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Abstract

In recent years, the use of multi-view data has attracted much attention from the machine
learning community. Multiple views of an object are obtained using different sensors and contain
different features that describe the object. Such complementary nature of the information con-
tributed by multiple views leads to improved performance of the trained model. Many multi-view
learning algorithms have been proposed to make use of multi-view data. However, these algorithms
predominantly belong to the batch learning paradigm. Batch learning methods need all the training
data at the start of the training process. These methods cannot incorporate new data once the
training has been completed. If such a situation occurs, these methods must discard the trained
model and retrain on the updated dataset, thereby proving expensive in terms of training time and
memory.

Incremental methods solve this problem by updating the trained model after each increment
without needing the historical data. Many incremental counterparts of single-view learning algo-
rithms have been proposed in recent years. Some methods also support decremental unlearning of
data when a subset of existing data is deleted. However, there are only a handful of incremental
algorithms for multi-view data. The increment can be of two types in a multi-view context- data
sample increment and view increment.

We present four multi-view methods in this thesis. Three of which are incremental methods
equipped to update a trained model without needing the historical data, and one is a batch method.
Two of the incremental methods are data sample incremental methods. One supports incremental
learning for 1D multi-view data, and the other supports incremental learning and decremental
unlearning for 2D multi-view data. The third method is a view incremental multi-view method
that supports the addition and deletion of views. While formulating the 2D incremental method,
we also formulated a 2D multi-view batch method due to the absence of a multi-view batch method
for 2D data. All of these methods are based on Multi-view Discriminant Analysis (MvDA).

The first method is Multi-view Incremental Discriminant Analysis (MvIDA), which updates
a trained model to incorporate new data samples. MvIDA requires only the old model and newly
added data to update the model. Depending on the nature of increments, MvIDA is presented
as two cases, sequential MvIDA and chunk MvIDA. Both of the cases are equipped to handle
data samples from previously unseen classes. The experiments conducted on three widely used 1D
multi-view datasets show that through order independence and faster construction of the optimal
discriminant subspace, MvIDA addresses the issues faced by MvDA in an incremental setting.

The second method is 2D Multi-view Discriminant Analysis (2DMvDA), a 2D multi-view
classification method based on discriminant analysis. It uses the 2D image matrices directly instead
of extracting 1D features from them ensuring the preservation of spatial information and reduction
in the sizes of scatter matrices. This leads to better classification accuracy and a considerable
reduction in the computational cost. The experiments carried out on four image-based multi-view
datasets show that, using less time and memory, 2DMvDA achieves a classification accuracy at par
or better than its 1D and single-view counterparts.

We present an incremental version of 2DMvDA as 2D Multi-view Incremental Decremental
Discriminant Analysis (2DMvIDDA) that provides a way to incorporate new data samples or discard
the old ones without needing the historical data. The updates are done using just the old model



and the data samples to be added or deleted. We also present 2DMvIDDA as an umbrella method
that can be transformed into other methods that are based on discriminant analysis, such as
MvDA, MvIDA, 2DMvDA, 2DLDA (2D Linear Discriminant Analysis), and ILDA (Incremental
Linear Discriminant Analysis). Through the experiments on four image-based multi-view datasets,
we show that the proposed method is order-independent and converges to the same discriminant
subspace as 2DMvDA and builds a better model than other relevant methods with less time and
memory.

Lastly, we present View Incremental Decremental Multi-view Discriminant Analysis (VID-
MvDA) that updates a learned model without retraining when new views are added or existing
views are deleted. VIDMvDA is presented in two forms: incremental learning and decremental
unlearning. It provides closed-form solutions to update the within-class and the between-class
scatter, and it can also be used for 2D data by changing only one parameter. We prove that using
significantly less training time and memory, VIDMvDA constructs a similar discriminant subspace
and classification accuracy as its batch counterpart.
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Introduction

We are currently living in the information age, owing to the technological advances that enabled
us to gather and analyze a lot of data. This explosion of data gave rise to the digital companies
that strive to provide their clients a digital alternative to almost every aspect of their lives. We
enjoy the luxury of these digital options ranging from virtual meetings to online shopping and from
digital banking to automated medical diagnosis and fitness trackers. Various devices that support
these technologies keep generating a lot of raw data that can be turned into usable knowledge. The
knowledge, thus obtained, is the key for digital companies to provide their clients with a better
experience in virtual or real life. Hence, the need to transform this data into usable knowledge
increases.

Analysis of such a vast amount of data calls for algorithms that produce results in a very
short time using less memory and can improve themselves by including newer data and getting
rid of obsolete data. This thesis aims to fulfill this need in part by introducing four multi-view
methods in the supervised learning domain. These methods are based on discriminant analysis and
produce the same or even better results with significantly less time and memory requirements than
the traditional machine learning algorithms. Multi-view learning, 2D methods, and incremental
learning paradigms form the basis of the proposed methods. In this chapter, we look at the features
of these paradigms that provide motivation and help in designing the methods presented in this
thesis.

Multi-view Learning

Data acquired by different sources related by a common latent aspect is known as multi-view data.
A view of an object is defined as a set of features that store information about a certain aspect
of that object. The data samples within a view are assumed to be independent and identically
distributed (IID). Multiple views of an object provide information about multiple aspects of the
same object. The views of data are generated- (i) by observing the object using a single type of
sensor from multiple perspectives, or (ii) by using multiple sensors of different types, or (iii) by
obtaining independent sets of features from existing views. Fig. 1.1 shows examples of each of these
three cases. Fig. 1.1a presents an example of case-(i) of multi-view data where each view is captured
by a similar instrument, here- a camera. Each view has the same number of dimensions. All the
views complement each other by capturing the same person from different angles. Another example
of case-(i) is [1], where a photograph of a person captured in the visual spectrum is one view, and
a photograph of the same person captured in the infra-red spectrum is another view. Here, each



View 1 : Angle -90° View 2 : Angle -45° View 3 : Angle 0° View 4 : Angle 45° View 5 : Angle 90°

(a) Views obtained from a single sensor.

No! No! Noooooool!
View 1 View 2 View 3
Audio Signals Video Frame Subtitle Text

(b) Views obtained from different sensors.

SETFTTroT
T

View 1 View 2 View 3
Original Image Pixel Average Edge Features

(c) Views derived from an existing view.

Figure 1.1: Examples of multi-view data.

view is a photograph, so their features are comparable. Both the views complement each other by
capturing the same person in a different spectrum. Multiple views in fig. 1.1b represent case-(ii) as
they are obtained from different sensors belonging to different domains, namely- audio, image, and
text. As these views have different representations and features, they are not directly comparable
in their original form. A similar example of case-(ii) is [2], which has a multi-view dataset for speech
recognition with speech signals as one view and patterns of lip motion as another view. These views
cannot be compared without transforming them into features that share a common subspace. Fig.
1.1c shows an example of case-(iii). The first view is a photograph of a person captured using
a color camera. View-2 and view-3 are obtained from the first view by performing pixel average
and edge detection operations, respectively. These views are also not directly comparable in their
original form as they have different representations.

Traditional machine learning used only one view of the underlying objects. The use of multiple
views improves the performance of learned models because each view contributes some information
about the underlying objects [3, 4]. Fig. 1.2 shows an example that highlights the advantage of
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(b) Classification performance on test set with gradually increasing views

Figure 1.2: An example to demonstrate the advantages of having multiple views. As the number of
views increases, each view adds new complementary information. The learning algorithm leverages
this information to improve its performance on each test data sample.



using multiple views of data. Here, we see a training dataset with three views- the shape of each
fruit is one view, second is the color of a fruit, and the third one is the cross-section of each fruit.
Three things to note here are- (i) Each view contains the features of every fruit in the training
dataset, (ii) all views agree on the label of each fruit, (iii) Each view may have a different number
of features in it. These three are the fundamental assumptions of multi-view learning. Given this
dataset of fruits, the task is to learn to classify fruits in the test dataset. We see in Fig. 1.2b,
a model trained only on the first view has learned to distinguish between a heart-shaped and a
round-shaped fruit, but it cannot distinguish between the fruits of the same shape as there are not
enough features in that view that can teach the model to do so. We see three heart-shaped fruits
and three round-shaped fruits in the test data. The information obtained from this view gives our
model the ability to predict any label from (‘peach’, ‘apple’, ‘cherry’) for group-I and any label from
(‘orange’, ‘grapefruit’, ‘sweet-lime’) for group-1I. However, if we add a second view that describes
the color of fruit and train a model on both the views, this model can see the facts that were
not accessible using only the first view. Now, it can separate peach-colored ‘peach’ from group-I
and green-colored ‘sweet-lime’ from group-II. However, it cannot distinguish between red-colored
‘apple’ and ‘cherry’, or orange-colored ‘orange’ and ‘grapefruit’. When the third view that describes
the pulp’s color is added, each test sample can be labeled correctly because this view has more
discriminatory information than the previous ones. This example demonstrates the benefit of using
multiple views of the data that provide more object features that complement each other.

Due to their complementary nature, multiple views provide distinct information about the
data, which is leveraged by the learning algorithms [3, 4]. Hence, multi-view learning has been
gaining attention in the recent past. Several multi-view algorithms have been developed over the
years in different machine learning paradigms, such as supervised [5, 6, 7, 8], semi-supervised [9, 10],
active [11, 12], unsupervised [13, 14, 15] and transfer learning [16, 17]. These efforts demonstrate
improvements in the performance of the algorithms due to the use of multiple views.

Multi-view data is used in various ways in different paradigms. Supervised methods use labeled
data to train a model, and in multi-view learning, all views of an object in the training dataset
agree with each other on its label. We can see the object-label pair as an input-output pair on
which the model trains and, based on this training, produces output for the test objects. In the
semi-supervised or active learning domain, labeled data is scarce, and the model has fewer data
samples to train itself. Though the views agree on the labels of training data samples, due to
the scarcity of ideal object-label pairs, they may produce different labels for test data samples.
These conditions are often leveraged to expand the pool of labeled datasets by querying the labels
of such data samples. Co-training[18] and methods based on it [19, 10] train separate models on
different views and use these models alternately to label a few data samples that were labeled by
other models. Then, the data samples whose labels were most agreed upon are included in the
training set to improve the models further. The views of data can even be thought of as being
weak or strong. In the above example (Fig. 1.2), we see that view-1 and view-2 are not capable
of classifying all the fruits correctly on their own. Such views are termed as weak views. On the
other hand, view-3 can perfectly classify all the data samples by itself. Such views are termed as
strong views. Co-Testing [20] and methods based on it [21], make use of weak and strong views for
learning a better model. These methods deems a data sample to be most informative if the views
disagree on its label. It is based on the assumption that if the views disagree, then the data sample
must be in the class-boundary region.

Though beneficial for learning, multi-view data poses two challenges- its size and incompatibil-
ity of the views. When we have multiple views, the cumulative number of features of a data sample
increases, as each view contributes some information about the data. As a result, learning on
multi-view data demands more time and storage. If the views are obtained from different sources,



they are incomparable as they belong to different feature spaces. The multi-view algorithms can
be divided into three categories based on how they compare views. The first category of algorithms
trains separate classifiers on each view while only considering the within-view information. This
method is called late fusion, and some methods that use this technique are [22, 23]. At the time of
classification, any form of polling may be used. It can be traditional polling that finalizes the label
supported by the majority of the views, or it can be a weighted polling policy. A detailed study of
weighted voting-based methods is given in [24]. Some methods use the strong views for voting, and
the weak views are only used as tie-breakers. Algorithms in the second category consider within-
view and between-view information at the time of training [25, 26, 14]. This technique is called
early fusion, where information from all of the views is either simply concatenated or is integrated
using some method, and only one classifier is trained using this information. In this case, the test
data has to be transformed accordingly to suit the classifier. Some efforts to combine both fusion
types can also be seen in the literature. These methods train weak classifiers on each view while
using some parameters to gain information from other views without actually integrating them.
Some of the methods that use combined fusion are [14, 27].

Some multi-view learning algorithms [5, 6] employ techniques such as discriminant analysis
that can address both the challenges of multi-view data by constructing a common latent subspace
from the data. Discriminant analysis is a supervised method that reduces dimensionality by re-
moving redundant or dependent features of the data, thereby addressing the first challenge of size.
The common subspace, which allows the comparison of information from different views, addresses
the second challenge of incompatibility of views.

Multi-view learning algorithms proposed in the literature are predominantly batch learning
algorithms. These algorithms require all of the data to be available at the start of the learning
process. If additional data is introduced later, these algorithms must forget the trained model
and re-learn all the historical data. As a result, learning time and memory demands grow with
every addition in the data, making these algorithms unsuitable for such incremental data. To train
efficiently on the incremental data, we need methods that can support the inclusion of new data
without discarding the old model and retraining on the updated dataset. The incremental learning
paradigm provides such support to learn from new data without retraining, which is even more
desirable in the context of multi-view learning due to the large size of typical multi-view datasets.

Incremental Learning

Data is said to be incremental when new data samples are added to the existing dataset gradually
over time. To include these new data samples, batch methods train on all the previous data samples
after every addition. Incremental learning helps us alleviate this problem by updating the model
without training on all the previous data samples. With incremental learning, we can even add
data samples that belong to a previously unseen class. Fig. 1.3 shows the difference between batch
methods and incremental methods. As time passes, more and more data samples get added to
the dataset and the batch methods have to train on all these data samples. Hence, the cost of
training increases with time. On the other hand, incremental methods only need the old model
and new data samples to update the model. Hence, the training of a model is faster and requires
less memory.

The primary purpose of incremental learning is to include the latest data in the existing
model without needing the old data or forgetting it. This way, the model retains all the valuable
information from old data without needing those data samples for training in subsequent time-
frames. Hence, incremental learning techniques are used where training data is obtained gradually
over time. Another use case for incremental learning is when the memory requirements of data are
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Figure 1.3: Batch methods vs. Incremental methods: (a) Batch methods have to retrain on all the
historical data after every addition. (b) Incremental methods only need the old model and new
data samples to update the model after every addition.

beyond the limits of the computational system. In such a case, the training data can be divided
into smaller subsets that the system can support and then the model is trained on these subsets
incrementally.

The increment in single-view data may occur in two types-first adds one data sample at a
time, termed as sequential increment and the other adds a group of data samples at a time, termed
as chunk increment. The number of data samples added in one increment may or may not be the
same as that in the previous increment. Incremental methods for single-view data include methods
based on LDA [28, 29], PCA [30, 31] as well as SVM [32]. Some of the extensions [33, 34, 35, 30]
of SVM are presented as incremental-decremental methods that allow addition as well as deletion
of data samples. However, when used on multi-view data, the single-view methods treat all the
views as one and lose the discriminating information each view offers. Hence, these methods are
not equipped to handle multi-view data.

In the multi-view context, the increment can be of two types - the first is data sample incre-
ment, where the number of data samples gets updated with time, but the number of views remains
unchanged. The new data samples are added to all the existing views simultaneously. We see
the applications of this type of increment in tasks such as video surveillance [37] and autonomous
driving [38] where new training samples are added from all the cameras or other sensors. The other
type of increment is view increment, where the number of data samples is fixed, and the number
of views is updated over time as new views of every existing data sample are added. This type of
increment is seen when information from sensors, cameras, or other information capture tools that
were previously not included is added to gather new views of data in the recognition or detection
systems mentioned above.

The incremental learning paradigm is still in its early stages of development. Most of the



works report the advantages and the results of these methods. Due to the lack of comparative
or analytical studies, the challenges faced by the incremental methods have not been studied ex-
tensively. Nevertheless, we find two major challenges listed in the literature- First is termed as
catastrophic forgetting which refers to the situation where the learning algorithm forgets the older
data while learning from the new samples. The other challenge is the order of update, where the
order of addition or deletion of data samples changes the learned model considerably. Discriminant
analysis-based methods do not face these problems as the scatter matrices are computed by adding
the scatter of each data sample together, leading to the ability to remember all data samples and
order-invariance. Another challenge is faced by the methods that retain some of the older data
samples. These methods must devise a strategy to select the data samples that are most infor-
mative as there is often an imposition on the number of data samples a model can retain in their
original form.

In real life, we see many applications that are of incremental nature and use newer data
to produce up-to-date results. Omne such system to use incremental learning is an autonomous
driving system [38] that collects data and incrementally learns to recognize different objects from
every new encounter. Though many incremental learners keep expanding their knowledge-base by
learning new information, others may choose to forget some of the older data samples for better
performance. For example, the recommendation engine [39] of the online video platforms collects
the watch history and recommends more videos related to the latest favorites of the user. Here, the
system may choose to forget some or all of older data as it has become obsolete due to the changed
preferences of the user.

2D Learning

2D learning is designed for image-based datasets and is about changing the use of data for training.
Traditionally, useful features from these images are extracted to train on image-based data for
various computer vision tasks. Such features are often one-dimensional and specialize in capturing
a particular aspect of the image, such as histograms, corners, or blobs. If the features are 2D, they
must be reshaped into 1D vectors before training.

While these features are useful, they have some disadvantages. The first disadvantage is the
one-dimensional nature of such features. These features, being one-dimensional, are less suitable for
capturing the structural or spatial information that is better stored in a 2D image matrix. Hence,
the vectorization defeats the purpose of having 2D data or 2D features. Secondly, these specialized
features may not carry all the information that is valuable to the learning task. One has to use a
combination of many features to gather the required information from an image. Lastly, as the size
of one-dimensional features is often large, we have to face the problem of singularity. For example,
if the size of the images in a dataset is p X ¢, then the size of the feature vector will be pg. If
one wishes to use these features, the size of the scatter matrix will be pg X pg, which is very large
compared to the small number of data samples in a typical image processing dataset. This issue
becomes even more prominent with the emergence of new technology, as high-definition images lead
to even larger feature vectors.

To address these issues of 1D methods, one can directly use the original image matrix. The
original matrix form stores the spatial information better as it is inherently two-dimensional. The
original 2D image has all the information within itself, so we do not need to extract any other
features. It also tackles the singularity issue as the number of dimensions of the scatter matrix
is significantly less than that when computed with the one-dimensional features. Continuing with
the example above, when the matrix form of an image of size r x ¢ is used directly, the size of
the scatter matrix will be r x r instead of r¢ X re. Fig. 1.4 shows how the use of 2D data in its
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Figure 1.4: Difference between the sizes of scatter matrices- (a) 2D data of size 4 x 3 produces a
scatter matrix of size 4 x 4. (b) The vectorized form of the same input matrix produces scatter
matrix of size 12 x 12.

original form produces a smaller scatter matrix than the 1D data. Another benefit of 2D data is
that its use eliminates the efforts put into feature extraction. These qualities of original 2D image
data make it a better candidate for training a classification model. To use it for training, we need
methods designed for the 2D data.

