Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

A Three-Stage GPU-based FEA Matrix Generation Strategy for
Unstructured Meshes

Subhajit Sanfui | Deepak Sharma

Department of Mechanical Engineering,
Indian Institute of Technology, Guwahati, Summary

A 781039, Indi . . .
ssam ne With the development of parallel computing architectures, larger and more com-

Correspondence plex Finite Element Analyses (FEA) are being performed with higher accuracy and
gj;?nd:ei:cg‘n?:dll:ﬁ::ﬁjgs: 11,\: :E:ZT;;J smaller execution times. Graphics Processing Units (GPUs) are one of the major
Guwahati, Guwahati, Assam 781039, India. contributors of this computational breakthrough. This work presents a three-stage
Email: dsharma@iitg.ac.in GPU-based FEA matrix generation strategy with the key idea of decoupling the com-
putation of global matrix indices and values by use of a novel data structure referred
to as the neighbor matrix. The first stage computes the neighbor matrix on the GPU
based on the unstructured mesh. Using this neighbor matrix, the indices and values of
the global matrix are computed separately in the second and third stages. The neigh-
bor matrix is computed for three different element types. Two versions for performing
numerical integration and assembly in the same or separate kernels are implemented
and simulations are run for different mesh sizes having up to 3 million degrees of
freedom on a single GPU. Comparison to GPU-based parallel implementation from
the literature reveals speedup ranging from 4X to 6X for the proposed workload divi-
sion strategy. Furthermore, the same kernel implementation is found to outperform

the separate kernel implementation by 70% to 150% for different element types.

KEYWORDS:
Finite Element Analysis, Matrix Generation, Unstructured Mesh, GPU, Kernel Division

1 Introduction

A large array of physical phenomena such as elasticity, fluid dynamics, sound, heat, electrostatics or quantum mechanics can be
described accurately by partial differential equations (PDEs). These supposedly distinct phenomena are formalized using PDEs
and solved to get the response of a system by using a numerical method. Finite Element Method (FEM)! is one of the most
popular numerical methods for solutions to PDEs. Several inherent advantages over other methods have made it an elemental
part of a broad array of specializations both in academia and in industries like automotive, aviation and construction. It is also
extensively utilized in several engineering specializations like mechanical, civil and electrical engineering.

The practice of applying concepts of FEM for solving practical problems is named as “Finite Element Analysis (FEA)”, which
is made up of three basic steps, that are, the Pre-processor step, the Solver step and the Post-processor step. The problem domain
is established by defining the material constants, element order and type, and mesh information during the Pre-processor step.
This is followed by the Solver step, where the elemental matrices are computed and assembled into a global stiffness matrix.
This matrix, after application of proper boundary conditions, gives a set of algebraic equations. This system of equations upon




2|

solving yields the response of the physical system under the applied loading conditions. The final step is the Post-processor
step, where the results obtained in the solver step are utilized to gain more insight about the problem like stresses and strains.
Plotting and visualization are also done during this stage.

It is reported in the literature23# that several steps of FEA such as the elemental matrix generation, assembly into global
stiffness matrix and solution of the linear system are time-consuming in nature for large and complex domains. Although a single
FE analysis, in itself, is often capable to be perfectly handled by traditional CPU implementations, challenges arise in cases
involving complex geometries and ultra-fine meshes, or cases where the FEA is coupled with another computational algorithm
such as in topology optimization2. One common strategy for reducing time is to perform FEA computations in parallel by
exploiting the data-parallel nature of the FEA algorithm?2. Due to the single-instruction-multiple-data (SIMD) structure of FEA,
it is typically suited for shared-memory parallel architectures such as GPUs. As a result, a lot of research work has focused
on GPU-based parallel implementations of different stages of FEA over the last decade. Starting with computing elemental
stiffness matrices, it is often computationally expensive due to repeated calculations for a high number of elements or high
order of elements®. Owing to this fact, several studies focused explicitly on the numerical integration aspect’8. This generation
of elemental data can be done independently for all the elements, which makes this stage embarassingly parallel as reported
by several researchers?1?. Another challenge is the assembly of the elemental stiffness matrices into a global stiffness matrix,
which can also become computationally expensive? for a large mesh or in case of non-linear FEA where assembly needs to
be performed repeatedly. After the assembly is performed, the implementation of boundary conditions and solution of linear
equations have also been implemented on GPU L2, Some implementations in the literature have investigated matrix-free methods
for GPU-based FEA 1213 These methods work on the key principle of reducing memory access and storage by introducing
redundant computation. Unlike the elemental stiffness matrix generation stage, the other stages of FEA cannot be broken into
small independent chunks of computation due to dependencies among the nodes and elements. This calls for more sophisticated
implementations from the programmers’ side. In general, the data-parallel and throughput-intensive nature of different stages of
FEA makes it a highly suitable candidate for GPU implementation, especially for large-scale problems. However, the traditional
algorithms, being originally developed for traditional sequential hardware, are often rendered infeasible on the massively parallel
architectures. New and innovative approaches that are often radically different are required to reflect the target architecture 141113
and to extract a good performance.

Among very early studies on GPU-based implementation of FEA matrix generation, Bolz et al.1®, RodrAnguez-Navarro and
SusAnn SAnchez!? used simplified parallel implementations where expressions were derived for each non-zero (NZ) entry in the
global stiffness matrix separately and the computations were performed in parallel on the GPU. Although this implementation
provided some performance gain, deriving such expressions was not possible for many real-world applications. After the launch
of Compute Unified Device Architecture (CUDA) from NVIDIA in 2007, more sophisticated and generalized implementations
were being reported with significant performance gains. Komatitsch et al.®implemented numerical simulation of seismic wave
propagation caused by earthquakes on an NVIDIA GPU. In this implementation, each thread block was assigned to one 125-
noded element of the finite element mesh. The inherent data race was countered by coloring the elements and computing the
colors in sequence. Similar coloring strategies were also reported by Cecka et al.2 targeting assembly on GPU, where a thorough
study of different ways to perform an assembly for unstructured 2D mesh was presented. An elemental subroutine was used
for calculating the elemental matrices, where each thread was designated different tasks for different implementation strategies.
The data race associated with assembly was handled by allocating each NZ entry to one compute thread or by using a coloring
approach identical to the implementation by Komatitsch et al.8. The coloring approach was found to be under-performing as
a result of excessive accesses to the global memory of GPU. For lower order elements, the authors recommended usage of
shared memory to store the elemental data and assigning each thread to compute an NZ entry of the global stiffness matrix.
For higher orders, a single thread per element strategy was suggested. Fu et al.2 discussed acceleration of FEM on the GPU
for higher order elements. Again the thread allocation was done by assigning a single thread to one element of the FE mesh.
This implementation, however, involved redundant computation because of the elemental stiffness matrices being calculated
on the fly and not being stored on the GPU memory. Markall et al.14 discussed assembly by segmentation into two separate
approaches, which were named as the addto method and the local matrix approach (LMA). The standard assembly approach
followed on the CPU was termed as the addto method of assembly. LMA, on the other hand, is a matrix-free method with
the key idea of alleviating GPU-related implementational difficulties. The idea of these implementations originated from the
methods followed in higher order FEM 8, where similar scatter and multiply methods were implemented for multiplication to
the global stiffness matrix. A conclusion was drawn that LMA is suitable for GPU implementations whereas addto method is
more suitable for CPU implementations. The study by Kiss et al. 12 took this method of assembly even another step further where



| 3

the elemental matrices were computed whenever required instead of storing on the GPU. This low-storage compute intensive
implementation was shown to be better suited to many-core systems for large data sets. However, Fu et al.? later demonstrated
through comparative studies that using this approach, the results were worse than the traditional assembly into complete global
stiffness matrix for 3D grids. The authors presented a novel algorithm for assembly using a patch-based division of the entire
mesh that aims to alleviate several difficulties of GPU-based assembly. Dziekonski et al.122% presented an efficient method for
generating the global stiffness matrices in FEA in the field of computational electromagnetic using both single and multi-GPU
setups. The key idea behind the strategy was to assemble the sparse global stiffness matrix into the coordinate format (COO) in
the first step and to transform it into compressed sparse row (CSR) format by removing the duplicate entries during the second
step. Among more recent studies, Dinh and Marechal?! studied a real-time FEM implementation on GPU, where a sorting-
based implementation of parallel global assembly was performed. In this implementation, after executing the elemental routine,
the data was accumulated into an unsorted COO format with duplicate entries. Following this, the entries were sorted using
parallel radix sort and reduced to form the global stiffness matrix. An implementation based on the principle of dividing the GPU
assembly with standard sparse formats was presented by Sanfui and Sharma?2. The authors used structured meshes with brick
elements to demonstrate the advantage of workload division at the assembly stage. The implementation divided the assembly
operation into a separate symbolic kernel and a numeric kernel. Later, Zayer et al.23 accelerated assembly of sparse matrices by
modifying the assembly stage as a matrix-matrix multiplication with the aim to remove any CPU or GPU-based preprocessing.
This approach enabled them to reduce storage and movement of data on the GPU. Among more recent works, Kiran et al.2*
presented a warp-based assembly approach for hexahedral elements in single precision where the numerical integration and
assembly were performed in the same kernel. An implicit finite element model with cohesive zones and collision response was
accelerated using CUDA by Gribanov et al.23. For handling the race condition in assembly, instead of coloring the elements,
atomicAdd function of CUDA toolkit was used to resolve it at the hardware level. Recently, Sanfui et al.2® implemented FEA
on GPU by utilizing the symmetry of the elemental and global stiffness matrix. Numerical integration and assembly operations
were implemented on the GPU to achieve a speedup of approximately 2x over the standard implementation that computed the
entire matrix on the GPU. It should be mentioned here that apart from traditional FEM implementations, GPU implementations
of matrix generation for isogeometric analysis (IGA) have also been reported in the literature27:28,

After assembly, proper boundary conditions are applied to the global stiffness matrix, which results in a non-singular system
of equations to be solved using either an iterative or a direct method. For matrices of large size, Conjugate Gradient and other
Krylov subspace methods are preferred3.

