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it is in conflict with the primary objective, thereby causing an evolutionary
multi-objective optimization algorithm to maintain diversity in its population
from one generation to another. The elitist non-dominated sorting genetic algo-
rithm (NSGA-II) is customized with a domain-specific initialization strategy,
a domain-specific crossover operator, and a domain-specific solution repairing
strategy. To make the search process computationally tractable, the proposed
methodology is made suitable for parallel computing. A local search method-
ology is applied on the evolved non-dominated solutions found by the above-
mentioned modified NSGA-II to further refine the solutions. Two case studies
for tracing curvilinear and straight-line paths are performed. Results demon-
strate that solutions having smaller weight than the reference design solution
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observations brought out by the study are also narrated and conclusions of the
study are made.
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1. Introduction

Multi-objectivization concept (Knowles et al. 2001) was introduced for solving complex
single-objective optimization problems (SOOPs) in a computationally efficient man-
ner. In this approach, SOOP is converted into a multi-objective optimization prob-
lem (MOOP) by adding a secondary objective which is in conflict with the original
objective function. Since diverse trade-off solutions are maintained in an evolution-
ary multi-objective optimization (EMO) algorithm, it is then demonstrated that multi-
objectivization can introduce adequate diversity in an EMO population, thereby enhanc-
ing the chance of finding good new solutions with generations.
In addition to introducing a new secondary objective, the original objective function

can also be splitted, if possible, to have two separate yet conflicting objectives. In addition
to using deterministic objective functions, Jensen (2004) suggested the use of multiple
dynamically changing helper objectives that were minimized simultaneously with the
primary objective. Although at first, a sequence of helper objectives were chosen at ran-
dom, later problem-specific knowledge was used to choose them (Lochtefeld and Ciarallo
2011). The idea was tested on the traveling salesman and job-shop scheduling problems.
These problems can either be decomposed or be converted to have many helper objec-
tives from the original singular objective. Bleuler et al. (2001) and De Jong et al. (2001)
however used the size of a genetic program as an additional objective to come up with
compact yet efficient programs using the genetic programming search algorithm (Koza
1992). Similarly, Abbass and Deb (2003) used the solution age as a supplementary ob-
jective, and Toffolo and Benini (2003) considered a distance-based measure of genetic
diversity as an objective. Watanabe and Sakakibara (2005) followed a different approach
in which additional objectives were added to the primary objective by (i) relaxing con-
straints of the problem (Coello 2000) and (ii) adding noise to the objective value or to
the decision variables. The concept of helper objective was also used to design frames in
Greiner et al. (2007), in which minimizing the number of different cross-sectional shapes
used in a frame was added to the usual minimization of mass of the frame structure.
In this paper, the optimization of a compliant mechanism is considered which usually

resorts to a non-linear, high-dimensional and discrete optimization problem (described
in Sections 3 and 4). The complexities involved in the problem result in a fewer well-
connected practical designs that respect all constraints. Major problems associated with
the compliant mechanism design optimization are as follows. The objective function
landscape usually has multiple local optima due to inherent non-linearity in constraint
and objective functions. Moreover, due to scarcity of feasible solutions, an optimization
algorithm is likely to converge to a premature and sub-optimal solution.
A unique approach is followed in this study where a helper objective of maximizing

geometrical dissimilarity with a single-objective optimized solution is introduced for op-
timizing a complaint mechanism. The reference design is generated off-line by using a
single-objective optimization procedure discussed in Section 3.1 subjected to satisfaction
of constraints outlined in Section 3.2. By forcing population members to have dissimilar
shapes than the single-objective optimal solution, diversity in the population is expected
to be maintained and the process is expected to arrive at a good set of non-dominated so-
lutions at the end. The obtained trade-off solutions are further refined by a hill-climbing
based local search procedure to ensure closeness to locally optimal solutions.
The remainder of the paper is organized as follows. A helper objective based formu-

lation of the complaint mechanism design task is discussed in Section 3. The proposed
customized evolutionary algorithm with a hill-climbing based local search procedure is
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discussed in Section 4. In section 5, two case studies are presented, their minimum weight
elastic configurations are presented, and various useful observations are discussed. The
paper is concluded in Section 6 with an outline of a few future extensions to this study.

2. Overview of Compliant Mechanism Design

Structural topology optimization (STO) is a fast growing field which is finding numerous
applications in automotive, aerospace, and mechanical design processes. It optimizes
material distribution or layout within a given design-domain under the applied boundary
and support conditions (Hassani and Hinton 1998). Compliant mechanisms (CMs) are
also synthesized based on STO approach where the flexible elastic structures of these
mechanisms can deform to perform desired task (Howell 2001). Different criteria have
been used to design CMs such as strain energy (Frecker et al. 1997), geometric and
mechanical advantages (Sigmund 1997, Larsen et al. 1997), mutual potential energy (Lu
and Kota 2006) etc.
Commonly used methods for synthesizing CMs are homogenization method (Nishi-