2D methods are fairly restricted in terms of the domains where they can be used. However,
their impact cannot be ignored. Natural 2D data is used primarily in computer vision and image
processing applications. Though conceptualized as early as in 1991 [40], these methods are just
now finding their footing in the literature. 2D methods play a significant role for tasks such as
face [41], gait [12], and character [43] recognition, among others. However, these are all single-view
methods, and the multi-view paradigm has not yet benefited from the advantages these methods
offer. The main goal of using 2D data is to reduce computational memory. Hence, methods that
deal with multi-view data that can be very large will benefit from 2D methods.

1.1 Contributions of the Thesis

In this thesis, we present four methods that fill four niches in multi-view learning. We introduce
incremental-decremental learning to the multi-view domain with our first method that supports the
inclusion and removal of data samples. Then, we formulate a multi-view batch learning method for
2D data. This method is then extended to support incremental learning and decremental unlearning
of data samples in the 2D multi-view domain in the third method. Lastly, we present a method
to incrementally learn or decrementally unlearn the views of data. All of these methods belong to
the supervised learning domain and are based on Multi-view Discriminant Analysis (MvDA) [5].
These methods use incremental learning and 2D learning paradigms to achieve their goals. Fig.
1.5 shows where the presented methods stand in the multi-view learning paradigm.
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Figure 1.5: The placement of presented methods in the multi-view learning paradigm.

1.1.1 Contribution 1: An Incremental Decremental Method for 1D Multi-view
Data

Multi-view batch methods have proved their utility by producing better results than single-view
methods. However, when working with incremental data, these methods need to retrain from
scratch after every addition or deletion in the dataset. We need incremental methods for training
efficiently on the incremental data. The following research questions are investigated in this regard.

RQ1: Can an incremental method, without using old data samples, produce an iden-
tical model to that of its batch counterpart MvDA?

RQ2: Is this incremental method invariant to the order of addition of new data
samples?

RQ3: Can this incremental method reduce training time?
RQ4: Can this incremental method reduce memory requirements?

RQ5: Is this multi-view incremental method more advantageous than a single-view
incremental method in terms of classification accuracy and training time?

Solution: We present Multi-view Incremental Decremental Discriminant Analysis (MvIDDA),
which supports the addition/deletion of data samples without using the old data samples.
MvIDDA offers a closed-form solution to update the existing model using only the data
samples to be added/deleted. It considers all the views and jointly solves the linear transform
to find the same optimal common discriminant space as a batch method.

Results: The experiments carried out on three 1D multi-view datasets show that the proposed
method indeed finds the same subspace as its batch counterpart. Moreover, the produced
model does not depend on the order or the number of data samples in each update. MvIDDA
is also shown to perform the updates in less time and memory than MvDA due to its incre-
mental nature. Incremental Linear Discriminant Analysis (ILDA) is a single-view incremental
method based on discriminant analysis. The comparison of MvIDDA with ILDA shows that
using a multi-view incremental method on multi-view data produces better results than those



obtained using a single-view incremental method. This comparison also shows that MvIDDA
requires less training time than ILDA.

1.1.2 Contribution 2: A Batch Method for 2D Multi-view Data

Image-based data is best represented in its original 2D form, as this form preserves spatial infor-
mation. However, due to the lack of methods that support the use of 2D multi-view data, it must
be converted in the vectorized form before it is used for training. To tackle this, we need improved
multi-view methods that can train on the 2D form eliminating the need for vectorization. The
following research questions are investigated in order to fulfill this need.

RQ1: Can a 2D multi-view method build better classification model than a 1D multi-
view method or a 2D single-view method?

RQ2: Can the use of 2D matrices reduce training time?
RQ3: Can the use of 2D matrices reduce memory requirements?

Solution: We present 2D Multi-view Discriminant Analysis (2DMvDA), which can use the 2D
multi-view data without having to vectorize it before training. Like MvIDDA, this method
also solves the linear transforms of every view together and forms an optimal common dis-
criminant subspace. This method also forms the basis for its incremental version presented
in the following contribution.

Results: The experiments carried out on four 2D datasets show that the proposed method benefits
from the direct use of 2D data in two ways: (i) it generates significantly smaller scatter
matrices, leading to reduced time and memory costs. (ii) it preserves spatial information,
leading to improved classification accuracy. The comparison of training time and memory
requirements shows that the proposed method needs less time and memory than the 1D
multi-view method (MvDA) and a 2D single-view method (2DLDA).

1.1.3 Contribution 3: An Incremental Decremental Method for 2D Multi-view
Data

Though MvIDDA has been proposed for multi-view incremental data, it does not support 2D data.
For 2D incremental data, we need a method that can train on the original matrix form of the data.
Also, to facilitate the removal of the obsolete data samples from the model, we need a method that
supports decremental unlearning.

RQ1: Can the 2D incremental-decremental method, without using old data samples,
produce an identical model to that of its batch counterpart, 2DMvDA?

RQ2: Is this method invariant to the order of addition or deletion of data samples?

RQ3: Isthis method more advantageous than other discriminant analysis-based meth-
ods?

Solution: We present a method, 2D Multi-view Incremental Decremental Discriminant Analysis
(2DMvIDDA), which supports the addition and deletion of data samples at any point in
time. It provides closed-form solutions to update the scatter matrices without retraining
after each addition/deletion. This method can also be transformed into other methods based



on discriminant analysis, such as MvIDDA, 2DMvDA, MvDA, 2DLDA, and ILDA, with minor
changes to the formulation.

Results: The experiments show that 2DMvIDDA produces the same discriminant subspace as
its batch counterpart 2DMvDA and is order-independent. The experiments to compare
2DMvIDDA with other methods based on discriminant analysis are carried out in two parts.
The first set compares these methods on rescaled versions of four 2D datasets to show that
2DMvIDDA attains the best classification accuracy among all these methods using consid-
erably less time and memory owing to its use of all three paradigms. The rescaled versions
are used here because the 1D methods could not train on the original datasets due to their
huge memory requirements. The second set of experiments trains the model using only the
2D methods- 2DMvIDDA, 2DMvDA, and 2DLDA on the original versions of the same four
datasets to show the vast difference in memory requirements of 1D vs. 2D methods.

1.1.4 Contribution 4: A View Incremental Decremental Method for Multi-view
Data

Increment /decrement in multi-view context is of two types: data sample increment and view in-
crement. MvIDDA and 2DMvIDDA belong to the data sample increment category. However, to
support the addition or deletion of views of data, we need a view incremental method.

RQ1: Can the incremental-decremental method, without using old views, produce
an identical model to that of its batch counterpart MvDA?

RQ2: Is this method invariant to the order of addition or deletion of data samples?

RQ3: Can this method perform as well as the batch method in terms of classification
accuracy?

RQ4: Can this method reduce training time?
RQ5: Can this method reduce memory requirements?

Solution: We present View Incremental Decremental Multi-view Discriminant Analysis (VID-
MvDA), which supports incremental learning and decremental unlearning of the views of
data without retraining. VIDMvDA jointly solves multiple linear transforms to produce the
same optimal common discriminant subspace as its batch counterpart MvDA. Though pre-
sented for 1D data, VIDMvDA can also be used as a 2D method.

Results: The experiments on three 1D datasets show that the proposed method finds the same
or sometimes better common subspace than its batch counterpart, MvDA. It is proven to
be order-independent and has the same or slightly better classification accuracy than MvDA.
VIDMvDA also updates the model to include or exclude the views using less time and memory
than MvDA.

1.2 Organization of the Thesis

The thesis is comprised of eight chapters. The chapter-wise organization of the thesis is given
below:

Chapter 2 reviews multi-view batch methods and single-view incremental methods. It also takes a
look at the methods that emerged out of a combination of multi-view and incremental learning,



namely data-incremental and view-incremental multi-view methods. We then present single-
view batch methods for 2D data, as 2D learning is a relatively new paradigm and does not
have any multi-view or incremental methods. In this chapter, we also briefly go through the
workings of a recent multi-view batch method, Multi-view Discriminant Analysis (MvDA),
which serves as an inspiration for our methods presented in this thesis. MvDA is, as the name
suggests, based on discriminant analysis.

Chapter 3 introduces the terminology and notations used by the methods in this thesis and states
the assumptions made by these methods. Then, it describes the 1D and 2D datasets used for
experiments that measure the performance of presented methods.

Chapter 4 presents the formulations of our first contribution, Multi-view Incremental Decremen-
tal Discriminant Analysis (MvIDDA), and the experimental results thereof. MvIDDA is an
incremental decremental classification method based on discriminant analysis for multi-view
data.

Chapter 5 presents a classification method for 2D multi-view data. This batch method, 2D Multi-
view Discriminant Analysis (2DMvDA), serves as a basis to introduce an incremental method
in the context of 2D multi-view data in chapter 6.

Chapter 6 presents 2D Incremental Decremental Discriminant Analysis (2DMvIDDA), an incremental-
decremental classification method for 2D multi-view data. This method can be converted into
MvDA, ILDA, 2DLDA, MvIDDA, and 2DMvDA.

Chapter 7 presents an incremental-decremental method that supports view-wise addition or dele-
tion. This method, View Incremental Decremental Multi-view Discriminant Analysis (VID-
MvDA), incrementally learns or decrementally unlearns the views of data.

Chapter 8 highlights the conclusions and summarizes the contributions made. New avenues for
future research have also been discussed.

DRUCES St



Literature Survey

In this chapter, we take a look at recent developments in the paradigms relevant to the methods
presented in this thesis, namely- Multi-view batch learning, single-view incremental learning, multi-
view incremental learning, and 2D methods. We shall first take a look at the discriminant analysis-
based methods for each of these paradigms as the thesis focuses on discriminant analysis, and then
we will go through other methods pertaining to these paradigms. At the end of this chapter, we will
briefly review Multi-view Discriminant Analysis (MvDA) as this method serves as an inspiration
for the methods presented in this thesis.

2.1 Multi-view Batch Methods

Multi-view methods are proposed in nearly all of the machine learning paradigms. Out of those,
we will first briefly discuss the methods that are based on discriminant analysis and then discuss
other noteworthy multi-view methods.

2.1.1 Discriminant Analysis-based Methods

Multi-view discriminant analysis (MvDA) [5] is a method based on discriminant analysis, which
jointly solves multiple linear transforms to compute the optimal projection matrix. This method
forms the basis of the methods presented in this thesis. KMvDA [44] is a kernelized version of
MvDA, which uses random Fourier features to approximate Gaussian kernels in large-scale learn-
ing. The use of kernels enables the construction of a better subspace by projecting the data onto
a non-linear higher-dimensional space. Another method is local feature-based multi-view discrim-
inant analysis (FMDA) [45], which employs the local feature descriptor (LFD) matrices and the
representation matrices. Representation matrices are comprised of only the non-redundant linear
coefficients of the LFDs for each view. The dimensionality is reduced further by using discriminant
analysis on these matrices, and the singularity problem is also addressed to some extent. Shu et
al. proposed a two-step approach based on MvDA in [46]. They use the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to capture the intra-view class information in the first step and CCA to
capture the inter-view correlation in the second step. A multi-view method based on Uncorrelated
LDA is presented in [6]. This method is a multi-view version of ULDA that uses the constraint
of S-orthogonality to find uncorrelated projection vectors, leading to better subspace construction.
The same paper also presents two non-linear versions of MULDA that use Kernel CCA and Kernel
DCCA, respectively, to project the data onto the higher dimensions. Based on the observation that
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many of the supervised and unsupervised feature extraction methods follow a similar structure that
can be solved as a generalized eigenvalue problem, Sharma et al. [7] present Generalized Multiview
Analysis (GMA). This method is a generalized supervised framework and can obtain a linear latent
subspace when coupled with other methods like LDA or Marginal Fisher Analysis (MFA). It can
also be kernelized to obtain a non-linear subspace.

2.1.1.1 Multi-view Discriminant Analysis (MvDA)

As stated earlier, Multi-view Discriminant Analysis (MvDA) [5] forms a basis of the methods
presented in this thesis. Hence, we take a look at the workings of MvDA. This method uses
discriminant analysis to project the data samples onto a common subspace. Discriminant analysis
works by finding projection vectors that bring the data samples from one class closer together while
separating different classes from each other in the discriminant subspace. To apply this principle
to multi-view data, MvDA needs to jointly find the projection vectors for all the views. It also
needs to keep together the data samples that belong to the same class across all the views. This is
achieved by a joint optimization function given as-
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Here, v is the number of views. This function maximizes the between-class scatter (Sg) while
minimizing the within-class scatter (Sy ) in the projected space. The optimal projection matrix
W projects data samples so that they are better discriminable in the projection subspace. To
find an analytical solution, the function in Eq. (2.1) is reformulated as a ratio-trace function. To
achieve this, both the scatter matrices in projected space are defined in the original space as in Eq.
(2.2) and Eq. (2.3).
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The projection matrix thus found is used to project the test data samples onto the common
discriminant subspace and are assigned appropriate class labels.



2.1.2 Other Multi-view Batch Methods

Multi-View Multi-Feature Learning (MVMFL) [8] describes each view by multiple features to con-
vey different information. It sees the features as the projections of latent features extracted from a
more discriminant space. The label information guides the extracted latent features belonging to
one class to follow the same Gaussian distribution for better classification. Huang et al. present
a robust multi-view method based on Lp-norm minimization and Ls-norm maximization in [47].
This method provides a multi-view counterpart for classical GEPSVM methods. The robustness is
achieved by using Lp-norm and Ls-norm to calculate the distances from positive and negative points
to the hyperplane, which minimizes the effect of the outliers. Another multi-view method based
on uncorrelated constraints (MULPP) is presented in [48]. This method is based on the locality
preserving projection. MULPP aims to obtain multiple projections and minimize the redundancy
of low-dimensional features. To achieve this, it first finds the primary projections of each view and
then adds uncorrelated constraints to find more non-redundant low-dimensional projections.
Though these methods make efficient use of the multi-view data to build better classification
models, they have been developed for batch learning and do not handle the incremental data.

2.2 Single-view Incremental Methods

The incremental learning paradigm has seen developments in the past few years, presenting many
incremental or online versions of learning algorithms. This section briefly goes over some of the
single-view incremental methods based on discriminant analysis and other learning algorithms.

2.2.1 Discriminant Analysis-based Methods

Pang et al. [28] proposed an incremental algorithm for LDA that updates the discriminant
eigenspace as and when the new data is presented. This method works even when the data samples
belonging to an entirely new class are added. GSVD-ILDA [19] is another incremental method
based on LDA. This method uses generalized SVD to find the projection matrix in full space.
Complete LDA or CLDA, a version of traditional LDA, addresses the problem of singularity of the
within-class scatter matrix. A modified CLDA algorithm, along with its incremental version, is
presented in [50]. Chu et al. presented an incremental version of LDA/QR in [51], which is faster
than LDA, as it uses QR factorization of the data matrix before solving a lower triangular linear
system. Liu et al. present an incremental version of discriminant analysis in [52] as kernel null-space
discriminant analysis (IKNDA). Along with the discriminant analysis, IKNDA also employs deep
neural networks for better performance in novelty detection. Some methods [33, 53, 54, 36] support
incremental learning and decremental unlearning too. Incremental decremental SVM (IDSVM) [33]
supports the addition or deletion of one data sample at a time without retraining. Karasuyama et
al. extended IDSVM in [53] enabling the addition and deletion of multiple data samples at a time.
Interleaved IDSVM [54] makes it possible to learn and unlearn at the same time while reducing
the computational complexity of the method, thereby reducing the training time by a margin of
60%-70%. Another SVM-based method presented in [36] offers a boosting algorithm for non-linear
SVM that supports incremental learning and decremental unlearning.

2.2.2 Other Single-view Incremental Methods

Incremental SVM [55] is one of the earliest incremental versions of SVM. It incrementally learns
the classifier while only remembering certain useful support vectors. Older support vectors are



also gradually discarded using the least recently used policy and newer support vectors are added.
Incremental PCA presented in [56] is used for visual learning. This method is an incremental
version of PCA and retains only the learned coefficients and can discard the data after incrementally
updating the model. SVDU-IPCA [30] is a specialized method for face recognition based on IPCA
that bounds the approximation error to be significantly less. This is achieved by using singular
value decomposition (SVD) updating. Incremental PCA-LDA [57] is a combination of two methods
as it computes the principal components incrementally without computing the covariance matrix
and finds the linear discriminant directions to separate the classes from each other using LDA.

2.3 Multi-view Incremental Methods

The benefits of incremental methods in the single-view context were sure to give rise to their multi-
view counterparts. In the multi-view context, however, along with the data sample increment we
also have view increment. We take a look at the methods belonging to both of these categories.

2.3.1 Data Sample Increment

Incremental multi-view passive-aggressive active learning algorithm (IMPAA) [58] supports the
data sample increment. This classification method is based on active learning and is designed for
polarimetric synthetic aperture radar (PolSAR) data. IMPAA assumes increments in the number
of data samples and works with two views of data. The data samples on whose labels these two
views do not agree are seen as informative data samples. Labels of these data samples are queried
and then used to improve the model. One more incremental method [59] to classify the PolSAR
data combines semi-supervised and active learning. The method has two phases of learning- one
uses active learning to select some informative samples with the help of multi-view information
and randomized rule, the next phase employs semi-supervised learning to update the classifier.
Both of these methods are equipped to work with the data samples from previously unseen classes.
However, these methods do not present a way to add new views of data samples or delete existing
data samples or views.

2.3.2 View Increment

Zhou et al. proposed a method based on SVM in [60] which supports the view increment. This
method, incremental multi-view support vector machine (IMSVM), assumes an increment in the
number of views instead of data samples. When a new view is encountered, IMSVM updates the
trained model to include information from this view. The complementing information from different
views is used for the betterment of the model. Incremental multi-view spectral clustering (IMSC)
[61] also supports increment in the number of views. This clustering method learns a consensus
kernel from the new views and the base kernels when a new view is added. The base kernels are
also updated simultaneously. As IMSVM and IMSC are based on the increment in the number of
views, these methods only support the addition of new views of the existing data samples. These
methods are not equipped to handle the addition of new data samples, as in the case of IMPAA.

2.4 2D Batch Methods

Eigenfaces [40] and Fisherfaces [62] were the very first methods to use the original image matrix
directly. Since then, many methods have been proposed to make use of the 2D data because of the



benefits it has to offer. We present 2D methods based on discriminant analysis and other traditional
machine learning algorithms.