It is observed from the literature survey that while assembling into a significantly large global stiffness matrix, a lot of the
methods discussed in the literature fail to perform. One of the primary reasons is the usage of sparse storage formats that create
complications in the assembly operation. This challenge becomes more prominent for assembly into 3D unstructured meshes
for the irregular pattern of the NZ entries in the global stiffness matrix. For assembly of an unstructured mesh directly into a
specialized sparse storage format on GPUs, two important challenges are observed. The first challenge is to calculate the memory
required for the specific sparse storage format beforehand2%22. The second challenge is the search operation that is needed to
find the location for writing NZ entries22. The search operations need to be performed for locating the target location in the
specific sparse format. These operations are in general considered undesirable on the GPU due to their effect on the performance
of the application by causing branching. It is also observed that the index computation of the entries of the global stiffness
matrix depends only on the mesh of the domain and can be separated from the value computation for the NZ entries. The present
work aims to counter these challenges in assembly for 3D unstructured mesh by a novel divide-and-conquer implementation
that breaks the assembly into three distinct stages. In the first stage called mesh preprocessor, the mesh is processed to generate
the neighbor matrix. By use of the neighbor matrix, the storage requirements are computed for the sparse storage format. This
matrix also facilitates decoupling the assembly operation into separate index and values computation. In the second stage, the
indices of the sparse storage format are calculated. Finally, in the third stage, the values of the NZ entries are calculated. All
of the existing literature has performed assembly on the GPU by using the same thread assignment scheme throughout the
application®¢2, In the present work, the index and values computations are performed by assigning a thread to one node and one
element of the unstructured mesh respectively. The mesh preprocessor is performed as a collection of kernels that incorporate a
mixture of per-node and per-element thread assignment. Since all the kernels follow either a one-thread-per-node or one-thread-
per-element strategy, there is no sharing of data among the threads. Due to this reason, shared memory has not been used in any
implementation. Only the global and local memories are used. It can also be seen from the literature that the implementations
and algorithms are designed for specific types of element and thus, cannot be used with different types of element such as TET4,
TET10 and HEX20. However, the proposed strategy can easily be modified for different types of elements.



4|

In the literature, the computation of elemental matrices and assembling them into global stiffness matrix have been done either
by developing one kernel®1%24 or separate kernels®2? approaches. The former approach obviates the need of storing matrices
in the global memory, and the later approach performs computing and assembly in separate kernels without overburdening
individual compute threads. Since these approaches have not been compared in the literature, the present work aims to compare
them on unstructured meshes.

The remaining paper is organized in five sections. In Section [2] preliminaries are discussed including details about CUDA
and FEM formulations for elasticity problem. In Section [3.1] the mesh preprocessor is discussed followed by Sections [3.2] and
where the index computation and values computation for NZ entries are discussed respectively. In Section[d] the same and
separate kernel implementations are discussed. Section[3]discusses the results and the conclusions are presented in Section

2 Preliminaries

2.1 Graphics Processing Units for Computation

GPUs are single-chip processors which were initially developed for dedicated graphics rendering purposes. Later, researchers
started using them for accelerating various research, scientific and analytical applications which were computationally expensive.
To make life easier for the GPGPU programmers, platforms like OpenCL and CUDA were introduced that provide more and
more control on the GPU hardware. We use CUDA, a parallel programming API from NVIDIA, for the present application.
CUDA supplies a programming paradigm that encompasses both the GPU and the CPU simultaneously. The GPU functions
are written by using a specific set of extensions to the standard C/C++ language, inside special functions that are referred to
as kernels. On invoking, a kernel can generate large grids of threads to parallelize a solution. Furthermore, unlike traditional
CPU-based implementations, the programmer is at liberty to make use of the highly efficient memory hierarchy of the GPUs
along with several other features to design a sophisticated kernel that can harness the computational power that a modern GPU
is able to provide.

2.2 Linear Elasticity Problem: FEM Formulation

A wide variety of physical phenomenon including the response of mechanical systems under specific loadings can be described
by PDEs obtained from the basic physics of the problem. These PDEs, however, in most real-life applications, can not be solved
analytically owing to factors such as non-linearity and complexity of the domain. Such cases necessitate the use of numerical
methods like FEM. By using FEA, the solution of the concerned PDE is obtained by breaking up the problem domain into
smaller parts called finite elements as presented in figure [[l Specific functions are derived which are called shape functions
to approximate the values of the primary unknown over the entire domain. Elemental contributions for each of the elements
are computed, which are assembled thereafter to form the global stiffness matrix. This is called the Assembly operation in the
context of FEA.

2.2.1 Linear Elasticity

The study of stresses and elastic deformations in solid bodies subjected to prescribed loading conditions is known as Linear
Elasticity. The governing PDEs of a linear elasticity problem are usually stated as boundary value problems. The governing
equations include! the strain-displacement equations, equilibrium relations and constitutive relations given by,

O-ij,j+bi= pﬁi, i,j=1,2,3,
1
€= E(ujsi + ui,j)» (1)
0 = Cijklekl'

Here, b; are the components of the body forces per unit volume, p is the mass density, u; are the displacements, o;; are the
components of Cauchy stress tensor, €, are the strains and C;;, is the material elasticity tensor. In the present work, the material
is considered isotropic and homogeneous.

Equation (T)) is subjected to the Dirichlet and Neumann boundary conditions given by,

u, =u;onl,, t,=t;onl,, (2)

where I, and I'; are the portions of the boundary I', where the displacements and the boundary traction forces are specified.



Boundary
Conditions

FIGURE 1 Typical finite element mesh

2.2.2 Finite Element Formulation

In order to avoid the difficulties of handling the strong form of the PDE directly, the continuity requirements are reduced to
obtain a weak form, which is solved over a discretized domain-!.

For constructing the weak form of the governing equation, equation () is multiplied by an arbitrary vector and integrate over
the domain Q. We get virtual work as weak form in which the arbitrary function is the virtual displacement éu;. Application of

Gauss Divergence Theorem and traction boundary conditions with Cauchy’s rule, we get,

/5uipiiid9+/5£ij(L_t)0'ide—/6uibidQ—/5uit_idF=O, 3)

Q Q Q T,

where the four terms on the left hand side of the equation denote the virtual work of the inertial forces, internal forces, body
forces and traction forces respectively. Equation (3)) calculated over all the elements of the discretized domain, written in matrix
form gives,

2[/6{u}Tp{ii}dQ+/6([S]{u})T{a}dQ—/5{u}T{b}5Q—/5{u}T{f}dF]=O. (4)
=19 Q Q

T

t

The displacements within an element of the mesh can be approximated as,
{u)* = [N]{u)’, ®)

where [N]¢ are the shape functions used for approximation. Substituting (3) into (@) and performing assembly over all the
elements, we get,

D UM + (K1 (@) = {£),1=0, (6)
e=1

where [M]¢,[K]¢ and { f }ix , are the elemental mass matrix, stiffness matrix and external force vector respectively. The inertia

term in (@) becomes zero for a static problem.

2.2.3 Assembly

The present work focuses on FEA of three-dimensional elastic structures, which are discretized using 20-noded hexahedral
elements (HEX20) and 4-noded tetrahedral elements (TET4). For both element types, equation (Z) can be used to compute the
elemental stiffness matrices!. In equation (7)), partial derivatives of the shape functions are stored in B with respect to x, y and
z directions. &, 7 and ¢ constitute the local coordinate system for each individual element. The Jacobian and constitutive matrix



6 |

are represented by J and D respectively. The Gauss Quadrature (GQ) weights for integration are denoted by wy , w, and wy .
n, is the number of gauss points required. The assembly of all the elemental [K]¢ results in the global stiffness [ K] matrix.

