread allocation schemes for

the ebe− strategy to ensure better load distribution among GPU threads.

There are 24× 24 entries in the elemental stiffness matrix (Ke) of an 8− noded hexahedral

elements. The standard ebe− strategy allocates a single GPU thread to perform multiplication

for all the entries of Ke with their corresponding vector elements, as discussed in the previous

section. We develop fine-grained SpMV strategies that use various levels of granularity present

in Ke of an element. The proposed strategies reduce the computational load of a compute

thread by allocating more number of threads to an element. The following three fine-grained

SpMV strategies are proposed.

1. ebe8 : The strategy allocates 8− GPU threads to each finite element. Three successive

rows of Ke are assigned to each of these 8 threads for matrix-vector multiplication.

2. ebe24 : The strategy allocates 24− GPU threads to each finite element. Multiplications

for a single row entries are handled by a single thread.

3. ebe64 : The strategy allocates 64− GPU threads to each finite element. A single thread

is assigned to a tile of 3× 3 entries.

Using the proposed GPU-based SpMV strategies a matrix-free PCG solver is developed.

Their computational performance is compared with the standard ebe over a number of bench-

mark examples using various mesh sizes. The ebe8, ebe24, and ebe64 strategies show maxi-

mum speedups of 4×−8×, 3×−4×, and 6×−7×, respectively. The ebe64 strategy appears to

perform best for smaller meshes. For larger meshes the ebe8− strategy outperforms all other

strategies. Although the ebe24 strategy is 3×−4× faster than the ebe− strategy, it is found

inferior than both ebe8 and ebe64− strategies. Thread divergence and multiple global mem-

ory transactions issues have been observed for inferior performance of the ebe24 and ebe64−

4



strategies as compared with the ebe8 strategy. The ebe8− strategy is found to be the best

performing SpMV strategy for large-scale unstructured meshes using 8−noded hexhedral finite

elements.

4 Novel Data Storage and Data Access Patterns for Matrix-

Free FEA Solver

The fine-grained SpMV strategies discussed in previous section stores the connectivity data

in shared memory of GPU, thereby reducing number of global memory read operations. To

access the elemental stiffness matrices a large number of global memory read operations is still

needed. Additionally, during each optimization iteration, the data must be copied from CPU

to GPU. Both the challenges degrade the performance of the matrix-free PCG solver. These

challenges and their proposed solutions are discussed in this section.

The third objective of the thesis aims to develop efficient data storage and data access

patterns on GPU to further enhance the performance of the proposed matrix-free PCG solver

for topology optimization. First, we focus on reducing the amount of data transferred between

the CPU and GPU. In elasticity, the elemental stiffness matrices are symmetric. Using this

property, SpMV can be performed using only the symmetric half of the elemental stiffness

matrices. The idea of storing and using only the symmetric half entries has been used by

Zegard and Paulino [8] to perform the assembly for 2D unstructured meshes. Duarte et al. [6]

used this idea for 2D and 3D polygonal meshes. We develop a novel GPU-strategy (ebeSym)

which performs SpMV of matrix-free PCG solver by utilizing only a symmetric half of elemen-

tal stiffness matrices. Instead of using 576 entries per element we use only 300 entries that

significantly reduces the amount of data copied to GPU.

We develop two novel data storage formats that ensure coalesced read and write operations

in order to optimize the data accesses on GPU. The entries from the symmetric half of Ke

are divided into ‘diagonal’ and ‘off-diagonal’ parts that are stored separately in two arrays.

The storage is performed in such a manner that when consecutive threads are assigned to

consecutive elements, threads make coalesced access to entries in the respective arrays. The

ebeSym− strategy allocates 8−GPU threads to each element. The eight threads first multiply

the entries of the diagonal group with the corresponding entries of the vector. Thereafter, the

same operation is performed by each thread for off-diagonal entries.

The proposed ebeSym− strategy along with the novel data storage patterns are incorpo-

rated in the matrix-free PCG solver. The computational performance is tested over a number

of benchmark topology optimization examples with various mesh sizes. When compared to the

8− thread per element SpMV strategy (ebe8) that uses full Ke, the ebeSym− strategy shows

1.8 × −3.7× speedup while using 1.8× lesser GPU memory. With the proposed ebeSym−
strategy speedup of 17 × −26× is observed with respect to the ebe− strategy discussed in

5



Section 2.

5 Organization of Thesis

The thesis is organised in six chapters. The details are as follows.

• Chapter 1 presents the problem statement, major challenges, and a brief discussion

over the existing methods addressing these challenges, leading to the motivation and the

objectives of the thesis.

• Chapter 2 discusses the theoretical and implementational aspects of the structural topol-

ogy optimization. The fundamentals of GPU computing are discussed, followed by a liter-

ature review on using GPUs to accelerate density-based structural topology optimization

methods.

• Chapter 3 presents the GPU-based matrix-free FEA solver for structural topology opti-

mization for large-scale 3D continuum structures using unstructured meshes. The popu-

lar strategies for accelerating matrix-free FEA solver on GPU, their implementation, and

performance over benchmark examples are discussed in this chapter.

• In Chapter 4 fine-grained SpMV strategies to accelerate the matrix-free FEA solver

on GPU are discussed. The proposed three SpMV strategies are tested over benchmark

problems and their computational performance is compared with the standard strategy

form the literature.

