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Abstract

Embodied artificial intelligence involves agents that learn by interacting with

the environment directly. It fairs well and is robust compared to learning from

curated datasets. Such datasets are constrained and do not cover varied conditions

encountered in the direct interaction with the environment. Incorporating embodied

learning with lifelong learning, where the learning adapts to changing environment

and accumulates learned information over time, leads to a marked improvement in

the whole learning process.

The biological processes in nature have inspired the formulation of algorithms

to solve complex problems in the computational world. Evolutionary algorithms

are one such class of algorithms inspired by biological evolution. They are perfect

for embodied learning since it involves interacting and evolving as per the direct

interactions with the environment. On the other hand, Artificial immune systems,

inspired by the biological immune system, are ideal for achieving lifelong learning

in the computational world as they can preserve the learned information, which can

be reused as intended later. This thesis focuses on embodied lifelong learning to

evolve robot controllers with evolutionary algorithms and artificial immune systems

based methodologies.

The first contribution of the thesis focuses on embodied lifelong learning of

robot controllers. Evolutionary robotics employs unconventional techniques to evolve

controllers for robots based on their fitness values continuously. In most cases, a

parent controller is subjected to mutation to evolve its offspring. If the offspring

performs better than the parent, the former is made to replace the latter. This

essentially results in a significant loss of information learned by the parents over

generations. A straightforward workaround to circumvent this problem is to main-

tain a Hall of Fame (HoF ) comprising the best parent controllers for use in future

generations. In embodied evolutionary robotic scenarios, caching a large number

of controllers in an HoF would result in increased computational overheads while

xi



selecting the best out of them, resulting in a drastic reduction in performance. With

no means to find an upper limit to the number of controllers that can populate an

HoF a priori, devising a technique to dynamically regulate this population is imper-

ative. In this contribution, a novel method to evict the non-performing controllers

within an HoF based on the dynamics of the system is proposed. Experiments per-

formed using simulations, and also a real robot indicate a marked improvement in

the learning process due to the dynamic eviction policy.

The second contribution deals with enhancing the evolution of a single con-

troller. Artificial Neural Networks (ANNs) are used as robot controllers. Apart

from backpropagation, the ANNs are also evolved by neuroevolutionary techniques,

where their weights are randomly mutated, after which the performance of the ANN

is calculated. This contribution describes a novel mutation strategy that enhances

the performance of random selection by augmenting a dedicated mutational puis-

sance to every weight within the ANN. These puissances are either replenished or

consumed based on whether the performance of the ANN improved or deteriorated.

Mutational puissance thus, tends to preserve, in some form, the information on

how well the associated weight contributed to the performance of the ANN. This

technique in a robot enables it to evolve ANN-based controllers for specific tasks

on-the-fly. The experiments and results portrayed in this conclusively endorse the

efficacy of guiding mutation using the concept of puissance thereby enhancing the

evolution of the ANN-based robot controllers.

The third contribution is neuronal transfer learning, where the information

learned in one domain or environment is transferred to another to save the number of

computations and also to accelerate learning in a new domain. Such transfer learning

in Artificial Neural Networks (ANN) is performed by transferring some or all the

layers of neurons from within an already learned source ANN to a target ANN which

is then made to learn a new domain. Though such transfers are known to accelerate

the convergence of the target ANN, there is no hard and fast method to ascertain

which of the neurons or layers need to be transferred. While most methods advocate

the transfer of complete layers of neurons, this contribution describes an Immuno-

inspired transfer learning paradigm that aids in ascertaining the pertinent or Hot

neurons, which, when transferred, facilitate faster convergence of a target ANN.



The method uses the concept of an Idiotypic Network to evolve the temperatures

associated with neurons within the various layers of the source ANN. Temperatures

of those neurons which contribute more to the learning, increase making them hotter.

This paper also presents results obtained from experiments performed on dissimilar

datasets using this method, which clearly authenticates its efficacy.

