Computing manuscript No.
(will be inserted by the editor)

GPU-based Matrix-Free Finite Element Solver
Exploiting Symmetry of Elemental Matrices

Utpal Kiran - Sachin Singh Gautam -
Deepak Sharma

Received: date / Accepted: date

Abstract Matrix-free solvers for finite element method (FEM) avoid assembly
of elemental matrices and replace sparse matrix-vector multiplication required in
iterative solution method by an element level dense matrix-vector product. In this
paper, a novel matrix-free strategy for FEM is proposed which computes element
level matrix-vector product by using only the symmetric part of the elemental
matrices. The proposed strategy is developed to take advantage of the massive
parallelism of Graphics Processing Unit (GPU). A unique data structure is also
introduced which ensures localized and coalesced memory access suitable for a
GPU while storing only the symmetric part of the elemental matrices. In addi-
tion, the proposed strategy emphasizes the efficient use of register cache, uniform
workload distribution, reducing thread synchronization, and maintaining sufficient
granularity to make the best use of GPU resources. The performance of the pro-
posed strategy is evaluated by solving elasticity and heat conduction problems
using 4-noded quadrilateral element with two degrees of freedom (DOFs) and one
DOF per node, respectively. The performance is compared with the matrix-free
solver strategies on GPU from the literature. It is found that a maximum speedup
of 4.9x is obtained for the elasticity problem and a maximum of 3.2x speedup
for the heat conduction problem. Further, the proposed strategy takes the least
amount of GPU memory as compared to the existing strategies.

Keywords Matrix-free solver - Finite Element Method - GPU - CUDA - Parallel
Computing

1 Introduction
Finite element method (FEM) is one of the most extensively used numerical meth-

ods to solve real-world problems governed by ordinary/partial differential equa-
tions. The popularity of FEM is primarily due to its ability to handle complex

U. Kiran, S. S. Gautam, and D. Sharma (Cor. aut.)

Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Assam-
781039, India

E-mail: ukiran@iitg.ac.in, ssg@iitg.ac.in, dsharma@iitg.ac.in

2 Utpal Kiran et al.

geometries, high accuracy, and applicability to a wide range of problems. However,
FEM can be computationally expensive for complex real-life problems ﬂﬁ, @, @]
that require a large number of degrees of freedom (DOF's) to obtain desired solu-
tion. Although there has been an exponential increase in computational resources,
the computational cost of FEM is still the main bottleneck for many large-scale
problems.

In the literature, the high performance computing (HPC) techniques have been
used to handle expensive computation required in FEM m, @] Recently, Graph-
ics Processing Unit (GPU)-based computation has become immensely popular for
HPC implementation. The importance of GPU for HPC applications can be un-
derstood from the fact that many supercomputers in Top500 list have GPU on
each of its node ﬂ] It is because GPU is a massively-threaded many-core proces-
sor architecture that houses a large number of computational units for efficiently
handling parallel workload.

The HPC techniques can be used for FEM since the computation involved
can be done in parallel. However, FEM remains computationally expensive due
to involvement of various steps. In FEM, a mesh is first created by dividing the
problem domain into a number of polygon/polyhedra shaped entities known as ele-
ments. The governing field equations are recast into integral form (called the “weak
form”) and subsequent approximation of the primary variable over each element
leads to elemental stiffness and force matrices respectively. The elemental matrices
are then assembled into a global matrix using the mesh connectivity matrix. After
application of suitable boundary conditions, the assembled matrix is solved using
any suitable direct or iterative linear solver to obtain the value of unknown field
variables. Every step in FEM procedure can incur significant computational over-
head depending on the type of problem being solved. The previous attempts to
accelerate each step of FEM on GPU have achieved a significant performance over
single and multi-core CPU. The speedup of several folds has been observed in the
elemental matrix evaluation m, 39, [4d, @] and its assembly ﬂl_;l.', 134, 14, 139, l2d, |_4.__1|]
to the global matrix. However, it is found that the elemental matrix evaluation and
assembly consume smaller fraction of the total computational time as compared to
the solution of system of equations. Consequently, the acceleration of linear solver
on GPU has received more attention m, @, , é] The iterative solvers are more
preferred for solution of a large system of equations. In addition of being memory
efficient, the iterative solvers provide abundant amount of parallelism making them
suitable for GPU. The main computational components of an iterative solver are
sparse matrix-vector product (SpMV), vector-dot product, scalar-vector product
and vector-vector addition/subtraction, respectively. Among these, SpMV is the
most computationally expensive operation M] Since efficient parallel implementa-
tion of operations like vector-dot product can be achieved easily, the performance
of an iterative solver directly depends on the performance of SpMV operation. A
SpMYV operation performs multiplication of a sparse matrix stored in specialized
formats (like CSR, COO, ELL, etc. [§]) with a vector. These sparse storage for-
mats reduces the storage requirement of a sparse matrix. However, they introduce
irregular memory access pattern that prevents realization of true computational
performance of a GPU device. In spite of these challenges, the SpMV operation
has benefited greatly by the use of GPU acceleration ﬂé, B, @]

Another way to improve the performance of an iterative solver is to replace
SpMYV operation of a sparse matrix with a vector by a matrix-free approach. In this

GPU-based Matrix Free Solver 3

approach, the multiplication is performed at the level of smaller dense constituent
matrices. Since the elemental matrices are dense and of the same size, the matrix-
free approach can provide finer level of parallelism along with regular memory
access pattern suitable for GPU. The matrix-free approach was first introduced
in HE] for the low memory vector machines and primarily used for solving large
FEM problems on microprocessor with limited memory HE] The recent revival
of interest in the matrix-free approach can be attributed to an introduction of
massively parallel many-core architectures. Since the advent of CUDA in 2006 the
matrix-free approach has been actively pursued by many researchers. GPU-based
matrix-free FEM solver has been developed for applications like elasticity Nﬂ], heat
conduction ﬂﬂ], weather prediction @], fluid flow M], and topology optimization
@] among many others. The elemental matrices in the matrix-free solver can
be precomputed for all elements in the mesh and stored as dense matrices or it
can be recalculated on-the-fly ﬂ, @] during matrix-vector product. As shown in
@], the approach that recalculates elemental matrices becomes highly compute
bound for GPU implementation, whereas the best performance is achieved by the
local matrix approach for low-order FEM. The local matrix approach is also found
to perform better than the assembly-based solver ﬂ@, @] Overall, the superior
performance of the matrix-free approach can be ascribed to lesser memory transfer,
better access pattern, and fine grain parallelism. However, the performance of the
matrix-free approach on GPU is still found to be limited by memory bandwidth.

To the best of author’s knowledge studies implementing the matrix-free ap-
proach use full elemental matrices for matrix-vector product evaluation. The ele-
mental matrices obtained in FEM are symmetric for most of the problems. Imple-
menting matrix-vector product using the symmetric part of the elemental matrices
can significantly reduce the storage requirement as well as data transfer. On the
memory bound architectures like GPU reduction in data requirement is expected
to improve the performance of a kernel substantially. So far the matrix-free ap-
proach has not been implemented on GPU using only the symmetric part of the
elemental matrices. Therefore, the main contributions of this paper are as follows.

