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kaisa.miettinen@jyu.fi

Abstract. A nadir point is constructed by the worst objective values of
the solutions of the entire Pareto-optimal set. Along with the ideal point,
the nadir point provides the range of objective values within which all
Pareto-optimal solutions must lie. Thus, a nadir point is an important
point to researchers and practitioners interested in multi-objective opti-
mization. Besides, if the nadir point can be computed relatively quickly,
it can be used to normalize objectives in many multi-criterion decision
making tasks. Importantly, estimating the nadir point is a challenging
and unsolved computing problem in case of more than two objectives.
In this paper, we revise a previously proposed serial application of an
EMO and a local search method and suggest an integrated approach for
finding the nadir point. A local search procedure based on the solution of
a bi-level achievement scalarizing function is employed to extreme solu-
tions in stabilized populations in an EMO procedure. Simulation results
on a number of problems demonstrate the viability and working of the
proposed procedure.

1 Introduction

A nadir point signifies, in principle, opposite to that meant by an ideal point, in
the context of multi-objective optimization. An ideal point is an M -dimensional
objective vector (where M is the number of objectives) constructed with best
feasible objective values and is a comparatively easy to compute. For minimiza-
tion problems, in principle, this calls for solving M single-objective minimization
problems and collecting each optimal objective values to form the ideal point. On
the other hand, a nadir point is constructed with the worst objective values of
Pareto-optimal solutions. In minimization problems, this task is different from
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simply maximizing M objective functions one at a time. This is because the
search of the worst value of an objective must be restricted within the Pareto-
optimal solutions. This is the reason why the estimation of nadir point has been
found to be a complex task [13,11] and there does not exist any provable algo-
rithm for the task, even for linear multi-objective optimization problems having
three or more objectives.

With the advent of efficient evolutionary optimization procedures for multi-
objective optimization, some attention has been made in the recent past in devel-
oping procedures for estimating the nadir point. Simplistic ideas, such as finding
a set of Pareto-optimal solutions by an EMO procedure and then choosing the
extreme solutions for estimating the nadir point, to more sophisticated ideas,
such as replacing the focus of EMO to find a wide-spreaded set of solutions on
the entire Pareto-optimal front to find only the critical extreme Pareto-optimal
points [4,17], are suggested. Most of these EMO methodologies have shown to
find an approximation of the nadir point, rather than to estimate the exact nadir
point. Recent studies [6,5] suggested a two-step serial procedure of employing a
modified NSGA-II procedure to identify extreme near Pareto-optimal solutions
and then a local search procedure to converge to the true extreme Pareto-optimal
points.

In this study, we suggest and simulate a hybrid integrated approach in which a
local search procedure is used within the modified NSGA-II algorithm sparingly
to achieve the nadir point estimation task. We restrict our discussions for real-
parameter optimization problems, but the concept can very well be used for other
types of optimization problems. The suggested local search procedure is based
on utilizing a reference point based approach, a so-called achievement scalarizing
function [18] which is widely used in the MCDM field. Using this scalarized func-
tion, any point in the objective space can be projected on the Pareto optimal
front and the scalarizing function does not need any artificial information like
weights [15]. In the procedure proposed, the achievement scalarizing function
is used in a bi-level manner to guarantee getting reliable enough information
about extreme values in the Pareto optimal front for estimating the nadir point.
Based on a statistical analysis of the performance of the NSGA-II procedure,
the execution of the local search event is decided dynamically at every genera-
tion. Both NSGA-II and local search procedures are terminated using statistical
performance criteria. Simulation results on a number of test problems and three
engineering problems are presented to demonstrate the efficacy of the proposed
procedure.

