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Summary

Reliability-based design optimization (RBDO) is an efficient tool for solving engineering problems with uncertainty.

There exist three types of analytical methods for solving RBDO problems such as double-loop, single-loop and

decoupled-loop methods. Among them, the single-loop method is found to be computationally efficient because it

approximates the most probable point (MPP) by using Karush-Kunn Tucker (KKT) conditions with the performance

measurement approach. Although this method is efficient, but sometimes lacks in accuracy to achieve the target reliability.

In this paper, a single-loop reliability-based design optimization method is proposed to improve the accuracy, which is

achieved by approximating the MPP by including Hessian of the performance function. Further, this Hessian is updated

iteratively to make the search direction descent. The proposed method is tested on two mathematical and two engineering

RBDO problems. Results demonstrate its accuracy and computational efficiency over two methods from the literature.

Keywords: Reliability-based design optimization, Single-loop method, Hessian, Performance measurement approach,

KKT conditions, Most probable point, Reliability index, Standard normal variables

1 Introduction

RBDO has been an important tool for solving those

optimization problems which have uncertainty in design

variables. This uncertainty can be handled by performing

reliability analysis. However, the computational cost

for solving reliability analysis is quite high. Therefore,

various analytical methods have been developed to

ease the computaional efficiency. Among them most

probable point (MPP)-based method is widely used for

reliability analysis. MPP-based methods include first-order

reliability method (FORM)1,2 and second-order reliability

method (SORM),3–5 which approximate the limit state

function g(X) by first-order and second-order Taylor

series expansion, respectively. The reliability analysis

using FORM produces less accurate solution than SORM,

when the limit state function are highly non-linear.

However, SORM requires more computation than FORM.

It is because SORM requires second order derivative

to approximate g(X). To overcome these difficulties

and maintain the efficiency, various methods have been

developed for solving RBDO6,7 problems. These methods

can be broadly subdivided into three types: double-loop

method, single-loop method and decoupled-loop method.

A double-loop method8–10 comprises of two loops in which

the outer loop is for optimization and the inner loop is

for reliability analysis. The probabilistic constraint in the

double-loop method can be solved by either reliability index

approach (RIA)11 or performance measurement approach

(PMA).9 Although the double-loop method produces

reliable solution, but needs high computation to solve the

relativity analysis. Thus, the decoupling-loop methods are

developed to reduce the computational cost and increase the

efficiency.

The decoupling-loop method12–15 decouples the nested

loop structure of RBDO method into series of deterministic

optimization and reliability analysis. This method shows

a good convergence rate with less number of function

evaluations. Among the decoupling methods, sequential

optimization and reliability assessment (SORA)12 is

the most promising method. The main difficulty of

decoupled-method is that it performs reliability assessment

which requires a separate optimization. Thus the method

has been further developed into single-loop method, where
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only single deterministic optimization was evaluated. Liang

et al. proposed a single-loop single vector (SLSV)16

method that approximates the reliability analysis and

avoids the conventional approach for MPP. Chen et al.17

transforms the probabilistic constraint into an approximate

deterministic constraint. Instead of finding MPP, this

method approximate the point on the basis of limit state

sensitivities and target reliability. Further a semi single-loop

method18 is developed in which the sensitivity analysis

is used to approximate MPP. From the above studies,

it is found that the single-loop method produces most

efficient results. The difficulty with this method is its

convergence and accuracy. In this paper, the accuracy of

single-loop method is improved by using Hessian matrix for

approximating the MPP. Further, Hessian matrix is updated

iteratively to eliminate the singularity. The proposed

method is tested on four RBDO problems and the results

are compared with two RBDO methods from the literature

with same convergence criteria.

