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Abstract In this paper, a pressure vessel under thermo-
elastic condition is modeled which is useful for indus-

tries like refineries, power plant etc. The combined ef-

fect of internal pressure and steady-state temperature

gradient is considered. A pressure vessel problem is for-
mulated to minimize its total cost subjected to con-

straints that can ensure safe design. The problem is

solved using elitist genetic algorithm. Further simula-

tions on stress versus thickness are carried out which

reveal that the maximum shear stress gets reduced up
to a certain thickness. After that, it starts increasing

due to increase in the compressive hoop/circumferential

stress under thermo-elastic condition. The bi-objective

optimization problem is then formulated by minimiz-
ing the total cost and the maximum shear stress si-

multaneously. The bi-objective problem is solved using

elitist non-dominated sorting genetic algorithm. The

cost effective to the safe trade-off solutions are gener-

ated. These approximate Pareto-optimal solutions are
evolved in two clusters in which solution from one of

the clusters is more preferable for practical and feasible

pressure vessel design. The post-optimization analysis

of results suggests that the bi-objective optimization
study offers valuable insight of the problem than the

single-objective optimization.
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1 Introduction

A pressure vessel is a closed container which is designed

to carry liquids/gases at a pressure different than atmo-

spheric pressure. It is useful for industries like refiner-

ies, power plants, fertilizer plants etc. Depending on

its use, it can be designed to operate safely for a spe-
cific pressure and temperature. For example, a pressure

vessel under thermo-elastic condition serves a purpose

of closed container for hot fluid/gas and also, is sub-

jected to internal pressure. Severe safety measures are
generally considered for designing it in order to avoid

failures and accidents. However in a scenario of limited

and expensive raw material, its safe and optimal design

is desirable to minimize its total fabrication cost.

In general, the pressure vessels are designed using

various codes used in different countries such as ASME

Boiler and Pressure Vessel code section VIII in U.S.A.,

PD 5500 in U.K., MITI code in Japan etc. The pur-

pose of these codes is to design safe pressure vessel by
preventing failure or accidents. For example in ASME

code, the pressure vessel design guidelines are described

in section VIII. The same section is further divided into

three divisions. The divisions 1 and 2 are used for pres-
sure vessel having internal or external pressure more

than 15 psi and temperature lying between −29◦C and

345◦C. The division 1 is based on rules in which fac-

tor of safety (FOS) is considered as 4. The division 2

is based on analysis and rules in which FOS is reduced
to 3. The rules of division 1 are specified for minimum

requirements to design a pressure vessel. However, the

finite element method in addition to the analytical ap-

proach of design by formula are used for division 2. The
division 3 is used for high pressure design when pressure

is more than 10, 000 psi. Interested reader can refer [26,

1] for more detail.
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In case of a pressure vessel subjected to internal

pressure, the maximum shear stress (τmax) gets reduced

with increase in thickness of a sheet and it is devel-

oped at the inner wall. However, the cost of fabrication

keeps on increasing. But in a pressure vessel subjected
to thermo-elastic condition, τmax can be observed any-

where along the thickness of a sheet [12,11] due to the

combined effect of internal pressure and temperature

gradient. It is shown later in this paper that τmax gets
reduced with increase in thickness up to a certain value

and then it starts increasing. Therefore, it is essential

to design an optimal pressure vessel.

In the literature, an optimization problem was for-

mulated for a pressure vessel where the design codes
were used to formulate the objective function and con-

straints. A non-linear, mixed variable and discrete pro-

gramming was formulated [31] in which the fabrication

cost was minimized by limiting volume and length of a
cylinder. The branch and bound method with exterior

penalty function was used to find the optimal value of

parameters. The same problem was further solved using

augmented Lagrange multiplier method coupled with

Powell’s method, and Fletcher and Reeves conjugate
gradient method [18], logarithmic method [22] etc. The

motive was to find the optimal or near optimal value of

parameters that can minimize the fabrication cost.

The non-tradition optimization algorithms were also
used to improve the existing solution. For example,

(1+λ) Evolution Strategy [25], genetic algorithm (GA)

[4], infeasibility based evolutionary algorithm [24], fil-

ter simulated annealing method [17], ant colony opti-

mization with chaotic sequence [3], artificial bee colony
[34], particle swarm optimization (PSO) [29,13,27,2,

15] etc. were used. The hybrid optimization algorithms

were also employed to generate near optimal results

such as hybrid GA [30], Nelder-Mead simplex method
with PSO [36], quasi-Newton and conjugate gradient

methods with PSO [19] to name a few.