The fourth and final contribution aims to integrate transfer learning with the

lifelong learning paradigm. The information learned by the controllers from the

robot inhabiting an environment is transferred to another robot in a different envi-

ronment. The target environment can be either similar or dissimilar compared to

the environment of the source robot. In the first contribution, the HoF pertained

to a single robot in an environment, whereas this contribution aims at transferring

the HoFs between the robots of different environments. The results from the ex-

periments indicate the acceleration in the learning and the efficacy of the neuronal

transfer of controllers.
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1
Introduction

Embodied Artificial Intelligence (AI) involves algorithms where the agents learn by

interacting with the environment directly. Learning is not performed using curated

datasets but rather by direct interactions with the environment [32]. This type of

learning can handle noisy and dynamic data in a given environment and is known

to be robust. Agents, both soft and hard, can use embodied learning. While soft

agents inhabit simulated worlds, robots which constitute their physical counterparts,

interact with real worlds [15].

Lifelong learning is a process of learning where the learning is accumulated

over time[101]. The learning process can thus, adapt to changing environmental

conditions. This process also learns and adapts as and when the system encounters

environmental conditions never seen earlier [55], making it different from embod-

ied learning. Embodied lifelong learning refers to the learning process that fuses

embodied and lifelong learning mechanisms. In this method, learning is performed

within dynamic conditions. It can adapt to changing environments and is able to

reuse the learned information in the past, while doing so.

1.1 Inspirations from Nature

Nature has been an efficient and optimal solutions provider for complex problems.

This is true even in scenarios where there are complex interactions between het-
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erogeneous entities. Biological processes observed in nature use simple yet effective

strategies which have evolved over several thousands of years, thus making them

robust and reliable. Several problems encountered in the domain of Computer Sci-

ence and Engineering share a level of commonality with those in biological processes

which seem to have been resolved eons ago in the biological world. Mimicking Na-

ture’s strategies to solve problems in the computational world thus, seems reasonable

[13, 38]. The translations of these biological processes encountered in Nature into the

computational world are often termed Bio-Inspired Algorithms, and the underlying

learning mechanisms fall under the category of Bio-Inspired Machine Learning.

Many such algorithms have been designed based on inspirations drawn from

insects, animals, biological processes of living organisms, and even biological evo-

lution. Insects being comparatively simpler organisms, have been a great source of

inspiration. Though individual insects could seem dumb, they are known to exhibit

exceptionally intelligent behaviors when grouped together in the form of swarms

or colonies. Various types of ants, bees, and wasps have been studied, and asso-

ciated algorithms have evolved from them. The Ant Colony Optimization (ACO)

algorithm, modeled based on the pheromoning behavior exhibited by ants in large

colonies [31] is one such example. The algorithm was inspired by the co-operative

foraging behavior of ants in a colony.

Such behaviors from the animal kingdom have been a constant source of inspi-

ration for solving problems. These may be either of an individualistic type or as a

team or a flock. The Particle Swarm Optimization (PSO) algorithm which is one

such, is based on the foraging behaviors exhibited by many avians. Introduced by

Kennedy et al. [67], PSO works on a flock of birds whose computational equiva-

lents are termed particles. Each particle changes its behavior based on - its internal

feeling, that of its immediate neighbors (local), and that of the entire flock (global).

These feelings are combined mathematically to produce the next position of the

particle in the environment. There are numerous other classes of bio- or nature-

inspired algorithms that model swarm intelligence. A review of such swarm-based

algorithms can be found in [131, 23].

Based on the Darwinian evolutionary principles, where life forms were opti-

mized and adapted, Evolutionary Algorithms (EA) [9] form one of the effective
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methods for optimization in the computational world. Algorithms inspired by bi-

ological evolution have opened up a plethora of solutions in the area of machine

learning [5].

Another class of bio-inspired algorithms is inspired by immunology. The im-

mune system in vertebrates can effectively deal with trillions of antigens. Apart

from a quick response, the system is highly adaptable, robust and also decentral-

ized. Most importantly, the immune system remembers (memory) the manner in

which the past antigens were eliminated [70]. Inspirations from the Biological Im-

mune System (BIS) have resulted in a new paradigm known as the Artificial Immune

System (AIS) which uses theoretical immunology to solve many a problem in the

computational world [26, 120, 10].