This paper is organised as follows. Section 2 describes

the basic RBDO formulation. The single-loop method is

discussed in brief in Section 3. The details of the proposed

method are presented in Section 4. Examples are solved and

discussed in Section 5 and finally, the conclusions are given

in Section 6.
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Figure 1: Approximation with FORM and SORM. Here,

g(U) is the limit state function, β is the target reliability,

and u∗ is the MPP

2 RBDO Formulation

The mathematical expression for RBDO is as follows

min : f (µx)

s.t. : Pf [gi(X)≤ 0]≤ Φ(−β t
i ), i = 1, . . . ,nc

µx
L ≤ µx ≤ µx

U ,

(1)

where f represents the objective function, X represents the

vector of random variables with mean value µX. µL
X and µU

X

are the lower and upper limit of mean value µX. Pf is failure

probability of ith performance function gi. Φ represents the

standard normal cumulative distribution function and β t
i is

the target reliability index of ith performance function and

nc is the number of constraints.

The failure probability of equation (1) can be evaluated

by solving a multidimensional integral as given below

Pf [g(X)≤ 0] = Fg(0) =

∫

· · ·
∫

g(x)≤0
fX(x)dX. (2)

To ease the computational difficulty for solving equation

(2) the integrand joint probability density function fX(x)
is simplified and the performance function g(X) is

approximated. It is done by transforming random variables

from the original space (X) to standard normal space (U).

This is achieved by Rosenblatt transformation, which is

expressed by

U = Φ−1[FX(X)] (3)

FX(X) is the representation of cumulative distribution

function of g(X).

Some approximate probability integration methods are

developed to provide efficient solutions. Among these

methods FORM and SORM are widely used. The

formulation of FORM and SORM are described in the

following subsection.

2.1 First-order reliability method (FORM)

The performance function g(X) is approximated by

first-order Taylor series expansion in standard normal

space, which is given as

g(U)≈ g(u∗)+∇g(u∗)(U−u∗)T , (4)

where u∗ is the expansion point such that, u∗ =
[u∗1,u

∗
2, . . . ,u

∗
n]

T .

2.2 Second-order reliability method (SORM)

SORM uses Taylor series expansion up to second term at

the MPP, u∗. The performance function approximation is

given as

g(U)≈ g(u∗)+∇g(u∗)(U−u∗)T +
1

2
(U−u∗)T H(u∗)(U−u∗),

(5)
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where H(u∗) is the Hessian matrix calculated at MPP u∗,

which can be given as

H(u∗) =















∂ 2g

∂U2
1

∂ 2g
∂U1∂U2

. . . ∂ 2g
∂U1∂Un

∂ 2g

∂U2∂U1
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∂U2
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∂U2∂Un
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∂Un∂U2

. . . ∂ 2g

∂U2
n















(6)

The asymptotic solution of probability of failure, when

target reliability β is large, given as

Pf = P{g(X)≤ 0}= Φ(−β )
n−1

∏
i=1

(1+β κi)
1/2, (7)

where κ denotes the curvature of the performance function.

Figure 1 shows the approximation and accuracy of FORM

and SORM with a desired target reliability in the U-space.

2.3 Performance measure approach (PMA)

The value of performance measure can be calculated by

solving the following optimization problem

find U∗,

min gi(U),

s.t. : ‖U‖= β t
i ,

(8)

where the optimum point U∗ is known as the most probable

target point (MPTP). The optimum value of gi(U
∗) is used

as performance measure. The performance measure can be

calculated as

gi(U
∗) = Gi(X

∗). (9)

3 Single-Loop Single Vector

A single-loop single vector method for solving RBDO was

suggested by Liang et. al.19 The formulation is obtained

by solving the probabilistic constraint of equation (1) with

PMA and KKT optimality conditions are imposed to get the

approximate MPP. The formulation can be expressed as

min : f (µX),

s.t. : Gi(X)≥ 0, i = 1,2, . . . ,nc

µL
x ≤ µx ≤ µU

x ,

(10)

where

X(k) = µx +σβ t
i α (k−1), (11)

α(k) =
σ∇Gi(X)

‖σ∇Gi(X)‖

∣

∣

∣

∣

∣

X(k)

, (12)

where α(k) is the normalized gradient vector of ith

constraint at kth iteration, X(k) is the approximate MPP in

the original space and sigma is the standard deviation of the

random variable. This method decreases the computational

cost by eliminating the exact MPP search.