2.4.1 Discriminant Analysis-based Methods

2D Linear Discriminant Analysis (2DLDA) [63] is a classification method based on discriminant
analysis, which suggests the use of fisher linear projection criterion to overcome singularity. A
modified version of 2DLDA was presented in [64] which uses weighted between-class scatter to
separate the classes further. Wang et al. presented a formulation of 2DLDA for non-linear data
[65], which uses a specially designed convolutional neural network (CNN), facilitating the use of
non-linear data. Another 2DLDA-based method is presented in [66]. This method eliminates the
outlier and the small sample size problem by using bilateral Lp-norm criterion. Some methods
[67, 68] use fuzzy sets in the feature extraction process to improve the performance. A membership
degree matrix is computed using fuzzy k-NN, which is then used for classification by these meth-
ods. Another method based on 2DLDA is Fuzzy 2DLDA [69], which uses sub-image and random
sampling. This method divides the original image into sub-images to make 2DLDA more robust to
facial expressions, occlusions, or illumination. In the next step, local features are extracted from
sub-images, and the fuzzy 2DLDA algorithm is applied to randomly-sampled row vectors of these
sub-images. Cost-sensitive Dual-Bidirectional LDA (CB?LDA) [70] employs the bidirectional LDA
along with the misclassification costs to improve classification results. Each misclassification has
an associated cost, which is leveraged during the classification phase in this method.

2.4.2 Other Single-view 2D Methods

2DPCA [71], as the name suggests, is a 2D version of traditional PCA. It constructs the image
covariance matrix directly from the original images. Eigenvectors of the covariance matrix com-
prise the feature vectors, which are then used for classification. 2DPCA was further adopted and
modified by Kong et al. [72]. They proposed two methods based on 2DPCA in their paper- one is
bilateral-projection-based 2DPCA (B2DPCA), and the other is Kernel-based 2DPCA (K2DPCA).
B2DPCA constructs two projection directions simultaneously and projects the row and column
vectors of the image matrix onto two different subspaces. This way, the image can be represented
by fewer coefficients than 2DPCA. K2DPCA is the kernelized version of the 2DPCA. It facilitates
the modeling of non-linear structures versus the linear projection technique of the 2DPCA. An-
other method based on 2DPCA was proposed in [73] by the name of F2DPCA. This method uses
the F-norm minimization to make the method robust to outliers. The distance in the attribute
domain is computed using F-norm, and the summation over different data points uses the 1-norm.
F2DPCA is also robust to the rotation of the images. Angle-2DPCA [74] uses the F-norm along
with the relationship between reconstruction error and variance in the criterion function, making
the method more robust to the outliers.
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Notations, Assumptions and Datasets

This chapter introduces the notations and definitions used throughout the thesis. The methods
presented in later chapters use the same notations as given here. We also state the common premises
about datasets assumed by these methods. Towards the end of this chapter, we list the details of
datasets used for experiments.

3.1 Terminologies and Notations

We use lowercase letters to denote a constant (e.g.- n, n;;) and boldface lowercase letters for
vectors (e.g.- X;ji). A boldface capital letter (e.g.- S;.) denotes a matrix, and a set is represented
using calligraphic capital letter (e.g.- X'). The notations used in this thesis are listed in Table 3.1.

As the methods presented in this thesis use either 1D or 2D data samples, the representation
varies according to the dimensionality of data. This difference is presented here explicitly. However,
at the subsequent mentions of the data samples in this chapter, only the 1D notations are used.
Let us denote a multi-view dataset as X. If it is a 1D dataset, it is defined as

X:{X”k”L:l,,C, ]:1,,7), k:]-)vnl]}

Here, each vector x;j;, is the k" data sample from j* view of it" class and n;j is the number
of data samples in j** view of i*" class.

If X is a 2D dataset, each of its k' data sample from 7" class of j' view is denoted as Xjx.
The dataset is defined as

X:{lekh:lvacv ]:17 , U3 kzl?anz]}

We denote the number of classes with ¢ and the number of views with v. The size of each
data sample is p; X g. The value of p; may vary across the views, but it is the same for all data
samples within a view. The value of ¢ is constant for all the data samples across all the views. For
1D datasets g = 1.

Every data sample from the original space is projected into a common discriminant subspace
using the projection matrix W = {W{WQT - 'WﬂT, where each W is a d x p; matrix that is
used to project jth view. The data samples thus projected are denoted as

y:{yijk:W]TXiij:l,“- =1, ,vk=1,- 7nij}
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Table 3.1: Table shows how the entities are denoted with different notations for existing dataset
(X), added/deleted subset (X) and the updated dataset after addition/deletion (X”).

Description Existing Added/Deleted Updated
Data sample of 1D dataset Xijk Xijk x;jk
Data sample of 2D dataset Xijk )_(Z-jk éjk
Size of 1D data samples pj x 1 - -
Size of 2D data samples Dj X q - -
No. of classes c c d
Set of classes C C c’
No. of views v v v’
Set of views % \% V'
No. of data samples per class per view Nij Nij ngj
No. of data samples per class n; n; n,
No. of total data samples n n n'
Mean per class per view of 1D dataset mi;() it l(;() m;j (x)
Class mean of 1D dataset m; m; m)
Total mean of 1D dataset m m m’
Mean per class per view of 2D dataset MZ(;() 1\711(;{) M;j G
Class mean of 2D dataset M; M, M,
Total mean of 2D dataset M M M’
Within-class scatter in projected space Sw - S
Within-class scatter in original space S - S’
Between-class scatter in projected space Sp - Ss
Between-class scatter in original space D - D’
Projection matrix \\% - -
No. of projection vectors d - -
Projected 1D data samples Yijk Yijk y;jk
Projected 2D data samples Yk Yiji Lk




Mean per class per view

Class Mean

Figure 3.1: The figure shows the three means pictorially. Three views are shown with three colors-
blue, red and green. Two classes, Classl and Class2, are depicted with squares and triangles,
respectively.

Each y,j, is of size d x 1, where d is the number of projection vectors. Each projected 2D data
sample is denoted as Y;;;, and is of size d x q.

There are three data sample counts- number of data samples per class per view (n;;), number
of data samples per class (n;), and the total number of data samples (n). Similarly, we also have
three corresponding means- mean per class per view (mg;()), class mean (m;) and the total mean
(m). Table 3.2 lists these entities along with their equations and interrelations. The mean per class
per view is denoted with a superscript (x) because it is computed in the original space. However,
the other two means are computed in the projected space because their computations involve data
samples from all the views that are not comparable in the original space.

The increments in the dataset can be of two types: (i) data sample increment- where the
number of views remains the same and only the number of data samples changes over time, or
(ii) view increment- where the number of data samples remains the same and the number of views
changes over time. The increase or decrease in the number of data samples can be sequential
(one-by-one) or in chunks (groups of data samples). A set of data samples to be added/deleted is
denoted by X. If any data sample from X belongs to a new class, this class is denoted by N, and
if it belongs to an already existing class, we denote its class by E. The data sample count or the
means related to X are denoted with a bar symbol (e.g., m) over them and those related to the
updated dataset (X”) are denoted with a prime symbol over them (e.g., m’).

3.2 Assumptions

We first state three fundamental assumptions made by all of the four methods.

A) The label of the new data sample is made available at the time of its inclusion.



Table 3.2: Notations and Formulae

Notations Formulae
nij -
v
n; > Nij
Jj=1
C
n >ny
(%) 1 2
m;; nTjkz_:l Xijk
1 v Mg
m; ne 2o 22 Yigh
Jj=1k=1
1 c v Mij
m n E Z yzgk
i=1j=1k=1

- As all the four methods belong to the supervised learning domain, the class label of a data

sample is a non-negotiable requirement. As the model is updated as soon as new data is added,
without a label, the data sample will be of no use to the algorithm and will be discarded.

Each data sample is present in all of the v views.

This is one of the fundamental assumptions of multi-view learning. All of the views are
assumed to contain the information of each data sample in the dataset. In the real world,
this may not always be true. Hence, some efforts are being made towards approximating the
missing view information [75, 76].

All of the views agree with each other on the labels of the training data samples.

This is another fundamental assumption of multi-view learning and is very intuitive too. As
all the views give information about the same object to solve the same problem, they must
agree on the class to which the given sample belongs. If the views disagree on the label, the
data sample cannot be used for training, as supervised learning is based on the labeled data.

Other assumptions made by data sample incremental/decremental methods-

2)

At the start of the learning process, we may or may not have any existing data samples, i.e.,
n > 0.

All of the incremental/decremental methods presented in this thesis support learning from
scratch (cold-start) or learning on top of the already existing model (warm-start) without
any change in the formulations. Hence, these methods work as well when there is no previous
model as they work when updating a previously existing model.

New data samples may belong to an already existing class or a new class.

All of these methods support the addition of new data samples to already existing classes
or to a previously unseen class in any increment. MvIDDA presents these cases as different
specialized formulations. However, both the cases can be taken care of by one generalized
formulation as demonstrated with 2DMvIDDA formulations.



c¢) In the case of addition, all the views of new data samples are added at once to the dataset.

- This assumption is the same as Assumption (B), but written separately in the incremental
context because the learning method expects that all the data belonging to a data sample be
available at the time of training. So, if one or more views of a new data sample are missing,
it cannot be included in the updated model as it violates the fundamental assumption of
multi-view learning.

d) In the case of deletion, all views of the data samples to be deleted are removed from the
dataset.

- Same as in the case of addition, if we wish to remove a data sample, it has to be removed
completely. Information from all the views of a data sample belongs to that data sample.
Hence, all of it is removed when deleting that data sample.

Other assumptions made by view incremental/decremental methods-

a) At the start of the learning process, one or more views of data samples may have already
been presented.

- Similar to the first assumption of data sample increment above, this assumption states that
the learning method is capable of learning a new model when no data was present previously,
as well as updating an already existing model.

b) In the case of addition, new views of all the existing data samples are added at once.

- As Assumption-B states, a data sample must be present in all the views. Hence, whenever a
new view is added, it must contain the information of all the data samples that exist in the
previous views. If any data sample is missing in a new view, the model cannot accept that
view for training.

c) In the case of deletion, the whole view is deleted at once.
- Same as above, a view cannot be partially removed as it will violate the fundamental assump-

tion of multi-view learning. If the whole view is deleted, the remaining views still confirm to
the assumption that each data sample is present in all the views.

3.3 Datasets

In this section, we first present the details of 1D datasets used for experiments on the 1D
methods in chapter 4 and 7. We then present the details of 2D datasets used by the 2D methods
in chapter 5 and 6.

3.3.1 1D Datasets

We have used three widely used multi-view datasets for the experiments. All datasets are
based on images and their features. Each feature of these images comprises a different view.



3.3.1.1 Handwritten Digits Dataset

Handwritten Digits Dataset [77] is from the UCI Machine Learning Repository. This dataset
contains features extracted from 2000 images of handwritten digits from Dutch utility maps. There
are ten classes, one corresponding to each digit from 0 to 9, and each class has 200 images. Each
set of features constitutes one view. Details of the description of views and their corresponding
dimensions are given in Table 3.3.

Table 3.3: Details of Handwritten Digits Dataset

View# Description of View Dimension
1 Profile correlations 216
2 Fourier coefficients 76
3 Karhunen-Love coefficients 64
4 Morphological features 6
) Pixel averages in 2 x 3 windows 240
6 Zernike moments 47

3.3.1.2 Caltech-7 Dataset

Caltech-7 is a subset of Caltech-101 dataset [78]. This data set contains a total of 1000 images
of 7 distinct objects, namely, Faces (435), Motorbikes (324), Dollar-bill (52), Garfield (34), Snoopy
(35), Stop-sign (64), and Windsor-chair (56). Numbers in the brackets denote the cardinality of
each class. Fach image has a size of around 300 x 200 pixels. Six views are composed of six
different features extracted from the images. Description of the views and their dimensions are
given in Table 3.4.

Table 3.4: Details of Caltech-7 Dataset

View# Description of View Dimension
1 Cenhist Features(CEN) 254
2 Gabor Wavelet Features(GAB) 48
3 Gist Features(GIS) 512
4 Histogram of Oriented Gradients(HOG) 1984
5 Local Binary Pattern(LBP) 928
6 Wavelet Moments(WAV) 40

3.3.1.3 AwA Dataset

AwA (Animals with Attributes) is a large dataset [79] containing a total of 30475 images of
50 animals. The cardinality of each of the 50 classes is different and ranges from 92 to 1168. This
dataset has six image features extracted from the original images. Each feature is considered as
one view. Description of the views and their dimensions are given in Table 3.5.



Table 3.5: Details of AwA Dataset

View# Description of View Dimension
1 Color Histogram(CQ) 2688
2 Local Self-similarity Features(LSS) 2000
3 Pyramid HOG(PHOG) 252
4 Scale-Invariant Feature Transform(SIFT) 2000
5 Color SIFT(RGBSIFT) 2000
6 Speeded-Up Robust Features(SURF) 2000

Table 3.6: Details of IMPART Face Dataset

View# Description of View Dimensions Rescaled to
1 Photographs from angle 0° 1920 x 1080 54 x 96
2 Photographs from angle 30° 1920 x 1080 54 x 96
3 Photographs from angle 45° 1920 x 1080 54 x 96
4 Photographs from angle —30° 1920 x 1080 54 x 96
) Photographs from angle —45° 1920 x 1080 54 x 96

3.3.2 2D Datasets

For experiments involving the 2D methods, we have used four widely used multi-view image
datasets: the IMPART face dataset [80], the MSSpoof dataset [1], the Stereo face dataset [81] and
the ORL dataset [82]. The first three datasets are based on images of faces taken from different
angles. Photographs of the participants taken from one angle compose one view in each of these
datasets. As the ORL dataset contains photographs of the participants only from the front view,
we have extracted 2D features from these images to make up two more views. Detailed information
about all datasets is provided below. Due to the higher memory requirements of 1D methods, we
have rescaled the images from original datasets and used them for the experiments that include
such methods. However, for experiments that compare only the 2D methods, we have used original
datasets to show the full strength of the 2D methods.

3.3.2.1 IMPART Face Dataset

IMPART Face Dataset [80] was created within the EU FP7 IMPART project. This dataset
contains photographs of 10 participants - seven males and three females. Each person corresponds
to one class. Five different views of the participants are captured from five different angles. The
description of views and their corresponding dimensions are given in Table 3.6. Each view contains
six photographs of each participant that correspond to six facial expressions: neutral, anger, fear,
happiness, sadness, and surprise.

3.3.2.2 MSSpoof Dataset

We have taken a subset of the MSSpoof dataset [1]. This subset contains photographs of 15
participants, hence, 15 classes. Out of two views, one contains photographs in the visual spectrum,
and the other contains photographs in the infra-red spectrum. The number of photographs per
view per person is 28. Description of the views and their dimensions are given in Table 3.7.



Table 3.7: Details of MSSpoof Dataset

View# Description of View Dimensions Rescaled to
1 VIS spectrum photographs 1024 x 1280 64 x 80
2 NIR spectrum photographs 1024 x 1280 64 x 80

3.3.2.3 Stereo Face Dataset

Stereo Face Dataset [31] contains photographs of 100 participants (55 males and 45 females).
Two cameras are used to provide two views, i.e., the angles of capture. Each camera captures eight
photographs per person in different poses. Details of views and their dimensions are given in Table
3.8.

Table 3.8: Details of Stereo Face Dataset

View# Description of View Dimensions Rescaled to
1 Photographs by Camera-1 480 x 640 96 x 128
2 Photographs by Camera-2 480 x 640 96 x 128

3.3.2.4 ORL Dataset

ORL [82] is a face dataset created in 1992 consisting of 400 images. This dataset contains
ten photographs of each participant taken from different angles over two years. There are 40 such
participants, hence 40 classes. We extracted the FFT [83] and the Canny [34] features from these
images and used them as two views along with the original images as the first view. Details of
views are given in Table 3.9.

Table 3.9: Details of ORL Dataset

View# Description of View Dimensions Rescaled to

1 Original Images 112 x 92 56 x 46
2 FFT 112 x 92 56 x 46
3 Canny Features 112 x 92 56 x 46
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Multi-view Incremental Decremental
Discriminant Analysis

We present an incremental decremental classification method for 1D multi-view data in this
chapter. The batch methods discard an existing model when new data samples are added to the
dataset. These methods learn a new model on the updated dataset consisting of old and new data
samples. So, to add one new data sample to an existing dataset of a thousand data samples, a batch
method will retrain on a thousand and one data samples spending a lot of time and memory. To
alleviate these limitations, we propose Multi-view Incremental Decremental Discriminant Analysis
(MvIDDA) that supports the addition and deletion of data samples without retraining the model
from scratch. It also supports the addition of data samples from existing as well as previously
unseen classes. MvIDDA, like its batch counterpart MvDA, is based on discriminant analysis.
However, unlike MvDA, it is an incremental method that does not require retraining on all the
historical data. It only needs the data samples to be added/removed and the existing model for
update and hence, can learn the same model as MvDA using less training time and memory.

Fig. 4.1 shows an example of sequential increment and chunk increment. In sequential incre-
ments, only one data sample is added at a time. This sample is present in all the views. Each
view is shown in a different color. In chunk increment, a group of data samples is added at a time.
This chunk may have data samples from one or more existing classes or even new classes. Different
classes are shown in different shapes in the figure. The same is the case with decrements in the
data.

We first present the incremental and decremental formulations of MvIDDA, and then the
experimental setup and results are presented. We have compared MvIDDA with its batch multi-
view counterpart MvDA and single-view incremental counterpart Incremental Linear Discriminant
Analysis (ILDA). We conclude this chapter by summarizing the features of the proposed method.

4.1 Methodology

4.1.1 Addition of Data Samples

The incremental formulation of MvIDDA has four different cases depending on the nature of an
incoming data stream and the class labels of new data samples.

e Sequential increment and Existing class- To be used when only one new sample is added
at a time and it belongs to one of the already existing classes (Refer fig. 4.1a).
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e Sequential increment and New class- To be used when only one new sample is added at
a time and it belongs to a new class (Refer fig. 4.1b).
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Figure 4.1: Cases of Increment: (a) A new data sample is added to every view. It belongs to an
existing class. (b) A new data sample is added to every view. It belongs to a new class. (c) A
chunk of new data samples is added. None of the new data samples belong to a new class. (d) A
chunk of new data samples is added. Some of the new data samples belong to a new class.



e Chunk increment and Existing class- To be used when a group of new samples is added
at a time and none of the new samples belongs to a new class (Refer fig. 4.1c).

e Chunk increment and New class- To be used when a group of new samples is added at
a time and some of the new samples belong to new classes (Refer fig. 4.1d).