One of the major application areas of bio-inspired computation is in the field of

robotics. The vast diversity exhibited by processes in the biological world provides

for classic inspirations to mimic them in the domain of robotics. Robots have

been made to learn low and high level behaviors including locomotion, navigation,

manipulation, swarm and co-operative behaviours, based on algorithms inspired

from Nature [102].

1.2 Learning in Robots

A robot senses its environment through a set of on-board sensors and acts on the

environment using its actuators. In the case of humanoid robots, the actuators could

be pneumatic, hydraulic, or electric ones, whereas, for wheeled mobile robots, the

motors attached to the wheels form the actuators. The controller of a robot decides

which actions are to be taken by it. These controllers can be either pre-programmed

to contain a set of condition-action rules or made to learn them dynamically on-the-

fly. The former case is used when the environment and the rules of engagement with

it are known a priori while in the latter case, a learning algorithm is integrated into

the controller, which learns the actions to be performed as per the defined objectives.

Based on how the controller performs within its environment, the robot receives

rewards or penalties, which in turn enhance its learning. Learning of such controllers

could be done offline with a human being in the loop. Once the learning process is
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complete, the learned controller model is transferred to the robot. Learning could

also be performed online and on-board the robot in an autonomous manner. Though

online learning is more challenging and results in the actual use of the robot resulting

in wear and tear, it is preferred due to the absence of the extra step of transferring

the learned controller to the robot. In addition, learning online makes the robot

tackle and adapt to changing environments more effectively.

The controller of a robot could comprise a set of simple if − else rules or fuzzy

logic-based rules [89]. Artificial Neural Networks (ANN) have also been widely used

to control robots [40]. Due to their smooth input to output transitions and resistance

to noise, ANNs are often preferred as robot controllers. In the work reported in this

thesis, ANNs form the controllers of the robot.

Learning to control in autonomous robots is a non-trivial problem. Since con-

ditions within the environment are always subject to change it is not feasible to

handcraft every condition that a robot may encounter. The main challenges per-

taining to the realization of robot controllers that can learn and adapt to changing

environments are addressed below.

1.3 Research Challenges and Objectives

Realizing robot controllers that learn, entails numerous research challenges. Some of

the more prominent methods used and the challenges they pose, have been described

below.

1. Learning from Scratch (with no human intervention): The emerging paradigm

shift to Embodied AI [32] makes use of intelligent algorithms and agents that no

longer depend on datasets of images, videos, or text curated and made available

a priori on the Internet or elsewhere. Agents that use Embodied AI learn by

interacting directly with their environments using an egocentric perception,

much like human beings. Embodied robots thus, have no knowledge of how

to behave in their environments. Their controllers start learning and evolving

from scratch with no human intervention by interacting and performing actions

within their environment. While learning the controllers for a robot, it is ideal

if the controller is not provided with any information beforehand as this may

4



1. INTRODUCTION

at times lead to a bias and increase the number of computations to emerge

out of this bias. Such a bias may hinder the learning of the robot’s controllers

or the learning may cease altogether, which is where the challenge lies.

2. Online and On-board Learning: As mentioned earlier, offline learning involves

learning the controller without the real robot in picture and involves the ad-

ditional step of deployment of the learned solutions on the real robot. Once

deployed, such learning often cannot adapt to changes in the environment.

Online-cum-On-board learning attempts to mitigate these shortcomings by

making the robot learn by sensorimotor toil [17]. However, this type of learn-

ing has to cope with the computational resources and power constraints avail-

able on-board the robot without compromising on the quality and efficiency

of learning, which poses a challenge.

3. Learning a complex task efficiently: When the robot is posed with a complex

task in an online and on-board manner, learning to perform it is challenging

due to power and computational constraints. Both time and energy in terms

of power, could be wasted in the several trials that the robot performs during

the learning process. There is also a possibility that the robot may eventually

fail to learn such a complex task altogether. Addressing this issue without

compromising the quality and efficiency of learning is, thus, vital.