2 Nadir Objective Vector

We consider multi-objective optimization problems involving M conflicting ob-
jectives (fi : S → R) as functions of decision variables x:

minimize {f1(x), f2(x), . . . , fM (x)} ,
subject to x ∈ S,

(1)
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where S ⊂ Rn denotes the set of feasible solutions. Problem (1) gives rise to a set
of Pareto-optimal solutions or a Pareto-optimal front (P ∗), providing a trade-off
among the objectives. In the sense of minimization of objectives, Pareto-optimal
solutions can be defined as follows [15]:

Definition 1. A decision vector x∗ ∈ S and the corresponding objective vector
f(x∗) are Pareto-optimal if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x∗) for all i = 1, 2, . . . , M and fj(x) < fj(x∗) for at least
one index j.

In what follows, we assume that the Pareto-optimal front is bounded. We now
define a nadir objective vector, that is, a nadir point, as follows.

Definition 2. An objective vector znad = (znad
1 , . . . , znad

M )T constructed using
the worst values of objective functions in the complete Pareto-optimal front P ∗

is called a nadir objective vector.

Hence, for minimization problems we have znad
j = maxx∈P∗ fj(x). Estimation

of the nadir objective vector is, in general, a difficult task. Unlike the ideal
objective vector z∗ = (z∗1 , . . . , z∗M )T , which can be found by minimizing each
objective individually over the feasible set S (or, z∗j = minx∈S fj(x)), the nadir
point cannot be formed by maximizing objectives individually over S. To find the
nadir point, Pareto-optimality of solutions used for constructing the nadir point
must be first established. This makes the task of finding the nadir point a difficult
one. To illustrate this aspect, let us consider a bi-objective minimization problem
shown in Figure 1. If we maximize f1 and f2 individually, we obtain points A
and B, respectively. These two points can be used to construct the so-called
worst objective vector, zw. In many problems (even in bi-objective optimization
problems), the nadir objective vector and the worst objective vector are not the
same point, which can also be seen in Figure 1.

Pareto− optimal front
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B Worst objective vector
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point
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Feasible
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Fig. 1. The nadir and worst objective
vectors
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3 Existing Methods

3.1 Payoff Table Method

Benayoun et al. [1] introduced the first interactive multi-objective optimization
method for estimating the nadir point by using a payoff table. To be more spe-
cific, each objective function is first minimized individually and then a table is
constructed where the i-th row of the table represents values of all objective
functions calculated at the point where the i-th objective obtained its minimum
value. Thereafter, the maximum value of the j-th column can be considered as
an estimate of the upper bound of the j-th objective in the Pareto-optimal front
and these maximum values together may be used to construct an approximation
of the nadir objective vector. The main difficulty of such an approach is that
solutions are not necessarily unique and thus corresponding to the minimum
solution of an objective there may exist more than one solutions having differ-
ent values of other objectives, in problems having more than two objectives. In
these problems, the payoff table method may not result in an accurate estimation
of the nadir objective vector. To illustrate, consider a three-objective problem
shown in Figure 2. Minimization of the first objective will result in any solution
on the trapezium CBB′F′C′C. If the point marked in a small circle on line CB
is obtained by an optimization algorithm and similarly other two circles on lines
CA and AB are obtained for minimizations of f2 and f3, respectively, a wrong
estimate (z′) of the nadir point (znad) will be made.

3.2 Evolutionary Approaches

The nadir point is associated with Pareto-optimal solutions and, thus, deter-
mining a set of Pareto-optimal solutions will facilitate the estimation of the
nadir point. Since an EMO algorithm is aimed at finding a set of Pareto-optimal
solutions, it may be an ideal way to find the nadir objective vector. Several
approaches are proposed recently.

In the naive approach, first a well-distributed set of Pareto-optimal solutions
can be attempted to find by an EMO [4]. Thereafter, an estimate of the nadir
objective vector can be made by picking the worst values of each objective [17].
In the context of the problem depicted in Figure 2, this means first finding
a well-represented set of solutions on the plane ABC and then estimating the
nadir point from them. Since EMO algorithms are not found to converge well
and maintain a well-diverse set of solutions for more than three objectives [7], the
accuracy of the estimated nadir point using the naive approach is questionable.