Earlier, it has been shown by many researchers that

solving single-objective optimization (SOO) problem as

multi-objective optimization can generate better solu-
tions. It was termed as “multi-objectivization” [21] in

which a multi-objective problem is formulated by adding

the conflicting secondary objective(s) with the primary

objective. The multi-objectivization can introduce ad-

equate diversity in evolutionary multi-objective opti-
mization (EMO) procedure, thereby allowing EMO to

find good solutions. In the literature, multi-objectivizaiton

concept has been used in many studies like traveling

salesman problems [21], structure optimization [32,33]
etc.

In this paper, the modeling of a pressure vessel sub-

jected to thermo-elastic condition is developed. A pres-

sure vessel is designed for its minimum total cost (TC).

The constraints on stress, volume and length are im-

posed for safe and optimal design. The optimization

problem is then solved using elitist GA (eGA) and also

using the branch and bound method with fmincon()
function in Matlab [23]. The simulation results are pre-

sented to show the optimal solution and behavior of

τmax with thickness under thermo-elastic condition. There-

after, the bi-objective optimization problem of a pres-
sure vessel is solved using elitist non-dominating sort-

ing genetic algorithm (NSGA-II). The remaining paper

is organized as follows. In Section 2, the modeling of

pressure vessel under thermo-elastic condition is pre-

sented. The objective function and constraints are for-
mulated and explained. The two optimization proce-

dures for SOO and NSGA-II for the bi-objective opti-

mization problem are discussed in Section 3. The sim-

ulation results are presented, compared and discussed
in Section 4. The paper is concluded in Section 5 with

the direction for future work.

2 Modeling of Pressure Vessel Under

Thermo-Elastic Condition

In this section, the objective function and constraints

are modeled for a pressure vessel under thermo-elastic

condition. Following assumptions are considered in this

paper:

1. The cylindrical shell is under plane stress condition.

2. External pressure is very small in comparison to in-

ternal or gauge pressure.
3. Temperature does not vary with time.

4. Material properties do not change with tempera-

ture.

5. Weld joint joining spherical head and cylindrical
shell is very strong and no failure can take place

at the joint.

6. Same density is assumed for welding and pressure

vessel material.

2.1 Single Objective Function

A pressure vessel is modeled to minimize its TC. It con-

sists of the welding and material costs which depends

on the design of a pressure vessel. In this paper, a pres-
sure vessel with two hemi-spherical heads attached to

both ends of a cylindrical shell is considered as shown

in Fig. 1. The welding cost of this pressure vessel is

calculated by welding the two rolled sheets to make a
cylindrical shell using 60◦ single V-groove butt joint as

shown in Fig. 2 (a). It is approximated as one-sixth sec-

tor of a circle of radius (Ts/ cos 30
◦) as shown in Fig. 2
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Fig. 1 A cross sectional view of a pressure vessel in which two
hemi-spherical heads are welded to a cylindrical shell.

(b). A variable set used for modeling a pressure vessel
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Fig. 2 Welding details of 60◦ single V-groove butt joint (a) ac-
tual profile (b) approximate profile.

is x̄ = [Ts, Th, R, L]
⊤
. The variables Ts and Th signify

thickness of sheet used for fabricating cylindrical shell

and hemi-spherical heads. Generally, the standard sizes
of sheet thickness are available in the market thereby

making these variables discrete in nature. Other two

variables are real continuous parameters.

The cost of longitudinal weld for a cylindrical shell
is given as [31]

C1 = 2πρLCw

(

Ts

cos 30◦

)2 (
60◦

360◦

)

, (1)

where “2” signifies welding of two rolled sheets lon-

gitudinally at two places to make a cylindrical shell,

“π(Ts/ cos 30
◦)2(60◦/360◦)” represents area of one-sixth

sector of a circle, “ρ” is the density, Cw is the cost of
weld material per kg.

The hemi-spherical heads are forged and welded to

the ends of a cylindrical shell using same butt joint as

shown in Fig. 2. The cost of welding spherical heads to
a cylindrical shell is given by [31]

C2 = 4π2ρRCw

(

Th

cos 30◦

)2 (
60◦

360◦

)

. (2)

Here, “π(Th/ cos 30
◦)2(60◦/360◦)” represents area of one-

sixth sector of a circle, and “R” is radius of spherical
head.

The total material cost of pressure vessel is given as

[31]

C3 = 2πρRLTsCs + 4πρR2ThCh. (3)

TC of a pressure vessel is (C1 + C2 + C3). The ob-

jective is to minimize TC which is a non-linear function

of four variables. In the following section, various con-

straints are discussed for safe and optimal design.

2.2 Constraints

In this section, the constraints are discussed which can

ensure a safe design and required capacity.

