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ABSTRACT 

This paper presents a strategy for accelerating generation of local stiffness matrices in Finite Element Analysis 

(FEA) on Graphics Processing Units (GPU) for large unstructured meshes. The proposed strategy is based on the 

key idea of removing redundant computations from the matrix multiplication operation and thereby reducing the 

total number of floating point operation (FLOP) count, which in turn reduces the total execution time. This is 

achieved by using a small array on the GPU shared memory that stores the sparsity pattern of the matrix containing 

the derivatives of the shape functions. This same array is used in conjunction with other input data to generate the 

local matrices of mesh sizes of up to 2 million elements in three dimensions. Comparison of the proposed strategy 

with a standard implementation shows improvement both in terms of execution time and performance. 

Keywords: FEA, GPU, Local matrix generation 

1. INTRODUCTION 

The Finite Element Method (FEM) is a 

numerical method for approximating solutions of 

boundary value problems for partial differential 

equations(PDEs). It has been used in fields such as 

mechanical engineering, civil engineering, electrical 

engineering, medical applications etc., where a 

solution to PDEs is sought. Due to its natural 

advantages such as flexibility, adaptability and ease 

of implementation even for complex geometries, it 

has become an integral part of a large variety of 

specializations. In industries like aviation, 

automotive and construction, FEM is usually an 

inherent part of the design process(Zienkiewicz and 

Taylor[1]).  

Although finite element analysis is widely 

popular in several fields, it suffers from a high 

computational complexity, because of the 

generation and resolution of system of equations 

performed in the solver step. Several applications 

that make use of FEM, have reported it to be the 

most or computationally expensive part of the whole 

applications especially for larger and more complex 

geometries (Georgescu et al. [2]). One of the 

remedies to this is using some form of parallel 

implementation to exploit the data parallel and 

throughput intensive nature of the FEA 

computations on platforms such as GPUs. The 

primary challenge for efficiently accelerating a 

scientific application is that all the existing scientific 

algorithms have been developed over the years to 

execute efficiently on sequential hardwares such as 

traditional CPUs. Markall et al. [3] has demonstrated 

that in order to efficiently port FEA on the GPU, an 

implementation, radically different than on the CPU, 

is required. Among different stages of FEA, the 

solver stage is generally considered to be the most 

time-consuming(Georgescu et al.[2]). But it has 

been shown that the local matrix generation stage 

can take up to 80% of the total time. In the present 

work, we target GPU implementation of the local 

matrix generation stage of FEA for large mesh sizes. 

1.1 GPU architecture and CUDA 

Graphics Processing Units are specialized 

circuits which, although primarily designed for 

rendering graphics, have been largely implemented 

for accelerating computation arising in various 

research, scientific and analytical applications. A 

number of platforms such as OpenCL, OpenMP and 

CUDA are derived over the past years for 

parallelizing general purpose applications. For the 

present implementation, CUDA, a parallel 

computing platform and API developed by 

NVIDIA, has been used with NVIDIA GPUs. 

CUDA provides the architecture and programming 

model that accommodates both the host (CPU) and 

device (GPU) simultaneously. The device code is 

written using particular extensions to the C 

programming syntax, inside special functions 

termed as Kernels. These Kernels may generate 

grids of thousands or even millions of threads to 

parallelize given task instead of running in a 

sequential manner.  

 
Fig. 1: CPU-GPU hybrid model 
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A schematic representation of the data flow in a 

CPU-GPU hybrid computing environment is 

presented in Fig. 1. 

2. Local stiffness generation in FEA 

This stage computes the local stiffness matrix 

based on the nodal data by performing numerical 

integration. It was demonstrated by Dziekonski et al. 

[4], that using a 10th order Gaussian Quadrature, the 

numerical integration step requires 73\% - 83\% and 

87\% of the total time of matrix generation step on a 

CPU and GPU respectively. So inevitably, any 

improvement in this stage, either in terms of 

memory or in terms of execution time, can 

significantly reduce the total execution  time of a 

standard FE application. The first work dedicated 

towards numerical integration for FEA on the GPU 

is by Maciol et al. [5]using the Gauss-Legendre 

Quadrature Method. Authors demonstrated the 

complete scalability of the numerical integration 

process on the GPU. Authors also concluded that the 

massive amount of parallelism was not fully realized 

due to the insufficient memory resources in 

individual threads. This finding was later supported 

by Dziekonski et al. [4], where several strategies on 

efficient generation and assembly of large finite-

element matrices were presented, while maintaining 

the desired level of accuracy in numerical 

integration. Banas et al. [6] addressed the problem 

of an implementation of numerical integration on the 

GPU that is portable across several GPU 

architectures and different orders of approximation. 