(K] =/[B]T[D][B] dxdydz
|4

+1 +1 +1

=///B(§,;1,§)TDB(§,;1,C) | J(&.n, &) | d&dnd¢ )

-1 -1 -1

ng Mg Mg

= D w w0, we BE,n;, 6" DBE,n;, 60 1 I &m0 |
i=1 j=1 k=1

3 Three-stage FEA Matrix Generation for Unstructured Mesh

During FEA, the global stiffness matrix is generated by performing numerical integration and assembly of the elemental matri-
ces. This matrix, after incorporating proper boundary conditions, is solved to generate the solution to the problem. In the
traditional global stiffness matrix generation approach for both CPU-based and parallel applications, the NZ entries are com-
puted and their indices and values are stored in different arrays depending on the sparse storage format used3. Sanfui and
Sharma?? implemented an approach of assembly by splitting into a symbolic kernel and a numeric kernel using structured mesh
for a simple cantilever beam with eight-noded hexahedral elements. Structured meshes work well for simpler geometries and are
easier to implement. However, in many real-world problems, unstructured grids become a necessity. Unlike a structured grid,
the connectivity pattern of an unstructured grid is not fixed. This creates the need for the neighbor matrix computation. In this
work, a similar idea of kernel division is extended to an unstructured mesh by dividing the matrix generation into three distinct
stages. In the first stage, a new data structure called the neighbor matrix is introduced. This neighbor matrix is computed from
the connectivity information of the unstructured mesh in the form of two one-dimensional arrays. During the second stage, the
indices of NZ entries in the sparse storage format are computed and stored in parallel. This computation of indices can be sepa-
rated from the value computation of NZ entries because it depends only on the connectivity information of the mesh. Finally, in
the third stage, the NZ values are computed and stored based on the indices computed in the second stage. Thus, the index and
value computation for NZ entries are decoupled for unstructured meshes with the help of the mesh preprocessor. This, although
straightforward in case of structured meshes, becomes challenging for unstructured meshes where the data is scattered irregu-
larly over the mesh. Furthermore, the study is extended to include different type of elements and their effect on the speedup.
In the study by Sanfui and Sharma?2, due to the usage of identical elements, the elemental calculations were performed only
once on the CPU and the elemental stiffness matrix was sent to the GPU. In this work, the effect of computing the elemental
stiffness matrix for each element inside and out of the assembly kernel on GPU in connection to the kernel division strategy is
investigated.

3.1 Mesh Preprocessing: Neighbor Matrix Computing

Due to restrictions of the memory hierarchy on the GPU hardware, the entire data cannot be made available to all the compute
threads at the same time. A common solution to this problem is to process the data in a manner such that it can be segregated
easily for each thread and only the part of the data required by a thread can be made available exclusively. Furthermore, since
the FEA matrices are large and sparse in nature, specialized sparse storage formats such as COO, CSR, and ELL are required
to store the values. This creates more challenges for writing and accessing the global stiffness matrix due to compaction of the
NZ entries while storing into the sparse format. For example, in figure[2] a one-dimensional domain is taken with four elements
marked as ‘1°, ‘2, ‘3°, and ‘4’. The four elemental matrices considering two degrees of freedom (DOF) per node are shown in
the figure. If assembly is to be performed in the standard dense format, as shown by K¢ in the figure, it can be done directly
from the connectivity mapping of the mesh. However, if the global stiffness matrix is to be assembled directly into ELL format
as shown by K é 11, in the same figure, the target locations of NZ entries (marked by red) get distorted, and the target indices
for the elemental matrices cannot be found directly from the mesh connectivity information alone. This can be handled on the
GPU by precomputing the column indices and performing a bisection search on the column array when a value is to be added



K K; K K
9 _ g _
K - I(ELL_

FIGURE 2 Assembly into the standard format versus the sparse storage formats

to a particular row. However, this search operation is undesired on the GPU and usually results in a performance loss. In the
proposed implementation, the search is instead performed at the node-level with the pre-performed neighbor matrix to reduce
the effect of the search.

Due to these reasons, for all the steps after the numerical integration, a data-structure is introduced which is named as neighbor
matrix, along with the connectivity and coordinate matrices. This neighbor matrix is helpful on the GPU in the following ways.

e For assembly into a sparse matrix such as COO, CSR, and ELL, the neighbor matrix can reduce the search span for writing
each entry.

e Using this matrix, the assembly can be broken into two parts where the indices and values of the sparse global stiffness
matrix can be written in two different kernels.

o This matrix can provide the memory sizes to be allocated to the sparse formats on GPU such as COO and CSR and ELL,
which are not known a priori for unstructured FE grid.



s |

3.1.1 Neighbor Matrix Computation

The implementation details of the neighbor matrix computation are outlined in this section. It is computed using a combination of
custom kernels and functions available in the thrust library of the NVIDIA CUDA Toolkit. Thrust is a software library for CUDA
based on the C+4 Standard Template Library (STL) that allows the user to implement high-performance parallel applications
through a high-level interface. The neighbor matrix is designed to store a sorted list of nodes connected to a particular node of
the unstructured finite element mesh. This matrix will later be required to allocate memory and to store the NZ entries of the
global stiffness matrix in a sparse storage format. The neighbor matrix is demonstrated in figure 3] where a mesh of triangular
elements is taken. The example mesh has 7 nodes marked as ‘1°, 2°, ..., ‘7’ and 6 elements marked as ‘a’, ‘b’, ..., . The
neighbor matrix consists of two one-dimensional arrays called nNum/] and nind[] that are also shown in the figure. It is to be
noted that nNum/ | is shown as two-dimensional in the figure for clarity. However, it is flattened and stored as a one-dimensional
array on the GPU. In the two-dimensional format, it contains the same number of rows as the number of nodes in the mesh.
Each row contains a sorted list of nodes connected to the corresponding node including itself. For example, in the figure node
‘5” is connected to node ‘4’, ‘6’ and ‘7. Hence, the 5" row of nNum/[] array lists ‘4’, ‘5’, ‘6’ and “7’. To identify the entries in
the flattened array for each node, the nind[] array is introduced in the figure. The (i — 1)"* and i"* entries of the nind/[] array
gives the start and end indices of nNum/] array for the i"" node. For example, the start and end indices for node 5 in the figure
is given by the 4th and 5th entry of nind[] (16 and 20) respectively. Furthermore, the nlnd[ ] array will be used to compute the
memory allocation size for sparse storage formats on the GPU. It is to be noted here that since the neighbor matrix computation
is dependent only on the connectivity information of the mesh, it can be performed for any type and order of elements with
small modifications in the implementation.

Algorithm [T lists the functions called for the neighbor matrix computation. These functions are described in details with the
help of figure[dl In the figure, the neighbor matrix is computed step-by-step for the triangular mesh shown in figure3l The steps
in the neighbor matrix computation are demonstrated using arrays [I], [II], ... [XI] in the same figure. The flattened arrays are
also shown in the figure with their respective indices ([V'] and [IX']).

Algorithm 1 Neighbor matrix computing

Input: nElem: number of elements; nN ode: number of nodes; n,: nodes per element; C[nElem, n,]: connectivity matrix;
Output: nNuml[]: Array [IX']; nInd[]: Array [XI];

countElemNum <<< ((nElem — 1)/256) + 1,256 >>> (C[])

thrust .. inclusive_scan()

fillElemNum <<< ((nElem — 1)/256) + 1,256 >>> (C[])

thrust .. inclusive_scan()

fillNodeNum <<< ((nNode —1)/256) + 1,256 >>> (C[])

thrust DynamicSort <<< (nNode — 1)/128) + 1,128 >>> (C[])

thrust . inclusive_scan()

A o

3.1.1.1 countElemNum Kernel

The purpose of this kernel is to compute the number of elements connected to each node of the mesh as shown in figure[dl The
array [I] shows the node numbers of the given triangular mesh in figure[3 It can be seen that node 1 is connected to element ‘a’
only. Therefore, one is stored at the first place of array [II]. Similarly, node 2 is connected to elements ‘a’, ‘b’ and ‘c’, therefore,
three is stored at the second place of array [II]. By following the same procedure, the other places of array [II] are filled with
the numbers of elements connected to the nodes. The above procedure for CountElemNum kernel is presented Algo. 2] which
is launched with threads equal to the total number of elements in the mesh. It can be seen from the algorithm that atomicAdd
function is used and the values of array [II] are stored in neighborCount[] array.

3.1.1.2 Inclusive Scan

An inclusive scan is performed to find the size of memory allocation to the GPU using thrust library. A cumulative sum of the
numbers shown in the array [II] is stored in the array [III]. The number on the last position of the array [III] (15, in the example



NNum[] nind[]

Nodel |1 2 6 3

Node 2 1 2 3 6 7 8

Node3 | 2 3 4 7 12
Node4 | 3 4 5 7 16
Node5 | 4 5 6 7 20
Node 6 1 2 5 6 7 25
Node7 |2 |3 4 516 |7 31

FIGURE 3 Neighbor matrix for a triangular mesh

Algorithm 2 countElemNum Kernel

Input: nElem: number of elements; nN ode: number of nodes; n,: nodes per element; C[nElem, n,]: connectivity matrix;
Output: neighborCount[]: Array [II];
: countElemNum <<< ((nElem — 1)/256) + 1,256 >>> ()
: __global__ void countElemNum(int *C, int *neighborCount, int nElem)
. int tx = blockIdx.x * blockDim.x + threadIdx.x
. if tx < nElem then
fori <1 :n,do
atomic Add(&neighborCount[Cln, * tx +i]], 1);
end for
. end if

I I

figure) shows the memory size required on GPU for the given mesh. For clarity, the array [IV] is shown in figure 4 which shows
the number of empty cells equivalent to the number shown in the array [II] for every node. Array [III] is also utilized to identify
entries for each node in array [V].