1. A novel matrix-free solver for FEM is developed which uses only the symmetric
part of the elemental matrices.

2. In order to optimize the data access pattern, a unique data structure is devel-
oped which ensures coalesced memory access for efficient GPU implementation
while storing only the upper triangular part of elemental matrices.

3. Comparative analysis of the proposed solver with the existing matrix-free meth-
ods is presented on two test problems using linear quadrilateral elements over
unstructured mesh generated through an FEM software package.

The paper is organized as follows. Section [2] presents the existing and the most
common matrix-free solvers for FEM and discusses their GPU implementations.
In Section B the proposed matrix-free method is described along with the data
structure and access pattern. The performance evaluation and comparison are
presented in Section [l Section Bl concludes the paper with scope of future work.

4 Utpal Kiran et al.

2 Background
2.1 Matrix-free FEM

The finite element discretization produces the global system of algebraic equations
KU =F, (1)

where K is the sparse global stiffness matrix, U is the unknown displacement
vector and F is the global extended force vector. The global stiffness matrix and
nodal force vector are assembled from the elemental matrices as

K= ;645 KE’ (2)

F=AF° 3)

ec&
where K€ is the elemental tangent matrix, F¢ is the elemental force vector, £ is
the set of all elements in the mesh and A is the assembly operator. The iterative
approach to solve system of equations (Eq. (Il)) requires the multiplication of sparse
global stiffness matrix K with a given vector y, in each iteration step. There are
three major strategies by which a matrix-free solver can be implemented on a

GPU.

1. Node-by-Node (NbN)
2. Degrees-of-Freedom -by- Degrees-of-Freedom (DbD)
3. Element-by-Element (EbE)

2.2 NbN strategy

In the NDN strategy, the computation of matrix-vector product is performed by
moving through each node of the mesh. Every node has its corresponding rows
in the global stiffness matrix. The multiplication of each row is done with the
given vector and the result is accumulated into an array. Since the global stiffness
matrix is not constructed explicitly, each row corresponding to a node needs to
be assembled before multiplication. To generate a row in a global stiffness matrix,
contributions from all neighboring elements are needed. In practice, first, the re-
quired entries in elemental matrices of neighboring elements are multiplied with
corresponding vector entries and then the result is assembled m, @], which is given

p™ = 3 (Kiy), (4)

ec&n)

where £ is the set of elements connected to node n, K¢ is the contribution of
stiffness matrix toward node n, p is the resultant vector and y* is the elemental
sub-vector of vector y with which the multiplication has to be done. The Nb[N
strategy for two-dimensional problem having two DOF's per node (Ngo) is shown
in Algorithm[Il Since the computation is performed by moving through each node,
list of elements connected to node n (8(")) is computed in step 2 in terms of the
Node connectivity matrix. For each element in the node connectivity, the elemental

GPU-based Matrix Free Solver 5

connectivity matrix (E(©)) is found along with the local position (¢) of the node
in the element. The element stiffness matrix K¢ is read on the basis of ¢. Finally,
the required product is calculated in steps 7 and 9 for all DOFs associated with
the node.

Algorithm 1 Node-by-Node strategy.

1: for Node n = 1 to N do
2: Find Node connectivity &(™

3: for element e € £(™ do

4: E(©) « ElementConnectivity() > Extract the element connectivity
5: y(©) «— y(E) > Obtain the sub-vector for multiplication
6: for ¢ =1 to DOF-per-element do

7 val[0]+ = K°¢[2 * ¢][i] * y©[i] > ‘2’ refers to Ngop = 2
8: val[l]4+ = K¢[2 * g + 1][i] * y©[7]

9: end for

10: end for

11: end for

GPU parallelization is done over the nodes of the mesh. Single thread is as-
signed to do computation for one node. The node connectivity array and local
position array can be reordered to read in a coalesced manner. The elemental
stiffness matrices are read from strided locations in the global memory and hence
cannot be coalesced. The elemental connectivity matrix is arranged column-wise
for minimizing the global memory transactions. The access to vector y is also not
coalesced and it is read through the read-only cache.

It can be observed that each node performs its computation independently and
therefore, the problem of data race conditions M] does not arise. This is a major
advantage of the NbN strategy since overhead associated with synchronization
mechanism like coloring can be avoided.

For an unstructured mesh, each node can have different number of neighboring
elements. This leads to an unequal amount of workload distribution on threads.
A GPU warp M] remains active as long as any of its threads is working. This is
not desirable for an efficient utilization of GPU resources that leads to the major
disadvantage of the GPU-based NbN strategy.

2.3 DbD strategy

The DbD strategy performs the matrix-vector multiplication by moving through
each DOF of the system. Here, computation corresponding to each DOF associated
with a node is seen as an independent task. In the DbD strategy, computation of
matrix-vector product is implemented as @]

p™ = 3 K (m(u).1)y", (5)

ec&w)

where K¢ is the elemental stiffness matrix, m is the local to global mapping and
™) is the set of elements connected to DOF w. The DbD strategy is implemented
in a way similar to Algorithm [II Single thread per DOF assignment is used to
perform the computation. Input data structure remains identical as Algorithm [

6 Utpal Kiran et al.

but now the same data is read by as many threads as the value of Ng,r. Each
thread performs its own computation and accumulates the result into an array in
a coalesced manner. This strategy is also known as Row-by-Row solution method

[36].

The GPU-based DbD strategy has finer level of granularity than the NbN
strategy. However, the input data requirement remains the same as that for the
NbDN strategy. Moreover, since the same data is required for all the threads asso-
ciated with a particular node, either it can be read redundantly from the global
memory or can be shared among threads using the shared memory. The limited
size of the shared memory restricts its use to few cases and generally, data is read
redundantly from the global memory. The DbD strategy also suffers from the same
load imbalance problem found with the NbN strategy.

2.4 EbE strategy

In the EbFE strategy, the computation of matrix-vector product takes place at the
elemental level. The obtained result is then assembled to get the final solution.
This can be expressed as

— KS e 6

p= AKy))
where K¢ is the elemental stiffness matrix, y© is the multiplying vector transformed
to the elemental level, A is the assembly operator, £ is the set of all elements in
the mesh and p is the resultant vector.

Algorithm 2 Element-by-Element strategy.

1: for element e = 1 to £ do
2: for ¢ =1 to DOF-per-element do

3 for j =1 to DOF-per-element do
4: global_id < D(e, j)

5: val®[i]+ = K€[i][j] * y[global_id]
6: end for

7 end for

8: end for

9: p < Assembly(val)

Algorithm[2]shows the implementation of the EbE strategy. The multiplication
of elemental stiffness matrix with vector y is performed by using the local to global
mapping D(e,j) in step 4 and the result is stored in vector val in step 5. The
resultant vector p is obtained by assembling val in step 9.

In GPU implementation, computation for each element is performed in parallel.
There are three prominent ways of distributing workload among threads which are
as follows.

1. Single thread per element: In single thread per element approach ﬂﬂ], one
thread is responsible for reading the input data, computing elemental matrix-
vector product, and accumulating calculated value to the resultant vector.
This approach is the simplest to implement. However, each element gets an
amount of on-chip memories (shared memory and register) corresponding to

GPU-based Matrix Free Solver 7

a thread only. Therefore, this approach suffers from poor utilization of fast
on-chip memories.