1. Volume constraint: It signifies a minimum capac-
ity/volume for a pressure vessel. Here, it is assumed

that the volume should be more than 50 cubic me-

ter. Mathematically, the volume constraint is ex-

pressed by

g1(x̄) = πR2L+
4

3
πR3 − 50.0 ≥ 0. (4)

2. Width constraint: It signifies a limit on the width of

a sheet influenced by the capacity of rolling equip-

ment. Here it is assumed that the width should be
less than 600 mm. The width constraint in mathe-

matical form is given as

g2(x̄) = 600− L ≥ 0. (5)

3. Stress constraint: This constraint is responsible for a

safe design by limiting τmax developed in a pressure

vessel which is given as

g3(x̄) = τmax < σy/2. (6)

τmax developed in a 3-D body is obtained by using

maximum shear stress theory (Tresca theory), i.e.,
shear stress developed in a body in the presence of

three perpendicular stresses is given as

τ =
max (σrr, σθθ, σφφ)−min (σrr, σθθ, σφφ)

2
. (7)

τmax is then calculated as τmax = max{τshell, τsphere}

where τshell and τsphere are calculated from (7) for
a cylindrical shell or spherical head, respectively.

For cylindrical shell, the radial and hoop stresses

due to thermo-elastic stresses [28] are given as

σrr =
pR2

((R+ Ts)2 −R2)

(

1−
(R + Ts)

2

r2

)

+
αE

2

(Tb − Ta)×

[

−
ln r

R

ln (R+Ts)
R

+

(

1−
R2

r2

)

(R + Ts)
2

((R+ Ts)2 −R2)

]

, (8)
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σθθ =
pR2

((R+ Ts)2 −R2)

(

1 +
(R + Ts)

2

r2

)

+
αE

2
×

(Tb − Ta)×

[

−
1 + ln r

R

ln R+Ts

R

+

(

1 +
R2

r2

)

(R + Ts)
2

((R+ Ts)2 −R2)

]

, (9)

where “p” is internal or gauge pressure, “r” is an
arbitrary radius between R and R + Ts, “α” is co-

efficient of thermal expansion, “E” is modulus of

elasticity, “Ta” is inside temperature and “Tb” is

outside temperature.

For spherical head, the radial and hoop stresses un-
der thermo-elastic condition [28] are given as

σrr =
pR3

((R + Th)3 −R3)

(

1−
(R + Th)

3

r3

)

−

αE

1− ν
(Tb − Ta)

R(R+ Th)

(R+ Th)3 −R3

(

1−
R

r

)

(

1−
R+ Th

r

)(

2R+ Th +
R(R+ Th)

r

)

, (10)

σθθ = σφφ =
pR3

((R+ Th)3 −R3)

(

1 +
(R+ Th)

3

2r3

)

−

αE

1− ν
(Tb − Ta)

R(R+ Th)

(R + Th)3 −R3
[2R+ Th

−
(

(R + Th)
2 +R(R+ Th) + R2

) 1

2r

−
R2(R + Th)

2

2r3

]

, (11)

Except (5), all constraints are non-linear which are de-
signed using four mixed variables.

2.3 Multi-Objective Problem Formulation

Motivated from the concept of “multi-objectivization”,

SOO problem of a pressure vessel is converted to the
bi-objective optimization which is given as

Minimize: TC of pressure vessel

Minimize: τmax developed in the pressure vessel,
(12)

TC is evaluated as described in Section 2.1 and τmax

is calculated from (7). The bi-objective optimization

problem is subjected to same constraints as defined in

Section 2.2.

In the following section, the two optimization meth-
ods for SOO and one multi-objective optimization al-

gorithm are discussed which are used to solve pressure

vessel design optimization problems.

3 Optimization Procedures

3.1 SOO Procedures

The two optimization procedures are used for solving

the given optimization problem for a pressure vessel.

First optimization method is based on the branch and

bound method in which a non-linear programming (NLP)
problem is solved using fmincon() function of Matlab.

A flow chart of hybrid algorithm is shown in Fig. 3

in which a NLP problem is solved by considering all

variables as real using fmincon() function. The value of
parameters are then supplied to the branch and bound

method in which value of discrete integer variables is

fathomed. For unfathomed variables, the standard pro-

cedure of the branch and bound method is followed and

a NPL problem is solved using fmincon() function. The
hybrid algorithm terminates when all integer variables

become fathomed. The termination for fmincon() func-

tion is set to 10−6 for ‘TolX ′. Interested readers can

refer Matlab documentation for more details on termi-
nation condition. The source code of this hybrid algo-

rithm can be found at [35].

variables as real parameters

Use branch and 

Start

No

Yes

Whether discrete

bound method

fathomed?

