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Problem. [Hopcroft and Ullman, page - 73] Let L be a language. Define
1
2 (L) to be

{ x | for some y such that |y| = |x|, xy ∈ L } .

That is, 1
2 (L) is the first halves of strings in L. Prove for each regular L that

1
2 (L) is regular.

Solution. Since it is given that L is regular, let us assume that there exists a
deterministic finite automaton M = (Q,Σ, δ, q0, F ) such that

L(M) = L.

We will also assume that Q = {q0, q1, . . . , qm}. So, |Q| = m+ 1.
To prove that 1

2 (L) is regular, we will construct a DFAM ′ = (Q′,Σ, δ′, q′0, F
′)

such that L(M ′) = 1
2 (L). The description of M ′ is as follows. The set of states

in M ′ is
Q′ = { (q, S0, S1, . . . , Sm) | q ∈ Q and Si ⊆ Q, ∀i } .

The transition function δ′ is defined as follows

δ′ ((qi, S0, . . . , Sm), a) = (qj , S
′
0, . . . , S

′
m),

where

qj = δ (qi, a) (1)

S′
i =

∪
b∈Σ,
s∈Si

δ (s, b) ,∀i. (2)

The initial state of our new DFA will be

q′0 = (q0, {q0} , {q1} , . . . , {qm}) .

As for the set of final states,

F ′ =
{
(qi, S0, . . . , Sm) | Si

∩
F 6= φ

}
.
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Lemma 1. ∀x ∈ Σ∗, if

δ̂ (q0, x) = qj , and,

Sx
i =

∪
y∈Σ∗,
|y|=|x|

δ̂ (qi, y) , ∀i,

then
δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S

x
0 , S

x
1 , . . . , S

x
m) .

Proof. We will prove this by induction on the length of x. For the basis of
induction, let |x| = 0, which means x = ε. As the machine M is a DFA, we have

q0 = δ̂ (q0, ε)

and, ∀i Sε
i =

∪
y∈Σ∗,

|y|=|x|=0

δ̂ (qi, y)

= {qi} .

The second equality holds because y = ε.
So, we should have

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , ε) =
(
δ̂ (q0, ε) , S

ε
0, S

ε
1, . . . , S

ε
m

)
= (q0, {q0} , {q1} , . . . , {qm}) .

By construction of δ′, M ′ is a DFA. So, the above equality holds trivially. This
establishes the base case of induction.

The induction hypothesis is –
For all x ∈ Σ∗ such that length of x is less than some constant k, if

qj = δ̂ (q0, x)

and, Sx
i =

∪
y∈Σ∗,
|y|=|x|

δ̂ (qi, y) , ∀i

then
δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S

x
0 , S

x
1 , . . . , S

x
m) .

We would like to show that the above statement holds for strings of length k.
Consider an arbitrary string x of length k. Then, x can be written as

x = wa

where w is a string of length k − 1 and a is a symbol in Σ. Let us look at the
behaviour of M on w. Let

qj = δ̂ (q0, w) and

Sw
i =

∪
y∈Σ∗,
|y|=|w|

δ̂ (qi, y) , ∀i.
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As the length of w is less than k, by induction hypothesis, the transition of M ′

on w is

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , w) = (qj , S
w
0 , S

w
1 , . . . , S

w
m) .

Now, let us see how M behaves on x.

δ̂ (q0, x) = δ̂ (q0, wa)

= δ
(
δ̂ (q0, w) , a

)
, ( from the definition of δ̂ )

= δ (qj , a)

The transition of M ′ on x is

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , wa)
= δ̂′ (q′0, wa)

= δ′
(
δ̂′ (q′0, w) , a

)
= δ′ ((qj , S

w
0 , S

w
1 , . . . , S

w
m) , a) ,

( from induction hypothesis )

=

δ (qj , a) ,
∪
b∈Σ,
s∈Sw

0

δ (s, b) ,
∪
b∈Σ,
s∈Sw

1

δ (s, b) , . . . ,
∪
b∈Σ,
s∈Sw

m

δ (s, b)


( from the definition of δ′ )

= (δ (qj , a) , S
x
0 , S

x
1 , . . . , S

x
m)

( recall the length of w and the definitions of Sx
i )

=
(
δ̂ (q0, x) , S

x
0 , S

x
1 , . . . , S

x
m

)
.