4. Learning Controllers - One or Many? : Current AI approaches use Artifi-

cial Neural Networks (ANN), both shallow and deep, to learn aspects, us-

ing datasets, available a priori. Mimicking a similar style in the domain of

robotics, an ANN-based controller could be made to learn behaviors a robot

should possess in a given environment. Learning could be done offline if the

data were available, or online, otherwise. However, real environments are

dimensionally very complex and, worse, noisy. It is highly possible that an

ANN-based controller would learn one task online and then later forget the

same when another such task or behavior is to be learned. In brief, having

just one controller may not solve the problem of learning several behaviours

that need to be learned dynamically. This calls for multiple controllers, each

of which can learn smaller sets of tasks or behaviors. This paradigm would,
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however, result in the creation of several such controllers, handling of which

can prove to be highly cumbersome and challenging, especially in resource-

constrained robotic scenarios.

5. Preserving the Learned Controllers: When a robot has learned one aspect, it

is essential to preserve the controller that has learnt it, so as to avoid redun-

dancy in the learning exercise. Not doing so could lead to a wastage of both

computational time and power. It is also necessary to identify which of these

controllers need to be preserved, while also ensuring computational efficiency,

which is a challenge.

6. Discarding Unused Controllers: Although it is necessary to preserve the learned

controllers for future use, stashing many such controllers can make the robotic

system sluggish. The fact that resources on-board the robot are generally

sparse worsens the problem. Thus, it is essential to discard those that are

comparatively ineffective and ones that are not being used by the robot. De-

ciding when and which of these controllers need to be discarded poses another

challenge. Discarding a controller should be based on how effective and useful

it has been all through the life of the robot.

7. Reuse of Learned Controllers: Controllers that have proved to be more effective

in the past need to be preserved. However, reuse of the same by a robot, calls

for a selection mechanism that is capable of selecting the best fit controller

from these preserved ones. The selected controller needs to cater to the current

state or condition of the robot. The selection mechanism thus, needs to be

judicious.

8. Avoiding unnecessary computations: The evolution and hence learning of con-

trollers should not be random. It should avoid unnecessary computations and

focus on ensuring efficient learning and fast convergence.

9. Transfer of Learning: Having learnt to adapt and behave in an environment,

it would be propitious if these learned controllers can be transferred to other

robots struggling to learn the same or different behaviours/tasks in either

similar or dissimilar environments. This would give a head-start for the robots
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thereby decreasing on sensorimotor toil and consequently hastening learning

convergence.

10. Deciding on What to Transfer: Transferring the whole learned controller to

another robot(s) may not always be advantageous. In fact, often times, such

transfers tend to worsen the learning exercise. This is true, especially when

the source (where it was learnt) and target (where it is going to be used)

environments are different. Such a transfer can, at times, decelerate and make

the learning process go haywire. It is thus, vital to have an expedient method

for selecting and transferring portions of the controllers that will ensure that

the learning at the target side is enhanced.

This thesis aims to address these challenges discussed above. Proposing so-

lutions to these challenges form the major objectives of the work reported in this

thesis. The initial portions of the thesis focus on mechanisms which address the

challenges in evolving robot controllers that learn from scratch in an online and

on-board manner. Mechanisms to cache and reuse the more effective controllers and

also discard the ineffective ones, have been covered. The thesis then concentrates on

a single controller and describes techniques to make it learn efficiently by avoiding

unnecessary computations, thereby leading to faster convergence. The latter part

of the thesis delves into the novel mechanisms to transfer the right portions of the

learned controller. It describes a method of finding these right portions which when

transferred prove to be more effective than conventional transfers. Such a transfer

of learning has been propounded and initially proven in the context of Deep Neu-

ral Networks (DNN), for both similar and dissimilar source and target datasets.

Later the thesis reports of such a transfer effectively implemented among robots in

both similar or dissimilar environments. The thesis thus, presents methods for both

evolving efficient learning controllers from scratch and eventually transferring the

pertinent portions of the learned models for use in other environments.

1.4 Background

This section presents a brief review of Evolutionary Algorithms and Artificial Im-

mune Systems, both of which form the core inspirations in the development of the
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mechanisms described in this thesis.

1.4.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) form a class of bio-inspired algorithms that mimic

the theory of biological evolution [6, 33]. They are based on the Darwinian theory

of biological evolution, which explains the adaptive changes of the species by the

principle of Natural Selection [7]. Natural selection favors those species that adapt

to their environmental conditions for survival and further evolution. Differential

Evolution [24], Genetic Algorithms (GA) [51, 57] and Genetic Programming (GP)

[75] are few of the flavors of Evolutionary Computational algorithms.