Terminate

integer variables are

Solve NLP problem
considering discrete 

Fig. 3 A flow chart of hybrid algorithm in which branch and
bound method is used. For solving NLP problem, fmincon() func-
tion of Matlab is used.

Another method used for solving the same optimiza-
tion problem of a pressure vessel is eGA. The flow chart

of algorithm is shown in Fig. 4 in which a population is

generated randomly. The population is then evaluated

and the fitness is assigned using the constraint handling
technique proposed in [5]. In the fitness assignment, a

better fitness is assigned to a feasible solution than any

infeasible solution. Thereafter, the termination condi-
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Fig. 4 A flow chart of elitist GA.

tion on maximum generation is checked for GA. If GA

does not terminate, then the binary tournament selec-

tion operator is applied to the population (which is re-

ferred as parent population now) to make a mating pool

of good individuals. Interested readers can refer [16] for
more details on the tournament selection operator. Af-

ter creating a mating pool, the crossover is done on ran-

domly chosen parents to create children. The simulated

binary crossover (SBX) operator [7] is used which cre-
ates two children from two parent solutions. The newly

created solutions are now mutated using the polyno-

mial mutation operator [8] to create a new population

which is referred as child population. Now, the fitness

is assigned to the child population in same manner as
explained earlier. An elitist strategy is used with GA

in which the parent and child populations are mixed

together and the best solutions are chosen to make the

parent population for next generation. Rest of the solu-
tions from the combined population are discarded. This

completes one generation of GA and it continues till the

termination condition gets satisfied. It is worthwhile to

mention that the discrete variables are handled as real

parameters. For example, if eGA evolves real value of
4.3 for Ts, then the value of Ts saved at fourth position

(nearest integer to 4.3) of array as shown in Fig. 5 is

assigned, that is, Ts = 6 mm.

T 2 3 5 6 8 10=
s

Fig. 5 An array representation for thickness of a sheet.

3.2 Multi-Objective Optimization Algorithm

NSGA-II proposed in [10] is used for solving the bi-
objective optimization problem of a pressure vessel. Pri-

marily reason of choosing NSGA-II over other algo-

rithms is that NSGA-II has shown a good convergence

and diversity properties to the global Pareto-optimal
(P-O) front for various two-objective test and engineer-

ing optimization problems [6]. The flow chart of NSGA-

II is same as Fig. 4. The fitness is assigned using the

non-dominated sorting ranking and the crowding dis-

tance operator. The constraint tournament operator is
used at selection and elimination stages in which a so-

lution with lower rank and larger crowding distance is

preferred. Other operators and discrete variables han-

dling are same as discussed with eGA. Interested read-
ers can refer [10] for more details on NSGA-II.

The two termination conditions are set for NSGA-

II. First termination condition gets triggered when the

generation counter reaches 1000. Otherwise, the nor-

malized distance (ND) metric [9] based condition ter-

minates NSGA-II which is given as

ND =

√

√

√

√

1

M

M
∑

i=1

(

zesti − z∗i
zwi − zi∗

)2

. (13)

Here, “M” is number of objectives, “z∗i ” is the ideal

point, “zwi ” is the worst point and “zesti ” is the esti-

mated Nadir point at any generation of NSGA-II. These

points are shown in Fig. 6 for the given P-O front. In

Ideal
point

P−O front Nadir point

Worst point

Feasible space

Total cost

M
ax

im
um

 s
he

ar
 s

tr
es

s

Fig. 6 Ideal point, Nadir point, and worst point in two-objective
space of cost and shear stress.

this paper, z∗i and zwi are the best ideal and worst points
in the population found so far. If value of ideal point

and/or worst point of the current generation is better

than z∗i and/or zwi , then values of z∗i and/or zwi get up-
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dated. zesti can be found from the extreme solutions of

the current non-dominated front.

ND values are stored for every generation, and max-

imum (NDmax), minimum (NDmin) and average (NDavg)

values of ND are calculated from last 50 generations.

When {(NDmax −NDmin)/NDavg} ≤ ∆, then NSGA-
II gets terminated.

In the following section, the pressure vessel design

problem is solved using three optimization procedures

and results are presented and discussed.

4 Simulation Results

In this section, the simulation results from SOO meth-
ods are presented and compared. The optimal values of

variables are perturbed in their vicinity to observe the

changes in TC and τmax. The simulation results for cap-

turing behavior of τmax developed in a pressure vessel
with respect to its thickness are also presented. The bi-

objective optimization problem is also solved and com-

pared with SOO study.

