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ABSTRACT

Cloud computing is the new form of service model which is provided through the

Internet. Now it emerged as the versatile form of utility computing, where applica-

tions and infrastructure can be leased from a very large (or virtually infinite) pool

of computing resources in the form of a pay-as-you-use model. In recent years, an

increasing amount of applications are hosted in the private and public cloud which

leads to the unprecedented growth of cloud services. The unique characteristics of

cloud computing like cost effectiveness, elasticity, multi-tenancy, self-organization,

availability of virtually infinite resource pool, reliable, and flexible economy of scale

make it different from traditional distributed systems.

The benefits offered by cloud computing comes with associated challenges. Among

various challenges, performance, multi-tenancy, cost, and reliability related issues in

cloud system are very critical and those are the main focus of this thesis. More pre-

cisely the focus of this thesis work is to address the following three specific issues in

cloud system: (a) performance degradation due to interference of the co-located appli-

cations’ multi-tenancy through virtual machines in a single host, (b) task placement

constraints induces scheduling delay when not handled properly and that causes loss

of revenue for the service provider and hence the effective cost of the user services,

and (c) lack of effective problem determination and mapping framework to enhance

the reliability of the cloud system. Towards this pursuit, the entire thesis work is

segregated into four contributions, which address the scheduling problems in cloud

environment.

Data centers, the backbone of cloud infrastructure experience very low resource uti-

lization, which rarely exceeds 20-30%. The virtualization technology is used for better

resource utilization and the simultaneous execution of applications in a virtualized

environment through virtual machines causes performance degradation for the ap-

plications, due to interference. In the first contribution of the thesis, we design an

efficient interference aware scheduling approach in a cloud system to execute real-

time tasks. In this work, a prediction model for interference based on resource usages

of applications is designed and validated that model in the virtualized environment

using Xen hypervisor. Also, a resource prediction model is used to predict the future

resource requirement for the set of online tasks using double exponential smooth-

ing (DES) cascaded with Fast Up and Slow Down (FUSD). This prediction model

helps to deploy the number of physical machines marginally higher than the required



for each time duration. Using these two prediction models, an Interference Aware

Resource Provisioning and Scheduling (IARPS) approach was formulated which min-

imizes the interference and achieves the better QoS in cloud environment. The pro-

posed approach improves task guarantee ratio and priority guarantee ratio by 3.32%

and 3.63% respectively on average, while improving the resource utilization around

17.26% as compared to other state-of-the-artapproaches.

The heterogeneous nature of data centers and the heterogeneous resource requirement

of user applications create a scope of improvement in task scheduling. The jobs (or

tasks) submitted to the system may have different preferences of machines, where it

may need specific configurations or specialized accelerators (GPUs, FPGAs, etc.) or

a machine with a particular kernel version. So the resource requirement in terms of

placement constraints induces delay, which causes loss to the service provider. In the

second contribution of the thesis, we design effective scheduling to gain more profit.

The proposed approach considers estimation of task execution time in a heterogeneous

environment, efficient task ordering, and profit-based task allocation to maximize the

overall profit of the cloud system. To gain maximum profit the proposed heuristic

considers two cases, (a) not allowing the tasks for execution if it is expected to miss

its deadline, and (b) allowing the task which earns substantial profit even though it

is expected to miss its deadline. The profit gained by proposed appraoches varies 6%

to 11% as compared to other state-of-the-art appraoches.

System failure in cloud environment cause unavailability of services, which affects

the reliability of the system. In third contribution of the thesis, we address the

reliability aware scheduling of tasks with hard deadlines in the cloud environment.

Here solutions for two special cases of the problem were proposed, where (a) tasks

have a common deadline on the machines with equal failure rate, and (b) tasks with

equal execution time. For the general case of the problem, we propose the two-phase

heuristic approach, one is the task order, and the other is tasks mapping to machines.

Based on the simulation result, the earliest due date ordering of tasks and mapping of

the current task to the most reliable machine along with long task dropping performs

better in general settings. Further addressing the fourth contribution, which uses

the replication-based approach to satisfy the job’s reliability requirement. Here two

heuristics are proposed to ensure the reliability requirements of the tasks for different

machine environments. The extensive simulation results on randomly generated and

real-world data at different scales show that the proposed approaches perform better

than other state-of-the-art approaches.
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Introduction

Nowadays cloud computing services emerged as the highly favored service delivery

model worldwide. The cloud infrastructure system provides computing resources

as services on a pay-per-use basis by dynamically configuring such resources based

on varying workload needs. The cloud service providers (such as Amazon, Google,

Microsoft, IBM, etc.) provision and allocate the resources to end-users in line with

an agreed-upon Service Level Agreement (SLA). SLA is the bond for performance

negotiated between the cloud service provider and the client. The services hosted

by the cloud service providers may consume resources like storage, computational

components, or network components of cloud infrastructure as shown in Figure 1.1.

Hosted services are the applications, IT infrastructure components or functions that

users can access from service providers through Internet. The cloud infrastructure

system which is the back-end hardware elements that include multi-socket, multi-core

servers, persistent storage and local area network equipment, such as switches and

routers. The cloud system provides virtually unlimited compute and storage resources

to end-users. These resources can be leased based on the usage duration basis, and the

pricing of the same are provided by several cloud service providers, such as Amazon,

Google, Microsoft, and IBM, etc. The resource lease pricing of Google App Engine

shown in Table 1.1 and of Amazon S3 shown in Table 1.2. This service model of

computing gained billions of dollars of market by offering services from bare metal

servers to server-less computing. The main benefits of cloud computing include, but

not limited to, low cost, elasticity, and the ability to pay-as-you-go.

The impact of cloud service model on industry and end users is predominately realized

in many aspects of everyday life due to the omnipresence of cloud services through
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Table 1.1: Pricing of Google app engine [7]

Resource Unit Unit cost
Data storage Gigabyte per month $0.18
Front-end instances Instance hours $0.05/ $0.10/ $0.20/ $0.30
Dedicated memcache Gigabyte per hour $0.06
Logs API Gigabyte $0.12
Blob store, logs, task
queue stored data

Gigabyte per month $0.026

Outgoing network traffic Gigabyte $0.18

Internet. The transformed form of services of cloud, helps the startups and businesses

houses to optimize costs and increase their offerings without purchasing and managing

all the hardware and software. The independent developers are also allowed to launch

globally-available applications and on-line services. Researchers are also share and

analyze data at scales for their highly-funded projects. The Internet users who use

cloud services can access software and storage to create, share, and store digital media

in quantities that extend far beyond the computing capacity of their personal devices.

Before the cloud computing came into existence, organizations and computer users

had to buy and maintain the hardware and software that they wished to use. However,

growing availability of cloud-based services, organizations and end users now have
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Table 1.2: Amazon S3 pricing [2]

Amount of data Standard storage Reduce redundancy
storage

First 1TB/month $0.0300 per GB $0.0240 per GB
Next 49TB/month $0.0295 per GB $0.0236 per GB
Next 450TB/month $0.0290 per GB $0.0232 per GB
Next 500TB/month $0.0285per GB $0.0228 per GB
Next 4000TB/month $0.0280 per GB $0.0224 per GB
Over 5000TB/month $0.0275 per GB $0.0220 per GB

the access to virtually infinite computing resources through Internet. The distributed

form of computing resources helps the cloud users to optimize their investments on

labor, capital, or expertise required for buying and maintaining these computing

resources. This unprecedented access to computing resources catalyze to a new wave

of cloud-based businesses, changed IT practices across industries, and transformed

many everyday computer-assisted practices.

1.1 Overview of Cloud Computing

Cloud computing is the delivery of computing resources as a service, meaning that the

resources are owned and managed by the cloud service provider rather than the end

user. Many researchers defined the cloud computing in their own way, however the

most common accepted definition proposed by the National Institute of Standards

and Technology (NIST) for cloud computing is as follows.

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction” [235]

1.1.1 Characteristics

There are some unique characteristics of cloud computing systems that is different

from traditional distributed systems and grid system are as follows.

Elasticity: This property is on-demand provisioning of resources in terms of ac-

quire and release of those resources from an infinite pool of shared computing

resources. Cloud provisioning refers to the processes for the deployment and

integration of cloud computing services within an enterprise IT infrastructure.
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Multi-tenancy: In a cloud environment multiple applications from various users

securely share the common set of hardware and software for their execution.

Self-organizing: Cloud systems are equipped with the required level of intelligence

and automation so that they can manage their software and infrastructure

premises in a fully or partially automated manner.

Dynamism: Cloud systems are large in scale and highly dynamic in terms of appli-

cations, tenants, and facilities. This induces new challenges in terms of perfor-

mance and reliability.

Resource Pooling: The service provider’s computing resources are pooled to serve

multiple users using a multi-tenant model, with different physical and virtual

resources dynamically assigned according to user demand.

Cloud Bursting: This is the process of off-loading tasks to the external cloud dur-

ing times when huge compute resources are needed in a short period, for exam-

ple, during flash crowds. The hiring (or client) organizations save a significant

amount of revenue by not investing in the procurement of additional servers in

their private cloud to address peak loads, which occur very rarely.

1.1.2 Service Models

Similar to traditional computing environments, the cloud environment is multi-layered.

Cloud service models are divided into three layers and each layer is based on the

model of services provided to the end-user. These layers include Software-as-a-Service

(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) layer,

each of which is defined as follows [256].

SaaS: This is the uppermost layer in the cloud service stack and is responsible for

delivering services to the consumers. SaaS provides software services to the

end-user where users do not have to install the software on their computer.

Examples are Microsoft 365 Online [17], Google Apps [7], MEGA [166], Adobe

Lightroom [1] etc. An end user client of Office 365 can create, edit, and save

MS word file without installing MS office in his / her computer.

PaaS: Middle-ware provides a runtime environment that allows developers to create

applications and run them in the infrastructure provided by the service provider.
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It is responsible for creating applications and frameworks, by supporting pro-

gramming languages and tools hosted in the cloud. Examples of this category

are Heroku [9], OpenShift [20], Google App Engine [7], etc.

IaaS: This layer comprises the infrastructure of the cloud environment that includes

data center resources. The capability provided to the consumer is the renting

of these resources to run the software. Examples of this layer are Microsoft

Azure [18], Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple

Storage Service (Amazon S3) [28].

1.1.3 Cloud System Architecture

The consumers rely on cloud providers to supply more of their computing needs,

which require specific QoS to be maintained by their providers in order to meet their

objectives and sustain their operations. Cloud providers need to consider and meet

different QoS parameters of each individual consumer as negotiated in specific SLAs.

Commercial offerings of market-oriented Clouds must be able to [64]:

• Support customer-driven service management based on customer profiles and

requested service requirements,

• Define computational risk management tactics to identify, assess, and manage

risks involved in the execution of applications with regards to service require-

ments and customer needs,

• Derive appropriate market-based resource management strategies that encom-

pass both customer-driven service management and computational risk man-

agement to sustain SLA-oriented resource allocation,

• Incorporate autonomic resource management models that effectively self-manage

changes in service requirements to satisfy both new service demands and exist-

ing service obligations, and

• Leverage VM technology to dynamically assign resource shares according to

service requirements

Figure 1.2 represents the relationship between the centralised and decentralised

cloud disciplines and their underlying architectural constituents. The diagram shows

that cloud disciplines which spans one or more architectural layers. This potentially

encompassing a variety of different hardware configurations in addition to physical
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Figure 1.2: Overall cloud computing model illustrating the relationship and overlap
between different cloud models and architectural components. MEC=Mobile Edge
Computing, MCC=Mobile Cloud Computing [228]

and logical architectures. The cloud datacentre consist of the underlying physical

infrastructure: servers, storage arrays, and networking hardware. Virtualised Infras-

tructure (VI), a pool of resources: Virtual Machines (VMs) and/or containers running

atop of Virtual Machine Monitors (VMM)s with Virtual Storage (VS) devices and

Virtual Networks (VNs). These resources are situated upon the Physical Infrastruc-

ture (PI) connected by Physical Networking (PN). A management layer coordinates

physical Resource Management (RM) and the service life cycle. Performance is man-

aged through distributing services using Load Balancing (LB). Services are created

and managed using Service Orchestration (SO) and executed using Service Scheduling

(SCH). Further service-oriented capabilities such as security are also provided.

Due to emerging disciplines and delivery models, matters are more complicated.

In addition to those layers discussed above, there are layers within the decentralised

cloud. Once considered to be an emerging discipline, cloud computing is now ar-
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guably emerging and constantly evolving also. In tandem with new technologies and

use-cases, new forms of cloud computing are developed to accommodate emerging

disciplines such as the Internet of Things (IoT) and big data. These involve dis-

tributing the cloud services across devices or network architectures. The emerging

disciplines like Fog Computing, Mobile Cloud Computing (MCC), Cloudlets, Mobile

Edge Computing (MEC), and Mist Computing are evolved from cloud computing in

recent time. The detailed overview of the cloud system is presented in the papers

[64], [228].

1.1.4 Examples of Commercial Cloud Platforms

Industry analysts have made different projections on how Cloud computing will trans-

form the entire computing industry. As the computing industry shifts toward pro-

viding Platform as a Service (PaaS) and Software as a Service (SaaS) for consumers

and enterprises to access on demand regardless of time and location, there will be an

increase in the number of Cloud platforms available. Recently, several academic and

industrial organizations have started investigating and developing technologies and

infrastructure for Cloud Computing. Some of the predominate cloud service providers

are listed here.

• Amazon Elastic Compute Cloud (EC2) [2] provides a virtual computing envi-

ronment that enables a user to run Linux-based applications. The user can

either create a new Amazon Machine Image (AMI) containing the applications,

libraries, data and associated configuration settings, or select from a library of

globally available AMIs. The user then needs to upload the created or selected

AMIs to Amazon Simple Storage Service (S3), before he can start, stop, and

monitor instances of the uploaded AMIs. Amazon EC2 charges the user for

the time when the instance is alive, while Amazon S3 [3] charges for any data

transfer (both upload and download).

• Google App Engine [4] allows a user to run web applications written using the

Python programming language. Other than supporting the Python standard

library, Google App Engine also supports Application Programming Interfaces

(APIs) for the datastore, Google Accounts, URL fetch, image manipulation, and

email services. Google App Engine also provides a web-based Administration

Console for the user to easily manage his running web applications. Currently,

Google App Engine is free to use with up to 500MB of storage and about 5

million page views per month.
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• Microsoft Azure [16] aims to provide an integrated development, hosting, and

control Cloud computing environment so that software developers can easily

create, host, manage, and scale both Web and non-web applications through

Microsoft data centers. To achieve this aim, Microsoft Azure supports a compre-

hensive collection of proprietary development tools and protocols which consists

of Live Services, Microsoft .NET Services, Microsoft SQL Services, Microsoft

SharePoint Services, and Microsoft Dynamics CRM Services. Microsoft Azure

also supports Web APIs such as SOAP and REST to allow software developers

to interface between Microsoft or non-Microsoft tools and technologies.

• Sun network.com (Sun Grid) [25] enables the user to run Solaris OS, Java, C,

C++, and FORTRAN based applications. First, the user has to build and

debug his applications and runtime scripts in a local development environment

that is configured to be similar to that on the Sun Grid. Then, he needs to create

a bundled zip archive (containing all the related scripts, libraries, executable

binaries and input data) and upload it to Sun Grid. Finally, he can execute

and monitor the application using the Sun Grid web portal or API. After the

completion of the application, the user will need to download the execution

results to his local development environment for viewing.

Content Delivery Network (CDN) providers such as Akamai [180] and Mirror

Image [19] place web server clusters across the globe in order to improve the respon-

siveness and locality of the replicated content it hosts for end-users. However, their

services are priced out of reach for all but the largest enterprise customers, and typ-

ically requiring lengthy contracts and large usage commitments [194]. The Internet

is radically transforming every aspect of human society by enabling a wide range

of applications for business, commerce, entertainment, news, and social networking.

Modern enterprise applications and services on the Internet require rigorous end-to-

end system quality, as even small degradations in performance and reliability can

have a considerable business impact. Akamai first pioneered the concept of Con-

tent Delivery Networks (CDNs) [180] more than a decade ago to help businesses

overcome these technical hurdles. Since then, both the Web and the Akamai plat-

form have evolved tremendously. Today, Akamai delivers 15-20% of all Web traffic

worldwide and provides a broad range of commercial services beyond content deliv-

ery, including Web and IP application acceleration, EdgeComputing, delivery of live

and on-demand high-definition (HD) media, high-availability storage, analytics, and

authoritative DNS services.
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1.1.5 Scheduling in Cloud Environment

In the cloud environment, scheduling is a critical component for applications running

on a cloud system where clusters of physical machines are available. Multiple virtual

machines (VMs) can run simultaneously on the same physical machine to execute

multiple applications through virtual machines. A virtual machine is a computer file,

typically called an image, which behaves like an actual computer. While managing

the computing resources in a cloud environment, scheduling can be made at different

levels of the service stacks which are shown in Figure 1.3. In the first level user requests

in the form of tasks are scheduled to virtual machines (VMs), where appropriate VMs

are created and deployed based on the resource requirements of the user tasks. In the

second level, the VMs are mapped to physical machines (PMs) to balance the loads

and optimize other parameters.

• Scheduling in software (or application) layer is to schedule the virtual (or phys-

ical) resources to support software and user applications, tasks, and work-flows,

etc., with optimal Quality of Service (QoS) and efficiency.

• Scheduling in the platform layer focuses on the mapping of virtual resources

on to physical resources with optimal load balance, energy conservation, cost

minimization, etc.

• Scheduling in the infrastructure layer deals with optimal and strategic infras-

tructure, outsourcing, service placement, multi-cloud centers, partnering, data

routing, and application migration, etc. [219].

In this thesis, our focus is on scheduling at the PaaS and IaaS layer of cloud comput-

ing as managing these layers will improve performance, profit, and reliability. Cloud

computing has several characteristics that provide benefits to the user as well as the

cloud service provider. Its main characteristics are on-demand access, scalability,

pay-per-use, power efficiency, reliability, and virtualizing resources [28]. This is be-

cause scheduling decisions play a crucial role in achieving all these objectives. In

emerging cloud environments, scheduling decisions are complicated because resource

capacity vary dynamically along with varying workload demands and unprecedented

data popularity.
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Figure 1.3: Scheduling in cloud resources at various levels of services stacks

1.2 Deployment Models of Cloud

NIST has identified four standard deployment models of cloud, that can be imple-

mented to satisfy the varying needs of users or providers. Those models are public,

private, community, and hybrid which depends on, where the hardware is located,

what entity is responsible for maintaining the system, and who can use system re-

sources. Clouds are deployed in different modes, depending on the usage scopes. The

details of these four deployment models are as follows [120]:

Private: In a private cloud, one organization manages and maintains the resources

and only users from that organization use the services. A drawback of this

approach is that the benefits of multi-tenancy, the economy of scale, and asso-

ciated cost savings, are not fully realized. This deployment model is preferred

when data privacy and security are of paramount importance.

Public: In a public cloud, resources are provided to the public and a pay-per-use

policy is implemented. The resources are therefore managed and monitored

by a service provider. This deployment model is chosen when there are large

numbers of users. Any client organization can therefore use public clouds to

reduce the cost of resources.

Hybrid: A hybrid cloud combines both private and public clouds and is managed and

controlled by one organization. This deployment model provides the benefits of

enhanced scalability and reduced cost offered by public clouds, along with the

10



1. INTRODUCTION

security provided by private clouds, thus facilitating the deployment of certain

sensitive applications internally.

Community: In a community cloud, several organizations share infrastructure to

implement the same terms of service as well as access policies.

1.3 Virtualization Technology

Virtualization emerged as the most important driving technology for cloud infras-

tructure. Virtualization allows a single physical machine to emulate the behavior of

multiple machines, with the possibility to host multiple and heterogeneous operating

systems (called guest operating system or guest OS) on the same hardware. This en-

ables user jobs with the diverse requirement of OS and library can be hosted on any

underlying host machine. This improves the resource utilization of the cloud system

and can provide services to many user tasks. A virtual machine monitor (VMM), or

hypervisor, is the software infrastructure that runs on (and having full control of) the

physical machine, which enables to run multiple VMs in a single host machine [122].

As multiple virtual machines (VMs) are consolidated on a single physical machine

(PM), so it can accommodate more workloads on fewer PMs. This enables multiple

underutilized systems to be consolidated within fewer servers. A cloud provider can

manage physical resources in a very efficient way by scaling on the several hundreds

and thousands of customers with dynamically changing workload requirements in a

completely automated (or semi-automated) fashion whenever needed.

The VMs can dynamically be created or removed on a fly to cope with the dynamic

workloads. Virtualization provides many benefits like minimizing the server require-

ment through workload consolidation, increased resource utilization, minimized en-

ergy consumption, and better utility. The unique property of virtualization like dy-

namic resizing, live migration, and reconfiguration, that ease the management of the

underlying infrastructure. Most of the real-world cloud platforms like Microsoft Azure

[18], Amazon EC2 [2], and RackSpace [22] utilize their servers efficiently through vir-

tualization and provide rapid on-demand elasticity.

The broader categories of virtualization environment are used in different scenarios

with overlapping semantics. The popularly used virtualizations are hardware-level

virtualization and OS level virtualization. Each type of virtualizations has it’s own

pros and cons. In the hardware-level virtualization, it is possible to run multiple guest

11
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Figure 1.4: Resource allocation at two different levels of cloud system

OS, even heterogeneous ones, on the same hardware under the control of hypervisor.

The hypervisor takes care of necessary network emulations, so that VMs can com-

municate among each other and with outside world. Virtualization software, such

as VMware [27], Hyper-V [11], KVM [14], and XenServer [45] are examples of the

products that allow server administrators to readily create and manage VMs. In the

OS-level virtualization a single OS gives user-space software (application with related

libraries) the illusion of multiple OS instances, or containers, each one behaving as

an independent OS. For example, each operating system container has its own space

of process IDs (PID), its own memory, (virtual) CPUs, private file system, etc. For

example, Docker, LXC for Linux, Container Runtime Interface (CRI-O), and Jails for

FreeBSD are examples of OS-level virtualization [104]. The overhead in hardware-

level virtualization is bit higher but can be utilized for completely different guest OS

on host physical machine. On the other hand OS level virtualization overhead is very

less but it can only be created on similar OS as host machine.

1.4 Resource Allocation in Cloud Environment

Resource allocation is a critical aspect of the cloud environment that needs a lot of

attention. Resource allocation describes the process of mapping available resources

to cloud services over the Internet. Specifically, the term resource allocation in the

cloud context is defined as the process of finding appropriate hosts in the cloud infras-
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tructure to run the applications for users in a way that utilizes resources efficiently

based on predefined goals. Thus it describes the mechanism that aims to guarantee

the requirements of applications satisfied by the cloud infrastructure provider.

In a cloud system, tasks are mapped to VMs before they are assigned to PMs. So

the entire process of resource allocation involves two consecutive mappings as shown

in Figure 1.4 [118]. In the first level, tasks are assigned to appropriate VMs based on

their requirements, while in the second level the VMs are scheduled to appropriate

physical machines.

The first level of resource allocation deals with the mapping of tasks to virtual re-

sources in the form of VMs which are created dynamically to satisfy the predefined

objectives. The virtual resource allocation process involves dynamically creating and

destroying of VMs without affecting the execution of the application [130].

The second level of resource allocation deals with the mapping of VMs to PMs for

optimal resource utilization in data centers. Furthermore, VM allocation provides

the flexibility to migrate a VM from one host to another. Using VM migration in an

efficient way maximizes resource utilization, improves performance, and reduces the

power consumption of the cloud system [32].

The power consumption of the system can be reduced by reducing the number of

idle systems and increasing resource utilization. The power consumption is directly

related to the number of systems deployed (whether idle or running). One of the

most notable techniques for reducing energy consumption of a processor is reducing

its power input due to its disproportional energy consumption; this is referred to

as dynamic voltage and frequency scaling (DVFS) [39]. However, more idle systems

increase the static power consumption and that number needs to be reduced for energy

efficiency. Another key factor that increases energy consumption is re-scheduling VMs

every couple of minutes. The re-scheduling of VMs every couple of minutes might

give optimal deployment at the moment but consumes more energy because migrating

a VM from one node to another requires both nodes must be powered on until the

migration completes. So efficient consolidation of the workloads on fewer number

systems may decrease the power consumption of the entire system.

The predominant concern in the cloud system is the conflicting requirements and

objectives (like time and reliability) of the cloud service provider and cloud user.

Moreover, the resources in the cloud infrastructure dynamically change over time in

terms of load and availability, so that makes resource allocation in the cloud system a
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complex problem. The effective and efficient allocation of resources is one of the key

requirements in the cloud environment, so improving the policy of resource allocation

is a central concern. As time progresses, resource allocation algorithms need to be

improved to cope with the elasticity, scalability, resource utilization and cost in the

cloud environment. The challenges for managing resources in cloud computing revolve

around heterogeneity in hardware capabilities, workload estimation, and the cloud

user’s requirements in the form of QoS [156].

Further elaborating the challenges, the performance degradation due to interference

and task constraints can affect the proper execution of the latency-sensitive tasks in

the virtualized cloud. The performance degradation affects the profit of the cloud

service provider. Data centers with heterogeneous machines further complicate the

scheduling process as the machines with different failure rate affects the reliability of

the system.

1.5 Brief Literature Review

The research gap for this thesis was gathered from the literature review and we cat-

egorized the literature review into six sub-areas and these are (a) task scheduling in

cloud environment, (b) virtual machine allocation, (c) interference aware scheduling,

(d) constraint aware scheduling, (e) profit maximization based scheduling, and (f)

reliability aware scheduling. The following subsections explain the brief related re-

search which is the background of this thesis. The detailed literature review of each

work is discussed in each chapters.

1.5.1 Related Research on Task Scheduling in Cloud Com-

puting

A key aspect of any computing system is the scheduler, which is responsible for han-

dling the tasks submitted by the users and the computing resources. Specifically,

the scheduling algorithm has to decide which task to execute first, when to start its

execution, and where to allocate it (i.e., which resources to use). Due to the impor-

tance of these decisions, the efficiency of the scheduler is crucial for the performance

of the whole system [60], [46]. Therefore task scheduling in cloud environments has

received great attention from several researchers [162]. In the cloud environment,

the objective of task scheduling is to schedule the workloads among the computing
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nodes so that they minimize the overall task execution time with minimum number of

resource being used. An efficient scheduling algorithm considering both performance

and resource utilization is a challenging task to accomplish in a cloud environment.

In the context of the cloud system, performance is measured using throughput, which

is defined as the total number of tasks complete their execution per unit time. In

the same way, resource utilization is considered as the overall utilized capacity of the

cloud resources.

The well know books [60] and [184], discussed various real-time tasks scheduling

problems and their solutions in single and multi processor systems. Besides scheduling

problems for single and parallel machines and shop scheduling problems the book

covers advanced models involving due-dates, sequence dependent changeover times

and batching. The methods discussed on those books to solve the scheduling problems

are linear programming, dynamic programming, branch-and-bound algorithms, and

local search heuristics. Tasks scheduling on cloud environment (in most of the cases)

is NP-hard problem due to its large solution space and also takes exponential time

to find an optimal solution. So many research work use meta-heuristic approaches to

find a sub-optimal solution for task scheduling problems within an acceptable time

[221]. Generally, the task scheduling algorithm maps tasks to available resources

to optimize one or more objectives under certain constraints. Task scheduling can

broadly be categorized into two types: static and dynamic [110]. In static scheduling,

tasks are scheduled in an environment depending on known information about the

tasks as well as available resources. However, in dynamic scheduling, the current state

of the system (such as load, storage capacity, and network bandwidth) and submitted

workloads change over time. The decision of dynamic allocation changes over time,

while static scheduling depends on static information and does not consider system

changes.

In this research, we deal with both static and dynamic scheduling and allocations

considering various optimization criteria. Generally, dynamic task scheduling can be

applied in a real-time (on-line) mode or batch mode. In real-time scheduling, tasks

are scheduled as soon as they arrive in the system, whereas in batch scheduling tasks

are batched or queued when they arrive and then scheduled [153]. Task scheduling

algorithms varies based on the dependencies among the tasks. Task scheduling for

independent tasks is much easier because tasks can be executed individually without

any dependency on other tasks. However, for dependent tasks which are often called

workflows, scheduling decision for a task depends on dependency on other tasks.
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Different heuristic approaches have been proposed for task scheduling in cloud envi-

ronments. The Minimum-Minimum Completion Time (Min-min) and the Maximum-

Minimum Completion Time (Max-min) are the most popular heuristic approaches

used for task scheduling in cloud system [171]. Heuristic approach like First-Fit De-

creasing (FFD) [33] is fast to find a non-precise close solution, but the approach would

be ineffective if a global solution is sought and hence inefficient in many practical ap-

plications [197].

Many researchers have studied task scheduling using meta-heuristics like Ant Colony

Optimization (ACO) and Particle Swarm Optimization (PSO). For example, Wen

et al. [229] proposed a task scheduling algorithm based on an improved PSO, which

considers the total task completion time and the total task cost, but does not consider

load balancing in the system. In [217], the concept of ACO is used to schedule tasks in

a cloud computing environment to minimize the makespan. In [46], authors surveyed

nicely about different task scheduling approaches in the cloud environment.

1.5.2 Related Research on Virtual Machine Allocation

Virtual machine allocation is the process of mapping a VM to the most suitable host

or PM [183]. In a cloud data center, there are many hosts and each host can deploy

multiple VMs sharing the common hardware resources available with the host. Map-

ping the VMs to hosts (or PMs) in an efficient manner is a complex and challenging

task when the number of VMs and hosts are not small. VM allocation plays a key role

in cloud management because it directly affects system performance. In the cloud

environment, VM allocation is responsible for selecting the required type of resources

and scheduling tasks so that the user’s requirements and the provider’s goals should

meet. In general, the main requirement of users is to minimize response time while

the provider’s goals is to maximize the profit by utilizing the resources efficiently.

The VM allocation problem is an optimization problem where several optimization

techniques are used to address it, such as deterministic, heuristic and meta-heuristic

algorithms [185]. In the deterministic algorithms, given a particular input, will always

produce the same output, with the underlying machine always passing through the

same sequence of states. Examples of such algorithms are linear programming, binary

integer programming, and constraint programming. The popular heuristic algorithms

are used for VM allocation are First Fit (FF), Best Fit (BF), First Fit Decreasing

(FFD), etc. [164]. Meta-heuristic algorithms are those that solve the problem with
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certain constraints by using randomness such as Genetic Algorithm (GA), ACO, and

PSO.

Host server consolidation by allocating multiple VMs onto PMs to share the hard-

ware resources can be used to increase resource utilization [94]. Eyraud-Dubois and

Larchevque [92] proposed the dynamic allocation of VMs to PMs to improve resource

utilization while meeting the VM resource requirements over time. Their proposed

approach uses a bin-packing algorithm that achieves efficient allocation even with the

unpredictable change in the CPU utilization of the VM and migrating VMs to appro-

priate hosts to minimize SLA violations. Dai et al. [79] proposed VM provisioning

as a multi-objective optimization problem and solved that with an auto-regression

model that learns and predicts the utilization of each VM as well as the bandwidth

consumption between routers. With further consideration on power management,

Liu et al. [151] applied deep reinforcement learning over a linear combination of sys-

tem metrics such as total power consumption, VM latency, and reliability metrics

to synthetically predict future system states. Based on the forecast, they proposed

a hierarchical resource provisioning model that saves energy consumption without

significantly impacting application performance and availability. A detailed survey

of different VM to PM allocation policies are discussed in the paper [183], and that

gives a fair insight into the research on task scheduling in cloud systems.

1.5.3 Related Research on Interference Aware Scheduling

In general, multiple VMs get allocated to a single PM of the cloud system to effi-

ciently utilize the active hosts and reduce the cost. However, multi-tenancy of the

cloud system where multiple applications share the common resources through vir-

tualization often experience performance degradation even though they are provided

with a certain level of isolation for resource allocation. The performance degradation

is due to the interference as they compete for the limited resources available with the

host machine. Kumbhare et al. [136] reported the performance of different workloads

varies due to greater diversity of workload consolidation and utilization of physical

resources. A scheduler that aware of this interference can bring benefits in terms of

resource utilization under a better QoS experience.