4 The Proposed Single-Loop Method

The proposed single-loop method with iteratively updating

Hessian (SLM-MH) has similar formulation as given in

equation (10). However, MPP X∗(k) in the original space

is updated as

X∗(k) = µ
(k)
x +σβ t

i α(k−1), (13)

where

α(k) =

[

σ [Hi]
−1∇Gi

‖σ [Hi]−1∇Gi‖

]

x∗(k)
, (14)

where Hi is iteratively modified as

Hi = [H+λ (k)I], (15)

where H is the Hessian matrix and I is the identity matrix

of same size of H. The value of constant parameter λ (k)

reduces to its half value in every iteration (λ (k) = λ (k−1)/2).

α(k) is the direction vector and is updated by updating

Hessian matrix as shown in equation (15).

Initially, λ (k) is kept high so that Hi is equivalent to

I, which is convex. After a number of iterations when a

solution is in the vicinity of the exact MPP, Hi becomes

H that can be positive definite. In that case, the proposed

search direction can be descent to locate the exact MPP with

desired target reliability.

4.1 Algorithm

Following are the steps of the proposed method

1. Set the initial values as k = 0,µ0
x, the standard

deviation σ and the target reliability index β t
j , λ (0) =

10.

2. Perform the deterministic optimization and generate

µ∗
x

Find µx

min : f (µx),

s.t. Gi(µx)≥ 0, i = 1,2, . . . ,nc.

(16)

3. Calculate the α(k) of each of the active constraints.

α (k) =

[

σ [Hi]
−1∇Gi

‖σ [Hi]−1∇Gi‖

]

µ1
x=µ∗

x

4. Set k = k+ 1 and perform the following optimization

Find µx

min : f (µx),

s.t. Gi(X
∗(k))≥ 0, i = 1,2, . . . ,nc,

(17)

where X∗(k) = µ
(k)
x +σβ t

i α(k−1)

αk−1 =

[

σ [Hi]
−1∇Gi

‖σ [Hi]−1∇Gi‖

]

x∗(k−1)

.
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Start µ0

Deterministic Optimization

min : f (µx)
s.t. : Gi(µx)≥ 0,

i = 1, . . . ,nc

α(k) =

[

σ [Hi]
−1∇Gi

‖σ [Hi]−1∇Gi‖

]

µx

Optimization

Find µ∗
x

min : f (µx),

s.t. : Gi(X
∗(k))≥ 0,

X∗(k) = µ
(k)
x +σβ t

i α(k−1),
i = 1, . . . ,nc
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Stop
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µ
(k)
x

no
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Figure 2: Flowchart of SLSV-MH

5. If the convergence is satisfied, then terminate.

Otherwise go to step 3. The convergence criterion is

set to be ‖µ
(k)
x − µ

(k−1)
x ‖/‖µ

(k−1)
x ‖ ≤ 0.001.

Note that at Steps 2 and 4, the deterministic optimization

and optimization with probabilistic constraints are solved

using the sequential quadratic programming (SQP) method

by calling fmincon solver of MATLAB. The SQP method

gets terminated when the change in the consecutive values

of variables is 10−6. The flowchart of the RBDO

formulation is also shown Fig. 2.

5 Examples and Discussion

The proposed SLM-MH method is tested on two

mathematical and two engineering problems. The

performance of SLM-MH is compared with the double-loop

method with PMA (DLM-PMA) and a decoupled-loop

method, i.e., sequential optimization and reliability

assessment (SORA). These methods are programmed using

MATLAB R2016b tool and run on a Intel(R) Core(TM)

i7− 7500U CPU with 2.70 Ghz processor. The processor

has a 12 GB of RAM (internal memory) operating. The

four problems are presented and results of RBDO methods

are discussed in the following sections.