2. Single thread per node: The single thread per node approach allocates as many
threads to an element as the number of nodes. Each thread performs compu-
tation for all DOFs associated with the node.

3. Single thread per DOF': The finest level of granularity is achieved in the single
thread per DOF approach. Here, the number of threads equal to DOFs associ-
ated with an element is allocated ﬂﬁ, @] The elemental matrix-vector product
is decomposed into several inner-vector products corresponding to each row of
the matrix. Each thread is assigned to do computation for one inner-vector
product. This approach also provides the highest amount of on-chip memory
per element.

After the elemental matrix-vector product is obtained, it needs to be assembled
into a final global vector as shown in Algorithm[2l Each non-zero entry in the global
vector corresponds to a DOF of the system. Each boundary DOF is shared among
multiple elements of the mesh. During parallel assembly of elemental resultant
vector, multiple elements tend to put their calculated value to the same location in
global vector simultaneously. Such kind of memory operation leads to the problem
of data race condition. In the EbE strategy, the problem of race conditions must be
addressed by the use of suitable synchronization mechanism like coloring, atomics
or using a separate assembly kernel ﬂﬂ]

The EbE strategy, having single thread per DOF allocation, is found to have
the best performance Hﬁ] Apart from providing the finest level of parallelism,
the strategy has simple data access pattern, balanced load distribution, and can
provide better utilization of on-chip memory. Along with the coloring method to
handle data race conditions, this strategy is used as a reference in this work.

3 Proposed Matrix-Free Strategy

Ky: p<—pe = Keye<— ye<—y

R RN

Fig. 1: Major steps involved in the matrix-free computation of elemental matrix-
vector product.

3.1 Matrix-free solver exploiting symmetry of elemental matrices

The major steps involved in the GPU-based computation of matrix-vector prod-
uct Ky in a matrix-free manner can be seen in Fig. [0l The matrix-vector product
can be computed in three steps: (1) transformation of multiplying vector y to ele-
mental vector y©, (2) computation of dense matrix-vector product with elemental

8 Utpal Kiran et al.

matrices, and (3) assembly of computed results. The steps 1 and 3 primarily in-
volve data scatter and gather type operation with little arithmetic load. In step 2,
the computation of dense matrix-vector is performed for all elements which makes
it computationally expensive as compared to the other two steps. The efficient im-
plementation of step 2 is therefore crucial for better performance of the matrix-free
solver.

In all existing matrix-free strategies, the computation in step 2 of Fig. [is
performed by using full elemental stiffness matrices. The proposed strategy makes
use of the fact that the elemental matrices in linear FEM is symmetric in most of
the cases. This property can be used to perform the elemental dense matrix-vector
product using only the lower or upper triangular part of the matrix. The matrix-
vector product in the proposed strategy is implemented using only the symmetric
part of the elemental matrices as

p= e«e‘lg(KiymyE), (7)

where K¢, is the symmetric part of elemental stiffness matrix. The proposed
matrix-free strategy for FEM is referred to as EbEsy.,, and can be represented in
the graphical form as shown in Fig.[2l Tt can be seen that the dense matrix-vector
product required in the matrix-free solver is replaced by a dense symmetric matrix-
vector product (SYMV) which requires only the symmetric part of the elemental
matrices. In the proposed strategy, all steps mentioned in Fig. [l is implemented
as a single computational kernel with the coloring method to avoid data race
conditions.

/y
ye
/
{ . o0 o0 |0
. e oo |0
P=Ky «» P«p™= IR
- ol |0
- sYMV &R
} e
me
erative solver
Iterat \Ke

Fig. 2: Illustration of the proposed EbFEsy,, strategy.

The computation of a SYMV operation can be performed by following Algo-
rithm Bl The multiplication of each row with vector y® is performed by looping
over the total number of rows Ksize, where the computation is performed first
(step B) for the upper triangular part of the matrix. In step [0 of Algorithm [3]
the computation of missing symmetric part (lower triangular part) is performed

GPU-based Matrix Free Solver 9

where indices k and i to the matrix K¢ always refer to the values in the upper
triangular part. This shows that the SYMV computation can be implemented by
storing only the upper or the lower triangular part of the symmetric matrix.

Algorithm 3 Computation of symmetric matrix-vector product (SYMV)

1: for i = 1 to Kg;,e do

2: for j =1ito Kg;ze do > Computation for symmetric part
3 pelil+ = Ke[i]lj] + y©j]

4: end for

5: if (i #1) then > Computation for missing symmetric part
6: for k =(i—1) to1ldo

7 pelil+ = Ke[k][i] + y*[k]

8: end for

9: end if

10: end for

For GPU implementation, the storage of the symmetric part of the matrix can
be done in any suitable format which facilitates uniform memory access pattern
during computation. However, the same storage format may not be suitable for
the computation of missing symmetric part. As shown in step [0 of Algorithm [3]
values of matrix K¢ are accessed from the stored symmetric part in a strided and
nonuniform manner. Such kind of access pattern wastes the memory bandwidth
of GPU and consequently degrades the performance. The optimization of mem-
ory access pattern for a SYMV operation on GPU is suggested by many authors
@, E, @] These studies discuss the strategies to compute the SYMV operation
for moderate to large size matrices. However, the approaches available in the lit-
erature are either not applicable or not optimal for small size matrices (less than
50) generally found in low-order FEM. Moreover, in the current work, computa-
tion has to be performed in a batch for millions of elements. Since matrix-vector
product has very low arithmetic intensity, efficient handling of memory overhead
becomes indispensable for batch implementation of SYMV. For better performance
on GPU, it, thus, becomes extremely important to minimize the data transfer and
use coalesced and localized memory access pattern. The proposed EbEsy,, strat-
egy addresses all these issues by adopting a novel data structure which ensures
coalesced memory access while storing only the symmetric part of the elemental
matrices. In order to obtain the best performance, the EbE,y,, strategy seeks to
make an efficient use of register cache by using CUDA shuffle instruction. This
not only helps in relaxing the shared memory size restrictions but also avoids the
data movement to-and-fro from the shared memory. Single thread per node assign-
ment similar to EbE strategy (Section [24) is used to achieve balanced workload
distribution. Also, each thread performs its task independently so that no syn-
chronization barrier is required. In order to demonstrate the performance of the
proposed strategy, quadrilateral element with linear basis function is considered.

3.2 Kernel design and data structure for EbEsy,, strategy

In the proposed strategy, the elemental stiffness matrix is divided into a number
of sub-matrices as shown in Fig. Bl The figure shows nonzero entries in the upper

10 Utpal Kiran et al.

Node #1 Node #2 Node #3 Node #4

g A, *] o E] R Gl [¢ o«

2 : s :

& B, * % * % * %

CQZ,_ D, *] }\2 x| [x| JF, G)

@D

35 E1 * | i B, * x| x|

Z | [F, *| A, *| [D, E)

&

B |16 =* Bs * %

zZ [* |
A,

g

E | B4

Fig. 3: Organization of the elemental stiffness matrix for a 4-noded quadrilateral
element with two DOF's per node.

triangular part of the elemental stiffness matrix for 4-noded quadrilateral element
with Ngo¢ = 2. Each node is associated with as many rows and columns in the
matrix as the value of Ngor. The size of sub-matrices is kept equal to Ngor and
it contains the values corresponding to one node in row and one node in column.
For example, the following sub-matrix contains all the computed values between
node 1 in row and node 2 in column.

