
INCOM18: Proceedings of the 1st International Conference on Mechanical Engineering

Jadavpur University Kolkata India January 4 – 6, 2018

Paper No. INCOM18-210

1

GPU Acceleration of Local Matrix Generation in FEA by Utilizing

Sparsity Pattern
S. Sanfui1 , D. Sharma2

1,2Department of Mechanical Engineering, IIT Guwahati, Guwahati, Assam

ABSTRACT

This paper presents a strategy for accelerating generation of local stiffness matrices in Finite Element Analysis

(FEA) on Graphics Processing Units (GPU) for large unstructured meshes. The proposed strategy is based on the

key idea of removing redundant computations from the matrix multiplication operation and thereby reducing the

total number of floating point operation (FLOP) count, which in turn reduces the total execution time. This is

achieved by using a small array on the GPU shared memory that stores the sparsity pattern of the matrix containing

the derivatives of the shape functions. This same array is used in conjunction with other input data to generate the

local matrices of mesh sizes of up to 2 million elements in three dimensions. Comparison of the proposed strategy

with a standard implementation shows improvement both in terms of execution time and performance.

Keywords: FEA, GPU, Local matrix generation

1. INTRODUCTION

The Finite Element Method (FEM) is a

numerical method for approximating solutions of

boundary value problems for partial differential

equations(PDEs). It has been used in fields such as

mechanical engineering, civil engineering, electrical

engineering, medical applications etc., where a

solution to PDEs is sought. Due to its natural

advantages such as flexibility, adaptability and ease

of implementation even for complex geometries, it

has become an integral part of a large variety of

specializations. In industries like aviation,

automotive and construction, FEM is usually an

inherent part of the design process(Zienkiewicz and

Taylor[1]).

Although finite element analysis is widely

popular in several fields, it suffers from a high

computational complexity, because of the

generation and resolution of system of equations

performed in the solver step. Several applications

that make use of FEM, have reported it to be the

most or computationally expensive part of the whole

applications especially for larger and more complex

geometries (Georgescu et al. [2]). One of the

remedies to this is using some form of parallel

implementation to exploit the data parallel and

throughput intensive nature of the FEA

computations on platforms such as GPUs. The

primary challenge for efficiently accelerating a

scientific application is that all the existing scientific

algorithms have been developed over the years to

execute efficiently on sequential hardwares such as

traditional CPUs. Markall et al. [3] has demonstrated

that in order to efficiently port FEA on the GPU, an

implementation, radically different than on the CPU,

is required. Among different stages of FEA, the

solver stage is generally considered to be the most

time-consuming(Georgescu et al.[2]). But it has

been shown that the local matrix generation stage

can take up to 80% of the total time. In the present

work, we target GPU implementation of the local

matrix generation stage of FEA for large mesh sizes.

1.1 GPU architecture and CUDA

Graphics Processing Units are specialized

circuits which, although primarily designed for

rendering graphics, have been largely implemented

for accelerating computation arising in various

research, scientific and analytical applications. A

number of platforms such as OpenCL, OpenMP and

CUDA are derived over the past years for

parallelizing general purpose applications. For the

present implementation, CUDA, a parallel

computing platform and API developed by

NVIDIA, has been used with NVIDIA GPUs.

CUDA provides the architecture and programming

model that accommodates both the host (CPU) and

device (GPU) simultaneously. The device code is

written using particular extensions to the C

programming syntax, inside special functions

termed as Kernels. These Kernels may generate

grids of thousands or even millions of threads to

parallelize given task instead of running in a

sequential manner.

Fig. 1: CPU-GPU hybrid model

INCOM18: Proceedings of the 1st International Conference on Mechanical Engineering

Jadavpur University Kolkata India January 4 – 6, 2018

Paper No. INCOM18-210

2

A schematic representation of the data flow in a

CPU-GPU hybrid computing environment is

presented in Fig. 1.

2. Local stiffness generation in FEA

This stage computes the local stiffness matrix

based on the nodal data by performing numerical

integration. It was demonstrated by Dziekonski et al.