5.1 Mathematical problem 1

The first example is a non-linear mathematical problem20

with linear objective function and highly non-linear

performance functions. The mathematical formulation of

the problem is given in equation (18).

min : µx1
+ µx2

s.t. : Pr

[

g1(X) = 1− x2
1x2

20
> 0

]

≤ φ(−β t
1),

Pr

[

g2(X) = 1− (x1 + x2 − 5)2

30
− (x1 − x2 − 12)2

120
> 0

]

≤ φ(−β t
2),

Pr

[

g3(X) = 1− 80

(x2
1 + 8x2+ 5)

> 0

]

≤ φ(−β t
3),

0 ≤ µx j
≤ 10, x j ∼ N(µx j

,0.32) for j = 1,2

β t
i = 3.0, µ (0)

x = [5.0,5.0]T i = 1,2,3.
(18)

where µx and σ are the mean values and standard deviation

respectively. The target reliability of β t = 3.0 is taken for

each constraint.
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Figure 3: Contour plot for mathematical problem 5.1 along

with convergence of SLM-MH

Table 1 presents the results obtained by the three

methods. The number of function evaluations of objective

function and constraints are represented as fFE and gFE

respectively. It can be seen from the table that SLM-MH

generated the solution with desired target reliability, which

is then verified for each constraints through Monte-Carlo

simulation (MCS) with 104 sample size. DLM-PMA is also

able to achieve the desired reliability, but with an expense

4
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Table 1: RBDO results for mathematical problem 1 with βt = 3.0
Methods f ∗ µ∗

x NFE β t
MCS Iter

fFE gFE g1 g2 g3

DLM-PMA 6.7219 (3.4363,3.2855) 27 5193 3.0045 3.0307 Inf 3

SORA 6.7226 (3.4369,3.2857) 76 1137 2.9989 3.0617 Inf 4

SLM-MH 6.7255 (3.4392,3.2863) 211 757 3.0022 3.0407 Inf 4

of larger function evaluations than SLM-MH. On the other

hand, SORA is unable to generate optimal solution with

desired reliability for g1(X). It also takes more number

function evaluation than SLM-MH. Although SLM-MH

takes one iteration more than DLM-PMA to converge to

the solution, but is the most efficient with respect to gFE.

Figure 3 also shows that for the proposed method the target

reliability is satisfied at the optimum for both the constraints

by SLM-MH. For g3(X), β -circle is not shown in the figure

as its MCS value is infinity.

5.2 Mathematical problem 2

The second mathematical example21 constitutes of ten

random variables and eight probabilistic constraint. The

target reliability β t = 3.0 is set for all the constraints. The

formulation of the problem is given in equation (19).

min : x2
1 + x2

2 + x1x2 − 14x1 − 16x2+(x3 − 10)2

+ 4(x4 − 5)2 +(x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2+ 2(x9 − 10)2 +(x10 − 7)2 + 45

s.t. : Pr

[

gi(X)> 0

]

≤ φ(−β t
i )

where : β t
i = 3.0, i = 1,2, . . . ,8

g1(X) =
4x1 + 5x2 − 3x7 + 9x8

105
− 1 > 0

g2(X) = 10x1 − 8x2− 17x7 + 2x8 > 0

g3(X) =
−8x1 + 2x2+ 5x9 − 2x10

12
− 1 > 0

g4(X) =
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4

120
− 1 > 0

g5(X) =
5x2

1 + 8x2 +(x3 − 6)2 − 2x4

40
− 1 > 0

g6(X) =
0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6

30
− 1 > 0

g7(X) = x2
1 + 2(x2 − 2)2 − x1x2 + 14x5− 6x6 > 0

g8(X) =−3x1 + 6x2+ 12(x9 − 8)2 − 7x10 > 0

0 ≤ µx j
≤ 10, x j ∼ N(µx j

,0.022) , j = 1,2, . . . ,10

µ (0)
x = [2.17,2.36,8.77,5.10,0.99,1.43,

1.32,9.83,8.28,8.38]T

(19)

Table 2 presents the results obtained by the three methods.

It can be observed that that none of the methods is able to

generate optimal solution which satisfies desired reliability

for all the constraints, as verified through MCS. However,

SLM-MH is found to be more accurate than the other

methods. It can also be observed that DLM-PMA and

SORA failed to achieve atrget reliability for g1(X) and

g5(X). However, with SLM-MH only for constraint g1(X)
, reliability is not achieved. Moreover, SLM-MH consumes

lesser function evaluations than other methods. It can also

be seen that the efficiency is approximately twice compared

with SORA.