D1 E1
E
Depending on the position in the matrix the sub-matrices are categorized into two

groups: diagonal and off-diagonal. The diagonal group contains all sub-matrices
lying on the diagonal of the elemental matrix, such as

A1 * AQ *
[N BJ , [N BJ ,etc.

The off-diagonal group contains sub-matrices that are not unique. These sub-
matrices appear in the symmetric part also. In case of the diagonal group, all
sub-matrices are associated with only one node number (the rows and column
nodes are same). In case of the off-diagonal group, two such numbers exist, that
is, one associated with the row and other with the column. Therefore, each sub-
matrix is identified with a nodal index of the form K“{n,m} which represents
sub-matrix at n* node in row and m'" node in column. The row node number is
used to find global DOF to store result of multiplication, whereas the column node
number is used to find global column indices of vector y to perform multiplication.

The computation of symmetric matrix-vector product is divided into two stages.

In the first stage, the computation for the diagonal group is performed whereas in
the second stage, multiplication for the off-diagonal group is done.

GPU-based Matrix Free Solver 11

T, T, Tz T4

IR

Al (AL AL AL [ATAZIAZ] | AT AL AL AY
T, T, Ts T

1 1 1 1 2 2 2

B:|B,B;|Bs|B, |B,|Bs| - ' . - |B] [B2 |B3 B4

Fig. 4: Data access pattern for diagonal group.

The sub-matrices in the diagonal group are unique. Since computation is per-
formed in a node-wise manner, these sub-matrices contribute to the matrix-vector
multiplication results for their respective node number. Thread assigned to each
node reads all the unique entries from its sub-matrix and performs multiplication
with y vector. The data access pattern for the diagonal group is shown in Fig.
[It shows four threads accessing the values marked as A and B (also shown in
Fig. B) from four sub-matrices of the diagonal group. Here, in Fig. dl superscript
represents the element number and the subscript denotes the sub-matrix position
in the diagonal group. The other entries of a sub-matrix are accessed in a similar
way. In order to achieve coalesced access for a warp, data for other elements are
stored side by side. Once these values are read, they get multiplied by the given
vector and stored in the shared memory. Here, each thread uses its global node
number to read values from vector y through the read-only cache. The read from
y vector is not coalesced.

The off-diagonal entries in the symmetric matrix are not unique. The transpose
of sub-matrices in the off-diagonal group can be obtained if the row and column
nodes are interchanged, as shown in Fig. Bl It can be seen that the sub-matrix
located at K°{1,2} appears in its transposed form at K“{2,1}. This implies that
the same sub-matrix can be used to perform the computation for both node 1
and node 2. Similarly, the sub-matrix at position K°{1,3} can be used for both
node 1 and node 3. Thus, for a 4-noded quadrilateral element, the computation
for two sub-matrices can be performed simultaneously. The computation for the
off-diagonal group is implemented such that each thread is assigned with an equal
workload. Therefore, the sub-matrices for simultaneous computation must be cho-
sen judiciously. As shown in Fig. Bl the sub-matrices having the same type of
enclosing can be processed at the same time. If chosen otherwise, any one thread
can remain idle and others may have to do their task.

Since the computation of matrix-vector product uses only the symmetric part
of the matrix, the sub-matrices in the missing part (lower triangular part in Fig.
B) must be obtained separately or shared between two threads. Due to the limited
size of the shared memory, values in sub-matrices are read redundantly from the
global memory. However, data is arranged such that it results into a broadcast. The
broadcast from the global memory is although slower than the shared memory, it
has lower overhead than reading values separately. The data access pattern for the

12 Utpal Kiran et al.

off-diagonal entries is shown in Fig. Bl Here, D denotes the corresponding value
in sub-matrices with same type of enclosing (refer to Fig. B) in which subscript
indicates the sub-matrix within an element and superscript indicates the element
number. It can be seen that threads 77 and 7%, assigned to node 1 and 2, read
the same D1 value whereas threads T3 and T4 read D3 value which is required to
perform computation of node 3 and node 4. The F' values are stored and read in
a similar way, except the values are now required by different set of threads. The
data for all elements are kept beside each other to enable coalesced access for a
warp.

Tt T2 Ts Ta Ts Te T2 Tg

Y

1 1 2 2 3 3 n n
D, b, DI D5 | b: D, ’ ' ' D, D,

Ta T, Ts Ta Ts Te T7 Tg

R

1 1 2 2 3 3 . . . n E"
Fl F2 Fl Fz Fl Fz Fl 2

Fig. 5: Data access pattern for off-diagonal group.

Once the data is read, it is multiplied with the corresponding values of vector
y¢. The y®© vector is extracted from y vector by using column indices of stiffness
matrix entries. In FEM, column indices of an elemental stiffness matrix can be
obtained by the global node numbers and Ng,¢. In particular, the column node
numbers of each sub-matrix can be used to obtain column indices of its entries. It
can be observed from Fig. Bl that threads working over a sub-matrix either contain
row node number or column node number of the sub-matrix. The row node number
becomes column node number for a sub-matrix after it gets transposed. Thus, the
global node number of two threads can be interchanged to get column node number
of the sub-matrix. This is achieved in the proposed strategy by using the warp-
shuffle instruction. Using the warp shuffle feature, the proposed strategy prevents
the use of the shared memory as well as the global memory access. The warp
shuffle feature is found to be more faster than the shared memory and leads to
better utilization of register cache @]

4 Results and Discussion

The efficiency and performance of the proposed EbEy,, strategy are evaluated by
solving elasticity and steady-state heat conduction equations in two dimensions
(2D). The elasticity equation is solved over cantilever and L-shaped beam, and
the steady-state heat equation is solved over a plate with multiple holes. Further,
the performance of the proposed strategy is compared with the existing matrix-
free strategies discussed in Section 2l In all the numerical problems, a symmetric

GPU-based Matrix Free Solver 13

positive-definite system of equations is obtained due to finite element discretiza-
tion. Since the conjugate gradient (CG) solver is the most efficient and widely
used iterative solver for the symmetric positive-definite system ﬂﬁ, @], it is cho-
sen as a solver in this work. It is important to note that the proposed strategy
is equally applicable to other iterative solvers including multigrid ﬂﬂ] Coloring
method is used to handle data race conditions with the FbE and EbEsy,, strate-
gies. However, any data race condition is not observed with the NbN and DbD
strategies.

The geometry of cantilever beam and L-shaped beam problems is relatively
simple, and hence, structured mesh is generated through an FEM software pack-
age called as ABAQUS. However, the data structure generated by ABAQUS is
unstructured and the same is used in this work. All the strategies have been imple-
mented by considering the mesh as unstructured and do not use any simplification
of the mesh to alter the performance. The plate with multiple holes problem is
solved with unstructured mesh which is also generated through ABAQUS.