3.1.1.3 fillElemNum Kernel

The memory allocated on the GPU after the inclusive scan is now used for storing the element numbers connected to each node.
The array [V] in figure Al represents those connected elements. It is noted that the array [V] is stored as a one-dimensional array
[V’] on GPU which can be seen in the inset of the same figure. It can be seen that element ‘a’ is stored at the first place of the
array [V'] followed by the elements of node 2, that are, ‘a’, ‘b’, and ‘c’. Similarly, the elements connected to other nodes are
stored. The indices of the array [V'] are the same as shown in the array [III] in order to locate the connected elements with the
nodes. The procedure of this kernel is shown in Algo. 3l which is launched with threads equal to the total number of elements
in the mesh. It is noted that the one-dimensional array [V’] is stored in elemNum/[ ] array after executing this kernel.

3.1.1.4 Inclusive Scan

After storing the number of elements in the array [II], the total numbers of nodes connected to those elements are stored in the
array [ VI]. In the given mesh, every element is connected to n, = 3 nodes. Therefore, the number ‘3’ is stored at the first position
of the array [VI]. For the second position of the array [VI], three elements ‘a’, ‘b’, and ‘c’ are stored, therefore 3 X n, = ‘9’ is
stored. Similarly, the numbers are stored for other positions of the array [VI]. It can be noted that the number stored in the array
[VI] can be directly found from the array [III] after multiplying every number with n,. The numbers of array [VI] are stored in
nodeCount[] array. Another inclusive scan is performed on the array [VI] and the cumulative sum of the numbers in the array
[VI] is stored in the array [VII]. The number on the last position of the array [VII] gives the size of memory allocation on GPU.



10

0 1 4 6 8 10 13 18
e e i e e -

(vi=lalalefefefafafefe[r afofr[ofefafe]r],

[1] [H]—=[111] wv— [ﬂ____I____, [VI]

1 1 1 i a 3

2 3 4 la | b |c e

3 2 6 e | d L6

4 2 8 Td |e e

5 2 10 e | f i 6

6 3 13 la |b |f '[9

7 5 18 i b c d e |f : 15

________________ |

V] [VIII] [1X] (n"Num[]) X — 1] -

3 F--- i 1 |2 |8 i 3 3 E

12| FoofoofFod 1 |2 |3 |6 |7 : 5 g8 | ~

18| f---q-o-- 12 |3 a7 : 4 12

24 I D |3 4 5 7 : 4 16

0| [ i 4 |5 |6 |7 : 4 20

39 C-o--1----[F--Z-] : 1 2 5 6 7 i 5 25

54 Lo - -f---1----E---] : 2 3 4 5 6 7 :_I 6 31

, e ]
x1=jlafzefefefsfefrzfsfafr[afefs]7]e]5];

0 3 8 12 16

FIGURE 4 Pre-processing the mesh data for assembly

Similar to the approach described in Section[3.1.1.2] the array [VIII] is shown in figure 4 for clarity, which has the number of
empty cells equivalent to the numbers shown in the array [VII]. After the inclusive scan, the required memory is allocated to
nodeNum| | array on GPU.

3.1.1.5 fillNodeNum Kernel

The memory allocated in the inclusive scan in Section B.1.1.4is filled with the node numbers in the array [VIII]. The first
position of the array [VIII] stores ‘1°, ‘2°, and ‘6’ node numbers because these nodes are connected to the element ‘a’ which
was stored at the first position of the array [V]. For the second position of the array [VIII], the elements stored at the second



Algorithm 3 fillElemNum Kernel

Input: nElem: number of elements; nNode: number of nodes; n,: nodes per element; C[nElem, n,]: connectivity matrix;
neighborCountl[];

Output: elem Numl[]: Array [V'];

: fillElemNum <<< ((nElem — 1)/256) + 1,256 >>> ()

1
2: __global__ void fillElemNum(int *elemNum, int *C, int *neighborCount, int nElem)
3: int tx = blockIdx.x * blockDim.x + threadIdx.x
4: if tx < nElem then
5 fori <~ 1 :n,do
6: int temp
7: temp = atomicSub(&neighborCount[C[n, * tx +i]], 1)
8: elemNum[temp - 1] = tx
9: end for
10: end if

place of the array [V] are used that are ‘a’, ‘b’, and ‘c’. The nodes connected to element ‘a’ are ‘1°, “2°, *3’, to element ‘b’ are ‘2’,
‘6’, “7’, and to element ‘c’ are ‘2’, ‘3’, and ‘7°. These node numbers are stored at the second place of array [VIII]. Similarly, the
remaining positions of the array [VIII] (nodeNum/[] array in Algo.[) store the nodes. This procedure is shown in Algo ] which
is launched with threads equal to the number of nodes in the mesh.

3.1.1.6 thrustDynamicSort Kernel

This kernel is designed to sort the nodes at every row of the array [VIII] and to remove the duplicate nodes. At the first position
of the array [VIII], the nodes ‘1°, ‘2’, and ‘6’ are already sorted with no duplicates. These nodes are copied to the array [XI]. At
the second place of the array [VIII], the nodes are unsorted and the duplicate nodes are also available. At this stage, the kernel
sorts them and duplicates are removed. Thereafter, the nodes ‘1°, ‘2°, ‘3°, ‘6’, and ‘7’ are stored at the second position of the
array [IX]. By following the same procedure, the other positions of the array [IX] are filled. It is noted that the two-dimensional
array [IX] is a graphical representation for clarity, however, the data is stored in a one-dimensional array [IX'] in the same figure
with the required indices. This kernel uses the Dynamic Parallelism feature of the Kepler microarchitecture. With this feature,
grids can be launched from inside a GPU kernel. Two thrust calls are made inside the kernel for each node as shown in line 7
and line 8 of Algo.[3lfor first sorting the nodes and then removing the duplicates. The kernel is launched with threads equal to
the number of nodes in the mesh and the array [IX] is stored in nNum/ ] array. At the end of this kernel, the nodeCount/[ ] array
(array [VI]) is updated in line 9 by subtracting the number of repeated entries from each corresponding row. The updated values
are shown in array [X] in figure ] In essence, this array simply lists the number of neighboring nodes of each node.

3.1.1.7 Inclusive Scan

Similar to Sections B.I1.1.21land B.1.1.4] another inclusive scan is performed on nodeCount[] array and the values are stored in
array [XI]. This array is the nlnd[] array of neighbor matrix.

After performing all the steps of Algo. 1, the neighbor matrix is generated in the form of two one-dimensional arrays nNum{ ]
and nind[ ] on the GPU. The neighbor matrix is used to compute the GPU memory allocation size for the global stiffness matrix
in the following ways.

e ELL Sparse Format: ELL sparse format consists of two matrices for storing the column indices and the values of
the sparse matrix. Both of these matrices have rows equal to the number of degrees of freedom of the system. The
number of columns is computed by calculating the maximum number of nodes surrounding any particular node in the
mesh and multiplying it by DOF per node. For a general mesh, after calling thrustDynamicSort kernel of Algo.[3
thrust: :max_element is called with the final nodeCount/[] array (array [X] in figure d)) to give the maximum number
of neighboring nodes for any node of the mesh. This number multiplied with the DOF per node gives the column number
of ELL format.



2|

Algorithm 4 fillNodeNum Kernel

Input: nElem: number of elements; nNode: number of nodes; n,: nodes per element; C[nElem, n,]: connectivity matrix;
neighborCountl[];

Output: node Numl[]: Array [VIII];

: fillNodeNum <<< ((nNode — 1)/256) + 1,256 >>> ()

1

2: __global__ void fillNodeNum(int *elemNum, int *C, int *neighborCount, int nNode)
3: int tx = blockIdx.x * blockDim.x + threadIdx.x
4: if tx < nNode then

5: fori < 1 : neighborCount[tx] do

6: forj <1 :ndo

7: int p=Cln % elemNum[i] + j]

8: temp = atomic Sub(&nodeCount[tx], 1)
9: nodeNum[temp — 1] =p

10: end for

11: end for

12: end if

Algorithm 5 thrustDynamicSort Kernel

Input: nElem: number of elements; nNode: number of nodes; n,: nodes per element; C[nElem, n,]: connectivity matrix;
neighborCountl[];

Output: nNum([]: Array [IX'];

1 thrustDynamicSort <<< (nNode —1)/128)+ 1,128 >>> ()

2: __global__void thrustDynamicSort(int *elemNum, int *C, int *neighborCount, int nNode, int *nodeCount)
3: int tx = blockIdx.x % blockDim.x + threadIdx.x

4: if tx < nNode then

5: pl = starting index in node Num for tx

6: p2 = length in node Num for tx

7: thrust::sort(thrust::seq, node Num + pl, node Num + (pl + p2))

8: thrust::unique_copy(thrust::seq, node Num + pl, nodeNum + (p1 + p2), nNum + pl)

9: nodeCount[tx] = nodeCount[tx]— no. of repeated entries

10: end if

e COO/CSR Sparse Format: COO format consists of three one-dimensional arrays for storing the row indices, column
indices, and values of the NZ entries. For this format, the last entry of nlnd/[] array is used. This value multiplied by the
DOF per node gives the length of the three arrays of the COO format. For storing in CSR format, the value array and
the column array remains of the same size. The size of the row offsets array is the number of rows in the global stiffness
matrix plus one.