waki et al. 1998), material density approach (Yang and Chuang 1994), solid isotropic
microstructure with penalization (SIMP) (Bendsøe 1989), level-set method (Wang et al.
2003), and evolutionary structural optimization (ESO) (Xie and Steven 1993). Homoge-
nization, material density, and SIMP methods modify discrete problem of structures into
a continuous design variable problem. A threshold value is often required to suppress in-
termediate design variable values. However, an arbitrary threshold value can lead to a
non-optimal solution. Although homogenization and ESO methods are computationally
effective, their convergence to the global optimal solution for the structural optimization
problem is not guaranteed (Rozvany 2001).
Boolean (0-1) representation of genetic algorithm (GA) can be used for material distri-

bution in a design domain. Thus, GA is used as another method for STO (Chapman et al.
1994) to preserve discrete nature of the structures. Moreover, GAs are suitable for solving
complex non-linear problems for the global optimization and for simultaneously handling
multiple objectives (Sharma et al. 2011). But, the bottleneck is large computation time.
Major portion of the computation time is consumed in the finite element analysis (FEA)
of the structures as compared to the time spent in executing GA operations.
Most studies in STO combine multiple objectives into single-objective using classi-

cal approaches: (i) weighted-sum method, (ii) ratio method, etc., where the optimiza-
tion process can get trapped into finding a sub-optimal solution. On the other hand,
a multi-objective approach can introduce and maintain diversity in the search process.
The concept of helper objective has already been suggested for improving the frame bar
structures (Greiner et al. 2007). In this paper, the helper objective concept is introduced
for maximizing geometric dissimilarity in the population of complaint mechanisms.
It has been observed that problem-specific knowledge given to GA can become a po-

tential tool for global structural topology optimization (Wang et al. 2006). The problem-
knowledge can be provided at various stages of GA. For example, a domain-specific initial
population strategy can help in making a faster convergence of GA (Sharma et al. 2011).
Similarly, a problem-specific crossover operator (Sharma et al. 2011, Deb and Chaudhuri
2005) can be used to enhance the chance of creating better offspring solutions in the GA
population. Computation time of running GA can be reduced by performing function
evaluations and FEM simulations on a parallel computing platform (Sharma et al. 2006,
2008).
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3. Problem Formulation

3.1. Objectives

Minimizing weight of the structure is chosen as the primary objective. Weight of the
structure is evaluated by counting the cells having material (black color) as shown in
Fig. 1.
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Figure 1. A design-domain for GA population member.

The concept of multi-objectivization (Knowles et al. 2001) is used in this paper where
the helper objective is coupled with the primary objective. As mentioned in Section 1,
multi-objectivization can guide a search of EA to avoid local optima and to maintain di-
versity in the EA population based on Pareto-ranking. In this study, the helper objective
is designed to get evaluated with respect to the reference design. The reference design can
be chosen from the available set of optimum elastic structures based on previous practice
of designers or from the literature. In this paper, the reference design is generated by a
SOOP for weight minimization (cf. equation (1)) subjected to the constraints which are
discussed in Section 3.2.

Single-objective optimization (for reference design):
Minimize: Weight of structure

Bi-objective optimization:
Minimize: Weight of structure (primary objective),
Maximize: Geometrical dissimilarity of structure with respect to

the reference design (helper objective).

(1)

For the given CM problem, the reference design obtained from SOOP application
becomes a reference point which specifies the goal or aspiration level for each objective.
This reference point methodology can help an EA to find a set of solutions closer to the
supplied goal (Deb et al. 2006).
For evaluating the helper objective, every cell of the elastic structure evolved from the

current EA population is compared with corresponding cell of the previously obtained
reference design. For example, if a cell that is present at a particular EA population
member is absent in the reference design, the dissimilarity count of the EA population
member is increased by one. The total sum of dissimilarity count is a measure of geomet-
rical dissimilarity of EA evolved elastic structure with respect to the reference design.



April 24, 2014 16:6 Engineering Optimization CMO˙EnggOpti2012

Engineering Optimization 5

This dissimilarity count is maximized simultaneously along with minimization of weight
of the structure (see equation (1)).

3.2. Constraints

The task of path generating compliant mechanisms (PGCMs) is to develop an optimal
shape of the elastic structure so that when a force or displacement is applied at a spec-
ified point on the mechanism, a user-defined path is generated by another point on the
mechanism. These mechanisms can be designed using Euclidean distance-based objective
function (Tai et al. 2002) or Fourier shape descriptor-based objective function (Rai et al.
2007). The former approach cannot ensure closeness of actual path traced by the elas-
tic structure to a user-defined path. It can result an unacceptable gap between the two
paths. The later approach depends on many user-defined parameters. Arbitrary values to
these parameters can change the optimality of the solution. In this paper, the constraints
are imposed at the precision points representing a user-defined path (Sharma et al. 2011)
(see equation (2)). These constraints restrict a maximum allowed gap between a user-
defined path and an actual path. This helps in guiding EA to evolve feasible CMs tracing
a user-defined path. A constraint limiting the stress within the material strength is also
considered in the formulation.

Constraints:

1−
√

(xia−xi)2+(yia−yi)2

η×
√

(xi−xi−1)2+(yi−yi−1)2
≥ 0,where i = 1, . . . , N ,

σflexural − σ ≥ 0,
where N is the number of precision points representing the user-defined
path, η = 15% is the permissible deviation (kept fixed in this paper),
and σflexural and σ are flexural yield strength of material and maximum
stress developed in the structure, respectively.