The hardware used consists of NVIDIA Tesla K40 GPU and Intel Xeon (R)
E5-2650 CPU. The CPU consists of 12 physical cores clocked at 2.2 GHz and the
GPU consists of 2880 cores clocked at 745 MHz. The CUDA runtime version 9.2
is used. All the numerical results are obtained using the double precision floating
point arithmetic.

4.1 Elasticity Problem

The following elasticity equation is considered over the domain (2,

V-o+b=0, Vxecl (8)
which is subjected to the following boundary conditions,

u(w) = Uo, LS Fu’
t(w) = 'E, x € I},

where o is the Cauchy stress tensor, b is the body force per unit volume, u is the
unknown displacement variable, ug is the specified displacement on the boundary
I', and t is the given traction on the boundary I';. The elasticity equation is solved
for cantilever beam and L-shaped beam under plane stress condition and linear
strain-displacement relation. The problem geometry along with the dimensions
and boundary conditions are shown in Figs. [6] and [7 respectively. The material
properties are taken as: Young’s modulus (E) = 210 GPa and Poisson’s ratio (v)
= 0.3. The domain is discretized using 4-noded quadrilateral elements having two
DOFs per node. The problems are solved for different level of mesh refinement to
evaluate the performance at various workload. Tables [1 and Bl present the mesh
with different number of elements and corresponding DOF's for 2D cantilever beam
and L-shaped beam, respectively.

14

Utpal Kiran et al.

P=10°N

10

|

1

Fig. 6: A 2D cantilever beam with end load. All dimensions are in meters (m).

50

10

—

P=10°N

IE

30

Fig. 7: L-shaped beam. All dimensions are in meters (m).

Table 1: Finite element mesh for 2D cantilever beam.

Mesh Elements Nodes Degrees of freedom
C1 100,000 101,101 202,202
C2 400,000 402,201 804,402
C3 900,000 903,301 1,806,602
C4 1,600,000 1,604,401 3,208,802
Cb5 2,500,000 2,505,551 5,011,002

Table 2: Finite element mesh for L-shaped beam.

Mesh Elements Nodes Degrees of freedom
L1 1,750,000 1,754,001 3,508,002
L2 3,112,880 3,118,224 6,236,448
L3 4,480,000 4,486,401 8,972,802
L4 5,783,967 5,791,240 11,582,480
L5 7,000,000 7,008,001 14,016,002

GPU-based Matrix Free Solver 15

Table 3: Finite element mesh for steady-state heat conduction problem.

Mesh Elements Degrees of freedom

H1 9,84,681 9,88,734
H2 1,938,537 1,944,226
H3 3,048,540 3,055,672
H4 4,215,044 4,223,429
H5 6,240,237 6,250,435
rq
rg2 rgZ
g1
10 40
rgZ 10 7 I_g2 o
0 I
Q 5
<
40

Fig. 8: A plate with multiple holes. All dimensions are in meters (m).

4.2 Steady-State Heat Conduction Problem

The following steady-state heat conduction equation is solved over a plate with
multiple holes as shown in Fig.

V- (k- VT(x)) = f(x), x€
T(x) =g(x), =€y,

n(xz) -k -VT(x)=0, xecly,
I'y =141 UTIy,

9)

Here, T'(x) is the unknown temperature field, f(z) = 0, g(x) = 200 on I'y2 and 10
on I'y1 and k is the thermal conductivity matrix which is taken as identity. Table
lists the mesh with various level of refinement used in this analysis. The domain
is discretized with 4-noded quadrilateral element with single DOF per node.

4.3 Performance results

The performance of the EbE,,, strategy is assessed on the basis of the kernel time,
arithmetic throughput (GFLOP/s) and memory bandwidth. The kernel time is

16 Utpal Kiran et al.

evaluated using the CUDA event function, whereas the GFLOP /s and bandwidth
are calculated by the metrics given by nvprof profiler. Here, the kernel time is
referred to as the execution time of CUDA kernel in one iteration of the CG
solver. For the NbN and DbD strategies only one kernel is launched per iteration
but for the EbE and EbEsy, strategies separate kernel is launched for each color.
Therefore, the kernel time in case of the EbE and EbEy, strategies includes
execution time for all the colors. It is noted that the NbN and DbD strategies
are equivalent in case of steady-state heat transfer problem since each node has
only one DOF. Hence, results for the DbD strategy are not presented for the heat
transfer problem.

Figure[@ shows the comparison of kernel time for different matrix-free strategies
for the elasticity and heat transfer problems. The NDN strategy takes the highest
amount of kernel time in all the test problems. It also has the highest amount
of data requirement as compared to all the other strategies. With the same data
structure the DbD strategy achieves better timings than the NON strategy by
just increasing the granularity of computation. The redundant access of data in
case of the DbD strategy does not seem to have much overhead as the values
are broadcasted to Ngos threads from the global memory. Also, access to the
elemental matrix requires lesser number of transactions as compared to the NbIN
strategy as more number of threads now accesses the same matrix. However, in
both the NbN and DbD strategies, gather operation is performed to read the
elemental matrices in an uncoalesced manner. The elemental matrices constitute
the largest amount of data that a matrix-free solver needs to access. As evident
from less kernel time of the EbE strategy (Fig.[d) compared to the NbN and DbD
strategies, the uncoalesced access to the elemental matrices has a large impact on
the performance. In the EbE strategy, the elemental matrices are accessed in a
coalesced manner. Apart from better memory access pattern, the EbE strategy
has the finest level of granularity, less data requirement, and equally distributed
workload on each of the computational threads. With all these characteristics, the
FEbE strategy overcome the overhead associated with race conditions handling and
achieves the least kernel time among the existing matrix-free strategies.

The proposed EbE;yn, strategy outperforms all the other strategies in every
test problem (refer to Fig.[)). Since the EbEsy, strategy inherits the major char-
acteristic of the FbE strategy, a better performance compared to the NbN and
DbD strategies is expected. However, the superior performance compared to the
FEbE strategy can be mainly attributed to the reduction in data movement due to
use of only the symmetric part of the elemental matrices. In elasticity problem,
4-noded quadrilateral elements with two DOFs per node is used which gives the el-
emental matrix of size 8 x8. The implementation and optimization of matrix-vector
product for such a smaller size matrix in a batch mode is extremely challenging
as it involves very low arithmetic load compared to the required amount of data
movement. The proposed EbEsy., strategy achieves better kernel time compared
to the EbE strategy due to a unique data structure that ensures localized and
coalesced access pattern using only the symmetric part of the elemental matrices.
The reduction in data requirement helps in maintaining a higher computation to
data movement ratio than the EbFE strategy which is favorable for GPU imple-
mentation. Moreover, the EbEsy, strategy also achieves better execution times
for the heat transfer problem (Fig.[Bd) which uses the elemental matrices of size
4x4.

