Section 6.3 Formal Reasoning

A *formal proof* (or *derivation*) is a sequence of wffs, where each wff is either a premise or the result of applying a proof rule to certain previous wffs in the sequence.

Basic Proof Rules

Conjunction (Conj)	Simplification	(Simp)
$\frac{A, B}{A \wedge B}$	$\frac{A \wedge B}{A}$ and $\frac{A}{A}$	$\frac{AB}{B}$
Addition (Add)	Disjunctive S	yllogism (DS)
$\frac{A}{A \lor B}$ and $\frac{B}{A \lor B}$	$\frac{A \lor B, \ \neg A}{B} a$	and $\frac{A \lor B, \neg B}{A}$
Modus Ponens (MP)	Conditional Pr	roof (CP)
$A \rightarrow B, A$	From A, deriv	e B
В	$A \rightarrow B$	
Double Negation (DN)	Contradiction (Contr)	Indirect Proof (IP)
$\frac{\neg \neg A}{2}$ and $\frac{A}{2}$	$A, \neg A$	From $\neg A$, derive False
$A \qquad \neg \neg A$	False	A

1

Proof Notation

Put each wff on a numbered line along with a reason. Use the letter P for a premise and follow the proof with QED.

Example. We'll prove that the argument with premises $A \lor C \rightarrow D$, $\neg B$, $A \lor B$ and conclusion *D* is valid.

1.	$A \lor C \twoheadrightarrow D$	Р
2.	$\neg B$	Р
3.	$A \lor B$	Р
4.	Α	2, 3, DS
5.	$A \lor C$	4, Add
6.	D	1, 5, MP
	QED.	

Using CP

If a proof consists of a derivation from a premise A to a conclusion B that does not contain any uses of CP or IP, then we can apply CP to obtain a tautology $A \rightarrow B$. The reason we obtain a tautology is that the proof rules used in the derivation are valid arguments. So the truth of A implies the truth of B, which tells us that $A \rightarrow B$ is a tautology.

When using CP in this way, instead of writing $A \rightarrow B$, we'll write QED along with the line numbers of the derivation followed by CP.

Example. We'll prove that $(A \lor C \rightarrow D) \land \neg B \land (A \lor B) \rightarrow D$ is a tautology.

1.	$A \lor C \rightarrow D$	Р
2.	$\neg B$	Р
3.	$A \lor B$	Р
4.	A	2, 3, DS
5.	$A \lor C$	4, Add
6.	D	1, 5, MP
	QED	1–6, CP.

Example. We'll prove $(A \lor B \rightarrow C \land D) \land A \land (C \rightarrow E) \rightarrow D \land E$ is a tautology.

1.	$A \lor B \twoheadrightarrow C \land D$	Р
2.	A	Р
3.	$C \rightarrow E$	Р
4.	$A \lor B$	2, Add
5.	$C \wedge D$	1, 4, MP
6.	С	5, Simp
7.	E	3, 6, MP
8.	D	5, Simp
9.	$D \wedge E$	7, 8, Conj
	QED	1–9, CP.

Subproofs

A *subproof* is a proof that is part of another proof. It always starts with a new premise and always ends by applying CP or IP to the derivation from that premise. When this happens, the premise is *discharged* and the wffs of the derivation become inactive.

Indent the statements of the subproof and write down the result of CP or IP without indentation.

Example. We'll prove that $(A \lor B) \rightarrow (\neg B \rightarrow A)$ is a tautology.

1.	$A \lor B$	Р
2.	$\neg B$	$P [for \neg B \rightarrow A]$
3.	A	1, 2, DS
4.	$\neg B \rightarrow A$	2, 3, CP
	QED	1, 4, CP.

(We'll prove the converse shortly)

Example. We'll prove that $(A \lor B \rightarrow C) \rightarrow (A \rightarrow C) \land (B \rightarrow C)$ is a tautology.

1.
$$A \lor B \rightarrow C$$
 P 2. A $P [\text{for } A \rightarrow C]$ 3. $A \lor B$ $2, \text{Add}$ 4. C $1, 3, \text{MP}$ 5. $A \rightarrow C$ $2-4, \text{CP}$ 6. B $P [\text{for } B \rightarrow C]$ 7. $A \lor B$ $6, \text{Add}$ 8. C $1, 7, \text{MP}$ 9. $B \rightarrow C$ $6-8, \text{CP}$ 10. $(A \rightarrow C) \land (B \rightarrow C)$ $5, 9, \text{Conj}$ QED $1, 5, 9-10, \text{CP}.$

Using IP

If a proof consists of a derivation from a premise $\neg A$ to the conclusion False, then we could apply CP to obtain $\neg A \rightarrow$ False. But we also know that $A \equiv \neg A \rightarrow$ False. So the result of the derivation is A. This is the IP rule.

Example. We'll prove the tautology $\neg (A \land \neg A)$.