4.1 SOO Study

In general, the thickness of a sheet available in a market

is standard. Following sizes of sheet thickness for fabri-

cating cylindrical shell and spherical heads are assumed

to be available: {2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22,

25, 28, 30, 32, 34, 36, 40, 42, 45, 48, 50} mm. After 50
mm, an increment of 1 mm is considered till 150 mm of

thickness. It is noted that the thickness variation may

change from country to country. The design parameters

considered for solving the pressure vessel optimization
problem are shown in Table 1. A few parameters are

kept constant for eGA which are given in Table 2.

Table 1 Design Data used for solving pressure vessel problem

Design parameter Design data

Cs Rs. 60 per kg
Ch Rs. 80 per kg
Cw Rs. 600 per kg
P 105 Pa
Ta 100◦C
Tb 25◦C
Material Carbon steel (IS 2062 Gr. B)
σy 164 MPa
E 210 GPa

In this paper, eGA is tested for different population

sizes for solving the given optimization problem. eGA

is executed for 20 different runs with different random

Table 2 eGA parameters.

Crossover probability : 0.9

Mutation probability : 0.25

ηc for SBX : 10

ηm for polynomial mutation : 20

Generation : 100

Table 3 Statistical values of TC obtained from 20 different runs
of eGA.

Pop− > 8 12 16 20

Best 117976.2 118032.6 117906.4 118261.6

Worst 124063.4 167654.3 122938.8 122811.3

Mean 120883.8 122662.6 119579.8 120317.2

Median 120437.1 119565.9 119358.85 120177.9

Std. Dev. 1897.0 10466.1 1399.7 1485.2

Table 4 Optimal values of parameters and TC generated by two
optimization methods.

eGA

TC (Rs) R (mm) L (mm) Ts (mm) Th (mm)

117906.4 173.5 297.2 3 3

Hybrid method

TC (Rs) R (mm) L (mm) Ts (mm) Th (mm)

117804.07 175.2 284.7 3 3

initial population for each population size and the re-

sults are shown in Table 3. It can be observed that
minimum TC evolved with the population size of 16,

although other population sizes show marginally dif-

ferent TC. The function evaluations required for the

population size 16 is 1600. The optimal values of pa-
rameters evolved by eGA are shown in Table 4. The

same table also shows the optimal values generated by

the hybrid method. It can be observed that TC gen-

erated by the hybrid method is marginally better than

eGA. Although Ts and Th are evolved with identical
thickness values by both the optimization methods, but

difference in R and L values shows 0.087% improvement

in TC by the hybrid method. The function evaluations

required by the hybrid method are 2289 that is more
than eGA.

4.1.1 Perturbation Analysis

It can be observed from the last section that the two

optimization methods for SOO generated similar solu-

tions. In this section, the optimal value of parameters

evolved by the hybrid method are perturbed to observe
TC and τmax. Fig. 7 shows that TC value gets reduced

if Ts is perturbed to 2 mm from its optimal value at

3 mm. However, the design is unsafe because τmax be-

comes greater than S = σy/2. Any thickness between 2
mm and 3 mm cannot be chosen due to discrete integer

assumption made in section 4.1. For larger values of Ts,

TC keeps on increasing but τmax gets reduced. From
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Fig. 7 Variation of τmax and TC with respect to perturbation
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Fig. 9 Variation of τmax and TC with respect to perturbation
in R.

this figure, it can be concluded that 3 mm is an op-

timal thickness of cylindrical shell for which minimum

TC is achieved.

Similar observation can be seen in Fig. 8 in which

Th is perturbed. It can be concluded that 3 mm is an
optimal value of Th for minimum TC.

Figure 9 shows that TC and τmax keep on increas-

ing with increase in R value of a pressure vessel. Below

the optimal value of R, volume constraint is not satis-

fied. Therefore, the plot is shown for increasing value of

R. At the optimal value of R, τmax is equivalent to S

thereby making it safe. Any perturbation in L will not

change τmax, however volume capacity and TC will in-
crease.

4.1.2 Behavior of τmax versus Ts and Th in a Pressure

Vessel

In the preceding section, it has been observed that τmax

gets reduced with increase in the thickness of cylindri-

cal shell and hemi-spherical heads. However after cer-
tain increment of the thickness, τmax starts increasing

as shown in Figs. 10 and 11 for the cylindrical shell and

the hemi-spherical head, respectively. Note that the op-

timal values of R and L evolved by the hybrid method
are kept same.
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Fig. 10 Variation of τmax in a cylindrical shell with respect to
its thickness.
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Fig. 11 Variation of τmax in a spherical head with respect to
its thickness.