17

Kernel time (ms) Kernel time (ms)

Kernel time (ms)

100
90

100

70

GPU-based Matrix Free Solver
[o-NbN
-6--DbD
38 |oEbE
60 7+E bEsym
50
40/ .
30
20
10+
0 i
C1 C2 C3 Cc4 C5
Mesh
(a) Kernel time for the 2D cantilever beam problem.
100 ‘ —a
907--|:|--NbN /,"/
g0 -0~ DbD L
-0 EbF i
6738 |+ EbE,,, e
: e
50+ I =
40~
301
201
10t
0 L L 1 1 1
L1 L2 L3 L4 L5
Mesh
(b) Kernel time for the L-shaped beam problem.
a0l = VoN
80 |0 EbE
——BEbEgym
60
50
401
301
20+ =
- e S
0 e ¥ T 1 I
H1 H2 H3 H4 H5

Mesh

(¢) Kernel time for the steady-state heat conduction problem over a plate.

Fig. 9: Comparison of kernel time for test problems.

18 Utpal Kiran et al.

; [-o-EbE,,, vs NbN| |
--0--EbEsy, vs DbD
7[\-0-EbE,, vs EbE 7
o 6 |
,_g 5F Oommmemeeees B T------=-=== Lr==mmmmmmas o 7
o}
24 f
[9p]
3 [Log \4 o |
O 1 1 1 1 1
C1 Cc2 C3 C4 C5
Mesh
(a) Speedup for the 2D cantilever beam problem.
gl [-2 EVE.y vs NON| |
-0 EbEgyy, vs DbD
7ll-o-EbE,,, vs EbE 1
= ol 7
g5 b e P | — |]
4 J
o
3r S — e R D ' i
2L J
16 [e] O O O o i
0 1 1 1 1 1
L1 L2 L3 L4 L5
Mesh
(b) Speedup for the L-shaped beam problem.
g [By vs NBN| |
LI o EbEgy, vs EbE
6- J
(o}
25/ 1
ot
- |
xn 3 = BT Demmmmmmnmn- fFommmmemomo- Gom-mmmmmmm- o |
oL J
1k o o o o |
0 1 1 1 1 1
H1 H2 H3 H4 H5
Mesh

(c¢) Speedup for the steady-state heat conduction problem.

Fig. 10: Speedup achieved by EbEyn, strategy over the other matrix-free strate-
gies.

GPU-based Matrix Free Solver

19

1800
1600
as)

= 1400

(¢) GPU memory utilization for the steady-state heat conduction problem over a plate.

_ﬂanAvbbD
.0 BbE
—d— E bEsy’m

o
FFFFF

C1 c2 C3 C4 C5
Mesh

(a) GPU memory utilization for the 2D cantilever beam problem.

|+ EbEsym

_ﬂanAvbbD
o EbE

L1 L2 L3 L4 L5
Mesh

(b) GPU memory utilization for the L-shaped beam problem.

T-o--NbN 8

-0 EOF
——F bEsym

H1 H2 H3 H4 H5
Mesh

Fig. 11: GPU memory utilization by various strategies.

20 Utpal Kiran et al.

The speedup obtained by the EbEy,, strategy over the other strategies for
matrix-free solver is shown in Fig. In all the three problems, a consistent
speedup is observed which suggests that the EbEsy,, strategy is able to scale well
with increasing problem size. With respect to the NbN strategy, approximately 5x
speedup is observed for both cantilever and L-shaped beam problems. In the case of
the DbD strategy, approximately 2.8 x speedup is observed for elasticity problems.
Relatively lower speedup is observed for the case of heat transfer problem because
smaller elemental matrices have less memory overhead in the case of the NbN or
DbD strategy. The proposed strategy could achieve 1.4x speedup over the EbE
strategy for elasticity problems and 1.3x speedup in the case of the heat transfer
problem. Here, a similar speedup in both the cases illustrates the suitability of the
proposed strategy for extremely small size elemental matrices.

Figure [l shows the amount of GPU memory occupied by different strategies
as a function of the problem size. It can be observed that the proposed EbEsym
matrix-free strategy consumes the least amount of GPU memory. This suggests
that a much larger problem can be solved by the proposed strategy on a given GPU
card in lesser amount of time. The NbN and DbD strategies occupy the highest
amount of memory in all the numerical problems. This is due to the dependency of
these strategies on arrays like node connectivity and local position of nodes in each
element in addition to the elemental connectivity and the elemental matrices. The
EbE strategy only stores the elemental connectivity and the elemental matrices
on GPU and therefore requires lesser memory than the NbN and DbD strategies.
The least amount of memory consumption by the EbE,,,, strategy is due to the
storage of only the symmetric part of elemental matrices. For elemental matrix
of size 8x8 and 4x4 the EbFEsy,, strategy uses only 36 and 10 number of entries
respectively to perform computation. This leads to 1.7x and 1.4 x reduction in data
at the elemental level. Overall, the EbE,,,, strategy requires 1.5x less memory in
elasticity problem and 1.3X less memory in heat transfer problem (refer Fig. [IT])
than the EbE strategy. The ratio of unique entries to total number of entries in a
symmetric matrix is given by

2n

_— 1
n+1’ (10)

where n is the size of matrix. As the size of matrix increases, this ratio tends to
move closer to two. Thus, for higher order finite elements where the elemental
matrix size is large use of the symmetric part of the matrix can save up to 50%
of the data required in the EbFE strategy. Furthermore, the performance of the
EbE sy strategy relative to the EDE strategy can also become better for larger
matrix size.

A deeper insight into the performance of various matrix-free strategies can
be obtained by looking into arithmetic throughput and effective memory band-
width achieved by them. Figure [I2 shows the GFLOP /s achieved by the different
matrix-free strategies as a function of mesh size. The arithmetic throughput of
the proposed EbEsy.,, strategy having the least kernel time is found to be the
highest in all the test problems. The EbFE strategy shows significant improvement
in GFLOP/s as compared to the NbN and DbD strategies. Compared to the EbE
strategy, 1.5x and 1.3x better throughput are observed by the EbFEsy., strategy
in case of elasticity and heat transfer problems. However, GFLOP /s achieved by
all the strategies is found to be much lower than the peak value of the device. The

GPU-based Matrix Free Solver

GFLOP /sec

GFLOP/sec

GFLOP /sec

60 [--0--DbD
55..0.-EbE

45 :+EbEsym
40+ —

21

-a- NbN

¥*

*

*

(e]
(e]

D VN
A4 A4

——-O------- o

C3 C4

Mesh
(a) GFLOP/s for the 2D cantilever beam problem.

[——EbEy,

“o- NN
-0--DbD
-0-FEbE

40 -
35+

(b) GFLOP/s for the L-shaped beam problem.

L3
Mesh

60 L-o0-EbE

“o- NbN

——FEbE,,,

O

Q

H3
Mesh

(c) GFLOP/s for the steady-state heat conduction problem over a plate.

Fig. 12: GFLOP/s achieved by various matrix-free strategies.

22

Utpal Kiran et al.