Each of the four cases of MvIDDA follows four steps that incrementally update- (i) number
of data samples, (ii) means, (iii) within-class scatter matrix, and (iv) between-class scatter matrix,
respectively. Once these entities are updated, the new scatter matrices are used to find optimal
projection vectors using Eq.(2.5). Algorithm 1 presents the workings of incremental MvIDDA.

4.1.1.1 Sequential Increment and Existing Class

Let us suppose only one data sample is added to the base set at a time and it belongs to an already
existing class . Let us denote this data sample by X = {x;|j = 1,--- ,v} and x; € RPi. Let
Y={y; = erij |7 =1,---,v} be the projection of X onto the common discriminant space.

A) Updating the number of data samples- As the class already exists in C, we have to
update the number of total data samples (n), the number of data samples in class F (ng), and
the number of data samples per class per view of class E (ng;). Here, n;; and n; for other classes
i € C — {E} do not change.

n’Ej =ngj+1, ng=ng+vand n'=n+v
B) Updating the means- As the new data sample has been added to class E, we update the
means per class per view (mpg; (#)) and class mean (mpg) of class E. The means of remaining classes

do not need updating as these classes were not updated in the increment. We also update the total
mean (m).

) @ _ nemp® +x;

= 4.1
Me; ng; + 1 ( )
T ngmeg + 1.)_ vV .
m; = npmg + vmg ) > j=1Y; (4.2)
ng +v ng +v

n-—+v n-—+v

C) Updating the within-class scatter matrix- As the within-class scatter of classes other
than F does not change, we only update the scatter of class F. The scatter of the rest of the classes
does not need recomputing.

C
S%/V = Z SWi + SQ/VE
i=1,i£E ) ) (4.4)
m (mp —mg) (Mg — mE)T + ; (};j - mE) (}7]‘ - mE)

vn
= Sw + E



Algorithm 1 MvIDDA algorithm

Input :
- A trained model ¢ that consists of:
- Data sample counts: n, n;, n;;
- Means: m, m;, m;;
- Scatter matrices: S, D
- Set of class labels of existing data samples: C
- Set of new data samples: X
- Number of new data samples: n
- Set of class labels of new data samples: C

while new data is encountered do
if n ==1 then
if C € C then
Update n, n;, n;;
Update m, m;, m,;; using Eq.(4.29)-(4.31)
Update S using Eq.(4.33)
Update D using Eq.(4.35)
else
Update n, n;, n;;
Update m, m;, m;; using Eq.(4.8)-(4.10)
Update S using Eq.(4.12)
Update D using Eq.(4.14)
c=cucC
end if
else
if C € C then
Update n, n;, ny;
Update m, m;, m;; using Eq.(4.15)-(4.17)
Update S using Eq.(4.19)
Update D using Eq.(4.21)
else
Update n, n;, n;;
Update m, m;, m,; using Eq.(4.36)-(4.38)
Update S using Eq.(4.40)
Update D using Eq.(4.42)
c=cuc
end if
end if
Compute the projection matrix W"* using Eq.(2.5)
end while
Output :
- Updated model ¢
- The projection matrix W"




and the reformulation of above equation is,

— — T — — — — .
Sir + sy (% — me @) (% - mp @) +xx] —Ixxl j=r

S, = . (4.5)
Sir + stp o) (ij - mEj(””)) (ir - mEr(“)) — 3 X% j#T

For detailed derivation of Sy, and S;-T refer to Appendix-B.

D) Updating the between-class scatter matrix- The between-class scatter depends on the
total mean and class means. Hence, it has to be recalculated as the total mean and the class mean
of class F are updated after the increment.

¢

Sy = Z ni(m; —m’)(m; — m’)? + n/p(mf — m’)(m; — m")T
LB
o (4.6)
= > ni(mj —m')(m} — m')"
i=1
and the reformulated between-class scatter is,
SN @), @1 @) (% @\
D). =Y Un< = mj; mg, Y~ i (Z ni; mg; > (Z ng, my, " ) (4.7)
i=1 i i=1 i=1

For detailed derivation of S’z and D;-T refer to Appendix-A.

4.1.1.2 Sequential Increment and New Class

The second case is when the newly added data sample belongs to a new class N. Let us denote
this data sample by X = {x;[j = 1,--- ,v} and x; € RPJ. Let Y = {y,; = W;‘-chj|j =1,---,v} be
the projection of X onto the common discriminant space.

A) Updating the number of data samples- As this is the first data sample in its class, we
initialize the number of data samples per class per view for this new class as, ny; = 1. Also, the
number of data samples per class, ny = v and updated total number of data samples, n’ = n + v.
Both, n;; and n; for i € C do not change.

B) Updating the means-

my,; " = my) = x; (4.8)
/ - ]‘ U /
mN:mN—;ZyJ (4.9)
j=1




C) Updating the within-class scatter matrix- We only add the within-class scatter of the
new class to the old Sy, as the within-class scatter of existing classes does not change.

%ﬁ=&v+§]%—ﬂmwwj—me (4.11)
j=1

and the reformulation of above equation is,

Sir +%;x1 — Lx;xF j=r
N ek e

Sjr — 2% X[ jFET
For detailed derivation of S}, and S;,, refer to Appendix-C.

D) Updating the between-class scatter matrix- Like before, the between-class scatter has
to be recalculated as,

C
= an(ml —m’)(m; — m')T +v(my — m’)(my — m’)T
i=1
c+1 (413)
= > ni(mj - m')(m} — m')"
i=1
and the reformulated between-class scatter is,
S e @ @ L (S @) (S w)
/ T / / / !/ !/ /
Dj, = Z Jn/, my; - 1My Y (Z Ty My ) <Z T My ) (4.14)
i=1 i=1 i=1

After the completion of all four steps, we add the new class in the set of existing classes (C).

4.1.1.3 Chunk Increment and Existing Class

For the first case of chunk increment, n; of the 7 new data samples belong to class ¢ € C, meaning,
none of the new data samples belong to a class that has not yet been introduced. We denote a
chunk of new data samples by, X = {xijpli=1,--- ;5 =1,--- ,usk=1,--- ,ng} and X;5;, € RPJ.
Let Y = {Vijk = W;-Fiijk\i =1,---,¢j=1,--- ,u;k=1,--- 7} be the projection of X onto the
common discriminant space.

A) Updating the number of data samples-

! — ! __ = ! __ =
nij = Nij + Nij, N =Ni + 7 and n =n+n

fori=1,---,cand j=1,--- 0.



B) Updating the means-

@) — P+ ) S i (1.15)
K N5 + N5 ngj + Ngj

m/ — n;m; + 7:7Jin_li _ i, + Z] 1 Zk 1Yijk (4.16)

n; +n; n; +n;

n+n n+n

C) Updating the within-class scatter matrix- The within-class scatter of only the classes
to which new data samples were added is updated. Hence, we have,

v Mij _
_ T n;n; _ _ T
Sw = Sw + Z > (ymky@]k Yijkmi ) + (nlﬁ (m; — m;) (m; — m;) ] (4.18)
i=1Lj=1k=1 v v
and the reformulation of above equation is,
[ whgdny T iy (@) (@) | '
Sjj + ; [mm(%ﬁ&ﬂaa E ”m] m;;" + Z XU’CXUIJ J=r
S}, = = (4.19)
YT o B BRFE ST I agfir (7 Jm®” i o
T A i (ni+n;)? ij e
Where,
a= ﬁijniﬁlij nmwmgj) and b = ﬁwniﬁ’lgf) — ﬁmirmgf)

For detailed derivation of S, and S;T refer to Appendix-D

D) Updating the between-class scatter matrix- The between-class scatter is recalculated
as,

Zn m; — m’)(m; — m")” (4.20)

and the reformulated between-class scatter is,

. n;n;r T - T g
D}, = 3 M gy, 0 (Zn m; >> (Zn m, )) (4.21)

4.1.1.4 Chunk Increment and New Class

In second case of chunk increment, we assume that out of n new data samples, some samples belong
to new classes. The number of new classes may be one or more. Here, we denote a chunk of new
data samples by, X = = {xyli =1,--- ,d5j=1,--- ,u;k = 1,--- ,n} and X;5, € RP7. Here, ¢
is the number of classes after addlng the new classes Let Y = {ymk W; XUk|z =1,---.,cyj =
1,---,v;k=1,--- 7} be the projection of X onto the common dlscrlmmant space.



A) Updating the number of data samples-

I oA ) — . L5 r_ =
NG = Nij + Nij, NG =N + 1y and n'=n-+n

fori=1,--,dandj=1,--,0
B) Updating the means-

m’ (x) _ nijmij(w) + ﬁijrﬁij(w) _ nijm” —|— Zk: 1 X”k (422)

i -
J Nij + Nij Ngj + Nij

= + ?iﬁli _ iy + 3= Zk 1Yijk (4.23)

1
n; +n; n; + 1y

m,:nm—i—r:zrh nm+21 12] 1Zk lyzjk (424)
n+n n+n

C) Updating the within-class scatter matrix- The within-class scatter of the existing and
the new classes to which new data samples were added is updated. Hence, we have,

C/

:SW"‘Z

v

N _
_ -T _ _ T n;n; _ _ T
E E bYiie — YoM ) + —— (m; — m;) (m; — m; 4.25
£ L (yxgk‘yUk YijpI ) (nz +nz) ( 7 z)( i z) ] ( )

and the reformulation of above equation is,

C/ _ _ nzg
) Vit +n; T _ Rijhig o (@) 2 (1‘) C_
SJJ + ] |:hmi(ni+ﬁi)2aa  Th, Wy Mg, + E XleXZJk J=r
/ 1=
Sjr = y T (4.26)
. VN +n; T  NijNir = (Z) = (T .
Sjr + ) {nmi(nﬂrni)Q ab —m,m,, ] jEr
1=

Where,

— = (z) _ = (z) = = (z) _ = (z)
a = ngnm;;’ — nin;m;; and b = n;n;m,;." — n;n,m;,
The derivation of Sy, and S/, in this case is the same as in Appendix-D, if we set ¢ = ¢’. Hence,
no separate derivation is included.

D) Updating the between-class scatter matrix- The between-class scatter is recalculated
as,

Zn m); — m’)(m/; — m")” (4.27)
and the reformulated between-class scatter is,

T
c c

n! T 1
D), = 3 2 mi O S STl mi ) (S, mi, (4.28)
7 i=1 =1




After the completion of all four steps, we add the new classes in the set of existing classes (C).

It is possible to obtain the formulations of chunk increment and ewisting class if we set ¢/ = ¢
in the formulations in Section 4.1.1.4. We can also obtain the sequential increment formulations
for both cases by setting [ = 1 in the two chunk increment formulations. As these formulations are
inherently similar to the batch MvDA, we can derive the batch MvDA formulations from MvIDDA
formulations. This is based on the base requirement of incremental methods that the discriminant
spaces obtained by the incremental method must be identical to that of the batch method.

4.1.2 Deletion of Data Samples

The decremental formulation of MvIDDA has two cases:
e Sequential decrement- To be used when only one data sample is deleted at a time.
e Chunk decrement- To be used when a group of data samples is deleted at a time.

Both of these cases follow four steps that update- (i) number of data samples, (ii) means, (iii)
within-class scatter matrix, and (iv) between-class scatter matrix, respectively. Once these entities
are updated, the new scatter matrices are used to find optimal projection vectors using Eq.(2.5).

4.1.2.1 Sequential Increment

Let us suppose only one data sample is deleted from the existing set at a time and it belongs to
class E. Let us denote this data sample by &' = {x;]j = 1,--- ,v} and x; € R?. Let J = {y; =
W]Tij |j=1,---,v} be the projection of X onto the common discriminant space.

A) Updating the number of data samples- We have to update the number of total data
samples (n), the number of data samples in class F (ng), and the number of data samples per class
per view of class E (ng;) to reflect the deletion of this data sample. Here, n;; and n; for other
classes i € C — {E} do not change.

/ _ L - _ ! __ _
ng;=ng; —1, np=ngp—vand n'=n-v

B) Updating the means- As the data sample to be deleted belongs to class E, we update the
means per class per view (mpg; (#)) and class mean (mp) of class E. The means of remaining classes
do not need updating as these classes were not updated during the decrement. We also update the
total mean (m).

. A\T) _ .
A C nEJmEJ( ) X;j
Ej =

4.29
o (4.29)

, nNpmg — vmg npmpg — E?:l S’j
ng —v ng —v

nm—om nm-—y. .,y
m! = PR TR ?Jyl Yi (4.31)




C) Updating the within-class scatter matrix- As the within-class scatter of classes other
than E does not change, we only update the scatter of class E. The scatters of rest of the classes
do not need recomputing.

Sw= > Sw, +Sw,

=hEE i . (4.32)
— v nE T _ T — T — (- -
= Sw + (g —v) (mp —mg) (Mg — mg) ]2 (y] mE) (yj mE)
and the reformulation of above equation is,
< @) (x @\ _ 2% 4 lzx.xT i
, Sir+ tp—o) ( T mE ) (Xj — e ) — XX+ XXy j=7T
St iy (%5 = my @) (%~ mp @)+ ] J#T

The derivation of S}y, and S;-T, is similar to that presented in Appendix-B

D) Updating the between-class scatter matrix- The between-class scatter depends on the
total mean and class means. Hence, it has to be recalculated as the total mean and the class mean
of class F are updated after the decrement.

Sp= 3 mtemi )y = m)T oy — e oy — o)
(4.34)

and the reformulated between-class scatter is,

C

/ / T
D, =Y i 7”" m;j(x)mzr - = <Zn m}; (@) > (Zn m), ) (4.35)

i=1 T

The derivation of S’z and D;T is similar to that presented in Appendix-A.

4.1.2.2 Chunk Decrement

We denote a chunk of data samples to be deleted by, X = {xijgli =1,--- 55 =1, 0k =

1,---,7} and X;;, € RPi. Here, ¢ is the number of classes after deleting the classes from which
all the data samples have been rgmoved. Let Y = {y;r = W]T)_(ijkﬁ =1,---,dyj=1,---,v;k =
1,---,n;;} be the projection of X onto the common discriminant space.

A) Updating the number of data samples-

S D I -
ni; = Nij — Nij, ng=mn; —n;and n'=n-—-n

fori=1,---,dand j=1,---,v



B) Updating the means-

! @ nijmij(x) — ?ijrﬁij(l") _ nl]mz] Ek 1 Xijk (4.36)

1,
’ nij = 7ij nij = i

m; _ hamg — ?irhi _ n;m; — Zg 1 Zk 1yz]k’ (4.37)

n; —ny ’I’L—’I’Ll

o — nm_?ﬁl _ nm — ¢ 129 1Zk lyzjk (4.38)
n—n n—n

C) Updating the within-class scatter matrix- The within-class scatter of the existing and
the new classes to which new data samples were added is updated. Hence, we have,

c v Mij _
_ _ _ _ n;n; _ _ T
W= [Z > (Yijkyz;‘k - YijkmiT> - ﬁ (m; — m;) (m; — m;) ] (4.39)
=1 =1k=1

and the reformulation of above equation is,

CI n - . -_— nl‘] .
, Sjj — 21 mnﬁ?ﬁjﬁ%i)QaaT t n”n” m(f)m(;”) + Z XUkXZJk:| J=r
S.,. = by (4.40)
]'r CI n - . ;T _ _ T .
- £ [ttttipan + 2| i
1=

Where,

a—= ﬁ”nzrhgc) n (@)

The derivation of S}, and S;-r in this case is similar to that presented in Appendix-D, if we set
/

c="c.

(=) _ = (=)

— NNim;; and b = n;n;m,;." — n;n,m;,

D) Updating the between-class scatter matrix- The between-class scatter is recalculated
as,

c/

B = ni(m; —m')(mj; —m’)" (4.41)
i=1

and the reformulated between-class scatter is,

T
o

b N e @) m;, @7 _ / (@) / (@) (4.42)
ir = ;Témij Z” m;; Z" Wir ’

After the completion of all four steps, we update the number of classes to reflect the changes in the
dataset.



4.2 Experiments and Results

4.2.1 Experimental Setup

We use three 1D datasets- Handwritten Digits, Caltech-7, and AwA- for our experiments. The
datasets are divided randomly into two parts for the experiments. The first part contains 80% of
the total data samples and is used to simulate the increments for training. The second part is the
test set that contains 20% of the total data samples.

We train two separate models, ¢ 4 and ¢p, using MvIDDA and batch MvDA method, respec-
tively. For sequential increment/decrement, one training data sample is added/removed at a time.
In the case of increment, MvIDDA updates ¢ 4 to include the newly added sample using sequential
increment formulations (refer Algorithm 1) and computes the new projection vectors. At the same
time, batch MvDA discards ¢ 5 to recompute the same on all of the (n+ 1) samples together. Same
is the case with decrements as well.

For chunk increment/decrement, MvIDDA handles the fixed as well as varying chunk sizes.
However, to demonstrate the effect of the chunk size, we perform four separate experiments by
taking chunks of 50, 100, 150, and 200 data samples, respectively. Similar to the Sequential
increment, MvIDDA updates ¢4 using chunk increment/decrement formulations (refer Algorithm
1) to include 7 new data samples in each update. At the same time, batch MvDA recalculates ¢p
altogether for all of the (n + n) samples, where 7 is the chunk size.

At the end of the training process we obtain the projection matrices, W% and W%" from
the final models ¢4 and ¢p respectively. These projection matrices are used to project each test
sample y7¢* onto the common discriminant subspace. We compute the distance of y”*** from each
class mean in the projected space as follows.

d(yTest’ mz) — HyTest m; ) (443)
fori=1,2,--- ,c
ylest is then assigned the label of the class to which it is found to be closest. i.e.,
label (yTt) = argmin d(yTet, my) (4.44)

)

4.2.2 Results

This section presents the results of experiments designed in order to answer the research questions
posed in chapter 1.