The thickness is referred as “knee thickness” from

where τmax starts increasing. The knee thickness is found

at 100 mm for the cylindrical shell and 42 mm for
the hemi-spherical head. τmax and other stresses ob-

served at and around knee thickness are shown in Ta-

ble 5. It can be observed that τmax gets reduced till
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100 mm knee thickness in the cylindrical shell but it

starts increasing afterwards. The position of τmax also

gets shifted from the outer wall to the inner wall. It

is due to increase in the compressive hoop stress de-

veloped at the inner wall of a cylindrical shell which
also starts increasing after the knee thickness under

thermo-elastic loading. Similar observation can be seen

with the hemi-spherical head in which τmax starts in-

creasing after 42 mm knee thickness and the position of
τmax gets shifted from the outer to the inner wall due

to the hoop/circumferential stress under thermo-elastic

loading.

Table 5 Stresses and position of τmax at and around knee thick-
ness.

Cylindrical Shell

Ts σrr σθθ τmax Position of FOS
(mm) (MPa) (MPa) (MPa) τmax

99 0 94.490 47.245 Outer wall 1.735
100 0 94.455 47.228 Outer wall 1.736
101 0.1 94.479 47.24 Inner wall 1.735

Spherical Head

Th σrr σθθ τmax Position of FOS
(mm) (MPa) (MPa) (MPa) τmax

41 0 135.006 67.503 Outer wall 1.214
42 0.1 135.046 67.473 Inner wall 1.215
43 0.1 135.144 67.522 Inner wall 1.214

From last column of Table 5, it is observed that
maximum FOS of 1.215 with respect to allowable yield

stress of 164 MPa can be achieved by increasing the

thickness of pressure vessel under thermo-elastic load-

ing. It also suggests that the hemi-spherical head de-

sign is more critical than the cylindrical shell because
it shows least FOS value. Figure 8 shows same obser-

vation in which τmax at the head is equivalent to S at

its optimal value. However in shell, τmax is less than S

at its optimal value as shown in Fig. 7.

4.2 Multi-Objective Optimization Study

Earlier, the pressure vessel was designed for its mini-

mum TC subjected to various constraints. In this sec-

tion, the bi-objective optimization problem defined in
(12) is solved using NSGA-II. The same parameter val-

ues are used as shown in Tables 1 and 2. The population

size is kept 100 for NSGA-II. The algorithm gets ter-

minate when either ∆ is less than 10−6 for ND-values

or generation counter reaches 1000.

The algorithm is run for 20 times with different ini-
tial population. Figure 12 shows 0% and 50% attain-

ment plots. A brief detail of attainment surface plot is

given in appendix A. It is observed that both plots are

completely overlapped to each other. This suggests that

NSGA-II is converged to similar sets of the approximate

P-O solutions. The main reason is due to the presence

of mixed variables in which two are discrete in nature.

The same reason is also responsible for gaps in the ap-
proximate P-O solutions.

5

C

D

Single−objective solution

B

A

Knee region
 72
 74
 76
 78
 80
 82
 84

 0  2  4  6  8  10  12  14  16
 66
 68
 70
 72
 74
 76
 78
 80
 82
 84

 0  2  4  6  8  10  12  14  16

 68
 66

50% attainment solutions
0% attaintment solutions
50% attainment solutions
0% attaintment solutions

M
ax

im
um

 s
he

ar
 s

tr
es

s 
(M

P
a)

 70

Total cost (Rs X 10  )

Fig. 12 Approximate P-O solutions from 20 different runs of
NSGA-II.

Figure 12 also shows the optimal solution from SOO
study. It can be observed that solution A on one ex-

treme of the approximate P-O set shows equivalent TC

of the single-objective optimal solution. Moreover, the

bi-objective study evolves other trade-off solutions by
simultaneously minimizing τmax in the pressure vessel.

The outcome from the bi-objective optimization can of-

fer flexibility to the designers to choose an appropriate

pressure vessel design from the set of the approximate

P-O solutions. For example, the safest solution B, the
cost effective solution A or any trade-off solution can

be chosen from the approximate P-O set. It is inter-

esting to note that solution B’s thickness (45 mm) is

close to the knee thickness shown in Fig. 8. For solu-
tions B, τmax is 67.3 MPa which is equivalent to τmax

at the knee thickness. It is worth to mention that the

bi-objective study is able to generate all possible solu-

tions from the cost effective solution to the safest design

in one run. However with SOO study, further optimiza-
tion and simulations have to be carried out for similar

observations.

A knee region is observed in Fig. 12 where small

gain in one objective implies large compromise in an-
other objective. For example, any improvement in τmax

against solution D drastically increases TC. Similar ob-

servation can be seen against solution C in which small

gain in TC implies higher jump in τmax. This analysis
can be helpful for the designers where relative compar-

ison can be done among the solutions for selecting an

appropriate pressure vessel design.
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Table 6 shows statistical values of function evalua-

tions for 20 runs of NSGA-II. It can be observed that

NSGA-II requires on average 22760 function evalua-

tions to generate the approximate P-O solutions.