In the present work, assembly with ELL format using HEX20 (20-noded hexahedral elements) and TET4 (4-noded tetrahedral
elements) element types is implemented on unstructured meshes. The next section outlines the details of the index computation
stage.

3.2 Index Computation for NZ Entries

In this stage, the row and column indices of the sparse storage format for storing the NZ entries in the global stiffness matrix
are calculated. The idea behind this stage is that the number of NZ entries in a particular row or column of the global stiffness
matrix can be calculated by multiplying the number of neighboring nodes to a node with its DOF. For a node i with 8, number
of neighboring nodes, there can be (6, + 1)ndof total NZ entries in the associated rows and columns of the global stiffness
matrix, where ndo f is the DOF per node. The corresponding indices can be calculated from the neighboring node numbers. In
this kernel, each thread is assigned to one node of the finite element mesh as shown in figure



13

Index Computation
thread O thread 1

Vaues Computation

thread O thread 1 thread n

FIGURE 5 Thread allocation scheme for the index computation and values computation kernels.

A generalized algorithm for the index computation is presented in Algo. [6] in which the required data is preprocessed for
determining row and column indices for every NZ entry. At step ] neighboring nodes (S?) is fetched from the neighbor matrix
computed in the mesh preprocessor stage by using Algo 1. At step [6l of Algo 6l one thread is assigned to every node i. Each
thread first initializes two null sets (®', I') for storing row and column indices. It can be seen that step [[0]stores d I’c DOF of node
i in @' that is copied (6, X ndo f) times. As can be seen from figure[6] all DOFs of node i are copied one by one in ®'. Therefore,
@' stores (0, X ndof?) indices for node i. Every @' is then copied to ® set of row indices. For the column indices for every node
i, di DOF of node j € ' is copied into I'? (refer step[18). Once all DOFs of neighboring nodes to node i are copied into I'!, the
same set is copied (ndof) times to I'. The set I" also stores (8, X ndof?) indices for node i. Figure[§ shows D', S', @', I, ®,
and I" for node i in the two-dimensional domain having two DOF per node.

3.3 Values Computation for NZ Entries

During this stage, the values of the global stiffness matrix entries are computed and stored in a sparse storage format. An element-
by-element assembly strategy is adopted for the implementation as shown in figure[3l Since each node is shared by a number of
elements in the mesh, a situation may occur where a number of threads try to access the same memory location simultaneously,
resulting in race condition or data race. This can cause inaccuracies in the final result. This is handled at the hardware level by
using atomic operations.

A node-to-node connection, as the name suggests, is simply the connection between two nodes of a finite element. It can be
a straight line or a point depending on the choice of nodes to form the connection. During assembly, each of these connections
writes ndof? (in the present implementation, 3%) entries from K* into the Value array of a sparse storage format to store NZ
values.

A generalized algorithm for the value computation of NZ entries is presented in Algo.[Z]in which NZ entries are stored based
on the row and column indices (®, I') determined using the computed indices in the previous stage. In this kernel, one thread is
assigned to one element at step [Il Using the connectivity matrix for element e (C[e, nnodes)), the target index (p) for the first
DOF (d{ ) of node j € C[e, nnodes] is searched in IV € T for every node-to-node connection (refer step ). We need to search



14

a
b
i
C
e
D':(d'l,d'z)
S'=[alblcld[e[f[i
P = [d [ | d |
Mi=|d] a2 | d, | d; |

18
I

r i

FIGURE 6 Different sets of data for node i are presented for a two-dimensional domain having two DOF per node. D' represents
the DOFs of node i. S’ represents the set of neighboring nodes to node i. ® and I represent the row and column indices
respectively of the NZ entries related to node i.

only the first DOF (d { )of node j € Cle, nnodes] because other DOF can be determined from the pattern used for storing indices
using Algo. |6l Finally, the entries of the elemental stiffness matrix are stored into the sparse storage format as shown in step

3.4 Assembly into COO, CSR and ELL

Algos. [ and [7] are described in a generic way so that they can be coupled with any sparse storage format. Essentially, these
algorithms are described for COO storage format in which row and column indices sets (®, I') have the same size as the number
of non-zeroes in the global stiffness matrix. For storing row and column indices for the COO format, Algo.[6lis executed to get
(®@,T), and for storing NZ entries, Algo.[7]is executed to get the Value array. The step[Qof Algo.[7]is modified as

Value[col_ind]+ = K°[I, k]

The index and values computation kernels for CSR storage format remain the same as described in Algos. [6] and [7] for COO
format. The only difference can be seen at step [I0l of Algo.[6l when the row indices set (@) only stores row offsets. The storage
of NZ entries in the Value array remains the same as COO format.



| 15

Algorithm 6 Kernel 1: Computing row and column indices of NZ entries on GPU

Input: E: number of elements; ndof: DOFs per node; I: total number of nodes; nnodes: nodes per element; C[E, nnodes]:
Connectivity matrix;

Output: @ : row indices for NZ entries; I' : column indices for NZ entries;

1. fori <1 : Ido

2 D' =, ... ,didof) % d: k" global DOF of node i
3: S' = (nNum[nInd[i — 1]], nNum[nInd[i — 1]+ 1], ..., nNum[nInd[i]])
4 = (”iv ,n;ﬁ, ey ng ) % S': Set of neighboring nodes to node i; 6;: No. of neighboring nodes to node i including

itself; n;: global node number of node j
5: end for
6: for Vi € I do % On GPU by assigning one thread to every node i
7: O =0T =0
8 fork < 1 : ndof do
9 forj < 1:(0,xndof)do

10: ' =P ud, % Storing DOF of node i
11: end for

12: end for

13: O=0yP % Storing DOF into the row index set
14: forj < 1:6,do

15: for k < ndof do

16: N=r'v di, jes % Storing DOF of all neighboring nodes to node i
17: end for

18: end for

19: for k < ndof do

20: r=rur % Copying ndof times and Storing I'" into the column index set
21: end for

22: end for

23: Store @ and I" on the global memory of GPU

ELL sparse storage format has the column-major ordering, due to which memory coalescence for reading and writing into
global memory is ensured. This format having a structured nature, the row indices set (®) is not required and thus, steps [§]to[13]
can be removed from Algo.

ELL storage format consists of two matrices for storing column indices and NZ entries. Indices of the matrix are stored in
a one-dimensional array similar to COO format (I'). In this case, the size of I for every node i at step [I6 of Algo.[6]is same
as the maximum number of NZ entries in any row of the global stiffness matrix. This maximum number of NZ entries can be
found from nodeCount[] array described in Section 3.1.1.6. Step [20]is also not required for ELL storage format and thus, the
corresponding for-loop can be removed. Rest of the steps remain the same for Algo. [6] for determining and storing column
indices in (I') set. The NZ entries are stored in a one-dimensional Value array which has the same size as I set. In Algo.[7, the
step@lis modified to store NZ entries into the Value array as

Value[col_ind]+ = K°[I, k]

Rest of the steps of Algo.[7] for ELL format remain the same as of COO format. In the present work, only ELL format is used
for all the implementations.

4 Same and Separate Kernel Approaches

The same kernel and separate kernel approaches are used for assembling and storing the elemental stiffness matrices in the value
array of the sparse storage format. As shown in figure[7] the neighbor matrix is computed first followed by index computation
in the same kernel approach. In this approach, the generation of elemental stiffness matrix and value computation of the global



16 |

Algorithm 7 Kernel 2: Computing values of NZ entries using indices stored in @ and I’

Input: ndof: DOF per node; E: total elements; nnodes: nodes per element; C[E, nnodes]: Connectivity Matrix; @, T’
Output: K: Global stiffness matrix in the sparse storage format;

1: for Ve € E do % Assign a thread to each element e
2 fori «| Cle :]|do % Cle:] represents all nodes of e
3 for j «| Cle :]|do % Node-to-node connection within an element e
4 Search target index (p) for d{ inthesetI" €T % d{ is the first DOF of node j
5 for | < ndof do % For assembling K¢ into K
6 row_ind = p+ndof X 0,(I - 1) % Row index for NZ entry
7 for k < ndof do

8 col_ind =p+ndof X0,(I —1)+ (k—1) % Column index for NZ entry
9: K[®(row_ind),I'(col_ind)]+ = K°[l, k] % Assembly of NZ entry via node-to-node connection of

nodes i and j

10: end for
11: end for
12: end for
13: end for

14: end for

stiffness matrix are performed in the same kernel. This obviates the need to store the elemental matrices on the GPU. In the
separate kernel approach as shown in figure[7] the elemental matrix generation is performed separately at the beginning and all
the elemental stiffness matrices are stored in the global memory of the GPU. After computing the neighbor matrix, the indices
of the global stiffness matrix are computed. Following this, the value computation kernel is launched that takes the previously
computed elemental stiffness matrices from global memory and assembles them into the value array.