Buddhika et al. [62] formulated a resource-constrained problem on scheduling to re-

duce interference that adversely impacts the performance of streaming computations.

Their proposed proactive scheduling algorithm, accounts for the changes in the stream

17



1.5. BRIEF LITERATURE REVIEW

packet arrivals and cluster resource utilization, which utilizes a new data structure of

prediction ring to track the amount of workload expected in a given time window.

Wang et al. [226] show that virtualization and sharing of resources in Amazon EC2

affects the network performance of applications. In particular, they show that small

instances of EC2 often share processors and they get 40% to 50% of the physical

CPU sharing. From this study, they conclude that the observed periodic low network

throughput for the small instances is because of the processor sharing. They also

show that round-trip-time variations are much higher for EC2 instances (especially

small ones) in comparison to non-virtualized machines.

Ghoshal et al. [109] also observed an occasional drop in performance of EC2 in-

stances when they run a benchmark for a long time. They guess that reason was

sharing underlying resources. Furthermore, they show that if they run MPI (message

passing interface) tasks on multiple EC2 instances to perform I/O, there would be

high resource contention over a limited network, which adversely affects the overall

performance. A similar kind of observations is made by Pu et al. [188], where they

suggest running I/O intensive workloads with co-located CPU-intensive workloads to

limit performance interference.

1.5.4 Related Research on Constraint Aware Scheduling

As some resources are difficult to virtualize and virtualization overhead is huge, so

OS level light weight virtualization called containers are used to resolve these issues.

The container in cloud computing uses operating system-level virtualization, and it is

small, fast, and portable, unlike a virtual machine. Containers do not need any guest

OS, rather simply use the features and resources of the host OS for running multiple

applications in a single host machine [182].

Constraints are restrictions on task placement due to hardware architecture and ker-

nel version. The cloud service provider allows tasks to subscribe to a combination of

heterogeneous resources using task constraints. Those constraints may be in terms of

CPU (eg., ISA, clock frequency, number of cores), presence of accelerators (eg., co-

processors, GPUs, FPGAs), memory (eg., bandwidth, capacity), network (eg., band-

width, technology) and storage (eg., capacity, technology, redundancy) configurations.

Constraints limit the machines on which a task can run, and this, in turn, can increase

task scheduling delays.
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There are some centralized schedulers like Hadoop fair scheduler [248], the Capacity

scheduler [8], Yarn [223], Choosy [249] and Tetrisched [222] uses slot-based models so

as to denote all resources as a homogeneous set. In centralized scheduler the decisions

are made in a central node which insures efficiency and ease of monitoring resources.

However, as explained in Dominant Resource Fairness (DRF) [108], the centralized

schedulers are inefficient for allocating (or managing) multiple fine-grained resources,

and those cannot scale well with a greater volume of job requests (or constraints).

The hybrid schedulers like Eagle [83] does Shortest Remaining Processing Time

(SRPT) based task scheduling to improve the overall job turn around times at the

worker queues. A hybrid cloud scheduler must decide which resources should be leased

from the public clouds to guarantee the execution of the work-flow within the speci-

fied maximum execution time (deadline). However, with the addition of constraints

into the system, different resources may have different utilization, and in such cases,

SRPT may not be as effective as it does for a single resource (e.g. CPU). During high

loads, the peaks significantly contribute to the tail latency of a short jobs completion

times. It is observed that, the job queuing delay of constrained tasks cascades its de-

lay into subsequent job completion times. When this delay happens it affects the QoS

of the service provider. This kind of observations are also seen with other schedulers

like Hawk [84] and Sparrow [181] for different production traces. So the presence of

constraints causes delay and fail to meet the QoS when adopted naive SRPT based

queue reordering for various resources in the job constraints.

1.5.5 Related Research on Profit Maximization Based Schedul-

ing

Profit is one of the most important factor in cloud economics and all the cloud service

provider want to maximize their profit. The profit of a service provider in cloud

computing is related to three components, and these are revenue, cost, and penalty.

Revenue is the collection received by the service provider, the cost is the actual

spending for providing the service, and the penalty is the spending due to the violation

of SLA. Providing services with low cost and high performance for the cloud service

provider is a daunting task. The challenges associated with the cost model is the

conflicting perspective of the user and service provider. As a commercial service, it is

essential to properly understand the economics of cloud computing. Many researchers

have conducted quantitative studies on cloud computing from the perspective of QoS

[81], [101], [66].
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In [58], a workload prediction approach was developed for automatic resource scal-

ing, which ensures application QoS attributes and resource allocation for low-cost

operations. In [145], researchers studied the elasticity by using the cloud platform as

a queuing system and formally defined an auto-scaling scheme that could deal with

arbitrarily complex scaling cases. Nevertheless, their work only presented a method

for optimizing the (cost and performance of) cloud computing platform with a single

parameter, rather than using the overall system parameters.

In [43], the authors focused on the allocation of cost parameters in the QoS-driven

scheduling algorithm to minimize the total allocation cost. The work done in [74]

is based on the Amazon Elastic Compute Cloud (EC2) architecture of the Gang

scheduling scheme, the performance and overall cost of a distributed cloud computing

model were studied and evaluated. Aziza et al.[40] proposed a time-shared and a

space-shared genetic algorithm which is demonstrated to outperform other scheduling

methods in terms of makespan and processing cost.

1.5.6 Related Research on Reliability Aware Scheduling in

Cloud System

Reliability in cloud computing is how consistently a cloud computing system is able

to provide its services without interruption and failure [205]. Generally, reliability is

defined as:

“The ability of an item to perform a required function under stated conditions

for a stated time period” [21].

To provide reliable services in cloud computing, one needs to manage service failures.

Various techniques and methods have been proposed and implemented to manage

resource failures in the computing environment for reliability assurance. All the failure

management techniques are categorized into two groups, reactive and proactive failure

management [205]. In reactive failure management, measures are taken after the

occurrence of failure and in proactive failure management, the prevention measures

have been taken before the occurrence of failure.

Checkpointing is a widely used basic reactive fault tolerance mechanism that func-

tions by periodically saving the execution state of a VM as an image file. Zhang et

al. [256] presented a theoretical delta-checkpoint approaching which the base system

only needs to be saved once the first checkpoint completes and subsequent checkpoint

images only contain the incrementally modified pages. Replication is another type of
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reliability assurance mechanism which is of the proactive failure management cate-

gory. Replication is based on the exploitation of redundancy, where multiple copies

of application instances are deployed to handle the failure of a system. Xu et al. in

[242] tried to map each primary VM to a backup VM. A primary VM and its mapping

backup node form a survivable group. A task can be completed in time if at least

one VM in the survivable group works well.

To make the system highly available for most of the time, the commercial VMware

system designed a VMware HA (High Availability) [27], where they restart the VMs

automatically in the event of a host server failure and allocate all the VMs of the failed

server to other servers. However, their approach incurs performance degradation.

On the other hand, a proactive based approach was adopted by Xen virtualization

platform [175] and it predicts server failure by monitoring the status of the host server

resources like memory, CPU, disk logs, and fan. However, monitoring the status of

all server resources is quite challenging. A simple redundant configuration method

for VM deployment on multiple servers is presented in [154].

To reduce the cost of implementing redundancy in cloud environment k-fault tolerance

[155] was proposed. This k-fault tolerance ensures that the simultaneous failure of

any k computing nodes would not make the service unavailable. Taking this into

consideration, Machida, et al. in [155] proposed a redundant VM placement approach

to ensuring k-fault tolerance.

Faragardiet al. [93] proposed a resource allocation algorithm that introduces an

analytical model to analyze the reliability of the system. In their approach, two

constraints were introduced, and those are (a) application constraint which takes

care through task precedence structure and QoS, and (b) resource constraint which

limits the memory and storage usage. They also considered the effect of network

topology and the reliability of the system. A detailed survey on reliability aware

scheduling in the cloud system is presented in [205].

1.6 Motivation

The growing demand for cloud services makes resource allocation or scheduling to

be a critical component in a cloud environment. The challenges faced by the cloud

service provider for efficient resource management are due to various factors like QoS

issues, power consumption, delay-sensitive service requests, revenue and operational
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costs, heterogeneities of physical servers, etc. For the sustainable growth of the cloud

service provider, the need of the hour is to design and develop an effective and efficient

scheduler for various workload demands.

• The service providers must provide services to the user’s requests which can sat-

isfy the QoS requirements. The service latency is closely related to the QoS. The

delay in service latency degrades service quality and may lead to low profits and

loss of future customers [141]. The primary goal of the service provider is to im-

prove resource utilization, which is achieved through virtualization technology.

In virtualization technology a Physical Machine (PM) is shared among multi-

ple cloud tenant Virtual Machines (VMs) or containers. When the aggregate

resource demand on the PM is high, we see resource contention and perfor-

mance interference between the hosted applications. Interference is a common

occurrence in virtualized data centers [258, 82], and is prevalent in both public

and private cloud deployments. Several studies [158, 102, 225, 247, 179] have

shown that tail response times for applications under interference are signifi-

cantly higher, to the tune of 3 − 10×, on AWS cloud instances. Interference

caused by the contention of any physical resource among co-located VMs, in-

cluding CPU, network, disk, memory, and last-level-cache (LLC). Furthermore,

interference is caused by the contention of several resources simultaneously and

is dynamic due to resource demand variations. So reducing interference is an

important aspect of task scheduling in the cloud environment.

• Heterogeneity ignorance leads to massive inefficiencies as applications are sensi-

tive to hardware architectures [85]. The jobs (or tasks) may also have different

preferences of machines, where it may need specific configurations or special-

ized accelerators (GPUs, FPGAs, etc.) or a machine with a particular kernel

version. These preferences of machines are called task placement constraints

which restrict a task for its execution on a specific set of machines. Apart from

the constraints, applications need the assurance of meeting quality of service

(QoS) and service level agreement (SLA). The preferences and constraints as-

sociated with the tasks further complicate the scheduling decisions [78]. The

resource requirements in terms of task constraints must be fulfilled for the tasks

to be admitted to the system. Once a task is admitted to the system, it may

violate service level agreement and incurs penalty due to the disproportionate

resource allocation at run time. The latency-sensitive and short-lived workloads

need effective scheduling to gain more profit. So, resource allocation considering
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constraint and profit maximization is an important issue in the cloud system.

• Data centers (DC) get more diverse in terms of hardware and software be-

cause old systems get replaced by new ones with different specifications [195].

Generally in large DC resources are procured in phase wise manner incremen-

tally, where they get variety of machines with different configurations. This

introduces heterogeneity in a data center, which is the backbone of the cloud

system. Cloud environment uses a data center with a huge number of compu-

tational resources, and the probability of failing any of the resources increases

with scale. Failures cause unavailability of services, which affects the reliability

of the system. Many breakdowns on cloud services in the past, motivate us

to address the reliability issues in the cloud. For example, Amazon S3 service

disruption in the Northern Virginia (US-EAST-1) region in early 2017 [24] was

one of that case. As time progresses the failure probability of each component

of the server increases and that affects the QoS for the users. This poses a

challenge for the service-oriented computing system.

• To make the system fault-tolerant, various strategies are used like replication,

retry, and check-pointing [186]. However, the replication-based approach is

popularly being used to ensure the reliability of the system. As the cloud

environment is heterogeneous in-terms of failure rates and submitted jobs have

different reliability requirements, allocating jobs to machines to satisfy their

reliability and deadline requirement is a challenging task. Job and machine

characteristics for effective scheduling to improve the resource utilization further

complicate the scheduling decision. So reliability aware scheduling of tasks to

reduce the cost and satisfy QoS is an important issue to be considered for

improving the efficiency of the cloud system.

1.7 Objectives

The main objective of this thesis work is to efficiently schedule the tasks to machines

in a cloud environment so that various QoS requirements are satisfied. In this work,

we want to consider all the tasks are latency-sensitive and independent tasks (where

no interdependency among the tasks are there). The details of each objective are

described as follows.

• In the first work, we want to design an interference aware scheduler to maximize

the task guarantee ratio (TGR) and priority guarantee ratio (PGR). TGR is
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defined as the ratio of number tasks finish their execution before deadline to the

total number of admitted tasks. Similarly, PGR is defined as the ratio of sum of

the priorities of the tasks executed before deadline to the sum of the priorities

of all admitted tasks. For that, we want to design an interference prediction

model based on resource usage of tasks and verify that model in a virtualized

environment. In the design of the scheduler, we want to incorporate a resource

prediction model to predict the number of PMs required for the batch of tasks

based on the resource usage pattern of the previous batch of tasks. Using the

prediction models, we want to design an efficient interference aware scheduling

approach and verify it’s effectiveness through extensive simulation using real-

world benchmark and task set.

• In the second work, we want to design a scheduling approach for profit max-

imization considering tasks placement and deadline constraints in a heteroge-

neous cloud system. In this work, we may need to estimate the execution time

of the tasks due to the disproportionate allocation of resources caused by task

placement constraints. As task placement constraints cause scheduling delay, so

we want to design an efficient scheduling approach to maximize the profit while

considering two cases, (a) not allowing the tasks for execution if it expected to

miss its deadline, and (b) allowing the task which earns substantial profit even

though it is expected to miss its deadline.

• In this thesis, we also want to address the reliability aware scheduling of tasks

with hard deadlines in the cloud environment. In the third work, we want

to solve problems where tasks have a common deadline and tasks with equal

execution time going to be scheduled on the machines with an equal failure rate.

We further want to design a scheduler for the general case of the problem using

a two-phase heuristic approach, one is the task order, and the other is tasks

mapping to machines. To verify the effectiveness of the proposed approach, our

goal is to use extensive simulation using real-world traces and data set.

• Lastly, we want to design an efficient reliability ensured scheduling approach

for the set of independent tasks to satisfy their reliability and deadline require-

ments. Here, we want to use the replication-based strategy for the tasks to

satisfy their reliability requirement and try to minimize the number of host

server requirements. In this case, we want to minimize the number of repli-

cation required for each task, while considering the machines with equal and
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different failure rates. The objective of the scheduler is to optimize resource

utilization by deploying less number of host servers.

1.8 Contributions

The major contributions of the thesis are described below.

1.8.1 Interference Aware Scheduling

This is the first contribution of the thesis, which considers the scheduling of real

time tasks in virtualized cloud environment. The scheduling approach considers the

performance degradation of applications due to interference to handle the latency-

sensitive (i.e., deadline or finish time is of strong concern) applications in the virtu-

alized environment while meeting the performance goals. This contribution of the

thesis is subdivided into three parts, (a) analyzing and building different interference

prediction models based on the three resource usages (disk I/O rate, CPU usage,

and memory access rate) pattern of the applications, (b) use of double exponential

smoothing (DES) cascaded with Fast Up and Slow Down (FUSD) mechanism (as de-

fined in [235]) for resource prediction, and (c) design of an efficient interference aware

scheduling approach, to allocate the tasks to VMs to minimize the effect of interfer-

ence that reduces the SLA violation while satisfying the resource usage constraints.

The principal module of our proposed approach schedules the incoming tasks to VMs

where each task must fulfill the deadline requirement. Appropriate VM is chosen

intelligently so that task must receive negligible interference because of the simulta-

neous execution of different VMs on the same physical machine. To select the suitable

VM on a physical machine for a task of the new batch we apply three rules, (1) find

performance degradation due to interference of the incoming task based on the re-

source usage pattern, so that task must finish its execution before its deadline, (2)

check for the interference it causes to other tasks on the same physical machine when

other VMs are running concurrently, and (3) total resource usage constraint should

not be violated. The extensive simulation results using Google cluster data, shown

that our proposed approach performs better than other state-of-the-art approaches

in terms of task many parameters.
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1.8.2 Constraint Aware Scheduling

The second contribution of the thesis considers the scheduling of tasks to maximize

the profit considering task placement constraints and completion of the task execu-

tion before its deadline. Based on the application characteristics the service provider

creates a virtual data center by renting the heterogeneous physical resources from the

infrastructure service provider. Here the machines are segregated to different groups

based on hard constraints by exploiting the knowledge of application characteristics.

An efficient approach is being proposed, which can understand application require-

ments, machine characteristics, and uses this information to maximize the overall

profit of the system. The proposed approach for Constraint Aware Profit Maximiza-

tion (CAPM) problem, efficiently schedules the tasks associated with constraints and

deadlines to the set of heterogeneous machines. The scheduling approach maximizes

the profit using a three-level profit maximization scheme, (a) profit-based task order-

ing for task admission, (b) profit-based task allocation of the admitted task, and (c)

admission of the tasks which are expected to miss their deadlines but still generate

extra profit.

1.8.3 Reliability Aware Scheduling

In order to provide highly available utility services, cloud data centers (DC) host

thousands of servers connected through networks. The probability of failing any of

the resources in the cloud system increases with scale. Failures cause unavailability of

services which affects the reliability of the system. In this contribution, we consider a

set of real-time tasks to be scheduled on a virtualized cloud environment, where all the

VMs of the cloud are homogeneous. But the machines are associated with different

failure probability. Here we schedule the real-time tasks with priority or weight (high

priority safety-critical and low priority mission-critical tasks) considering the failure

of the machines. A bag of real-time, independent tasks is a set of real-time tasks,

with each task having its own execution time and deadline, and all the tasks have

the same arrival time. The main aim of this work is to schedule the bag of real-time

tasks in such a way that maximizes the number of high priority (or high weighted)

tasks meet their specified deadlines considering the machine failures in the cloud

system. The third contribution of the thesis addresses three versions of the problem

and their solution approaches, the formulated problems are (a) scheduling of tasks

with the common deadline on machines with identical failure rate, (b) scheduling of

equal execution time tasks on unreliable machines, and (c) scheduling of tasks with
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arbitrary execution time and the deadline on unreliable machines.

1.8.4 Reliability Ensured Scheduling

The popular reliability enhancement technique i.e. VM replication [242] is used to

deploy redundant copies of a VM to satisfy the application’s reliability requirement.

In this fourth contribution, we propose a replication-based approach to enhance the

reliability of the applications (or jobs) with the minimization of the resource request.

All the applications considered in this work consist of one or many independent

sub-jobs (or tasks). The applications are also independent of each other and the

communication overhead between the applications is negligible. Here each task of an

application must satisfy its sub-reliability requirement so that the application should

meet its reliability requirement. For each task, sub-reliability is computed based on

which server the task is being scheduled and the number of replicas of the task. Our

objective is to assign the tasks of each job to PMs through VMs (as each task is

assigned to only one VM) while satisfying the reliability and deadline requirements.

For satisfying the reliability requirement of each job it may be required to deploy

extra VMs for the replications of each task so that job’s reliability requirement is

met.

1.9 Thesis organization

This thesis comprises seven chapters. The chapter wise organization of the thesis is

given as follows:

1. Chapter-1 : This chapter provides the introduction and motivation along with

the objectives and contributions behind the research work.

2. Chapter-2 : This chapter presents a survey on resource allocation in a cloud

system that is needed to get the idea of the research gaps and the state-of-the-art

works.

3. Chapter-3 : This chapter presents the interference aware resource provisioning

and scheduling for real-time tasks in a virtualized cloud environment. The

contents of this chapter have been published in [211].

4. Chapter-4 : This chapter presents constraint aware profit maximization based

scheduling of tasks in the heterogeneous data center, which is the backbone of

the cloud system. The contents of this chapter have been published in [210].
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5. Chapter-5 : This chapter presents the reliability aware scheduling of bag of

real-time tasks in the cloud environment. The contents of this chapter have

been published in [212].

6. Chapter-6 : This chapter presents reliability ensured efficient scheduling with

replication in the cloud environment.

7. Chapter-7 : This chapter discusses the conclusion arrived at, and the future

research scopes related to this thesis.

[[]X]\\
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2

Resource Allocation in Cloud Sys-

tem

The pervasive use of Information and Communication Technology (ICT) through

Internet access drives the service-driven cloud computing model for the betterment of

society at large [219]. The cloud provides the end-user a new dimension of computing

resources in the form of Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS) [256]. Cloud provides these types of resources

on-demand basis and in a pay-per-use fashion in an Internet-based environment [99,

240]. Even though cloud computing shares some common characteristics with the

parallel computing structure like grid computing and cluster computing, but it differs

in terms of virtualization technology and container technology for better resource

management [112]. The computing resources are delivered to the end-user in the

form of utility services similar to the traditional utility services like electricity, water,

telephony, and natural gas [64].

Cloud provisioning is the allocation of a cloud provider’s resources and services to a

customer. The growing demand for cloud computing poses new challenges for Cloud

Service Provider (CSP) and open up new research problems for researchers to ex-

plore. The business model associated with cloud computing needs efficient resource

management for the cloud provider and user to maximize their profit and return

on investment [38]. For the cloud service provider, optimal resource management

to meet the Service Level Agreements (SLAs) is an important task to gain maxi-

mum profit [174]. There is a trade-off between over resource provisioning and under

resource provisioning which leads to loss of revenue in different forms. Overprovision-
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ing of resources lead to underutilization and lost revenue, however underestimating

the provision leads to SLA violation and increased penalty [88]. Resource economic

and power efficiency further add challenges to cloud scheduling with the Quality of

Service (QoS) requirement under pay-per-use provision [42].

The on-demand resource request by the users to meet varying application require-

ments bring fluctuation in the resource needs. Modern applications are constantly

changing, evolving with new requirements, and exist in an environment with vary-

ing demands on resources. In a real-world scenario IT environment, demand is not

steady. Even a thriving business might encounter times when there is more or less

demand. Demand changes seasonally, weekly, and hourly. For high demand case,

the system must develop the ability to scale up and for low demand case, the scale

down option must be available. That ability to handle the scale up and scale down

of computing resources in an automatic manner is known as elasticity [115]. If the

service provider buys more infrastructure to accommodate the peak traffic, then it

results in overspending when the load is not at peak. If the target is to handle average

load always, then spikes in traffic will impact the application performance and, when

traffic drops, these resources will go unused.

The real challenge of handling elasticity is to study the user request pattern at dif-

ferent time instances and its future need. The resource management problem can be

solved through the appropriate selection of VMs based on the application requirement

and mapping of VMs to PMs. However, these two aspects are interrelated and hence

need effective handling. For example, deploying a VM for an application with a larger

capacity than required results in poor resource utilization regardless of how efficient

the mapping of VMs to PMs. Conversely, mapping a suitable VM based on the ap-

plication need to a PM with larger capacity leads to the underutilization of resources.

Due to the resource underutilization in the case of fixed configuration-based VM, the

number of cloud providers allows fine-tune VM configurations (e.g. ElasticHosts al-

lows users to choose from 184 million different combinations for the size of each CPU,

memory, and storage) [10]. However from the cloud service provider’s point of view,

it is important to allocate the resources efficiently to gain maximum profit by mini-

mizing the operational cost by controlling the energy consumption which contributes

most of the operational cost [48].
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2.1 Resource Allocation Policies

There are various parameters considered for resource allocation in the cloud system.

The application and machine parameters in the cloud system play an important role

in the allocation policies. The application or tasks may be dependent or independent.

The tasks with inter-dependency are generally represented by Directed Acyclic Graph

(DAG) and their precedence constraints with directed edges. In DAG a task will not

start its execution unless all its predecessors are finished their execution. However,

for independent tasks, this kind of restriction is not maintained and those tasks can

run in parallel manner.

For any kind of tasks (dependent or independent), there are some key attributes are

considered for allocation. Those attributes are arrival time, execution time (esti-

mated or predicted), deadline, resource utilization parameters (CPU, Memory, Disk,

Network Bandwidth, etc.), along with constraints in-term of resource requirements.

The machine environment may be a homogeneous system or heterogeneous system.

In a homogeneous machine environment, all the physical machines (PMs) have the

same machine attributes and for the heterogeneous case, different PMs have different

attribute values. The attributes associated with each machine can be its resource

capacity (CPU, Memory, Disk, I/O bandwidth, Speed, etc.), the maximum number

of VMs it can deploy, the failure rate of the system, etc.

However, the ultimate objective of resource allocation policy in the cloud environment

is to gain maximum profit and efficient resource utilization. The service provider

should avoid underutilization which is due to over-provisioning of resources and over-

utilization due to under-provisioning of resources at any stage of resource allocation.

Cloud resource allocation should consider utilization objectives i.e. user Quality of

Service (QoS) which includes response time, make-span, user cost, application per-

formance, reliability, security, throughput, etc.

In scheduling literature the terms allocation, mapping, and scheduling are understood

in the following way. Allocation means the amount of computing resources reserved

for the set of tasks. Mapping defines the process of assigning the set of tasks to set of

machines. Scheduling defines the start time and end time of each task on the assigned

machine. For example there are two machines (M1 and M2) are reserved for the

allocation of 5 tasks (T1, T2, T3, T4, and T5). The tasks are mapped {T1, T2, T3} →M1

and {T4, T5} →M2. In the scheduling phase, T1 will execute at time t0, T2 at time t1
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and T3 at time t2 on the machine M1. Similarly T4 will execute at time t
′
0 and T5 at

time t
′
1 on the machine M2.

But in this thesis we consider, allocation means the mapping and scheduling of tasks

on the specified machines. Mainly we categorize resource allocation techniques in

cloud system in two broad ways and those are (a) static allocation, and (b) dynamic

allocation [37].

2.1.1 Static Allocation

Static allocation is performed when applications are mapped in an off-line mode

in the planning phase, where the user knows what resources are required and how

many instances of the resources are needed ahead of using the system [56]. Static

mapping techniques take a fixed set of applications with their attributes, a fixed set

of machines with their attributes, and generate a single, fixed mapping [57]. Static

allocation strategies use more time to determine a mapping as it is done in an off-line

mode where it uses estimated values of the application parameters. The drawback

in static allocation is it leads to underutilization or over utilization of resources as

it uses estimation value of task attributes and most of the time getting the correct

estimation value is difficult. For this reason, most of the static allocation methods

uses worst case values of attributes of the tasks such as WCET (worst case execution

time) instead of average execution time.

Many researchers worked on static allocation strategies in the cloud environment

and some of the works are discussed here. Mithani et.al. [173] have proposed the

resource allocation in multi-tier cloud where they developed a strategy to minimize

the resource over-provisioning. They have adopted an innovative approach to monitor

the performance of the application and then allocate the resources at individual tier

level based on the criticality of the business need.

Xu et. al. [241] have proposed Anchor, a versatile and efficient framework for resource

management in cloud system. Anchor uses a stable matching framework to separate

policies from mechanism when mapping VMs to PMs. In this framework, users and

operators can adopt different resource management policies and those policies are

captured as preferences in the stable matching framework. Anchor framework works

both in offline and online mode, where many-to-one stable matching theory efficiently

matches VMs with heterogeneous resource needs to servers.
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Xu et.al. [238] proposed a job scheduling algorithm based on the Berger model. The

Berger model-based job scheduling algorithm establishes dual fairness constraints.

Those constraints are, (a) task classification based on QoS preferences, and (b) reten-

tion of fairness while allocating the resources. Adaptation of those constraints results

in the effectiveness of their proposed scheduling algorithm in the cloud environment.

Adami et.al. [30] have proposed a unified control strategy to manage computing

and network resources effectively in cloud Data Center (DC). They have assured

the proper network traffic control in a highly volatile VM deployment. Their work

proposed a novel resource control platform for virtualized DC environments whose

objective is to allocate the VMs to physical servers efficiently. Their proposed ap-

proach considers the network traffic load across the network links to minimize the

over-provisioning related problems. They designed two algorithms and evaluated

their effectiveness in a virtualized cloud environment.

2.1.2 Dynamic Allocation

Dynamic allocation is performed when the tasks are mapped in a real-time fashion,

e.g., when tasks arrive at unknown intervals and are mapped immediately [157].

Dynamic mappers must be able to process applications as they arrive into the system,

without knowledge of what applications will arrive next. In a cloud environment, the

user requests for the resources arrive on the fly as per the application needs. Dynamic

allocation policy helps to avoid the underutilization and over-utilization situation as

much as possible. However, due to the uncertain arrival pattern of the user request,

it may happen that requested resources may not be available instantly. For that case,

the service provider makes the allocation from other participating cloud data center.

However in some cases, the resources are reserved statically, but due to uncertain

behavior of task execution, there is a need of dynamic mapping to cater dynamism

in the tasks scheduling. Some of the works done in this area are presented as follows.

A dynamic resource management approach was proposed in Mishra et al. [172].

Their proposed approach deals with VM migrations to improve the machine state by

efficient resource usage and dynamic resource provisioning capabilities. The live VM

migration approach transfers the state of a VM from one physical machine to another,

which can mitigate overload conditions and hence enables uninterrupted maintenance

activities.

Zaman et. al. [250] discusses an online mechanism for dynamic VM provisioning and
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allocation. Their proposed approach avoids the limitations of fixed-price or auction-

based mechanism which was done in off-line mode. However, on-line mechanism dy-

namically provisions and allocates VM instances in the cloud system. Their proposed

algorithm named Mechanism for on-line VM provisioning and allocation (MOVMPA)

is invoked as soon as the user requests some VM instances. When invoked, the mech-

anism selects the users who would be allocated VM instances they requested and

ensures that those users will continue with those VM instances for the entire period

of execution.

There are several relative advantages and disadvantages of these two types of map-

pings. Static heuristics can typically use much more time to determine a mapping

because it is being done off-line, e.g., for production environments; but static heuris-

tics must then use estimated values for parameters such as when a machine will be

available. In contrast, dynamic heuristics operate on-line, therefore they must make

scheduling decisions in real-time, but have feedback for many system parameter values

instead of estimates.

Static mapping is utilized for many different purposes. It can be used to plan the

execution of a set of tasks for a future time (e.g., the production tasks to execute on

the following day). Static mapping also can be used to do a post-mortem analysis

of dynamic mappers, to see how well they are performing. Dynamic mappers must

be able to process applications as they arrive into the system, without knowledge of

what applications will arrive next. When performing a post-mortem analysis, a static

mapper can know all of the applications that have arrived over an interval of time

(e.g., in previous time slot).

2.2 Optimization Objectives of Resource Alloca-

tion

In this section, we categorize the resource allocation strategies in the cloud envi-

ronment based on their optimization objectives irrespective of the application and

machine environment. In practice, the service provider and user goals may be con-

flicting. However, the effective resource allocation strategy must consider the trade-off

between different optimization goals and efficiently schedule the applications to have

a win-win situation for all the stakeholders.
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The primary goal of the cloud service provider is to maximize profit, which can be

achieved by deploying less number of active machines. Efficient workload consolida-

tion with fewer number of machines reduces the resource usage cost. However, power

consumption or the energy consumption cost is an important parameter to reduce the

overall cost. The overall power consumption of the system is the sum of the static

power consumption and dynamic power consumption. The static power consumption

can be reduced by minimizing the use of active machines. However, to reduce the dy-

namic power consumption researchers use the dynamic voltage and frequency scaling

(DVFS) [39] technique in various ways. The primary idea of the DVFS technique in

the context of real-time task execution is to adjust the operating frequency such that

the power consumption can be reduced without violating any SLA for the task.

Broadly there are three key categories of optimization objectives while considering

the VM scheduling in cloud system. Those categories are, (a) resource utilization,

(b) energy consumption, and (c) user cost.

2.2.1 Resource Consolidation

The main objective of a cloud service provider is to utilize the resources efficiently.

Resource wastage leads to increase in cost and energy consumption, which again leads

to loss of profit due to less number of application deployment. To improve resource

utilization, effective server consolidation along with efficient workload distribution to

those servers is required.

Server consolidation is the allocation of multiple VMs onto PMs to share the common

resources available with the host server. The objective of the server consolidation is

to improve the resource utilization [94, 141]. Dubois et al. [92] proposed a dynamic

allocation approach of the VMs to PMs to increase the resource utilization while meet-

ing the VM resource requirements over the entire time of execution. Their approach

uses a bin-packing algorithm to achieve better resource utilization even though the

unpredictable change in CPU utilization. That can be achieved through effective mi-

grations of VMs over time. The number of bins required to allocate the total number

of tasks and number of migrations are the utilization criteria in their work.