5.3 Speed reducer problem

A speed reducer problem,22 as illustrated in figure 4 is taken

as an engineering RBDO example. The design objective

is to minimize the weight of the speed reducer which is

subjected to bending stress, contact stress, longitudinal

displacement stress, stress of the shaft, transverse deflection

and geometric conditions. It has seven independent random

variables, such as gear width (x1), gear module (x2), the

number of pinion teeth (x3), distance between bearings

(x4,x5) and shaft diameters (x6,x7). All random variables

follow normal distribution. The target reliability β t is fixed

to 3.0 for all constraints. The standard deviation is 0.005

for all the random variables and the deterministic solution

of the problem is taken as the initial point.

✞☛

�✁�✂

�✄

Figure 4: A speed reducer
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Table 2: RBDO results for mathematical problem 2 with βt = 3.0
Methods f ∗ µ∗

x NFE β t
MCS Iter

fFE gFE gi

DLM-PMA 27.5435 (2.1322,2.3378,8.7106,5.1026, 249 896856 2.5116,3.0258,3.0162, 2

0.9238,1.4449,1.3847,9.8185, 3.0091,2.9576,inf,

8.1501,8.4799 3.0045, inf

SORA 27.5435 (2.1322,2.3378,8.7106,5.1026, 487 16959 2.5116,3.0258,3.0162, 3

0.9238,1.4449,1.3847,9.8186, 3.0091,2.9576, inf,

8.1501,8.4799) 3.0045, inf

SLM-MH 27.7465 (2.1350,2.3309,8.7094,5.1021, 555 8653 2.9957,3.0332,3.0013,, 2

0.9225,1.4452,1.3885,9.8094, 3.0307,3.0185, inf,

8.1556,8.4755) 3.0407, inf

min : 0.7854x1x2
2(3.3333x2

3+ 14.9334x3− 43.0934)−
1.508x1(x

2
6 + x2

7)+ 7.477(x3
6+ x3

7)

+ 0.7854(x4x2
6 + x5x2

7)

s.t. : Pr

[

gi(X)> 0

]

≤ φ(−β t
i ),

g1(X) =
27

x1x2
2x3

− 1 > 0; g2(X) =
397.5

x1x2
2x2

3

− 1 > 0,

g3(X) =
1.93x3

4

x2x3x4
6

− 1 > 0; g4(X) =
1.93x3

5

x2x3x4
7

− 1 > 0,

g5(X) =

√

( 745x4
x2x3

)2 + 16.9× 106

0.1x3
6

− 1100> 0,

g6(X) =

√

( 745x5
x2x3

)2 + 157.5× 106

0.1x3
7

− 850 > 0,

g7(X) = x2x3 − 40 > 0; g8(X) = 5− x1

x2
> 0,

g9(X) =
x1

x2
− 12 > 0; g10(X) =

1.5x6 + 1.9

x4
− 1 > 0,

g11(X) =
1.1x7 + 1.9

x5
− 1 > 0,

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

5 ≤ x7 ≤ 5.5,

x j ∼ N(µx j
,0.0052) for j = 1,2, . . . ,7,

β t
i = 3.0, i = 1,2, . . . ,11,

µ(0)
x = [3.5,0.7,17,7.3,7.72,3.35,5.29]T.

(20)

The RBDO results are shown in table 3. It can be concluded

that all RBDO methods converge to the same optimal

solution, 3038.612. However, the function evaluations

required by SLM-MH are lesser than other methods. Also,

SLM-MH converges to the optima with only two iterations.

5.4 Welded beam problem

A welded beam problem22 is taken as another RBDO

example. There are four independent random variables

with normal distribution and the objective function is to

minimize the welding cost. Five probabilistic constraints

related to shear stress, bending stress, buckling and

displacement are used. The target reliability β t is 3.0 for

all the probabilistic constraints and the initial point is taken

as the deterministic optima. The formulation of the problem

is given in equation (21). The system parameters are given

in the table 4.

From table 5, it can be seen that all methods generate

the optimal solution and achieve the target reliability

for all constraints. SORA seems to be slightly better

than SLM-MH in acquiring lesser number of function

evaluations . However, the range of function evaluations

is same.

