
Yet Another Assignment

CS203

Disclaimer: I stake no claim on the originality of the
problems.

1 Regular Languages

1. Consider languages over some alphabet Σ. Argue whether the following
statements are correct.

(a) If L1 is not regular and L1 ⊆ L2, then L2 is not regular.

(b) If L1 ⊆ L2 and L2 is not regular, then L1 is not regular.

(c) If L1 is not regular, then its complement L1 is not regular.

(d) If L1 is regular, then L1

∪
L2 is regular for any language L2.

(e) If L1 and L2 are not regular, then L1

∩
L2 is not regular.

A nice easy set of problems to start your journey.

2. Consider an arbitrary language L over some alphabet Σ. We can define
the language of suffixes of the strings in L as

SUFF(L) = {u ∈ Σ∗ | vu ∈ L for some v ∈ Σ∗} .

Prove that if the language L is regular, then so is SUFF(L).

3. Show that if the language L over the alphabet Σ is regular, so is

1

q
(L) = {x | for some y such that |x| = (q − 1)|y|, xy is in L} .

By now, you should be comfortable with these kind of problems and begin to
differentiate between the beauty of intuition and the tediousness of formal
description.

4. Let Σ1 and Σ2 be disjoint alphabets. Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2. Define
shuffle(L1, L2) as the set of strings w ∈ (Σ1

∪
Σ2)

∗
with the following

properties –

1

(a) If all symbols in w that belong to Σ1 are replaced by ε, the resulting
string belongs to L2.

(b) If all symbols in w that belong to Σ2 are replaced by ε, the resulting
string belongs to L1.

Intuitively, you take two strings, w1 from L1 and w2 from L2, and shuffle
the symbols of w1 and w2 (like you shuffle two halves of a pack of cards)
to get strings in shuffle(L1, L2).

Show that if L1 and L2 is regular, so is shuffle(L1, L2).

As an example, if L1 = {ab} and L2 = {c, cd}, then

shuffle(L1, L2) = {cab, acb, abc, cdab, cadb, cabd, acdb, acbd, abcd}

2 Context Free Languages

5. For some language L over alphabet Σ, define graft(L) as

{w | w = xyz, x, y, z ∈ Σ∗, xz ∈ L and y ∈ L} .

Is graft(L) context-free?

6. Let L1 and L2 be languages over the alphabet Σ. Define the right quotient
of L2 by L1 as L1\L2

{w ∈ Σ∗ | ∃y ∈ L1 and yw ∈ L2} .

If L1 is regular and L2 is context-free, is L1\L2 necessarily context-free?

7. Show that each of the following languages is not context-free.

(a)
{
wwRw | w ∈ {0, 1}∗

}
. (wR is of course the reverse of w).

(b)
{
0n1n2i | 0 ≤ i ≤ n

}
.

3 Turing machines

8. Construct a Turing machine that does not accept the language

{anbncn | n ≥ 0} .

You are required to give a complete description of the Turing machine.

This question is to convince me, and indeed yourself, that if asked nicely
(or maybe paid enough), you can actually write out the entire description
of a Turing machine.

2

9. Construct a Turing machine that accepts the language{
ww | w ∈ {a, b}∗

}
.

You are not required to give a complete description of the transition
function. Just describe how your Turing machine will work in the various
states that you have defined.

This question will illustrate the power that the Turing machines gain by
being allowed to go back and forth over its input. Remember that our
Turing machines are deterministic.

10. Given that the languages L1 and L2 are recursive, prove that the following
two languages are recursive as well –

• L1L2.

• (L1)
∗.

The previous question should have given you enough insight to tackle the
first of the languages. A little bit of ingenuity will help you solve the second
problem.

11. Given that the languages L1 and L2 are recursively enumerable, prove
that the following two languages are recursively enumerable as well –

• L1L2.

• (L1)
∗.

These languages will seriously test your mettle. The main problem lies in
the fact that the machines for L1 and L2 need not halt on all inputs, so
the corresponding solutions for the recursive languages will not work.

12. Recall from problem 6 the right quotient of L2 by L1, denoted by as
L1\L2. If L1 and L2 are recursively enumerable, is L1\L2 also recursively
enumerable?

4 Firing Squad Synchronization Problem

The name of the problem comes from an analogy with real-world firing squads:
the goal is to design a system of rules according to which a general can command
a squad of troops to fire, and cause them to all fire their guns simultaneously.
More formally, the problem concerns an array of finite state machines, called
“cells”, arranged in a line, such that at each time step each machine transitions
to a new state as a function of its previous state and the states of its two
neighbors in the line. For the firing squad problem, the line consists of a finite
number of cells, and the rule according to which each machine transitions to
the next state should be the same for all of the cells interior to the line, but

3

the transition functions of the two endpoints of the line are allowed to differ, as
these two cells are each missing a neighbor on one of their two sides.

Among the states of the cells, there are three three distinguished states: “ac-
tive”, “quiescent”, and “firing”, and the transition function must be such that
a cell that is quiescent and whose neighbors are quiescent remains quiescent.
Initially, at time t = 0, all cells are in quiescent states except for the cell at the
far left (the general), which is active. The goal is to design a set of states and
a transition function such that, no matter how long the line of cells is, there
exists a time t such that every cell transitions to the firing state at time t, and
such that no cell transitions to the firing state prior to time t.

Promise that even at gun-point you would firmly yet politely refuse to consult
internet for solutions, and I guarantee you countless hours of frustration and
joy as you grope around in the dark for a solution.

4