4.2.2.1 Discriminative Subspace

¢ RQ1 : Can MvIDDA, without using old data samples, produce an identical model to its
batch counterpart MvDA?

e Experiment : We trained two models with MvIDDA and batch MvDA, respectively. If
the projection vectors obtained from both methods are in agreement with each other, the
subspace, and in turn, the classification accuracy is also the same. Hence, we computed the
inner product of the first five eigenvectors obtained from both methods. As the eigenvectors
are of unit length, we say two eigenvectors are equal when their inner product is 1.
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Figure 4.2: Inner products of first five eigenvectors of MvIDDA and batch MvDA for handwritten
digits dataset.

e Discussion : Fig.4.2 shows the inner product of the first five eigenvectors of batch MvDA

and MvIDDA computed on the Handwritten Digits dataset. These figures show the inner
products for increment from 0 to 1600 data samples and then decrement from 1600 to 0 data
samples. The other two datasets also produce similar results and hence, are omitted. We see
that the inner product of the first two eigenvectors of batch MvDA and MvIDDA converges to
1 very early. For sequential increment, as only one data point is added at each increment, all of
the eigenvectors converge faster with little to no changes. In the case of the chunk increment,
a group of data samples is added in each increment. Hence, inner products of eigenvectors 3
to 5 see some fluctuations in the early stages of the progress before converging gradually to 1.
This shows that the common discriminative subspace constructed by the proposed method
evolves over the increments to achieve the same subspace as the batch method.

In the case of decrement, we see that the inner product stays converged to 1 when there are
enough data samples. Towards the end, however, we start to see some disagreement in EV'5
and then gradually other eigenvectors start to diverge too. Here also we see that for sequential
decrement, the eigenvectors diverge much later than for chunk decrement. The agreement
between the eigenvectors of both the methods shows that the discriminant subspace updated
by the decremental MvIDDA is the same as that of batch MvDA for both types of increments.

Fig. 4.3 presents a t-SNE plot [85] of data samples in the projected space constructed by
MvIDDA and MvDA for handwritten digits dataset. Here, 0 to 9 are class labels that cor-
respond to the digits from 0 to 9. We see that both the methods have formed the same
projection space and hence have the same classification accuracy.
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Figure 4.3: A plot of data samples of the handwritten digits dataset in the projected space con-
structed by MvIDDA and MvDA. Training data samples from different classes are shown in different
colors. Correctly classified test samples are shown by black squares and incorrectly classified test
samples are shown by red triangles.
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Figure 4.4: Inner product of the first five eigenvectors of every iteration for handwritten digits
dataset

4.2.2.2 Order Independence
e RQ2 : Is this incremental method invariant to the order of addition of new data samples?

e Experiment : We performed 100 iterations of MvIDDA by adding the data samples in
randomized order every time. In the end, we compare the first five eigenvectors of all the
iterations with that of batch MvDA.

e Discussion : Similar to the above experiment, the inner product of the projection vectors
is 1 if the discriminant space constructed by all iterations is the same. We have included the
results on the Handwritten Digits dataset here in Fig.4.4. Here, graphs of the eigenvectors
overlap as all the values have converged to 1, proving the order independence of the proposed
method.

4.2.2.3 Training Time
e RQ3 : Can this incremental method reduce training time?

e Experiment : We record the time taken by each method at the intervals of 50 data points
for sequential and chunk-50. For chunk-100, chunk-150 and chunk-200 the time is recorded at
intervals of 100, 150 and 200 data samples respectively. Here, the time records for MvIDDA
consist of the time taken for updating the four entities, namely- the number of data samples,
the means, the within-class scatter and the between-class scatter. Similarly, the time records
for MvDA consist of the time taken for recomputing these four entities. We have not consid-
ered the time taken for the computation of the projection vectors, as this step is common for
both the methods.

e Discussion : It is intuitive for MvIDDA to require less time than batch MvDA, which is
reflected in Fig. 4.5-4.6. Note that for the AwA dataset, the unit of time is million seconds
and the markers are placed sparsely for better viewing. Fig.4.5 shows the time comparison
between MvIDDA and batch MvDA for sequential increment on all four datasets. We see
that MvIDDA requires very less training time compared to batch MvDA. As the number of
samples increases, the difference in the time grows larger. Sequential MvIDDA took nearly
20 days to complete training on the AwA dataset. However, the batch MvDA is estimated
to require around 912 days to complete the same. The dashed part of the Sequential MvDA
curve in Fig.4.7c shows the estimated training time.
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Figure 4.8: Comparison of training time of MvIDDA and batch MvDA : chunk decrement
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Fig. 4.6 shows the time comparison between MvIDDA and batch MvDA for chunk increment.
It shows training time for each of the four chunk sizes (50, 100, 150, and 200) for both methods.
The time course of MvIDDA is represented by four lines at the bottom of the graph that are
closer to each other. In this case also, we observe that the time required by batch MvDA sees
a faster growth and is much higher than that of the MvIDDA.

Fig. 4.7 and 4.8 show the records of time taken by the decremental MvIDDA against batch
MvDA. We see that the decremental MvIDDA takes much less time as it only updates the
model to reflect the changes after removing some data samples. Whereas, batch MvDA
discards the model and trains on all the remaining data samples after the removal. This
shows the advantage of using decremental MvIDDA.

4.2.2.4 Memory Usage

e RQ4 : Can this incremental method reduce memory requirements?

e Experiment : We record the memory requirements of MvIDDA at the intervals of 50 data
points for sequential and chunk-50. For chunk-100, chunk-150 and chunk-200 the time is
recorded at intervals of 100, 150 and 200 data samples respectively. Memory requirements of
batch MvDA are recorded by taking chunks of 100 data samples at a time.

e Discussion : The memory usage comparison between these methods for the Handwritten
Digits dataset is shown in Fig. 4.9. We see that the memory requirement of the sequential and
the chunk MvIDDA is less than that of the batch learning method. The sequential MvIDDA
requires almost constant memory as it stores only the model ¢ and one new data sample.
Chunk MvIDDA requires more space as, along with the model, it needs space for the new
chunk of the data. The memory requirements of chunk increment vary according to the chunk
size. The memory requirements stay the same for decrements as well.

Batch MvDA, on the other hand, stores the model ¢ along with all the old and new data.
Hence, the storage requirements are high and increase with the increments and decrease with
the decrements in the data.



Table 4.1: Comparison of accuracy and training time : MvIDDA vs. single-view ILDA

Total Training Time (Seconds)
Dataset Accuracy (%) Chunk-100 Sequential
MvIDDA ILDA | MvIDDA ILDA | MvIDDA ILDA
Handwritten Digits 99.00 52.75 0.40 20.42 22.44 69.60
Caltech-7 97.00 66.50 19.41 564.70 465.72 1117.53
AwA 96.55 81.62 49506.07  130043.42 | 1666955.69  1811942.66

4.2.2.5 Comparison with single-view ILDA

e RQ5 : Is this multi-view incremental method more advantageous than a single-view incre-
mental method in terms of classification accuracy and training time?

e Experiment : As ILDA is a single-view incremental method, to use it on multi-view data,
we concatenate all the views together to form a single view and then apply ILDA on it. We
record the training time and classification accuracy for sequential and chunk-100 increments
using both methods.

e Discussion : The results in Table 4.1 show the importance of using a multi-view method for
multi-view data. MvIDDA processes the views separately and provides far better classification
results than ILDA. As all the views were concatenated together, ILDA could not use the
discriminatory information provided by different views. It instead weighed all the views on
the same scales, leading to misinformation and low classification accuracy. MvIDDA also
requires less training time than ILDA.

4.3 Summary

We have proposed Multi-view Incremental Decremental Discriminant Analysis (MvIDDA), an in-
cremental method for multi-view data in the dimensionality reduction paradigm. Two approaches,
namely sequential MvIDDA and chunk MvIDDA, have been proposed to incrementally construct
a common discriminant space for multi-view data.

We show that MvIDDA achieves a common discriminant subspace identical to the one con-
structed by batch MvDA. Hence, their classification accuracy is also the same. The classification
accuracy increases with the number of views. We also show that though it produces the same
results, MvVIDDA requires much less training time and memory than batch MvDA. Also, MvIDDA
is invariant to the input order of the data and handles data samples from new classes at any stage
of training. MvIDDA also requires less training time than the single-view incremental method
ILDA and produces better classification results. We see that chunk MvIDDA requires less time
than sequential MvIDDA, whereas the latter requires less memory and converges to the optimum
in the early stages of training. The incremental formulations of this work named as Multi-view
Incremental Discriminant Analysis (MvIDA) are published in [36].

The next chapter presents a batch classification method for 2D multi-view data. This method
forms a basis for an incremental method in the 2D learning paradigm.

DRUCES (St



2D Multi-view Discriminant Analysis

This chapter presents a batch classification method for 2D multi-view data. Using 1D methods to
train on naturally 2D data leads to the loss of valuable spatial information. Also, the vectorization
leads to larger scatter matrices. The use of 2D methods for 2D data preserves spatial information
and eliminates the need for vectorization. Hence, we propose a 2D batch method for multi-view
data to train a classification model in less time and memory.

The proposed method, 2D Multi-view Discriminant Analysis (2DMvDA), is designed to serve
as a basis for an incremental-decremental 2D method presented in Chapter 6. 2DMvDA has a
very straightforward formulation. However, the main idea is to introduce 2D methods to the realm
of multi-view learning. It utilizes the matrix form of images to preserve spatial information and
reduce the size of scatter matrices for better and faster performance. 2DMvDA also eliminates the
need for feature extraction in preprocessing stage.

We present the formulations of 2DMvDA followed by the experimental setup and results. We
conclude this chapter by summarizing the features of 2DMvDA.

5.1 Methodology

2DMvDA works on the same principle of discriminant analysis as MvDA. The within-class scatter
and the between-class scatter are defined as follows,

Sw = XC: XD: z]: (Yijr — M) (Yije — My)" (5.1)
i=1j=1k=1
Sp = Z ng (M; — M) (M; — M) (5.2)
=1

Note that these equations are similar to those of MvDA. However, here we compute the scatter
matrices using 2D data matrices in contrast to 1D feature vectors used by MvDA. Eq. 5.1 and Eq.
5.2 are in terms of the data samples in projected space (Y;jx). We reformulate these equations in
terms of the original data samples (X;j;). The reformulated within-class scatter is given as,

7

c  MijNir MZ(]X)M(X)T .. ] 7é r

(5.3)
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Here, Sj, is computed using the 2D matrices in the original space. The derivation for Eq. 5.3 is
given in Appendix-E.
The reformulated equation for between-class scatter is given as,

[

T
Mi5 Ny 1 c c
D;, = Y P M M - = (Z N M(JX)> <Z Nir M(X)> (5.4)
i=1 =1

=1

Here, D, is computed using the 2D matrices in the original space. The derivation for Eq. 5.4
is given in Appendix-A.

We convert Eq. 2.1 into a ratio trace function so that it can be solved as a generalized
eigenvalue problem. The reformulated optimal function is,

W/ DW
WPt — (Wffpt’ . 7vapt) = argmax Tr () (5.5)
(W1, Wa, \W,)

The above equation can now be solved using the Generalized eigenvalue decomposition method as,

DW= \SW (5.6)

We then form W% a matrix of optimal projection vectors, by selecting the eigenvectors
corresponding to the first d largest eigenvalues of S™'D. This projection matrix is then used to
project the test samples onto a common discriminant subspace. The projection of a test sample of
size p; X q, will be of size d X ¢ in the common discriminant subspace.

5.2 Experiments and Results

5.2.1 Experimental Setup

MvDA, being a 1D method, needs the training data in vectorized format. However, due to the large
images in these datasets, MvDA needed more than 100 Terabytes of processing memory. Hence,
we used rescaled versions of datasets to train the models ¢4, ¢ and ¢¢c using 2DMvDA, 2DLDA,
and MvDA, respectively.

In another set of experiments, we used original versions of the datasets mentioned above to
show the full strength of 2DMvDA.. This time, we trained the models only on 2DMvDA and 2DLDA.
We have divided each dataset into two parts for both sets of experiments. 80% of the total data
samples are used to train the models. The remaining 20% data samples are used as a test set.

To compare the three methods, we record the time and memory required by these methods to
train classification models. Also, to compare the classification accuracy of these models, we extract
10 sets of eigenvectors corresponding to first d largest eigenvalues where, d = {i *2|i = 1,--- ,10}.
These eigenvectors form the projection matrix W and are used to project each test data sample
(YTeSt) onto the common discriminant subspace. The methodology for classification is the same
as that used for MvIDDA.

5.2.2 Results

This section presents the results of experiments designed in order to answer the research questions
posed in chapter 1.
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Figure 5.1: Classification accuracy vs. number of projection dimensions (On rescaled datasets)

5.2.2.1 A. Classification Accuracy

e RQ1 : Can a 2D multi-view method build a better classification model than a 1D multi-view
method or a 2D single-view method?

e Experiment : Record classification accuracy of the methods by varying the no. of projection
dimensions d = {i % 2|i = 1,--- ,10}.

e Discussion : Fig. 5.1 compares the accuracies of these three methods. We see that the
classification accuracy of 2DMvDA is better than or the same as that of the other two methods.
2DMvDA performs much better than MvDA even in lower-dimensional space as the former
extracts the 2D features that provide more information than the 1D features. We also see
that 2DMvDA performs at par or better than 2DLDA, despite both being 2D methods.
This is because 2DLDA considers all the views as one, depriving itself of the discriminatory
information that 2DMvDA gains by processing the views separately. This proves the benefits
of using two-dimensional representation and multiple views.

We have plotted the classification results of these three methods on the MSSpoof dataset
using t-SNE. Fig. 5.2 shows the results. Here, the training data samples from different
classes are shown in different colors. The correctly classified test data samples are denoted
with black squares, and those classified incorrectly are denoted with red triangles. We see
that the subspace constructed by 2DMvDA and 2DLDA is better at discriminating between
different classes than MvDA. This leads to the better classification accuracy of 2D methods.
MvDA performs poorly as it does not take spatial information into account.
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Figure 5.2: Visualization of Classification on MSSpoof Dataset: (i) Training data samples are
denoted with different colors for each class. (ii) Correctly classified test samples are denoted with
hollow black squares. (iii) Misclassified test samples are denoted with hollow red triangles.

5.2.2.2 Training Time

e RQ2 : Can the use of 2D matrices reduce training time?

e Experiment : Record training time of (i) all three methods on the rescaled datasets and
(ii) 2DMvDA and 2DLDA on the original datasets.

e Discussion : Fig. 5.3a shows the records of training time of each method on the rescaled
versions of all four datasets. The suffix (RS) represents the rescaled versions of the datasets.
Note that the scale on the y-axis of 2DMvDA and 2DLDA is much smaller than that of
MvDA. We see that the 2DMvDA requires less than a second to train the model, whereas
the 1D method -MvDA- has much greater time requirements. The records of average training

time on the original versions of the datasets using 2DMvDA and 2DLDA are presented in
Fig. 5.3a.
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Figure 5.4: Comparison of memory requirement

The records of average training time of 2DMvDA and 2DLDA on original datasets are pre-
sented in Fig. 5.3b. We see that 2DMvDA trains the model in 30% to 70% of the training time
of 2DLDA. The experiments using MvDA could not be performed due to the larger memory
requirements of this 1D method. However, by linearly extrapolating the time requirements
on the rescaled dataset, we say that MvDA would need a little over 21 days to train on the
original version of the IMPART dataset. 2DMvDA, on the other hand, needs only 3 minutes
on the same dataset.

5.2.2.3 Memory Usage

e RQ3 : Can the use of 2D matrices reduce memory requirements?

e Experiment : Record memory usage of (i) all three methods on the rescaled versions of
datasets and (ii) 2DMvDA and 2DLDA on the original datasets.

e Discussion : The records of memory requirements on the rescaled version of datasets are
presented in Fig. 5.4a. Note that the scale on the y-axis of 2DMvDA and 2DLDA is much
smaller than that of MvDA. We see in Fig. 5.4a that though same as 2DLDA, the proposed
method requires less than 0.1% of the memory required by MvDA to train the model. The



difference in memory usage of 2DMvDA against MvDA is due to the latter’s need to store large
scatter matrices. MvDA uses the vectorized form of images and produces much larger scatter
matrices. However, 2DMvDA uses the matrix form, resulting in smaller scatter matrices.
This is very advantageous when working with large datasets.

The records of average memory requirements on the original versions of the datasets using
2DMvDA and 2DLDA are presented in Fig. 5.4b. We can see that even for original datasets,
the 2D methods need less memory than that of MvDA on rescaled datasets. The estimated
memory requirement of MvDA for the original version of IMPART dataset is more than 2500
Terabytes, whereas 2DMvDA requires only 0.56 Gigabytes to train on the same dataset. This
shows the benefit of using the 2D matrix representation instead of a vectorized form of the
image matrix.

5.3 Summary

The presented classification method, 2DMvDA, is designed for multi-view 2D data. 2DMvDA
constructs a common discriminant subspace directly from original 2D matrices, thereby preserving
the spatial information in data and eliminating the need for feature extraction in the pre-processing
stage.

The proposed method is compared with a 2D single-view method (2DLDA) and a 1D multi-
view method (MvDA) for classification accuracy, training time, and memory requirements. 2DMvDA
provides better classification results than the other two methods as it benefits from spatial infor-
mation and multiple views. Even though the gain in classification accuracy is not high, 2DMvDA
achieves it with less than 0.01% of training time and 0.0001% of memory that MvDA needs to
train the same model. 2DMvDA even performs better than 2DLDA with 50% less training time
on average. Also, the comparison of the classification accuracy shows that the proposed method
performs better than 2DLDA and MvDA, even with fewer projection dimensions. This work is
published in [87].

In the next chapter, we present an incremental-decremental method based on 2DMvDA. This
method aims to introduce incremental learning in the 2D learning paradigm.
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2D Multi-view Incremental Decremental
Discriminant Analysis

In this chapter, we present an incremental-decremental classification method for 2D multi-view
data. This method is based on 2DMvDA and extends it further by enabling the incremental learning
and decremental unlearning of the data samples. It has similar formulations for incremental learning
as that of MvIDDA. However, it presents a decremental unlearning formulation as well.

This method, 2D Multi-view Incremental Decremental Discriminant Analysis (2DMvIDDA)
supports the addition or deletion of data samples without retraining the model from scratch. Like
MvIDDA, this method also supports the addition of data samples from existing as well as previously
unseen classes. Though the incremental formulations of 2DMvIDDA have been presented as one
generalized case, they can be converted into the four specialized cases as those of MvIDDA. Fig.
6.1 shows an example of incremental learning and decremental unlearning of views.

We present the formulations of 2DMvIDDA, the experimental setup, and results. We conclude
this chapter by summarizing the features of the proposed method.

6.1 Methodology

6.1.1 Addition of Data Samples

Here, we present the update formulations for increments when a set of new data samples (X) is
presented. The size of this set need not be the same for each increment. Some data samples in X
may belong to new classes. Let ) = {?ijk = WJT}_(iij =1,---,dsj=1,---,u;k=1,--- 0}
be the new set X projected onto the shared subspace.