✞☛

✞�

✞✁

✞✂

Figure 5: A welded beam
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Table 3: RBDO results for speed reducer problem with βt = 3.0
Methods f ∗ µ∗

x NFE β t
MCS Iter

fFE gFE gi

DLM-PMA 3038.612 (3.5765,0.7000,17.0000,7.3000, 56 229680 Inf,Inf,Inf,Inf,3.0307,3.3082, 2

7.7541,3.3652,5.3017) Inf,3.0000,Inf,Inf,3.0068

SORA 3038.612 (3.5765,0.7000,17.0000,7.3000, 77 14874 Inf,Inf,Inf,Inf,3.0307,3.3082, 3

7.7541,3.3652,5.3017) Inf,3.0000,Inf,Inf,3.0068

SLM-MH 3038.612 (3.5764,0.7000,17.0000,7.3000, 213 5439 Inf,Inf,Inf,Inf,3.0307,3.3082, 2

7.7541,3.3652,5.3017) Inf,3.0000,Inf,Inf,3.0068

min : c1x2
1x2 + c2x3x4(z2 + x2)

s.t. : Pr

[

g1(X) =
τ(X,z)

z6
− 1 > 0

]

≤ φ(−β t
1),

Pr

[

g2(X) =
σ(X,z)

z7
− 1 > 0

]

≤ φ(−β t
2),

Pr

[

g3(X) =
x1

x4
− 1 > 0

]

≤ φ(−β t
3),

Pr

[

g4(X) =
δ (X,z)

z5
− 1 > 0

]

≤ φ(−β t
4),

Pr

[

g5(X) = 1− Pc(X,z)

z1
> 0

]

≤ φ(−β t
5),

3.175 ≤ x1 ≤ 50.8, 0 ≤ x2 ≤ 254, 0 ≤ x3 ≤ 254,

0 ≤ x4 ≤ 50.8,

x1,2 ∼ N(µx1,2
,0.16932), x3,4 ∼ N(µx3,4

,0.01072,)

β t
i = 3.0, i = 1,2, . . . ,5,

µ (0)
x = [6.208,157.82,210.62,6.208]T,

t(X,z) =
z1√

2x1x2

, tt(X,z) = M(X,z)
R(X,z)

J(X,z)
,

M(X,z) = z1

(

z2 +
x2

2

)

,

R(X,z) =

√

x2
2 +(x1 + x3)2

2
,

J(X,z) =
√

2x1x2

{

x2
2

12
+

(x1 + x3)
2

4

}

,

(21)

σ(X,z) =
6z1z2

x2
3x4

, δ (X,z) =
4z1z3

2

z3x3
3x4

,

Pc(X,z) =
4.013x3x3

4

√
z3z4

6z2
2

(

1− x3

4z2

√

z3

z4

)

,

τ(X,z) =

{

t(X,z)2 + 2t(X,z)tt(X,z)

(

x2

2R(X,z)

)

+ tt(X,z)2

}1/2

.

Table 4: Fixed parameters for the welded beam problem

z1 : 2.6688× 104 (N)

z2 : 3.556× 102 (mm)

z3 : 2.0685× 105 (MPa)

z4 : 8.274× 104 (MPa)

z5 : 6.35 (mm)

z6 : 9.377× 10 (MPa)

z7 : 2.0685× 102 (MPa)

c1 : 6.74135 × 10−5

($/mm3)
c2 : 2.93585 × 10−6

($/mm3)

6 Conclusion

In this paper, SLM-MH was proposed which was developed

on the single-loop method. The primary purpose of

this method was to calculate approximate MPP using the

direction which was designed on iteratively modifying the

Hessian. The method was tested on two mathematical

problems and two engineering RBDO problems. Results

showed that SLM-MH was able to generate the optimal

solution with the desired target reliability on three

problems. Although, SLM-MH was unable to achieve

the target reliability in one problem, it emerged as the

most accurate among DLM-PMA and SORA. Moreever,

SLM-MH requires lesser function evaluations to generate

the optimal solutions. As a future work, this method can be

tested on other RBDO problems.
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