Szczepanski and Wierzbicki [17] have simulated the idea of solving multiple
bi-objective optimization problems suggested in [8] using an EMO approach
and construct the nadir point by accumulating all bi-objective Pareto-optimal
fronts together. As discussed in our earlier study [5], such a technique is not
generic and requires additional objective and variable-space niching techniques
to correctly estimate the nadir point. Moreover, the procedure requires

(
M
2

)

bi-objective optimizations, making it a daunting task particularly for problems
having more than three objectives.
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However, the idea of concentrating on a preferred region on the Pareto-optimal
front, instead of finding the entire Pareto-optimal front, can be pushed further.
An emphasis can be placed in an EMO approach to find only the critical ex-
treme points of the Pareto-optimal front. Our earlier study [4] suggested two
approaches in the crowding distance operator of the NSGA-II procedure and con-
cluded in favor of the extremized crowding distance approach. In the extremized-
crowded NSGA-II approach [4], we emphasized in concentrating on the best and
worst solutions of each objective. In this approach, solutions on a particular
non-dominated front are first sorted from minimum (with rank R

(m)
i = 1) to

maximum (with rank = Nf ) based on each objective. The rank of solution i for
the m-th objective R

(m)
i is assigned as max{R(m)

i , Nf −R
(m)
i +1}. Two extreme

solutions for every objective get a rank equal to Nf (number of solutions in the
non-dominated front), the solutions next to these extreme solutions get a rank
(Nf − 1), and so on. After a rank is assigned to a solution by each objective, the
maximum value of the assigned ranks is declared as the crowding distance.

Like other evolutionary optimization studies, the proposed extremized
crowded NSGA-II approach did not ensure converging to the true extreme so-
lutions exactly, as evolutionary algorithms are expected to find a near-optimal
solution, rather than a true optimal solution in a finite number of solution eval-
uations. However, in the pursuit of estimating the nadir point for the purpose
of normalizing objectives for executing different multi-objective optimization al-
gorithms or for knowing the true range of Pareto-optimal solutions for decision-
making, it is important to find the true extreme Pareto-optimal points, so that
the nadir point can be estimated accurately.

In a recent study [6], the extremized crowded NSGA-II approach is ended with
a bi-level local search operation on all extreme solutions to take them arbitrary
closer to the true extreme solutions, so that the nadir point can be estimated
more accurately. In this paper, we re-address the issue of the serial application
of NSGA-II and the local search procedure and suggest a hybrid integrated
approach for an accurate estimation of the nadir point.

4 Proposed Integrated Approach

Instead of applying the local search on the extreme solutions obtained by the ex-
tremized crowded hybrid NSGA-II procedure, we propose an integrated NSGA-II
approach in which at certain generations the extreme solutions of the best non-
dominated front are modified by the local search procedure to push them towards
their true values. With such an integrated procedure, the attained accuracy is
likely to be better and it would have a smaller chance of getting stuck to inter-
mediate solutions, thereby leading to an accurate estimation of the nadir point.
In the following, we outline an iteration of the proposed integrated NSGA-II
procedure in which the population Pt is the current parent population of size
N . Every member (i) of Pt is already ranked based on its non-domination level
(NDi) and its crowding distance (CDi) within the population members of its
own non-domination level.
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Step 1: Population Pt is used to create an offspring population Qt by using
binary tournament selection, recombination and mutation operators. Two
solutions are chosen at random from Pt and a hierarchical selection based
on ND followed by CD is used to complete the tournament selection op-
eration. Thereafter, two such selected solutions are recombined using the
simulated binary crossover operator [3,2] to create two offspring solutions,
each of which is then mutated by using the polynomial mutation operator [2].
These operators involve the following parameters: recombination probability
pc, SBX index ηc, mutation probability pm, and mutation index ηm.

Step 2: Populations Pt and Qt are combined together and ranked into differ-
ent levels of non-domination: Pt ∪ Qt = {F1,F2, . . .}. The set F1 contains
non-dominated solutions of level one, and so on. Thereafter, the best N
population members are chosen from the combined 2N population based on
ranking and crowding distance criteria.