Apart from these, many works concentrating on 

applications of FEA have also implemented local 

matrix generation on the GPU (Reguly and Giles [7], 

Komatitsch et al. [8], Schmidt and Schulz [9]). In 

these cases, however, no implementational details 

are provided. In the present analysis we have 

accelerated the numerical integration using 8 noded 

hexahedron elements. The method used is the 

standard Gauss Quadrature method. To illustrate the 

method briefly, the eight shape functions for a Cubic 

Hexahedron element are given by 

 

�� = 1
8� �1 + 	
���1 + ����1 + ����,       (1)  

 

where, 	, � and � are the reference coordinates 

and 	�, ��  and ��  denote coordinates of the ith node. 

The elemental stiffness matrix is given by numerical 

integration as, 

 

� = ∭ ���� ������        (2) 
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       Here, B is the matrix that contains partial 

derivatives of the shape functions with respect to x, 

y and z. J and C are the Jacobian and constitutive 

matrix respectively. ���  , � !
 and �"#

 are the 

weights for carrying out numerical integration using 

Gauss Quadrature method. There exist different 

ways to distribute the workload among the parallel 

processors. Workload distribution in this context 

means the assignment and distribution of 

computation among different threads and thread-

blocks. In the present implementation, each block is 

assigned to one finite element and each thread is 

responsible for computing one entry of the local 

stiffness matrix. 

3. Proposed Acceleration Strategy 

There are several ways a GPU application can be 

accelerated in order to achieve reduced runtime. 

Two of the direct ways to tackle this is by reducing 

the FLOP count or by reducing memory accesses to 

the DRAM. This, at the algorithm level, translates to 

restructuring the algorithm by reducing redundant 

accesses and redundant computation. However it 

should be also noted that just by merely reducing the 

FLOP count and memory accesses does not 

guarantee a reduced run-time. If, for example the 

reduced total memory accesses come at the price of 

an irregular memory access pattern, or if the reduced 

total FLOP count come at the price of increased 

branch divergence, the runtime may actually be 

increased instead of decreasing. In the present 

implementation of local stiffness matrix generation 

on GPU, we have applied a method with reduced 

memory accesses and FLOP count coupled with a 

parallelization strategy involving effective use of 

shared memory and registers. The key idea is to 

identify and remove the redundant computation and 

DRAM accesses, while at the same time maintaining 

data-coalescence and avoiding branch-divergence. 

As per the usual practice, the derivatives of the shape 

functions have been pre-computed on the CPU and 

sent to the GPU. Each thread block is assigned to 

one single element of the mesh. The element 

connectivity, constitutive matrix and coordinate 

information for a particular element are loaded into 

the shared memory of the corresponding thread-

block from the DRAM at the beginning of the 

kernel. Furthermore, memory is allocated to each 

block for storing the jacobian matrices and their 

determinant values. Lastly a special map array called 

shapeMap is loaded into the shared memory that has 

the dimension ()*+ × ()*+ . This array stores the 

sparsity and repetition pattern of the B matrix, that 

contain the derivatives of the shape functions. 

Thanks to this map array, the B matrix need not be 

constituted explicitly. Also it will be shown later 

how this array is used to reduce the total FLOP count 

compared to a standard implementation. Figure 2 

explains how the shapeMap array is constructed. It 

can be seen from the figure that the location of the 

non-zero entries in the B matrix has a repeating 

pattern that repeats for each shape function marked 

in the image from N1 to N8. The shapeMap array 
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stores the location of the derivative of the particular 

shape function with respect to the three directions x, 

y and z for each column of the repeating pattern. For 

example, in the first column of B, the derivative of 

N1 with respect to x is at the first row. Hence, 

shapeMap[0][0] = 0. The derivative of N1 with 

respect to y is at row 5. Hence, shapeMap[0][1] = 

5.  The derivative of N1 with respect to z is at row 4. 

Hence, shapeMap[0][2] = 4 and so on. 

 

 

 
Fig. 2: Construction of shapeMap from [B] 

 

       All in all, for this stage the total amount of 

shared memory used in the kernel for each thread 

block in double precision is 1.16 kilobytes. The GPU 

used is an NVIDIA Tesla K40c, with 48 kilobytes of 

shared memory per streaming multiprocessor(SM). 

This allows for the kernel to have �48	/	1.16	�	~	41 

thread blocks to run concurrently on each SM, which 

is higher than the maximum permissible thread 

blocks/SM (16 for compute capability 3.5). 

However, profiling the application reveals registers 

to be the limiter for the application. Hence further 

increasing the used shared memory would have no 

consequences on the final runtime. 

       As mentioned before, the implementation is 

based on the key idea of recognition and removal of 

redundant computation and data access coupled with 

an efficient parallelization strategy that conforms to 

the standard CUDA optimization practices. For 

computing the local stiffness matrix, three matrices 

need to be multiplied (BT, C and B respectively). 