Meng et al. [227] proposed a model to improve server consolidation by multiplex-

ing VMs with complementary resource needs. The problem was transformed to a

stochastic bin packing (SBP) problem and an online packing algorithm was proposed

by which the number of servers required is within (1 + ε)(
√

2 + 1) of the optimum for

35



2.2. OPTIMIZATION OBJECTIVES OF RESOURCE ALLOCATION

any ε > 0. For some special case, it improved within a factor of (
√

2 + 1) of the op-

timal solution. From the numerical experiment, it was observed that their proposed

algorithm requires 30% less server deployment than several benchmark algorithms

(First-Fit, First Fit Decrease, and Harmonic).

The work in Gupta et al. [114] improves resource utilization, considering the cross-VM

interference of the applications. Their proposed approach contains two phases, (a)

application characterization, and (b) application-aware scheduling. Their scheduling

approach uses multi-dimensional online bin packing and interference minimization

through cache-sensitivity awareness.

The work proposed by Chen et al. [70] uses queuing model to predict application

performance metrics on multi-core systems. Their work considers the interference

and load-dependent characteristics of the collocated VMs. Their model is used to

improve the consolidation of the VMs to maximize resource utilization while meeting

the application performance requirements.

The work carried out by Carrera et al. [68] proposed an important technique, relative

performance functions (RPF), which allows integrated management of batch and

transactional workloads. RPF for one application is a measure of the relative distance

of the application’s achieved performance from its goal, RPFs is used to make fair

trade-offs between the different workloads.

Workload concentration can be used to achieve better resource utilization and that can

be done by aggregating the load to an optimal number of servers by switching on and

off the servers. The framework proposed by Li et al. in [143] minimizes the number

of host servers using both static and adaptive scheduling actions. The objective of

the work is to reduce energy consumption. Additionally, resource over-provisioning

is used to avoid frequent VM resizing.

The other approach to achieve workload concentration is to select the host server with

the least available resources for the incoming VM requests such as the Least Free Ca-

pacity scheme in Do et al. [89]. Their proposed approach performs better than other

approaches based on different criteria like blocking probability of requests for virtual

machines, average number of busy physical servers, average energy consumption, and

heat emission.

The other strategy called as workload balancing technique which helps to distribute

the load among the hosts. That would help the system to avoid overloading and
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Table 2.1: Representative works based on resource utilization objective

Ref. Main objective Technique used Evaluation
[90] Efficient utilization

of available virtual
machines,average
response time and
optimum usage of
cloud resources

Modified Particle Swarm
Optimization (MPSO)
and Modified Cat Swarm
Optimization (MCSO)
techniques

Customized
simulation
environment
using PySim

[121] Proposed work is to
reduce the makespan,
cost and deadline
violation rate

Hybrid algorithm com-
bined two optimization
algorithms namely called
as Cuckoo Search (CS) and
Particle Swarm Optimiza-
tion (PSO)

Cloudsim
toolkit with
randomly
generated
workload

[29] To minimize the
makespan and in-
crease system utiliza-
tion

Discrete Symbiotic Or-
ganism Search (DSOS)
algorithm

Simulation
results

[119] Improve the
makespan time and
resource utilization
ratio

IMMLB algorithm se-
lects the resource that can
execute the task in min-
imum time and perform
rescheduling to balance the
workload at VMs

Simulation
results

[107] Reduce the cost and
improve the utiliza-
tion ratio of resources

Autonomic resource pro-
visioning approach is
proposed using MAPE
mechanism

Simulation
with two real
world traces

[260] Balance the CPU
/Memory/Bandwidth
usage

Use multi-objective NSGA-
II algorithm

Numerical
simulations

application performance like response time. Workload balancing strategy like round-

robin scheduling to distribute the loads evenly among the available hosts.

The survey related to cloud scheduling reported in [251], presents different scheduling

approaches nicely with in-depth analysis. Some representative works about resource

utilization is presented in Table 2.1.
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2.2.2 Energy Consumption

The important factor to consider in a cloud environment is to minimize energy con-

sumption due to economic and environmental factors [51]. Higher energy consumption

leads to an increase in cost and high emissions of CO2 which impact the environment.

Resource utilization, for example, CPU, disk, storage and network, and associated

equipment, such as cooling systems, are the main contributors to energy consump-

tion. So better resource utilization needs better planning and allocation strategy of

the available resources. One of the dominant energy minimization policy is to deploy

minimize the number of active machines. So workload consolidation to minimize the

number of servers increases resource utilization and reduces energy consumption. Sev-

eral studies reveal that the CPU is the main component that consumes a reasonable

amount of energy. Hence researchers worked on improving the CPU usage to reduce

the use of the number of active servers and that decrease the energy consumption.

Kim et al. [131] proposed a model to estimate the energy consumption of VMs in

a consolidated server. The prediction model is to monitor the events generated by

VMs based on their performance counters. That estimation model is used by their

scheduler to allocate the resources to VMs according to their energy budget and

control their energy consumption within each time interval.

The overall energy consumption of the system from its dynamic power during a fixed

time interval is defined as:

Esystem =
n∑

i=1

Evmi
(2.1)

where Evmi
represents the estimated energy consumption of ith VM and n is the total

number of VMs in the system.

Lee et al. [141] reduce the number of instances created to increase the utilization of

the servers without violating the SLA constraints. Their scheduling approach energy-

conscious task consolidation (ECTC), which aims to maximize resource utilization

and explicitly take into account both active and idle energy consumption. The cost

function fij of a task tj on a resource ri is obtained as follows:

fij = ((p∆ × uj + pmin)× τ0)− ((p∆ × uj + pmin)× τ1) + p∆ × uj × τ2 (2.2)

where p∆ = pmax − pmin, pmax is the maximum power consumption, pmin is the

minimum power consumption uj is the utilization rate of tj, and τ0, τ1, and τ2 are the
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total processing time of tj, the time period tj is running alone and that tj running in

parallel with one or more tasks, respectively.

There is another dynamic power management technique called Dynamic Voltage and

Frequency Scaling (DVFS) is used to control energy consumption. The power con-

sumption of a processor depends on the operating frequency of the CPU. Lowering

the operating frequency of the CPU may lead to power savings and potential energy

savings but may impact application performance, which means that the same applica-

tion may need more time to complete execution [193]. So to increase energy efficiency

while meeting the SLA constraints, the scheduling algorithm must determine the op-

timal frequency for each application. They used the following energy model for their

work.

ET (s) = ET
dyn(s) + ET

static(s) (2.3)

where ET
dyn(s) is the dynamic power consumption and ET

static(s) is static energy con-

sumption of the system.

Lee et al. [142] have proposed makespan-conservative energy reduction along with

simple energy conscious scheduling to find a trade-off between the makespan time

and energy consumption, where they reduced both makespan time and energy con-

sumption of precedence constraint graph on heterogeneous multiprocessor systems

supporting DVFS technique.

Ferdaus et. al. [96] proposed an ant colony optimization approach to achieve workload

balancing in a cloud environment. They use a linear resource utilization model along

with the following energy model of each application. The energy model was defined

as follows.

E(p) =

Eidle + (Efull − Eidle)× UCPU
p , if UCPU

p > 0

0, Otherwise

where Efull and Eidle are the average energy drawn when a PM is fully utilized (i.e.

100% CPU busy) and idle, respectively, and UCPU
p represents the CPU utilization.

Another way to improve energy efficiency is to switch-on the server when resource

needs increase and switch-off the servers when not in use. However, deploying the

optimal number of servers at run time by understanding the workload dynamics

is a challenging task. Zhang et al. [257] proposed a framework that dynamically
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Table 2.2: Representative works based on energy efficiency

Ref. Main objective Technique used Evaluation
[128] Improve the energy

consumption and
CO2 emissions

Multi-objective genetic
algorithm (MO-GA)

Experimentation
using Feitelson’s
PWA Parallel
Workloads

[126] To improve resource
utilization, perfor-
mance improvement
and energy effi-
ciency

Artificial Bee Colony Experimentation
using simulation
tool, CloudSim
with random
workload

[208] To optimize execu-
tion time, cost and
energy consumption
satisfying the QoS
requirements

Compromised cost-time
based (CCTB) scheduling
policy, time based (TB)
scheduling policy, cost
based (CB) scheduling pol-
icy and bargaining based
(BB) scheduling policy

Experimentation
using CloudSim
with randomly
generated work-
load

[196] To optimize lifetime
reliability of appli-
cation and energy
consumption with
guarantees of QoS
constraint

Heuristic of Reliability and
Energy Efficient Workflow
Scheduling (REEWS)

Simulation us-
ing CloudSim
results obtained
by using ran-
domly generated
task graphs

[213] Reduce physical
machine energy
consumption and
communication cost

Genetic algorithm Simulation us-
ing synthetic
dataset

[103] Reduce resource
wastage and energy
consumption

Use multi-objective algo-
rithm

Numerical simu-
lations

determines the number of machines required and adjust the resource provisioning un-

derstanding the trade-off between energy consumption and scheduling delay. Their

proposed framework considers the heterogeneity of workload where tasks are clus-

tered based on their requirements and resource needs. They subsequently adjust the

placement to heterogeneous PMs taking into account the reconfiguration cost.

In a cloud environment, a significant amount of energy is consumed by cooling sys-

tems. When the load of the system is high that causes thermal hotspots and hence

needs more energy for cooling the system. So the challenge for the researchers is to

distribute the load uniformly among the servers to avoid thermal hotspots. Sand-
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Table 2.3: Representative works based on cost optimization objective

Ref. Main objective Technique used Evaluation
[176] To improve upon

total cost, time com-
plexity, and schedule
length

A novel hybrid algorithm,
called CR-AC, combining
both the chemical reaction
optimization (CRO) and
ant colony optimization
(ACO) algorithms to solve
the workflow-scheduling

CloudSim
toolkit and
evaluated by
using real ap-
plications and
Amazon EC2
pricing model

[121] Proposed model to
reduce the makespan,
cost and deadline
violation rate

Hybrid algorithm com-
bined two optimization
algorithms namely called
as Cuckoo Search (CS) and
Particle Swarm Optimiza-
tion (PSO)

Use of
Cloudsim
toolkit with
randomly
generated
workload

[234] To optimize
makespan, cost and
CPU time

Metaheuristic based
scheduling algorithms
including genetic algorithm
(GA), ant colony optimi-
sation (ACO), and particle
swarm optimisation (PSO)
are adapted

Implemented
in SwinDeW-C
cloud work-
flow system to
demonstrate
the perfor-
mance

[72] To optimize cost and
makespan

Uses dynamic objective
GA (DOGA) with adap-
tive ability to the search
environment

Experiment
with workflows

[31] Improve the
makespan time,
throughput, availabil-
ity and cost

Load balancing resource
clustering (LB-RC) algo-
rithm using BAT optimiza-
tion technique

Simulation
using synthetic
dataset

piper [233] uses resource usage data of VMs through profiling and use that data to

detect the hotspots. Hotspots are reactively mitigated using VM resizing or migration

from overloaded servers to less loaded servers. Some representative works concerning

energy consumption is presented in Table 2.2. The detail survey on energy-efficient

scheduling are presented in these papers [34], [127], [164].

2.2.3 User Cost

Cloud service provider leasing the computational resources from cloud vendors under

pay-per-use manner. This drives cost-effective based task scheduling in the cloud

41



2.2. OPTIMIZATION OBJECTIVES OF RESOURCE ALLOCATION

environment. The objective, in this case, is to minimize the operation cost and that

would maximize the overall profit of the system with better utility gain from the ser-

vice provider’s perspective. From the user’s perspective, minimization of deployment

cost and meeting budget constraints are required for enhancing the service demand.

Revenue is generated by renting the resources and appropriate cost models are used

to compute the overall profit of the service provider. The infrastructure cost, tran-

sition costs to model transition overhead, penalty costs from SLA violations, and/or

the revenue from the users are some of the factors incorporated in the cost models.

Maurer et al. [165] incorporate the cost model which uses penalty due to SLA vio-

lations, costs due to unused resources, and the cost of actions (the percentage of the

actions to be executed compared to all the possible actions that could be executed).

They consider infrastructure cost to be the energy consumed by the used servers and

the energy spent for cooling them. The energy consumed by a server is computed

taking into account the idle power consumed while the host is idle and the dynamic

power required to execute the jobs, depending on the utilization level of each resource.

Resource outsourcing to other providers and switching on/off operations are also in-

corporated in the cost model. The total cost c of their proposed model was defined

as follows.

c(p, w, a) =
∑
r

penaltyr(p) + wastager(w) + actionr(a) (2.4)

where penaltyr(p) defines the relationship between the percentage of violation and

the penalty for a violation of resource r, wastager(w) defines the wastage function

that related to the percentage of unused resources w to the energy in terms of money

that these resources unnecessarily consume, and actionr(a) defines the percentage of

executed actions a to the energy and time costs in terms of money.

Most of the studies related to profit maximization in cloud system focus on minimizing

the operating cost [170], [139]. Those costs include resource cost, electricity cost, and

penalty cost due to SLA violations. In Quiroz et. al. [191], a trade-off between the

over-provisioning cost (the additional cost from unused resources) and the wait cost

that models the time between the arrival and execution of an application request

(the delay of the instantiation of new VMs) is achieved. Some representative works

concerning cost to the user is presented in Table 2.3. The survey related to cloud

scheduling based on cost optimization is reported in [251] and [135] with in-depth

analysis.
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2.3 Evolutionary Approaches for Resource Alloca-

tion

Resource allocation in the cloud data center is generally considered as a multidimen-

sional bin packing problem with variable bin sizes [199]. The problem is NP-hard and

often computationally infeasible to solve because the cloud environment has a large

number of host servers along with users [79]. For the same reason, we need to design

either heuristics or meta-heuristics to get near-optimal solutions with less complexity.

For the static version of the problem (all VM requests arrive at the same time), where

the task characteristics and machine environment is known before scheduling gener-

ally use evolutionary approaches to solve the problem more quickly as compared to

other classical methods. The evolutionary approaches to tackle cloud resource allo-

cation problems have received increasing attention in recent years. Those algorithms

produces acceptable global solution in a time frame proportional to the number of

variables [149]. Evolutionary approach is a nonconventional optimization paradigm,

inspired by the mechanisms of natural evolution and behaviors of living organisms

[255]. In general, evolutionary algorithms include Genetic Algorithm (GA), swarm

intelligence algorithms such as Ant Colony Optimization (ACO) and Particle Swarm

Optimization (PSO), and other nature-inspired algorithms [245], [252], [253],[254].

Recent work has shown an emerging trend in the use of evolutionary algorithms for

improving effectiveness and efficiency in complex optimization systems [150]. This

trend would continue with the increase of the proliferation, ambition, and complexity

of cloud computing [251].

2.4 On-line Resource Allocation

The cloud services through data centers often receive VM requests from their cus-

tomers at an arbitrary time. The VM requests in-terms of multiple resource demand

tend to arrive and depart the data center dynamically, needs proper allocation policy

without having information about the future. So the resource allocation strategies

become one of the considerable problem as they can affect the energy efficiency and

resource utilization significantly in on-line settings [113].

The data centers often face the problem of dispatching a stream of VMs renting

requests for many cloud servers with the free resource. Each requested VM has

multiple resources (e.g. CPU and RAM) demands. The resources of the cloud server

43



2.4. ON-LINE RESOURCE ALLOCATION

are fixed and the arrival time of each request is unknown. Each user request comes

with a VM instance, and specifies the amount of time the VM must be allocated and

a deadline, that further complicate the decision on scheduling [163].

The resource allocation problem considered here can be formulated as Vector Bin

Packing Problem (VBPP), and some algorithms are available to solve the VBPP.

VBPP is a variant of the classic bin packing problem. The bin packing problem has

been researched for many years, the basic objective of this problem is to use the least

number of bins to pack series of items. Vector Bin Packing Problem (VBPP) is one of

the variants of bin packing problem proposed by Garey [105]. In the VBP problem,

the size of the items and bins are described by a d-dimensional vector, the objective

is also minimizing the number of bins ever used. VBPP is an NP-hard Problem, even

limit the dimension to 1. When the dimension is more than 2, it was proved that no

asymptotic polynomial-time approximation scheme (PTAS) [231]. Many algorithms

were researched to solve VBPP. One of the known algorithm proposed by Stillwell

[209] used the variants of First Fit Decreasing (FFD) to solve VBPP.

Liang Guo et. al. in [113] proposed Multi-Dimensional Cloud Resource Dynamic

Allocation Model (MCRDA) to solve the online multi-dimensional Vector Bin Packing

Problem where each cloud server is considered as bin and each VM is the item to be

packed in the cloud server. In this case each VM request arrive at the system with

arrival time (ai), leaving time (di) and resource request vector (e. g. ucpui and umem
i ).

Each of the servers is associated with their resource capacity vector. The MCRDA

algorithm is similar to the classical Best Fit algorithm introduced in [76].

The MCRDA algorithm uses a Single Weight Algorithm (SWA) which packs the items

into an open bin of the largest content in which it fits. If there is no open bin which

the arrival item fit, then the algorithm opens a new bin and pack the item in it. It

uses the weight function φ(Mj) for each server, which can be represented as follows.

φ(Mj) =
∑

αk × rkj (2.5)

where αk is a scale vector of resource type k, the amount and significance of each

resource are different. The term rkj represents the resource usage at Mj of resource

type k. The algorithm uses a scale vector to emphasize the importance. The algorithm

calculates the load weight of each server Mj and sorts them according to this value

in descending order. Their proposed approach tries to assign arrived request to the

server which it fits. If no started server can accept the request, then the SWA will
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start a new server to put this request. Xiaomin Zhu et al. in [267] develop a novel

energy-aware scheduling algorithm EARH for real-time, aperiodic tasks. The EARH

uses a rolling horizon optimization policy with resource scaling up and scaling down

strategies to make a good trade-off between the task’s schedulability and energy

saving.

2.5 Summary

Cloud computing enables users to provision resources on demand and execute tasks

or applications in a way that meets their requirements by choosing virtual resources

that fit their application resource needs. The task of the service provider is to ef-

fectively accommodate these virtual resources onto physical resources. So efficient

resource allocation is the fundamental challenge in cloud computing as that must

consider providers optimization objectives. This chapter provides a brief overview of

various resource allocation policies in cloud environment considering different opti-

mization objectives. In order to improve popular and classic scheduling techniques in

cloud computing, new methods have developed which include economic models and

heuristic algorithms along with algorithms inspired by nature. By combining different

approaches and considering input parameters such as running costs and deadlines, it

is possible to provide a powerful approach for scheduling tasks in a cloud computing

environment.
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3

Interference Aware Scheduling

in Cloud Data Center

This chapter presents the effect of interference on the performance of applications

in virtualized cloud environment. Performance of each application varies differently

when executed simultaneously with other applications with varying resource usage

pattern. Here we create model to estimate the execution time of an application due

to interference from other applications using machine learning approaches. We also

predict the resource requirement for the set of incoming applications based on double

exponential smoothing (DES) [69] cascaded with Fast Up and Slow Down (FUSD)

[235] mechanism to meet the future resource need. Using interference aware execution

time estimation model and resource prediction model, an efficient interference aware

scheduling method is proposed for scheduling of applications in cloud environment.

3.1 Introduction

Nowadays cloud computing provides Infrastructure or Platform or Software as a ser-

vice to users on-demand basis. Hence the demand for different services provided by

the cloud is exponentially increasing day-by-day. And this is evidenced by the exten-

sive use of services of most commercial cloud service providers like Microsoft Azure

[18], Google Applications [7], Amazon EC2 [2], Salesforce [23] etc. Also, it can be

noted that Microsoft got maximum revenue from the cloud services as compared to

revenues from other products and services of Microsoft in quarter 1 of the year 2018

[17].
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The effective ways to provide the services to many users of the cloud system either

by increasing the number of resources or develop a mechanism to best utilize the

existing resources [144]. The most promising solution to handle many requests from

the users by the cloud system is virtualization technology [45]. The Infrastructure-as-

a-Service providers use virtualization technology to deploy user appications in their

cloud infrastructure [77]. Virtualization is the technology which efficiently utilizes the

cloud resources by allowing many users to share the resources of a physical machine.

For example, an application requires Linux OS, and its libraries can be run on a

machine with Microsoft Windows OS through virtualization and vice versa. So the

virtualization extends the benefit to both cloud service provider and the user through

environmental isolation, fault isolation, and security isolation. A physical machine

can deploy many virtual machines (VMs), which increases the resource utilization

and hence, reducing the cost for cloud service provider. The present work considers

full virtualization system where guest OS runs on top of host OS by fully emulating

the hardware of the physical machine [104].

For improving the cloud resource utilization, service provider allows multiple VMs to

be hosted on a physical machine which causes performance degradation because of

interference among concurrently running applications. Due to the significant perfor-

mance variations of VMs, there are an increasing concern to handle the performance

sensitive (i.e., deadline or finish time is of strong concern) applications in the virtu-

alized environment while meeting the performance goals.

In this chapter, our primary motivation is to understand the performance degradation

of applications caused by interference. Subsequently design the effective scheduling

approaches considering the interference and its effect on the violation of service level

agreement (SLA). Here we summarize the contribution of this chapter as follows.

1. Analyze and build different interference prediction models based on the three

resource usages (disk I/O rate, CPU usage, and memory access rate) of the

applications. Also validate the model with standard benchmarks in a virtualized

platform using Xen hypervisor [45].

2. We use double exponential smoothing (DES) cascaded with Fast Up and Slow

Down (FUSD) mechanism (as defined in [235]) for resource usage prediction

in cloud data center. This model predicts the future resource needs to deploy

the required number of physical machines so that most of the tasks will not
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miss their deadlines due to resource shortage. Again on top of that, we use an

admission control mechanism to reduce the deadline miss further.

3. Design, an efficient interference aware scheduling approach, to allocate the tasks

to VMs to minimize the effect of interference. The scheduling approach also

reduces the SLA violation while satisfying the resource usage constraints.

3.2 Related Research Work

The popularity of virtualization for better resource utilization in a cloud environment

shifted the research focus to understand the performance of applications in a virtu-

alized cloud environment for providing better QoS. Different approaches are used to

provide QoS to users in the virtualized cloud environment where resources are shared

among applications [216], [215], [264]. Researchers have studied the performance

degradation of applications due to interference, based on their resource usage of dif-

ferent resource types [144], [177], [111], [169], [235]. Nathuji et al. [177] and Chiang

et al. [73] have considered shared CPU, Govindan et al. [111] have considered shared

cache, Pu et al. [187] and Mei et al. [169] have considered shared I/O, and Mars et al.

[159] have considered memory sub-system to model the performance of co-allocated

applications due to interference. Delimitrou et al. [85] have considered heterogene-

ity and interference of the system by classifying the jobs using collaborative filtering

technique and greedily allocate the tasks with minimum interference. Du et al. [91]

studied the performance bottleneck of applications through VM profiling and Wood

et al. [232] used application characteristics for computing virtualization overhead.

Kundu et al. [137] predict the application performance using an iterative training

model i. e. artificial neural network. Pu et al. [187] and Mei et al. [169] considered

the effect of interference for data-intensive applications and used the network traffic

interference model to reduce its impact on the performance of applications. Nathuji

et al. [177] designed a multi-input-multi-output model (known as Q-Clouds) to han-

dle the effect of interference. They deployed additional resources to compensate the

impact of interference to achieve QoS. TRACON [73] considered resource usage of dif-

ferent applications and used that to predict the interference using a machine learning

approach.

In [239], HEIFER was developed by Xu et al., where they estimate the performance

for inhabitant applications. They used I/O and CPU usage to predict the interference

49



3.3. PROBLEM FORMULATION

Table 3.1: Comparison of our work with other works

Method Real-
Time

Approach Job character-
istics

Admission
control

Resource
predic-
tion

HEIFER[239] Yes Heuristic MapReduce No No
TRACON[73] No Heuristic Batch No No
MIMP[257] No Heuristic Interactive &

batch
Yes No

Q-Cloud[177] No Heuristic Interactive &
batch

Yes No

Proposed
approach

Yes Heuristic Interactive,
online & batch

Yes Yes

and assign the applications to machines where the applications perform better. In

[257] minimal-interference-maximal-productivity (MIMP) method proposed by Zhang

et al., where they consider the intermixing of interactive jobs along with the standard

batch jobs to maximize the system performance and minimize the interference.

Table 3.1 highlights the qualitative comparison of different approaches closely related

to our proposed approach. We had proposed interference aware scheduling approach

for both interactive and a batch of real-time tasks, considering an efficient resource

prediction model along with an admission control mechanism on top of that, which

is different from other approaches.

3.3 Problem Formulation

3.3.1 Task Environment

Given with a set of online tasks T = {T1, T2, · · · , Tn}, where each task Ti is charac-

terized by:< ai, ei, di, pi, u
cpu
i , umbw

i , udbwi >. The terms ai, ei, di and pi represents the

arrival time, execution time, deadline and priority of the task Ti respectively. Other

terms ucpui , umbw
i and udbwi represents average CPU utilization, memory bandwidth

utilization, and disk bandwidth utilization by the task Ti respectively.

3.3.2 Machine Environment

The considered compute system have m physical machines M = {M1,M2, ... ,Mm}.
Each physical machine Mj is characterized by: < Ccpu

j , Cmbw
j , Cdbw

j >, where Ccpu
j ,

Cmbw
j and Cdbw

j represents number of CPU, amount of memory bandwidth and disk
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I/O bandwidth available with the physical machine Mj respectively. Each physical

machine has sufficient memory and disk size to host many homogeneous VMs. The

resource requirement of VMs deployed to run concurrently on a host machine must

not exceed the upper threshold of the available resources with that host. This helps

to reduce the interference and SLA violation between user and service provider. To

formulate the resource usage constraint we had adopted the formula defined by [95],

which is represented by Eq. 3.1.

∑
Ti∈STj

umbw
i 6 λ · Cmbw

j ;
∑

Ti∈STj

udbwi 6 λ · Cdbw
j ;

∑
Ti∈STj

ucpui 6 λ · Ccpu
j (3.1)

Where STj is the set of tasks executing on jth machine (Mj). Here, λ represents the

upper threshold, which means the total resource usage should not exceed that limit

and has the range 0 < λ 6 1. For instance, if the value of λ = 0.9, at that point

the total resource utilized by various VMs running with a physical machine must not

exceed 90% of the entire accessible resource of the physical machine. However, the

value of λ may not be same for all type of resources. For different type of resources

values of λ may be different. In this work we had taken same λ value for all type of

resources for the simplification of the model.

3.3.3 Optimization Goal

Given with a set of online tasks T = {T1, T2, · · · , Tn} and m physical machines

M = {M1,M2, · · · ,Mm}, and each machine can accomodate some homogeneous VMs.

Here we need to allocate tasks to VMs with less number of active machines which

maximize the task guarantee ratio (or priority guarantee ratio). The definitions of

task guarantee ratio (TGR) and priority guarantee ratio (PGR) was taken from [266]

and can be defined as follows. Task guarantee ratio is defined as the ratio of number

of admitted tasks finish their execution before dealine to total number of admitted

tasks to the system.

TGR =

n∑
i=1

(1− Ui) · Admiti
n∑

i=1

Admiti

, (3.2)

where Admiti = 0 if task (Ti) did not admit to the system by the scheduler else

Admiti = 1, and Ui = 0 if task execution finish before deadline (fi < di) else Ui = 1.

Similarly, priority guarantee ratio is defined as the ratio of sum of the priorities of
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the tasks executed before deadline to the sum of the priorities of all admitted tasks.

PGR =

n∑
i=1

(1− Ui) · pi · Admiti
n∑

i=1

pi · Admiti
, (3.3)

where pi is priority of the task Ti.

3.4 Methodology

3.4.1 System Architecture

Figure 3.1 shows the system architecture of the proposed approach. The set of user

tasks with performance requirement (priority and deadline) submitted to the system.

Our proposed approach generates a probable assignment for the admitted tasks with

their resource requirements. As shown in the shaded box of Figure 3.1, our system

consists of m physical machines where, each physical machine can deploy at most k

number of VMs.

Our task scheduling approach consists of three major components, which are as

follows:

• Interference prediction model for an application when it is allocated to a VM

where multiple VMs are running with other applications in the same physical

machine, detailed description of this module is given in Section 3.4.2;

• Prediction of future resource requirement of incoming online task set based on

the prevoius duration resource usage pattern of the already submitted tasks

for better resource utilization, detailed description of this module is given in

Section 3.4.3; and

• Design of interference aware scheduling approach to achieve efficient perfor-

mance in terms of TGR, PGR and number of deadlines missed tasks along

with admission control mechanism, detailed description of this module is given

in Section 3.4.4.
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Figure 3.1: The system architecture

3.4.2 Interference Prediction in Virtualized Cloud Environ-

ment

To analyze the impact of interference, we attempted to identify the parameters which

are directly or indirectly influence the performance of applications in the virtualized

environment. Performance of co-allocated applications running on the same physical

machine degrades significantly based on their resource usage [244]. Figure 3.2 shows

the performance degradation when multiple applications run on a physical machine

at the same time [244]. Due to co-allocation, all the applications incur performance

loss to a certain degree as compared to their standalone execution. However, some

co-allocation cases suffer less performance degradation than others. For example,

co-allocation of three different type applications (one Java application, one Database

application, and one Web application) referred to the case (JS+DS+WS) in Figure

3.2 have normalized performance of 0.93, whereas co-allocation of the four same type

applications (four Web applications) referred to the case (4WS) in Figure 3.2 have

normalized performance of 0.32. Poor normalized performance of case (4WS) is due

to the interference of multiple services of the same type, which interfere with each

other resulting huge performance loss.

To address this concern we had investigated the resource usage pattern of individual

VMs and interference caused by that VM to others and vice-versa. For example, if an

application running on a VM is I/O intensive then allocating another I/O intensive
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Figure 3.2: Consolidation profiling result (JS - Java Server, FS - File Server, DS -
Database Server and WS - Web Server) as reported in [244].

application to co-scheduled VM will degrade the performance of both the applications.

We used Xen hypervisor [45] to generate resource usage pattern of applications, study

application performance when multiple VMs execute simultaneously. Based on the

application profiling information built the prediction model to estimate the execution

time of application due to interference. Effect of interference plays a crucial role for

the execution time estimation of an application when multiple co-located VMs are

running at the same time on the same PM [239], [133]. Also, performance variations

happen when average resource utilization of co-located VMs varies.

We conducted the experiment, where every application keeps running over one VM

in a physical machine with Xen hypervisor introduced. The workload characteristics

were collected, which captured the VM behaviors and used to predict the interference

among the concurrently running tasks. Table 3.2 reports the execution time, aver-

age CPU utilization, total number of memory access and disk I/O rate of different

benchmark applications [26], [15].

In this component, we built the interference prediction model by deploying two VMs

(VM1 and VM2) on a single host and observed their performance. The VMs are

assigned with applications from the considered benchmark applications as shown in

Table 3.2. We term application running on VM1 as foreground (FG) applications
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Table 3.2: Execution time, average CPU utilization, total memory access and disk
I/O rate of different applications

Benchmark Exec.
time

(sec.)

CPU
util(%)

No. of
memory

access

Disk
I/O(KB/s)

jpegenc 0.06 8.5 189816 1.0
lbm 0.04 7.5 146850 1.0
lowpass 0.02 5.5 1717350 1.5
mbw 2.52 51.5 148202134 33.0
sysbench.disk 115.49 13.5 78 145706.0
sysbench.mem 0.94 52.0 30929 2.5
sysbench.cpu 17.62 54.0 726 16.0
matmul 7.85 25.0 134507558 5.0

and application running on VM2 as background (BG) application. We generated the

profile information of applications executing alongside of other applications with con-

currently running VMs. We gathered information through virtual machine monitor

(VMM) when an application is executing with and without execution of background

applications. The normalized slowdown of FG applications is shown in Figure 3.3,

where other BG applications execute along with FG application. To calculate the

normalized slowdown we used the Eq. 3.4.

Normalized slowdown =
|ETwithBGA − ETnoBGA|

ETnoBGA

(3.4)

where ETnoBGA represents the execution time of application without running of any

BG application simultaneously and ETwithBGA represents the execution time of appli-

cation with running of BG application in co-scheduled VM. As reported in Figure 3.3

sysbench.mem suffers a slowdown of 3.8, 4.0 and 4.2 when runs along with CPU, disk

and memory intensive benchmarks respectively. The rest of the benchmark applica-

tions suffer the slowdown from 0.04 to 0.91 when run along with other background

applications. As observed from this experiment, applications suffer a different level of

performance degradation due to VM consolidations, and that is due to interference.