Step 3: Depending on a check on whether to perform the local search or not
(which we describe a little later), in the set F1, we identify the worst solution
(x(j)) with respect to each objective j, and modify it by using a local search
procedure. The modified solution (y(j)) replaces the worst population mem-
ber. For M objectives, there are M such local search operations performed
in each iteration of the proposed procedure. The estimated nadir point (zest)
at generation t is then formed from the extreme solutions obtained by the
local searches. Non-domination ranking and crowding distance computations
are redone on the modified population, which we refer to as Pt+1.

This procedure is similar to the original NSGA-II procedure, except that the
crowding distance computation is different suiting the need for emphasizing ex-
treme solutions for the task of estimating the nadir point and that a local search
procedure is used to update the extreme objective-wise solutions to make sure
that the nadir point can be estimated with a desired accuracy.

We now describe the local search procedure here. The best (fmin
j ) and worst

(fmax
j ) values of each objective j of the set F1 are first noted. We apply a bi-

level local search procedure from each worst solution (solution x(j) for which
the j-th objective has the worst value in F1) to find the corresponding optimal
solution y(j) using the following bi-level optimization procedure. The upper-level
optimization (described in (2)) uses an objective vector (z, referred here as a
reference point) as a variable vector and maximizes the j-th objective value of the
optimal solution obtained by solving the corresponding augmented achievement
scalarizing problem [15] (we refer to this task as the lower-level optimization
task, described in (3)):

maximize(z) f∗
j (z),

subject to zi ≥ f
(j)
i EA − 0.5(fmax

i − fmin
i ), i = 1, 2, . . . , M,

zi ≤ f
(j)
i EA + 1.5(fmax

i − fmin
i ), i = 1, 2, . . . , M.

(2)

The term f∗
j (z) is the optimal value of the j-th objective function of the optimal

solution to the following lower-level optimization problem for which z is kept
fixed [18]:
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minimize(y) maxM
i=1

(
fi(y)−zi

fmax
i −fmin

i

)
+ ρ

∑M
k=1

(
fk(y)−zk

fmax
k −fmin

k

)
,

subject to y ∈ S,
(3)
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Fig. 3. Each arrow corresponds to a lower-level
search for a specified reference point (C, A’ or B’).
The upper-level search finds a reference point having
optimal worst objective (such as A’ or B’).

Figure 3 illustrates this lo-
cal search procedure. In the
lower-level optimization prob-
lem, the search is performed
on the original decision vari-
able space. The solution
y∗(j)(z) to this lower-level
optimization problem deter-
mines the optimal objective
vector f∗ from which we ex-
tract the j-th component and
use it in the upper-level op-
timization problem. Thus, for
every reference point z (a
solution for the upper-level
problem), the corresponding
optimal augmented achieve-
ment scalarizing function is
found in the lower-level loop.
The upper-level optimization
is initialized with the NSGA-II solution z(0) = f (x(j)) and the lower-level opti-
mization is initialized with the NSGA-II solution y(0) = x(j).

We now discuss the termination criterion of each optimization procedure. For
terminating the overall NSGA-II procedure, we compute a normalized distance
(ND) metric as follows:

D =

√√
√
√ 1

M

M∑

i=1

(
zest

i − z∗i
zw

i − z∗i

)2

. (4)

Here, the vectors z∗ and zw are the ideal and worst objective vectors of the op-
timization problem, respectively. These quantities can be computed once before
the NSGA-II procedure by solving 2M different single-objective optimizations
of minimizing and maximizing each objective at a time.

Since the exact final value of the D metric is not known a priori on an arbitrary
problem, we record the change in D for the past τ (= 50 used here) generations.
Say, Dmax, Dmin, and Davg, are the maximum, minimum, and average D values
for the past consecutive τ generations. If the change ΔD = (Dmax −Dmin)/Davg

is smaller than a threshold Δ (= 1(10−4) is used here), the NSGA-II procedure
is terminated.

