Section 7.3 Formal Proofs in Predicate Calculus

All proof rules for propositional calculus extend to predicate calculus. *Example*. ...

<i>k</i> .	$\forall x p(x)$	Р
<i>k</i> +1.	$\forall x \ p(x) \rightarrow \exists x \ p(x)$	P
<i>k</i> +2.	$\exists x p(x)$	1, 2, MP

But we need additional proof rules to reason with most quantified wffs. For example, suppose we want to prove that the following wff is valid.

$$\exists x \; \forall y \; p(x, y) \rightarrow \forall y \; \exists x \; p(x, y).$$

We might start with

Proof: 1. $\exists x \forall y p(x, y)$ *P*

But what do we do for the next line of the proof? We're stuck if we want to use proof rules. We need more proof rules.

Free to Replace

For a wff W(x) and a term t we say t is free to replace x in W(x) if W(t) has the same bound occurrences of variables as W(x).

1

Example. Let $W(x) = \exists y \ p(x, y)$. Then

 $W(y) = \exists y \ p(y, y), \text{ so } y \text{ is not free to replace } x \text{ in } W(x).$ $W(f(x)) = \exists y \ p(f(x), y), \text{ so } f(x) \text{ is free to replace } x \text{ in } W(x).$ $W(c) = \exists y \ p(c, y), \text{ so } c \text{ is free to replace } x \text{ in } W(x).$ $W(x) = \exists y \ p(x, y), \text{ so } x \text{ is free to replace } x \text{ in } W(x).$

Universal Instantiation (UI)

 $\frac{\forall x W(x)}{W(t)} \quad \text{if } t \text{ is free to replace } x \text{ in } W(x).$

Special cases that satisfy the restriction:

Existential Generalization (EG)

W(t)		
$\exists x W(x)$	If t is free to replace x in	W(x).

Special cases that satisfy the restriction:

W(x)	W(c)
$\exists x W(x)$	$\overline{\exists x W(x)}$

 $\frac{\forall x W(x)}{W(x)} \qquad \frac{\forall x W(x)}{W(c)}$

Existential Instantiation (EI)

If $\exists x W(x)$ occurs on some line of a proof, then W(c) may be placed on any subsequent line of the proof subject to the following restrictions: Choose *c* to be a new constant in the proof and such that *c* does not occur in the statement to be proven.

Universal Generalization (UG)

If W(x) occurs on some line of a proof, then $\forall x W(x)$ may be placed on any subsequent line of the proof subject to the following restrictions:

Among the wffs used to obtain W(x), x is not free in any premise and x is not free in any wff obtained by EI.

Restrictions on quantifier inference rules are necessary

Example. $\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)$ is invalid. Here is an *attempted* proof.

1.	$\forall x \exists y p(x, y)$	P
2.	$\exists y \ p(x, y)$	1, UI
3.	p(x, c)	2, EI
4.	$\forall x \ p(x, c)$	3, UG (NO, <i>x</i> on line 3 is free in wff obtained by EI)
5.	$\exists y \forall x p(x, y)$	4, EG
	NOT QED	1–5, CP

Example. $\exists x \ p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an *attempted* proof.

1.	$\exists x \ p(x)$	P
2.	p(x)	1, EI (NO, x is not a new constant in the proof)
3.	$\mathbf{\hat{\forall}} x \ p(x)$	2, UG (NO, <i>x</i> on line 2 is free in wff obtained by EI)
	NOT QED	1–3, CP

Example. $\exists x \ p(x) \land \exists x \ q(x) \rightarrow \exists x \ (p(x) \land q(x))$ is invalid. Here is an *attempted* proof.

1.	$\exists x \ p(x)$	Р
2.	$\exists x q(x)$	P
3.	p(c)	1, EI
4.	q(c)	2, EI (NO, c is not a new constant in the proof)
5.	$p(c) \wedge q(c)$	3, 4, Conj
6.	$\exists x (p(x) \land q(x))$	5, EG
	NOT QED	1–6, CP

Example. $p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an *attempted* proof.

1. p(x)P2. $\forall x p(x)$ 1, UG (NO, x is free in a premise)NOT QED1, 2, CP

Example. $\forall x \exists y \ p(x, y) \rightarrow \exists y \ p(y, y)$ is invalid. Here is an *attempted* proof.

1. $\forall x \exists y p(x, y)$ P2. $\exists y p(y, y)$ 1, UI (NO, y is not free to replace x in $\exists y p(x, y)$)NOT QED1, 2, CP

Example. $\forall x \ p(x, f(x)) \rightarrow \exists x \ p(x, x)$ is invalid. Here is an *attempted* proof.

1. $\forall x \ p(x, f(x))$ P2. p(x, f(x))1, UI3. $\exists x \ p(x, x)$ 2, EG (NO, $p(x, f(x)) \neq p(x, x)(x/t)$ for any term t)NOT QED1-3, CP

Example. $\forall x \ p(x, f(x)) \rightarrow \exists y \ \forall x \ p(x, y)$ is invalid. Here is an *attempted* proof.

- 1. $\forall x \ p(x, f(x)) \qquad P$
- 2. $\exists y \forall x p(x, y)$ 1, EG (NO, f(x) is not free to replace y in $\forall x p(x, y)$) NOT QED 1, 2, CP

Example. $\exists x \ p(x) \rightarrow p(c)$ is invalid. Here is an *attempted* proof.

