Section 6.2 Propositional Calculus

Propositional calculus is the language of *propositions* (statements that are true or false). We represent propositions by formulas called *well-formed formulas* (*wffs*) that are constructed from an alphabet consisting of

Truth symbols:	Т (о	r True) and F (or False)
Propositional variables:	uppe	ercase letters.
Connectives (operators):	-	(not, negation)
	٨	(and, conjunction)
	V	(or, disjunction)
	\rightarrow	(conditional, implication)
Parentheses symbols:	(and	d).

A *wff* is either a truth symbol, a propositional variable, or if V and W are wffs, then so are $\neg V, V \land W, V \lor W, V \rightarrow W$, and (W).

Example. The expression $A \neg B$ is not a wff. But each of the following three expressions is a wff: $A \land B \rightarrow C$, $(A \land B) \rightarrow C$, and $A \land (B \rightarrow C)$.

1

Truth Tables. The connectives are defined by the following truth tables.

P	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \rightarrow Q$
T	Т	F	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	F	Т	Т
F	F	Т	F	F	Т

Semantics

The meaning of T (or True) is true and the meaning of F (or False) is false. The meaning of any other wff is its truth table, where in the absence of parentheses, we define the hierarchy of evaluation to be \neg , \land , \lor , \rightarrow , and we assume \land , \lor , \rightarrow are left associative.

Examples.	$\neg A \land B$	means	$(\neg A) \land B$
	$A \lor B \land C$	means	$A \lor (B \land C)$
	$A \land B \rightarrow C$	means	$(A \land B) \rightarrow C$
	$A \rightarrow B \rightarrow C$	means	$(A \to B) \to C$

Three Classes

A *Tautology* is a wff for which all truth table values are T.

A *Contradiction* is a wff for which all truth table values are F.

A *Contingency* is a wff that is neither a tautology nor a contradiction.

Examples. $P \lor \neg P$ is a tautology. $P \land \neg P$ is a contradiction. $P \rightarrow Q$ is a contingency.

Equivalence

The wff *V* is *equivalent* to the wff *W* (written V = W) iff *V* and *W* have the same truth value for each assignment of truth values to the propositional variables occurring in *V* and *W*.

Example. $\neg A \land (B \lor A) \equiv \neg A \land B$ and $A \lor \neg A \equiv B \lor \neg B$.

Equivalence and Tautologies

We can express equivalence in terms of tautologies as follows:

V = W iff $(V \rightarrow W)$ and $(W \rightarrow V)$ are tautologies.

Proof: V = W iff V and W have the same truth values iff $(V \rightarrow W)$ and $(W \rightarrow V)$ are tautologies. QED.

Basic Equivalences that Involve True and False

The following equivalences are easily checked with truth tables:

$A \wedge \text{True} = A$	$A \vee \text{True} = \text{True}$	$A \rightarrow \text{True} = \text{True}$	True $\rightarrow A = A$
$A \land False = False$	$A \vee False = A$	$A \rightarrow \text{False} = \neg A$	$False \rightarrow A = True$
$A \land \neg A = False$		$A \lor \neg A = \text{True}$	$A \rightarrow A = \text{True}$

Other Basic Equivalences

The connectives \land and \lor are commutative, associative, and distribute over each other. These properties and the following equivalences can be checked with truth tables:

$A \land A = A$	$\neg (A \land B) \equiv \neg A \lor \neg B$	$A \land (A \lor B) = A$	$A \land (\neg A \lor B) = A \land B$
$A \lor A = A$	$\neg (A \lor B) = \neg A \land \neg B$	$A \lor (A \land B) = A$	$A \lor (\neg A \land B) = A \lor B$
$\neg \neg A \equiv A$	$A \rightarrow B \equiv \neg A \lor B$	$\neg (A \twoheadrightarrow B) \equiv A \land \neg$	י <i>B</i>

Using Equivalences To Prove Other Equivalences

We can often prove an equivalence without truth tables because of the following two facts:

1. If U = V and V = W, then U = W.

2. If U = V, then any wff W that contains U is equivalent to the wff obtained from W by replacing an occurrence of U by V.

Example. Use equivalences to show that $A \lor B \rightarrow A = B \rightarrow A$.