This shows that the claim holds for all x of length k. �

Theorem 1. If x ∈ 1
2 (L), then x ∈ L(M ′).

Proof. Let x ∈ 1
2 (L). This implies that ∃y ∈ Σ∗ such that |y| = |x| and xy ∈ L.

Let us assume
δ̂ (q0, x) = qj .

Since |y| = |x|, δ̂ (qj , y) ∈ Sx
j . Thus, as δ̂ (q0, xy) ∈ F , it implies that δ̂ (qj , y) ∈

F . So, Sx
j

∩
F 6= φ. Hence, the state (qj , S

x
0 , S

x
1 , . . . , S

x
m) of the DFA M ′ is a

final state. From Lemma 1,

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S
x
0 , S

x
1 , . . . , S

x
m)

∈ F ′.

Thus, x ∈ L(M ′). �
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Lemma 2. ∀x ∈ Σ∗, if

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S0, S1, . . . , Sm) .

then

qj = δ̂ (q0, x) ,

and, Si = Sx
i , ∀i.

Proof. We will prove this by induction on the length of x. For the basis of
induction, let |x| = 0, which means x = ε. As the machine M ′ is a DFA, we
have

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , ε) = (q0, {q0} , {q1} , . . . , {qm}) .

So, for the machine M , we should have

q0 = δ̂ (q0, ε)

and, ∀i {qi} = Sε
i

Now, from the definitions of Sε
i , we have

Sε
i =

∪
y∈Σ∗,
|y|=|ε|

δ̂ (qi, y)

= {qi}

So, the claim holds for strings of length 0. This establishes the base case of
induction.

The induction hypothesis is –
For all x ∈ Σ∗ such that length of x is less than some constant k, if

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S0, S1, . . . , Sm) .

then

q0 = δ̂ (q0, x)

and, Si = Sx
i

We would like to show that the above statement holds for strings of length k.
Consider an arbitrary string x of length k. Then, x can be written as

x = wa

where w is a string of length k − 1 and a is a symbol in Σ. Let us look at the
behaviour of M ′ on w.

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , w) = (qj , S0, S1, . . . , Sm) .
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As length of w is less than k, by induction hypothesis the transition of M on w
gives us

qj = δ̂ (q0, w)

and, Si = Sw
i ,∀i.

Now, let us see how M ′ behaves on x.

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , wa)
= δ̂′ (q′0, wa)

= δ′
(
δ̂′ (q′0, w) , a

)
= δ′ ((qj , S0, S1, . . . , Sm) , a)

=

δ (qj , a) ,
∪
b∈Σ,
s∈S0

δ (s, b) ,
∪
b∈Σ,
s∈S1

δ (s, b) , . . . ,
∪
b∈Σ,
s∈Sm

δ (s, b)



=

δ (qj , a) ,
∪
b∈Σ,
s∈Sw

0

δ (s, b) ,
∪
b∈Σ,
s∈Sw

1

δ (s, b) , . . . ,
∪
b∈Σ,
s∈Sw

m

δ (s, b)


( from induction hypothesis )

= (δ (qj , a) , S
x
0 , S

x
1 , . . . , S

x
m)

=
(
δ̂ (q0, x) , S

x
0 , S

x
1 , . . . , S

x
m

)
.

This shows that the claim holds for all x of length k. �

Theorem 2. If x ∈ L(M ′), then x ∈ 1
2 (L).

Proof. Let

δ̂′ ((q0, {q0} , {q1} , . . . , {qm}) , x) = (qj , S0, S1, . . . , Sm) .

As x is accepted by L(M ′), from the definition of F ′, we have

Sj

∩
F 6= φ.

From Lemma 2, we have
Sj = Sx

j .

Thus, there exists y ∈ Σ∗, such that |y| = |x| and

δ̂ (qj , y) ∈ F.

So,

δ̂ (q0, xy) = δ̂
(
δ̂ (q0, x) , y

)
= δ̂ (qj , y)

∈ F.
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Hence, we have x ∈ 1
2 (L). �
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