Same Kernel Approach Separate Kernel Approach
Mesh Preprocessor Elemental Calculation
Index Computation = Mesh Preprocessor =
Elemental Calculation [ Index Computation -

+
Vaue Computation Value Computation -

FIGURE 7 Flow charts for the same kernel and separate kernel approaches.



17

1

02:59: 23

PLOT NO

JWN 19 2018

ELEVENTS
1
ELEVENTS

(a) TET4 (b) TETI10 (c) HEX20

FIGURE 8 Hollow cylinder mesh using (a) TET4, (b) TET10 and (c) HEX20 element type

5 Results and Discussion

The assembly using the three-stage kernel division strategy for unstructured mesh is tested on two examples. The first example
is a hallow cylinder in which the analysis and comparison of the proposed assembly strategy are performed. Another example
of a connecting rod is considered in which the matrix is generated using the proposed strategy and the solution is generated for
the given boundary conditions. Both the computation analyses are performed on a workstation with Intel Xeon ES1650 (6 core,
3.2 GHz) processor, 12 GB RAM, and K40c NVIDIA GPU. The GPU has 12 GB of global memory with 15 multiprocessors
and 192 cores per multiprocessor.

5.1 Example 1: Hollow Cylinder

A hollow cylinder is considered, which is meshed with three types of meshes using ANSYS® software. Figure [§] shows the
hollow cylinder with 4-noded tetrahedral (TET4), 10-noded tetrahedral (TET10) and 20-noded hexahedral (HEX20) meshes.
The mesh preprocessing (neighbor matrix generation) time for different types of meshes is presented in table [Tl This time is
important because it is part of the total assembly time. Table @ lists the times required by different steps of algorithm[I] for three
different mesh sizes. It can be seen that among all the steps, thrustDynamicSort kernel takes the most amount of time for all the
mesh sizes. Figure[9(a)| shows the mesh preprocessing time for HEX20 for different numbers of nodes with the hollow cylinder
example. It can be observed that the preprocessing mesh time is quite less for even a large size of mesh. With TET4 mesh type,
the same observation can be seen from figure[9(b)] The execution times of the mesh-preprocessor are found to have an almost
linear relationship with the increasing number of nodes in the mesh.

The assembly time using HEX20 and TET4 mesh is shown in figure This assembly time has been further divided into
mesh preprocessing time, index computation time and values computation time. Figure[I0(a)] shows the variation among those
computation times for different number of nodes using HEX20 element type using ELL sparse storage format. It is noted that
the same number of nodes has been taken in all three-directions for meshing the hollow cylinder. It can be seen from the figure
that the mesh preprocessing time consumes the least time as compared to other kernels for assembly. Most of the assembly
time is consumed in the value computation kernel. Similar analysis can be seen in figure [T0(b)] by meshing the hollow cylinder
with TET4 mesh type. The figure shows computation time of mesh preprocessing, index computation and values computation
using ELL sparse storage format. Most of the time is consumed during the third stage in value computation followed by mesh
preprocessing and index computation. The comparison of effective memory bandwidth using HEX20 and TET4 mesh is shown
in figure [[Tl The achieved bandwidth for index computation, value computation and mesh preprocessor are shown. In figure



18

0.6 0.4 T
- 0.35 .
0.5
/ 0.3 .
0.4
0.25 .
) z
[} _—
2 03 g 02
[= =
0.15 .
0.2
/ 01 o
0.1
// 0.05 .
0 0 E ] ;\\ 3

0 200000 400000 600000 800000 1x10° 1.2x10° 12690 90630 311963 732007 1568610
Nodes in mesh Nodes in mesh
(a) HEX20 (b) TET4

FIGURE 9 Wall clock time comparison for mesh preprocessing using (a) HEX20 and (b) TET4 with increasing number of
nodes in the mesh

=3 Value Computation =3 Value Computation
mmmm |Index Computation mm Index Computation
mmmmm Mesh Preprocessor mmmmm Mesh Preprocessor
25 1 T
2 B 0.8
~ 15 -~ —~ 0.6
) L
() [}
£ E
= 1 E =
0.5 - : B
0
41 51 61 71 81 91 101 17434 57082 732007 1568610
Node in each direction Node in each direction
(a) HEX20 (b) TET4

FIGURE 10 Wall clock time comparison for (a) HEX20 and (b) TET4 element type for increasing number of nodes in the mesh

the variation of achieved memory bandwidth is shown for HEX20 element type using ELL sparse storage format for all
those stages. Similar to figure cylindrical mesh with same number of nodes in all direction is taken. It is observed that
the achieved bandwidth for the mesh preprocessor is the least among the three stages. A similar observation can be done from
the figure where the achieved bandwidth of a hollow cylinder meshed with TET4 elements is compared for increasing
node numbers. Little variation is seen in the bandwidth values for the index computation and values computation stages with
increasing node numbers. The mesh preprocessor is observed to achieve the least memory bandwidth among the three stages.

The computation time of assembly using the kernel division strategy is now compared with the SharedNZ implementation
of Cecka et al.3 on GPU. The SharedNZ algorithm is implemented using CUDA in which the kernel and memory utilization
remain the same as given in Cecka et al. [2011]3. In this implementation, each thread is assigned to compute one NZ entry of
the global stiffness matrix. The elemental data is stored in the shared memory and a reduction operation is performed on the
shared memory to obtain the final NZ entry.

The speedup for the kernel division strategy using ELL storage format over SharedNZ algorithm is shown in figure [12] for
HEX?20 and TET4 mesh types respectively. The same and separate kernel approaches for numerical integration and assembly



19

70 g g g g
Index computation ——
Value computation Ex==

Q) Mesh preprocessor =23 -
il —
L2 60 =
=S —
) i -
Q/ ] __ M=
= Y ]
S —
s 50
T° —
=
5} _
el
e
o -
g 40
[}
£
o
=2
‘g 30 |
=
i}

20

41 51 61 71 81 91 101
Nodes in each direction

(a) HEX20

Effective memory bandwidth (GBytes/s)

70

60

50

40

30

20

Index computation C——
Value computation Ex==
Mesh preprocessor ===

17434 57082 130884 275913
Nodes in mesh

(b) TET4

FIGURE 11 Effective bandwidth comparison for (a) HEX20 and (b) TET4 element type for increasing number of nodes in the

mesh
7 5 " - B
Separate Kernels
Same Kernel s
6.5 ; | i
(=8
>
o
(7]
(7]
Q.
%)

31 41 51 61 71 81 91 101
Nodes in each direction

(a) HEX20

FIGURE 12 Speedup for (a) HEX20 and (b) TET4 type elements

SharedNZ2 implementation.

Speedup

Sepafate Kernelé I
Same Kerne| o

Nodes in mesh

(b) TET4

using same and separate kernel approach with respect to

are shown in these figures. It can be seen that both approaches show significant speedup over the SharedNZ implementation in
which the separate kernel approach shows speedup close to six for different node numbers for HEX20 mesh type. However, a
decent speedup of four can be seen for a large number of nodes with TET4 mesh type. In terms of speedup, HEX20 mesh seems
to outperform TET4 mesh for both same kernel and separate kernel approaches for the present example. In table 3 details of
the element type, number of nodes and elements, runtime of different stages and global memory usage are listed for the current

example.



(a) 15318 nodes (b) 60186 nodes (c) 2020284 nodes

FIGURE 13 Connecting rod mesh using (a) 15318 nodes, (b) 60186 nodes and (c) 2020284 nodes

=== Value Computation

mmmm Index Computation
1400 mmmmm Mesh Preprocessor
8 05 T
S 1200 :
Qo
©
g
£ 1000
£
el
@ 800
g =
g 600 £
GE) =
= 400
Qo
°
O 200
0 0
15k 22k 36k 60k 76k 88k 113k 22374 36326 60186 76396 88872 113503
Nodes in mesh Nodes in the mesh
(a) Global memory(GPU) (b) Execution times

FIGURE 14 (a) Global memory usage and (b) Wall clock time comparison for assembly using HEX20 mesh of connecting rod
with increasing number of nodes in the mesh

5.2 Example 2: Connecting Rod

A connecting rod example is considered as the second example for which unstructured mesh is required. Figure [I3]shows three
different meshes of a connecting rod with different number of nodes. The execution times for different functions in the mesh-
preprocessor stage are listed in table [l Similar to the previous example, the thrustDynamicSort kernel is found to have the
largest execution time, followed by fillNodeNum kernel in all three meshes.