We use the same normalized distance metric to decide whether the local search
needs to be performed in a particular generation of NSGA-II. At a generation, the
change ΔlD in normalized distance over the past τl (= 20 used here) generations
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is recorded. If ΔlD ≤ δ (= 0.005 used here), the local search is performed. This
reduces the number of local searches performed from not so good solutions. When
the best non-dominated front has stabilized somewhat, the extreme solutions of
the set are modified using the local search procedure.

Both upper and lower-level optimization tasks in the local search operation
uses a point-by-point search approach which is terminated based on the chosen
optimization algorithm and code used for the purpose. In all our simulations,
we have used KNITRO (auto option) for the lower-level optimization task in
which we have set a termination condition on the KKT error value (≤ 10−6)
or a maximum of 100 iterations whichever happens first. For the upper-level
optimization task, we have used CFSQP solver [14]. The upper-level task is
terminated if the norm of the Newton’s direction is less than of equal to 10−8 or
a maximum iteration of 100 is elapsed.

After the NSGA-II run is terminated, we construct the nadir point from the
worst objective values of the final non-dominated set F1.

5 Simulation Results

In this section, we present simulation results on eight problems having three or
more objectives. In most of these problems, the nadir point was difficult to obtain
using the pay-off table. In all problems, we use a population of size max(60, 20n)
(n is the number of variables), crossover and mutation probabilities of 0.9 and
1/n , crossover and mutation indices of 10 and 50, respectively, and ρ = 10−4.
In each case, we make 10 different runs from different initial populations, but
every time the procedure is found to converge near a particular set of extreme
points, thereby leading to finding a similar nadir point every time.

5.1 Problem KM

The first problem KM, adapted from [12], is the following:

minimize

⎧
⎨

⎩

−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)

⎫
⎬

⎭
,

subject to 3x1 + x2 − 12 ≤ 0, 2x1 + x2 − 9 ≤ 0, x1 + 2x2 − 12 ≤ 0,
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

(5)

The true nadir point of this problem is reported to be znad = (5, 4.6,−14.25)T

[9]. Table 1 shows the three extreme solutions (x∗) found by our proposed ap-
proach. It is clear that when the worst objective values are collected together,
we obtain an identical point (up to two decimal points) as that in the true
nadir point. Figure 4 shows that the normalized distance value gets stabilized at
around 40 generation and since ΔD = 50 is used, it took another 50 generations
to terminate the hybrid procedure. Interestingly, the D value reaches the final
stabilized value very quickly, thereby indicating the efficiency of the proposed
procedure.



A Hybrid Integrated Multi-Objective Optimization Procedure 577

Table 1. Extreme points found by the pro-
posed approach on problem KM

x∗ Estimated znad

0.000 0.000 5.000 2.200 -55.000
0.000 6.000 -1.000 4.600 -25.001
3.500 1.501 0.000 -3.100 -14.251

Terminated at gen. 87

D stabilized for 50 gen.
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Fig. 4. Variation of D with generation on
KM

5.2 Problem SW1

The second problem SW1 is as follows [17]:

minimize

⎧
⎨

⎩

f1(x) = −(100 − 7x1 − 20x2 − 9x3)
f2(x) = −(4x1 + 5x2 + 3x3)
f3(x) = −x3

⎫
⎬

⎭
,

subject to 1 1
2x1 + x2 + 1 3

5x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(6)

Theprevious study [17] reported the true nadir point to beznad = (−3.6364, 0, 0)T .
Table 2 shows two extreme solutions (x∗) (hence, the true nadir point) found by our
proposed approach. Figure 5 shows the progress of the proposed approach.