(2)

The physical interpretation of these constraints is shown in Fig. 2. A hypothetical case
of user-defined and actual paths is shown in the figure. It suggests that the solution is
feasible only when d2 ≤ d1, where d1(=

√

(xia − xi)2 + (yia − yi)2) is Euclidean distance
between the precision point (i) and the corresponding point (ia) of actual path. Distance

d2(= η ×
√

(xi − xi−1)2 + (yi − yi−1)2) is η% of Euclidean distance between the current
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Figure 2. A prescribed path and an actual path traced by the elastic structure.
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precision point (i) and previous precision point (i− 1).
The evolved designs will be referred as path tracing compliant mechanisms (PTCMs)

because the term ‘path’ signifies a user-defined path which is traced by imposing
constraints as discussed above. However, for path generating compliant mechanisms
(PGCMs) the ‘path’ suggests an actual path generated by the compliant mechanisms.

4. Customized Evolutionary Algorithm

In this paper, the elitist non-dominated sorting genetic algorithm (NSGA-II, Deb et al.
(2002)) is modified and used for solving the problem described in Section 3. NSGA-II
has been chosen over other algorithms because it has shown to have a good convergence
property to the global “Pareto-optimal” front as well as to maintain a good diversity
of population members on the “Pareto-optimal” front for various two-objective test and
engineering problems (Deb 2001).
The non-dominated solutions generated by the customized NSGA-II are further refined

by the hill-climbing based local search method. These solutions are starting points for
the local search procedure which minimizes weight of structure. A flow-chart of the
optimization procedure is shown in Fig. 3. An earlier NSGA-II algorithm (Sharma et al.
2011) is further customized with modifications such as domain-specific crossover operator
and a local search for the minimum-weight solution. Next, the customized schemes and
operators are discussed.

4.1. GA Parameters

Customized NSGA-II parameters for solving the given compliant mechanism problem
are given in Table 1. It can been seen that two sets of binary strings are used. The first
set is used to represent material distribution in the design domain which is described
later in Section 4.3. The second set is used to identify the applied boundary and sup-
port conditions. The applied boundary conditions are associated with the location and
magnitude of input displacement. For identifying the conditions, the second set of bi-
nary string is thus divided into three groups as shown in Fig. 4. The first group of five
bits decodes a position of a cell where the nodes of a cell of the elastic structure are
restrained with zero displacement. It is referred as “support region” which can be seen
at the bottom of design domain shown in Fig. 1. The decoded value of three bits of the
second group identifies a loading position, that is, a node of cell of the elastic structure
where the input displacement boundary condition is applied. This position is referred as
a “loading region” in Fig. 1. The magnitude of the input displacement is also calculated
after decoding the four bits of third group which varies in range of 1 mm to 16 mm at a
step of 1 mm.

Table 1. NSGA-II parameters used in this study.
Population 240 Generation 100
Crossover

0.95
Mutation 1/string

probability probability length
String length

625
String length for applied boundary

12
for a structure and support conditions



April 24, 2014 16:6 Engineering Optimization CMO˙EnggOpti2012

Engineering Optimization 7

Calculation of primary and helper objectives and constraints

FE analysis

Structure representation and connectivity analysis

Tournament selection

Two dimensional crossover

Mutation

Structure representation and connectivity analysis

Combine old and new populations ’2N’

FE analysis

Non−dominated sorting of combined pop

If
generation

>
maximum
generation

Choose ’N’ good individuals from ’2N’ pop
based on ranking and crowding distance

Local search

Non−dominated sorting
of local searched solutions

End
of the optimization

procedure

Terminate NSGA−II

Clustering procedure

Yes

Initial random
population’N’

Non−dominated sorting based on ranking and crowding distance

Calculation of primary and helper objectives and constraints

No

P
ar

al
le

l c
om

pu
tin

g 
pl

at
fo

rm
Figure 3. A flow chart of customized NSGA-II algorithm
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Figure 4. A binary string comprises of two sets.

4.2. Domain-Specific Initial Population Strategy

A domain-specific initial population strategy is used and coupled with the customized EA
described above. The strategy was found to outperform a random initialization procedure
for the compliant mechanism problem (Sharma et al. 2011). In this strategy, the material
connectivity among the important regions of a design domain is ensured. The structure is
geometrically feasible when the support, loading and output regions of a design domain
(cf. Fig 1) are connected through the material. The output region is referred as a fixed
point on a design domain that traces out a user-defined path. The origin of design domain
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is fixed on its left side and the output region is positioned at the coordinate (50, 32) of
the structure. A spring of constant stiffness (κ = 0.4 KN/m) is attached at the output
node for providing some resistance during the deformation of elastic structure.
Material connectivity between the support and the loading regions is shown in a hypo-

thetical case of Fig. 5. This strategy starts with generating any number of intermediate
points between 1 and 5, randomly. In the present case, four random points (P1, P2, P3,
and P4) are generated within the design domain. Thereafter, the support (S1) and the
loading (L1) positions are connected by straight lines passing through these intermediate
points. Material is then assigned to those cells of the design domain where these straight
lines pass (cf. Fig. 5). Similarly, a set of piece-wise linear line segments between the sup-
port and the output regions and another set between the loading and the output regions
are added. Here, the cell positions of support and loading regions are calculated after
decoding the binary string of 12 bits (see Fig. 4). This initial population strategy ensures
creation of geometrically feasible structures in the initial population.
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Figure 5. Connectivity between support and loading regions.