[4], that using a 10th order Gaussian Quadrature, the

numerical integration step requires 73\% - 83\% and

87\% of the total time of matrix generation step on a

CPU and GPU respectively. So inevitably, any

improvement in this stage, either in terms of

memory or in terms of execution time, can

significantly reduce the total execution time of a

standard FE application. The first work dedicated

towards numerical integration for FEA on the GPU

is by Maciol et al. [5]using the Gauss-Legendre

Quadrature Method. Authors demonstrated the

complete scalability of the numerical integration

process on the GPU. Authors also concluded that the

massive amount of parallelism was not fully realized

due to the insufficient memory resources in

individual threads. This finding was later supported

by Dziekonski et al. [4], where several strategies on

efficient generation and assembly of large finite-

element matrices were presented, while maintaining

the desired level of accuracy in numerical

integration. Banas et al. [6] addressed the problem

of an implementation of numerical integration on the

GPU that is portable across several GPU

architectures and different orders of approximation.

Apart from these, many works concentrating on

applications of FEA have also implemented local

matrix generation on the GPU (Reguly and Giles [7],

Komatitsch et al. [8], Schmidt and Schulz [9]). In

these cases, however, no implementational details

are provided. In the present analysis we have

accelerated the numerical integration using 8 noded

hexahedron elements. The method used is the

standard Gauss Quadrature method. To illustrate the

method briefly, the eight shape functions for a Cubic

Hexahedron element are given by

�� = 1
8� �1 + 	
���1 + ����1 + ����, (1)

where, 	, � and � are the reference coordinates

and 	�, �� and �� denote coordinates of the ith node.

The elemental stiffness matrix is given by numerical

integration as,

� = ∭ ���� ������ (2)

 = ∑ ���
� !

�"#
����|%�	� , �� , ���|�,&,'

 Here, B is the matrix that contains partial

derivatives of the shape functions with respect to x,

y and z. J and C are the Jacobian and constitutive

matrix respectively. ��� , � !
 and �"#

 are the

weights for carrying out numerical integration using

Gauss Quadrature method. There exist different

ways to distribute the workload among the parallel

processors. Workload distribution in this context

means the assignment and distribution of

computation among different threads and thread-

blocks. In the present implementation, each block is

assigned to one finite element and each thread is

responsible for computing one entry of the local

stiffness matrix.

3. Proposed Acceleration Strategy

There are several ways a GPU application can be

accelerated in order to achieve reduced runtime.

Two of the direct ways to tackle this is by reducing

the FLOP count or by reducing memory accesses to

the DRAM. This, at the algorithm level, translates to

restructuring the algorithm by reducing redundant

accesses and redundant computation. However it

should be also noted that just by merely reducing the

FLOP count and memory accesses does not

guarantee a reduced run-time. If, for example the

reduced total memory accesses come at the price of

an irregular memory access pattern, or if the reduced

total FLOP count come at the price of increased

branch divergence, the runtime may actually be

increased instead of decreasing. In the present

implementation of local stiffness matrix generation

on GPU, we have applied a method with reduced

memory accesses and FLOP count coupled with a

parallelization strategy involving effective use of

shared memory and registers. The key idea is to

identify and remove the redundant computation and

DRAM accesses, while at the same time maintaining

data-coalescence and avoiding branch-divergence.

As per the usual practice, the derivatives of the shape

functions have been pre-computed on the CPU and

sent to the GPU. Each thread block is assigned to

one single element of the mesh. The element

connectivity, constitutive matrix and coordinate

information for a particular element are loaded into

the shared memory of the corresponding thread-

block from the DRAM at the beginning of the

kernel. Furthermore, memory is allocated to each

block for storing the jacobian matrices and their

determinant values. Lastly a special map array called

shapeMap is loaded into the shared memory that has

the dimension ()*+ × ()*+ . This array stores the

sparsity and repetition pattern of the B matrix, that

contain the derivatives of the shape functions.