-o- NbN
. --0--DbD
o 275+ EbE,y,]
U 250F O-n |
= 225 0 TTee - |
= 200/ QI > 3 7
‘s 1757 i
g 150- i
Sl e
75+ .
50 : ‘ ‘ ‘ ‘
Cc1 C2 C3 C4 C5

Mesh
(a) Memory bandwidth for the 2D cantilever beam problem.

oo NON

--0--DbD
ﬂ% 275 H—+—EbE,,, |
o 250+ i
T~ 225¢ J
= & & S & el
§ 200+ J
_% 175+ J
= 150 - o o S 5 o J
- S s s e
L1 L2 L3 L4 L5
Mesh
(b) Memory bandwidth for the L-shaped beam problem.
“o- NON
/g 300 ,—*—EbEsym i
L 275+ N
& 250 |
— 225¢ N
= & @ o &)
- 200+ o N
‘= 175F N
g 150F i
3 125 |
M 100 - Oo------- O---=-=---- O-=-=-=-==-- O-=-=-=-===-= o |
H1 H2 H3 H4 H5

Mesh
(¢) Memory bandwidth for the heat conduction problem.

Fig. 13: Memory bandwidth achieved by various matrix-free strategies.

GPU-based Matrix Free Solver 23

maximum value achieved by the EbEy., strategy reaches approximately 3% of
the peak value of NVIDIA Tesla K40.

The comparison of effective memory bandwidth achieved by various strategies
is shown in Fig. The memory bandwidth by all the strategies is found to be
on the higher side indicating memory bound nature of the matrix-free solvers.
The NON and DbD strategies are found to have relatively lesser bandwidth than
the EbE strategy. The EbE strategy achieves 212 GB/s for the case of elasticity
problems and 208 GB/s in heat transfer problem. The proposed EbEsy,, strategy
shows small improvement over the EbE strategy and achieves bandwidth of 215
GB/s and 209 GB/s in elasticity and heat transfer problems, respectively. The
maximum bandwidth achieved by the EbEy,, strategy is found to be approxi-
mately 74% of the theoretical peak value of NVIDIA Tesla K40 GPU which is
close to the achievable bandwidth of the device ﬂﬁ] Since the maximum arith-
metic throughput is found to be close to 3% of theoretical peak throughput, it can
be concluded that the performance of the proposed strategy is limited by memory
bandwidth.

5 Conclusions

A new GPU-based matrix-free strategy (EbEsym) for FEM has been proposed.
The developed strategy was based on an element-by-element FE solver which re-
placed the SpMV operation in an iterative solution method by an element level
dense matrix-vector product. A new approach to compute the elemental matrix-
vector product was developed which used only the symmetric part of the elemen-
tal matrices. The performance of the proposed solver was evaluated by solving
the elasticity and the heat transfer problems on unstructured mesh using 4-noded
quadrilateral element and the comparison was made with the existing GPU-based
matrix-free solvers. For the elasticity problems (two DOFs per node), approxi-
mately 5Xx speedup was observed over the node based (NbN), 2.8 x over the DOF
based (DbD) and 1.4x over the element based (EbE) matrix-free strategies. In
heat conduction problem (single DOF per node), 3x speedup over the NbN strat-
egy and 1.3x speedup over the EbE strategy were obtained. As a consequence of
using the symmetric part of the elemental matrices the overall memory footprint of
the proposed EbE sy, strategy was reduced by 1.5x for the elasticity and 1.3 x for
the heat conduction problems over the state-of-the-art EbE strategy. The obtained
results suggest that the proposed strategy can be used to solve problems of bigger
sizes on a given GPU card in lesser time. Also, the proposed strategy is applicable
where the symmetric elemental matrices are generated by FEM. In future, the
proposed strategy can be applied to various element types including higher order
and three-dimensional elements to study its performance and identify the limita-
tions, if any. The outcome of the future work is expected to make this strategy
more generic and applicable to a broader class of problems in FEM. Moreover,
the proposed strategy can also be used to develop kernel for batched symmetric
matrix-vector product using small size matrices for linear algebra applications.

Acknowledgements The authors are grateful to the SERB, DST for supporting this research
under project SR/FTP/ETA-0008/2014.

24

Utpal Kiran et al.

References

1.
2.

10.

11.

12.

13.

14.

(2019) Top500 supercomputers. URL https://www.top500.o0rg

Abdelfattah A, Dongarra J, Keyes D, Ltaief H (2012) Optimizing memory-
bound SYMV kernel on GPU hardware accelerators. In: International Confer-
ence on High Performance Computing for Computational Science, Springer,
pp 72-79

Ahamed AKC, Magouls F (2017) Conjugate gradient method with graph-
ics processing unit acceleration: CUDA vs OpenCL. Advances in Engineering
Software 111:32 — 42, DOI https://doi.org/10.1016/j.advengsoft.2016.10.002

Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional
topology optimisation of heat sinks cooled by natural convection. International
Journal of Heat and Mass Transfer 100:876 — 891, DOI https://doi.org/10.
1016/j.ijheatmasstransfer.2016.05.013

Altinkaynak A (2017) An efficient sparse matrix-vector multiplication on
CUDA-enabled graphic processing units for finite element method simulations.
International Journal for Numerical Methods in Engineering 110(1):57-78,
DOI 10.1002/nme.5346

Anzt H, Gates M, Dongarra J, Kreutzer M, Wellein G, Kéhler M (2017) Pre-
conditioned krylov solvers on GPUs. Parallel Computing 68:32-44

Bauer S, Drzisga D, Mohr M, Rde U, Waluga C, Wohlmuth B (2018)
A stencil scaling approach for accelerating matrix-free finite element im-
plementations. SIAM Journal on Scientific Computing 40(6):C748-C778,
DOI 10.1137/17M1148384, URL fhttps://doi.org/10.1137/17M1148384)
https://doi.org/10.1137/17M1148384

Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ACM, p 18

Cai Y, Li G, Wang H (2013) A parallel node-based solution scheme for implicit
finite element method using GPU. Procedia Engineering 61:318 — 324, DOI

https://doi.org/10.1016/j.proeng.2013.08.022

Carey GF, Jiang BN (1986) Element-by-element linear and nonlinear solution
schemes. International Journal for Numerical Methods in Biomedical Engi-
neering 2(2):145-153

Cecka C, Lew AJ, Darve E (2011) Assembly of finite element methods on
graphics processors. International Journal for Numerical Methods in Engi-
neering 85(5):640-669

Charara A, Keyes D, Ltaief H (2019) Batched triangular dense linear algebra
kernels for very small matrix sizes on GPUs. ACM Transactions on Mathe-
matical Software (TOMS) 45(2):15:1-15:28, DOI 10.1145 /3267101

Deakin T, McIntosh-Smith S (2015) GPU-STREAM: Benchmarking the
achievable memory bandwidth of Graphics Processing Units. In: SuperCom-
puting, IEEE/ACM, Austin, USA

Fehn N, Wall WA, Kronbichler M (2019) A matrix-free high-order discontin-
uous Galerkin compressible Navier-Stokes solver: A performance comparison
of compressible and incompressible formulations for turbulent incompressible
flows. International Journal for Numerical Methods in Fluids 89(3):71-102,
DOI 10.1002/f1d.4683

https://www.top500.org
https://doi.org/10.1137/17M1148384
https://doi.org/10.1137/17M1148384

GPU-based Matrix Free Solver 25

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Filippone S, Cardellini V, Barbieri D, Fanfarillo A (2017) Sparse matrix-vector
multiplication on GPGPUs. ACM Transactions on Mathematical Software
(TOMS) 43(4):30