5.3 Problem SW2

The third problem SW2 originates from [17]:

minimize

⎧
⎪⎪⎨

⎪⎪⎩

9x1 + 19.5x2 + 7.5x3

7x1 + 20x2 + 9x3

−(4x1 + 5x2 + 3x3)
−(x3)

⎫
⎪⎪⎬

⎪⎪⎭
,

subject to 1.5x1 − x2 + 1.6x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(7)

The true nadir point for this problem is reported to be znad = (94.5, 96.3636, 0, 0)T

[17]. The original study [17] found a close point (94.4998, 95.8747, 0, 0)T using mul-
tiple, bi-objective optimization simulation using an EMO procedure. The outcome
is not identical to the true nadir point. Table 3 shows the three extreme solutions
foundbyourproposedapproach.Weobtain the truenadir point.Due to an identical
behavior of D variation with generation number on this and subsequent problems,
we do not show the figures here.
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Table 2. Extreme points found by the proposed
approach on problem SW1

x∗ Estimated znad

0.0000 3.1818 3.6364 -3.6364 -26.8182 -3.6364
0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000

Stabilized for 50 gen.

Terminated at gen. 87
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Table 3. Extreme points found by the proposed approach on problem SW2

x∗ Estimated znad

4.0000 3.0000 0.0000 94.5000 88.0000 -31.0000 0.0000
0.0000 3.1818 3.6363 89.3182 96.3636 -26.8182 -3.6363
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.4 Problem KSS1

The linear KSS1 problem [13] was found to be difficult for estimating the nadir
point:

maximize

⎧
⎨

⎩

11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7

11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7

11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7

⎫
⎬

⎭
,

subject to
∑7

i=1 xi = 1,
xi ≥ 0, i = 1, 2, . . . , 7.

(8)

The true nadir point is reported to be znadir = (0, 0, 0)T [13]. Table 4 shows the
three extreme solutions found by our proposed approach. Our approach finds a
near nadir point with a slight error in the second objective value (as shown in
Figure 6 the error is not visually detectable). This problem is a difficult one to
solve for estimating the exact nadir point, because of the slow slope leading to
each of the three extreme points, as shown by a set of representative solutions
obtained through a clustered NSGA-II, in which NSGA-II’s crowding distance
method is replaced by the k-mean clustering method [2]. In this problem, it is
easy to get stuck to a non-dominated point close to one or more extreme points.
Our approach seems to have found the exact extreme values for first and third

Table 4. Extreme points found by the proposed approach on problem KSS1

x∗ Estimated znad

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.000 11.000
0.000 0.994 0.000 0.000 0.000 0.001 0.004 10.910 -0.026 11.006
0.000 0.000 1.000 0.000 0.000 0.000 0.000 11.000 11.000 0.000
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objectives and managed to get to a near-by point around the extreme of the
second objective.

5.5 Problem KSS2

Next, we consider another linear problem KSS2 [13]:

maximize (x1, x2, x3),
subject to x1 + 2x2 + 2x3 ≤ 8, 2x1 + 2x2 + x3 ≤ 8, 3x1 − 2x2 + 4x3 ≤ 12,

xi ≥ 0, i = 1, 2, 3.
(9)

The nadir point is reported to be znad = (0, 0, 0)T . Table 5 presents the ex-
treme solutions obtained by our approach. The true nadir point is found by our
approach in this problem.

Table 5. Extreme points found by the proposed approach on problem KSS2

x∗ Estimated znad

0.000 3.818 0.166 0.000 3.818 0.166
3.344 0.000 0.432 3.344 0.000 0.433
3.253 0.628 0.000 3.253 0.628 0.000

Now we consider three more problems, borrowed from engineering fields. On
each of these problems, the exact nadir point is not known, but wherever possible
we explain the accuracy of the nadir point obtained by our approach.

