Section 6.4 Formal Axiom Systems

By a formal axiom system we mean a specific set of axioms (a fixed set of premises) and proof rules. The aims of a formal axiom system are soundness and completeness::

Soundness: All proofs yield theorems that are tautologies.
Completeness: All tautologies are provable as theorems.

Frege-Lukasiewicz (F-L) Axiom System

Axiom 1: $\quad A \rightarrow(B \rightarrow A)$.
Axiom 2: $\quad(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$.
Axiom 3: $\quad(\neg A \rightarrow \neg B) \rightarrow(B \rightarrow A)$.
Proof Rule: MP.
Since the axioms of F-L are tautologies and MP maps tautologies to a tautology, the F-L system is sound. The F-L system is also complete, but that takes a bit of proof (see the text).
Example (Lemma). Use the F-L system to prove $A \rightarrow A$.

$$
\begin{array}{lc}
\text { Proof: 1. } A \rightarrow((A \rightarrow A) \rightarrow A) & \text { Axiom 1 } \\
\text { 2. }(A \rightarrow((A \rightarrow A) \rightarrow A)) \rightarrow((A \rightarrow(A \rightarrow A)) \rightarrow(A \rightarrow A)) & \text { Axiom 2 } \\
\text { 3. }(A \rightarrow(A \rightarrow A)) \rightarrow(A \rightarrow A) & 1,2, \mathrm{MP} \\
\text { 4. } A \rightarrow(A \rightarrow A) & \text { Axiom } 1 \\
\text { 5. } A \rightarrow A & 3,4, \mathrm{MP} \\
\text { QED. } &
\end{array}
$$

Deduction Theorem (The CP Rule)

If A is a premise in a proof of B, then there is a proof of $A \rightarrow B$ that does not use A as a premise.
Proof Idea: Assume the proof has the form

$$
A=B_{0}, \ldots, B_{n}=B .
$$

If $n=0$, then $A=B$. So we must find a proof of $A \rightarrow B=A \rightarrow A$ that does not use A as a premise. A proof was given in the previous example (lemma). Let $n>0$ and assume that for each k in the range $0 \leq k<n$ there is a proof of $A \rightarrow B_{k}$ that does not use A as a premise. Show that there is a proof of $A \rightarrow B_{n}$ that does not use A as a premise. If B_{n} is a premise or an axiom, then we have the following proof that does not use A as a premise:

$$
\begin{array}{lll}
\text { 1. } B_{n} & \text { Premise or Axiom } & \\
\text { 2. } B_{n} \rightarrow\left(A \rightarrow B_{n}\right) & \text { Axiom 1 } & \\
\text { 3. } A \rightarrow B_{n} & 1,2, \text { MP } & \text { QED. }
\end{array}
$$

If B_{n} is neither a premise nor an axiom, then it is inferred by MP from B_{i} and $B_{j}=B_{i} \rightarrow B_{n}$, where $i<n$ and $j<n$. So we obtain the following proof that does not use A as a premise:

$$
\begin{array}{ll}
\text { 1. Proof of } A \rightarrow B_{i} \text { not using } A \text { as a premise } & \text { Induction assumption } \\
\text { 2. Proof of } A \rightarrow\left(B_{i} \rightarrow B_{n}\right) \text { not using } A \text { as a premise } & \text { Induction assumption } \\
\text { 3. }\left(A \rightarrow\left(B_{i} \rightarrow B_{n}\right)\right) \rightarrow\left(\left(A \rightarrow B_{i}\right) \rightarrow\left(A \rightarrow B_{n}\right)\right) & \text { Axiom } 2 \\
\text { 4. }\left(A \rightarrow B_{i}\right) \rightarrow\left(A \rightarrow B_{n}\right) & 2,3, \text { MP } \\
\text { 5. } A \rightarrow B_{n} & 1,4, \text { MP QED. }
\end{array}
$$

Since $B_{n}=B$, we have a proof of $A \rightarrow B$ that does not use A as a premise. QED.