4.3. Structure Representation Scheme

After an initial population is generated, the binary string of GA population member is
converted into two-dimensional representation as shown in Fig. 6. This representation
scheme divides the design domain into 25×25 (= 625) cells in x and y directions respec-
tively. The bit value 1 of a cell signifies that material is present, whereas 0 represents a
void cell.

1
1
1

1

1 1 0 1 0 1

100100

1 1 1 1 1 0

100001

1 1 0 1 0 1

1 1 0 0 0 0

Four finite
elements

Material representation

Rn

R1

R2

1 110001 1 0 01 1 10

A binary string

One bit

2−D binary representation
x

yRows

RnR1

Figure 6. A representation of structure using binary string and material.
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4.4. GA Operators

A domain-specific crossover operator is introduced here. The given design domain is
divided into support, loading and output regions. Thereafter, in this operator, two off-
spring solutions are created by exchanging sub-domains of the two parent solutions. A
common sub-domain between the two parent solutions can exchange with a probability
of 0.5. A hypothetical case is shown in Fig. 7 in which three random points (P1, P2,

x

y

A3
A4

A2

A1

P1

P3

P2

Figure 7. Sub-divided domain for crossover.

and P3) are generated on the respective edges of support, loading and output regions.
By joining these points, the design domain is divided into four sub-domains. Each sub-
domain then gets swapped between the two parent solutions with 0.5 probability. For a
crossover with 12 bits in the second set, a standard single point crossover is used.
A standard bit-wise mutation operator is used for the binary string representing the

elastic structure with a mutation probability of pm = 1/ℓ (where ℓ is the string length)
on each bit to change from a void to a filled or from a filled to a void cell. For mutating
remaining 12 bits of second set, the decoded values of support and loading regions, and
magnitude of input displacement are evaluated. These values are then perturbed within
the range of {−2, 2} at their original values. Here, it is ensured that the perturbed
values of above three applied boundary and support conditions do not fall outside their
respective bounds. After perturbation, these mutated values are again coded into the
binary string of 12 bits.

4.5. Connectivity and Repairing Techniques

GA operators create new solutions in the population to explore the search space. While
implementing them on the binary strings, new solutions may have disconnected or infea-
sible geometries. For example, in Fig. 8, the support region (S) is not connected to the

S

L

S

O

L2
L1

L

O

Figure 8. Disconnected topology.

loading (L) and the output (O) regions. In this scenario, individual distances are calcu-
lated from the centroid of each cell of material connected to S to the centroid of each
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cell of material connected to L and O. The regions are then connected by straight lines
where individual distances between the cells of S-L and S-O are minimum. Material is
then assigned to those cells where these straight lines pass.
The initial population strategy, the GA operators, and the connectivity procedure can

cause a point singularity between the two cells of material. In this paper, a heuristic
repairing technique motivated from the image processing concept (Sigmund 1997) is
employed. For any cell of material as shown in Fig. 9(a), a point singularity can arise if

(a)

1
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8

6 5 4

73

6 5

8

4

2 1

3

1 2

6 4

7

5

28

3

(b) (c)

Figure 9. Point singularity case is illustrated.

there is any material at 2nd, 4th, 6th, or 8th position and there is no material at 1st,
3rd, 5th, and 7th positions. Suppose, material at position 2 creates a point connectivity
(see Fig. 9(b)), then an extra material is filled at 1st or 3rd position with an equal
probability to eliminate the point singularity. Fig. 9(c) illustrates a case for a point
connectivity which arises due to material at 2nd and 4th positions.
Due to the mutation operator, a topology with isolated elements may also get created

as shown in Fig. 10. In this case, the smallest isolated cells are identified and they are
changed to void cells by assigning a value ‘0’ to each of them.

Figure 10. Isolated elements case due to mutation is illustrated.

4.6. Finite Element Analysis (FEA)

The above repair mechanisms make sure that the elastic structures are geometrically
feasible and are free from checkerboard configuration, point singularity, and isolation.
Thereafter, the structures are analyzed using FEM. In this paper, one cell of a structure
is further discretized into four finite elements with an identical binary variable value
as shown in Fig. 6. Hence, the structure is discretized with 4 × 625 (= 2500) 4-node
rectangular finite elements for non-linear large deformation FEA using ANSYS package.
It is noted that the GA operators are executed on 625 bits of the same structure.

4.7. Objective and Constraint Functions Evaluation

After FEA, objectives and constraints are evaluated. The primary objective of every
individual is calculated as discussed in Section 3.1 using material distribution in the
design domain. The helper objective is evaluated by counting dissimilar binary bits with



April 24, 2014 16:6 Engineering Optimization CMO˙EnggOpti2012

Engineering Optimization 11

respect to the reference design. In this procedure, the minimum-weight reference design
solution becomes the reference point for the given problem where the goal or aspiration
level is specified for each objective. In this case, the customized EA is expected to generate
diverse Pareto-optimal solutions closer to the reference design solution.
For evaluating constraints at every precision point, points (ia, refer Fig. 2) on actual

path is supplied by FE analysis of the elastic structure. Maximum stress developed in
the structure is also calculated by the finite element simulation which is then used for
stress constraint computation.