Table 6 Statistical values of function evaluations obtained from
20 different runs of NSGA-II.

Best worst Mean Median Std. Dev.

12100 41200 22760 21550 7649.73

The bi-objective optimization formulation described
in Section 4.2 is now solved for different values of p and

(Ta−Tb). Figure 13 shows the approximate P-O sets for

different values of p, where (Ta−Tb) is kept 75
◦C. It can

be observed from figure that by increasing p, the set of
the approximate P-O solutions gets shifted away from

the approximate P-O set of 0.1 MPa study. However,

an improvement can be seen in the approximate P-O

solutions for lower p than 0.1 MPa study. It is due to

change in the thickness of shell and head. As p increases,
the stresses developed in the pressure vessel also keep

on increasing. To make the design safe, the thickness of

the pressure vessel gets increased which can keep the

stresses under S, but it increases TC.
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Fig. 13 Variation of τmax and TC at different internal pressure.

Figure 14 shows the approximate P-O sets for dif-
ferent (Ta−Tb) values, where p is kept 0.1 MPa. Similar

observation can be seen from figure in which the ther-

mal stresses increase with increase in temperature dif-

ference. These stresses are kept under S by increasing

Ts and Th values.

The post-processing of optimal data of bi-objective

study for 0.1 MPa and temperature difference 75◦C is

also done in this paper. Figure 15 shows the optimal
values of L and R of the pressure vessels corresponding

to the approximate P-O solutions. It can be observed

that solutions are grouped in two clusters. In cluster 1,
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Fig. 14 Variation of τmax and TC at different temperature dif-
ference.

L varies from 550 mm to 600 mm and accordingly, R

adjusts from 142 mm to 146 mm such that the volume

constraint is satisfied. Similarly in cluster 2, L of pres-

sure vessel shows a range from 123 mm to 156 mm for

which R varies from 196 mm to 202 mm.

Cluster 1

Cluster 2

Le
ng

th
 (

m
m

)

 400
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 160  170

 200

 100
 140  150  180  190  200  210

Radius (mm)

 300

Fig. 15 Optimal values of L and R at the approximate P-O set
for 0.1 MPa internal pressure and 75◦C temperature gradient.

Cluster 1 represents solutions with lower TC which

can be observed from Fig. 16. It shows that TC varies

from Rs 1.23×105 to Rs 6.73×105. On the other hand,

τmax varies from 67.5 MPa to S as shown in Fig. 17. In
these figures, two solutions are marked as 1 and 2. These

solutions have same radius and length, meaning that

the volume is same for both solutions. However, solution

1 is safer than solution 2, whereas TC of solution 2 is

less than solution 1. It is due to difference in the optimal
values of thickness of shell and head as shown in Table

7. The pressure vessel design for solution 1 is thicker

than solution 2 which reduces τmax. Since, the optimal

head thickness of solution 1 is larger than solution 2, it
increases TC of solution 1. On the other hand, solution

2 represents thinner pressure vessel which shows lower

TC but τmax reaches to S limit. Rest of the solutions
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show trade-off in the objective space with the above

mentioned reason.
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Fig. 16 Optimal values of R with respect to their TC for cluster
1 approximate P-O set at 0.1 MPa internal pressure and 75◦C
temperature gradient.

2

1

Radius (mm)

 72

 74

 76

 78

 80

 145

M
ax

im
um

 s
he

ar
 s

tr
es

s 
(M

P
a)

 68

 66
 142  143  144  146

 70

Fig. 17 Optimal values of R with respect to their shear stress
for cluster 1 approximate P-O set at 0.1 MPa internal pressure
and 75◦C temperature gradient.

Table 7 Shell and head thickness for two solutions of same vol-
ume in cluster 1.

Solution Shell thickness (mm) Head thickness (mm)

1 5 34
2 3 3

It is noted that the difference between Th and Ts for
solution 1 in Table 7 is 29 mm. This difference can be

avoided by including a constraint on thickness. How-

ever, it is not compulsory for the bi-objective optimiza-

tion study as the differences in thicknesses of the P-O
solutions can be observed from Fig. 18. The figure shows

different ranges of (Th −Ts) observed from the approx-

imate P-O solutions. If any (Th − Ts) value is desired,

then any solution from 0 mm to the desired thickness

difference can be chosen.
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Fig. 18 Differences in Th and Ts for cluster 1 P-O solutions.