21

Index compuiation —— 3 3 3

60 | Value computation EX== - I e .
w Mesh preprocessor === ‘ : :
a3 o : — -
% ; ] | ]
Q 50 F o K A KRS BT R 1
s
§=]
=
S 40 o 1O Bt kK K K kS 1
©
o]
-
g —
S 30F 1T B T % 5 1
S
(]
=
o 20 K1 BT S @ e S % 55 1
=
L

10

22374 36326 60186 76396 88872 113503
Nodes in mesh

FIGURE 15 Effective bandwidth comparison for assembly using HEX20 mesh of connecting rod with increasing number of
nodes in the mesh.

Since the unstructured mesh is used for this example, the amount of global memory used for assembly with increasing number
of nodes is shown in figure[I4(a)] The assembly time is shown figure [T4(b)] with increasing mesh sizes. Similar to the previous
example, the assembly time is further divided into times required by mesh-preprocessor, index computation and values com-
putation. It can be observed again that the index computation stage consumes the least amount of time, followed by the mesh
preprocessor for all the mesh sizes. The achieved memory bandwidth for the different mesh sizes of the connecting rod is shown
in figure[T3l The values for all three individual stages are shown in the plot. The achieved bandwidth values for the index com-
putation and value computation stages are observed to have little variation, whereas it is seen to increase with the mesh sizes
for the mesh preprocessor stage.

Cusp library is used for solution of the resulting global stiffness matrix after applying proper boundary conditions. Cusp is
a GPU-based library for sparse linear algebra. Conjugate gradient method is used for solution of the resulting matrix on GPU.
The resulting displacement field of the connecting rod domain is plotted in figure[I6(a)} Figure[T6(b)|shows the total time taken
by the FE analysis with increasing mesh sizes. This time is further divided into time required by the matrix generation and
solution stage. It is important to mention here that the times consumed for data transfer from the host to the device is very small
compared to the total execution time (less than 0.1%) and is thereby omitted from figure The reason behind this is that
the entire computation, from the elemental stiffness calculation to the solution of the linear system of equations, is executed on
the GPU with the help of custom kernels and thrust operations. It is observed from figure [T6(b)| that the matrix generation step
consumes approximately 30% - 45% of the total FE analysis time on GPU.

From algorithm [7] of value computation, it can be seen that the elemental stiffness matrices are assembled into the global
stiffness matrix. To compute the element stiffness matrices, the numerical integration is required as shown in equation (7). Two
approaches have been considered to generate the elemental stiffness matrices as discussed in Section H] using the same and
separate kernel approaches. Figure [[7] shows the computation time for both approaches using HEX20 and TET4 mesh types
respectively considering ELL format. For both mesh types, the separate kernel approach requires less time for assembly than
the same kernel approach. This observation is counter-intuitive, since the same kernel approach obviates the need to read and
write the elemental stiffness matrices to the global memory of GPU. However, in the same kernel approach more computational
load has been assigned to each of the threads of the GPU and thread synchronization is performed that can make this approach



22

10 mmmm Solution (Cusp)
mmmm Matrix Generation
8
6
@
4 g
E
2
0 22k 36k 60k 76k 88k 113k
Nodes in the mesh
(a) Displacement field (b) Total execution time

FIGURE 16 (a)Plot of the displacement field and (b) Total execution time of the application, divided into matrix generation
and solution using Cusp library for the connecting rod domain

3 - -
45 ‘ ‘
: ; . . Separate Kernels
Separate Kernels
Same Kerne| mmmm Same Kerne!
40
25
2
2
> (]
P £ 15
£ =
5 o
° 1
0.5
0 <
%
31 41 51 61 71 81 91 101
Nodes in each direction Nodes in mesh
(a) HEX20 (b) TET4

FIGURE 17 Matrix generation time for (a) HEX20 and (b) TET4 type elements based on position of the numerical integration
kernel

inferior than the separate kernel approach. In table [3 details of the element type, number of nodes and elements, runtime of
different stages and global memory usage are listed for the connecting rod example.

6 Conclusion

A three-stage FEA matrix generation strategy has been presented for unstructured meshes on GPU. Numerical integration and
assembly operations have been implemented for same kernel and separate kernel approaches. This step of FEA was chosen for
acceleration because of several studies reporting it to be the most time-consuming step after the linear solver, for which several
optimized parallel libraries exist. A novel approach of dividing the workload into a mesh-preprocessor, index computation and



| 23

values computation was presented and simulations were run for meshes having up to 3 million DOFs on a single GPU with two
different element types.

In order to successfully decouple the index and value computation stage of matrix generation, a new data structure called as
the neighbor matrix was proposed to store the neighboring nodes for each node of the mesh during the first stage of the matrix
generation. A robust parallel implementation of the neighbor matrix computation was presented that can be adopted easily for
different element and mesh types. Using the neighbor matrix, the indices and values of NZ entries were computed in the second
and third stage respectively. For these two stages, a generalized algorithm with different sparse formats was presented.

The proposed strategy was tested on two examples and it was found to outperform the sharedNZ implementation of Cecka et
al.2, showing a speedup of 4x to 6X for all element types over a wide range of mesh sizes. Higher order hexahedral elements are
found to achieve more speedup than the low order tetrahedral elements on a particular benchmark. The mesh preprocessor stage
was found to consume a very less amount of time with respect to the total assembly time. The index computation kernel was
found to consume significantly less percentage of total assembly especially for the lower order element. It was also concluded
that performing assembly and numerical integration in the same kernel performed worse than having separate kernels for the
two processes. This difference is more pronounced for lower order elements. Since Cusp library was used for generating the
solution, the matrix-free approaches can be implemented on the GPU with the help of the mesh preprocessor in future.

Although the present work focuses only on single GPU implementations, the same approaches can be utilized for a multi-GPU
implementation as well in future work. For such an implementation, the finite element mesh needs to be divided into independent
patches for distributing them among the GPUs as shown in figure[I8] This can be done easily by using a domain decomposition
technique. For the mesh preprocessor stage and the index computation stage, no dependency among the GPUs are observed.
Hence, no inter-GPU communication is required for these stages. For the value computation stage, however, the boundary nodes
and boundary elements need to be treated differently. This is due to sharing of nodes along the boundary of different patches as
shown in figure [I8] which requires values at the same non-zero locations to be appended from different GPUs.

FIGURE 18 Shared nodes and elements in a multi-GPU implementation

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Zienkiewicz OC, Taylor RL, Lee R. The finite element method. 3. McGraw hill London . 1977.



24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Georgescu S, Chow P, Okuda H. GPU Acceleration for FEM-based Structural Analysis. Archives of Computational Methods
in Engineering 2013; 20(2): 111-121. ldoi: 10.1007/s11831-013-9082-8

Cecka C, Lew AJ, Darve E. Assembly of finite element methods on graphics processors. International Journal for Numerical
Methods in Engineering 2011; 85(5): 640-669. doi: 10.1002/nme.2989

Maciol P, Plaszewski P, Bana$ K. 3D finite element numerical integration on GPUs. Procedia Computer Science 2010;
1(1): 1093 - 1100. ICCS 2010doi: http://dx.doi.org/10.1016/j.procs.2010.04.121

. Ram L, Sharma D. Evolutionary and GPU computing for topology optimization of structures. Swarm and Evolutionary

Computation 2017; 35: 1-13.

Komatitsch D, Michéa D, Erlebacher G. Porting a high-order finite-element earthquake modeling application to
NVIDIA graphics cards using CUDA. Journal of Parallel and Distributed Computing 2009; 69(5): 451 - 460.
doi: http://dx.doi.org/10.1016/;.jpdc.2009.01.006

Bana§ K, Kruzel F, Bielanski J. Finite element numerical integration for first order approximations on multi-
and many-core architectures. Computer Methods in Applied Mechanics and Engineering 2016; 305: 827 - 848.
doi: http://dx.doi.org/10.1016/j.cma.2016.03.038

Knepley MG, Terrel AR. Finite Element Integration on GPUs. CoRR 2011; abs/1103.0066.

Fu Z, Lewis TJ, Kirby RM, Whitaker RT. Architecting the finite element method pipeline for the GPU. Journal of
Computational and Applied Mathematics 2014; 257: 195 - 211. |doi: https://doi.org/10.1016/j.cam.2013.09.001

Reguly IZ, Giles MB. Finite Element Algorithms and Data Structures on Graphical Processing Units. International Journal
of Parallel Programming 2015; 43(2): 203-239. |doi: 10.1007/s10766-013-0301-6

Altinkaynak A. An efficient sparse matrix-vector multiplication on CUDA-enabled graphic processing units for finite
element method simulations. International Journal for Numerical Methods in Engineering 2017; 110(1): 57-78.