4.8. Ranking

The elitist non-dominated sorting of NSGA-II (Deb et al. 2002) is used for ranking the GA
population. Primary and helper objectives are used to evaluate non-dominated ranking
of every solution. Primary objective enables the customized EA to generate smaller
weight solutions, whereas the helper objective helps to maintain geometrical diversity
in solutions, so that NSGA-II’s crossover operator is able to exploit the diversity in
parent solutions to create new and hopefully useful offspring solutions. Crowding distance
operator of NSGA-II is used to preserve the diversity in the population.

4.9. Parallel Computing

The function evaluations and FE simulations consume larger proportion of computation
time of the optimization process. It can be reduced significantly by using a parallel com-
puting platform. In the parallel implementation, the population of NSGA-II is divided
into sub-populations which are sent to multiple available slave processors for function
evaluations and FE simulations. The master processor controls the overall procedure and
gets back the objective and constraint values from slave processors required for ranking
and executing other GA operators. This master-slave parallelization process is repeated
till the termination criterion of NSGA-II is met. A Linux cluster with 24 processors is
used on which the Message Passing Interface (MPI) environment is used.

4.10. Clustering Procedure

When NSGA-II is applied to a problem, it is usually able to find as many solutions as
there are population members. For a proper functioning of NSGA-II, as adequate number
of population members are needed. However, if NSGA-II population size is large, decision-
makers cannot handle too many trade-off solutions, as it is too demanding of their time
and efforts. Often, in such problems, there is a discrepancy in the required population
size and the expected number of trade-off solutions desired at the end. For this purpose,
the use of a clustering procedure for which a few well-diversed solutions are chosen from
the final set of non-dominated solutions is suggested. In the proposed approach, the
neighboring solutions (in the objective space) are grouped together using the k-mean
clustering algorithm and one solution from each group representing that region of the
non-dominated front is chosen as final representative solutions (Sharma et al. 2011).
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4.11. Minimum-Weight Local Search Method

Genetic algorithms are good near-optimizers. Their convergence ability can be enhanced
if the final NSGA-II solutions are modified further by using a local search procedure.
Since the helper objective was used to maintain diversity in the NSGA-II population, its
purpose is over with the application of NSGA-II. For the local search, only the primary
objective subject to satisfaction of constraints (see equation (2)) is optimized.
In the local search method, binary string of the solution is converted into a two-

dimensional array which is then checked for the filled cells. For each material’s cell, there
are eight possible neighborhood cells, as shown in Fig. 9. One by one, all neighboring
bits including its own bit value is mutated to its complement. The new elastic structure
is then extracted on which finite element computations are performed for evaluating the
objective function and constraints values. If the new structure does not satisfy any of
the constraints, then the change in the new string is discarded and the old values are
restored. Otherwise, the weight of structure represented by the new string is calculated
and compared with that of the old string’s value. If mutating a bit brings an improve-
ment in the weight objective and the solution remains to be feasible, then the change
is accepted. Else, the change is discarded and the previous values are restored. When
all the bits having a material are mutated along with their neighborhoods, the cells of
the new elastic structure are again checked for material and are mutated as discussed
above. The local search method is terminated when no change in a bit improves the
weight objective value and simultaneously keep the solution feasible. In the same way,
all chosen non-dominated solutions are mutated one by one. This post-processing method
is an exhaustive method that may require considerable computation time to refine the
solutions, but is useful to make sure that the obtained solutions are locally optimal.

5. Results and Discussion

Two examples of the compliant mechanisms (CMs) tracing: (i) curvilinear path, and
(ii) straight line path are solved. These examples have been solved in a previous study
(Sharma et al. 2011) as well using a different bi-objective formulation of the problem.
Parameters that are kept constant for both examples are the Young’s modulus (E = 3.3
GPa), flexural yield stress (σflexural = 69 MPa), density (ρ = 1.114 gm/cm3), and
Poisson’s ratio (ν = 0.40) for the chosen material. The direction of input displacement
is along the x-axis. Five precision points are used to represent the prescribed path.
Maximum six representative solutions are chosen from the non-dominated set using the
clustering procedure described in Section 4.10.

5.1. Example 1: CMs Tracing Curvilinear Path

5.1.1. Reference Design

The reference design from SOOP is shown in Fig. 11. This design consists of open loops
of material joining three regions of interest (support, loading, and output regions). The
applied boundary and support conditions evolved by the optimization procedure defined
in Section 4.1 are as follows. This reference design is supported at an element which is
positioned at 2 mm away from origin. An input load of 5 mm is applied at a node which
is located at 24 mm away from origin. Here, origin is at the bottom left corner of the
reference design. The weight of reference design is found to be 0.545 gm.
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(a) Undeformed topology (b) Final deformed topology

Figure 11. The undeformed and final deformed reference design for Example 1 problem.