The interference caused to an application due to co-allocation of multiple VMs can

be computed based on the model discussed in [73]. Based on that model we consider

all the BG applications instances as one big BG instance where resource usage of

the BG instance is the sum of the resource usages by all the background VMs. For

example, if VM1 is considered a foreground instance then VM2 to VMk is considered

as one big background instance assuming a PM hosts up to k VMs.
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Figure 3.3: The normalized slowdown of the foreground applications when different
applications are already running in the background

There are many interference prediction models as reported in [137]. We used WEKA

data mining tool [230] to generate prediction result and compare the prediction error

of four different prediction models using our own data set (collected through running

different benchmark applications as reported in Table 3.2). The considered four

models are namely simple linear regression model (Regression-L), linear regression

model with quadratic terms for the dependent parameters along with linear terms

(Regression-LQ), an artificial neural network with linear activation function (ANN-

Linear) and artificial neural network with Gaussian activation function (ANN-Gauss).

The prediction errors of those four models are reported in Table 3.3 for our data

set. All four models are performing comparably. The reason of the comparable

results may be (a) lesser instances of data, (b) dimension of the data is very less

(i.e., dependent parameters), and (c) non-availability of other parameters which are

directly or indirectly affects the execution time of the tasks. Even though in this

work, we build the model off-line, we want to use this model to work on dynamic

settings. We choose to use the linear regression model to predict the execution time

of the application because the time to build the linear regression model at run time

is less as compared to the non-linear model. ANN-based and other complex models

give a bit higher accuracy but the model building at the time of training takes a

huge amount of time, which may not be encouraged to be used for training in on-line
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Table 3.3: Prediction error of different prediction models

% prediction error (PE)
Regression-L Regression-LQ ANN-Linear ANN-Gauss

21.41 21.39 20.98 22.01

settings.

Here we used the chosen linear regression model to calculate the predicted execu-

tion time (PET ) of an application while executing with other applications in the

meantime. The generalized form of the linear regression model can be represented as

follows:

PET = c0 + c1.X1 + c2.X2 + · · ·+ cn.Xn (3.5)

Where c0, c1, · · · , cn are the coefficients and X1, X2, · · · , Xn are dependent variables

representing memory access rate, disk I/O rate, and CPU utilization of different ap-

plications executing concurrently in virtualized environment [137], [73]. The objective

here is to find the values of the coefficients c0, c1, · · · , cn which minimizes the absolute

error between actual execution time (AET ) and predicted execution time, which is

|AET −PET |. We had considered mbw benchmark and sysbench (memory, disk and

CPU) for the model building and used other benchmark applications (jpegenc, lbm,

lowpass, mbw and matmul) for testing the model. Eq. 3.5 represents general form of

the regression model but in our work we have used c0, c1, c2 and c3 are the coefficients

and X1, X2 and X3 are dependent variables representing CPU usage, memory access

rate and disk I/O rate respectively. The value of c0, c1, c2 and c3 are optimally found

to be -2.5339, 0.0507, 0.0324 and 0.0072 from the experiment at the initial prediction

time frame. As time progresses more number of tasks are submitted to the system.

The co-efficient of the prediction model also changes as more number of tasks are

considered for model building process at run time. The computations of normalized

prediction error (NPE) as follows.

NPE =
|PET − AET |

AET
. (3.6)

Table 3.4 reports the normalized prediction error (NPE), where the range of normal-

ized prediction error lies between 0.03 to 0.4. For applications with short execution

time results in higher prediction error. This can be handled separately, but for ap-

plications with long execution time prediction error is less. We had used the linear
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Table 3.4: NPE of different FG applications when sysbench.mem runs as BG appli-
cation

Applications Input Size Predicted
exec. time

Actual
exec. time

NPE

jpegenc 16 1.87 1.59 0.18
lbm 5000 × 5000 2.89 2.39 0.21
lowpass 512 × 512 0.37 0.28 0.29
mbw 2048 1.39 1.02 0.36
matmul 64 × 64 9.44 9.18 0.03

model because it takes significantly less time as compared to the non-linear model

as the number of tasks arrives at the system may be huge in numbers. Even though

we sacrifice a minimal percentage of error, the linear model can be efficiently used

at runtime and also the parameter values of the model can be tuned at runtime for

on-line task set easily.

3.4.3 Prediction of Resource Usage of Online Tasks

The scheduler has a component to predict the future resource need depends on arrival

rate of tasks to the system and based on that it deploy the required number of VMs

at run time and also activate the required number of physical machines. This helps

the system to maximize the resource utilization of the active hosts. Here we used

double exponential smoothing (DES) for resource usage prediction [69], [106] where

the data shows a trend. The double exponential smoothing (DES) works as follows:

st =

x1 if t 6 2

α× xt + (1− α)× (st−1 + bt−1) if t > 2
(3.7)

bt =

x1 − x0 if t 6 2

β × (st − st−1) + (1− β)× bt−1 if t > 2
(3.8)

where xt represents the observed resource usage and st represents the estimated re-

source usage at time t. The value of bt represents the estimation of trend, α represents

the data smoothing factor, 0 < α < 1, and β is the trend smoothing factor, 0 < β < 1.

We calculated the predicted usage of CPU utilization, memory bandwidth utilization,

and disk I/O utilization based on the past usage pattern using the DES for every five

minutes and predict the respective usage for the next five minutes window. Figure
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(a) CPU usage (b) Memory bandwidth usage

(c) Disk I/O per unit time

Figure 3.4: Resource utilization prediction using double exponential smoothing (DES)
with α = 0.4 and β = 0.3

3.4(a), Figure 3.4(b) and Figure 3.4(c) reports the results for CPU utilization, memory

bandwidth utilization and disk I/O utilization respectively with α = 0.4 and β = 0.3.

We had calculated the median error as a percentage of the observed usage value:

|st− xt|/xt and it turn out to be 7.72% for CPU usage prediction, 6.01% for memory

usage prediction and 4.91% for disk I/O usage prediction of a portion of Google

cluster data [5].

Though the above formulation seems satisfactory to predict the different resource

(CPU, memory bandwidth, disk I/O bandwidth) usage, but this formulation does not

handle the irregular resource usage pattern which causes an increase in deadline miss.

When the actual resource usage pattern is going down the prediction model should

be conservative in reducing resource usage estimation. So, we apply the Fast Up and

Slow Down (FUSD) mechanism (as defined in [235]) along with double exponential
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(a) CPU usage (b) Memory bandwidth usage

(c) Disk I/O per unit time

Figure 3.5: Resource utilization prediction using modified DES with α = 0.4, β = 0.3
and χ = 0.4

smoothing model to handle irregular resource usage pattern. The transformed formula

considers the difference between expected and observed resource usage from Eq. 3.7

and defined as follows:

s
′

t = xt−1 + χ · |st−1 − xt−1|, 0 < χ < 1, (3.9)

where s
′
t the new estimated resource usage, st old estimated resource usage (using

Eq. 3.7 and Eq. 3.8) and xt represents the observed resource usage. The value of st

and xt collected from Eq. 3.7 and used with the transformed Eq. 3.9.

Figure 3.5(a), Figure 3.5(b) and Figure 3.5(c) reports the resource usage prediction

of CPU, memory and disk I/O bandwidth respectively using the Eq. 3.9, i.e., double

exponential smoothing cascaded with FUSD. The transformed formula adapts the
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irregular changes that are increasing and decreasing of resource usage over time. We

had calculated the median error after using the transformed formula, and it turns out

to be 7.97% for CPU usage prediction, 6.19% for memory usage prediction and 4.64%

for disk I/O usage prediction. The prediction error is a bit higher than the previous

cases, but it is acceptable. As in all the cases, the predicted value of resource usage

is greater than the observed one; hence, that helps our interference aware scheduling

approach to deploy a bit higher than the required number of physical machines to

minimize the number of deadline miss.

In most of the compute environment, CPU usage of VM is given special priority. The

scheduler in general assign a dedicated core for each VM for the entire duration of task

execution even if the CPU utilization of the task allocated to that VM is small (which

range from 0 to 1). As VM locks the entire core when it is initialized until it gets

destroyed, so the number of active machines required to deploy can be calculated

using the Eq. 3.10. The goal of Eq. 3.10 is to calculate the number of physical

machines required to deploy at a particular time interval (W represents the time

interval). Based on the resource prediction model, system can predict the amount

of resource required for the next time window and use the Eq. 3.10 to compute the

number of physical machines required to be activated for the task allocation.

MCw =

Nw∑
i=1

ducpui e.eTi

k.W
(3.10)

where MCw and Nw represents the number of active machines required and number

of task executed during the wth time interval respectively, considering duration of

time interval is W (here we had considered W = 5 minutes). The term k represents

number of VMs deployed on top-of a physical machine. The term ucpui represents

CPU utilization of the ith task during that wth time interval and eTi
execution time

of task Ti during the wth time interval. The execution time of task Ti during wth

interval can be calculated as follows:

eTi
=



Fw − Sw if si 6 Sw and fi ≥ Fw, (Case I)

fi − si if si ≥ Sw and fi < Fw, (Case II)

fi − Sw if si 6 Sw and fi < Fw, (Case III)

Fw − si if si > Sw and fi ≥ Fw, (Case IV)

(3.11)

where Sw represents the start and Fw represents the finish time of the wth time
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interval. si and fi are the start time and finish time of the task Ti respectively. The

final prediction of required number of active machines is calculated using this MCw

instead of xt (the observed value of Eq. 3.7 , Eq. 3.8, and Eq. 3.9).

3.4.4 Interference Aware Scheduling of Tasks with Admis-

sion Control

This is the principal component of our design, where incoming tasks are scheduled to

VMs where the task assignments fulfill their time constraint, i.e., deadline of the task.

However, VM is chosen intelligently so that task must receive negligible interference

because of the simultaneous execution of different VMs on the same physical machine.

As we know multiprocessor scheduling problems are mostly NP-hard, hence we design

heuristics to solve those problems. The linear regression model was built to predict

the effect of interference on the task execution when multiple tasks are executed

simultaneously with other VMs.

The system receives the online tasks which arrive dynamically. The scheduler converts

these online tasks into batches of task. Task batches get created based on execution

time of the tasks and the deadline. In each time slot, a batch of non-interactive tasks

and many small batches of interactive tasks get created. These batch of tasks get

scheduled by our scheduler. If the task is interactive one whose execution time is

minimal with a close deadline, then those type of tasks are handled separately with

short duration batch size; otherwise, those tasks may miss the deadline.

To select the suitable VM on a physical machine for a task of the new batch we

apply three rules (1) find performance interference of the incoming task based on the

resource usage pattern, so that task must finish its execution before its deadline and

(2) check for the interference it causes to other tasks on the same physical machine

when other VMs are running concurrently and (3) total resource usage constraint

should not be violated.

Pseudocode of proposed Interference Aware Resource Provisioning and Scheduling

(IARPS) algorithm is shown in Algorithm 1. The newly arrived batch of tasks added

to the queue depending on the priority or deadline of each task (line 1 to line 4). Tasks

are picked one after another from the queue and the scheduler tries to allocate the

task to one of the active machines at that time. Line 7 of the algorithm calculates the

earliest start time of task Ti when it maps to a VM on machine Mj. The procedure

IA EST computes the expected start time based on the resource usage of previously
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Algorithm 1 Interference Aware Resource Provisioning and Scheduling

1: Qb ← batch of tasks (T)
2: for All the tasks Ti in Qb do
3: Ti.schedule← True
4: Sort the tasks in Qb based on priority/deadline
5: for All the tasks Ti in Qb do
6: for All the machines Mj in active machine set Ma do
7: sij = IA EST (Ti,Mj)
8: fij = IA EFT (Ti,Mj)
9: for All the machines Mj in the increasing order of fij do

10: if fij 6 di && RUC(Ti,Mj, sij, fij) then
11: Allocate the task Ti to machine Mj

12: Increment resource utilization of the machine Mj by adding RU of Ti for
time [sij : fij]

13: if suitable machine not found for the task Ti then
14: Reject task Ti
15: Ti.schedule← False

Algorithm 2 Check for Resource Utilization Constraint

1: Procedure RUC(Ti, Mj, s, f)
2: if (Mj.mem[s : f ] + umbw

i ) > λ · Cmbw
j then

3: return FALSE
4: if (Mj.disk[s : f ] + udbwi ) > λ · Cdbw

j then
5: return FALSE
6: if (Mj.cpu[s : f ] + ucpui ) > λ · Ccpu

j then
7: return FALSE
8: return TRUE

allocated tasks and their expected finish time. As the resource usage pattern affects

the estimated execution time of the task, the expected finish time calculation need to

consider the usage pattern of already allocated or running tasks on the same machine.

Line 8 of the algorithm calculates the expected finish time of the task considering the

interference prediction model which was already discussed in subsection 3.4.2.

At the time of calculation of estimated finish time IA EFT (Ti,Mj) of a task, Ti

on machine Mj, the procedure IA EFT use the estimated start time of a task if it

gets mapped to VM of the machine Mj based on current queued up workloads in the

machine Mj. The Eq. 3.5 is used to compute the interference of BG tasks on FG task,

when all the tasks are scheduled simultaneously on the machine Mj. So to compute

the expected execution time of FG task, we need to consider all the BG tasks running

concurrently on the same machine. We had slightly modified our model to minimize
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Figure 3.6: The different cases of background (B) or ith task and foreground (F) or
jth task process execution

the impact of error as follows. The prediction error can be negative or positive,

in case of negative prediction error, the predicted execution time will be less than

actual execution time. So the task scheduling based on predicted execution time with

negative error causes deadline miss for a task. As most of the cases, the error pattern

follows Gaussian distribution and if we distribute our 20% error into four quartiles,

then handling 15% of negative error will cater more than 99% of cases in our model.

So we had modified the predicted execution time (PET) as PET = 1.15 × PET to

nullify the 15% of negative error.

There are four possible cases arise when a new task arrives at the system for scheduling

which is shown in Figure 3.6. Out of four cases, the tasks which fall under the category

of case-II will not interfere with each other and kept out for consideration to compute

the interference factor. For other cases, we had taken the overlapping time of different

tasks for the consideration of the effect of interference. The overlapping time period

OTi for the foreground task Ti with respect to the background task Tj is computed

as:

OTi =


fj − sj if si 6 sj and fj < fi, (Case I)

0, if fi 6 sj, (Case II)

fi − sj if si 6 sj and fi 6 fj, (Case III & IV).

(3.12)

The start time of background application cannot be higher than the start time of

foreground application.

After computing the expected finish time of task Ti for all the active machines where

the task Ti can be allocated, it greedily selects the machine where estimated finish
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time of the task is minimal. It further check for the resource utilization constraint

and deadline constraint on the selected machine. If all the constraints are satisfied

then the scheduler allocate the task to that particular machine otherwise check for

other active machines for allocation in the order of increasing estimated finish time.

If no suitable machines are available then the task get rejected by the scheduler.

Pseudocode for the procedure for checking of resource utilization constraint (RUC) for

a task on a machine is shown in Algorithm 2. For the entire duration of the expected

execution time of the task (from start time s to finish time f of task), the expected

resource utilization should be below the threshold utilization for each resource of the

machine. For example in line 2 of Algorithm 2 check the expected memory bandwidth

utilization of task should be below λ · Cmbw
j . Similarly the procedure check for other

resources of the machine. The procedure returns true if it satisfies resource constraint

for all types of resources of a machine, i.e., memory utilization, CPU utilization, and

disk I/O bandwidth. We had taken the capacity constraint as defined in [95] to

mitigate the interference. In our experimentation, we had made the 90% of the total

capacity of the resources as the threshold so that the running task would not violate

the SLA. Here we are not considering the migration of VMs because all the VMs are

of similar type and running all the time to provide the services to the tasks.

Time Complexity: The Interference Aware Resource Provisioning and Scheduling

(IARPS) algorithm as shown in Algorithm 1, selects a batch of tasks and order them

based on their deadlines. From the Algorithm 1, we can see the complexity of the

algorithm can largely be formulated as O(nlogn + nm), where n represents number

of tasks, and m represents number of currently active machines. The computational

complexity of the procedures used in this algorithm, like IA EST , IA EFT and RUC

are independent of number of tasks, i.e., n and takes constant time. As the number

of tasks that arrives at the system is large, nlogn dominates the term nm+nlogn. So

the time complexity of IARPS approach is O(nlogn). Moreover, linear function used

to predict the interference will not affect much to the complexity of the algorithm.

3.5 Experimental Setup and Results

We evaluated the effectiveness of the proposed approach (IARPS) using Google cluster

data [5]. The simulation environment accepts a stream of online tasks with config-

urable virtual machines and physical machines as input. The task, physical machine

and virtual machine specifications accepted by the simulation environment are same
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as defined in Section 3.3. The scheduling of tasks is done batch-wise manner, even

though tasks arrived at the system dynamically. The adopted simulation environment

is similar to Eagle [83] and included with other states of art scheduling modules along

with two well known shortest job first (SJF) and earliest deadline first (EDF) schedul-

ing approaches. We had implemented three scheduling modules, one of our proposed

IARPS (described in the Algorithm 1) and other two approaches IA-LongShort, IA-

Short and MIMP [257] to compare the performance.

In IA-LongShort approach, we segregate all the tasks to be either long tasks or short

tasks. We allocate a proportional number of machines (which was predicted by our

resource prediction model), depending on the number of long tasks and short tasks.

Long tasks get allocated to the set of machines which was reserved for long tasks

and the same for short tasks. In IA-Short approach, we assume that short tasks do

not create interference to any type (either long or short) of tasks, and hence only

interference by long tasks are considered for scheduling. MIMP [257] minimizes CPU

interference by allowing background batch processing jobs to execute only when other

interactive jobs are not actively using CPU at the same time. The other state-of-art

approach TRACON [73], which do not consider the online stream of real-time tasks,

and in their approach they map the tasks to VMs where they get minimum inter-

ference, and they schedule tasks batch-wise manner. So we compared our approach

with SJF, IA-Short, IA-LongShort, MIMP, and EDF.

3.5.1 Simulation Setup

In our simulation we had taken the set of parameters which are similar to the charac-

teristics of the cloud environment and the detailed explanations based on infrastruc-

ture environment (machine), virtual environment and task environment are described

here.

3.5.1.1 Machine Parameters

For the experimental purpose we had considered set of homogeneous physical machine

with homogeneous VMs. All the physical machines have same configurations with 4

CPU cores, 4 GigaBytes of RAM, 500 GigaBytes of disk storage and 1GigaBytes/s

of I/O bandwidth capacity. Each of the physical machines can deploy at most 4 VMs

to run on top of it. For the running of each virtual machine requires 1 GigaBytes of

RAM, 1 CPU core, and 10 GigaBytes disk storage. We assume here, that the creation
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Figure 3.7: Number of active machines required and predicted in a time interval of
5 min.

of VM takes negligible time. The number of physical machines at our disposal is 100,

and we dynamically switch off and on the machines through software based on the

requirement at different time. However, based on our resource prediction model

(discussed in Section 3.4.3), we switch on those number of physical machines used for

task allocation. Using DES and FUSD, we predict the number of physical machines to

be active at a particular time window. Based on the prediction, we activate the same

number of physical machines to be deployed in that specific time window (5 min.).

Even though cloud system considers heterogeneity in machine environment, we had

taken homogeneous environment for understanding the computational simplicity and

symmetry in the reported results.

3.5.1.2 Task Parameters

The task parameter is same as defined in the Section 3.3.1 and extracted from task

event table and task resource usage table of real-world traces which was released by

Google in the year 2011 [5]. The trace consists of hundreds of thousands of jobs,

submitted by users. Each job is composed of one to tens of thousands of tasks,

which are programs to be executed on an available machine. Each task is specified

with various parameters, including priority, resource request (resources such as CPU,

memory, disk bandwidth, and network capacity), and, sometimes, constraints (e.g.,

do not run on a machine without an external IP address) [195]. The workload col-
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Figure 3.8: Scheduler performance for Google traces

lected from Google compute cluster can be divided into 4 task types based on how

latency-sensitive it is. Task type 3 represents a more latency-sensitive task (revenue-

generating task) and type 0 represents a nonproduction (non-business-critical task)

task. Task type 1 and type 2 are those tasks which have characteristics that falls

between two [192]. We have used the arrival time, execution time, memory band-

width, CPU usage, and disk I/O usage from Google trace data and added deadline

and priority to the task by using valid assumption. We had taken the deadline of

each task to be di = ai + ei + random(baseT ime, µ × baseT ime), where µ = 8 and

baseT ime = 100 and random number between 1 to 20 for the priority of each task for

our simulation. The incoming tasks are batched together in a regular time window of

every few seconds and then processed as a single mini-batch. Step -1 of the Algorithm

- 1 does the same for the simulation.
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Figure 3.9: Scheduler performance in terms of number of missed tasks and active
machines required for Google trace

3.5.2 Performance of the Scheduler for Google Cluster Data

The Google traces consists of task usage table which recorded over 25 million tasks of

672 jobs and their resource usage pattern. As the volume of data available with the

Google trace is huge, we had taken a random sample of 103 tasks and their resource

usage pattern for our experimentation. The Google trace task set taken here for

the experimentation has the average execution time 816.24 seconds. The tasks whose

execution time falls below 816.24 seconds are categorized as short tasks and otherwise

considered as long tasks.

The actual number of active machines required by our IARPS approach as compared

to predicted active machines using Eq. 3.10 for 5 minutes time intervals is shown in

the Figure 3.7. This result clearly shows that our resource prediction model activates

a bit higher number of physical machines so that deadline miss due to interference

would be minimized. Figure 3.8 shows scheduler performance for Google cluster data

where X-axis represents the number of tasks arrived at the system and the number of

task increases as time progresses. The simulation result for the performance impact of

interference for Google traces shows that the IARPS performs up to 0.9993 for TGR

and 0.9995 for PGR, which is better than other approaches. Figure 3.9(a) represents

the number of active machines required to schedule the set of tasks. From Figure

3.9(a) it is inferred that IARPS requires quite less number of active machines as

compared to other states of art approaches. This improves resource utilization (less

number of active machines) by maintaining higher or comparable TGR and PGR

values. IARPS requires 34 to 38 active machines for different duration of time.

The number of missed tasks (9 to 12 number of missed tasks for IARPS ) as shown
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Figure 3.10: Performance of schedulers with co-allocated VMs for Google traces (103

tasks)

in Figure 3.9(b). The number of missed tasks for IARPS is less as compared to other

approaches because it schedules the task considering the effect of interference of the

co-allocated tasks, deadline and admission control mechanism.

The dynamic nature of the cloud environment and infinite resource availability would

not help us to get 100% TGR and PGR. That is due to the restrictions concerning

the deadline, which can be viewed as some form of service level agreement (SLA) of

the user.

3.5.3 Performance of the Scheduler with Different Co-allocated

VMs

The performance degradation due to interference for different benchmark workloads

are reported in Figure 3.3. The experimentation was done in a virtualized envi-
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Figure 3.11: Scheduler performance in terms of missed tasks and active machines
required with co-allocated VMs for Google traces

ronment using the Xen hypervisor. Figure 3.3 presents the slowdown factor of the

foreground job when the different background jobs are running with the co-scheduled

VMs concurrently. We had reported the performance of different approaches by de-

ploying physical machines vary in number of VMs. Here, also we had taken 103

number of tasks of Google traces and the number of VMs from 2 to 12 per host for

our experimentation (Figure 3.11).

The IARPS approach performs better than other approaches based on TGR and PGR

values as shown in Figure 3.10. The number of missed tasks goes on increasing as the

number of VMs are increasing per host, and that is due to the severe interference of

concurrently running tasks, which is shown in Figure 3.11(b). The number of active

machines decreases as the number of VMs goes on increasing, which is the common

phenomenon as shown in Figure 3.11(a).

3.6 Summary

Performance of applications degrades due to the concurrent execution through VMs

in a virtualized cloud environment. As applications have different resource usage

pattern, so consolidation of different applications on a single PM through VMs cause

violation of SLA. Here we studied the effect of interference in the virtualized cloud

environment and proposed an interference prediction model to estimate the execution

time a task due to interference. Our interference aware scheduling policy makes use

of the impact of interference to allocate the tasks to VMs to minimize the resource

utilization and maximize the TGR (or PGR). The proposed approach outperforms

other states of art approaches in terms of TGR, PGR, number of missed tasks and
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number of active machines required for real-world Google cluster data. The compu-

tational model try to ensure not to miss the deadline of the admitted tasks by three

levels of checks, (a) not allowing resource usage of a PM above 90%, (b) employ FUSD

model, to reduce active machine conservatively where resource demand is reducing

and (c) task PET is adjusted to cater the negative prediction error.

[[]X]\\
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4

Constraint Aware Scheduling in

Containerized Data Center

This chapter presents the issue and solution related to profit maximization of cloud

service provider, where the service provider use OS level virtualization instead of

full virtualization. Therefore in the cloud data center with OS level virtualization,

a task can not be scheduled on all the machines but in some specified machines

where constraints of the tasks meet. As constraints induces scheduling delay, so

it is important to understand the task placement constraints while scheduling the

tasks to machines. We call this problem as constraint aware profit maximization

(CAPM) problem. In this chapter, we present two scheduling approaches to solve this

problem. The objective of those approaches is to maximize the profit for the cloud

service provider, while effectively scheduling the latency sensitive tasks considering

their placement constraints.

4.1 Introduction

Over the years, cloud computing gains popularity due to its unique properties like

flexibility, elasticity, availability of unlimited computational resources, and pay-as-

you-use pricing model [146],[178]. This induces many clients to transfer their business

to the cloud. The key feature of cloud computing is pay-as-you-use, which means the

users need to pay for the resources they consume for the entire time of usage [64],

[71].

According to the present practices of different cloud service providers (Amazon EC2,
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Microsoft Azure, etc.), the customers’ demand for CPU, memory, etc., are provided to

the customer in terms of virtual machines (VMs) using virtualization technology. In

the virtualization method, flexibility is higher as any requirement of VM in terms of

OS, kernel, library, and architecture, etc can be provided on top of the host machines.

But the overhead associated with virtualization is around 15% to 40% [104], which

decreases the profit of the cloud service provider. To get rid of the huge overhead, the

container-based operating-system-level virtualization with less overhead (i.e., ≤ 5%)

is being popularly used [54], [52]. In container-based virtualization, VM of the same

OS, kernel, and architecture can run on top of host machines. So we need to segregate

the user requested VMs into different categories and map those requested VMs to the

corresponding categories of host machines.

Also, the data centers get more diverse in terms of hardware and software because

old systems get replaced by new ones with different specifications [195]. This in-

troduces heterogeneity in a data center, which is the backbone of the cloud system.

Heterogeneity ignorance leads to massive inefficiencies as applications are sensitive

to hardware architectures [85]. As the jobs submitted to the cloud system are from

diverse sources, the resource requirements for each of the tasks may vary signifi-

cantly, which complicates the process of efficient resource management for the service

provider. The jobs/tasks may also have different preferences of machines, where it

may need specific configurations or specialized accelerators (GPUs, FPGAs, etc.) or

a machine with a particular kernel version. These preferences of the task for its execu-

tion is known as tasks placement constraint or simply constraint. Constraints restrict

a task for its execution on a specific set of machines. Apart from the constraints,

applications need the assurance of meeting quality of service (QoS) and service level

agreement (SLA). The preferences and constraints associated with the tasks further

complicate the scheduling decisions [78].

To make a profit with sustainable growth, the service provider needs to be competitive

among peer service providers. Also, the processing of applications within specific

deadlines has become more important due to the introduction of QoS and time-

dependent pricing model [36] [67]. Due to the task constraints, the delay associated

with the scheduling of tasks increases by a factor of 2 to 6, which induces deadline

miss of the tasks [204]. Deadline miss of the task increases the penalty, and hence

reduce the profit of the service provider.

The objective here is to maximize the profit considering task placement constraint

and completion of the task execution before its deadline. Based on the application
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characteristics the service provider creates a virtual data center by renting the hetero-

geneous physical resources from the infrastructure service provider. In this case, we

are not using full virtualization due to huge overhead even though we do not have to

handle the resource constraints as requested by the users. However, we use OS-level

virtualization, where we need to handle the resource constraint to gain maximum

profit. To deploy applications with the least infrastructure we use the concept of con-

tainerization, where computing resources are split up dynamically and shared using

the operating system level virtualization. So, the physical machines are segregated

based on constraints by exploiting the knowledge of application characteristics. The

scheduler equipped with such information is capable of making a better decision for

current and upcoming user requests. An efficient approach is being proposed, which

can understand application requirements, machine characteristics, and uses this in-

formation to maximize the overall profit of the system.

Here we summarize the contribution of this chapter as follows.

• We survey different pricing models, penalties of different cloud service providers

and used proper pricing and penalty model for the user tasks where every task

associated with their deadlines.

• We develop Heuristics of Ordering and Mapping for Constraint Aware Profit

Maximization (HOM-CAPM) scheduling approach for the allocation of tasks

associated with constraints and deadlines to heterogeneous machines, where we

segregate the user tasks and host machines based on their characteristics.

• The proposed approach maximizes the profit using a three-level profit maximiza-

tion scheme, (a) profit-based task ordering for task admission, (b) profit-based

task allocation of the admitted task, and (c) admission of the tasks which are

expected to miss their deadlines but still generate extra profit.

• We then analyze the possibility of admission of the tasks which are expected to

miss their deadlines to increase the profit with manageable QoS degradation.

• The validation of the work through simulation and report a comparative study

with other related approaches. For the simulation, we use the real-world Google

cluster traces. Further, we report a comparative study of simulated annealing

approach with our proposed heuristic for the CAPM problem.
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4.2 Related Research Work

The presence of a number of private and public cloud providers with their distinct

features ( VM types, pricing scheme, etc.) makes it challenging for the user to choose

the right service. The broker (service provider) mechanism is used to assist the user in

a better way by transforming the heterogeneous cloud system into a commodity-like

service [198]. Most of the data centers (infrastructure service provider) which are the

backbone of cloud system are intrinsically heterogeneous in terms of CPU (i.e., in-

struction set architecture (ISA), clock frequency), memory (i.e., capacity, bandwidth),

network (i.e., technology, bandwidth) and storage (i.e., redundancy, technology, ca-

pacity) configurations [218]. Cloud service providers allow the tasks to request for

heterogeneous resources in terms of task constraints. Many researchers have studied

the task constraints with their impacts on resource management in datacenters [204].

Thus any scheduling approach which is aware of different constraints can benefit

substantially for improving the system performance.

Sharma et al. [204] integrated machine characteristics and task placement constraints

into a performance benchmark of Google compute clusters to evaluate the impact of

changes in machine configuration and application demands. They found that incor-

porating placement constraints exhibit a reduction of 13% in average task execution

delays and 5% improvement in machine resource utilization. Thinakaran et al. [218]

proposed a constraint-aware hybrid scheduler, which addressed the problems of con-

straint consciousness and decreasing queuing delay in heterogeneous data centers.

In real-time systems, the primary concern for the task is to meet its deadlines (which is

a form of QoS). Different approaches are being proposed to provide better QoS in the

virtualized cloud environment where different applications share common resources

[216][215] [264]. As the cloud system is used as utility service, profit maximization

along with QoS and SLA is a key driving feature of any cloud system. Profit of the

cloud service provider depends on many factors (price, system configuration, market

demand, customer satisfaction, and so on), among which task urgency is one of them.

Service providers wish to gain higher profit without compromising the QoS [167].

Mei et al. [167] designed the double renting scheme to increase the profit of the

cloud service provider with guaranteed quality of service. Lee et al. [140] and Cao et

al. [67] used a static pricing model, where the price of the service is fixed, and it is

known to the customer in advance. However, in a dynamic pricing model, the system

delays the pricing decision until the customer demand is revealed [65]. A similar
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kind of assumption is being made in our proposed approach for the calculation of the

penalty.

Li et al. [148] proposed the non-preemptive and preemptive profit and penalty aware

(PP-aware) scheduling algorithms for maximizing the system’s total accrued profit.