1. $\exists x p(x)$ P2. p(c)1, EI (NO, c occurs in statement to be proved)NOT QED1, 2, CP

Now Some Valid Wffs

Example. $\forall x \forall y p(x, y) \rightarrow \forall y p(y, y)$ is valid. Here is an *attempted* proof.

1. $\forall x \forall y p(x, y)$ P2. $\forall y p(y, y)$ 1, UI (NO, y is not free to replace x in $\forall y p(x, y)$)NOT QED1, 2, CP

But here is a *correct* proof.

1.	$\forall x \; \forall y \; p(x, y)$	P
2.	$\forall y \ p(x, y)$	1, UI
3.	p(x, x)	2, UI
4.	$\forall x \ p(x, x)$	3, UG
5.	p(y, y)	4, UI
6.	$\forall y \ p(y, y)$	5, UG
	QED	1–6, CP

Quiz. Find a proof of the statement that uses IP.

Example/Quiz. $\forall x (A(x) \rightarrow B(x)) \rightarrow (\forall x A(x) \rightarrow \forall x B(x))$ is valid. Find a proof.

1.	$\forall x \ (A(x) \rightarrow B(x))$	Р
2.	$\forall x A(x)$	$P [for \forall x A(x) \rightarrow \forall x B(x)]$
3.	A(x)	2, UI
4.	$A(x) \rightarrow B(x)$	1, UI
5.	B(x)	3, 4, MP
6.	$\forall x \ B(x)$	5, UG
7.	$\forall x \ A(x) \rightarrow \forall x \ B(x)$	2–6, CP
	QED	1, 7, CP.

Example/Quiz. Prove that the following wff is valid using IP.

Quiz. Find a CP proof of the statement.

1.
$$\forall x \neg p(x, x)$$

2. $\forall x \forall y \forall z (p(x, y) \land p(y, z) \rightarrow p(x, z))$ P
3. $\neg p(x, x)$
4. $p(x, y) \land p(y, x) \rightarrow p(x, x)$
5. $\neg (p(x, y) \land p(y, x))$
6. $\forall x \forall y \neg (p(x, y) \land p(y, x))$
QED
1-6, CP.

Example/Quiz. Use IP to prove that the $\forall x \exists y (p(x) \rightarrow p(y))$ is valid.

1.
$$\exists x \forall y (p(x) \land \neg p(y))$$
 P [for IP]2. $\forall y (p(c) \land \neg p(y))$ 1, EI3. $p(c) \land \neg p(c)$ 2, UI4. $p(c)$ 3, Simp5. $\neg p(c)$ 4, Simp6. False4, 5, ContrQED1-6, IP.

Group Quiz. Divide the class into six subgroups and assign each group one of the following six wffs to prove using CP (no IP and no T's). Assume that x does not occur free in C.

1.
$$\forall x (A(x) \rightarrow C) \rightarrow (\exists x A(x) \rightarrow C).$$

2. $(\exists x A(x) \rightarrow C) \rightarrow \forall x (A(x) \rightarrow C).$
3. $(C \rightarrow \forall x A(x)) \rightarrow \forall x (C \rightarrow A(x)).$
4. $(C \rightarrow \exists x A(x)) \rightarrow \exists x (C \rightarrow A(x)).$
5. $\exists x (C \rightarrow A(x)) \rightarrow (C \rightarrow \exists x A(x)).$
6. $\exists x (A(x) \rightarrow C) \rightarrow (\forall x A(x) \rightarrow C).$

Solutions.

1.
$$\forall x (A(x) \rightarrow C) \rightarrow (\exists x A(x) \rightarrow C).$$

2. $(\exists x A(x) \rightarrow C) \rightarrow \forall x (A(x) \rightarrow C).$
1. $\forall x (A(x) \rightarrow C) P$
2. $\exists x A(x) P[\text{for } \exists x A(x) \rightarrow C]$
3. $A(d)$
4. $A(d) \rightarrow C$
5. C
6. $\exists x A(x) \rightarrow C$
6. $\exists x A(x) \rightarrow C$
7. $A(x) P[\text{for } A(x) \rightarrow C]$
7.

7

× // ·
$C \rightarrow A(?)$]
ſP
'P
, CP.
· •

$$5. \exists x (C \rightarrow A(x)) \rightarrow (C \rightarrow \exists x A(x)). \qquad 6. \exists x (A(x) \rightarrow C) \rightarrow (\forall x A(x) \rightarrow C).$$

$$1. \exists x (C \rightarrow A(x)) P \qquad 1. \exists x (A(x) \rightarrow C) P$$

$$2. C P [for C \rightarrow \exists x A(x)] 2. \forall x A(x) P [for \forall x A(x) \rightarrow C]$$

$$3. C \rightarrow A(d) 1, EI \qquad 3. A(d) \rightarrow C 1, EI$$

$$4. A(d) 2, 3, MP \qquad 4. A(d) 2, UI$$

$$5. \exists x A(x) 4, EG \qquad 5. C \qquad 3, 4, MP$$

$$6. C \rightarrow \exists x A(x) 2-5, CP \qquad 6. \forall x A(x) \rightarrow C 2-5, CP$$

$$QED \qquad 1, 6, CP. \qquad QED \qquad 1, 6, CP.$$