5.1.2. Multiple PTCMs

The above reference design is now used to evaluate the helper objective for the bi-
objective optimization task. The representative non-dominated solutions, a to f , evolved
by the customized EA are shown in Fig. 12(a). It can be observed from this figure that
the customized NSGA-II is able to find a wider range of solutions for which the weight
of the structures range from 0.75 gm to 3.5 gm. Due to a trade-off between the two
objectives, the minimum weight solution ‘a’ shows a minimum geometrical dissimilarity
with respect to the reference design. On the other hand, the extreme solution ‘f ’ shows
the maximum dissimilarity but evolved as the heaviest solution.
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Figure 12. Bi-objective solutions for the curvilinear path tracing CMs (Example 1).

The minimum-weight NSGA-II solution (solution ‘a’) is heavier than the SOOP solu-
tion. But importantly, NSGA-II procedure finds five other diverse solutions along with
solution ‘a’. These six solutions are then modified using the proposed local search proce-
dure. The obtained solutions are shown in the right plot of Fig. 12. It is interesting that
the local search procedure finds a smaller weight solution (solution 1 for example) than
the SOOP solution. Importantly, two other local searches find solutions that are better
than the SOOP solution. The use of helper objective helps to find a number of good seed
solutions which in turn enables the proposed local search procedure to begin its search
from them and find better solutions. The discovery of multiple yet similar solutions by
the combined NSGA-II and local search procedure gives the user confidence about the
near-optimality of obtained minimum-weight solutions by the overall procedure.
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A SOOP procedure usually takes its course favouring solutions that are comparatively
easier to generate emphasizing a single objective (weight, in this case). Thus, a SOOP
approach is likely to get stuck to a sub-optimal solution in the case of a complicated
problem. On the other hand, a bi-objective optimization procedure with two conflicting
objectives in its search process maintains adequate diversity in the GA population to
help overcome sub-optimality. The current case study provides a good testimony to the
advantage of the proposed bi-objective approach.

5.1.3. Designs

The minimum-weight local search solutions are shown in Fig. 13. The solution 6 is
discarded as it is far from the reference design solution due to its higher weight value.
The corresponding NSGA-II solution (solution ‘f ’) was too far from the minimum-weight
solution for it provide much help to the local search algorithm to find a solution close
to the minimum-weight solution. It can be seen that PTCMs are evolved as T-shaped
structures. Although topologically they are similar, they are dissimilar due to the shape of
material segments from support, loading and output regions, and their connectivity. For
example, a material segment from support position of solution 4 is straight as compared
to solutions 1, 2 and 3. Similarly, a material segment joining the common junction and
the output region for each solution is different. Junction points of these segments are
located at different positions for each solution that result in a different material segment
joining the junction and the loading region.

5.1.4. Posterior Analysis

5.1.4.1. Conditions:. To compare the obtained solutions with the SOOP solution, the
locations of applied boundary and support conditions are tabulated in Table 2. For
solutions 1 to 5, identical locations are obtained, however they are different from the
those in the reference SOOP design.

Table 2. Evolved applied boundary and support conditions for curvilinear PTCMs.
Study → Single-objective Bi-objective

Conditions ↓ (Ref. design) (Solutions 1 to 5)
Support position (mm)

2 18
(from the origin)

Loading position (mm)
24 32

(from the origin)
Input displacement

5 7
(mm)

5.1.4.2. Evolution of Conditions:. Evolution of applied boundary and support condi-
tions for the feasible solutions is shown in Fig. 14. Different sets of these conditions are
observed during NSGA-II runs. It signifies that only a few sets of applied boundary and
support conditions can evolve feasible solutions. This means that any arbitrary set of
these conditions cannot evolve feasible solutions that can trace given prescribed path.
When NSGA-II terminates, the representative non-dominated solutions are subjected
to identical conditions as mentioned in Table 2. It can be observed here that only a
set of applied boundary and support conditions is associated with the non-dominated
solutions, whereas other sets of conditions may correspond to dominated or infeasible
solutions. Such an analysis is useful to understand the dynamics of development of key
features of NSGA-II population members with generation.
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(a) Sol. 1: Undeformed (b) Sol. 2: Undeformed (c) Sol. 3: Undeformed

(d) Sol. 1: Final deformed (e) Sol. 2: Final deformed (f) Sol. 3: Final deformed

(g) Sol. 4: Undeformed (h) Sol. 5: Undeformed

(i) Sol. 4: Final deformed (j) Sol. 5: Final deformed

Figure 13. Lightweight CMs tracing curvilinear path.

5.1.4.3. Path:. The prescribed path and the path traced by local search solutions from
single and bi-objective studies are shown in Fig. 15. As constraints are imposed at each
precision point, a gap between the prescribed path and the traced paths are limited to
d1 as described in Fig. 2. Numerical values of d1 and d2 for all local search solutions are
shown in Table 3. It can be seen from this table that d2 value of the reference design first
increases till the precision point 2 and then it decreases at precision point 3. Finally, it



April 24, 2014 16:6 Engineering Optimization CMO˙EnggOpti2012

16 Taylor & Francis and I.T. Consultant

 50
 100
 150
 200
 250

# solutions# solutions

 30  25  20  15  10  5  0

Position 0
 20

 40
 60

 80
 100

Generation

(a) Support position

 50
 100
 150
 200
 250

# solutions# solutions

 20 25 30 35 40 45 Position
 20

 40 60
 80

 100

Generation
 0

(b) Loading position

 50
 100
 150
 200
 250

# solutions# solutions

 10
 8

 6  5
 7

 9 0 20
 40

 60
 80

 100

Generation
Magnitude (mm)