The well-known cloud schedulers like Mesos [116] and Omega [203] follows the hi-

erarchical design and considers only task placement constraints. These schedulers

do not consider hard and soft constraints for the task placement in heterogeneous

data centers. The contemporary container-based schedulers like Mesosphere [6] and

Kubernetes [52] neither consider task constraint nor does dynamic task ordering for

optimizing the profit.

All the above discussed well-known schedulers do not consider both constraint and

deadline of the task. The scheduling challenges in terms of task constraints, deadline

constraints, and profit maximization have been extensively studied individually. But

scheduling approach considering all the three aspects are not being considered. In

this case, we consider real-time scheduling of tasks, considering the constraint and

deadline of the task. We compare our approach with the PP-NP [148] and GUS [147]

because these two models are used to maximize the profit considering the deadline of

the task. The proposed approach very much addresses the problem of deadline miss

minimization and profit maximization with constraint awareness in a heterogeneous

cloud system.

4.3 Problem Formulation

4.3.1 Machine Environment

We consider the cloud system that contains m number of heterogeneous physical

machines (PMs) i.e. M = {M1,M2,M3, · · · ,Mm}. Each PM, Mj is characterized by〈
Carch

j , Cplat
j , Ckern

j , Ccore
j , Cmem

j , Cnbw
j , Cclk

j , Cdbw
j

〉
. Here the terms, Carch

j , Cplat
j , Ckern

j ,

Ccore
j , Cmem

j , Cnbw
j , Cclk

j and Cdbw
j represents architecture (ISA may be X86, X86 64,

ARM, or Power PC etc.), platform (OS may be MS Windows, Linux, etc), kernel

(Kernel version of OS), number of cores, memory, network bandwidth, clock speed

and disk bandwidth respectively available with machine Mj.
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4.3.2 Task Environment

Given with a set of n independent and non splittable tasks with deadline T =

{T1, T2, T3, · · · , Tn}, where each task Ti is characterized by
〈
ai, ei, di, u

arch
i , uplati , ukerni ,

ucorei , umem
i , unbwi , uclki , udbwi

〉
. Here ai, ei and di represents arrival time, execution time

and deadline of task Ti respectively. Other terms uarchi , uplati , ukerni , ucorei , umem
i , unbwi , uclki

and udbwi represents architecture, platform, kernel, number of cores, amount of mem-

ory, network bandwidth, clock speed and disk bandwidth required for the task Ti.

The constraints associated with each task Ti can be broadly categorized as a hard

constraint and soft constraint [218]. Hard constraints are the strict requirements of

a task without which the task cannot run, on the other hand, soft constraints can be

relaxed or negotiated by task performance in terms of extended execution time (or

extended finish time). In this work, we consider architecture, platform, kernel, and

the number of cores are the hard constraints. Similarly, memory, network bandwidth,

clock speed, and disk bandwidth are considered as soft constraints. Each of the soft

resource constraints of type (k) is provided with a degradation factor of αk. It is

verified experimentally that inappropriate soft resource allocation degrades overall

application performance significantly [227]. However, just as a thumb rule, at least

70% of all the individual soft resource requirements must be made available to a

task so that the task can execute without much performance degradation. The net

execution time eneti of a task Ti for the case, where allocation is made without meeting

the soft constraint requirement can be written as:

eneti = ei ×

(
1 +

p∑
k=1

αk ×
Rk

i − Ak
i

Rk
i

.(Rk
i > Ak

i )

)
(4.1)

where, Rk
i is the required amount of resource, and Ak

i is the allocated amount of

resource, of type k for the task Ti and p is the number of soft resource constraints.

The term Rk
i > Ak

i get evaluates to 1 if the condition is true else evaluates to 0. The

units of Ak
i varies and depends on the type of resource. These are (a) core in numbers,

(b) memory in GB, (c) network bandwidth in KB/s, (d) clock speed in MHz, and

(e) disk bandwidth in MB/s. If all the soft constraints are satisfied for a task then

eneti = ei.

The execution time estimate, which is represented by Eq. 4.1 is taken from [200]

and the similar kind of assumptions are also discussed in Shimizu et al. [207]. In

[207], the estimation of the execution time computed based on the resource usage of
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Figure 4.1: Square of utilization (u2) vs execution time and deadline.

various computing resources. They designed the platform-independent model which

takes the sum of the product terms. However, the final form of the estimation of

execution time linearly depends on the resource usage of various applications. The

evaluation of the proposed model in [207], done by taking many real-life workloads

like production web server, Fibonacci number generator, standalone and distributed

variants of weather-research-forecasting applications, etc. Even though experimenta-

tion with other classes of applications would be necessary before a generic conclusion,

but the Eq. 4.1 can be a reasonable estimate for arbitrary applications. Also, many

researchers proposed different linear models to predict the slow-down of applications

due to disproportionate allocation of resources at run time [86], [87], [85]. Eq. 4.1

dynamically estimates the net execution time based on the availability of resources

with a machine where the task gets allocated.

4.3.3 Revenue Model

The revenue model adopted here considers the user has to pay according to the

amount of resources (such as CPU, memory, etc.) requested by him. The similar

kind of assumptions is considered in [168], where the tasks are allocated to containers

that are dynamically created through OS-level virtualization. Here we consider the

service provider to configure the containers as per the resource request of the user.

Here we consider the fine-grained billing time unit (BTU) for the collection of revenue

from the users. The revenue collected from the user depends on the amount of
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resources it requests and duration of use, i.e., the time to execute the task Ti. The

revenue (revenuei) collected for the execution of the task Ti can be defined as;

revenuei = ei ×

(
q∑

k=1

Rk
i × COST c

k

)
× (1 + u2

i ) (4.2)

where Rk
i is the requested amount of physical resources of kth type, by the task Ti,

COST c
k is per unit cost per unit time charged for the kth resource to the user and q

is the number of chargeable resources. All the resources in the cloud system are not

chargeable resources. The term ui can be defined as follows:

ui =
ei

di − ai
(4.3)

where ai, ei, and di are the arrival time, execution time and deadline of the task Ti

respectively. The square of utilization u2
i , which controls the cost, based on latency

sensitivity of task (Ti). More urgency of a task (whose di − ai is smaller) implies

higher revenue and the profit. Figure 4.1 represents the square of utilization which

controls the cost model of the system. As shown in Figure 4.1(a), square of utilization

increases due to an increase in execution time of a task and that contributes more to

the revenue.

Figure 4.1(b) represents the square of utilization vs deadline keeping execution time

and arrival time constant. The value of ui can be from 0 (when di =∞) to 1 (when

ei = di−ai), so the revenue from a task can be up to two times, if it is a tight deadline

task as compared to completely relax deadline task where di =∞.

4.3.4 Cost Model

The actual cost spent by the service provider can be defined as:

costi = eneti ×

(
q∑

k=1

Ak
i × COST s

k

)
(4.4)

where COST s
k is the actual cost spent per unit physical resources per unit time of the

allocated kth resource, Ak
i is the quantity of allocated kth type physical resource to task

Ti. The units of Ak
i varies and depends on the type of resource. These are (a) core in

numbers, (b) memory in GB, (c) network bandwidth in KB/s, (d) clock speed in MHz,

and (e) disk bandwidth in MB/s. There are two cost factors that affect the profit for
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Figure 4.2: Penalty/revenue vs fi − di and ei .

the service provider. One of the cost is the charged cost (COST c
k ), which is charged

to the user by the service provider and the other one is the actual cost (COST s
k )

spent by the service provider by paying the rent for the physical resources taken from

the infrastructure service provider. The service provider creates a virtual datacenter

by renting the reserved VMs and provide the services to the user on-demand basis.

The typical value of COST c
k is 10% to 20% more than COST s

k .

4.3.5 Penalty Model

Suppose a task Ti misses the deadline, the service provider pays back the penalty to

compensate for the SLA violation. Most popularly used penalty calculation methods

by popular cloud providers are listed in Table 4.1. Mostly three methods are used to

compute the penalty based on different violation levels (i.e., downtime or unavailabil-

ity rate). Those three methods are (a) a specific ratio of downtime, usually greater

than 1, (b) fixed value at different violation levels, and (c) a certain percentage of

total charge paid to consumers based on different violation levels [246]. Penalty cap

refers to be the maximum value of the penalty that the service provider payback for

the violation of SLA. In our model, we consider SLA violation occurs when there is

deadline miss of the task.

Here, we have considered the penalty model which is very much similar to the penalty
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Table 4.1: Penalty model of popular cloud service providers [246]

Cloud
Provider

Calculation
Method

Service Credit Penalty
Cap

Amazon EC2
Ratio of
Total Charge

< 99.95%− 10% N/A

< 99%− 30%
IBM Softlayer Ratio of

Downtime
Each 30 minute
downtime, 5% of
the fees

N/A

Windows Azure
Ratio of
Total Charge

< 99.95%− 10% N/A

< 99%− 25%
VPS.net Ratio of

Downtime
10× downtime 100%

Google GCE
Ratio of
Total Charge

< 99.95%− 10% N/A

< 99%− 25%
< 95%− 50%

Rackspace Ratio of
Downtime

Each 30 minute
downtime, 5% of
the fees

100%

GoGrid Ratio of
Downtime

100× downtime 100%

models of real cloud service providers and this can be defined as:

penaltyi =

β.(
fi−di
ei

).revenuei if fi > di

0 if fi ≤ di
(4.5)

where β is a positive constant which controls the penalty cap and ei, fi, and di are

the execution time, finish time, and deadline of the task Ti respectively. The penalty

to be paid (as defined in Eq. 4.5) if the task finishes its execution after its predefined

deadline, otherwise no penalty will be paid for the task. The delay-sensitive tasks

need to be finished before its deadline. If those tasks are delayed then the service

provider needs to pay the penalty which is proportional to the difference between

finish time and deadline.

Figure 4.2 graphically illustrates the penalty with varied (fi− di) keeping ei constant

(Figure 4.2(a)) and varied ei keeping (fi − di) constant (Figure. 4.2(b)). As shown

in Figure. 4.2(a), the penalty linearly increases as the difference between finish time
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and deadline (fi − di) increases, keeping execution time (ei) constant. So the cloud

service provider will try to allocate the tasks in such a way that, the difference of

finish time and deadline must be minimum which leads to a minimum penalty. Figure

4.2(b) shows that the penalty decreases with the increase in execution time keeping

fi − di to be constant. In this model, shorter tasks incur more penalty percentage at

near-miss as compared to the longer tasks. The penalty cap value (β) of the cloud

service provider is constant for all tasks.

4.3.6 Problem Statement

In this work, we want to schedule a set of n tasks with the deadline (as specified in

Section 4.3.2) on m heterogeneous physical machines (as specified in Section 4.3.1),

so that the overall profit is maximized. We call this problem to be Constraint Aware

Profit Maximization (CAPM) problem. The CAPM problem can be defined as fol-

lows:

Maximize

#admitted tasks∑
i

profiti (4.6)

where profiti is the profit of executing a task Ti and can be written as:

profiti = revenuei − costi − penaltyi (4.7)

and the value of revenue, cost and penalty are calculated by Eq. 4.2, 4.4 and 4.5

respectively.

subject to

uarchi = Carch
j ;uplati = Cplat

j ;ukerni = Ckern
j (4.8)

ucorei ≥ Ccore
j (4.9)

Eq. 4.8 and Eq. 4.9 represents the hard constraint to be satisfied for the ith task to

run on jth machine, whereas soft constraints can be relaxed with performance trade-

off. This may be achieved possibly by executing the more urgent tasks before their

deadlines and by decreasing the penalty.
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Heterogeneity and Constraint Aware Scheduler

Incoming Batch of Tasks

DC Resources

M1 M2 M3 M4 M5

Arch Plat Kern Mem Nbw Clk DbwCore

Figure 4.3: System architecture.

4.4 System Architecture

Here we consider the cloud system, where the service provider provides the services to

the user through a containerized virtual data center. The containerized virtual data

center contains the physical resources rented by the service provider from the infras-

tructure service provider. The service provider accepts the batches of tasks with dead-

lines. A batch of tasks have the same arrival time, and for simplicity, we assume ai = 0

for a batch of tasks. All the submitted tasks are associated with one or more con-

straints of any category (hard or soft constraint). For example, the semantics of indi-

vidual constraints and their domain values of the Google cluster trace [5] are reported

in Table 4.2. Some constraints are hard constraints (arch, plat, kern, and core), and

some are soft constraints (mem, nbw, clk, and dbw). The assumed virtual data center

contains sufficiently large number of machines, M = {M1,M2,M3, · · · ,Mm}. These

machines are heterogeneous, and they are mainly characterized by their architecture,

platform, kernel version, number of cores, amount of memory, network bandwidth,

clock speed, and disk bandwidth. The heterogeneity and constraint aware scheduler

accepts a batch of tasks and efficiently schedule those tasks to machines available in

the data center to maximize the profit.

The example data center in Figure 4.3 has 5 machines: M1,M2,M3,M4 and M5. The

number of cores available at machines M1,M2,M3,M4 and M5 are 4, 16, 8, 2 and 32

respectively. Machines M2 and M3 are idle while some of the cores at M1,M4 and

M5 are executing some tasks.
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Table 4.2: Machine attributes

Abbreviation Description Domain Constraint
type

Arch architecture X86/ARM Hard
Plat platform family Linux/Windows Hard
Kern kernel version 2 Linux/Windows Hard

Core number of cores 4/8/16/32/64 Hard

Mem memory available 2 to 512 MB Soft
Nbw network bandwidth upto 1 MB/s Soft
Clk CPU clock speed 300 to 3500 MHz Soft
Dbw disk bandwidth upto 50 MB/s Soft

4.5 Solution for CAPM

Here we propose a task ordering and mapping based heuristic approach to solve

the CAPM problem. The proposed approach is called as Heuristic of Ordering and

Mapping for CAPM problem (HOM-CAPM). As each task needs to be satisfied with

their required hard constraints, so in our proposed approach, we group the set of

machines based on hard constraints (architecture, kernel, and platform) except the

number of cores. Similarly, tasks are grouped into the same number of groups as

the machines, based on their requirements. As there is multiple types of resources

available with each machine, it is profitable to allocate more tasks to one physical

machine, where the task satisfies the constraints.

The first step in our approaches, we segregate the set of machines based on hard

constraints. As we are considering two types of architectures (X86 and ARM), two

platform types (Linux and Windows) and each platform have two different types of

kernels, there are eight different options or group of hard constraints. So we make

the machine groups (MGs) as, MG1,MG2, · · · , and MG8 which is shown in Figure

4.4(a). Similarly, tasks are grouped based on their hard constraint requirements and

formed the task groups (TGs) as, TG1, TG2, · · · , and TG8 which is shown in Figure

4.4(b). All the tasks of a group need to be executed on top of the corresponding

machine group. For example, all tasks of TG1 need to be executed on MG1 satisfying

the hard constraints (except the number of cores). The grouping of machines and

tasks are required because constraint induces a delay in scheduling decisions [195].

So if the tasks and machines are grouped appropriately based on constraints, then

the scheduling delay can be minimized. So the Algorithm 3 has an important role in

grouping the tasks and machines based on the constraints.
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Figure 4.4: Machine and task grouping.

So, here our objective is to map all the tasks of the task group (TG) to machine group

(MG) such that overall profit will be maximized. The number of nodes deployed for

each MG is proportional to the number of tasks in each TG based on the history of

previous batches. For example, if the number of tasks in TG1 is more as compared

to the other TGs, then the number of nodes in MG1 will be more as compared to

other MGs. Here we are not considering to minimize the number of nodes for a given

cluster to meet deadlines of submitted tasks. But we try to execute the maximum

number of tasks before their deadlines keeping the constant number of deployed nodes

to each cluster for a batch of tasks.

For the tasks of a TG to be scheduled on specific machines of MG, the problem can

be simplified to a set of tasks need to execute on machines with their corresponding

specifications. The simpler version of this problem, scheduling of n tasks Ti(ei, di)

on m processors with deadline i.e. the min
(∑

wi.Ui

)
(minimization of weighted

deadline miss of a task set on multiprocessor) problem is NP-hard [41]. Therefore,

in this work, we use heuristic approaches for solving this problem. Here we consider

two cases, (a) profit maximization without deadline miss, i.e. we would not allow a

task to be admitted and scheduled if the task is expected to miss its deadline when

admitted to the system, and (b) allow a task to be admitted, if it gives substantial

profit even though it misses the deadline.

The overall approach of HOM-CAPM is given in the pseudocode of Algorithm 3. As

we know constraints induces a delay in scheduling decisions [195], so the tasks and

machines are grouped appropriately based on constraints to minimize the delay. In

this approach, we group the tasks based on hard constraints, group the machines
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Algorithm 3 Constraint Aware Grouping and Scheduling

Input: Batch of Tasks, Machines

1: Group all the machines based on hard constraints MG1, · · · ,MGl

2: Group all the tasks based on hard constraints TG1, · · · , TGl

3: For each task group TGi in TG1, TG2, · · · , TGl

4: Schedule tasks of TGi to MGi using Algorithm 4 or Algorithm 5

based on hard constraints except for the number of cores, and schedule tasks of task

group TGi on the machines of MGi to maximize the profit of each group. Then the

subsequent steps are to order the tasks (as defined in 4.5.1) and map the tasks (as

defined in 4.5.2) to maximize the overall profit.

4.5.1 Ordering of Tasks

The order in which tasks are scheduled affects the finish time of tasks. If more

number of high profitable tasks are finished before their deadlines, the profit incurred

by a service provider will be more. Here to examine the effect of different ordering

strategies for profit maximization. We explore some of the ordering strategies and

those ordering criteria are defined as follows:

• Expected profit (EP): The tasks having higher expected profit are assumed

to be more profitable. Here, we arrange the tasks based on decreasing order of

their expected profit (Eq. 4.7 without considering penalty), which is difference

between the revenue of the task and cost of execution of the task.

• Revenue (RV): The tasks having higher expected revenue or charged cost (Eq.

4.2) are likely to give more profit if they are given priority while scheduling. In

this case, we arrange the tasks based on the decreasing order of their expected

revenue.

• Revenue per unit execution time (RPE): Tasks are arranged in the de-

creasing order of their revenue per unit of their execution times.

• Resource usage cost (RUC): Here, we arrange the tasks based on decreasing

order of their resource usage costs as defined in Eq. 4.10.

costui = ei ×

(
q∑

k=1

Rk
i × COST c

k

)
(4.10)
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Algorithm 4 HOM-CAPM without Allowing to be Missed Task

Input: TGi of a batch of Tasks, corresponding Machine Group MGi and Task or-
dering (one ordering from Section 4.5.1)

1: Order the tasks based on predefined ordering
2: while TaskGroup is not empty do
3: while T is not empty do
4: Select a task from T, say Ti
5: Find subset Ma of currently available machines in MG which satisfies core

constraint of Ti
6: Select candidate machines Mc, where Ti meet it’s deadline
7: if Mc = Φ then
8: Reject the task
9: else

10: Rank the machines using Eq. 4.13, for all Mj ∈Mc

11: Select machine Mj which gives highest profit

where COST c
k is the charged cost for the per unit physical resources per unit

time allocated kth resource, Rk
i is the quantity of requested kth type physical

resource to task Ti.

• Cost incurred by cloud provider (IC): The tasks which cost more (Eq.

4.10) may not result in higher profit. So, in this ordering, tasks expecting more

costs are given less preference (reverse case of RUC).

• Slack time (ST): Slack time (di − ei) is the time by which a task can be

delayed so that it will finish on or before the deadline. Tasks having less slack

time should be scheduled first to avoid penalties. So, here tasks are scheduled

in the increasing order of their slack times.

• Earliest due date (EDD): In this criteria, tasks are ordered in the increasing

sequence of their deadlines.

• Shortest job first (SJF): In this case, tasks are arranged in the increasing

order of their specified execution times.

4.5.2 Task Mapping without Allowing Deadline Miss

After ordering the tasks based on the best ordering criteria, we need to map the tasks

to machines dynamically looking at different constraints which will generate more
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profit. Algorithm 4 and Algorithm 5 (as defined in section 4.5.3) present the pseudo-

code of those approaches. Algorithm 4 presents the pseudo-code of the approach

where the system does not allow a task to execute (or does not admit the task) if the

task is expected to miss its deadline. Most of the data centers have heterogeneous

physical machines, and every physical machine has some configuration including a

number of processors, memory size, network bandwidth, clock speed, etc. The pro-

cessors of the considered heterogeneous physical machine have similar compute power

and assumed to depend on the frequency of operation. Here, we assume that each

task needs to use only one PM for its execution. As task requests of a number of

cores are allocated in a single physical machine, so we neglect the factor of data com-

munication between processors. This approach selects tasks of the input task group

TGi in the given input ordering and tries to find suitable machines for each task one

by one. Tasks are checked for their allocation to machines as per their constraint

and deadline requirements. If no such machine available where the task meets its

deadline, then the task gets rejected. Based on the soft constraint requirements and

the traditional ranking criteria, the model rank the machines where the task Ti can

achieve maximum compactness using Eq. 4.11.

rank(Ti,Mj) =

p∑
k=1

f(Rk
i ) (4.11)

where rank(Ti,Mj) represents the ranking of the task Ti when allocated to the ma-

chine Mj with soft constraint requirements Rk
i for k = 1 to p. Lower the rank(Ti,Mj)

value, more preferred is the machine Mj for the task Ti. The f(Rk
i ) can be defined

as:

f(Rk
i ) =


1 if Rk

i 6 Ak
i

Ak
i

Rk
i

if Rk
i > Ak

i

(4.12)

where Rk
i and Ak

i are the required soft resource constraint and available soft resource

constraint for the task Ti respectively. Here the compactness ranking assumes that

the profit will be higher if we execute the task with less amount of resources than the

required amount.

However, this will not guarantee the maximum profit, because if we allocate less

amount of resources to a task, it’s execution time increases and that increases the

cost. Now from the set of candidate machines, the algorithm selects a machine where
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Algorithm 5 HOM-CAPM with Allowing to be Missed Task

Input: TGi of a batch of Tasks, corresponding Machine Group MGi and Task or-
dering (one ordering from Section 4.5.1)

1: Order the tasks based on predefined ordering
2: while TaskGroup is not empty do
3: while T is not empty do
4: Select a task from T, say Ti
5: Find subset Ma of currently available machines in MG which satisfies core

constraint of Ti
6: Select candidate machines Mc, where the task can meet it’s deadline
7: if Mc = Φ then
8: Select a machine Mj ∈Ma, where profit is maximized using Eq. 4.15 and

profiti ≥ ρ.costi, if no such machine found then reject the task
9: else

10: Rank the machines using Eq. 4.13, for all Mj ∈Mc

11: Select machine Mj which gives highest profit

the task can gain maximum expected profit and allocate the task to that machine.

The maximum expected profit (MEP) is calculated using Eq. 4.13 for task Ti.

MEP (Ti) = max{g(Ti,Mj)},∀Mj ∈Mc (4.13)

where Mc represents the set of candidate machines where the task Ti can be scheduled

and g(Ti,Mj) can be defined as:

g(Ti,Mj) = revenuei − costi, if Ti is allocated to Mj (4.14)

where the revenuei and costi are calculated using Eq. 4.2 and Eq. 4.4 respectively.

As we are not allowing the task to miss its deadline, so no penalty will be paid for

that task.

4.5.3 Task Mapping with Allowing Deadline Miss

In this case, we allow the tasks to be admitted to the system if the tasks can contribute

to the overall profit even if they miss their deadlines (Ref. line 7, 8 of Algorithm 5).

This may lead to an increase in profit for the cloud service provider. The task may

incur some penalty due to run time allocation and for that we need to allocate the

task to machine which gives maximum profit with penalty (MPP).

MPP (Ti) = max{g′(Ti,Mj)},∀Mj ∈Mc (4.15)
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where Mc represents the set of candidate machines where the task Ti can be scheduled

and g
′
(Ti,Mj) can be defined as:

g
′
(Ti,Mj) = revenuei − costi − penaltyi, if Ti isallocated to Mj

where the revenuei, costi and penaltyi are calculated using Eq. 4.2, Eq. 4.4 and

4.5 respectively. In Algorithm 5, we present the pseudo-code of the given approach.

The algorithm considers the MGs and TGs with predefined task ordering in each TG

(using Algorithm 3) and schedules the TGs to MGs to maximize the overall profit

of the system. In this case, we allow the task to execute on the system even if it

expected to miss its deadline and contributes the substantial profit to the system.

It checks for the profit to be greater than a particular threshold level (ρ), then only

that task will be scheduled. This still results in more earning in terms of profit in

spite of paying penalties for some tasks. The ρ value is set in such a way that, at

least revenuei collected for the task Ti is (ρ× 100)% more than costi + penaltyi. For

example, if ρ = 0.05 then at least revenue collected for the task must be 5% more

than the cost+ penalty for that task.

Time Complexity: The constraint aware grouping and scheduling algorithm (Al-

gorithm 3) either uses the Algorithm 4 or Algorithm 5 to schedule the batch of tasks

to machines, where profit will be maximized. The complexity of Algorithm 4 and

Algorithm 5 can be formulated as O(nlogn+nm), where m represents the number of

active machines and n represents the number of tasks, and n � m. The complexity

of the computations, for finding rank and expected profit used in these algorithms

take constant time as they are independent of n and m. As the system accepts a large

number of tasks, so the time complexity of the proposed algorithms is O(nlogn).

4.5.4 Simulated Annealing for CAPM

We explore the popular meta-heuristic approach called simulated annealing (SA) to

solve the CAPM problem for further analysis. The SA is considered as the most

popular single solution based optimization algorithm [53], [132]. As we discussed in

Algorithm 3, the set of machines and a set of tasks are grouped and each task group

TGi will be scheduled to the set of machines in MGi. For each task group and its

corresponding machine group are the input to the SA algorithm and that generates

the profit for that task group. The sum of the profits of all groups generates the

overall profit of the system. The step-by-step procedure of SA is given in Algorithm
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Algorithm 6 Simulated Annealing for CAPM (SA-CAPM)

1: Generate the initial solution S and compute its fitness value f(S)
2: Initialize the value of the temperature t0 and total number of iterations imax

3: Set the best solution Sb = S and f(Sb) = f(S)
4: Set i = 1 and t = t0
5: while i < imax do
6: Find the neighborhood solution S

′
from S

7: Compute the fitness value of S
′

as f(S
′
)

8: if f(S
′
) > f(S) then

9: S = S
′

10: else
11: Compute the ∆E = f(S)− f(S

′
)

12: if P ≤ random() then
13: S = S

′

14: else
15: Update the value of the temperature t using t = β × t
16: if f(S) > f(Sb) then
17: Sb = S
18: Set i = i + 1

6. The SA algorithm begins with an initial random solution of S and generates its

neighborhood solution S
′
. The next step of SA is to compute the fitness value of

S and S
′

and update the solution. If the f(S) ≤ f(S
′
) then set S = S

′
otherwise

accept the solution S
′

with the probability P . The probability P value is defined by

P = e−∆E/kt, where ∆E = f(S) − f(S
′
), k the Boltzmann constant and t the value

of temperature. If P > random(), then S = S
′
, otherwise, the value of S will not

change. The next step is to update the temperature value t using t = β × t, where

β ∈ [0, 1] represents a random value.

For example, Figure 4.5 represents a problem instance and its representation to solve

through SA. There are three PMs (M1,M2,M3) and 10 tasks (T1, T2, ..., T10). Initial

allocation is represented by the initial solution instance S of SA. The switching op-

eration represented by swapping of positions transforms the solution S to S
′
. The

computation of the fitness value using Eq. 4.6 is used to update the solution.
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Initial
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S
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Switching operation
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Figure 4.5: Example of problem formulation for simulated annealing

4.6 Experimental Setup and Results

4.6.1 Simulation Setup

We use the simulation platform similar to Eagle [83] and it provides many scheduling

modules. The detail explanation of parameter setting for our simulation as follows:

4.6.1.1 Machine Parameters

In our simulation, we consider all the PMs are heterogeneous. The values of different

machine parameters are listed in Table 4.3.

4.6.1.2 Task Parameters

In this work, we had used real-world public traces of Google to evaluate the perfor-

mance of HOM-CAPM with other state-of-the-art approaches. The data set in Figure

4.6 shows the arrival pattern of different types of tasks in the Google production clus-

ter for 300 minutes in May 2011 [5]. The trace contains four types of tasks, and for

our performance evaluation, we had used tasks of type 1. The simulation was con-

ducted varying the task count from 1000 to 10000. Each set of tasks are divided into
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Figure 4.6: Arrival of different types of tasks in Google traces.

Table 4.3: Parameters for simulation studies

Parameter Values
Architecture X86 or ARM
Platform Linux or Windows
Kernels Windows 10, Windows Server,

Linux centOS 4.6, Ubuntu 4.8
CPU 1, 2, 4, 8 or 16
RAM 2 to 512 GB
Network bandwidth 1 to 10000 KB/s
Clock speed 100 to 3500 MHz
Disk bandwidth 1 to 50 MB/s

batches based on the time interval (t′). Here, we had taken the time interval of t′ = 1

minute, whereas other values can also be taken. We had collected all the information

from the Google cluster data except the deadline of the tasks. The deadline of the

tasks are set as di = ai + ei + random(baseT ime, µ × baseT ime), where µ = 5 and

baseT ime = 100 only for simplification required in order to obtain numerical results,

and the model can support any value for this parameter. The degradation factor (αi)

for each soft constraint is different but for the simplification of the computation, we

had taken the value to be the same for all the soft constraints i.e. 0.1. For controlling

the penalty, we set the value of β to be 0.5 (i.e., the penalty should not exceed 50%

of the total cost). The charged cost and actual cost spent set as the values $1.0 and

$0.75 per unit time respectively, and this value is being taken to get the numerical

results, whereas it can support any value for these parameters.
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(b) HOM-CAPM with allowing some of the to be missed tasks

Figure 4.7: Effect of task ordering on the profit

4.6.2 Performance of Different Task Ordering

The overall profit of the system greatly influenced by the ordering of the task sub-

mission to the system. There are many ordering techniques are available for task

allocation in cloud system. We have explored many task ordering techniques which

believe to produce similar profit for our CAPM problem. However we experimentally

fine tune the ordering which produces maximum profit. As the tasks are considered

batch-wise, we had ordered the tasks within a batch based on our predefined ordering

and calculated the profit gained by the system, which is shown in Figure 4.7. Figure

4.7(a) reports the profit gained by the system when the deadline miss of task is not

allowed and Figure 4.7(b) reports the result for the deadline miss case. In both cases,

the expected profit (EP) and revenue (RV) based orderings perform comparably. But

expected profit (EP) based ordering performing best in most of the cases. Apart from

EP and RV ordering, the other orderings with decreasing order of profit are revenue

per unit execution time (RPE), resource usage cost (RUC), slack time (ST), earliest

95



4.6. EXPERIMENTAL SETUP AND RESULTS

 500000

 1x106

 1.5x106

 2x106

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

P
ro

fi
t 

($
)

Number of tasks

HOM-CAPM with allowing to be missed tasks
HOM-CAPM without allowing to be missed tasks

Figure 4.8: Profit considering HOM-CAPM approaches with or without allowing to
be missed tasks (with EP ordering).

due date (EDD), shortest job first (SJF) and incurred cost (IC). The IC ordering is

performing worst. In subsequent experiments, we had taken the best ordering (i.e.,

EP) for reporting our results.

4.6.3 Performance of HOM-CAPM with or without Allowing

to be Missed Tasks

To investigate the benefits of the admission control mechanism, we ran our simulation

with different loads (i.e., a varying number of tasks). We compare two cases of HOM-

CAPM approach, wherein one case we will not allow the tasks to miss their deadline

and in other cases we allow the task to miss its deadline if it contributes substantial

profit, i.e., we allow the tasks to miss the deadline for the case where profiti ≥ ρ.costi.

But for the case profiti < ρ.costi, the task will get rejected as that will incurs a huge

loss. We ran our simulation 10 times and took the average for consideration. As

shown in Figure 4.8, as the load goes on the increase, the profit difference between

the two cases is significant, whereas, for low load case, that is not so significant. The

X-axis of Figure 4.8 represents the number of tasks, and Y-axis reports the profit of

the system. As the number of tasks increases, the profit of the system increases. The

profit gained for the case of HOM-CAPM with allowing to be missed tasks varies 3%

to 7% as compared to the case where the system does not allow the tasks to miss

their deadlines.
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Figure 4.9: Performance of different scheduling approaches.