Cluster 2 represents solutions having lower τmax and
higher TC. It can be observed from Fig. 19 that TC

varies in the range of Rs 13.22×105 to Rs 14.9×105, ex-

cept two solutions. Similarly, almost all solutions shows

τmax in the range of 67.3 MPa as shown in Fig. 20. In
both figures, two solutions are marked as ‘3’ and ‘4’

which have same volume capacity. τmax is less for solu-

tion 3 because it is a thicker pressure vessel than solu-

tion 4 as shown in Table 8. Therefore, TC of solution 3

is more than solution 4. Similarly, solution 4 represents
a thinner pressure vessel with lower TC, but τmax value

reaches to S. In cluster 2 as well, a big difference be-

tween Th and Ts is observed from Table 8. The ranges

of differences in Th and Ts for cluster 2 solutions are
shown in Fig. 21. Here, majority of the cluster 2 P-O

solutions show a difference of 40 mm between Th and

Ts.
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Fig. 19 Optimal values of R with respect to their TC for cluster
2 approximate P-O set at 0.1 MPa internal pressure and 75◦C
temperature gradient.

It is interesting to note that solution 2 in Fig. 16 and

solution 4 in Fig. 19 represent the cost effective pressure
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Fig. 20 Optimal values of R with respect to their shear stress
for cluster 2 approximate P-O set at 0.1 MPa internal pressure
and 75◦C temperature gradient.

Table 8 Shell and head thickness for two solutions of same vol-
ume in cluster 2.

Solution Shell thickness (mm) Head thickness (mm)

3 5 45
4 3 3
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Fig. 21 Differences in Th and Ts for cluster 2 P-O solutions.

vessel design. Although the volume capacity of both

of these solutions is same, but solution 2 has smaller

radius and larger length than solution 4. This implies

that the designer can even have different options for
same cost and volume designs for relative comparison.

This is another advantage offered by the bi-objective

optimization over SOO.

If solutions 1 and 3 are compared in Figs. 17 and
20, both of them are the safest designs among other

solutions. However, TC of solution 1 is much less than

solution 3 as shown in Figs. 16 and 19. These two solu-

tions represent either sides of knee region as discussed
earlier. The marginal improvement in τmax for solution

3 drastically increases its TC with respect to solution

1.

5 Conclusions

In this paper, a pressure vessel was modeled for thermo-

elastic loading by minimizing its TC and τmax. The
combined effect due to internal pressure and temper-

ature gradient was considered for a safe design. The

two optimization methods were used to solve single-

objective optimization problem, which generated simi-
lar optimal solutions. The perturbation analysis further

supported the optimality of solution. From simulations,

it was observed that τmax in a pressure vessel started

increasing after the knee thickness due to increase in

the compressive hoop/circumferential stress at the in-
ner wall under thermo-elastic condition. FOS of a pres-

sure vessel was also restricted around the knee thickness

of the spherical head design. It can be concluded from

this paper that material selection and other measures
should be taken carefully for higher FOS pressure ves-

sel under thermo-elastic condition. Later, the pressure

vessel was designed using the bi-objective optimiza-

tion which generated many approximate P-O solutions.

Among these solutions, one extreme solution was equiv-
alent to the optimal solution of SOO study, whereas

other extreme solution generated with the equivalent

knee thickness. These many trade-off solutions offered

choice to the designer so that a relative comparison can
be made in and out of the knee region for final design

selection. The post-processing of the approximate P-O

solutions showed that solutions were clustered into two

groups representing minimum TC and minimum τmax.

Based on the observation, any solution from cluster 1
can be preferred which can represent a cost effective,

safe, and feasible Th and Ts difference. Further trade-

off was observed in these groups based on the pressure

vessel thickness. In the future work, plane strain and
transient temperature gradient conditions can be con-

sidered. Other optimization methods like PSO etc. can

be used for better convergence. Moreover, GA can be

coupled with other optimization methods to improve

its convergence.

A Attainment surface [14]

An approximate set A is called the k%− approximate set of the
empirical attainment function (EAD) αr(z), iff it weakly domi-
nates exactly those objective vectors that have been attained in
at least k percentage of the r runs. Formally, ∀ ∈ Z : αr(z) >=
k/100 ↔ A � {z} where αr(z) = 1

r

∑r
i=1

I(Ai � {z}). Ai is

the ith approximation set (run) of the optimizer and I(.) is the
indicator function, which evaluates to one if its argument is true
and zero if its argument is false.

An attainment surface of a given approximate set A is the
union of all tightest goals that are known to be attainable as a
result of A. Formally, this is the set {z ∈ ℜn : A � z∧¬A ≺≺ z}
[20].
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