(c) Magnitude of input dis-
placement

Figure 14. Evolution of applied boundary and support conditions for feasible solutions during
NSGA-II run.
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Figure 15. Prescribed path and path traced by the reference design and by the minimum weight
local search solutions.

makes the precision point 5 critical because d2 value is close to maximum allowed d1 value.
A similar behavior can be seen in d2 value of solution 5, but its traced path intersects the
prescribed path after precision point 4 (refer Fig. 15). Other solutions show an increasing
trend of d2 value that makes the precision point 5 critical. This indicates that constraint
at precision point 5 is active for all solutions. In this example, the prescribed path is
designed in such a way that an output node of each structure deforms 10.48% in x-
direction and 17.72% in y-direction with respect to the size of design domain (Sharma
et al. 2011).

Table 3. Deviation at precision points.
Precision points 1 2 3 4 5

(PP)
Maximum 0.3196 0.3142 0.3093 0.3056 0.3027
allowed d1

Reference design
d2 0.1662 0.1714 0.1017 0.1088 0.3026

Two-objective study
Solution 1: d2 0.0097 0.0439 0.1027 0.1903 0.3025
Solution 2: d2 0.0233 0.0664 0.1278 0.2086 0.3026
Solution 3: d2 0.0417 0.0841 0.1374 0.2110 0.3027
Solution 4: d2 0.0586 0.1145 0.1672 0.2269 0.3026
Solution 5: d2 0.1994 0.2987 0.2788 0.1214 0.3012
Solution 6: d2 0.2208 0.3142 0.2941 0.1851 0.0809

5.1.4.4. Computational Time:. Time consumed by the customized EA followed by the
local search method is given in Table 4. Objectives and constraint functions along with
FE simulations are done in parallel on 24 homogeneous processors. It is observed that a
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proportion of time consumed in GA operations, ranking and communication among the
processors is very small as compared to function evaluations and finite element simula-
tions. This signifies that the computational time of customized EA is reduced almost in
proportion to the number of available processors. Local search is performed serially on
different processors that consumes a considerable amount of time to refine the represen-
tative non-dominated solutions.

5.2. Example 2: CMs Tracing Straight Line Path

In this example, CMs are generated for the same design domain as shown in Fig. 1.
However, the point on the output region has to trace a straight line path. The reference
design tracing straight line path is generated using SOOP. The weight of reference design
is found to be 0.702 gm. It consists of four closed loops of material as shown in Fig. 16.
This reference design is supported at an element located at 48 mm away from the origin.
The input load of 8 mm is applied at a node positioned at 40 mm away from the origin.
Here, origin is at the bottom left corner of the reference design.

Figure 16. Straight line tracing reference design obtained by SOOP.

Using the above reference design, the bi-objective optimization problem is solved for
generating straight line path tracing CMs. The evolved non-dominated solutions, a to f ,
are shown in Fig. 17(a). Due to the helper objective, the customized NSGA-II is again
evolved a wider range of solutions for which the weight of the structures range from
1.5 gm to 3.5 gm. These solutions are refined by the local search procedure which are
shown in Fig. 17(b). It can be seen that the local search procedure finds smaller weight
solutions, 1 to 4, that are better than the SOOP solution. In this example, the solutions
3 and 4 are almost converged to the same point. Thus, the solution 3 is chosen as the
representative solution and the solution 4 is discarded. This case study provides another
good evidence to the advantage of the proposed bi-objective approach.
Designs of minimum-weight local search solutions are shown in Fig. 18. Similar looking

designs are evolved which possess a bigger closed-loop of material except solution 6.
Solutions 1 and 2 show a similar closed loop of material but their material segments
joining the loop are slightly different. Solutions 3 and 5 have differently shaped closed
loop which result in different shapes of segments joining the closed-loop with the loading

Table 4. Computational time taken by given optimization procedure.
Problem NSGA-II Local search

Time (hrs) Time (hrs)
Single-objective 5.81 8.65

Solution 1: 14.71
Solution 2: 16.18

Two-objective 7.23 Solution 3: 9.43
Solution 4: 6.34
Solution 5: 24.21
Solution 6: 32.45
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and output regions. Solution 6 shows topologically different design from others. It has
two closed-loops of material.
Values of applied boundary and support conditions evolved by the customized NSGA-

II are given in Table 5. It can be seen that the location of support position is same for
the reference design and other local search solutions. However, different loading positions
are evolved which influence the magnitude of input displacement. It is interesting to note
that the magnitude of input displacement increases when the loading region is positioned
away from the origin. This information can be useful for designing CM in order to restrict
the magnitude of input displacement boundary condition.
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Figure 17. Bi-objective solutions for straight line path tracing CMs

(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 5 (e) Solution 6

Figure 18. Non-dominated lightweight compliant mechanisms tracing straight path.