We then update the data sample counts and the means to include the new samples as follows:

6.1.1.1 Updating the data sample counts
The number of data samples per class per view, the number of data samples per class, and the

total number of data samples are updated to include all the new data samples.

/ - / — / =
ni; = Mnij +Nij, n; =n;+n; and B =n+n (6.1)

fori=1,---,dandj=1,--- 0.
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Figure 6.1: Chunk increment and decrement : (a) A chunk of new data samples is added. Some of
the new data samples belong to a new class. (b) A chunk of existing data samples is deleted from
the dataset. Views are depicted with different colors (blue, green and red) and classes are depicted
with different shapes (square, triangle and circle).

6.1.1.2 Updating the means

We update all the older means to reflect the change due to the addition of new data samples. The
update equations are as follows-

Mg _
TLM(X) + Z X.Ak X _ —(X)
N T = S ni My X + 71 My (6.2)
Y Mij + i i '
nM; + ijk _ -
j=1 k=1 n;M; + n; M;
M;: J v _ 1 . 7 ) (63)
n; +n; n;
Mt S e Sy
n + ijk -
y i=1j=1k=1 nM + nM
M = P = p (6.4)

We then update the within-class and the between-class scatter matrix. Here, the equations are
presented in the projected space first. Then, these equations are presented in terms of the original
data samples for computation.



Algorithm 2 2DMvIDDA: Incremental algorithm

Input :
- A trained model ¢ that consists of:
- Data sample counts: n, n;, n;;
- Mean per class per view: MZ(]X)
- Scatter matrices: S;., D,
- Set of class labels of existing data samples: C
- Set of new data samples: X
- Data sample counts of new data samples: n, n;, n;;
- Set of class labels of new data samples: C

while new data is encountered do
Update n, n;, n;; using Eq. (6.1).
Update ngx) using Eq.(6.2).
Update S, using Eq.(6.6).
Update D, using Eq.(6.8).
C=CucC.
Compute the projection matrix W using Eq.(2.5).

end while

Output :

- Updated model ¢

- The projection matrix W"

6.1.1.3 Updating the within-class scatter matrix

We only need to update the scatter of those classes to which new data samples are introduced.
Hence, we have,

v Mgy v Mij

— T
St =D Swit D D03 (Vi = M) (i = M)+ 37 373 (Vigs = M) (Yige — M)
i€UC 1€ECH j=1 k=1 1€CH j=1k=1 (6 5)
T
Y WIS, W,
j=1r=1
where,
S. 4+ % R Y )T +7§X <7 ]
VL YR ) o ijkSijk | J=T
S, = s (6.6)
1 T i Tir N\ / (X) "/ (A) .
Sjr +i:1 |:n,;ni(ni+ni)EF T T Mij M;, } J#ET
(X) (X)

_ v _ X _ v _ b ¢
here, E= nijniMij — nm”Mz(] ) and F = nirniMir — niniTMET )
The derivation of S, and S;r is given in Appendix-F. Each submatrix of S’ consists of known quantities

and is in closed form. This is true for the decremental formulation as well.

6.1.1.4 Updating the between-class scatter matrix

This matrix is computed using only the updated class-mean (M) and the total mean (M’). Both the means
are updated after each increment, hence the scatter matrix is updated as,

l v v

SB_ZnM M)(M; - M) =) "N WD, (6.7)

i=1 j=1r=1



where each Dy, is given as,
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The derivation of S’ and D;T is given in Appendix-A.

After updating the means and the scatter matrices, 2DMvIDDA computes the optimal projection
matrix W' using Eq. 2.5. The test data samples can be classified using this projection matrix until new
training data samples are presented, or any of the existing ones are deleted. If new data samples are added,
these steps are repeated. The incremental learning formulation is summarized in Algorithm2.

6.1.2 Deletion of Data Samples

Here, we present the update formulations for decremental unlearning when a subset (X) of existing data
samples is to be deleted. X may have one or more data samples in it. The projection of X onto the shared
subspace is given as Y = {Yj, = WJTXWJZ' =1, ,gj=1,---,v5k=1,--- 0}

We update the data sample counts and the means to reflect the changes in the dataset after the
decrement.

6.1.2.1 Updating the data sample counts
The number of data samples per class per view, number of data samples per class, and the total number of

data samples are updated to reflect the deletion of the data samples in X.

!/ — ! = ! —
ni; = MNij —Nij, My =n; —n; and N’ =n-—n (6.9)
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6.1.2.2 Updating the means

We update all the older means to reflect the change due to the deletion of new data samples. The update
equations are as follows-
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Algorithm 3 2DMvIDDA: Decremental algorithm

Input :
- A trained model ¢ that consists of:
- Data sample counts: n, n;, n;;
- Mean per class per view: MZ(]X)
- Scatter matrices: S;., D,
- Set of class labels of existing data samples: C
- Set of data samples to be deleted: X
- Data sample counts of the samples to be deleted: n, n;, n;;
- Set of classes that are empty after deletion: ¢

while X is not empty do
Update n, n;, n;; using Eq. (6.9).
Update ngx) using Eq.(6.10).
Update S, using Eq.(6.14).
Update D, using Eq.(6.16).
c=C-C.
Compute the projection matrix W using Eq.(2.5).

end while

Output :

- Updated model ¢

- The projection matrix W

6.1.2.3 Updating the within-class scatter matrix

We only need to update the scatter of those classes from which some existing data samples are deleted. So,
we have,

- T NN - T
-3 St 3TN (Y M) (Y M) - 3 3T (V- M) (Yo - M)
ieuc i€CH j=1 k=1 i€CH j=1 k=1
TQ!
YW, w
j=1r=1
(6.13)
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here, E = ﬁmijMS-() - ﬁijnil\_/lz(-;() and F = ﬁmiTME:Q — fypn;M;,. . The derivation of SQ,V and S;T is

similar to that of incremental formulations given in Appendix-F and hence is not presented separately.

(X)

6.1.2.4 Updating the between-class scatter matrix

The between-class scatter matrix is updated as,

l v v

SB_ZnM M)(M; - M) =) "N WD, (6.15)
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where each Dy, is given as,

T
o
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The derivation of S’y and D;r is as given in Appendix-A.

After updating the means and the scatter matrices, we update C by removing the labels of classes
from which all the data samples were deleted. 2DMvIDDA then computes the optimal projection matrix
W ysing Eq. 2.5. The test data samples can be classified using this projection matrix until new training
data samples are added, or some existing ones are deleted. If any data samples are deleted, the model is
updated using the aforementioned formulations. The formulations of decremental unlearning are presented
in Algorithm 3.

6.1.3 Discussion

In this section, we discuss how the discriminant methods, namely 2DMvDA, MvIDDA, MvDA, 2DLDA, and
ILDA, are special cases of the proposed method 2DMvIDDA. We also state how their formulations can be
obtained from 2DMvIDDA formulations.

6.1.3.1 2D Multi-view Discriminant Analysis (2DMvDA)

2DMvDA is a discriminant analysis-based method for 2D Multi-view data. Let A = {A;xli =1, -+ ,¢;j =
1,---,v;k=1,---,n;} be the training set for 2DMvDA. Each A;j; € R?3*%. The incremental formulation
of 2DMvIDDA can be used as 2DMvDA by treating all the data samples as a new set having data samples
from ¢ new classes. Here, the existing samples will be 0 as no data samples were already presented for
training. Once the scatter matrices are computed using these formulations, the projection matrix W can
be obtained by using Eq. 2.5.

6.1.3.2 Multi-view Incremental Decremental Discriminant Analysis (MvIDDA)

MvIDDA is a discriminant analysis-based incremental decremental method for 1D multi-view data. Let
the dataset be denoted as A = {a;xli = 1,--- ,¢;j = 1,--- ,u;k = 1,--- ,n;;}. Each a;;;, € R"*%. The
incremental learning formulations of 2DMvIDDA can be used as MvIDDA if we keep the number of rows
(p;) of every data sample equal to 1, as MvIDDA takes 1D data samples as input. The four incremental
formulations of MvIDDA are just the special cases of the incremental formulation of 2DMvIDDA. Hence, once
the scatter matrices are computed using the incremental formulations according to the type of increment, the
projection matrix W" can be obtained by using Eq. 2.5. We can also obtain the decremental formulations
of MvIDDA using the decremental formulations of 2DMvIDDA in a similar fashion to the incremental
formulations.

6.1.3.3 Multi-view Discriminant Analysis (MvDA)

MvDA is a discriminant analysis-based batch method for 1D multi-view data. Let the dataset be denoted
as A= {a;jli=1,---,¢;5=1,--- ,v;k = 1,--- ,n;;}. Each a;;;, € R"*9. The incremental formulation of
2DMvIDDA can be used as MvDA by

o Keeping the number of rows (p;) of every data sample equal to 1, as MvDA takes 1D data samples as
input.

e Treating all the data samples as one set of data having data samples from ¢ new classes.

Here, the existing samples will be 0 as no data samples were already presented to the model. Once the scatter
matrices are computed using these formulations of 2DMvIDDA, the projection matrix W is obtained using
Eq.2.5.



6.1.3.4 2D Linear Discriminant Analysis (2DLDA)

2DLDA is a discriminant analysis-based batch method that trains on the single-view 2D data. Let A =
{Ajkli=1,---,¢j=1k=1,--- ,n;;} be the whole training set for 2DLDA. Each A;;; € RP*?and j =1
as there is only one view. The incremental formulation of 2DMvIDDA can be used as 2DLDA by treating
all the data samples as the set of new data having data samples from ¢ new classes and only one view. The
number of existing samples will be 0 as no data samples were already presented to the model. The projection
matrix W can be obtained by using Eq. 2.5 after the scatter matrices are computed using the incremental
formulations of 2DMvIDDA.

6.1.3.5 Incremental Linear Discriminant Analysis (ILDA)

ILDA is an incremental method based on discriminant analysis and trains on 1D single-view data. Let the
dataset be denoted as A = {aijk|z' =1,---,cj=Lk=1,--- ,nij}. Each a;j;, € R'X9. The incremental
formulations of 2DMvIDDA can be used as ILDA by

o Keeping the number of rows (p;) of every data sample equal to 1, as ILDA takes 1D data samples as
input.

o Keeping j =1 as ILDA is a single-view method.

The optimal projection matrix W can be obtained by using Eq. 2.5 after the scatter matrices are computed
using the suitable formulations according to the type of increment. Similar to the incremental formulations,
we can also formulate a decremental version of ILDA using the decremental formulations of 2DMvIDDA.

6.2 Experiments and Results

6.2.1 Experimental Setup

We divided the datasets into two parts: the training dataset has 80% of the data samples, and the remaining
(20%) are used for testing. The training set is used to simulate increments and decrements in the data. We
have taken sets of 20 data samples for each increment or decrement.

The experiments that compare all the 2D and 1D methods are performed using rescaled versions of
the datasets owing to the greater memory needs of 1D methods. We compare the classification accuracy,
training time, and memory requirements of 2DMvIDDA to the methods discussed in Section 6.1.3.

The experiments that compare only the 2D methods are performed on the original datasets to show
that the 2D methods require much less time and memory, even for large images. Here, the classification
accuracy remains the same as when the rescaled versions were used. Hence, we focus on the training time
and memory requirements. The methodology for classification is the same as that used for MvIDDA.

6.2.2 Results

This section presents the results of experiments designed in order to answer the research questions posed
in chapter 1. Research question 1 and 2 are answered in sections 6.2.2.1 and 6.2.2.2. The third question is
answered in two parts in sections 6.2.2.3 and 6.2.2.4.

6.2.2.1 Similarity of the Discriminant Subspace

e RQ1 : Can the 2D incremental-decremental method, without using old data samples, produce an
identical model to that of its batch counterpart, 2DMvDA?

e Experiment : To compare the discriminant subspace, we incrementally trained two models using
2DMvIDDA and 2DMvDA, respectively. Then, we deleted existing data samples from the dataset in
a similar fashion. At each update, the inner products of the first five eigenvectors of both models are
computed. As the eigenvectors are of unit length, we say two eigenvectors are equal when their inner
product is 1.
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Figure 6.2: Inner product between first five eigenvectors of 2DMvIDDA and 2DMvDA for Stereo
face dataset during incremental and decremental phases.
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Figure 6.3: Inner product of the eigenvectors over 100 iterations of 2DMvIDDA with those of
2DMvDA.

e Discussion : Fig. 6.2 presents the inner products computed over the updates on the Stereo Face

dataset. The inner products are presented for the increments from 0 to 640 data samples at first. Then,
the inner products for the decrements from 640 to 0 data samples are shown. The figure shows the
inner products converged to 1 for all updates, except for the first few increments and the last few sets
of decrements. This implies that the shared discriminant subspace constructed by 2DMvIDDA is the
same as that constructed by 2DMvDA. A minor difference is seen in the case of first few increments,
as the less number of data samples causes some inaccuracies in eigenvalue computation. The same is
observed at the end of decrements too.

6.2.2.2 Order Independence

e RQ2 : Is this method invariant to the order of addition or deletion of data samples?

e Experiment : We trained the model using 2DMvIDDA on the training set a hundred times by adding

or deleting the data samples in a randomized order every time. When updates are done after each
iteration, we compute the inner product of eigenvectors of the trained model with the eigenvectors of
the batch method, 2DMvDA.

Discussion : We experimented on all four datasets and found that the inner product of eigenvectors
from both models is equal to or very close to 1 every time. To avoid redundancy, we only present the
results for the Stereo Face dataset in Fig. 6.3. Here, we see the inner products of these eigenvectors
are converged to 1. This proves the order independence of the proposed method.



Table 6.1: Comparison of 2DMvIDDA with other methods based on discriminant analysis

Classification Memory Training Time

Dataset Method Accuracy (%) (MBs) (seconds)
2DMvIDDA 100.00 3.24 0.11
2DMvDA 100.00 13.60 0.15

IMPART MvIDDA 100.00 10751.61 587.31
MvDA 100.00 10761.98 1835.93
2DLDA 100.00 13.60 1.32
ILDA - - -
2DMvVIDDA 98.67 1.49 0.01
2DMvDA 98.67 29.75 0.14

MSSpoof MvIDDA 90.67 1678.95 647.63
MvDA 90.67 1707.21 2551.35
2DLDA 96.00 29.75 1.54
ILDA 86.66 1677.72 3915.05
2DMvIDDA 75.62 20.25 0.19
2DMvDA 75.62 157.87 0.93

Stereo MvIDDA 73.75 9682.16 1423.10

Face MvDA 73.75 9811.52 3970.58
2DLDA 75.00 157.87 12.24
ILDA 70.78 9663.67 90863.35
2DMvIDDA 91.25 5.85 0.11
2DMvDA 91.25 45.41 0.70

ORL MvIDDA 81.25 1916.05 806.30
MvDA 81.25 1955.61 1777.62
2DLDA 86.25 45.41 2.95
ILDA 57.50 1911.10 5561.28

6.2.2.3 Comparison on the Rescaled Datasets

e RQ3 : How is this method more advantageous than other discriminant analysis-based methods?

e Experiment : We trained models using 2DMvIDDA, 2DMvDA, MvIDDA, MvDA, 2DLDA, and
ILDA on the rescaled versions of the datasets due to the memory constraints of 1D methods. However,
ILDA could not run even on the rescaled version of IMPART dataset. Parameters for the rest of the
methods on all the datasets have been recorded.

e Discussion : Table 6.1 lists the parameters recorded for the above-mentioned methods. Here, we
see that 2DMvIDDA shows the highest classification accuracy with the lowest time and memory
requirements among all these methods.

The reason for the higher classification accuracy is the use of multiple views and the 2D form of the
data. For the same reasons, 2DMvDA also has the same accuracy as 2DMvIDDA, but it takes much
more time and memory for training. MvIDDA and MvDA use the multi-view data effectively, but
they lose the spatial information as they use a vectorized form of images. 2DLDA uses the 2D form of
data, but it merges all the views and hence does not benefit from the contrasting information that each
view offers. ILDA has the least classification accuracy as it uses neither the multiple views separately
nor the 2D form of the data.

2DMvIDDA requires less memory than the rest because (i) the use of 2D form leads to smaller scatter
matrices, and (ii) as it is an incremental method, it only needs to store the existing model and the
data samples to be added or deleted. It does not need to store the whole dataset, unlike the batch
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Figure 6.4: Visualization of Classification on MSSpoof Dataset: (i) Training data samples are
denoted with different colored dots for different classes. (ii) Correctly classified test data samples
are denoted with black squares. (iii) Misclassified test data samples are denoted with red triangles.



Unlike the batch methods, it does not need to store the whole dataset. 2DMvDA and 2DLDA too
benefit from the use of 2D form. However, these are batch methods and they need to store all data
samples and the model. So, the demand for storage increases with the number of data samples.
MvIDDA and ILDA are incremental methods and do not store old data samples. However, as they use
the vectorized format, the size of scatter matrices increases, leading to more memory requirements.
MvDA has the largest memory requirements as it is neither an incremental method nor a 2D method.
Note that the memory requirements in Table 6.1 are in MBs.

The time records for the incremental methods consist of the time taken for updating the four entities,
namely- the number of data sample, the means, the within-class scatter and the between-class scatter.
Similarly, the time records for the batch methods consist of the time taken for recomputing these
four entities. We have not considered the time taken for the computation of the projection vectors,
as this step is common for both types the methods. The reason for the lesser time requirements of
2DMvVIDDA is the same as that for the memory requirements. (i) The 2D form leads to smaller scatter
matrices which further leads to less computation time, and (ii) due to the incremental nature of the
method, it only requires to update the model instead of retraining like other batch methods. 2DMvDA
and 2DLDA require more time because of their non-incremental nature. However, they need less time
than the 1D methods as they operate on smaller scatter matrices. MvIDDA and ILDA benefit from
the incremental nature, but they need more time because of the larger scatter matrices. Like memory
requirements, MvDA is most expensive (except for ILDA) in terms of training time too, as it is a non-
incremental 1D method. The reason for ILDA’s need for more training time is machine-dependent
rather than due to the algorithm itself. As ILDA is a 1D single-view method, the vectorized views
are all concatenated and used as the input. In contrast, MvDA and MvIDDA use multi-dimensional
matrices, which improves their performance even though the total matrix size is the same for these
three methods.

The difference between the time and memory requirements of 1D batch and 1D incremental methods
is not as much as in the case of 2D methods because the data sample count is significantly less than
the number of dimensions. The difference will be more pronounced when the number of data samples
is increased.

