Section 7.3 Formal Proofs in Predicate Calculus

All proof rules for propositional calculus extend to predicate calculus.
Example. ...

$$
\begin{array}{rll}
k . & \forall x p(x) & P \\
k+1 . & \forall x p(x) \rightarrow \exists x p(x) & P \\
k+2 . & \exists x p(x) & 1,2, \mathrm{MP}
\end{array}
$$

But we need additional proof rules to reason with most quantified wffs. For example, suppose we want to prove that the following wff is valid.

$$
\exists x \forall y p(x, y) \rightarrow \forall y \exists x p(x, y) .
$$

We might start with

$$
\text { Proof: 1. } \exists x \forall y p(x, y) \quad P
$$

But what do we do for the next line of the proof? We're stuck if we want to use proof rules. We need more proof rules.

Free to Replace

For a wff $W(x)$ and a term t we say t is free to replace x in $W(x)$ if $W(t)$ has the same bound occurrences of variables as $W(x)$.
Example. Let $W(x)=\exists y p(x, y)$. Then
$W(y)=\exists y p(y, y)$, so y is not free to replace x in $W(x)$.
$W(f(x))=\exists y p(f(x), y)$, so $f(x)$ is free to replace x in $W(x)$.
$W(c)=\exists y p(c, y)$, so c is free to replace x in $W(x)$.
$W(x)=\exists y p(x, y)$, so x is free to replace x in $W(x)$.

Universal Instantiation (UI)
$\frac{\forall x W(x)}{W(t)}$ if t is free to replace x in $W(x)$.
Special cases that satisfy the restriction: $\quad \frac{\forall x W(x)}{W(x)} \quad \frac{\forall x W(x)}{W(c)}$
Existential Generalization (EG)
$\frac{W(t)}{\exists x W(x)} \quad$ if t is free to replace x in $W(x)$.
Special cases that satisfy the restriction: $\quad \frac{W(x)}{\exists x W(x)} \quad \frac{W(c)}{\exists x W(x)}$

Existential Instantiation (EI)

If $\exists x W(x)$ occurs on some line of a proof, then $W(c)$ may be placed on any subsequent line of the proof subject to the following restrictions:

Choose c to be a new constant in the proof and such that c does not occur in the statement to be proven.

Universal Generalization (UG)
If $W(x)$ occurs on some line of a proof, then $\forall x W(x)$ may be placed on any subsequent line of the proof subject to the following restrictions:

Among the wffs used to obtain $W(x), x$ is not free in any premise and x is not free in any wff obtained by EI.

Restrictions on quantifier inference rules are necessary

Example. $\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)$ is invalid. Here is an attempted proof.

1.	$\forall x \exists y p(x, y)$	P
2.	$\exists y p(x, y)$	1, UI
3.	$p(x, c)$	2, EI
4.	$\forall x p(x, c)$	3, UG (NO, x on line 3 is free in wff obtained by EI)
5.	$\exists y \forall x p(x, y)$	4, EG
	NOT QED	$1-5, \mathrm{CP}$

Example. $\exists x p(x) \rightarrow \forall x p(x)$ is invalid. Here is an attempted proof.

1. $\exists x p(x)$
2. $p(x) \quad 1, \mathrm{EI}(\mathrm{NO}, x$ is not a new constant in the proof)
3. $\forall x p(x) \quad 2, \mathrm{UG}(\mathrm{NO}, x$ on line 2 is free in wff obtained by EI) NOT QED $1-3, \mathrm{CP}$
Example. $\exists x p(x) \wedge \exists x q(x) \rightarrow \exists x(p(x) \wedge q(x))$ is invalid. Here is an attempted proof.

1.	$\exists x p(x)$	P
2.	$\exists x q(x)$	P
3.	$p(c)$	1, EI
4.	$q(c)$	2, EI (NO, c is not a new constant in the proof)
5. $p(c) \wedge q(c)$	$3,4, \mathrm{Conj}$	
6.	$\exists x(p(x) \wedge q(x))$	$5, \mathrm{EG}$
	NOT QED	$1-6, \mathrm{CP}$

Example. $p(x) \rightarrow \forall x p(x)$ is invalid. Here is an attempted proof.

1. $p(x) \quad P$
2. $\forall x p(x) \quad 1, \mathrm{UG}(\mathrm{NO}, x$ is free in a premise $)$ NOT QED $\quad 1,2, \mathrm{CP}$
Example. $\forall x \exists y p(x, y) \rightarrow \exists y p(y, y)$ is invalid. Here is an attempted proof.
3. $\forall x \exists y p(x, y)$
4. $\exists y p(y, y) \quad 1, \mathrm{UI}(\mathrm{NO}, y$ is not free to replace x in $\exists y p(x, y))$

NOT QED $\quad 1,2, \mathrm{CP}$
Example. $\forall x p(x, f(x)) \rightarrow \exists x p(x, x)$ is invalid. Here is an attempted proof.