• Chapter 5 presents the ebeSym− strategy that uses the symmetric half of the elemental

stiffness matrices, along with two novel data storage formats to ensure optimized data

accesses on GPU. The results of the proposed strategy are presented and compared with

the standard ebe− strategy.

• Chapter 6 presents the conclusions drawn from the thesis along with a note on future

work.

6



References

[1] Alok Sutradhar, Glaucio H Paulino, Michael J Miller, and Tam H Nguyen. Topological optimization

for designing patient-specific large craniofacial segmental bone replacements. Proceedings of the National

Academy of Sciences, 107(30):13222–13227, 2010.

[2] Deepak Sharma, Kalyanmoy Deb, and NN Kishore. Customized evolutionary optimization procedure for

generating minimum weight compliant mechanisms. Engineering Optimization, 46(1):39–60, 2014.

[3] David J Munk and Jonathan D Miller. Topology optimization of aircraft components for increased sustain-

ability. AIAA Journal, 60(1):1–16, 2021.

[4] Martin P Bendsøe. Optimal shape design as a material distribution problem. Structural optimization,

1(4):193–202, 1989.

[5] Stephan Schmidt and Volker Schulz. A 2589 line topology optimization code written for the graphics card.

Computing and Visualization in Science, 14(6):249–256, 2011.

[6] Leonardo S Duarte, Waldemar Celes, Anderson Pereira, Ivan FM Menezes, and Glaucio H Paulino. Poly-

top++: an efficient alternative for serial and parallel topology optimization on cpus & gpus. Structural and

Multidisciplinary Optimization, 52(5):845–859, 2015.

[7] Jesús Mart́ınez-Frutos and David Herrero-Pérez. Large-scale robust topology optimization using multi-gpu

systems. Computer Methods in Applied Mechanics and Engineering, 311:393–414, 2016.

[8] Tomás Zegard and Glaucio H Paulino. Toward GPU accelerated topology optimization on unstructured

meshes. Structural and multidisciplinary optimization, 48(3):473–485, 2013.

[9] Jesús Mart́ınez-Frutos, Pedro J Mart́ınez-Castejón, and David Herrero-Pérez. Efficient topology optimiza-

tion using gpu computing with multilevel granularity. Advances in Engineering Software, 106:47–62, 2017.

[10] Cris Cecka, Adrian J Lew, and Eric Darve. Assembly of finite element methods on graphics processors.

International journal for numerical methods in engineering, 85(5):640–669, 2011.

[11] Utpal Kiran, Sachin Singh Gautam, and Deepak Sharma. Gpu-based matrix-free finite element solver

exploiting symmetry of elemental matrices. Computing, 102(9):1941–1965, 2020.

7



List of Publications

Journal Publications

• Shashi Kant Ratnakar, Subhajit Sanfui and Deepak Sharma, 2022, “Graphics Processing

Unit-Based Element-by-Element Strategies for Accelerating Topology Optimization of

Three-Dimensional Continuum Structures Using Unstructured All-Hexahedral Mesh”,

ASME Journal of Computing and Information Science in Engineering, 22(2), 1–11.

https://doi.org/10.1115/1.4052892

• Shashi Kant Ratnakar, Utpal Kiran and Deepak Sharma, 2022, “Acceleration of Struc-

tural Topology Optimization using Symmetric Element-by-Element Strategy for Unstruc-

tured Meshes on GPU”, Engineering Computations, (Resubmitted after revision).

Conference Publications

• Shashi Kant Ratnakar, Subhajit Sanfui and Deepak Sharma, 2021, “SIMP-Based Struc-

tural Topology Optimization Using Unstructured Mesh on GPU”, in N. Kumar, S. Tibor,

R. Sindhwani, J. Lee and P. Srivastava, eds, ‘Advances in Interdisciplinary Engineering:

Select Proceedings of FLAME 2020’, Springer, pp 1–10, https://doi.org/10.1007/978 −
981− 15− 9956− 9 1.

• Shashi Kant Ratnakar, Subhajit Sanfui and Deepak Sharma, 2021, “GPU-Based Topol-

ogy Optimization Using Matrix-Free Conjugate Gradient Finite Element Solver with

Customized Nodal Connectivity Storage”, in N. Kumar, S. Tibor, R. Sindhwani, J. Lee

and P. Srivastava, eds, ‘Advances in Interdisciplinary Engineering. : Select Proceedings

of FLAME 2020’, Springer, pp 87−97, https://doi.org/10.1007/978−981−15−9956−9 9.

Other Publications

• Utpal Kiran, Subhajit Sanfui, Shashi Kant Ratnakar, Sachin Singh Gautam, and Deepak

Sharma, “Comparative Analysis of GPU-based Solver Libraries for A Sparse Linear Sys-

tem of Equations”, in 2nd International Conference on Computational Methods in Man-

ufacturing (ICCMM), 8− 9 March 2019, IIT Guwahati, India.

8


	Introduction
	GPU-based Matrix-Free FEA Solver for Structural Topology Optimization using Unstructured Mesh
	Efficient Thread Allocation Strategies for Matrix-Free FEA Solver
	Novel Data Storage and Data Access Patterns for Matrix-Free FEA Solver
	Organization of Thesis