Fu Z, Lewis TJ, Kirby RM, Whitaker RT (2014) Architecting the finite ele-
ment method pipeline for the GPU. Journal of Computational and Applied
Mathematics 257:195 — 211, DOT https://doi.org/10.1016/j.cam.2013.09.001
Goddeke D (2011) Fast and accurate finite-element multigrid solvers for PDE
simulations on GPU clusters. Logos Verlag Berlin GmbH

Hughes TJR, Levit I, Winget J (1983) An element-by-element solution al-
gorithm for problems of structural and solid mechanics. Computer Meth-
ods in Applied Mechanics and Engineering 36(2):241 — 254, DOI https:
//doi.org/10.1016,/0045-7825(83)90115-9

Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element com-
putations on GPU-application to neurosurgical simulation. Computer Meth-
ods in Applied Mechanics and Engineering 199(49-52):3305-3314

Kiran U, Sharma D, Gautam SS (2019) GPU-warp based finite element matri-
ces generation and assembly using coloring method. Journal of Computational
Design and Engineering 6(4):705 — 718, DOI https://doi.org/10.1016/j.jcde.
2018.11.001

Kiss I, Gyimothy S, Badics Z, Pavo J (2012) Parallel realization of the
element-by-element FEM technique by CUDA. Magnetics, IEEE Transactions
on 48(2):507-510

Komatitsch D, Michéa D, Erlebacher G (2009) Porting a high-order finite-
element earthquake modeling application to NVIDIA graphics cards using
CUDA. Journal of Parallel and Distributed Computing 69(5):451-460
Kronbichler M, Kormann K (2019) Fast matrix-free evaluation of discontin-
uous galerkin finite element operators. ACM Trans Math Softw 45(3), DOI
10.1145/3325864, URL https://doi.org/10.1145/3325864

Li R, Saad Y (2013) GPU-accelerated preconditioned iterative linear solvers.
The Journal of Supercomputing 63(2):443-466

Maciot P, Plaszewski P, Bana$ K (2010) 3D finite element numerical integra-
tion on GPUs. Procedia Computer Science 1(1):1093-1100

Markall G, Slemmer A, Ham D, Kelly P, Cantwell C, Sherwin S (2013) Fi-
nite element assembly strategies on multi-core and many-core architectures.
International Journal for Numerical Methods in Fluids 71(1):80-97
Martinez-Frutos J, Martinez-Castején PJ, Herrero-Pérez D (2015) Fine-
grained GPU implementation of assembly-free iterative solver for finite ele-
ment problems. Computers & Structures 157:9-18

Martnez-Frutos J, Herrero-Prez D (2015) Efficient matrix-free GPU imple-
mentation of fixed grid finite element analysis. Finite Elements in Analysis
and Design 104:61 — 71, DOI https://doi.org/10.1016/j.finel.2015.06.005
Miiller E, Guo X, Scheichl R, Shi S (2013) Matrix-free GPU implemen-
tation of a preconditioned conjugate gradient solver for anisotropic elliptic
PDEs. Computing and Visualization in Science 16(2):41-58, DOI 10.1007/
s00791-014-0223-x

Nath R, Tomov S, Dong TT, Dongarra J (2011) Optimizing symmetric
dense matrix-vector multiplication on GPUs. In: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Stor-
age and Analysis, ACM, New York, NY, USA, SC ’11, pp 6:1-6:10, DOI

https://doi.org/10.1145/3325864

26

Utpal Kiran et al.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

10.1145/2063384.2063392

NVIDIA Corporation (2019) CUDA C programming guide. Version 10.0
Ohshima S, Hayashi M, Katagiri T, Nakajima K (2013) Implementation and
evaluation of 3D finite element method application for CUDA. In: Daydé M,
Marques O, Nakajima K (eds) High Performance Computing for Computa-
tional Science - VECPAR 2012, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 140-148

Pikle NK, Sathe SR, Vyavahare AY (2018) High performance iterative elemen-
tal product strategy in assembly-free FEM on GPU with improved occupancy.
Computing 100(12):1273-1297, DOI 10.1007/s00607-018-0613-x

Ram L, Sharma D (2017) Evolutionary and GPU computing for topology
optimization of structures. Swarm and Evolutionary Computation 35:1-13
Reguly I, Giles M (2013) Finite element algorithms and data structures on
graphical processing units. International Journal of Parallel Programming
43(2):203-239

van Rietbergen B, Weinans H, Huiskes R, Polman B (1996) Computa-
tional strategies for iterative solutions of large FEM applications employ-
ing voxel data. International Journal for Numerical Methods in Engineering
39(16):2743-2767

Rupp K, Weinbub J, Jiingel A, Grasser T (2016) Pipelined iterative solvers
with kernel fusion for graphics processing units. ACM Transactions on Math-
ematical Software (TOMS) 43(2):11:1-11:27, DOI 10.1145/2907944

Saad Y (2003) Iterative Methods for Sparse Linear Systems, 2nd edn. Society
for Industrial and Applied Mathematics, DOI 10.1137/1.9780898718003
Sanfui S, Sharma D (2017) A two-kernel based strategy for performing as-
sembly in FEA on the graphics processing unit. In: Advances in Mechanical,
Industrial, Automation and Management Systems (AMIAMS), 2017 Interna-
tional Conference on, IEEE, pp 1-9

Sanfui S, Sharma D (2019) Exploiting symmetry in elemental computation
and assembly stage of GPU-accelerated FEA. In: Proceedings at the 10th
International Conference on Computational Methods (ICCM2019), ScienTech
Publisher, pp 641-651

Sanfui S, Sharma D (2020) A three-stage gpu-based fea matrix generation
strategy for unstructured meshes. International Journal of Numerical Methods
in Engineering in press, DOI 10.1002/nme.6383

Shewchuk JR (1994) An introduction to the conjugate gradient method with-
out the agonizing pain. Tech. rep., Pittsburgh, PA, USA

Tezduyar T, Aliabadi S, Behr M, Mittal S (1994) Massively parallel fi-
nite element simulation of compressible and incompressible flows. Computer
Methods in Applied Mechanics and Engineering 119(1):157 — 177, DOI
https://doi.org/10.1016,/0045-7825(94)00082-4

Wong J, Kuhl E, Darve E (2015) A new sparse matrix vector multiplication
graphics processing unit algorithm designed for finite element problems. In-
ternational Journal for Numerical Methods in Engineering 102(12):1784-1814,
DOI 10.1002/nme.4865

Yagawa G, Soneda N, Yoshimura S (1991) A large scale finite element anal-
ysis using domain decomposition method on a parallel computer. Comput-
ers & Structures 38(5):615 — 625, DOI https://doi.org/10.1016,/0045-7949(91)
90013-C

GPU-based Matrix Free Solver 27

46. Zhang J, Shen D (2013) GPU-based implementation of finite element method
for elasticity using CUDA. In: 2013 IEEE 10th International Conference on
High Performance Computing and Communications, 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, pp 1003-1008, DOI
10.1109/HPCC.and.EUC.2013.142

	Introduction
	Background
	Proposed Matrix-Free Strategy
	Results and Discussion
	Conclusions