This multiplication summed over all the gauss points 

gives the 24 , 24 local stiffness matrix for a 

hexahedron element with 3 DOF per node. We 

adopted a strategy where each of the entry in the 

local stiffness matrix is allotted to one thread of the 

thread block. As can be seen from Fig. 3, for such a 

scheme, each of the thread has to compute exactly 

seven dot products. In Fig. 3. The darker boxes 

correspond to the entry K[0][0] computed by thread 

0 and the lighter boxes correspond to K[10][10], 

handled by thread 76. Take the example of the dark 

box in the elemental stiffness matrix at K[0][0] 

shown in Fig. 3. To Compute this entry , the first row 

of BT need to be multiplied with each column of [C]. 

And finally the resulting vector needs to be 

multiplied to the first column of [B], resulting in a 

total of 7 inner products. Each of these dot products 

are of size six, irrespective of the number of nodes 

in the element for three dimensional elastic bodies. 

An inner product of size N always requires N 

multiplications and N - 1 additions, totaling to 2N - 

1 FLOPs. This 11 FLOPs/inner product for the 

dimension of 6. So, in a traditional implementation, 

7 , 11 � 77	FLOPs are required for each thread. 

Using the shapeMap array, the number of 

multiplications and additions for each inner product 

has been reduced to three and two respectively. The 

number of inner products have also been reduced 

from 7 to 4. In Fig. 3, for computing the dark entry 

of the elemental stiffness matrix, instead of 

multiplying the whole row of [B]T to [C], only the 

non-zeros, marked in dark boxes are multiplied. 

Again instead of multiplying the vector with each 

column of the [C] matrix, only the columns at 

indices which are non-zero in the first column of  are 

multiplied. Thus each thread will now perform 4 ,

5 � 20 FLOPs. Furthermore, not having to store the 

B matrix gives the advantage of lower shared 

memory and registers usage by the thread block and 

threads respectively. So the total number of FLOPs 

saved for computing one element of the mesh 

is	�77 6 20� , 576 � 32832 FLOPs. For a high 

number of elements this saves a significant amount 

of the computation. 

 

 
Fig. 3: Work distribution among threads 

4. Results 

The implementations were tested on a 

workstation with the configuration given in Table 1. 

For comparison, a standard implementation is used, 

where the exact same computations are carried out 

using the same methodology, but the shapeMap 

array is not used to remove redundant calculations. 

Figure 4 shows the variation of wall clock time of 

the application with the number of nodes in the mesh 

for the proposed implementation and the standard 

implementation.  

Table 1: Test setup configuration 
 

CPU Xeon ES1650 (6 core, 3.2 GHz) 

RAM 16 GB 

GPU Nvidia Tesla K40c 

GPU DRAM 12 GB 
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GPU cores 2880 

GPU Bandwidth 288 GB/s 

Peak FLOP/s 1.43TFOP/s (FP64) 

 

        

 
 

Fig. 4: Variation of execution time with nodes 

 
Fig. 5: Variation of GFLOP/s with nodes 

 
There can be seen a linear increase of the execution 

time with increase in number of nodes for both the 

implementations. This implies that the 

implementation is scalable with the problem size. 

However, after a certain limit, the slope of the 

execution time is expected to increase. The 

execution time of the standard implementation is 

approximately 2.5 times the execution time of the 

proposed implementation. In Fig. 5, the GFLOP/s 

count of the application is plotted for double 

precision. The GFLOP/s count is considered to be 

an important performance metric for parallel 

implementations. It can be observed that the count 

keeps increasing up to a node number of 

approximately 1,000,000 at a rapid rate for both the 

proposed and standard implementations. After that 

mark, the count is increased slightly with increase in 

node numbers. After 2,000,000 there is almost no 

change in the GFLOP/s count. This is again 

expected because, for lower mesh sizes, the GPU is 

not completely occupied. The GFLOP/s count of the 

proposed method is seen to be approximately 60% – 

70% higher for mesh sizes above 1,000,000. After 

the GPU is completely occupied and the rate of 

increase of GFLOP/s decreases and  a somewhat 

stable value is reached around 190 GFLOP/s for the 

proposed implementation. 

5. Conclusion and Future Work 

A strategy for computing elemental stiffness 

matrices for large meshes on the graphics processing 

units is presented. Results are obtained for mesh 

sizes of over 2 million. Using the shapeMap array, 

the number of FLOP count is decreased 

significantly. The execution time and GFLOP/s 

comparison with increasing number of node reveals 

that the savings in FLOP count is more pronounced 

for higher mesh sizes. The execution time is seen to 

increase linearly with the number of nodes. 

Comparison with a standard implementation reveals 

both decrease of execution time and performance 

improvements in terms of GFLOP/s.  For future 

work, this implementation may be extended to 

different element types and different workload 

distribution strategies.   
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