1.	$\neg \neg (A \land \neg A)$	$P [for \neg (A \land \neg A)$
2.	$A \land \neg A$	1, DN
3.	A	2, Simp
4.	$\neg A$	2, Simp
5.	False	3, 4, Contr
	QED	1–5, IP.

IP is most often used in a subproof setting when proving a conditional of the form $V \rightarrow W$. Start with V as a premise for a CP proof. Then start an IP subproof with premise $\neg W$. When a contradiction is reached, we obtain W by IP. Then CP gives the result $V \rightarrow W$.

As with CP subproofs, the result of IP is written with no indentation.

Example/Quiz. Prove the tautology $(A \rightarrow B) \land (A \lor B) \rightarrow B$.

1.	$A \rightarrow B$	Р
2.	$A \lor B$	Р
3.	$\neg B$	<i>P</i> [for <i>B</i>]
4.	A	2, 3, DS
5.	В	1, 4, MP
6.	False	3, 5, Contr
7.	В	3–6, IP
	QED	1–2, 7, CP.

Example. We'll prove that the converse of $(A \lor B) \rightarrow (\neg B \rightarrow A)$. Proof of $(\neg B \rightarrow A) \rightarrow (A \lor B)$:

1.	$\neg B \rightarrow A$		Р
2.	$\neg (A \lor I)$	B)	P [for $A \lor B$]
3.	-	B	<i>P</i> [for <i>B</i>]
4.	A		1, 3, MP
5.	A	v <i>B</i>	4, Add
6.	F	alse	2, 5, Contr
7.	B		3–6, IP
8.	$A \lor B$		7, Add
9.	False		2, 8, Contr
10.	$A \lor B$		2, 7–9, IP
	QED		1, 4, CP.

Derived Rules (they follow from the original rules)

Modus Tollens (MT)Proof by Cases (Cases)
$$A \rightarrow B, \neg B$$
 $\neg A$ $A \lor B, A \rightarrow C, B \rightarrow C$ Hypothetical Syllogism (HS)Constructive Dilemma (CD) $A \rightarrow B, B \rightarrow C$ $A \lor B, A \rightarrow C, B \rightarrow D$ $A \rightarrow C$ $C \lor D$

Example. We'll give two proofs of the tautology

$$(A \to C) \land (B \to C) \to (A \lor B \to C).$$

First proof:

1.
$$A \rightarrow C$$
 P 2. $B \rightarrow C$ P 3. $A \lor B$ P [for $A \lor B \rightarrow C$]4. C $1, 2, 3, Cases$ 5. $A \lor B \rightarrow C$ $3-4, CP$ QED $1-2, 5, CP.$

Second proof:

1.	$A \rightarrow C$	Р
2.	$B \rightarrow C$	Р
3.	$A \lor B$	$P [for A \lor B \rightarrow C]$
4.	$\neg C$	<i>P</i> [for <i>C</i>]
5.	$\neg A$	1, 3, MT
6.	В	3, 5, DS
7.	$\neg B$	2, 4, MP
8.	False	6,7,Contr
9.	C	4–8, IP
10.	$A \lor B \rightarrow C$	3, 9, CP
	QED	1–2, 10, CP.

Example/Quiz. Prove $(A \rightarrow C) \land \neg (A \rightarrow B) \rightarrow \neg (C \rightarrow B)$ with IP somewhere.

1.
$$A \rightarrow C$$
 P 2. $\neg (A \rightarrow B)$ P 3. $\neg \neg (C \rightarrow B)$ P [for $\neg (C \rightarrow B)$]4. $C \rightarrow B$ 3 , DN5. $A \rightarrow B$ $1, 4, HS$ 6. False $2, 5, Contr$ 7. $\neg (C \rightarrow B)$ $3-6, IP$ QED $1-2, 7, CP.$

Example/Quiz. Consider the following argument:

I eat spinach (S) or ice cream (I). If I study logic (L) then I will pass the exam (P). If I eat ice cream then I will study logic. If I eat spinach then I will play golf (G). I failed the exam. Therefore, I played golf.

The argument has five premises $\{S \lor I, L \rightarrow P, I \rightarrow L, S \rightarrow G, \neg P\}$ and conclusion G.

Prove that the argument is valid.

1.	$S \lor I$	P
2.	$L \rightarrow P$	Р
3.	$I \rightarrow L$	Р
4.	$S \rightarrow G$	Р
5.	$\neg P$	P
6.	$\neg L$	2, 5, MT
7.	$\neg I$	3, 6, MT
8.	S	1,7,DS
9.	G	4, 8, MP
	QED.	

Alter 6. 7. 8. 9.	native Proof: $I \rightarrow P$ $\neg I$ S G QED.	2, 3, HS 5, 6, MT 1, 7, DS 4, 8, MP
Alter	native Proof:	
6.	G v L	1, 3, 4, CD
7.	$\neg L$	2, 5, MT
8.	G	6, 7, DS
	QED.	
Alter	native Proof:	
6.	$I \rightarrow P$	2, 3, HS
7.	$G \lor L$	1, 4, 6, CD
8.	G	5, 7, DS
	QED.	