Figure 6.4 presents the classification results of these methods on the MSSpoof dataset plotted using
t-SNE. The different colored dots represent the training data samples from different classes. The
correctly classified test data samples are denoted with black squares, and the incorrectly classified data
samples are denoted with red triangles. We can see that the subspace constructed by 2DMvIDDA,
2DMvDA, and 2DLDA is better at discriminating between different classes than that constructed by
the 1D methods. Also, The 1D multi-view methods (MvIDDA and MvDA) have constructed a better
subspace than the 1D single-view method ILDA. This difference in the subspace construction leads to
the difference in the classification performance of these methods.

6.2.2.4 Comparison on the Original Datasets
e RQ3 : How is this method advantageous than other discriminant analysis-based methods?

e Experiment : We train classifiers on the original datasets using only the 2D methods and record
their time and memory requirements. Here, the time records for 2DMvIDDA consist of the time
taken for updating the four entities, namely- the number of data sample, the means, the within-class
scatter and the between-class scatter. Similarly, the time records for 2DMvDA and 2DLDA consist
of the time taken for recomputing these four entities. We have not considered the time taken for the
computation of the projection vectors, as this step is common for all the methods. To give an idea
of the reduction in memory requirements due to the use of 2D data, we also estimated the memory
requirements of MvIDDA, which requires the least memory among the three 1D methods. Note that
the memory requirements are in GBs.

e Discussion : Table 6.2 lists the training time and memory usage of these 2D methods. We see
the same trends with the original datasets as with the rescaled ones. Even among the 2D methods,
2DMvIDDA requires much less memory than the other two methods. However, the main aim here is to



Table 6.2: Comparison of 2DMvIDDA with other 2D methods on the original datasets. Table also
lists estimated memory requirements of MvIDDA.

Memory Training Time

Dataset Method (GBs) (seconds)
2DMvVIDDA 1.29 151.19
IMPART 2DMvDA 5.44 356.59
2DLDA 5.44 3094.38
MvIDDA 1601800 -
2DMvIDDA 0.38 14.07
MSSpoof 2DMvDA 7.61 126.54
2DLDA 7.61 1686.57
MvIDDA 102400 -
2DMvIDDA 0.50 10.46
Stereo 2DMvDA 3.94 44.90
2DLDA 3.94 598.85
MvIDDA 5625 -
2DMvIDDA 0.02 0.41
ORL 2DMvDA 0.18 2.77
2DLDA 0.18 11.42
MvIDDA 15.2 -

show how little are the memory requirements of 2DMvIDDA compared to 1D methods, which is evident
from the huge memory requirements of MvIDDA. As 1D methods use the vectorized form of input
images, the size of scatter matrices increases drastically. In the IMPART dataset, the images are of
size 1920 x 1080, so scatter matrices computed by the 1D methods will be of size 10368000 x 10368000,
whereas those computed by the 2D methods are of size 9600 x 9600 only. This reduction in the size of
scatter matrices saves enormous amounts of memory and training time. ILDA also requires the same
amount of memory as MvIDDA as it is also a 1D incremental method. Being a batch method, MvDA
needs even more memory to store all the historical data.

6.3 Summary

We have presented an incremental-decremental method for 2D multi-view data in this chapter. This method
enables the use of the original 2D form of the data to capture the spatial features and multiple views to gather
contrasting information. The proposed method does not need to store historical data. It incrementally learns
a model by taking only the old model and the data samples to be added. It also decrementally unlearns
existing data samples, using the existing model and the data samples to be deleted. 2DMvIDDA is also
presented as the generalized form of other discriminant analysis-based methods, namely- 2DMvDA, MvIDDA,
MvDA, 2DLDA, and ILDA. The formulations of these methods can be obtained from the formulations or a
part of the formulations of 2DMvIDDA.

We show that being a scalable method for 2D multi-view data, 2DMvIDDA constructs a better dis-
criminant subspace with significantly less time and memory. This subspace constructed by 2DMvIDDA is
the same as that of batch 2DMvDA. 2DMvIDDA also handles data samples from previously unseen classes
and is order-invariant.

The next chapter presents an incremental-decremental method for multi-view data that can add or
remove views from a trained model. This method is also based on discriminant analysis.

LIRS SN



View Incremental Decremental Multi-view
Discriminant Analysis

We present in this chapter View Incremental Decremental Multi-view Discriminant Analysis (VIDMvDA),
which is a classification method for 2D multi-view data. The motivation behind this method is similar to that
of the other incremental methods presented in this thesis. However, those methods aimed to facilitate the
addition/deletion of data samples, whereas VIDMvDA aims at supporting the addition/deletion of views.
VIDMvDA is based on discriminant analysis and aims to reduce computational costs. It supports the
addition or deletion of multiple views without retraining the model from scratch. All the updates in the
model are obtained in a closed-form.

We present the formulations of VIDMvDA | experimental setup, and results in subsequent sections. We
compare the proposed method with its batch counterpart (MvDA) on parameters such as- similarity of the
discriminant subspace, classification accuracy, training time, and memory requirements. We also show that
the sequence of addition or removal of views of data does not alter the final common discriminant subspace.
We conclude this chapter by summarizing the features of VIDMvDA.

7.1 Methodology

As we saw in section 2.1.1.1, the scatter matrices are made up of view-wise submatrices. These submatrices
are computed in a pairwise manner from all the views. To add a new view, we must compute the scatter of
this view with respect to each of the existing views and itself. For example, when the within-class scatter of
the data samples belonging to (v+1)*" view is to be updated, Sj(w+1) and S(,qpy; forall {j =1, , (v+1)}
are computed. These pairwise submatrices are then appended onto the existing scatter matrix S. We also
need to update the existing submatrices as the number of data samples per class used to compute the scatters
changes after each increment. In the case of decrement, we delete the submatrices of the deleted view/s and
update the remaining submatrices using the updated number of data samples per class.

Fig. 7.1 presents an example of updates in the scatter matrix with the increments or decrements in a
pictorial form. In this figure, we see that at time t;, there exists a within-class scatter matrix of two views.
When a new view 3 is added at the transition from t; to %o,

e The submatrices pertaining to the third view (Si3,Sa3,S31, S32 and S33) are appended to the scatter
matrix from ¢; as shown in Fig. 7.1.

e The existing submatrices from ¢; (S11,S12,S21 and Sss) are updated in to to reflect the addition of
the new view.

When view 2 is deleted at the transition from ¢ to t3,

e The submatrices pertaining to the second view (Si12,S21, S22, Ses and Sss) from to are deleted at t3.
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Figure 7.1: Updates in a scatter matrix after the addition and deletion of views over time. Each
submatrix S, is represented with the combination of colors of Gt and " view.

e The remaining submatrices (S11, S13,S31 and Ss3) from ¢2 are updated at t3 to reflect the deletion of
the view.

Following similar procedures for adding and deleting more views, we see the evolved scatter matrix at ¢,.

7.1.1 Addition of Views

Let the set of new views be denoted as V = {v + 1,v + 2,--- ,v'}. When new views are added, four
quantities are updated, namely- (i) data sample counts, (ii) the means, (iii) the within-class scatter and (iv)
the between-class scatter. These updates are given as follows:

7.1.1.1 Updating the number of data samples

As each of the new views contains features of all the existing data samples, the cardinality of each new view
is the same as any previous view. Hence, the number of samples per class per view (n;]) is also the same as
that of any previous views. Other counts n; and n are updated as follows,

n;:ni—f— UZ ’rng and n'zn—i—i UZ n;j (7'1)

j=o+1 i=1 j=v+1

7.1.1.2 Updating the means

The three means (m;;, m;, m) are updated as follows,

r (%)

mU

n;
, nm-+nm
n'



Algorithm 4 VIDMvDA: Incremental algorithm
Input :

- An existing model ¢ that consists of n, n;, n;;, m Z(j ), S, D, C,V

- New views of data samples: X
- Set of new views: V

while new data is encountered do
Update n, n;, n;; as given in Eq.7.1
Update mean per class per view (m ( )) using Eq.7.2
Update the within-class scatter matrlx (S) using Eq.7.6
Update the between-class scatter matrix (D) using Eq.7.8
V=VYuy
Calculate the projection matrix (W) using Eq.2.5

end while

Output :

- Updated model ¢’ and the projection matrix W

7.1.1.3 Updating the within-class scatter

The new scatter matrix is the summation of the scatter of the old and the new view with respect to the
updated class mean. The equation to update within-class scatter is as follows,

v Mij Nij
Z Z Z yl]]f yljk + Z Z Z yzjk y”k - /)T (75)
=1 j=1 k=1 =1 j=v+1 k=1

This equation is in the projected space. We then express it only in terms of the old scatter matrix and
new data in the original space. Here, we compute the submatrices (S;,) of the within-class scatter of the
new view with existing views in a pair-wise manner. Also, the existing submatrices are updated to reflect
the change in the number of samples per class. So, we have three cases based on the values of j and r. At
the transition from ¢; to to in Fig. 7.1, we see these three cases.

e Case-1is when (j € V && r € V), but (j # r). This case is for computing the scatter of new views
with the existing views. In Fig. 7.1, submatrices S13,S23,S31 and S3o at to represent this case.

e Case-2 is when (j € V && r € V) and (j = r), that is when we compute the scatter of the new view
with respect to itself. Submatrix Ss3 at t5 represents this case in Fig. 7.1.

e Case-3 is for updating the existing submatrices, which occurs when (j ¢ V && r ¢ V). Submatrices
S11,S12, So1 and Sos at ¢y in Fig. 7.1 represent Case-3.

The equation for updating the within-class scatter matrix in all three cases is given below.

C

T T

— 3 M my; () m,, 0 case 1
i=1
12 ¢ ﬁ” T i T
Sjr = Z Z Xijkxijk - ZZL/‘ = mij(x) mij(x) case 2 (7.6)
i=1 L k=1 i
- i (), (97

Sir+ > S MM 00 my, case 3

i=1

The derivation of S}, and S;T is given in Appendix-G.



7.1.1.4 Updating the between-class scatter

The between-class scatter depends only on the means, so updating the between-class scatter after each
increment is easier. The equation in projected space does not explicitly depend on the views.

c
=3 ni(m] — m')(m] - m')” (7.7)
i=1

Here, the view information is embedded in the total and class-wise means. It creates two cases of
updates when rewritten using the data samples in the original space.

In Case-1, the between-class scatter of the new views with the existing views is computed in a pairwise
manner and appended to the existing scatter matrix (D). Here, (j € V || » € V). In Case-2, all the
existing submatrices are adjusted to reflect the change in the means and the number of data samples. Here,
(j ¢V && r ¢ V). The update equations for both the cases of the between-class scatter are as follows,

T
C ’ ’ T c C
Mg Wir g (X)) s (x) 1 / 7 (%) / r (%)
> nr My T 1My, o > Ny My 5 > ng, my, case 1
D. =/{i=1 K i=1 i=1 T (7 8)
jr .
D S nf-ng (x) . (T 4 n'=n [ o (x) : (x) 9
= 20 i Mg MMy my, B R (Y ng my; > Mip My case
i=1 i i=1 i=1

The derivation of S’z and D;T is given in Appendix-A. After performing steps (i)-(iv), we compute the
optimal projection matrix by solving the generalized eigenvalue problem given in Eq. 2.5. The obtained
projection matrix (W°P") is then used for classification by projecting each test sample onto a shared subspace
where they can be assigned labels based on their proximity to the available classes. This projection matrix
is used until further addition or deletion of the views. Whenever we encounter yet another new view/s
of the data, we repeat the update process and compute the new projection matrix. The whole process is
summarized in Algorithm 4. This formulation can be used for 2D data as well.

7.1.2 Deletion of Views

Let V C V be a set of ¥ views to be removed from the dataset. When any of the existing views are deleted,
four quantities, namely (i) the data sample counts, (ii) the means, (iii) the within-class scatter, and (iv) the
between-class scatter. These updates are given as follows:

7.1.2.1 Updating the number of data samples

As these views of all existing data samples are deleted, the number of data samples per class per view (n;j)

of each of these views will also be deleted or made equal to 0. The number of data samples per class (n;),
and the total number of data samples (n) are updated as,

n,=mn; — i:nij andn’ =n — iinij (7.9)
=1

i=1 j=1

7.1.2.2 Updating the means

The three means (m;;, m;, m) are updated as follows,

m), ¥ =0 (7.10)

m = monm (7.12)



Algorithm 5 VIDMvDA: Decremental algorithm
Input :

- An existing model ¢ that consists of n, n;, n;;, m Z(j ), S, D, C,V

- Views of data samples to be removed: X
- Set of views to be removed: V

while there is a view is to be removed do
Update n, n;, n;; as given in 7.9
Update mean per class per view (m ( )) using Eq.7.10
Update the within-class scatter matrlx (S) using Eq.7.14
Update the between-class scatter matrix (D) using Eq.7.16
V=y-Vy
Calculate the projection matrix (W) using Eq.2.5

end while

Output :

- Updated model ¢’ and the projection matrix W

7.1.2.3 Updating the within-class scatter

The new scatter matrix is the summation of the scatter of the remaining data samples from the updated
class mean. The equation in the projected space is as follows,

Mg v Mij
SD3) 9) HIITERUIIEILED 35 $) BIL AT LA LN (AT
=1 j=1 k=1 =1 j=1 k=1

This equation is in the projected space. In the original space, we delete all the submatrices (S;,) of
the within-class scatter that pertain to the views to be deleted. The remaining submatrices are updated to
reflect the change in the number of samples per class. Here, we have two cases based on the values of j and
r. For example, at the transition from ¢, to t3 in Fig. 7.1, we see these two cases.

e Case-1 is when either (j € V || r € V). This case is for deleting the pairwise scatter of views in V
with any other view. Submatrices Si2, Sa1, So2,So3 and S3o from time-stamp ¢, are deleted from the
scatter matrix at t3 in Fig. 7.1.

e Case-2 is for updating the existing submatrices. This occurs when (j ¢ V && r ¢ V). Submatrices
8117813, S31 and Sgg at t3 represent Case-2 in Flg 7.1.

The within-class scatter matrix is updated as follows-

Delete case 1

[
Sj”‘ - S I i n—n (7]‘4)
ar =1 n;n

—_N T
0 g my; P m;, 07 case 2
i

The derivation of S}, and S;-T is the same as in the case of incremental formulation given in Appendix-G.

7.1.2.4 Updating the between-class scatter

As we have seen in the case of increment, the equation of between-class scatter in projected space does not
explicitly depend on the views.

5= Y ni(m;—m')(m] - m)" (7.15)
i=1



The between-class scatter also has the same two cases as the within-class scatter in the original space.
For case-1, the submatrices pertaining to the views in set V are deleted. For case-2, the submatrices are
updated as follows,

Delete case 1

D. =

Jr c 7

T
n; ”;r T 1 c c
Z 771, - mij(x) mir(x) — ngj mi]‘(x) Z n;r mi,.(x) case 2
i =1 =1

i=1 %

(7.16)

The derivation of S and D, is given in Appendix-A.

After following steps (i)-(iv), we compute the optimal projection matrix using Eq. 2.5. The
projection matrix (W), thus obtained, is then used until a new view of the data arrives or any of
the existing view/s are deleted. While deleting another view/s of the data, we repeat the update
process presented above and compute the new projection matrix. The whole process is summarized
in Algorithm 5. This formulation can be used for 2D data as well.

7.2 Experiments and Results

7.2.1 Experimental Setup

We have divided the data samples from each dataset into two subsets- one for training (80%) and
the other as a test set (20%). The training set is used to simulate the increments and decrements of
views. Though VIDMvDA can handle one or more views of data in each increment or decrement, to
demonstrate the effect of adding the views, we have used the views one at a time for the experiments.

For experiments with 1D datasets, two models, ¢4 and ¢p, are trained on each dataset. ¢4 is
trained using VIDMvDA, and ¢p is trained using the 1D batch method, MvDA. While simulating
the increments, we add one view at a time from 1 to 6. VIDMvDA updates ¢4 by considering only
the old model and the new view after each increment, whereas MvDA discards ¢p and trains a new
model after each increment using all the existing views and the new view. After both models have
been trained on all views of the dataset, we simulate decrement by removing one view at a time
from 1 to 5. While simulating the decrement, ¢, is updated to reflect the deletion of each view
using only the existing model, whereas ¢p is discarded and trained anew using all the remaining
views after the deletion.

For experiments with 2D datasets, two models, ¢4 and ¢pg, are trained on each dataset. ¢4 is
trained using VIDMvDA, and ¢p is trained using the 2D batch method, 2DMvDA. The increments
and decrements are simulated in a similar way as with the 1D datasets.

The updated models after each increment/decrement are used to classify the data samples
from the test set. Here, only the views used in the training phase of that time step are taken
into account. Let Wf’ft and W%”t be the optimal projection matrices obtained from models ¢4
and ¢pg, respectively. The projection matrix from each method is then used to project every test
sample (y?®*!) onto the shared space. We use the same methodology as that used by MvIDDA for
classification.

7.2.2 Results

This section presents the results of experiments designed in order to answer the research questions
posed in chapter 1.
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Figure 7.2: Inner products of the first five projection vectors of VIDMvDA and MvDA on hand-
written digits dataset. Views are added to the initially empty dataset one by one from 1 to 6. After
that, they are removed from the dataset in the order from 1 to 5.

7.2.2.1 Similarity of the Discriminative Subspace

e RQ1 : Can the incremental-decremental method, without using old views, produce an iden-
tical model to that of its batch counterpart?

e Experiment : We train two models using VIDMvDA and its batch counterpart to compare
the discriminant subspace. We first incrementally learn all views one by one and then unlearn
those in a similar fashion. The inner product of projection vectors of these methods is taken
after each update.

e Discussion : Fig. 7.2 presents the inner product of projection vectors obtained from the
models trained on handwritten digits dataset. The results on all the other datasets are similar
to those presented in this figure. Hence, no separate results are presented. We see the inner
product of projection vectors after adding each view incrementally from 1 to 6. The figure
also shows the inner product after removing them in the same order from 1 to 5. After
the deletion of the 6" view, the scatter matrices become zero. Here, the labels EV1 to EV5
represent the first five projection vectors and the number of the added/deleted view is written
on the x-axis. We see that the inner product of projection vectors is either 1 or very close
to 1 even after the addition of new views. The same observation is made for the deletion
operation. This observation shows that the discriminant subspace constructed by VIDMvDA
is nearly identical to that of the its batch counterparts, MvDA or 2DMvDA.