1. $\forall x p(x, f(x)) \quad P$
2. $p(x, f(x)) \quad 1, \mathrm{UI}$
3. $\exists x p(x, x) \quad 2, \mathrm{EG}(\mathrm{NO}, p(x, f(x)) \neq p(x, x)(x / t)$ for any term $t)$ NOT QED $1-3$, CP
Example. $\forall x p(x, f(x)) \rightarrow \exists y \forall x p(x, y)$ is invalid. Here is an attempted proof.
4. $\forall x p(x, f(x)) \quad P$
5. $\exists y \forall x p(x, y) \quad 1, \mathrm{EG}(\mathrm{NO}, f(x)$ is not free to replace y in $\forall x p(x, y))$ NOT QED 1,2, CP
Example. $\exists x p(x) \rightarrow p(c)$ is invalid. Here is an attempted proof.
6. $\exists x p(x)$
P
7. $p(c) \quad 1, \mathrm{EI}(\mathrm{NO}, c$ occurs in statement to be proved) NOT QED 1,2, CP

Now Some Valid Wffs

Example. $\forall x \forall y p(x, y) \rightarrow \forall y p(y, y)$ is valid. Here is an attempted proof.

1. $\forall x \forall y p(x, y) \quad P$
2. $\forall y p(y, y) \quad 1, \mathrm{UI}(\mathrm{NO}, y$ is not free to replace x in $\forall y p(x, y))$

NOT QED $1,2, \mathrm{CP}$
But here is a correct proof.

1. $\forall x \forall y p(x, y) \quad P$
2. $\forall y p(x, y) \quad$, UI
3. $p(x, x) \quad$ 2, UI
4. $\forall x p(x, x) \quad 3, \mathrm{UG}$
5. $p(y, y)$

4, UI
6. $\forall y p(y, y) \quad 5, \mathrm{UG}$

QED 1-6, CP.
Quiz. Find a proof of the statement that uses IP.
Example/Quiz. $\forall x(A(x) \rightarrow B(x)) \rightarrow(\forall x A(x) \rightarrow \forall x B(x))$ is valid. Find a proof.

1. $\forall x(A(x) \rightarrow B(x)) \quad P$
2. $\quad \forall x A(x) \quad P[$ for $\forall x A(x) \rightarrow \forall x B(x)]$
3. $A(x) \quad$ 2, UI
4. $\quad A(x) \rightarrow B(x) \quad 1, \mathrm{UI}$
5. $\quad B(x) \quad 3,4, \mathrm{MP}$
6. $\forall x B(x) \quad$ 5, UG
7. $\forall x A(x) \rightarrow \forall x B(x) \quad 2-6, \mathrm{CP}$

QED
$1,7, \mathrm{CP}$.

Example/Quiz. Prove that the following wff is valid using IP.

$$
\begin{array}{lll}
\forall x \neg p(x, x) \wedge \forall x \forall y \forall z(p(x, y) \wedge p(y, z) \rightarrow & p(x, z)) \rightarrow \forall x \forall y \neg(p(x, y) \wedge p(y, x)) . \\
\text { 1. } & \forall x \neg p(x, x) & P \\
\text { 2. } & \forall x \forall y \forall z(p(x, y) \wedge p(y, z) \rightarrow p(x, z)) & P \\
\text { 3. } & \exists x \exists y(p(x, y) \wedge p(y, x)) & P \text { [for } \forall x \forall y \neg(p(x, y) \wedge p(y, x)], T \\
\text { 4. } & p(a, b) \wedge p(b, a) & \text { 3, EI, EI } \\
\text { 5. } & p(a, b) \wedge p(b, a) \rightarrow p(a, a) & \text { 2, UI, UI, UI } \\
\text { 6. } & p(a, a) & \text { 4, 5, MP } \\
\text { 7. } & \neg p(a, a) & \text { 1, UI } \\
\text { 8. } & \text { False } & \text { 6, 7, Contr } \\
\text { 9. } & \forall x \forall y \neg(p(x, y) \wedge p(y, x) & \text { 3-8, IP } \\
\text { QED } & \text { 1, 2, 9, CP. }
\end{array}
$$

Quiz. Find a CP proof of the statement.

1. $\forall x \neg p(x, x)$	P
2. $\forall x \forall y \forall z(p(x, y) \wedge p(y, z) \rightarrow p(x, z))$	P
3. $\neg p(x, x)$	1, UI
4. $p(x, y) \wedge p(y, x) \rightarrow p(x, x)$	2, UI, UI, UI
5. $\neg(p(x, y) \wedge p(y, x))$	3, 4, MT
6. $\forall x \forall y \neg(p(x, y) \wedge p(y, x))$	5, UG, UG
QED	1-6, CP.