4.6.4 Performance of Different Scheduling Approaches

This section reports the performance of our proposed approaches (HOM-CAPM with

or without allowing to be missed tasks) against other state-of-the-art approaches

like UA-aware (GUS) [147], Non-preemptive profit penalty aware (PP-NP) [148] and

EDF scheduling approaches. From utility accrual-aware scheduling, we choose the

GUS algorithm defined in [147], for which the tasks with the largest potential utility

density [75] is scheduled first. Without loss of generality, (di− ai)/ei value is used to

order the set of tasks for the GUS approach. Non-preemptive PP-Aware Scheduling

as defined in [148] orders the tasks based on its risk factor. Here for simplicity

we had taken the riskfactori = lossi/gaini, where lossi = costi + penaltyi and

gaini = revenuei of the task Ti. If the value of the riskfactori > 1, then that task

will be dropped otherwise it will be scheduled.

The approaches EDF, GUS, and PP-NP, do not consider the soft constraints while

allocating tasks to machines, whereas HOM-CAPM considers the constraints for task

allocation. In this experiment, we had taken tasks randomly from Google traces (1000

to 10000 tasks). For each case, we report the average results as shown in Figure 4.9.

From Figure 4.9, it can be observed that when a number of tasks are less, all the

approaches are performing well as compared to the case of more number of tasks

admitted to the system.

The proposed approach HOM-CAPM (with or without allowing to be missed tasks)

outperforms all other approaches (EDF, GUS, and PP-NP) because it considers the
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Figure 4.10: Impact of ρ on system performance with different loads.

constraints associated with the task while scheduling and allocates the tasks to appro-

priate machines such that profit will be maximized. In HOM-CAPM with deadline

miss approach, we incorporate threshold (ρ) value to control the profit, which is

not there with other approaches, except PP-NP. PP-NP and GUS approaches are

performing comparably with 2% to 5% of the difference in performance.

4.6.5 Impact of Threshold

We further extend our study to know the potential impact of the threshold (ρ) value

to control the profit in HOM-CAPM by allowing to be missed tasks. For this study we

fix the threshold (ρ) value to be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.15, 0.2, 0.25 and 0.3, and based on that we allow the tasks to miss their deadline

if it can add profit of at least (ρ × 100)% of cost for the task. We conduct three

sets of experiments, first with a light load case (number of tasks is 1000), second with

moderate load case (number of tasks is 5000), and third with heavy load case (number

of tasks is 10000). The results are reported in Figure 4.10 varying the threshold ρ

value from 0.01 to 0.3.

As shown in Figure 4.10, when the system with lower ρ value gains less profit and

continue to increase till the ρ value is 0.07. After that ρ value, the profit goes on

decreasing. A similar pattern is observed for all types of situations (i.e., lightly loaded,

moderately loaded and heavily loaded). The decrease in the profit is sharper for the

case when the system is heavily loaded. The variation of profit is more in case of the

heavily loaded case due to the more variation of tasks. The ρ value controls the profit
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Figure 4.11: Performance of HOM-CAPM against SA-CAPM.

level nicely based on the requirement of the system. Although our result reported in

Figure 4.10, gives a general guideline to choose ρ value judiciously to maximize the

profit, but still, the optimal system performance needs a complex understanding of

all the unmeasured factors which directly or indirectly defines the system, specifically

the QoS.

4.6.6 Performance of SA-CAPM and HOM-CAPM

To compare our HOM-CAPM approach with SA based approach (SA-CAPM), we had

taken all the task and machine parameters as discussed in section 4.6.1.2 and 4.6.1.1.

Apart from that, the extra parameters required for SA are imax = 100, t = 1.0, and

β = 0.8. Figure 4.11 illustrates the profit gained by HOM-CAPM and SA-CAPM as

the number of tasks increases. The profit of the SA-CAPM algorithm is larger than

HOM-CAPM in most of the cases. However, the running time of SA-CAPM is quite

larger (all most double the time) than the HOM-CAPM approach as shown in Figure

4.12. The slow convergence of SA-CAPM in most of the cases still produces a better

result than HOM-CAPM in terms of profit.
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4.7 Summary

Cloud computing has evolved as a popular and promising utility based service of

the recent time. For any utility based service, profit is the main objective for the

concerned service provider. The constraint aware profit maximization based schedul-

ing in cloud environment is considered to be challenging problem. For the CAPM

problem, we proposed a heuristic of ordering and mapping for CAPM, for scheduling

the latency-sensitive tasks with constraints to gain maximum profit. The proposed

approach schedules the tasks to machines in a heterogeneous cloud system to finish

most of the tasks before their deadline and maximize the profit for the cloud service

provider. The HOM-CAPM approach is evaluated based on different task ordering

(EP, RV, RPE, RUC, IC, ST, EDD, and SJF) criteria and reported that the expected

profit (EP) based ordering gives better result than other orderings. The simulation

results with Google cluster data demonstrate that the proposed approach can greatly

increase the profit as compared to other approaches like PP-NP, GUS, and EDF.

Further, we reported a comparative study of simulated annealing, a meta-heuristic

approach with our proposed approach. We found that most of the cases, SA performs

better than HOM-CAPM at the expense of long execution time.

[[]X]\\
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5

Reliability Aware Scheduling in

Cloud System

The work in this thesis consider QoS and performance aspect of the task scheduling

in cloud. The reliability of the service is also most important aspect to be considered

as it related to the QoS. As the size of the data center increases, the probability of

failure increases. So it is essential to consider the machine failure in scheduling to

further improve the QoS and performance of service in cloud system. In this chapter,

we formulate different version of the problem considering reliability of the system and

provide different heuristics to solve those problems.

5.1 Introduction

Cloud computing is the rapidly growing paradigm which offers computing as a utility

[123]. In order to provide highly available utility services, cloud data centers (DC)

host thousands of servers connected through networks. Each server in the DC consists

of multiple devices like processors, memory, network and other components. As time

progresses, old and slow servers are replaced by new and faster ones for the better

quality of service (QoS). This introduces heterogeneity in computing systems with

a diverse set of resources to handle business, mission and safety critical services to

achieve operational goals [152].

The number of servers in the DC varies with age, configurations, server manufacturer

and deployment environmental conditions. Due to these multiple factors, the failure

rate of each server is different. With these increased complexities and functional-
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ity of the cloud system, the probability of a failure of a server in the system as a

whole increase. Such type of failures can result in frequent performance degradation,

premature termination of execution, data corruption and violation of Service Level

Agreements (SLAs), which cause devastating loss to users as well as service providers

[98].

For efficient use of the resources, cloud service providers use virtualization technology,

where many virtual machines (VMs) can run on top of one physical machine. In case of

a virtualized cloud environment, failure of a single physical machine will make all the

co-located VMs on that physical machine inoperable. This causes more devastating

effect than the single physical machine (without virtualization) failure [155].

There are many causes of failure in a cloud environment, by which the reliability of

the cloud service gets affected [80]. Most of the failure types in cloud environments

are overflow in system queue, various timeouts, software failure, database failure,

hardware failure, and network failure. The previous study reported that hard disks are

the most replaced component because it is the least reliable and most used component

as well [224]. The report says that 8% of server expects one failure in a year and

chances of successive failure on the same server increases with time. These hardware

failures can cause service unavailability which leads to performance degradation to

the users and affects the quality of service (QoS) of the system [100].

Many breakdowns on cloud services in the past, motivate us to address the reliabil-

ity issues in the cloud. For example, Amazon S3 service disruption in the Northern

Virginia (US-EAST-1) region in early 2017 [24]. To avail the cloud services uninter-

ruptedly, it is important to manage the computational resources efficiently and make

the system fault tolerant. To make the system fault tolerant, various strategies like

replication, retry and check-pointing [186] are used. In replication based strategy

more than one copy of the same task is executed which reduces the probability of

failure of the task. In case of a retry, if time permits, then the task get rescheduled

in case of failure. In check-pointing, an image of the task being executed is saved,

and in case of failure, the task get re-executed from the last check-pointed image and

that saves lots of work redone.

In this chapter, we consider a set of real-time tasks to be scheduled on virtualized cloud

environment, where all the VMs of the cloud are homogeneous. But the machines are

associated with different failure probability. Here we want to schedule the real-time

tasks with priority or weight (high priority safety critical and low priority mission-

critical tasks) considering the failure of the machines.

102



5. RELIABILITY AWARE SCHEDULING IN CLOUD SYSTEM

The objective of this work is to deal with the failures in the cloud system that occur

at the infrastructure level. A bag of real time, independent tasks is a set of tasks,

with each task having own execution time and deadline, and all the tasks have same

arrival time. Here we want to schedule the bag of real time tasks in such a way that

maximizes the number of high priority (or high weighted) tasks meet their specified

deadlines considering the machine failures in the cloud system.

Here we summarize the contribution of this chapter as follows.

• Formulate different variations of the task scheduling problem on the unreliable

machine without considering repetition and replication of the tasks. The dif-

ferent cases are (a) scheduling of tasks with the common deadline on machines

with identical failure rate, (b) scheduling of equal execution time tasks on unre-

liable machines, and (c) scheduling of tasks with arbitrary execution time and

deadline on unreliable machines (described in Section 5.5.3).

• Proving the scheduling of tasks with the common deadline on machines with

identical failure rate as NP-Complete.

• Design an efficient polynomial time scheduling algorithm to schedule the tasks

with equal execution time on unreliable machines.

• Develop different heuristics for scheduling of tasks with arbitrary execution time

and deadline on unreliable machines.

• To further improve the performance of the designed heuristics, we refine the

scheduling approach where repetition and replication are considered.

5.2 Related Research Work

A lot of progress is being made on the reliability and failure management in high-

performance computing systems [202]. Zhang et al. studied the performance im-

plications of failures in large-scale clusters [259]. Sahoo et al. [201] predicted the

failure event within a fixed time window based on the failure pattern repeated previ-

ously. Yang et al. [243] incorporate hardware/software failures and recovery to make

a fault-tolerant job scheduling in cloud computing. They had used fuzzy rule and

reinforcement learning based approach for job scheduling.
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Beaumont et al. [47] analyzed the complexity when reliability constraints are taken

into consideration for cloud service allocation. And they considered a simple model

in which services consists of a set of independent and identical instances. They had

used only static allocation to schedule the set of services for a given amount of time

and proposed some allocation strategies which gives a quasi-optimal performance.

Poola et al. [186] discussed the reliability issues for scientific workflows in the cloud.

They proposed a robust and fault-tolerant scheduling algorithm which tries to meet

the deadline and budget constraints specified by the clients. They find the partial

critical path (PCP ) for the scientific work-flows and for every PCP , best VM type

with robustness is chosen by their algorithm. They consider robustness as “one node

failure” or “two node failure” and proposed several resource selection policies to select

the best resource based on the requirements specified by the client. Ferreira et al.

[97] evaluated the viability of replication technique as a fault tolerant mechanism

for exascale systems. To evaluate the viability of replication, they examined the

performance of replication to its redundant hardware cost and runtime overhead of

replication.

Xie et al. [237] addressed the redundancy minimization for replication based fault-

tolerant approaches. They solved this redundancy minimization problem for appli-

cations represented using a directed acyclic graph (DAG) in heterogeneous systems.

They first get enough replication to satisfy the reliability constraints and then further

minimize the time while satisfying the reliability constraints. Generally, the reliability

of a parallel application is represented as the product of the reliability values of all

the tasks [262]. Alam et al. [35] developed the approach to reliable allocation of the

resource which tries to maximize the reliability while minimizing the cost. They first

do the scheduling based on profit and then check various constraints that need to be

met and maximize the reliability. Qiu et al. [190] analyzed the correlations amongst

reliability, performance and power consumption of a cloud system. They had re-

ported that the performance and power consumption are the resulting attributes of

reliability.

The authors in the papers [47][186][237][35] do not consider the case when resources

are scarce and which task to schedule, and which task to drop. We had used the

failure model same as [237], where it captures the notion that longer the machine

runs for a task, the higher its chance to fail in running the task.

The reported work differs from the previous works on reliability-aware real-time task

scheduling in the cloud environment in the following ways: (a) a reliability model
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where the reliability of a task decrease with increase in the execution time of the

task, and use the same model for allocating tasks to machines for maximizing the

high priority tasks to meet their deadlines, (b) analyze the solution for the special

cases of the problem and design some heuristics to solve the general version of the

problem, and (c) further enhancement of the heuristic approaches considering repe-

tition, replication and long task dropping.

5.3 Problem Statement

5.3.1 Task Environment

Given with a bag of tasks T = {T1, T2, T3, · · · , Tn}, where each task Ti is characterized

by: (ai, ei, di, wi). Here for each task Ti, the terms ai, ei, di and wi represents arrival

time, execution time, deadline and weight respectively. All the tasks are on-line,

independent and different tasks can be run on different machines in parallel. For

simplicity we consider bag of tasks with hard deadline, where all the tasks of the set

(or bag) arrive at the same time instant, which can be considered as a case, where ai

can assume to be 0.

5.3.2 Machine Environment

The compute environment consists of m number of physical machines (PMs) M

= {M1,M2,M3, · · · ,Mm}. Each physical machine Mj is characterized by: (γj, fj),

where γj represents number of homogeneous VMs the PM can host and fj represents

failure probability of machine Mj. As the PMs are of different age, the failure prob-

ability of machines varies. As we are considering independent one process task, a

machine Mj with (γj, fj) can be assumed as γj machines with (1, fj) specification.

5.3.3 Reliability Model

We use the well-known reliability model proposed by Shatz and Wang [206]. In this

reliability model, each machine has constant failure probability per unit time. So,

let say machine Mj has failure probability fj and a task Ti with execution time ei is

scheduled on machine Mj then reliability of task Ti in executing on machine Mj is:

Rij = e−fj ·ei (5.1)
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So, failure probability of task Ti on machine Mj is:

Fij = 1−Rij (5.2)

If k copies of the task Ti are scheduled on k different machines in parallel then its

reliability Ri is calculated as follows:

Ri = 1−
( k∏

j=1

(1−Rij)
)

(5.3)

5.3.4 Optimization Goal

The main objective of this work is to schedule the tasks on the considered machines to

maximize the number of high weight tasks to meet their specified deadlines considering

reliability of the system, which is same as to minimize the number of deadlines misses

of high weight tasks considering the reliability of the system, i.e.,

Minimize
{ n∑

i=1

wi.Ui +
n∑

i=1

wi.(1− Ui).(1−Ri)
}

(5.4)

Where Ri and wi are the reliability and weight of the task Ti respectively. Here Ui is

a binary variable representing whether a task misses it’s deadline or not,

Ui =

0 if fi ≤ di

1 if fi > di
(5.5)

where fi is the completion or finish time of the task Ti. In this optimization goal∑n
i=1wiUi is the summation of the weight of all the tasks which have missed their

deadlines even if all the machines are reliable ones and
∑n

i=1wi(1−Ui)(1−Ri) is the

summation of expected weighted failure probability of all the scheduled tasks which

are supposed to meet the deadline but failed due to machine failure.

5.4 Study of Task Scheduling Approaches on Re-

liable Machines

In this section, we study the scheduling of bag of tasks with hard deadline (ai = 0),

on m machines, where each machine can host one virtual machine and machines are
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ideal (no machine fails) i.e. Mj(γj = 1, fj = 0). Since no machine fails, reliabil-

ity factor does not make any sense in this case. Task Ti has following parameter:

Ti(ai = 0, ei, di, wi) where ei, di and wi denotes execution time, deadline and weight

respectively. As in ideal case where no machine fails, the reliability of each task

Ri = 1. So the second part of the Eq. 5.4 turn out to be 0. Now the optimization

goal is to schedule n tasks on m machines to minimize
{∑n

i=1wi.Ui

}
.

This problem is same as P ||
∑
wiUi, where P are set of identical machines and

∑
wiUi

is the sum of weighted unit penalty function for the missed tasks [59] [63]. This

problem is proved to be NP-complete in strong sense [138]. There are two special

cases of the problem which can be solved efficiently and those cases are,

1. The problem where execution time of all the tasks are same i.e. P |ei = e|
∑
wiUi

can be solved in O(nlogn) time. This can be done by sorting the tasks according

to nondecreasing due dates. Schedule the current task with higher weight, if it

is late then replace with an already considered low weight task of the scheduler

[60].

2. Similarly for equal deadline case Ti(ai = 0, ei, di = D,wi) on m machines is

solvable if there exist a feasible schedule. This problem can be solved using

dynamic priority rule, that gives priority to the tasks with minimum Smallest

Latest Start Time (SLST) [44] (may also be called Largest Lag First rule [59])

and as soon as some tasks appear to be late then task with minimum weight

(wi) value is to be deleted.

As the problem P ||
∑
wiUi in general is NP-Complete, there exists many well-known

heuristics to solve this problem experimentally. The most commonly used heuristics

for this problem are discussed here.

• Earliest Deadline First (EDF): This approach is preemptive in nature. For

a given set of tasks at any instant of time, the task with absolute minimum

deadline among all the ready tasks is scheduled first. The time axis is divided

into infinitesimally small equal size time slots (or quantum), each time slot the

scheduler pick the m high priority tasks based on parameter value rei/(di− ct),
where rei represents remaining execution time of task Ti and ct is current time

slot.

• Earliest Due Date (EDD): In EDD approach, the scheduler choose the task

to machines which have an earliest due date and run non-preemptively. Tasks
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are ordered based on the non-increasing value of 1/di. The task which have the

largest 1/di value is scheduled first, and so on. In this approach, if the task is

expected to meet the deadline then only it is considered, otherwise we reject

the task and the processor time do not get wasted due to missed tasks. We say

this as non-inclusive of the missed task.

• Shortest Job First (SJF): Among all the ready tasks, the task with the

smallest execution time is scheduled first i.e. in this heuristic tasks are priori-

tized on the basis of 1/ei. Here also, we consider if the task is expected to meet

the deadline then only it gets considered in the schedule.

• Least Slack Time First (LSTF): Slack time for a task Ti can be defined as

di − ei. It basically captures the notion that how much a task can be delayed

such that it will execute on or before its deadline. In this approach tasks are

prioritized on the basis of 1/(di − ei). If two task have same 1/(di − ei) value

task with smaller execution time is scheduled first. This approach is also non-

inclusive of the missed task.

• Weight Per Unit Execution Time (WPUET): In this case we order the

tasks based on the wi/ei. If two tasks have same wi/ei then SJF rule will be

applied for the ordering of the tasks. Also this approach is non-inclusive.

We analyzed the performance of EDF, EDD, SJF, LSTF and WPUET scheduling ap-

proaches. We observed the different scheduling approaches on the basis of the number

of machines required to execute the task set such that no task misses its deadline.

For the experiment, we had taken 1000 tasks with the following task parameters

Ti(ai = 0, ei, di, wi). The values for ei = random(1, 100), di = ei + random(1, 200)

and wi = random(1, 200), where random(rmin, rmax) procedure generates random

number within the range of rmin to rmax. All the approaches except EDF, check for

the task’s expected finish time, if it does not get any available machine where it gets

finished before the deadline, then that task is discarded for further execution but get

included in
∑
wi.Ui calculation. In EDF task get executed up to deadline even if the

task does not meet the deadline.

The results are reported in Figure 5.1, where X-axis represents the number of ma-

chines, and Y-axis represents the number of tasks missed their deadline. It is being

observed that, with a constant number of tasks, the number of deadline misses de-

crease as the number of machines increases. Out of five approaches, the performance
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Figure 5.1: Performance of various approaches on reliable machines

of EDD approach is excellent i.e. result in minimum deadline miss with less number

of machines. LSTF performs comparable to EDD after a certain number of machines

deployed for scheduling. If the number of the missed task is zero (above m > 300),

the performance of EDF is not bad. If EDD and LSTF results in zero deadline miss

then EDF also ensure the same. But the number of tasks miss their deadline for EDF

is higher as compared to EDD and LSTF for less number of machines (m 6 300). SJF

and WPUET perform consistently poor as compared to the other three approaches.

These two approaches require more number of machines for all the tasks to meet their

deadlines. So from this experiment we say, EDD performs well heuristically.

5.5 Task Scheduling on Unreliable Machine with-

out Repetition and Replication

In this section, we consider three cases of the scheduling problems and these cases are

(a) scheduling of tasks with a common deadline on machines with identical failure

rate (detail description is given in section 5.5.1), (b) scheduling of equal execution

time tasks on unreliable machine (detail description is given in section 5.5.2) and (c)

scheduling of arbitrary tasks Ti(ei, di, wi) on unreliable machines (detail description

is given in section 5.5.3).
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5.5.1 Scheduling of Tasks with Common Deadline on Ma-

chines with Identical Failure Rate

As we are considering tasks with common deadline, each task Ti can be specified

as Ti(ai = 0, ei, di = D,wi). Machines with same failure rate can be represented

as Mj(γj, fj = f), where failure rate of all the machines are f . Again for this case

also, without loss of generality, Mj(γj, fj = f) can be considered as γj number of

machines with (1, f) specification. The objective of this scheduling approach is to

schedule n tasks (with each tasks Ti(ai = 0, ei, di = D,wi)) on m machines (with

each machine Mj(1, f)) non preemptively such that sum of weighted unit penalty

function is minimized. Formally this problem can be represented by;

P (Mj(1, f))|Ti(ai = 0, ei, di = D,wi)|
∑

wiUi +
∑

wi(1 − Ui)(1 − Ri) (5.6)

where P represents set of m parallel machines with each machine having failure prob-

ability f .

5.5.1.1 Reduction to 0-1 multiple knapsack problem (0-1 MKP)

Before reducing the problem to 0-1 MKP, we first define the 0-1 MKP.

Definition 1 (0-1 MKP) Given a set of n items and a set of m bags (m 6 n)

with profiti is profit of ith item, ωi is weight of ith item and Cj is the capacity of

knapsack or bag. Select m disjoint subsets of items, such that the total profit of the

selected items is maximum, and each subset can be assigned to different knapsack

whose capacity is greater than or equal to the total weight of items in the subset.

The problem 0-1 MKP is proved to be NP-Complete in strong sense [161]. The non-

preemptive instance of our scheduling problem can be reduced to an instance of 0-1

MKP problem.

We can reduce to a 0-1 MKP instance as follow: There are m knapsacks each with

capacity Cj = D and n items with the weight of each item equals ωi = ei, and

profit of that item equals to profiti = ωi.e
−f.ei . Each machine Mj(γj = 1, fj = f)

can be assumed as knapsack, as there are m machines, so there are m knapsacks.

Each machine execute up to a common deadline D, so each machine has capacity

D to accommodate some tasks to execute. We need to select m disjoint subset of
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tasks and in each subset total execution time is less than D so that total profit is

maximized.

Now, if we can solve this 0-1 MKP instance then the result of this can be transformed

to a schedule which can be used by our problem. Suppose, we solved this 0-1 MKP

instance of the problem. All the items which do not belong to any knapsack are

the tasks which could not be scheduled because of their deadline miss. Tasks which

are the part of a knapsack can be executed on the machine corresponding to that

knapsack in any order.

We can argue that all the scheduled tasks are early tasks. Since all the knapsacks have

capacity D which is the deadline of all the tasks, the solution of knapsack meets the

capacity constraint. So all the tasks which are part of the knapsack, are considered

as early tasks because they execute before the deadline.

Also we can argue that schedule produce by 0-1 MKP is optimal. This can be easily

proved by contradiction. Let the schedule is not optimal then there is at least one

task which is not the part of our schedule but part of the optimal schedule. If we

add that task in our schedule, optimal value increases but this cannot be the case

because if we add the corresponding item as well in a knapsack, then optimal value

also increases which contradicts that the 0-1 multiple knapsack solution is optimal.

5.5.1.2 Preemptive version of the problem

The preemptive case of the same problem can be solved using pseudo-polynomially

solvable 0-1 knapsack problem [160]. We can construct the preemptive version of

the scheduling problem and map it to 0-1 knapsack problem. In this case, there is

one knapsack of size m × D as there are m machines with a common deadline of

tasks i.e. D. The weight of each item (task) equals ei, and profit of that item (task)

equals to wi.e
−f.ei . This approach chooses k(≤ n) tasks to maximize the profit. To

execute all the chosen tasks, all the tasks (already in solution) are arranged in any

order by considering an infinite number of preemption and migration in different time

durations to execute on m machines.
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Algorithm 7 Algorithm to Solve P |ei = e|
∑
wiUi +

∑
wi(1− Ui)(1−Ri)

1: Sort the tasks based on EDD order
2: T= {T1, T2, T3, .., Tn} such that d1 ≤ d2 ≤ · · · ≤ dn
3: Sort the machines based on f1 ≤ f2 ≤ · · · ≤ fm
4: while T is not empty do
5: Select a task from T, say Ti in EDD order
6: Schedule(Ti,M1) // Call to Procedure 9

5.5.2 Scheduling of Equal Execution Time Tasks on Unreli-

able Machine

In this case, we consider tasks with equal execution time and each task Ti can be

represented as Ti(ai = 0, ei = e, di, wi). Machines are unreliable machines where

each machine Mj is characterized by Mj(γj = 1, fj) and which can generalized as γj

number of machines with Mj(1, fj) specification. Here the objective is to schedule n

tasks (each task Ti(ai = 0, ei = e, di, wi)) on m machines (each machine Mj(1, fj))

such that sum of weighted unit penalty function is minimized. Formally this problem

can be written as

P (Mj(1, f))|Ti(ai = 0, ei = e, di, wi)|
∑

wiUi +
∑

wi(1 − Ui)(1 − Ri) (5.7)

where P is set of parallel machines with each machine Mj has failure rate fj.

As reported in [61] P |ei = e|
∑
wi.Ui can be solved in O(n log n) time. The ap-

proach to P |ei = e|
∑
wi.Ui basically consider a task in the order of their deadline,

if the current task has higher weight and cannot be fit to the system, then a task

already scheduled with lower weight get replaced by the current task. The problem

specification defined in Eq. 5.7 can be solved in a similar manner.

Algorithm 7 solves the problem represented by Eq. 5.7 and outputs an optimal

schedule. In this algorithm machines are sorted based on the non-increasing value

of their failure probability and tasks are sorted based on the non-decreasing value of

their deadline. Tasks are picked one by one and check for it’s allocation to higher

reliable machines, if it satisfies the deadline constraint then allocation will be done

else check for next higher reliable machine. If no machine found to execute the task

before its deadline then that task get rejected.

The Algorithm 7 returns the optimal schedule based on the task and machine en-

vironment discussed here. The algorithm selects the task based on EDD order and
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Procedure 8 Schedule(Task Ti, Machine Mj)

1: if j > m then
2: Reject the task Ti
3: if Ti is not late on Mj then
4: Allocate Ti on Mj

5: else
6: Search for smallest weight task, smaller than wi already scheduled on machine

Mj

7: if found such task Tk then
8: Replace Tk with Ti
9: Schedule(Tk,Mj+1)

schedules it to the most reliable machine, where it meets its deadline. The value of

Eq. 5.7 gives minimum when higher weight tasks are going to be executed before the

deadline. So the algorithm schedule those tasks to most reliable machine (first ma-

chine by calling procedure Schedule(Ti,M1)). If higher weight task misses its deadline

on a most reliable machine then it will replace lower weight task which was already

allocated to that machine. The replaced lower weight task subsequently checks for

its schedule on the next reliable machine, either replacing a lower weight task than

itself or without replacing any task. This process continues till all the machines are

considered.

As all the tasks are of same execution time, allocating higher weight task to most

reliable machine results minimal value to the Eq. 5.7. During this process each time

a new task is considered for its allocation, that depends on its weight (as execution

time is same). Either a task is allocated to the most reliable machine or less reliable

machine, that depends on the weight of the task. As the number of tasks goes on

increasing, the lower weight tasks are replaced by higher weight tasks and the replaced

task allocated to a less reliable machine and that contributes the least value to the

Eq. 5.7, hence resulting minimum value. If a task does not get any machine to be

executed before its deadline (either higher weight or lower weight task), then the task

gets rejected.

The time complexity of the algorithm is O(n2), where n is the number of tasks to be

scheduled. For each task in the worst case, if it is late then it compares with all the

previously scheduled tasks to find a replacement. As there are n tasks and each task

may need to check for n− 1 replacements, which results worst-case time complexity

O(n2) for the algorithm.
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Figure 5.2: Scheduling methodology

5.5.3 Scheduling of Arbitrary Tasks on Unreliable Machine

As discussed in Section 5.4, general version of problem for scheduling of n tasks

Ti(ai = 0, ei, di, wi) on m machines, is proved to be NP-Complete and many heuristic

such as EDD, EDF, SJF, LSTF and WPUET are discussed. So scheduling of n tasks

Ti(ai = 0, ei, di, wi) on unreliable machines need to be solved by heuristic approaches.

This is an instance of the problem where each task Ti has the parameters (ai =

0, ei, di, wi) and each machine Mj(γj = 1, fj). To solve the problem of this kind,

we adopt two-step process, where the first step is to order the tasks based on some

criteria and the second step is to map the tasks to machines satisfying the constraints

associated with the problem instance. Figure 5.2 shows the high level schematics of

the proposed scheduling approach where we order the tasks using some rule like EDD,

SJF, and etc. to filter out the tasks which are late if processed in that order without

considering the reliability of the machine. Then the rest of the tasks (the early task)

are chosen and these tasks are mapped to machines based on some mapping strategy

where we consider the probability of failure of the machines. Due to the failure of the

machines, some of the selected tasks may fail. So the number of successfully executed

tasks before deadline get further reduced. The scheduler create m disjoint subset of

tasks, and the mapper simply assign one subset of task to one machine based on task

characteristics of the subset.

To solve the generic case of the problem, we use integrated approaches where the

work of filtering (or scheduling) of tasks and mapping of these tasks to the machines

done simultaneously. All these integrated approaches take task ordering as one of

the input. Different mapping approaches of selected tasks (based on some order)
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to machines are (a) most reliable machine (MRM), (b) assign to the most reliable

machine with dropping of long tasks (MRMLD), (c) short task to the reliable machine

and long task to unreliable machines (SRLU), and (d) short task to the unreliable

machine and long task to reliable machines (SULR). These combined approaches are

described here.

5.5.3.1 Most Reliable Machine (MRM)

This approach assigns the current task to the most reliable machine (the machine

with the lowest failure rate) which is available at the time of scheduling decision

being taken for the task. The pseudo-code of this approach is given in Algorithm

9. In this case tasks are ordered based on input ordering criteria and machines are

ordered based on their failure rate. Tasks are picked up one by one and allocated

to most reliable machines (the machine with a lower failure rate), which satisfies the

deadline constraint. If no machine available for a task where it can finish its execution

before its deadline then that task gets rejected.

Algorithm 9 MRM (TaskOrdering TO)

1: Sort the tasks based on specified task ordering TO
2: Sort the machines based on f1 ≤ f2 ≤ · · · ≤ fm
3: while T is not empty do
4: Select a task Ti from T, in the defined order TO
5: j=1, Flag = False
6: while j 6 m do
7: if Ti is not late on Mj then
8: Schedule Ti on Mj, Flag = True, Break
9: else

10: j = j + 1
11: if Flag = False then
12: Reject the task Ti

5.5.3.2 Most Reliable Machine with long task dropping (MRMLD)

In this approach also, we assign the task to the most reliable machine (the machine

with the lowest failure rate), which is available at the time of scheduling decision

being taken for the task. But if a short task misses its deadline due to the already

allocated long task on reliable machine, then that long task get dropped. Here the

optimization goal emphasizes the number of executed tasks to be maximized (in case

wi = 1 or wi is random).
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Figure 5.3: Reliability distribution of tasks

We had categorize the long task and short task based on the reliability factor of the

task (Ri). Any task Ti, whose Ri < 0.1 can be categorized as long task, otherwise

that task is a short task. The Ri value depends on the execution time (ei) of the

task and failure probability (fj) of the machines, which is Ri = e−fj .ei . Reliability of

tasks decrease exponentially as the execution time of the task increase and this rate

of decrease is very high when the failure rate of the machine is higher. Fig. 5.3(a)

shows the reliability distribution of task with different failure probability. We consider

the reliability of task execution below 0.1 (or in percentage 10%) is the criteria to

categorize a task as the short task or long task. Fig. 5.3(b) shows the execution time

distribution of task verses failure probability, where reliability (Ri) of the task (Ti)

is at least 0.1 and trend of categorization. When f = 0.06 task with execution time

> 40 can be categorized as long task where as when f = 0.02 task with execution time

> 10 can be categorized as long tasks. The intuition here is to free machines as soon

as possible. So for that reason we need to allocate shorter tasks as many as possible

instead of a longer task, as the longer task has lesser reliability (as R = e−fj .ei). For

machines with heterogeneous failure rate, the average failure rate is considered for

calculation of threshold execution time value (eth) to categorize the task as long task

or short task. The threshold time (eth) was calculated using e−favg .eth = 0.1, where

favg is average failure rate.