7.2.2.2 Order Independence

e RQ2 : Is this method invariant to the order of addition or deletion of data samples?

e Experiment : We trained a hundred models using VIDMvDA on the training set by adding
or deleting the data samples in a randomized order every time. When the updates are
done after each iteration, we compute the inner product of the eigenvectors of the trained
model with the eigenvectors of the batch method, MvDA for 1D datasets or 2DMvDA for 2D
datasets.

e Discussion : We use the inner product of projection vectors to check whether the subspace
constructed by VIDMvDA is similar to that constructed by a batch method. Here, we have
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Figure 7.3: Inner products of the first five projection vectors of 100 iterations of VIDMvDA with
those of MvDA on handwritten digits dataset.

Table 7.1: Comparison of the classification accuracy of VIDMvDA and MvDA. First column shows
the number of the view that was added or deleted.

View Handwritten Digits Caltech-7 AwA
No. VIDMvDA MvDA VIDMvDA MvDA VIDMvDA MvDA
Addition of Views

1 98.25 96.75 89.00 89.00 90.69 90.69
2 98.75 92.00 90.00 90.00 94.43 94.43
3 98.00 97.25 92.50 92.50 94.27 94.27
4 100.00 99.00 96.00 96.00 94.43 92.79
5 100.00 98.75 97.00 97.00 95.43 95.43
6 99.75 99.00 97.00 97.00 96.55 96.55
Deletion of Views
1 100.00 99.00 97.00 97.00 96.55 96.55
2 100.00 98.75 95.50 95.50 96.02 95.73
3 98.75 98.75 96.50 96.50 96.02 96.02
4 100.00 97.00 96.00 96.00 94.88 94.88
5 100.00 98.75 96.00 96.00 93.36 93.36

only shown the results obtained on the Handwritten Digits dataset to avoid redundancy. We
see in Fig. 7.3 that the values of the inner product of the projection vectors have converged to 1
regardless of the order of addition or deletion of views, demonstrating the order independence
of VIDMvDA.

7.2.2.3 Comparison of Classification Accuracy

¢ RQ3 : Can this method perform as well as the batch method in terms of classification
accuracy?

e Experiment : We have noted the classification performance of the incremental and the
batch methods after adding each view to the dataset and later removing them one by one.

e Discussion : Here, we have used 5 projection vectors, i.e. d = 5, for both the models ¢ 4 and
¢p. The results show that VIDMvDA has the same or better classification accuracy than its
batch counterparts. Table 7.1 presents the records of classification accuracies on 1D datasets



Table 7.2: Comparison of the classification accuracy of VIDMvDA and 2DMvDA. First column
shows the number of the view that was added or deleted.

View IMPART MSSpoof Stereo Face ORL
No. VIDMvDA 2DMvDA VIDMvDA 2DMvDA VIDMvDA 2DMvDA VIDMvDA 2DMvDA

Addition of Views

1 100.00 100.00 97.33 97.33 95.00 95.00 90.00 90.00
2 90.00 90.00 100.00 98.67 98.12 98.12 87.50 87.50
3 100.00 100.00 - - - - 91.25 91.25
4 100.00 100.00 - - - - - -
5 100.00 100.00 - - - - - -
Deletion of Views
1 100.00 100.00 100.00 100.00 97.50 97.50 93.75 93.75
2 100.00 100.00 - - - - 78.75 78.75
3 100.00 100.00 - - - - - -
4 100.00 100.00 - - - - - -
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Figure 7.4: A plot of data samples of the handwritten digits dataset in the projected space con-
structed by (a) VIDMvDA and (b) MvDA. Training data samples from different classes are shown
in different colors. Black squares show correctly classified test samples, and red triangles show
incorrectly classified test samples.



and Table 7.2 shows the records for 2D datasets. We saw in 7.2.2.1, that the discriminant
subspaces of both models are very similar. The same is observed with the classification
accuracy as well. The accuracy of these two models is the same for all the datasets, except
for the handwritten digits dataset and MSSpoof dataset. VIDMvDA performs a little better
than the batch methods on these datasets.

A t-SNE plot of handwritten digits dataset in the projected space constructed by VIDMvDA
and MvDA is presented in Fig. 7.4. Here, 0 to 9 are the class labels. We see that both models
project the data in a similar manner. Both methods have set classes 0, 2 and 8 (denoted with
cyan, yellow and violet) farther from the other classes. Classes 6 and 9 (pink and sky-blue)
are closer to each other, as are classes 1 and 7 (red and blue).

7.2.2.4 Comparison of Training Time
e RQ4 : Can this method reduce training time?

e Experiment : To compare the training time of VIDMvDA and MvDA /2DMvDA, we trained
models using these methods by adding the views in a one-by-one manner from view 1 to 6.
Similarly, for deletion, the time was noted after each view was deleted from view 1 to 5. We
record the time taken by each method after every addition/deletion of views.

e Discussion : As VIDMvDA only updates the existing model instead of retraining from
scratch, it is expected to require less time for training than the batch method as the latter
discards the existing model and retrains on the whole dataset. This observation is reflected in
the recorded training time of these methods. Fig. 7.5 and 7.6 present the records of training
time of three 1D datasets and one 2D dataset for increments and decrements, respectively.
The records for the remaining 2D datasets are presented in Table 7.3 as these datasets have
less number of views, and hence, the results cannot be effectively shown as a line graph.

We see in Fig. 7.5 and Table 7.3 that as new views get added over time, the batch methods
need much more training time than VIDMvDA. VIDMvDA only updates the model when a
new view is added, whereas the batch methods train on all the historical views and the new
view. Hence, the difference in the training time increases with the number of views. This
difference in training time becomes more pronounced in the AwA dataset as it is the largest
among these datasets. We can see that VIDMvDA requires around 1.5 hours to train on the
AwA dataset with all six views, whereas, MvDA takes more than 6 hours to complete training
on the same dataset.

We see in Fig. 7.6 and Table 7.3 that though the number of views is decreasing over time,
the batch methods still take more training time than VIDMvDA. Similar to the addition,
VIDMvDA only updates the model each time a view is deleted, whereas the batch methods
train on all historical views except the deleted view. So, we see that VIDMvDA is faster in
deletion as well. Following the same example of the AwA dataset, we can see that VIDMvDA
decrementally unlearns 5 views in just 4.4 minutes, whereas, MvDA takes more than 4 hours
to unlearn the same.

The deletion operation takes much less time than the addition. This is mainly due to the
difference in computation of the within-class scatter. In the case of addition, every submatrix
is either computed newly or is updated from old submatrices, and as the number of views
increases, the count of submatrices grows with it. Whereas for deletion, the submatrices
associated with the deleted views are simply deleted, and computations are only needed for
the remaining submatrices, which reduce in numbers after each deletion.
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Table 7.3: Comparison of training time of VIDMvDA and 2DMvDA. First column shows the
number of the view that was added or deleted.

View MSSpoof Stereo Face ORL
No. VIDMvDA 2DMvDA VIDMvDA 2DMvDA VIDMvDA 2DMvDA
Addition of Views

1 49.93 49.93 15.34 15.34 0.24 0.24

64.97 108.25 22.46 33.29 0.76 1.09

3 - - - - 1.21 1.86
Deletion of Views

1 5.33 43.86 4.81 14.11 0.04 0.19

- - - - 0.32 1.17

Table 7.4: Comparison of memory requirements (in MBs) of VIDMvDA and MvDA.

Handwritten Digits Caltech-7 AwA

VIDMvDA 0.34 2.57 11.07
MvDA 23.38 292.55 7535.07

Table 7.5: Comparison of memory requirements (in GBs) of VIDMvDA and 2DMvDA.

IMPART MSSpoof Stereo Face ORL

VIDMvDA 1.29 0.38 0.50 0.02
2DMvDA 5.44 7.61 3.94 0.18

7.2.2.5 Comparison of Memory Requirements

e RQ5 : Can this method reduce memory requirements?

e Experiment : We record the total amount of storage taken by each model after training on
all six views.

e Discussion : As VIDMvDA only stores the existing model and the new data samples instead
of storing all the historical data along with the model, it requires less memory for training
than the batch method. This is reflected in the recorded memory requirements. Table 7.4
and Table 7.5 present the records of memory requirements of these methods on the 1D and
2D datasets, respectively.

We see that VIDMvDA requires much less memory than the batch methods. The difference
between the memory requirements of these methods is again highlighted in the case of the
AwA dataset. As it is a very large dataset, the required storage space is also significant.
However, as VIDMvDA does not need to store all the historical data, it takes only 11 MBs,
while MvDA takes around 7.5 GBs of memory.



7.3 Summary

In this chapter, we have presented View Incremental Decremental Multi-view Discriminant Analysis
(VIDMvDA), an incremental method for multi-view data that supports the addition and deletion of
views over time. This method is based on discriminant analysis and provides closed-form solutions
for incremental learning and decremental unlearning. In the case of increment, it produces the
updated discriminant subspace using only the existing model and the newly added views. It also
supports the deletion of any existing views and produces the updated subspace after the deletion
using only the existing model. This provision allows it to train in much less time than the batch
method. Also, as VIDMvDA does not need to store all the historical data, it requires much less
memory than its batch counterpart, MvDA.

Through experiments, we have also shown that, while taking less time and memory, VIDMvDA
constructs a similar discriminative subspace as MvDA. Hence, it also performs at par or sometimes
better than MvDA in terms of classification accuracy. We have also proven that the order of
addition or deletion of views does not affect the subspace construction of VIDMvDA.
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Summary and Future Directions

This thesis has contributed incremental-decremental learning methods and one batch method
in different niches of supervised learning. These methods are based on Multi-view Discriminant
Analysis. We have identified a common framework to obtain the incremental formulations. This
framework consists of four steps- (i) Updating the number of data samples, (ii) Updating the means,
(iii) Updating the within-class scatter matrix, and (iv) Updating the between-class scatter matrix.
This framework has been followed to implement the data increment and view increment. The
batch method also follows this framework. However, it only implements it to train the model from
scratch. We present a chapter-wise summary that highlights key points of these methods followed
by a brief discussion and future scope in this direction.

8.1 Multi-view Incremental Decremental Discriminant Analysis

Multi-view Incremental Decremental Discriminant Analysis (MvIDDA) is an incremental decremen-
tal method for 1D multi-view data based on discriminant analysis. MvIDDA follows the framework
mentioned above to update the model after each increment/decrement. It supports the data sam-
ple update in two forms- sequential and chunk. It also supports the addition of previously unseen
classes of data. MvIDDA incrementally updates a common discriminant space for multi-view data
using only the existing model and the new data samples. It is also capable of unlearning the data
samples using olny the existing model and the data samples to be deleted. As MvIDDA is the first
incremental decremental multi-view method in the supervised learning domain, it was compared
against batch multi-view MvDA and single-view incremental ILDA on various parameters. The
comparisons with MvDA show that the proposed method is order-independent and can build the
same model as MvDA using less time and memory. This improvement is possible because of the
incremental nature of MvIDDA. Compared to ILDA, the proposed method was found to have better
classification accuracy while taking significantly less time for training. This improvement is due to
the multi-view nature of MvIDDA. The sequential formulations of MvIDDA train a model using
less memory and are more precise than the chunk formulations in the early stages of increments.
Similar trends are found near the end for decrements in data. The chunk formulations train a
model using less time than sequential formulations but converge to the optimum a little later than
the sequential formulations.
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8.2 2D Multi-view Discriminant Analysis

2D Multi-view Discriminant Analysis is a multi-view batch learning method for image datasets.
2DMvDA uses the above-mentioned framework to produce a classification model for 2D data.
The minimal time and memory requirements of 2DMvDA make it a suitable candidate for large,
image-based datasets as these datasets are inherently two-dimensional and require a lot of resources
because of their huge sizes when 1D methods are used. Also, the use of 2D images without vectoriza-
tion preserves the spatial information in these matrices and, in turn, produces better classification
accuracy. We compared this method with MvDA and 2DLDA on classification accuracy, training
time, and memory. 2DMvDA proves to be much more efficient and a little better at classifica-
tion than the other two methods due to the benefit it gets from multiple views and the spatial
information from the original 2D form of images.

8.3 2D Multi-view Incremental Decremental Discriminant
Analysis

2D Multi-view Incremental Decremental Discriminant Analysis (2DMvIDDA) is an incremental-
decremental method based on 2DMvDA. It supports incremental learning and decremental unlearn-
ing of data samples without using historical data. It only needs the existing model and the data
samples to be added or deleted to update the model. 2DMvIDDA follows the four-step framework
to update the trained model after each increment or decrement in data. It is also an umbrella
method for the methods based on discriminant analysis, namely- 2DMvDA, MvIDDA, MvDA,
2DLDA, and ILDA. We have shown that the formulations of these methods can be obtained from
the formulations of 2DMvIDDA. Also, the decremental learning formulations of 2DMvIDDA can
be used to form decremental versions of MvIDDA and ILDA. 2DMvIDDA obtains the same dis-
criminant subspace as its batch counterpart, 2DMvDA, and it is invariant to the order of addition
or deletion of the data samples. As it benefits from the three paradigms- 2D learning, multi-view
learning, and incremental learning- it is the fastest and most accurate method that requires the
least amount of memory among the other methods based on discriminant analysis.

8.4 View Incremental Decremental Multi-view Discriminant
Analysis

View Incremental Decremental Multi-view Discriminant Analysis (VIDMvDA) is an incremental
method for multi-view data that supports the addition and deletion of views. VIDMvDA follows
the four-step framework to update its model after the addition or deletion of views from the dataset.
It uses only the existing model and the views to be added or deleted to update a trained model. As
this is the only view-incremental supervised method for multi-view data, it was compared against
its batch counterpart MvDA for its performance. The experiments on three datasets show that
VIDMvDA constructs the same discriminant subspace as MvDA. As a result, the classification
accuracy of both methods is also the same. Being an incremental method, VIDMvDA also requires
much less training time and memory than MvDA. The same formulations of VIDMvDA can be
used for 2D datasets.



8.5 Discussion and Future Directions

Dealing with Missing Test Data

The methods presented in this thesis solve for the linear transforms of all views simultaneously.
However, the view-wise projection vectors thus found are independent and can be used separately to
project the test data samples. This property can be used to classify the test data samples that have
missing views. If a view of a test data sample is missing, we can still use the projection vectors
for the rest of the views to project it onto the common discriminant subspace for classification.
Though it does not solve the missing view problem in the training set, it can be used for the test
data with incomplete views.

True Incremental Methods

The incremental methods presented in this thesis are incremental in the sense that they do not
require the older data samples to update the model. As a result, the computation time and memory
are reduced by a huge factor. However, these methods still have to compute the eigenvectors after
each increment. To be truly incremental, these methods may employ techniques that can update
or approximate the eigenvalues without computing those again. This will reduce the computation
time and memory even further as these methods will not have to store scatter matrices, and work
with the projection matrix alone.

Multi-view Incremental methods for Other Paradigms

The methods presented in this thesis are multi-view incremental methods in the supervised domain.
As seen in chapter 2, other than those presented in this thesis, there are only four multi-view incre-
mental methods in the literature. The methods belonging to the data sample increment category
are in the active learning domain [58, 59]. Out of the other two that support view increment, one
belongs to the supervised learning domain [60] and the other to the unsupervised learning domain
[61]. So, there is a broad scope for multi-view incremental methods in the traditional machine
learning domains such as- supervised learning, semi-supervised learning, active learning, and un-
supervised learning. The opportunities are also available in the other domains such as- time-series
analysis, reinforcement learning, and deep learning. These domains have different challenges and
hence, demand different methodologies. For example, the time-series data is chronological and
needs to be treated differently than the other types of data. The existing multi-view incremental
methods may not be suitable for tasks such as shapelet finding [$8] or motif discovery [89]. Hence,
we see a scope to develop specialized methods in these domains.
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Appendix

A. S’; - Generic Derivation

The between-class scatter is dependent on the class mean and the total mean, both of which get
updated in all four cases. Hence, the between-class scatter is recalculated at each increment. This
is a generic derivation for all cases of all the methods presented in this thesis (MvIDDA, 2DMvDA,
2DMvIDDA, and VIDMvDA). Appropriate notations shall be used in the case of minor variations,
like new class or new view (e.g., ¢ in place ¢ or v’ in place of v).

We start with the equation in the projected space and arrive at the equation in the original
space.
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B. MVIDDA: Sj;, - Sequential Increment and Existing Class

In the case of sequential increment and existing class, the within-class scatter matrix (Sy) is
updated to include the new data sample that belongs to an already existing class E. Hence, we
only have to update the scatter of class E. This update does not affect the scatter of other classes.
Hence, we keep the class-wise scatters of other classes as they are and add the updated scatter of
class I to it. However, this scatter is not computed from scratch. We derive the formula to obtain
the updated class-wise scatter of class E without using the old data samples.
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C. MVIDDA: Sj;, - Sequential Increment and New Class

In the case of sequential increment and new class, as the new data sample belongs to a new class
(denoted as class N), we do not have to make changes in the scatters of any of the old classes. We
only add the scatter of the new sample in the old scatter matrix. As this scatter of class N does

not need any older data samples, the derivation is straightforward.
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D. MvIDDA: Sj;, - Chunk Increment
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In the case of chunk increment and existing class, we have to update the scatters of all existing
classes to which new samples have been added denoted by C'H. The classes to which no new data
samples were added are denoted by UC'. The update for chunk increment and new class is obtained
in a similar way. Hence, a separate derivation for the same is not provided. In the case of a new
class, the scatters of new classes are also included in CH. We keep the scatters of classes in UC' as
they are and update the scatter of the classes in set CH. We derive the equation for updating the

scatter matrix without using the old data samples.
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E. 2DMvDA: S|, - Within-class Scatter

The within-class scatter of 2DMvDA is given in terms of the projected data samples. We reformulate
it in terms of the original data samples so as to convert the optimization function in Eq. 2.1 to
trace-ratio formulation in Eq. 2.4,
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F. 2DMvVIDDA: S}, - Within-class Scatter

For 2DMvIDDA, the derivation of incremental updates is similar to the MvIDDA chunk increment
derivation given in Appendix D. Hence, derivation of only the decremental formulation is given
here. In the case of decrement, the scatters of classes from which data samples have been removed
are updated. CH denotes the classes that got some data samples removed from them, and UC
denotes those left unchanged.
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G. VIDMvDA: Sj;, - Within-class Scatter

For VIDMvDA, in the case of increment, the scatters are updated differently for each of the three
cases. The derivation of within-class scatter is given below. The decremental unlearning formulation
is also derived in a similar fashion. Here, the scatters of all classes are updated because each new
view contains all data samples from all the classes. The final equation in the original space is split
into three cases according to the value of j and r as given in section 7.1.1.3.
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