Example/Quiz. Use IP to prove that the $\forall x \exists y(p(x) \rightarrow p(y))$ is valid.
2. $\forall x \forall y \forall z(p(x, y) \wedge p(y, z) \rightarrow p(x, z)) \quad P$

1. $\exists x \forall y(p(x) \wedge \neg p(y)) \quad P$ [for IP]
2. $\forall y(p(c) \wedge \neg p(y)) \quad 1, \mathrm{EI}$
3. $p(c) \wedge \neg p(c) \quad 2, \mathrm{UI}$
4. $p(c) \quad 3$, Simp
5. $\neg p(c) \quad 4$, Simp
6. False

QED
4, 5, Contr $1-6$, IP.

Group Quiz. Divide the class into six subgroups and assign each group one of the following six wffs to prove using CP (no IP and no T's). Assume that x does not occur free in C.

$$
\begin{array}{ll}
\text { 1. } & \forall x(A(x) \rightarrow C) \rightarrow(\exists x A(x) \rightarrow C) . \\
\text { 2. } & (\exists x A(x) \rightarrow C) \rightarrow \forall x(A(x) \rightarrow C) . \\
\text { 3. } & (C \rightarrow \forall x A(x)) \rightarrow \forall x(C \rightarrow A(x)) . \\
\text { 4. } & (C \rightarrow \exists x A(x)) \rightarrow \exists x(C \rightarrow A(x)) . \\
\text { 5. } & \exists x(C \rightarrow A(x)) \rightarrow(C \rightarrow \exists x A(x)) . \\
\text { 6. } & \exists x(A(x) \rightarrow C) \rightarrow(\forall x A(x) \rightarrow C) .
\end{array}
$$

Solutions.

1. $\forall x(A(x) \rightarrow C) \rightarrow$	$x A(x) \rightarrow C)$.	2. $(\exists x A(x) \rightarrow C) \rightarrow$	$\forall x(A(x) \rightarrow C)$.
1. $\forall x(A(x) \rightarrow C)$	P	1. $\exists x A(x) \rightarrow C$	P
2. $\exists x A(x)$	$P[$ for $\exists x A(x) \rightarrow C]$	2. $\quad A(x)$	$P[$ for $A(x) \rightarrow C]$
3. $A(d)$	2, EI	3. $\exists x A(x)$	2, EG
4. $\quad A(d) \rightarrow C$	1, UI	4. C	1,3, MP
5. C	3, 4, MP	5. $A(x) \rightarrow C$	2-4, CP
6. $\exists x A(x) \rightarrow C$	2-5, CP	6. $\forall x(A(x) \rightarrow C)$	5, UG
QED	1,6, CP.	QED	1,5-6, CP.

3. $(C \rightarrow \forall x A(x)) \rightarrow$	$C \rightarrow A(x))$.	4. $(C \rightarrow \exists x A(x))$	$x(C \rightarrow A(x))$.
1. $C \rightarrow \forall x A(x)$	P	1. $C \rightarrow \exists x A(x)$	P
2. C	$P[$ for $C \rightarrow A(x)]$	2. C	$P[$ for $C \rightarrow A(?)]$
3. $\forall x A(x)$	1,2, MP	3. $\exists x A(x)$	1,2, MP
4. $A(x)$	3, UI	4. $A(d)$	3, EI
5. $C \rightarrow A(x)$	2-4, CP	5. $C \rightarrow A(d)$	2-4, CP
6. $\forall x(C \rightarrow A(x))$	5, UG	6. $\exists x(C \rightarrow A(x))$	5, EG
QED	1, 5-6, CP.	QED	1, 5-6, CP.

5. $\exists \mathrm{x}(C \rightarrow A(x)) \rightarrow$	$C \rightarrow \exists x A(x))$.	6. $\exists x(A(x) \rightarrow C) \rightarrow(\forall x A(x) \rightarrow C)$.		
1. $\exists x(C \rightarrow A(x))$	P	1.	$\exists x(A(x) \rightarrow C)$	P
2. C	$P[$ for $C \rightarrow \exists x A(x)]$	2.	$\forall x A(x)$	$P[$ for $\forall x A(x) \rightarrow C]$
3. $C \rightarrow A(d)$	1, EI	3.	$A(d) \rightarrow C$	1, EI
4. $\quad A(d)$	2,3, MP	4.	$A(d)$	2, UI
5. $\exists x A(x)$	4, EG	5.	C	3, 4, MP
6. $C \rightarrow \exists x A(x)$	2-5, CP	6.	$\forall x A(x) \rightarrow C$	2-5, CP
QED	1,6, CP.		QED	1,6, CP.