Thanks to this map array, the B matrix need not be

constituted explicitly. Also it will be shown later

how this array is used to reduce the total FLOP count

compared to a standard implementation. Figure 2

explains how the shapeMap array is constructed. It

can be seen from the figure that the location of the

non-zero entries in the B matrix has a repeating

pattern that repeats for each shape function marked

in the image from N1 to N8. The shapeMap array

INCOM18: Proceedings of the 1st International Conference on Mechanical Engineering

Jadavpur University Kolkata India January 4 – 6, 2018

Paper No. INCOM18-210

3

stores the location of the derivative of the particular

shape function with respect to the three directions x,

y and z for each column of the repeating pattern. For

example, in the first column of B, the derivative of

N1 with respect to x is at the first row. Hence,

shapeMap[0][0] = 0. The derivative of N1 with

respect to y is at row 5. Hence, shapeMap[0][1] =

5. The derivative of N1 with respect to z is at row 4.

Hence, shapeMap[0][2] = 4 and so on.

Fig. 2: Construction of shapeMap from [B]

 All in all, for this stage the total amount of

shared memory used in the kernel for each thread

block in double precision is 1.16 kilobytes. The GPU

used is an NVIDIA Tesla K40c, with 48 kilobytes of

shared memory per streaming multiprocessor(SM).

This allows for the kernel to have �48	/	1.16	�	~	41

thread blocks to run concurrently on each SM, which

is higher than the maximum permissible thread

blocks/SM (16 for compute capability 3.5).

However, profiling the application reveals registers

to be the limiter for the application. Hence further

increasing the used shared memory would have no

consequences on the final runtime.

 As mentioned before, the implementation is

based on the key idea of recognition and removal of

redundant computation and data access coupled with

an efficient parallelization strategy that conforms to

the standard CUDA optimization practices. For

computing the local stiffness matrix, three matrices

need to be multiplied (BT, C and B respectively).

This multiplication summed over all the gauss points

gives the 24 , 24 local stiffness matrix for a

hexahedron element with 3 DOF per node. We

adopted a strategy where each of the entry in the

local stiffness matrix is allotted to one thread of the

thread block. As can be seen from Fig. 3, for such a

scheme, each of the thread has to compute exactly

seven dot products. In Fig. 3. The darker boxes

correspond to the entry K[0][0] computed by thread

0 and the lighter boxes correspond to K[10][10],

handled by thread 76. Take the example of the dark

box in the elemental stiffness matrix at K[0][0]

shown in Fig. 3. To Compute this entry , the first row

of BT need to be multiplied with each column of [C].

And finally the resulting vector needs to be

multiplied to the first column of [B], resulting in a

total of 7 inner products. Each of these dot products

are of size six, irrespective of the number of nodes

in the element for three dimensional elastic bodies.

An inner product of size N always requires N

multiplications and N - 1 additions, totaling to 2N -

1 FLOPs. This 11 FLOPs/inner product for the

dimension of 6. So, in a traditional implementation,

7 , 11 � 77	FLOPs are required for each thread.

Using the shapeMap array, the number of

multiplications and additions for each inner product

has been reduced to three and two respectively. The

number of inner products have also been reduced

from 7 to 4. In Fig. 3, for computing the dark entry

of the elemental stiffness matrix, instead of

multiplying the whole row of [B]T to [C], only the

non-zeros, marked in dark boxes are multiplied.

Again instead of multiplying the vector with each

column of the [C] matrix, only the columns at

indices which are non-zero in the first column of are

multiplied. Thus each thread will now perform 4 ,

5 � 20 FLOPs. Furthermore, not having to store the

B matrix gives the advantage of lower shared

memory and registers usage by the thread block and

threads respectively. So the total number of FLOPs

saved for computing one element of the mesh

is	�77 6 20� , 576 � 32832 FLOPs. For a high

number of elements this saves a significant amount

of the computation.

Fig. 3: Work distribution among threads

4. Results

The implementations were tested on a

workstation with the configuration given in Table 1.

For comparison, a standard implementation is used,

where the exact same computations are carried out

using the same methodology, but the shapeMap

array is not used to remove redundant calculations.

Figure 4 shows the variation of wall clock time of

the application with the number of nodes in the mesh

for the proposed implementation and the standard

implementation.