5.6 Problem WELD

The WELD problem has four variables and three objectives, and is formulated
in [6]. Our previous study [6] introduced the WELD problem which has four
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Table 6. Extreme points found by the proposed approach on problem WELD

x∗ Estimated znad

1.7356 0.4788 10.0000 5.0000 36.4221 0.000439 1008.0000
0.2444 6.2175 8.2915 0.2444 2.3810 0.015759 30000.1284

variables and three objectives. The nadir point was estimated to be znad =
(36.4209, 0.0158, 30000)T . Table 6 presents two extreme points found by our
proposed approach of this paper. The extreme points for the second and third
objectives are found to be identical in this problem, indicating that although
the problem has three objective functions, the Pareto-optimal front is two-
dimensional, as is also confirmed by the original NSGA-II points in Figure 7. The
nadir point estimated by our approach is (36.4221, 0.0158, 30000.1284)T, which
is close to that obtained by the earlier study [6].

5.7 Problem CAR

The seven-variable, three-objective CAR problem is described in [10]. No pre-
vious study exists on this problem for finding the nadir point. In Table 7, we
present two extreme points obtained by our procedure. Thus, the nadir point
estimated by our approach for this problem is znad = (42.767, 4.000, 12.521)T .
Figure 8 shows the complete Pareto-optimal front with a set of representative
clustered NSGA-II solutions. It is clear from the plot that the above two extreme
points are adequate to cover the extreme objective values of the Pareto-optimal
front and is able to locate the nadir point of the problem.

5.8 Problem WATER

Finally, we consider the WATER problem [16], which is also described in [2].
For this problem, the exact nadir point is not known. However, since there are

points
NSGA−II

approach (2 pts.)
Proposed

point
Nadir

 44
 3.7

 3.8
 3.9

 4

 10.8

 11.2

 11.6

 12

 12.4

f1
f2

f3

 24
 28

 32
 36

 40
 3.6

Fig. 8. Extreme objective vectors covers the entire Pareto-optimal front for problem
CAR
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Table 7. Extreme points found by the proposed approach on problem CAR

x∗ Estimated znad

1.500 1.350 1.500 1.500 2.625 1.200 1.200 42.767 3.585 10.611
0.500 1.226 0.500 1.208 0.875 0.884 0.400 23.589 4.000 12.521

Table 8. Extreme points found by the proposed approach on problem WATER

x∗ Estimated znad

0.010 0.100 0.100 1.038 0.020 0.949 0.075 5.649
0.450 0.098 0.010 0.916 0.900 0.936 0.033 0.002
0.114 0.100 0.010 0.918 0.228 0.951 0.031 0.285
0.098 0.010 0.100 0.918 0.197 0.095 2.671 5.713

three variables and five objectives, some redundancy in the objectives is expected
for the Pareto-optimal solutions. An application of NSGA-II to this problem [2]
(page 388) was found to indicate some correlations among the obtained represen-
tative solutions. Table 8 presents the extreme points obtained for this problem
by our approach. We observe that the extreme points for objectives f4 and f5

come from an identical solution. The estimated nadir point using our procedure
is znad = (1.038, 0.900, 0.951, 2.671, 5.713)T .

6 Conclusions

In this paper, we have extended our previous study on a serial implementation of
an EMO procedure followed by an MCDM based local search approach to find
extreme points accurately for estimating the nadir point of a multi-objective
optimization problem. The nadir point in multi-objective optimization is used
in normalizing objectives which is necessary for different multi-criterion opti-
mization algorithms. Besides, the task of estimating the nadir point for three or
more objectives is a open research task in multi-criterion optimization literature.
Nadir points can only be estimated accurately if (i) objective-wise extremes and
(ii) Pareto-optimal solutions are found. Due to this two-pronged requirements,
we have suggested a bi-level local search task. The local search is employed
with extreme non-dominated solutions only when the best non-dominated front
has stabilized somewhat, thereby making the overall method computationally
tractable. On a set of five test problems and three engineering design problems,
the proposed integrated procedure has able to find the exact nadir point quite
accurately.

This work is also important from another point of view. This work demon-
strates how a local search approach can be integrated with an evolutionary
population-based approach adaptively and used sparingly for a complex opti-
mization to ensure accurate convergence.
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