Prove that 2SAT is in P

Shobhit Chaurasia (11010179), Harshil Lodhi (11010121), Hitesh Arora (11010122)

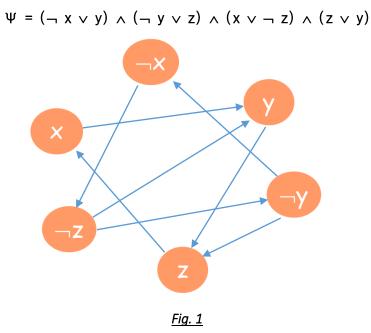
We propose the following polynomial time algorithm to decide whether a given 2SAT expression is satisfiable or not.

Consider a 2CNF formula Ψ with *n* variables and *m* clauses. We will show that 2SAT is polynomial-time decidable by constructing a graph and using path searches in the graph.

CONSTUCTION

Create a graph G = (V, E) with 2n vertices. Intuitively, each vertex resembles a true or not true literal for each variable in Ψ . For each clause (**a** V **b**) in Ψ , where 'a' and 'b' are literals, create a directed edge from ' \neg a' to 'b' and from ' \neg b' to 'a'. These edges mean that if 'a' is not true, then 'b' must be true and vice-versa. That is, there exists a directed edge (**a**, **b**) in G iff there exists a clause ($\neg \alpha \vee \beta$) in Ψ .

For example, the following 2CNF Ψ leads to the graph in Fig.1



CLAIM 1 - If G contains a path from α to β , then it also contains a path from $\neg \beta$ to $\neg \alpha$.

PROOF — Let the path from **\alpha** to **\beta** be $\alpha \rightarrow P_1 \rightarrow P_2 \rightarrow \dots \rightarrow P_k \rightarrow \beta$.

Now, by construction of G, if there's an edge (X, Y), then there's also an edge $(\neg Y, \neg X)$. Hence, the edges $(\neg \beta, \neg P_k)$, $(\neg Pk, \neg P_{k-1})$,, $(\neg P_2, \neg P_1)$, $(\neg P_1, \neg \alpha)$. Hence, there is a path from $\neg \beta$ to $\neg \alpha$.

CLAIM 2 – A 2CNF formula Ψ is **unsatisfiable** iff there exists a variable x, such that:

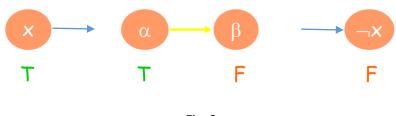
- 1. there is a path from \mathbf{x} to $-\mathbf{x}$ in the graph
- 2. there is a path from $\neg x$ to x in the graph

PROOF – (by contradiction)

Suppose there are path(s) **x** to $\neg x$ and $\neg x$ to **x** for some variable x in G, but there also exists a satisfying assignment $\rho(x_1, x_2, ..., x_n)$ for Ψ .

Case#1: Let $\rho(x_1, x_2, \dots, x_n)$ be such that x=TRUE.

Let the path x to $\neg x$ be x-> -> α -> β -> -> $\neg x$.



Now, by construction, there is an edge between A to B in G iff there is a clause $(\neg A \lor B)$ in Ψ . The edge from A to B represents that if A is TRUE, then B must be TRUE (for the clause to be TRUE). Now since x is true, all literals in path from x to α (including α) must be TRUE. Similarly, all literals in the path from β to $\neg x$ (including β) must be FALSE (because $\neg x$ =FALSE). This results in an edge between α and β , with α = TRUE and β = FALSE. Consequently the clause $(\neg \alpha \lor \beta)$ becomes FALSE, contradicting our assumption that there exists a satisfying assignment $\rho(x1, x2..., xn)$ for Ψ .

Case#2: Let $\rho(x_1, x_2..., x_n)$ be such that x=FALSE. (*Similar analysis*)

Hence, by checking for the existence of a **x** to \neg **x** and/or \neg **x** to **x** path in the G, we can decide whether the corresponding 2CNF expression Ψ is satisfiable or not. The existence of a path from one node to another can be determined by trivial graph traversal algorithms like **BREADTH FIRST SEARCH** or **DEPTH FIRST SEARCH**. Both BFS and DFS take polynomial time of O(V + E) time, where V = #vertices and E = #edges in G. *Hence proved that 2SAT is in P.*

COROLLARY

The same graph construction can be used to construct a satisfying assignment for Ψ (if it is satisfiable). The following Pseudo code highlights the algorithm.

- 1. Construct the graph G as described above and check if given 2CNF is satisfiable or not.
- 2. If given 2CNF is not satisfiable, return
- 3. Pick an unassigned literal α , with no path from α to $\neg \alpha$, and assign it TRUE.
- 4. Assign TURE to all reachable vertices of α and assign FALSE to their negations.
- 5. Repeat 3, 4 and 5 until all the vertices are assigned.