Proof:
$$A \lor B \rightarrow A = \neg (A \lor B) \lor A$$

 $\equiv (\neg A \land \neg B) \lor A$
 $\equiv (\neg A \lor A) \land (\neg B \lor A)$
 $\equiv \text{True} \land (\neg B \lor A)$
 $\equiv \neg B \lor A$
 $\equiv B \rightarrow A.$ QED.

Quizzes (1 minute each). Use known equivalences in each case. Prove that $A \lor B \to C \equiv (A \to C) \land (B \to C)$. Prove that $(A \to B) \lor (\neg A \to B)$ is a tautology (i.e., show it is equivalent to true) Prove that $A \to B \equiv (A \land \neg B) \to \text{False}$. Use absorption to simplify $(P \land Q \land R) \lor (P \land R) \lor R$. Use absorption to simplify $(S \to T) \land (U \lor T \lor \neg S)$.

Is it a tautology, a contradiction, or a contingency?

If *P* is a variable in a wff *W*, let W(P/True) denote the wff obtained from *W* by replacing all occurrences of *P* by True. W(P/False) is defined similarly. The following properties hold:

W is a tautology iff W(P/True) and W(P False) are tautologies.

W is a contradiction iff W(P/True) and W(P/False) are contradictions.

Quine's method uses these properties together with basic equivalences to determine whether a wff is a tautology, a contradiction, or a contingency.

Example. Let $W = (A \land B \rightarrow C) \land (A \rightarrow B) \rightarrow (A \rightarrow C)$. Then we have

$$\begin{split} W(A/\text{False}) &= (\text{False} \land B \to C) \land (\text{False} \to B) \to (\text{False} \to C) \\ &= (\text{False} \to C) \land \text{True} \to \text{True} = \text{True} \;. \end{split}$$

So W(A/False) is a tautology. Next look at

 $W(A/\mathrm{True}) = (\mathrm{True} \land B \to C) \land (\mathrm{True} \to B) \to (\mathrm{True} \to C) = (B \to C) \land B \to C.$

Let $X = (B \rightarrow C) \land B \rightarrow C$. Then we have

 $X(B/\text{True}) = (\text{True} \rightarrow C) \land \text{True} \rightarrow C \equiv C \land \text{True} \rightarrow C \equiv C \rightarrow C \equiv \text{True}.$

 $X(B/False) = (False \rightarrow C) \land False \rightarrow C = False \rightarrow C = True.$

So X is a tautology. Therefore, W is a tautology.

Quizzes (2 minutes each). Use Quine's method in each case. Show that $(A \lor B \to C) \lor A \to (C \to B)$ is NOT a tautology. Show that $(A \to B) \to C$ is NOT equivalent to $A \to (B \to C)$.

Normal Forms

A *literal* is either a propositional variable or its negation. e.g., A and $\neg A$ are literals. A *disjunctive normal form* (DNF) is a wff of the form $C_1 \lor \ldots \lor C_n$, where each C_i is a conjunction of literals, called a *fundamental conjunction*. A *conjunctive normal form* (CNF) is a wff of the form $D_1 \land \ldots \land D_n$, where each D_i is a disjunction of literals, called a *fundamental disjunction*.

Examples. $(A \land B) \lor (\neg A \land C \land \neg D)$ is a DNF. $(A \lor B) \land (\neg A \lor C) \land (\neg C \lor \neg D)$ is a CNF. The wffs $A, \neg B, A \lor \neg B$, and $A \land \neg B$ are both DNF and CNF. Why?

Any wff has a DNF and a CNF.

For any propositional variable A we have True = $A \lor \neg A$ and False = $A \land \neg A$. Both forms are DNF and CNF. For other wffs use basic equivalences to: (1) remove conditionals, (2) move negations to the right, and (3) transform into required form. Simplify where desired.