Evolutionary algorithms model the collective learning process within a popu-

lation of individuals (or genomes). In EA, a linear chain of integers represents an

individual (or a genome). Initially, an algorithm-dependent method initializes the

population of individuals. The population evolves towards the better regions of the

search space through a process that includes selection, recombination and mutation.

Crossover is a type of recombination where a certain portion of the two individuals

are exchanged to create a new individual [116]. In the first phase of the evolutionary

algorithm, the fitness of the individual is evaluated. The fitness value determines the

quality of the new individuals in the space and is calculated based on a predefined

Objective (or Fitness) function. After this evaluation phase, the individuals with

higher fitness values, i.e., the qualitatively better ones, are often favored over those

with lower quality in the selection process. This is followed by the variation phase,

where either a crossover or mutation process is applied to the selected individuals.

In the crossover, which is performed based on a certain probability, the parental

information of two individuals is made to cross over to form two new descendants.

The mutation process, which is carried out with a lower probability than that of

crossover, introduces innovation into the population of individuals. Each cycle of

this evaluation-selection-variation is termed as a generation. Generations continue

till a stopping criterion is met, which could usually be a preset maximum number

of generations or when an individual has achieved maximum fitness.
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Variants of EA

Neuroevolution: In order to learn the weights of an Artificial Neural Network

(ANN), backpropagation is the most preferred method. Evolutionary algorithms

provide an excellent alternative to learning the weights of an ANN. The ANN is

represented as a genome, and the mutational process is applied to tweak its weights

[130]. Like the conventional EA, the fitness score decides the goodness of a mutated

ANN. Some neuroevolutionary methods also tweak and evolve the architecture of

the ANN in addition to its weights [39].

Evolutionary Strategies These variants of EA avoid recombination and

make use of only selection and mutation [86, 42]. One such popular evolution strat-

egy is the (1+1) Evolutionary strategy [14], where a single offspring is created by

applying a mutation operator on a single individual. If the mutated offspring per-

forms better (i.e. has a higher fitness) than its parent, then the former replaces the

latter; else, the parent is retained and the extent of mutation performed on it, is

increased, and the process continues. The parent genome is referred to as a Champ

while the offsprings that are evolved from it, are called as Challengers.

Evolutionary Robotics

Evolutionary robotics applies the evaluation, selection and variation for the evolving

controllers of the robots based on their fitness values. [30, 98]. Fitness functions

depend on the desired behaviors or tasks that the robots are supposed to learn.

Robots are made to interact with the environment using the evolved controllers,

and the behaviors, which are being evolved, are observed. Based on the observed

behaviors of the robot and the desired objectives, a predefined fitness function is

used to rate the controllers. The individual controllers for the next generation are

selected based on their fitness values. These selected ones are made to produce

offsprings using variation techniques such as mutation and crossover.

Embodied Robotics

Embodied Evolution in Robotics refers to evolving the controllers of the robots on-

board one or many robots [37]. Instead of learning from the datasets, offline and
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(a) (b)

Figure 1.1: a) Depiction of antibodies and antigen with their respective paratopes
and epitope b) Activated antibodies which recognize antigen and non-activated
antibodies

offboard the robot, one or more robots learn by directly interacting with the envi-

ronment [32]. This environment, either simulated or real world [108], can enforce

different kinds of constraints on the robot. Since the environment is partially ob-

servable and not static, the evolution of robot controllers under such environments

is always a challenge.

The evolutionary algorithms form an excellent choice for evolving controllers

for robots. However, since they do not have a memory component associated with

them, such controllers are prone to loss of learned information. In order to fully

utilize the potential of an EA, overcoming this drawback is sine quo non.

1.4.2 Artificial Immune Systems

Artificial Immune Systems (AIS) are those bio-inspired algorithms that derive their

computational intelligence by mimicking the complex processes that constitute a

Biological Immune System (BIS).