Table 1: Test setup configuration

CPU Xeon ES1650 (6 core, 3.2 GHz)

RAM 16 GB

GPU Nvidia Tesla K40c

GPU DRAM 12 GB

0 5 4

00

00

0

0

0

x

y

00

y

z

z

x

xy

z

δΝ /δ

δΝ /δ

δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

00

00

0

0

0

x

y

00

y

z

z

x

xy

z

δΝ /δ

δΝ /δ

δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

00

00

0

0

0

x

y

00

y

z

z

x

xy

z

δΝ /δ

δΝ /δ

δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

δΝ /δ δΝ /δ

1

1

1

1 1

1 1

1 1

2

2

2

2 2

2 2

2 2

8

8

8

8 8

8 8

8 8

..............

..............

..............

..............

..............

..............

[B] =

5 1 3

4 3 2

[shapeMap] =

INCOM18: Proceedings of the 1st International Conference on Mechanical Engineering

Jadavpur University Kolkata India January 4 – 6, 2018

Paper No. INCOM18-210

4

GPU cores 2880

GPU Bandwidth 288 GB/s

Peak FLOP/s 1.43TFOP/s (FP64)

Fig. 4: Variation of execution time with nodes

Fig. 5: Variation of GFLOP/s with nodes

There can be seen a linear increase of the execution

time with increase in number of nodes for both the

implementations. This implies that the

implementation is scalable with the problem size.

However, after a certain limit, the slope of the

execution time is expected to increase. The

execution time of the standard implementation is

approximately 2.5 times the execution time of the

proposed implementation. In Fig. 5, the GFLOP/s

count of the application is plotted for double

precision. The GFLOP/s count is considered to be

an important performance metric for parallel

implementations. It can be observed that the count

keeps increasing up to a node number of

approximately 1,000,000 at a rapid rate for both the

proposed and standard implementations. After that

mark, the count is increased slightly with increase in

node numbers. After 2,000,000 there is almost no

change in the GFLOP/s count. This is again

expected because, for lower mesh sizes, the GPU is

not completely occupied. The GFLOP/s count of the

proposed method is seen to be approximately 60% –

70% higher for mesh sizes above 1,000,000. After

the GPU is completely occupied and the rate of

increase of GFLOP/s decreases and a somewhat

stable value is reached around 190 GFLOP/s for the

proposed implementation.

5. Conclusion and Future Work

A strategy for computing elemental stiffness

matrices for large meshes on the graphics processing

units is presented. Results are obtained for mesh

sizes of over 2 million. Using the shapeMap array,

the number of FLOP count is decreased

significantly. The execution time and GFLOP/s

comparison with increasing number of node reveals

that the savings in FLOP count is more pronounced

for higher mesh sizes. The execution time is seen to

increase linearly with the number of nodes.

Comparison with a standard implementation reveals

both decrease of execution time and performance

improvements in terms of GFLOP/s. For future

work, this implementation may be extended to

different element types and different workload

distribution strategies.

6. REFERENCES

 [1] Zienkiewicz, O. C. and Taylor, R. L., 1977, The

finite element method, Volume 3. McGraw hill

London.

[2] Georgescu, S., Chow, P., and Okuda, H., 2013,

Archives of Computational Methods in Engineering

20(2), 111-121.

 [3] Markall, G., Slemmer, A., Ham, D., Kelly, P.,

Cantwell, C., and Sherwin, S., 2013, International

Journal for Numerical Methods in Fluids 71(1), 80-

97.

[4] Dziekonski, A., Sypek, P., Lamecki, A., and

Mrozowski, M., 2012, Progress In Electromagnetics

Research 128, 249-265.

[5] Maciol, P., Plaszewski, P., and Bana´s, K., 2010,

Procedia Computer Science 1 (1), ICCS 2010,

Amsterdam, Netherlands, 1093 - 1100.

 [6] Banas, K., Paszewski, P., and Maciol, P., 2014,

Computers & Mathematics with Applications 67(6),

1319 - 1344.

[7] Reguly, I. Z. and Giles, M.B., 2015, International

Journal of Parallel Programming 43(2), 203-239.

[8] Komatitsch, D., Micha, D., and Erlebacher, G.,

2009, Journal of Parallel and Distributed Computing

69(5), 451 - 460.

[9] Schmidt, S. and Schulz, V., 2011, Computing

and Visualization in Science 14(6), 249-256.