$$\begin{aligned} Example. & (A \to B \lor C) \to (A \land D) \\ &\equiv \neg (A \to B \lor C) \lor (A \land D) \\ &\equiv (A \land \neg (B \lor C)) \lor (A \land D) \\ &\equiv (A \land \neg B \land \neg C) \lor (A \land D) \\ &\equiv ((A \land \neg B \land \neg C) \lor A) \land ((A \land \neg B \land \neg C) \lor D) \\ &\equiv A \land ((A \land \neg B \land \neg C) \lor D) \\ &\equiv A \land (A \lor D) \land (\neg B \lor D) \land (\neg C \lor D) \\ &\equiv A \land (\neg B \lor D) \land (\neg C \lor D) \end{aligned}$$

$$(X \rightarrow Y \equiv \neg X \lor Y)$$

$$(\neg (X \rightarrow Y) \equiv X \land \neg Y)$$

$$(\neg (X \lor Y) \equiv \neg X \land \neg Y) (DNF)$$

(distribute \lor over \land)
(absorption)
(distribute \lor over \land) (CNF)
(absorption) (CNF). 5

Quiz (2 *minutes*). Transform $(A \land B) \lor \neg (C \rightarrow D)$ into DNF and into CNF.

Every Truth Function Is a Wff

A *truth function* is a function whose arguments and results take values in {true, false}. So a truth function can be represented by a truth table. The task is to find a wff with the same truth table. We can construct both a DNF and a CNF.

Technique. To construct a DNF, take each line of the table with a true value and construct a fundamental conjunction that is true only on that line. To construct a CNF, take each line with a false value and construct a fundamental disjunction that is false only on that line.

Example. Let f be defined by

$$f(A, B) = \text{if } A = B$$
 then True else False.

The picture shows the truth table for f together with the fundamental conjunctions for the DNF and the fundamental disjunctions for the CNF.

So f(A, B) can be written as follows:

$f(A, B) = (A \land B) \lor (\neg A \land \neg B)$	(DNF)
$f(A, B) = (\neg A \lor B) \land (A \lor \neg B)$	(CNF)

Full CNF and Full DNF. A DNF for a wff W is a *Full DNF* if each fundamental conjunction contains the same number of literals, one for each propositional variable of W. A CNF for a wff W is a *Full CNF* if each fundamental disjunction contains the same number of literals, one for each propositional variable of W.

Example. The wffs in the previous example are full DNF and full CNF.

A	В	f(A,B)	(DNF Parts)	(CNF Parts)
T	Т	Т	$\overline{A \land B}$	
Т	F	F		$\neg A \lor B$
F	Т	F		$A \lor \neg B$
F	F	Т	$\neg A \land \neg B$	

Constructing Full DNF and Full CNF

We can use the technique for truth functions to find a full DNF or full CNF for any wff with the restriction that a tautology does not have a full CNF and a contradiction does not have a full DNF. For example,

True = $A \lor \neg A$, which is a full DNF and a CNF, but it is not a full CNF. False = $A \land \neg A$, which is a full CNF and a DNF, but it is not a full DNF.

Alternative Constructions for Full DNF and Full CNF. Use basic equivalences together with the following tricks to add a propositional variable *A* to a wff *W*:

 $W = W \land \text{True} = W \land (A \lor \neg A) = (W \land A) \lor (W \land \neg A).$ $W = W \lor \text{False} = W \lor (A \land \neg A) = (W \lor A) \land (W \lor \neg A).$

Example. Find a full DNF for $(A \land \neg B) \lor (A \land C)$.

Answer. $(A \land \neg B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land C \land \neg B) \lor (A \land C \land B)$, which can be simplified to: $(A \land \neg B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land C \land B)$,

Quiz (*1 minute*). Find a full CNF for $\neg A \land B$.

 $Ans. \ (\neg A \lor B) \land (\neg A \lor \neg B) \land (B \lor A) \land (B \lor \neg A) = (\neg A \lor B) \land (\neg A \lor \neg B) \land (B \lor A).$

Complete Sets of Connectives

A set *S* of connectives is *complete* if every wff is equivalent to a wff constructed from *S*. So $\{\neg, \land, \lor, \rightarrow\}$ is complete by definition.

Examples. Each of the following sets is a complete set of connectives.

 $\{\neg, \land, \lor\}, \{\neg, \land\}, \{\neg, \lor\}, \{\neg, \rightarrow\}, \{False, \rightarrow\}, \{NAND\}, \{NOR\}.$

Quiz (2 minutes). Show that $\{\neg, \rightarrow\}$ is a complete.

Quiz (2 minutes). Show that {*if-then-else*, True, False} is a complete.