Table 5. Evolved applied boundary and support conditions for CMs tracing straight line path.
Study → Single-objective Bi-objective

Conditions ↓ (Ref. Design) (Solutions 1 to 6)
Support position (mm)

48 48
(from the origin)

Loading position (mm)
40 20

(from the origin)
Input displacement

8 4
(mm)



April 24, 2014 16:6 Engineering Optimization CMO˙EnggOpti2012

Engineering Optimization 19

 30

 31

 32

 33

 34

 50  51  52  53  54  55
D

ef
or

m
at

io
n 

in
 y

 d
ire

ct
io

n 
(m

m
)

Deformation in x direction (mm)

Precribed path
Reference design

Path traced by solutions 1
Path traced by solutions 2
Path traced by solutions 3
Path traced by solutions 4
Path traced by solutions 5

Figure 19. Prescribed path and path traced by all local search solutions.

Table 6. Deviation at precision points.
Precision points 1 2 3 4 5

(PP)
Maximum 0.15 0.15 0.15 0.15 0.15
allowed d1

Reference design

d2 0.1006 0.1473 0.1496 0.1267 0.1350
Two-objective study

Solution 1: d2 0.0918 0.1385 0.1489 0.1398 0.1485
Solution 2: d2 0.1039 0.1497 0.1460 0.1179 0.1487
Solution 3: d2 0.0939 0.1421 0.1499 0.1303 0.1207
Solution 4: d2 0.0982 0.1457 0.1500 0.1274 0.1287
Solution 5: d2 0.0974 0.1443 0.1499 0.1350 0.1492
Solution 6: d2 0.1002 0.1472 0.1498 0.1302 0.1473

The prescribed straight line path and those traced by the local search solutions are
shown in Fig. 19. It can be seen that the continuum elastic structures cannot trace a
straight line path exactly. It is because the categorization of the given design domain (cf.
Fig. 1) favors curvilinear paths. But, imposing constraints on the precision points guide
the customized NSGA-II to evolve feasible straight line path tracing CMs. Numerical
value of d1 and d2 are given in Table 6. It can be seen that d2 value of all local search
solutions first increases till the precision point 3 and then, it decreases at precision point
4. At precision point 5, d2 value is again increased. For solutions 1, 2, 5, and 6, the
precision points 3 and 5 are active thereby making these solutions critical. The straight
line path in this example is designed to deform 10.00% in x−direction and 0.0% in
y−direction with respect to the size of design domain (Sharma et al. 2011).

5.3. Discussion

A minimum-weight CM tracing a user-defined path can be generated using a single-
objective optimization procedure, as described in Section 3. In this paper, the concept of
multi-objectivization is exploited where the helper objective is coupled with the primary
objective of weight minimization. The helper objective is evaluated with respect to the
reference design in order to preserve geometrically dissimilar structures. As the reference
design itself is generated from SOOP, this reference point methodology sets a desired goal
or aspiration level for each objective. The non-dominated solutions from the bi-objective
study are then used as starting points for the local search method. The results on two ex-
amples show that lesser weight structures are evolved than the single-objective reference
design solution. Hence, it can be concluded that the proposed reference based multi-
objectivization approach is a viable approach for solving complex real-world problems
where the optimum solution is difficult to obtain.
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Although a bi-objective approach is used in the proposed procedure, the overall focus
is still to obtain a minimum-weight solution. Therefore, the obtained solutions at the
end are similar, despite having some differences in their detailed shape. Importantly, the
use of two conflicting objectives was helpful in maintaining a diverse set of solutions
in intermediate populations so that a better minimum-weight solution can be found. A
local search from these solutions are then able to find structures that are much lighter
than the single-objective solution. Due to the application of the local search procedure
from a diverse set of solutions, the overall procedure is able to generate slightly dissimilar
solutions thereby finding near-optimal solutions.
Imposing constraints on the precision points has allowed CM designs to be feasible

in terms of tracing a path within the allowable proximity to the specified path. From
the results, the constraints are found to be active at some of the precision points. These
constraints are found to be more useful for the second example problem, where the elastic
structures are required to generate a straight line path, instead of a curvilinear paths.
If an optimization procedure is not guided by these constraints, then a wide difference
between a user-defined path and the actual obtained path is expected.
Apart from the above facts, it is interesting to observe that CMs tracing a curvilinear

path are supported on the left side of the design domain. However, for the straight
line path generation, a support at the right side of the design domain is obtained. This
aspect is intuitive for the given design domains, but it was not explicitly specified in the
optimization process and the proposed methodology is able to evolve these fundamental
features.

6. Conclusions

In this paper, the notion of helper objective has been used to exploit the “multi-
objectivization” concept and has been coupled with the primary objective for evolving
minimum-weight path tracing compliant mechanisms. The helper objective has not only
enabled in maintaining geometrically dissimilar structures in the population, but also
allowed an automatic way to set the reference point in the optimization run. The local
search method has exploited NSGA-II solutions generated from the bi-objective opti-
mization to generate multiple lighter weight solutions than the single-objective reference
design solution. Moreover, instead of one, the proposed approach is able to find multiple
near-optimal solutions, thereby providing the user a flexibility in choosing a single pre-
ferred minimum-weight solution. The use of multiple parallel processors has also helped
in completing the overall optimization runs tractable. Various other observations dis-
cussed in Section 5.3 have been made from this study. Further, other forms of helper
objectives and other NSGA-II operators can be investigated to obtain better and faster
optimization procedure.
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