Challis VJ, Roberts AP, Grotowski JF. High resolution topology optimization using graphics processing units (GPUs).
Structural and Multidisciplinary Optimization 2014; 49(2): 315-325. |doi: 10.1007/s00158-013-0980-z

Schmidt S, Schulz V. A 2589 line topology optimization code written for the graphics card. Computing and Visualization
in Science 2011; 14(6): 249-256. |doi: 10.1007/s00791-012-0180-1

Markall G, Slemmer A, Ham D, Kelly P, Cantwell C, Sherwin S. Finite element assembly strategies on multi-core and
many-core architectures. International Journal for Numerical Methods in Fluids 2013; 71(1): 80-97.

Kiss I, Gyimothy S, Badics Z, Pavo J. Parallel Realization of the Element-by-Element FEM Technique by CUDA. IEEE
Transactions on Magnetics 2012; 48(2): 507-510. doi: 10.1109/TMAG.2011.2175905

Bolz J, Farmer I, Grinspun E, Schrooder P. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. ACM
Trans. Graph. 2003; 22(3): 917-924. |doi: 10.1145/882262.882364

Rodriguez-Navarro J, Susin Sanchez A. Non structured meshes for Cloth GPU simulation using FEM. In: Mendoza
C, Navazo 1., eds. Vriphys: 3rd Workshop in Virtual Realitiy, Interactions, and Physical SimulationThe Eurographics
Association; 2006.

Cantwell C, Sherwin S, Kirby R, Kelly P. From h to p efficiently: Strategy selection for operator evaluation on hexahedral
and tetrahedral elements. Computers & Fluids 2011; 43(1): 23 - 28. Symposium on High Accuracy Flow Simulations.
Special Issue Dedicated to Prof. Michel Devilledoi: https://doi.org/10.1016/j.compfluid.2010.08.012

Dziekonski A, Sypek P, Lamecki A, Mrozowski M. Finite element matrix generation on a GPU. Progress In Electromag-
netics Research 2012; 128: 249-265.

Dziekonski A, Sypek P, Lamecki A, Mrozowski M. Generation of large finite-element matrices on multiple graphics
processors. International Journal for Numerical Methods in Engineering 2013; 94(2): 204-220.


http://dx.doi.org/10.1007/s11831-013-9082-8
http://dx.doi.org/10.1002/nme.2989
http://dx.doi.org/ http://dx.doi.org/10.1016/j.procs.2010.04.121
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2009.01.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2016.03.038
http://dx.doi.org/https://doi.org/10.1016/j.cam.2013.09.001
http://dx.doi.org/10.1007/s10766-013-0301-6
http://dx.doi.org/10.1007/s00158-013-0980-z
http://dx.doi.org/10.1007/s00791-012-0180-1
http://dx.doi.org/10.1109/TMAG.2011.2175905
http://dx.doi.org/10.1145/882262.882364
http://dx.doi.org/ https://doi.org/10.1016/j.compfluid.2010.08.012

| 25

21.

22.

23.

24.

25.

26.

27.

28.

Dinh Q, Marechal Y. Toward Real-Time Finite-Element Simulation on GPU. IEEE Transactions on Magnetics 2016; 52(3):
1-4.|doi: 10.1109/TMAG.2015.2477602

Sanfui S, Sharma D. A two-kernel based strategy for performing assembly in FEA on the graphics processing unit. In: AMI-
AMS ., ed. 2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems
(AMIAMS); 2017: 1-9

Zayer R, Steinberger M, Seidel H. Sparse matrix assembly on the GPU through multiplication patterns. In: HPEC ., ed.
2017 IEEE High Performance Extreme Computing Conference (HPEC); 2017: 1-8

Kiran U, Sharma D, Gautam SS. GPU-Warp based Finite Element Matrices Generation and Assembly using Coloring
Method. Journal of Computational Design and Engineering 2018. doi: https://doi.org/10.1016/j.jcde.2018.11.001

Gribanov I, Taylor R, Sarracino R. Parallel implementation of implicit finite element model with cohesive zones and
collision response using CUDA. International Journal for Numerical Methods in Engineering 2018; 115(7): 771-790.
doi: 10.1002/nme.5825

Sanfui S, Sharma D. Exploiting Symmetry in Elemental Computation and Assembly Stage of GPU-Accelerated FEA. In:
G.R. Liu GX., ed. Proceedings at the 10th International Conference on Computational Methods (ICCM2019). 6. ScienTech
Publisher; 2019: 641-651.

Wozniak M. Fast GPU integration algorithm for isogeometric finite element method solvers using task dependency graphs.
Journal of Computational Science 2015; 11: 145-152.

WoA7niak M, KuAznik K, Paszy;\]v)ski M, Calo V, Pardo D. Computational cost estimates for parallel shared mem-
ory isogeometric multi-frontal solvers. Computers & Mathematics with Applications 2014; 67(10): 1864 - 1883.
doi: https://doi.org/10.1016/j.camwa.2014.03.017


http://dx.doi.org/10.1109/TMAG.2015.2477602
http://dx.doi.org/https://doi.org/10.1016/j.jcde.2018.11.001
http://dx.doi.org/10.1002/nme.5825
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2014.03.017

26

TABLE 1 The mesh preprocessing time for different element types

Element type | Elements | Nodes Time taken (s)
TET4 732007 130884 | 0.201
TET10 732129 1012919 | 0.813
HEX20 175550 742677 | 0.110

TABLE 2 Time taken by different functions in the pre-computation stage in seconds (hollow cylinder)

Function 30000 Nodes | 1000000 Nodes | 2000000 Nodes
countElemNum 0.000051 0.000769 0.001533
Inclusive Scan 0.000085 0.000189 0.000301
SfillElemNum 0.000049 0.001597 0.004856
Inclusive Scan 0.00008 0.00018 0.000294
initializeNodeNum | 0.000033 0.000559 0.001105
fillNodeNum 0.000621 0.036936 0.078467
thrustDynamicSort | 0.041134 0.786364 1.560426
Inclusive Scan 0.000081 0.000185 0.000209

TABLE 3 Element type, number of nodes, number of elements, runtime and memory used for storing the global stiffness matrix
on the GPU global memory are presented for example 1. S1, S2 and S3 under the runtime column denote mesh preprocessor,
index computation and value computation stages respectively.

Element type | Nodes | Elements Runtime (s) Memory
S1|8S2]s3 (MBs)
68921 64000 | 0.07 | 0.03 | 0.05 44.67
132651 125000 | 0.10 | 0.06 | 0.13 85.95
226981 | 216000 | 0.15 | 0.11 | 0.23 147.08
HEX20 357911 | 343000 | 0.20 | 0.17 | 0.35 231.92
531441 | 512000 | 0.30 | 0.26 | 0.55 344.37
753571 | 729000 | 0.43 | 0.38 | 0.78 488.31
1030301 | 1000000 | 0.54 | 0.52 | 1.07 667.63
17434 90630 | 0.04 | 0.00 | 0.03 3.35
57082 311963 | 0.09 | 0.01 | 0.10 10.96
130884 | 732007 | 0.20 | 0.03 | 0.22 27.22
275913 | 1568610 | 0.36 | 0.07 | 0.49 57.39

TET4




27

TABLE 4 Time taken by different functions in the pre-computation stage in seconds (connecting rod)

Function 15318 Nodes | 60186 Nodes | 2020284 Nodes
countElemNum 0.000060 0.000081 0.018002
Inclusive Scan 0.000052 0.000089 0.000149
fillElemNum 0.000055 0.000149 0.024251
Inclusive Scan 0.000068 0.000058 0.000154
initializeNodeNum | 0.000045 0.000108 0.007312
fillNodeNum 0.001129 0.006801 0.678876
thrustDynamicSort | 0.032785 0.076183 9.114569
Inclusive Scan 0.00007 0.000063 0.000148

TABLE 5 Element type, number of nodes, number of elements, runtime and memory used for storing the global stiffness matrix
on the GPU global memory are presented for example 2. S1, S2 and S3 under the runtime column denote mesh preprocessor,
index computation and value computation stages respectively.

Element type | Nodes [Elements Runtime (s) Memory
S1|8S2]s3 (MBs)

22374 | 4134 | 0.04 | 0.01 | 0.02 14.49

36326 | 13958 | 0.07 | 0.01 | 0.06 23.54

60186 | 11988 | 0.08 | 0.03 | 0.10 39.00

HEX20 76396 | 15483 | 0.12 | 0.04 | 0.13 49.50
88872 | 18163 | 0.11 | 0.05 | 0.15 57.59

113503 | 23547 | 0.14 | 0.06 | 0.20 74.54




	A Three-Stage GPU-based FEA Matrix Generation Strategy for Unstructured Meshes
	Abstract
	Introduction
	Preliminaries
	Graphics Processing Units for Computation
	Linear Elasticity Problem: FEM Formulation
	Linear Elasticity
	Finite Element Formulation
	Assembly


	Three-stage FEA Matrix Generation for Unstructured Mesh
	Mesh Preprocessing: Neighbor Matrix Computing
	Neighbor Matrix Computation

	Index Computation for NZ Entries
	Values Computation for NZ Entries
	Assembly into COO, CSR and ELL

	Same and Separate Kernel Approaches
	Results and Discussion
	Example 1: Hollow Cylinder
	Example 2: Connecting Rod

	Conclusion