The pseudo-code of this approach is given in Algorithm 10. This algorithm sorts

all the tasks in a predefined order and sort the machines based on failure rate. The
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Algorithm 10 MRMLD (TaskOrdering TO)

1: Sort the machines based on f1 ≤ f2 ≤ · · · ≤ fm
2: while T is not empty do
3: Select a task from T, say Ti in defined order
4: Try to schedule Ti on all machines one by one
5: if Ti not able to get a slot in any machine and Ti is short task then
6: Search for a long task Tj in machine in order of decreasing reliability for

dropping
7: if Tj found then
8: Replace the task Tj with Ti
9: else

10: Reject the task Ti

algorithm takes tasks one by one in a defined order and tries to allocate it to the most

reliable machine. If the task happens to be the short task and misses its deadline due

to the already allocated lowest reliable long task then it drops that long task.

5.5.3.3 Short task to Reliable machine Long task to Unreliable machine

(SRLU)

In this approach, short tasks are scheduled on the most reliable machine and long

tasks are scheduled on the most unreliable machine which are available at the time

of scheduling decision being taken. The idea of assigning the short task to the most

reliable machine is to improve the optimization goal, whereas allocating long tasks to

the reliable machine may restrict some short tasks to miss their deadline which will

degrade the optimization goal.

5.5.3.4 Short task to Unreliable machine Long task to Reliable machine

(SULR)

In this heuristic, short tasks are scheduled on the most unreliable machine and long

tasks on the most reliable machine which are available at the time of scheduling

decision being taken. The main expectation behind this approach is that (a) as

reliability of short task is higher, mapping to unreliable machine, and (b) reliability

of long task is lesser and mapping to reliable machines may balance the situations.

The pseudo-code of Algorithm 11 describes the combined approaches for SRLU and

SULR, where tasks are sorted in a predefined order and machines are sorted based

on failure rate (for SRLU machines are sorted by non-decreasing order of failure rate

and for SULR machines are sorted by non-increasing order of failure rate). In case of
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Algorithm 11 SRLU/SULR (TaskOrdering TO)

1: if SRLU then
2: Sort the machines based on f1 ≤ f2 ≤ · · · ≤ fm
3: else
4: Sort the machines based on f1 ≥ f2 ≥ · · · ≥ fm
5: while T is not empty do
6: Select a task Ti in the defined order
7: j=1
8: if Ti is short task then
9: while j < m do

10: if Ti is not late with Mm then
11: Schedule Ti on Mj, break
12: j = j + 1
13: else
14: while j < m do
15: if Ti is not late with Mm−j then
16: Schedule Ti on Mm−j, break
17: j = j + 1
18: if Ti not found any machine then
19: Reject the task Ti

SRLU short tasks are allocated to most reliable machines (machines starting from M1

to Mm with machines are ordered in decreasing order of failure rate) and long tasks

are allocated to most unreliable machines and for the case of SULR, long tasks are

allocated to most reliable machines and short tasks are allocated to most unreliable

machines. In both the cases if any task won’t get any allocation where it can be

executed before the deadline, then that task get rejected.

5.6 Task Scheduling on Unreliable Machine with

Repetition and Replication

This section solves the problem, considering the repetition and replication of the

task execution for further improving the optimization value. Approaches developed

in Section 5.5.3 can further be extended to include the repetition and replication of

tasks. Now to improve the optimization value we may need to either replicate the

task if the deadline does not permit or repeat the task if deadline permits. This

approach efficiently utilizes the resources in case of machine failures. The decision of

task replication or repetition depends on the execution time, weight and deadline of

the task under consideration. We have categorized the tasks in the following ways:
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M0

M1

Time

Failure detected

T0

T1
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T11

T6 T9 T10

ct

Figure 5.4: Failure detection example

• If
wi

ei
≥ α

′
and di ≤ 2 · ei, then replicate the task Ti as there is not enough slack

time for repetition (Case - I).

• If
wi

ei
≥ α

′
and di > 2 · ei, then repeat the task Ti, as there are enough slack

time for the task to repeat if task fails during first execution of the task (Case

- II).

• If
wi

ei
< α

′
, then execute the task Ti without any repetition or replication (Case

- III).

• If
wi

ei
< β

′
, then drop the task if it causes other higher weight tasks to miss their

deadlines, otherwise allocate the task to least reliable machine (Case - IV).

The values of α
′

and β
′

are positive constants and α
′ � β

′
. The task whose wi/ei

value lies in between β
′

and α
′
, will follow the strategy as discussed in Case - III

for its allocation. The value of α
′

will regulate the high weight task to be given

higher chances of execution (even if the machine fails), so that those tasks do not

miss their deadlines. As we consider (ai = 0), in case of repetition the repeated task

will arrive at the system after the task fails at runtime. The value of β
′

controls the

low weight task to be dropped if it causes higher weight tasks to miss their deadline.

The slack time i.e. di − ei decides whether the task to be repeated or replicated.

To know the performance improvement of this repetition and replication strategy we

had experimented with the heuristic approach which performs better for most of the

cases. The results are reported in the Section 5.7.6.

There are two standard failure detection (FD) models to detect failure of the task

execution in the machines and these are:
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• Failure detection at the end : In this failure detection model, lets say the

task Ti is scheduled on the machine Mj and started execution at time si. After

ei time from si, we check whether the task Ti executed successfully or not. If

any failure is detected at si + ei time for Ti then we reschedule the task Ti at

si + ei.

• Failure detection at some regular interval/slot : In this approach, failure

detection is done at a regular interval. This will save time as we can get the

failure detection early but not at the end. Here the assumption is that the

execution time of the task is generally greater than the interval.

In the above cases, we have assumed whenever a failure occurs, it gets detected based

on above FD models. We further assume that the substitution of another machine for

the faulty machine and migration of tasks from the faulty machine to the substitute

processor is instantaneous. Due to the failure of a machine either task execution

duration (for FD at the end of task execution) or a time slot of compute time (for

FD at every slot) is get wasted.

For example, task scheduling on two machines (M0 and M1) with FD at the end

is shown in the Figure 5.4, where we want to schedule 12 tasks (T0, T1, · · · , T11).

Suppose machine (M0) fails during execution of the task T5, which was detected at

the expected finish time of the task T5 as shown in the Figure 5.4. After detection of

the failure of the machine M0 then rest of the tasks including T5 of that machine and

other tasks of non-failure machines are combined and considered for fresh scheduling

leaving the currently executing tasks with the non-failed machines. In this example,

tasks (T5, T7, T8, T9, T10 and T11) are again considered for rescheduling after current

time (ct) without altering the execution time of T6 on two machines.

The pseudo-code for simulation of task scheduling with considering repetition and

replication is given in the Algorithm 12. In this algorithm, all the tasks are put into

a queue (Q) and till the queue is not empty the scheduling process continues. Based

on the four cases defined earlier using ei and wi of the task, it checks for the task

to repeat or replicate and then map the task to the machine using any previously

defined approaches (MRM, MRMLD, SRLU and SULR). For the failure detection in

our simulation, we generate a random number between 0 and 1 and compared it with

the value Rij (as defined in Eq. 5.1). If random(0, 1) > Rij then machine (Mj) fails

during task (Ti) execution else it successfully executes the task.
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Algorithm 12 Simulation of Task Scheduling and Execution Considering Repe-
tition and Replication (α

′
, β
′
, TaskOrdering TO, MappingApproach MA)

1: for each task Ti in T do
2: Check for replication of the tasks using condition with Case-I
3: Update the task set T by adding extra copies of the replicated tasks if replica-

tion condition satisfied
4: Schedule the tasks based on any predefined approaches using TO and MA
5: Let ct = 0
6: while not getting finish time of a task from the current schedule do
7: ct = next finish time of any task Ti of current schedule
8: Check for the fault detection at current time for task Ti
9: if failure not detected then

10: Abort the replicated copy of the task Ti
11: if failure detected and to be repeated copy of Ti still not executed then
12: Reschedule the rest of the tasks which are not executed till ct and to be

repeated tasks using TO and MA

The Algorithm 12 checks for each task, whether to replicate using the condition

defined earlier. If the replication condition is satisfied then, an extra copy of the

replicated task is appended to the queue (Q). Then the modified queue of tasks are

scheduled based on predefined approaches. The algorithm forward the current time

ct to next finish time of any task Ti and checks for the failure of the machine. If

the failure is detected and to be repeated copy of Ti is not executed, then the rest

of tasks which are not executed till the failure detection time are rescheduled using

predefined approaches. If failure not detected for Ti, then abort or remove replicated

copy of the task Ti. Based on the value of α
′

and β
′
, this approach allows up to one

repetition or one replication of the task to improve the performance. This repetition

and replication procedure allows each short task up to one repetition or one replication

to improve the optimization goal.

5.7 Experimental Setup and Results

We have analyzed the performance of our discussed approaches using randomly gen-

erated data with following parameters.
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Figure 5.5: Performance of different mapping approaches with different task order-
ing (lower is better, optimization value =

∑
wiUi +

∑
wi(1 − Ui)(1 − Ri)), where

m = 20, Mj(1, fj) and fj = random(0.0, 0.2)

5.7.1 Parameter Setup

5.7.1.1 Machine parameters

As discussed in Section 5.3, each machine is characterized by two parameters fj and

vj. For this simulation fj follows random distribution with value between 0.0 to 0.2

and vj = 1.

5.7.1.2 Task Parameter

For this simulation, all the tasks are synced task and each task has execution time

between 1 to 10. Execution time have following distributions. The distributions

are normal distribution, exponential distribution, inverse exponential distribution

and inverted bell curve distribution (IBCD). For weight wi four type of values were

generated which are as follows: (a) wi = 1, (b) wi ∝ ei, (c) wi random number

between 1 to 10 and (d) wi ∝
ei
di

.
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(b) IBCD distribution
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(c) Inverse exponential distribution
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(d) Normal distribution

Figure 5.6: Performance of different mapping approaches with different execution
time distributions of tasks (lower is better)

5.7.2 Result of Different Task Ordering and Task Mapping

In this simulation, task parameters are Ti(ei, di, wi = 1) and machine parameters are

Mj(vj = 1, fj). The number of tasks varies from 50 to 400 and number of machines

are fixed to 20. Figure 5.5 represents the performance of the different heuristics based

on various task orderings. Figure 5.5(a), 5.5(b), 5.5(c) and 5.5(d) shows optimization

value (
∑
wiUi +

∑
wi(1 − Ui)(1 − Ri)) for MRM, MRMLD, SRLU and SULR for

different task ordering respectively. For each case we had used LSTF, EDD, SJF,

LJF and WPUET task ordering. For all the cases we found that ordering based on

EDD is performing well and LJF is consistently performing worse. In this result,

our main focus is comparison of different ordering, so our conclusion is based on the

ordering of tasks instead of mapping of the tasks and other results of subsequent

sections considers the EDD ordering of the tasks.
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5.7.3 Result for Different Task Mapping for Different Exe-

cution Time Distribution of Task

In this case we experimented our discussed heuristics based on task execution time

distributions. Here the number of tasks varies from 100 to 400 which is represented

through X-axis and the optimization value
∑
wiUi +

∑
wi(1−Ui)(1−Ri) for all the

four approaches, which is represented through Y-axis. This is repeated for all the

distributions described in Section 5.7. The result is reported in Figure 5.6 for all the

mapping approaches where tasks ordering was done using EDD. Figure 5.6(a), 5.6(b),

5.6(c) and 5.6(d) reports the optimization value for exponential distribution, inverted

bell curve distribution, inverse exponential distribution and normal distribution re-

spectively.

In this experiment lower value is better. Out of the four heuristics, the MRMLD

is performing better than other approaches, for all kinds of considered distributions.

This is due to the fact that our optimization goal mostly depends on the number

of tasks finish its execution before its deadline. The more number of tasks executed

before its deadline if they are allocated to reliable machines. SULR is performing

worst because the number of tasks fails or miss their deadline due to machine failure

is more as compared to other approaches. As longer tasks are allocated to the most

reliable machines, they will not fail or miss their deadline, which contribute less

number of tasks executed before the deadline, hence increase the optimization value

(poor performance). MRM and SRLU are performing comparable for all kind of task

distributions. Observation from Fig. 5.6(a), for exponential distribution where the

number of short tasks percentage is higher as compared to long tasks, performance

difference between MRMLD and other mappings is significant. MRMLD is performing

significantly better (lower value of
∑
wiUi +

∑
wi(1−Ui)(1−Ri)) as the number of

tasks increases i.e. 23.3% to 33.3% from SULR, 2.3% to 14.4% from SRLU and 1.2%

to 14.6% from MRM approach.

5.7.4 Result for Different Weight Distributions

Here we report the performance of the different heuristics based on the weight assigned

to the tasks. Varying the number of tasks from 100 to 400, we have computed the

optimization value (
∑
wiUi+

∑
wi(1−Ui)(1−Ri)) for all the four mapping approaches

(using EDD ordering of task). This is repeated for all weights described in Section

5.7. From the reported results shown in Figure 5.7, MRMLD approach performs the
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(a) Weight ∝ execution time
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(b) Weight wi = 1
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(c) Weight wi = random
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Figure 5.7: Performance of mapping approaches with different weight distribution
of tasks (lower is better)

best and SULR performs the worst. In this experiment MRM and SRLU perform

comparable in terms of optimization value with different weights assigned to the tasks.

Observation from Figure 5.7(b) where wi = 1 and Figure 5.7(c) where wi is random,

long task dropping play an important role. So in these cases, even if the number of

short tasks and long tasks are same, the performance difference between MRMLD

and others mapping is significant.

5.7.5 Result for Real World Traces

To evaluate our approaches for real world data, we considered Google traces, Yahoo

traces, Cloudera traces and Facebook traces. We use the publicly available Google
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(a) Cloudera traces
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(b) Facebook traces
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(c) Google traces
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(d) Yahoo traces

Figure 5.8: Performance of mapping approaches with real world traces (lower is
better)

trace [5]. We created additional traces using the description of the Cloudera and

Facebook 2010 workloads from [70] and Yahoo 2011 workload from [71]. We had

done the simulation using real-world traces of Cloudera, Google, Yahoo and Facebook

with the number of tasks varies from 2000 to 10000. From the traces we had taken

the execution time of tasks and other parameters are taken randomly as defined

in Section 5.7. The performance of different approaches is presented in the Figure

5.8. For the Cloudera and Yahoo traces SRLU approach performs better than other

approaches whereas for Google and Facebook traces MRMLD approach performs

better than other approaches. This is due to the variation of task distribution of

different traces. From the results it is being confirmed that SULR is performing
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(d) Facebook traces

Figure 5.9: Performance of mapping approaches with task repetition and replication
(lower is better)

worst for all the considered real-world traces. MRM is performing comparable with

MRMLD for Cloudera and Yahoo traces, whereas other traces it performs better than

SULR.

5.7.6 Result for Task Repetition and Replication

From the results reported in Section 5.7.3, 5.7.4 and 5.7.5, most of the cases MRMLD

mapping (with EDD ordering) heuristic performs better than other approaches. So we

had taken MRM and MRMLD (with repetition and replication or without repetition

and replication), to know the performance improvement of repetition and replication

strategy which was defined in Section 5.6. MRM-SR represents MRM approach with

repetition and replication and MRMLD-SR represents MRMLD approach with repe-

tition and replication. The results of performance improvement are reported in Figure
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5.9(a) and 5.9(b) for the task weights wi = 1 and wi = random. The performance im-

provement of MRM-SR over MRM is 1.6% to 3.9% in terms of optimization value and

for the case of MRMLD-SR performance improvement is 1.1% to 3.6% over MRMLD

for different weights (wi = 1 and wi = random). Figure 5.9(c) and 5.9(d) reports the

result of different approaches for two real-world traces (Google and Facebook). For

real-world trace cases, the performance improvement of MRM-SR and MRMLD-SR

against MRM and MRMLD is as compared with the previous case.

5.8 Summary

System reliability is an important aspect for providing better QoS in cloud environ-

ment. To schedule the tasks considering the failure of the system needs effective tasks

ordering and mapping for better performance. It is highly desirable for the mission

critical and safety critical tasks to be scheduled efficiently in cloud environment where

machine failure is a common phenomenon. Here we solved the problem of allocating

bag of real-time tasks in a cloud environment while considering the reliability of the

system. We considered different variants of the problem based on different task and

machine environment. We had discussed the complexity of the problem and solved

two special cases of these problems algorithmically. For the general case of the prob-

lem, we have devised four heuristics which tries to minimize the weighted expected

failure probability of the system. In many cases MRMLD performed better than

other approaches and replication and repetition further improved the performance.

The reported work can further be extended to work for more general setting, where

the number of VMs required for a task is more than one and tasks are having other

properties.

[[]X]\\
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6

Reliability Ensured Scheduling

in Cloud System

This chapter is the extension of the work described in chapter 5, which presents the

reliability issues in cloud environment. In reliability aware scheduling, the objective

is to maximize the objective function i.e. maximizing the number of mission criti-

cal tasks to be executed before deadline assuming the system failure. However, in

reliability ensured scheduling each job must satisfy its reliability requirement with

or without deploying its replicated copies on different machines at same time. This

chapter presents the replication based reliability ensured scheduling approaches for

different workload and system scenarios in cloud environment.

6.1 Introduction

The cloud consists of data centers (DCs) with large number of machines to cater huge

user requirements, and also as time progresses some old systems are replaced by new

ones. Failure rate of machine increase as the machine get older. As the machines

added to the DCs at different times in phase wise manner, the failure rate of different

machines are different [152].

Failure of data center servers become a serious issue as applications (or jobs) running

on those servers would be unavailable. All the VMs of the failed server goes down and

that leads to violation of service level agreement (SLA) and degradation of quality

of service (QoS) [265]. So reliability is an important aspect to ensure that all the

VMs always perform satisfactorily [124]. Reliability is defined as the probability of
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a schedule successfully completing its execution. For the service-oriented system it

becomes an increasing relevant issue [265], [262], [261]. However, for latency-sensitive

applications, it becomes more challenging to meet the QoS along with the reliability

requirement of each application. The job and application have the same meaning and

we have used interchangeably throughout the text of this thesis.

The popular reliability enhancement technique i.e. VM replication [242] is used to

deploy redundant copies of a VM to satisfy the application’s reliability requirement.

Even though replication-based fault-tolerance mechanism is an important reliability

enhancement method [262], [261], [49], [50], but any application cannot be 100% reli-

able in practice. An application is considered to be reliable if it satisfies it’s specified

reliability requirement. For example, if an application’s reliability requirement is 0.95,

then the application is considered to be reliable if it’s expected execution reliability

exceeds 0.95.

In this chapter, we propose replication-based approaches to enhance the reliability of

the applications (or jobs) with minimization of the resource request. All the applica-

tions considered in this work consist of one or many independent sub-jobs (or tasks).

The applications are also independent of each other and the communication overhead

between the applications is negligible. Here each task of an application must satisfy

its sub-reliability requirement so that the application should meet its reliability re-

quirement. For each task, sub-reliability is computed based on which server the task

is being scheduled and the number of replicas of the task.

Here we summarize the contribution of this chapter as follows.

• We analyze and compute the minimum number of replicas required for each job

considering job parameters, and schedule the jobs onto the machines with the

equal failure rate. And propose a heuristic for effective Replication on machines

with equal failure rate (called REFR) using the analyzed minimum number of

replicas to ensure the reliability requirement of independent latency-sensitive

jobs in the targeted environment.

• We solve the reliable job execution on the machines with arbitrary failure rates

by analyzing the job characteristics and reliability requirements. Here propose

an effective job prioritization scheme and an Efficient Reliability Replication

Method (Eff-RRM) for the independent jobs considering machines with arbi-

trary failure rate to schedule the jobs onto the machines.
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• Also, we compute and use the jobs sub-reliability requirement for the tasks and

other parameters to deploy the minimum number of machines, for the efficient

scheduling of jobs to meet the deadline and reliability requirement.

• We defined and used two performance comparison metrics namely average VM

per task (AVT) and reliability guarantee ratio (RGR) to compare the perfor-

mance of the proposed approaches and other state-of-the-art approaches.

6.2 Related Research Work

There have been many works reported related to the issue of high availability or

reliability in a virtualized cloud environment [27, 175, 154]. To make the system highly

available for most of the time, the commercial VMware system designed a VMware

HA (High Availability) [27], where they restart the VMs automatically on the event

of a host server failure and allocate all the VMs of the failed server to other servers.

However, this process incurs performance degradation. A proactive based approach

was adopted by Xen virtualization platform [175] and it predicts server failure by

monitoring the status of the host server resources like memory, CPU, disk logs, and

fan. However, monitoring the status of all server resources is quite challenging. A

simple redundant configuration method for VM deployment on multiple servers is

presented in Loveland et al.[154].

Most of the cases replication-based approaches are being adopted for enhancing the

availability and reducing the degradation factor. There are two types of replication

approaches exist, (a) active replication, (b) passive replication. In the active repli-

cation scheme [262], [261], [49], each job is simultaneously replicated on different

machines, and the job will succeed if at least one of them does not fail. In the passive

scheme [167], [189], [263], whenever a machine fails, the job will be rescheduled to

proceed on a backup machine. When a machine crashes, it is subsequently restarted

to continue from the checkpoint just as if no failure had occurred; such a scheme is

called a checkpoint and restart scheme and can be considered as an improved version

of the passive scheme [262].

For the service-oriented systems, an active replication scheme is suitable because it

restricts the failed job to restart, hence the recovery time is very negligible [50]. Most

of the cases researchers fixed a constant number of backup copies to be deployed for an

application to satisfy its reliability requirement. The reliability of an application was
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calculated based on the model proposed by Shatz and Wang [206]. The popular work

in this regard were proposed by different authors for parallel applications with prece-

dence constraint and those are presented by a directed acyclic graph (DAG) [214],

[220], [129], [236]. In Zhao et al. [262] and Zhao et al. [261], authors proposed fault-

tolerant scheduling algorithms MaxRe and RR, by active replication methods. They

calculate the number of replications of an application by considering each task’s sub-

reliability requirement dynamically. However, in Xie et al. [237], proposed enough

replication for redundancy minimization (ERRM) and heuristic replication for redun-

dancy minimization (HRRM) approaches for DAGs. Their experimental results show

that ERRM and HRRM approaches perform better than MaxRe and RR approaches.

The researchers have explored the reliability ensured job scheduling for different types

of applications. However, we propose here the reliability ensured scheduling approach

for independent jobs with both reliability and deadline requirements. The similar kind

of works is discussed in Machida et al. [155] and [134]. In Machida et al.[155], authors

proposed k- redundancy method (KR) and in [134] proposed first fit decrease (FFD).

Our approach differs from their by deploying the number of replications based on the

reliability requirement of each job and the reliability of job in our model depends

on the execution time of the job and failure rate of the machine where the job is

supposed to be allocated. The detailed description of KR and FFD approaches are

presented in section 6.4.1 and section 6.4.2. In this work, we consider all the jobs are

independent and can be executed in a parallel manner.

6.3 Problem Formulation

This section describes the task environment, machine environment, reliability model

and optimization goal of the present work.

6.3.1 Application Environment

The job set consists of n number of jobs J = {J1, J2, · · · , Jn}, where each job Ji

is characterized by : < ei, di, vi, ri >. The term ei represents the execution time,

di represents the deadline, vi represents the number of virtual machines (VMs) re-

quired, and ri represents the reliability requirement of each job Ji. For example, the

reliability requirement of a job is 0.95, which means the job’s collective reliability

value on the scheduled machines must exceed the value of 0.95. The reliability re-

quirement is being taken from reliability-related standards (e.g., ISO 9000 [13] and
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IEC 61508 [12]) and assume to be the dominating QoS requirement in cloud system

[261]. The considered jobs can be a scientific simulation, large-scale data processing,

or video/image rendering. Each job (Ji) consists of one or more number of indepen-

dent tasks (Ti1, Ti2, ..., Tivi) and has a strict deadline by when all its tasks must be

executed. Each task needs one instance of VM for its execution. All the tasks of a

job can execute through independent VMs (i.e., job Ji has vi number of tasks) in a

parallel manner without any communication among them. The execution time of all

the tasks is the same, as it is the same as the execution time of the job, and there

is no inter-dependency within the tasks of each job. The assumption here is that all

the jobs are submitted to the system at the same time and have the same deadline

(di = D).

6.3.2 Machine Environment

The virtualized cloud environment consists of m number of physical machines (PMs)

or host or servers M = {M1,M2, · · · ,Mm}. Each PM Mj is characterized by <

γj, fj >, where γj represents the maximum number of virtual machines the PM

can host, and fj represents the failure probability of the machine. The applications

are hosted on those servers by renting the virtual machines accompanied by a sign

of contract between user and service provider. For the assurance of scalability and

availability, redundant servers are deployed to provide uninterrupted services to users.

Different online applications like database servers, mail servers, and web servers have

their redundant server configuration methods. However, our assumption here is to

allocate the virtual machines to the host servers with reliable execution of the hosted

applications. Here we consider all the VMs are homogeneous (same amount of CPU

and memory) and the maximum number of VMs hosted by each PM is the same (i.e.,

γj = γ) but the PMs are heterogeneous in terms of failure probability.

6.3.3 Reliability Model

The well-known reliability model proposed by Shatz and Wang [206] is being used

here. The used reliability model considers each machine has constant failure proba-

bility per unit time. Suppose a machine Mj with failure probability fj and a task Til

with execution time ei is scheduled on that machine, then the reliability of the task

Til can be defined as

R(Til,Mj) = e−fj ·ei (6.1)
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So, failure probability of the task Til on machine Mj is:

F (Til,Mj) = 1−R(Til,Mj) = 1− e−fj ·ei (6.2)

If k copies of the task Til are scheduled on k different machines in parallel then the

total reliability R(Til) of the task is calculated as follows:

R(Til) = 1−
( k∏

j=1

(1−R(Til,Mj))
)

(6.3)

The reliability of a job whose multiple tasks can run parallely on different machines

can be expressed as

R(Ji) =
∏

Til∈Ji

R(Til), l = 1, 2, ..., vi (6.4)

Here the assumption is that the replicated copies of a task must be allocated to dif-

ferent machines. For example, let the job Ji has two tasks (Ti1 and Ti2) and each task

need total three replications which are assigned with the VMs (Ti1 → Vi11, Vi12, Vi13,

and Ti2 → Vi21, Vi22, Vi23). The VMs Vi11, Vi12, and Vi13 must be allocated to different

PMs and same for Vi21, Vi22, and Vi23. However the VMs of different tasks can be al-

located to same PM (i.e., Vi11 and Vi21 can be allocated to same PM). As all the jobs

and all the tasks of a job are independent to each other, we ignore the communication

overhead and communication failure in our model. In this work, we only consider the

machine failure, which is not directly related to communication.

6.3.4 Optimization Goal

The reliability of a job can not be 100%, however if any job satisfies its reliability

requirement then we consider that job to be reliable. Formally we present the op-

timization goal of our problem as follows: Given a set of jobs (each job has one or

many independent tasks) which needs to be executed in parallel on a set of PMs with

different failure rates. Our objective is to assign the tasks of each job to PMs through

VMs (as each task is assigned to only one VM) while satisfying the reliability and

deadline requirements. For satisfying the reliability requirement of each job it may be

required to deploy extra VMs for the replications of each task so that job’s reliability

requirement is met. Here we need to develop the allocation policy to minimize the

total number of replicated (NR) VMs for all the jobs and that can be formally defined
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as follows.

Min{NR(J1, J2, ...., Jn)} = Min{
n∑

i=1

ki} (6.5)

subject to:

R(Ji) =
∏

Til∈Ji

R(Til) ≥ ri,∀i : 1 ≤ i ≤ n (6.6)

for each job Ji, l = 1, 2, ...., vi. The term ki represents the number of extra VMs

deployed for the job Ji to satisfy it’s reliability requirement. The baseline requirement

is that the jobs must be executed before their deadline and satisfy their reliability

requirement, which are the types of service level agreement between user and cloud

service provider.

6.4 State-of-the-art Approaches

There are some state-of-the-art replication-based approaches for scheduling tasks

through VMs to achieve high reliability [155], [125], [55]. The existing approaches

deploy k extra VMs for each application to achieve the k-fault-tolerance. Here we

discuss two approaches (KR and FFD), which are close and comparable to our pro-

posed approaches.

6.4.1 K-redundancy Method (KR)

In this approach each application is being assigned k redundant virtual machines to

achieve k-fault-tolerance level [155]. Suppose a job Ji requires vi number of VMs, so

the total number of redundant VMs required to achieve k-fault-tolerance turns out

to be v
′
i = vi + k. As each instance of the task of a job are allocated to different host

machines, so the minimum number of hosting server m must be,

m ≥ max
∀i

v
′

i = max
∀i

(vi + k) (6.7)

Apart from this, there is another restriction which help us to compute the required

number of VMs i.e.,
n∑

i=1

v
′

i to be hosted on m machines. This brings another constraint
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to know about the number of PMs.

m.γ ≥
n∑

i=1

v
′

i (6.8)

m ≥ 1

γ

n∑
i=1

v
′

i =
1

γ
(

n∑
i=1

vi + k.n) (6.9)

The term γ represents the maximum number of VMs a PM can host. Combining

the two constraint equations (Eq. 6.7 and Eq. 6.9), the minimum number of hosting

servers mKR using k-redundancy method can be expressed as follows.

mKR = max

{
max
∀i

(vi + k),

⌈
1

γ
(

n∑
i=1

vi + k.n)

⌉}
(6.10)

However, this approach lacks in various ways, like it ignores the consideration of

execution time of the applications, the reliability requirement of each application, and

the proper choice of k value for which application will meet it’s reliability requirement.

The value of the k may be adjusted to keep the application to meet it’s reliability

requirement, but it has some disadvantages. If the value of k will set to be more

then the reliability requirement will be satisfied but the number of PMs required for

hosting the VMs will be more. The lower value of k may trigger that some tasks may

not satisfy their reliability requirement.

6.4.2 First-Fit Decrease (FFD)

The well known virtual machine placement problem to minimize the required number

of hosting PMs can be formulated as a bin-packing problem [125], [55]. However

the bin packing problem is known to be an NP-hard problem, so the well-known

heuristic First-Fit Decrease (FFD) is being used to solve this problem in an effective

way [134]. FFD does not consider the fault-tolerance issue, so to accomplish the

k-fault-tolerance it keeps k-backup copies to achieve that. The minimum number of

hosting server (mFFD) required to accomplish the k-fault-tolerance using FFD can

be expressed as follows.

mFFD ≥

⌈
1

γ
.

n∑
i=1

vi

⌉
(6.11)
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In the best case, required number of hosting server by FFD is given as follows.

mFFD =

⌈
1

γ
.

n∑
i=1

vi

⌉
.(k + 1) (6.12)

As per the Eq. 6.12, this process ensures k-fault-tolerance by deploying k extra copies

of each PM. For example mFFD = 4, (M1,M2,M3,M4) are the minimum number of

PMs required for the feasible allocation of jobs. For the case of k = 1, one extra

copy of each machine will be deployed for the allocations i.e., eight machines in total

(M1,M
′
1,M2,M

′
2,M3,M

′
3,M4,M

′
4). In this example for each machine, there is an

extra machine deployed for job allocation. This approach also has some limitations

like the proper choice of k value and the non-consideration of execution time for the

fault-tolerance model.

6.5 Scheduling on Machines with Equal Failure Rate

In this section, we consider the problem of scheduling of jobs to machines with equal

failure rate (fj = f). As scheduling of jobs with a common deadline on machines with

equal failure rate (Non-preemptive version) was proved to be NP-Complete [212], so

we design an efficient heuristic to solve the problem. We propose heuristic for efficient

replication in case of machine with equal failure rate (REFR), and design of this is

based on the observation as reported in Figure 6.1. Figure 6.1 reports the reliability

of a task with respect to execution time (Figure 6.1(a)), failure probability of the

allocated machine (Figure 6.1(b)), and number of replicated copy of the deployed

task (Figure 6.1(c)). The observations from Figure 6.1 are (a) reliability of a task

decreases as its execution time increases when allocated to a machine with constant

failure probability, (b) reliability of a task decreases if it is allocated to a machine with

high failure rate keeping execution time constant, and (c) more number of replications

of a task increases the reliability of a task where execution time and failure probability

of the allocated machine are constant. These observations motivate us to schedule

the VMs to PMs so that the reliability requirements are met.

Definition 2 (Lower bound on number of machines) : The preemptive schedule of

n jobs which finish their execution before their common deadline D on m machines

with equal failure rate (fi = f) is possible if

a) ei 6 D for each job Ji and,
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Figure 6.1: Reliability distribution of tasks

b)
n∑

i=1

(vi + ki).ei 6 γ.m.D, where ki represents the number of extra VMs (lower

bound) deployed for the job Ji to satisfy it’s reliability requirement and v rep-

resents the maximum number of virtual machines that a machine can host. All

the jobs must satisfy it’s reliability requirement by allocating to any machine.

The definition of the lower bound number of machines (m) as defined in [117], as-

suming a task can be preempted and migrated infinite time without any delay. As

stated in (b), the lower bound on number of machines, the minimum number of PMs

required to schedule all the jobs to finish their execution before deadline, the following

condition is obtained.

γ.m.D >
n∑

i=1

(vi + ki).ei (6.13)

As the number of PM (m) required to be an integer value, the lower bound of m is
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represented as follows.

m >



n∑
i=1

(vi + ki).ei

γ.D


(6.14)

The formal description of the problem under consideration is to find the minimum

number of task replications and its assignment to PMs so that all the jobs must satisfy

their reliability and deadline requirements.

As all the machines have the same failure rate (fj = f) and same capacity (γj = γ)

in terms of the maximum number of VM deployment, the task can be scheduled to

any machine so that no two copies of the same task would be allocated to the same

machine. If any job satisfies it’s reliability requirement without any replication then

for that job ki = 0 else extra copies of the tasks need to be deployed. If all the

machines have the same failure (fi = f) rate then the reliability of a task with k

copies running parallelly is represented as follows.

R(Til) = 1− (1− e−f.ei)k (6.15)

For each job at least vi number of copies must be scheduled and more copies of the

tasks may be required to meet the reliability requirement. Suppose ki number of extra

copies are required to meet the reliability requirement for a job then to compute the

number of replications we defined the equation as follows.

1− (1− e−f.ei)vi+ki > ri, for all i=1 to n (6.16)

Further simplifying the Eq. 6.16,

1− ri = (1− e−f.ei)vi+ki (6.17)

1− ri
(1− e−f.ei)vi

= (1− e−f.ei)ki (6.18)

ki = log1−e−f.ei (1− ri)− vi (6.19)
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As the value of ki is an integer so the value is represented as follows.

ki =
⌈
log1−e−f.ei (1− ri)− vi

⌉
(6.20)

From the Eq. 6.20, the known factors are f, ei, vi, and ri, so we compute the number of

replications of each job and allocate those to the available PMs so that no job misses

its deadline requirement. If any job satisfies it’s reliability requirement without any

replication then the value of ki is zero for that job.

The pseudo-code of the approach is given in Algorithm 13. In the algorithm we first

compute the (vi + ki) value for each job using Eq. 6.20. As the failure rate of all

machines is equal so the VM requirement depend on the three factors i.e., execution

time (ei), reliability requirement (ri), and the number of tasks (N). In this algorithm,

we allocate each task to different machines from the set of currently active machines

(Ma) so that reliability is enhanced. We sort the jobs based on v
′
i = vi + ki value.

The algorithm calculates the minimum number of machines required for allocation

using Eq. 6.14 and then allocate the tasks to different machines where it satisfies

its deadline requirement. The sub-procedure EFT (), returns the earliest finish time

of a task when assigned to a particular machine. There is no need to check for the

reliability requirement because the algorithm computes the v
′
i value satisfying the

reliability requirement of each job. While scheduling, the primary copies of the tasks

(vi number of copies) are scheduled first and then the extra copies (ki) are allocated.

The approach is non-preemptive approach and produce always equal or higher number

of machines required as compared to lower bound mentioned in Eq. 6.14.

Algorithm 13 Replication with Equal Failure Rate (REFR)

1: Calculate ki for each job using Eq. 6.20
2: Sort the jobs by their decreasing order of their VM requirements (v

′
i = vi + ki)

3: Calculate the minimum number of PMs (Ma set) using Eq. 6.14 and switch on
those machines

4: for each job Ji in J do
5: while v

′
i > 0 do

6: for each PM Mj from Ma do
7: if EFT(Til, Mj) ≤ D and (no copy of Til assigned to Mj) then
8: Allocate Til to machine Mj

9: v
′
i = v

′
i − 1

10: if no machine found then
11: Switch on a new machine and add to Ma set
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The time complexity of the Algorithm 13 is analyzed as follows. Step 1 of the algo-

rithm takes O(n) time and step 2 takes O(n log n) times. Mostly the time complexity

of the algorithm is being dominated by the computation time taken by step 4 - 11.

The maximum time taken by step 4 -11 can be expressed as O(mn), where n is the

number of tasks, and m represents the number of machines.

6.6 Scheduling on Machines with Different Failure

Rates

The second version of the problem is to schedule the set of jobs to the host machines

with different failure rates. Here our objective is to minimize the number of VM

replication deployment so as to minimize the number of PMs (m) when the job and

machine characteristics are given. The following conditions should be meet for all the

jobs under consideration.

R(Ji) > ri,∀i, 1 6 i 6 n (6.21)

FT (Ji) 6 D, ∀i, 1 6 i 6 n (6.22)

where R(Ji) represents the reliability of the job Ji (using Eq. 6.4) and FT (Ji) rep-

resents the finish time of the jobs Ji (all it’s tasks must finish their execution before

the deadline).

We should try to schedule the high execution time tasks to low failure rate machines

and try to use low failure rate machines as much as possible to reduce the number

of task replications to meet the reliability requirement. Here we propose an Efficient

Reliability Replication Method (Eff-RRM) to schedule the set of jobs for ensuring

their reliability requirement. The deadline for a task plays an important role in the

scheduling process as we need to finish the task execution before it’s deadline. Here

the scheduling process considers the slack time for the final allocation of the task to

the machine. Any fault-tolerant scheduling approach mainly consists of three phases:

(a) task prioritization, (b) host machine selection, and (c) task allocation/execution

[237] as shown in Figure 6.2. The detailed discussions for above three phases are as

follows.
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Submitted
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Host Server
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Figure 6.2: Reliability model

6.6.1 Task Prioritization

Based on the discussion in the application environment (Section 6.3.1) and their

characteristics (defined in Table 6.1), the jobs need to be arranged in a specific order

for its submission to the system. In this work, the ordering of jobs depends on three

factors. Those factors are (a) execution time (ei), (b) reliability requirement (ri), and

(c) number of tasks each job have (vi). These three job characteristics (as shown in

Table 6.1) may be viewed as follows, (a) execution time (high, medium, and low),

(b) reliability requirement (high, medium, and low), and (c) number of tasks per job

(high, medium, and low). Based on these criteria the following observations are made

for further analysis.

• Job with higher execution time duration (HDJ) need the most reliable machine

to be scheduled irrespective of the reliability requirement and the number of

tasks per job. Along with high execution time, the high-reliability requirement

and more number of tasks per job made the situation worse and that leads to

deploying more replications to meet the reliability requirement.

• Jobs with medium-range execution (MDJ) time with high-reliability require-

ments and a higher number of tasks per job need the most reliable machine to

be scheduled.

• For lower execution time jobs (LDJ), there is no stringent need for a highly

reliable machine because the reliability requirement for those jobs can easily be

satisfied when scheduled to any type of machine.

• Other combinations of job characteristics are more flexible to schedule any type

of machine to enhance the load balancing among the set of machines.

These above observations help us to propose a better scheduling approach for the

stated problem. The range of high, mid, and low of any job characteristics can be

suitably taken based on the given job parameters. Further highlighting the observa-

tion from Figure 6.1(a), the job with longer execution time should be scheduled to a
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Table 6.1: Job characteristics

Execution time
(ei)

Reliability requirement
(ri)

No. of tasks (vi)

Higher duration job
(HDJ)

Higher reliability require-
ment (HRR)

High number of parallel
tasks (HNP)

Medium duration job
(MDJ)

Medium reliability require-
ment (MRR)

Medium number of parallel
tasks (MNP)

Lower duration job
(LDJ)

Lower reliability require-
ment (LRR)

Lower number of parallel
tasks (LNP)

highly reliable machine so that it meets it’s reliability requirement with less number

of extra VM deployment. However, it may not be true all the time, because more

number of tasks per job will increase the reliability requirement of each task of that

job. So any job with more number of tasks must be given priority to be scheduled to

high reliable machines as the reliability requirement is high per each task. The same

kind of observation can be made for the job with high-reliability requirements even

though it has only one task.

Based on these observations, we formulated the ranking criteria for ordering the jobs

which depend on execution time (ei), number of tasks (vi), and reliability requirement

(ri). As all the jobs are offline jobs, we assume here that the job parameters (discussed

in Section 6.3.1) are known before scheduling. We rank the jobs using the Eq. 6.23.

rank(Ji) = − logRreq
i

ei
= −

log vi
√
ri

ei
(6.23)

where Rreq
i = vi

√
ri and vi is the number of tasks of the job Ji.

6.6.2 Host Machine Selection

The set of host machines that are available for task allocation need to be prioritized

based on its failure rate. The machine with minimum failure rate is given more priority

than that of a high failure rate machine. The machines are arranged based on the

non-decreasing order of their failure rates. Once the task prioritization and host

machine selection were done, we have to efficiently allocate the tasks to machines to

minimize the resource utilization (required number of machines (m)). The tasks with

higher execution time must be allocated to high reliable machines because that may

reduce the number of replications for the task to meet it’s reliability requirement. The

sub-reliability requirement of the entry task of a job is calculated using Rreq
i1 = N

√
ri,
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where N = vi is the number of tasks belongs to job Ji [262]. For the subsequent

tasks i.e., Ti2 ... Tivi , the sub-reliability requirement is calculated based on the actual

allocation of it’s previous tasks [261]. The sub-reliability requirement of subsequent

tasks is calculated as follows.

Rreq
il =

N−l+1

√√√√√√
Rreq

i

l−1∏
x=1

R(Tix)

(6.24)

Considering all the tasks to satisfy their reliability requirement and finish their ex-

ecution before the deadline is a challenging job. In this approach, we would like to

allocate tasks with longer execution time and high-reliability requirements to high

reliable machines. The allocation policy checks for the machine with the most failure

rate to satisfy the task’s reliability requirement from the set of active machines where

it satisfies it’s deadline requirement. The scheduling policy tries to find the candidate

machine for allocation to balance the load.

6.6.3 Overall Approach

The pseudo-code of the proposed approach to minimize the replication and satisfy

the reliability requirement is shown in Algorithm 14. The main idea of the Algorithm

14 is to choose the minimum number of replications of a task so that the reliability

value of the task will be just enough of their requirement. As we know that the

jobs (or applications) reliability is the product of all its tasks reliability (as defined

in Eq. 6.4), so we compute the required reliability of each task of the job Ji. The

required reliability of each task belongs to a job depends on the number of tasks

associated with the job. Let say ri, be the required reliability of a job Ji, so the

reliability requirement of the first task must be greater than Rreq
i = N

√
ri, where N is

the number of tasks of the job Ji. Subsequent reliability requirement of other tasks

of the job is computed using Eq. 6.24 after the allocation of previous tasks to the

appropriate PMs. If for any task R(Til) < Rreq
i , then no matter how many replicas

can be deployed for other tasks, ri can not be satisfied for the job Ji. The proposed

algorithm efficiently allocates the tasks to machines so that the overall reliability

requirement of all the jobs must be satisfied.

The proposed approach sorts all the tasks by their execution time and all the machines

by their failure rate (step 1 and 2). Step 3 of the Algorithm computes the lower

bound of the number of PMs required for initial allocation, where we have considered
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all PMs having the same failure rate i.e., an average of all failure rates. That give us

a fair estimation of the minimum number of PMs required for a feasible allocation.

Steps 5-22 allocate the tasks to appropriate PMs so that their reliability requirement

can be obtained. The approach selects the machines for a task where it must be

executed before its deadline and results in minimum replication. Whenever a task

needs more than one replication for the reliability requirement then the algorithm

selects different PM at each time for allocation and the reliability requirement of

each task is computed using Eq. 6.24 except the first allocation. The term Mmax

represents the host server where a task achieves maximum reliability value from the

set of active machines (using Eq. 6.1).

The time complexity of the Algorithm 14 is analyzed as follows. Step 1 of the al-

gorithm takes O(n log n) time and step 2 takes O(m logm) times. Mostly the time

complexity of the algorithm is being dominated by the computation time taken by step

5 - 22. Maximum time taken by step 5 -22 can be expressed as O(mnk) where n is the

number of tasks, m represents the number of machines, and k = max(k1, k2, · · · , kn).

The term ki represents the number of replication of the task Ti.

6.7 Experimental Setup and Results

The current study aims at minimizing the number of replications to satisfy the re-

liability requirement of the application in a virtualized environment. The proposed

approaches REFR and Eff-RRM are evaluated against the k-redundancy method and

FFD under various input parameters.

6.7.1 Simulation Environment, Parameter Setup and Evalu-

ation Criteria

6.7.1.1 Simulation Environment

The simulation environment accepts a set of jobs with configurable virtual machines

and physical machines as input. The job and physical machine specifications accepted

by the simulation environment are same as defined in Section 6.3. The adopted

simulation environment is similar to Eagle [83], which was written in Python. This

simulation program also included with other state- of-the-art scheduling approaches

like KR and FFD along with our proposed appraoches.
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Algorithm 14 Efficient Reliability Replication method (Eff-RRM) with Different
Failure Rate

1: Sort the tasks by their decreasing order of rank based on Eq. 6.23
2: Sort the PMs based on the decreasing order of their failure rate
3: Calculate the lower bound of number of PMs (Ma set) as discussed in Section 6.5

using average failure rate and switch on those machines
4: k array initialize to 0
5: for each job Ji in J do
6: Calculate Rreq

i = N
√
ri for first task of Ji

7: for each task Til of the job Ji do
8: while (R(Til) < Rreq

i ) do
9: if there are machines for Til to meet it’s deadline then

10: Select the machine where Til ensures maximum reliability value (Mmax)
11: else
12: Switch on new machine and add to Ma set
13: Calculate the R(Til,Mj) for all available machines
14: if (R(Til,Mmax) > Rreq

i ) then
15: Allocate Til to machine Mmax

16: Update R(Til)
17: else
18: Create a replica of the task Til
19: Allocate replica of Til to machine Mmax

20: Update R(Til)
21: Update ki based on number of replications
22: Update Rreq

i using Eq. 6.24

Table 6.2: Parameters value for simulation study

Parameter Value
Execution time (ei) random (10, 100)
Deadline (D) 500
Required number of VMs (vi) random (1, 5)
Reliability requirement (ri) random (0.90, 0.99)
Number of VMs (pj) 4
Failure rate (fj) random (0.001, 0.0015)

6.7.1.2 Parameter Setup

The job and machine parameters that are taken for this simulation study are described

in Table 6.2. These parameter values are just for the calculation purpose, however

our model will support any feasible value of the input parameters.
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Figure 6.3: Results for the machines with equal failure rate

6.7.1.3 Evaluation Criteria

Apart from the number of host machines, we have used two terms average VM per

task (AVT) and reliability guarantee ratio (RGR) to compare the performance of

different solution approaches. The terms are defined as follows.

Definition 3 The average VM per task (AVT) is defined as the ratio of total number

VMs used for allocation to the total number of VMs required or the total number of

tasks.

AV T =
Total number of VMs used for allocation

Number of tasks
(6.25)

Definition 4 Reliability guarantee ratio (RGR) is defined as the ratio of the number

of jobs that meet their reliability requirement to the total number of admitted jobs to

the system (similar kind of definitions are also defined in [266]).

RGR =
No. of jobs meet their reliability requirement

Total number of jobs
(6.26)

These definitions are used for comparison purposes.

6.7.2 Results for Synthetic Data

6.7.2.1 Special Case : Machines with Equal Failure Rate and Effective-

ness of REFR

This section discusses the effectiveness of REFR against KR and FFD when all the

machines have the same failure rate (fj = 0.0015). As we had discussed in section
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Figure 6.4: Results for the machines with different failure rate

6.5, the number of task replications are calculated based on the given application

and machine characteristics and then effectively scheduled to minimize the resource

requirement. The experimental result reports the number of machines required for

two cases, (a) same reliability requirement (Figure 6.3(a)), and (b) different reliability

requirement (Figure 6.3(b)). The experiment was conducted varying the number of

jobs from 50 to 1000 and the value of k = 1 for KR and FFD cases. Figure 6.3(a)

reports the performance of different approaches keeping the value of ri = 0.9 for all

the jobs. For all the approaches the number of PM requirement increases as the

number of jobs submitted to the system increases. The number of PMs required for

REFR is lower than the other two (KR and FFD) approaches because it deploys

the replication whenever the system requires those. However, the extra deployment

for KR and FFD are fixed whether the replications are required or not. Here REFR

deploys the replication based on the reliability requirement of each job not in a random

way. As the number of jobs submitted to the system increases the performance gap

between the approaches increases. However, the same kind of observations are seen

(Figure 6.3(b)) in the case of different reliability requirements for jobs. The observed

phenomenon is due to the more number of replications are required to meet the

reliability requirement of each job.

6.7.2.2 Effectiveness of Eff-RRM as Compared to Other Approaches

Figure 6.4(a) and Figure 6.4(b) represents the number of hosting servers as the number

of jobs goes on increasing from 50 to 1000 with an interval of 50. The effectiveness

of Eff-RRM in terms of required number of PMs is compared with KR (as defined in

section 6.4.1 and k = 1) and FFD (as defined in section 6.4.2 and k = 1). Figure 6.4(a)
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Figure 6.5: Average VMs per task (AVT)

reports the effectiveness of Eff-RRM against KR and FFD by keeping the reliability

requirement of all the jobs to be the same (i.e., ri = 0.9). The number of host servers

(or PMs) increases as the number of jobs submitted to the system increases. The

number of PMs required for Eff-RRM is less as compared to KR and FFD. The lower

number of server requirement is due to the less number of replications are required

to meet the reliability requirement of each job in our proposed approach. Eff-RRM

selects the PMs efficiently which satisfies the reliability requirement just enough for a

task. Both KR and FFD approaches pick up k-extra copies of a job and try to allocate

them to the available PMs. KR performs worst among the three approaches because

it selects the PM randomly and allocates the tasks. It may so happen that some

high execution time jobs may not meet their reliability requirement. Figure 6.4(b)

reports the performance of the three approaches when jobs have different reliability

requirements. The performance of all three approaches shows a similar trend as shown

in Figure 6.4(a). However, KR and FFD have shown some irregular pattern than the

previous case. For the case where the number of jobs is less, the performance of KR

and FFD seems to be similar and as the number of jobs submitted to the system

increases the performance of FFD is better than KR.

6.7.2.3 Average VMs required per task (AVT)

The performance of our proposed approach evaluated through AVT (as per Definition

3). Keeping the parameters in the range as defined in Table 6.2, we have reported

the performance of different approaches through Figure 6.5. It is being found out
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Figure 6.6: Reliability guarantee ratio (RGR)

that Eff-RRM requires 14% - 31% extra VMs for its allocation to meet all the jobs

reliability and deadline requirement. However KR and FFD require more number of

extra VMs for their allocations. KR needs 23% - 43% of extra VMs and FFD requires

21% - 36% of extra VMs for the allocation of jobs.

6.7.2.4 Reliability guarantee ratio (RGR)

For further evaluation, we defined a term RGR (Definition 4) and compared our

approach with other approaches (KR and FFD). Keeping application and machine

parameters intact we report the results of RGR in Figure 6.6. The Eff-RRM approach

results in an RGR value to be 1.0 as it efficiently allocates the tasks to machines

where it’s reliability requirements are met. As our objective is to schedule the set

of jobs to machines so that their reliability requirements are well achieved. However

other approaches (like KR and FFD) deploy a fixed number of extra VMs for its

fault tolerance. Even though KR and FFD deploy extra VMs they miss to meet

the reliability requirement because the allocation policies are not efficient enough to

allocate the tasks to machines so that jobs will meet their reliability requirement. In

the KR approach, 9% to 13% jobs miss their reliability requirement, whereas in FFD

7% to 11% jobs miss their reliability requirement.
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Figure 6.7: Results by varying the reliability requirement level.

6.7.2.5 Sensitivity to Reliability Requirement of Jobs

In this section, we report the effectiveness of different approaches with a range of

reliability values (0.8 to 0.99) keeping the number of jobs to be constant (n = 500).

Figure 6.7 reports the number of hosting machines required as the reliability require-

ment level varies from 0.8 to 0.99. The number of servers required by Eff-RRM slowly

increases within the range of (0.8 to 0.9) and then suddenly increases as the reliability

requirement value reached beyond 0.9. Beyond the point, ri > 0.98, the number of

PMs required by Eff-RRM is greater than the number of PMs required by other ap-

proaches. The more number of required PMs is due to the more replications required

to meet the reliability requirement of each job submitted to the system. However,

in most of the cases, some jobs are unable to meet the reliability requirement in KR

and FFD approaches as shown in Table 6.3. Table 6.3 reports the RGR values in

percentage (%) of KR, FFD, and Eff-RRM approaches for the range of reliability

requirement values 0.92 to 0.99 (shown in the red circle region of Figure 6.7). The

proposed approach (Eff-RRM) uses more PMs to meet the reliability requirement and

hence the value of RGR = 100% for all the cases. However, the RGR value for KR

declines from 97.1% to 90.2% and for FFD it declines from 97.3% to 91.3% as the

reliability requirement of the jobs increases from 0.92 to 0.99. As a constant number

of replications are deployed for each job for the approaches (FFD and KR), so it may

so happen that some jobs unable to meet their reliability requirements.
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Table 6.3: Reliability guarantee ratio (RGR) in (%)

Approaches Reliability requirement (ri)
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

KR 97.1 96.4 95.8 94.2 93.1 92.1 91.1 90.2
FFD 97.3 96.6 95.3 94.8 93.3 92.4 91.9 91.3

Eff-RRM 100 100 100 100 100 100 100 100
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Figure 6.8: Results by varying the number of VMs per host (v).

6.7.2.6 Sensitivity to VM per PM

Further, to observe the effect of the capacity (γj) of PMs to the number of hosting

servers, we evaluated the performance of the three approaches keeping n = 1000, ri =

0.9, and all the PMs are homogeneous (i.e., all PMs can deploy the same number of

VMs). Figure 6.8 reports the result of the number of PMs required as the capac-

ity of each PM varies. As the capacity increases, the number of PMs required for

the allocation of the jobs decreases. Eff-RRM performs better than the other two ap-

proaches because it efficiently selects the machines for each task so that the reliability

requirement is fulfilled with less number of replications.

6.7.3 Result for Google traces

We used real-world traces, the Google cluster data [5] to evaluate the performance

of our proposed approach (Eff-RRM). The traces consist of different job parameters

which recorded over 25 million tasks. As the volume of data available with the Google

trace is huge, we had taken a random sample of 103 tasks and their give parameters
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Figure 6.9: Google trace results

for our experimentation. We had extracted the execution time of each job and the

number of tasks belongs to each job, which gives us the values of ei and vi for each

job under consideration. The common deadline value set to be D = max(ei)× ρ, and

for our experiment we had taken the ρ = 4 just for the computational purpose. The

reliability requirement of each job in the given settings taken as ri =random (0.85.

0.95). However, the machine parameters are taken as per the description given in

Table 6.2.

Figure 6.9(a) reports the number of PMs required for scheduling the jobs ranging

from 100 to 1000. The number of host servers (or PMs) increases as the number of

jobs submitted to the system increases. The number of PMs required for Eff-RRM is

less as compared to KR and FFD. The lower number of server requirement is due to

the less number of replications are required to meet the reliability requirement of each
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job in our proposed approach. Eff-RRM selects the PMs efficiently which satisfies the

reliability requirement just enough for a task. The pattern of resource requirement of

different approaches is the same as reported by taking the randomly generated data.

However, we observe the effectiveness of Eff-RRM against KR and FFD due to the

wide gap in resource usage for more number of jobs.

Figure 6.9(b) and Figure 6.9(c) reports the performance of different approaches in

terms of AVT and RGR respectively. AVT value increases as the number of jobs

submitted to the system increases and that is due to more number of replications

are required per task. The AVT value for Eff-RRM lies between 1.17 to 1.35 which

is quite less than the other two approaches (KR and FFD). The less value of AVT

implies less number of VMs required for task scheduling by our proposed approach.

Figure 6.9(c) reports the RGR value which drastically decreases for KR and FFD as

more number of jobs submitted to the system. As the value of k = 1 for KR and

FFD so the number of jobs misses their reliability requirement decreases. However,

the RGR value for Eff-RRM is 1 for all the cases because it effectively deploys the

replications for each task so that the reliability requirement for each job must be

satisfied.

6.8 Summary

Ensuring the reliability requirement of the jobs is extremely important. The de-

signed heuristics REFR and Eff-RRM effectively schedule the jobs to machines with

less number of replications to meet the reliability and deadline requirement in the

cloud environment. The approach REFR solves the problem where applications must

satisfy their reliability and deadline requirements with the set of machines with the

same failure rate, and Eff-RRM with the set of machines with different failure rates.

Based on the simulation results with randomly generated and real-world data, we

believe that the proposed approaches effectively schedule the set of latency-sensitive

independent parallel tasks with reliability requirements on top of a set of machines in

a heterogeneous cloud system. More application parameters in dynamic cloud envi-

ronment may be the possible extension of this work. Other optimization techniques

can be used to solve the problem under consideration and their theoretical analysis.

[[]X]\\
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7

Conclusion and Future Work

The growing demand for cloud services makes resource scheduling in the cloud to

be a challenging job. The scheduling of resources to different types of workloads

primarily depends on the QoS requirements of cloud applications. Further in the

cloud environment, heterogeneity, uncertainty, and dispersion of resources make the

scheduling decisions more complex. Researchers still face the challenge to select the

efficient and appropriate resource scheduling algorithm for a specific workload, which

can handle different types of QoS.

In this thesis, we have proposed efficient scheduling in the cloud environment with

different QoS (resource utilization, profit, reliability, and deadline) along with the

different task and machine environments. The proposed approaches are designed to

improve the cloud system performance in different ways like interference minimization,

profit maximization, and reliability optimization. We summarize the contributions of

the thesis as follows.

7.1 Summary of Thesis

First and foremost, we have proposed interference aware scheduling, where we de-

sign the linear regression model to predict the interference based on the resource

usage pattern of the tasks. Further, we designed the model which uses double ex-

ponential smoothing cascaded with FUSD to predict the resource requirement of the

batch of tasks based on the resource usage of the previous batch of tasks. Through

experimentation, we found that our proposed approach performs better than other

state-of-the-art approaches, in terms of task guarantee ratio, and priority guarantees
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ratio.

Subsequently considering the heterogeneity in cloud infrastructure and different re-

source requirements of applications in terms of constraints, we designed a constraint

aware scheduling approach to maximize the profit of the system. The proposed heuris-

tic of ordering and mapping for CAPM is used to schedule the latency-sensitive tasks

to machines in a heterogeneous cloud system to finish most of the tasks before their

deadline and maximize the profit for the cloud service provider. The simulation re-

sults with Google cluster data demonstrate that the proposed approach increase the

profit as compared to other approaches like PP-NP, GUS, and EDF.

Failures cause unavailability of services, which affects the reliability of the system.

So we address the reliability aware scheduling of tasks with hard deadlines in the

cloud environment. We analyzed and provided solutions for two special cases of the

problem where (a) tasks have a common deadline on the machines with equal failure

rate, and (b) tasks with equal execution time. For the general case of the problem, we

have devised four heuristics which minimize the weighted expected failure probability

of the system. In most of the cases, MRMLD based heuristic performs better than

other approaches.

Further extending this work, we designed reliability ensured scheduling with replica-

tion in a cloud environment. Here we proposed two heuristics to minimize the number

of host server requirements for the set of independent applications to satisfy their re-

liability and deadline requirements. The designed two heuristics REFR and Eff-RRM

which can effectively schedule the jobs to machines with less number of replications

to meet the reliability and deadline requirement in the cloud environment. Both

the heuristics are able to perform better than other approaches with less number of

replicated copies of the applications.

7.2 Future Research Avenues

The contributions of this thesis can be extended in a number of ways. Some of these

possible future research directions are listed below:

• Interference aware scheduling in hybrid virtualization environment :

In the first contribution we had discussed about interference aware scheduling

in virtualized cloud environment, where co-allocation of similar types of VMs
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are considered. Hardware virtualization and operating system-level virtualiza-

tion are two prominent technologies that are widely being used in modern data

centers, which is the backbone of the cloud system. The two predominant virtu-

alization technologies of virtual machine (VM) and docker container, each have

their specializations and benefits. However, we want to explore the application

performance due to co-allocation of VMs and containers on a single machine

in future. Further propose the scheduling approaches where the degraded ap-

plication performance can be handled along with improving the overall system

performance with better QoS. Further consideration of heterogeneous machine,

multipurpose tasks, dependent tasks make scheduling of tasks more challenging

in cloud environment. Here we considered the worst case execution time of the

tasks which may not be the ideal case always, so execution time variation along

with resource request during the execution time may be another extention of

the thesis work.

• Constraint aware scheduling :We plan to analyze the group of constraints

that apply to a collection of tasks. For example, there may be a requirement

that tasks be assigned to the same machine because of shared data. Character-

izing and benchmarking with inter-task constraints is complicated because tasks

and machines cannot be addressed in isolation. Further we want to explore the

effect of inter-task constraints to schedule the latency sensitive tasks to achieve

better QoS without violating the SLA. Always light weight virtualization i.e.

containers may not be beneficial for the group of tasks in less number submit-

ted to the system. So the mixing of two virtualization technology (VM and

container) can improve the system performance, where grouping of tasks can

be done through profiling informations.

• Heterogeneity aware tasks scheduling :With the increasing level of cloud

heterogeneity, optimal scheduling of resources to jobs from multiple tenants re-

quire effective synergy of application demands and supply of cloud resources.

We are interested to explore another category of constraints that relates to

fault-tolerance along with hard constraints (ones which are requirements rather

than preferences). A scheduler that explicitly recognizes this application level

heterogeneity via constraints specifications can do a better scheduling and re-

source management. As a continuation, we also plan to develop a simulation

platform to conduct such scheduling or QoS or performance trade-off studies.
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• Fault tolerance based scheduling : The notion of resource failure can be

integrated with the allocation process to enhance reliability. In this work we

have not considered that in our approaches. Resource performance variation

should also be added to the monitoring services to predict the possibilities of

failure before it occurs. Incorporating these features into the proposed model

will build greater robustness into the scheduling process. Detecting faults and

recovering the system after failure need to be improved and optimized because

it is a significant requirement in developing any resource management model.

To conclude, while there are many promises and opportunities that the cloud comput-

ing paradigm offers, still there are associated challenges and concerns. Among those

challenges, performance guarantees, profit, and reliability assurance are of foremost

importance. With this motivation, this dissertation contributes towards improving

the performance and reliability issues in cloud platforms. Through effective resource

management and task scheduling considering interference, constraints, profit, and

reliability, this dissertation makes a sincere attempts to extensively investigate the

proposed research aspects. This extends the help to pursue novel avenues for future

research explorations.

[[]X]\\
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