The Biological Immune System (BIS) comprises a set of defense mechanisms
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found only in vertebrates. Several biological processes protect the host against a

large spectrum of invading antigens [25]. The primary aim of the immune system

is to identify the self (host cells) and non-self cells (antigens) in the body and

eliminate the latter. In order to do so, the immune system produces a range of

cells such as B-cells, Cytotoxic T-cells, Helper T-cells, etc. These cells, in turn,

secrete proteins known as antibodies. The primary function of these antibodies is

to identify the antigens, tag and kill them and eventually aid their removal from

the body. The recognition of the antigen by the antibody is based on the binding

between the two. The extent of this binding is called affinity. More the binding,

the better is the affinity. The binding site on the antibody is called the paratope

and the complementary area on the antigen is called the epitope. While a specific

antibody has the same type of paratopes, an antigen can have differently shaped

epitopes (as shown in Fig. 1.1a). Antibodies that recognize an antigen (that is,

when the paratopes are complementary to an epitope of the antigen) get activated.

This behavior is illustrated in the figure 1.1b.

Various immune theories have been proposed in the domain of AIS, the promi-

nent ones being Clonal selection, Danger theory, and Immune Network theory. The

Clonal selection theory [2] states that whenever any antibody recognizes an antigen,

a clonal expansion occurs, leading to an increase in its population. Somatic hy-

permutation [69] increases the average affinities of these clones towards the antigen

that triggered the cloning. Clonal expansion also leads to the creation of memory

cells, [125] which hold the information of the antigen to utilize them in the future, in

the case of a similar attack. Danger theory [84] postulates that when a cell dies an

unnatural death, it sends out danger signals and establishes a danger zone around

itself [4]. When the antibodies sense these signals, they are attracted towards this

zone where they capture and kill the antigens. Those having more affinity undergo

clonal expansion. This increase in the population of antibodies that are better suited

to the situation aids in quickly curtailing the growth of the antigens. The Immune

network theory [61], on the other hand, propounds that antibodies on their own form

a network even in the absence of an antigen. This network is called the Immune

network. This network is formed based on stimulations and suppressions amongst

the antibodies and their respective concentrations. Farmer et al. [36] designed the
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equations which model these interactions between the antibodies and the invading

antigen.

AIS-based learning exhibits the Lifelong learning phenomenon, a mechanism

that not only improves the learning over time but also adapts and learns to adapt to

the new conditions while also remembering how the antigens were effectively tackled.

The antibodies of a BIS can learn to eliminate new invading antigens, remember

the mode of tackling so that, in future if the same attack occurs, it can be quickly

quelled. Adaptation to contain new antigenic attacks and a memory for each such

attack, makes the BIS a perfect inspiration for achieving lifelong learning.

From a computational perspective, a population of antibodies is equivalent

to a population of solutions in an EA. The respective affinities of the antibodies

are synonymous to the fitness values of the solutions in an EA. It may be noted

that, unlike in an EA, the antibodies can clone based on their affinities towards

the antigens, thereby creating sub-populations of heterogeneous antibodies. An

extensive survey of AIS has been reported by Dasgupta et al. [29, 27, 28]. AIS

based algorithms have been applied in various areas of Computer Science such as

computer security [44, 43, 68], data mining [52], optimization [53, 121], anomaly

detection [48], pattern recognition [79], etc. AIS has also been widely used in the

field of robotics [60, 114, 129, 94, 105, 104]. Hart, et al. have [56] reported that

the majority of publications on AIS have been on benchmark problem instances

rather than real-world problems. The authors have also reported that AIS-based

applications in robotics are mostly simulated in artificial environments. The need

to envisage and implement AIS based applications in physical environments is thus,

imperative.

Combining EA and AIS for Learning Robot Controllers

The nature of the EA, the evaluation-selection-variation process, ensures that every

condition encountered by the robot and the robot’s corresponding action is taken

into account and evaluated so as to aid the learning of the robot controllers. This

thesis focuses on EA-based learning of robot controllers. However, as explained

earlier, the EA is prone to loss of learned information in the past, during the evolu-

tionary process. On the other hand, an AIS is a much more promising technique to
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adapt to dynamic conditions without the loss of such learned information. Such a

feature, if incorporated within a robot’s controller, will drastically ameliorate its per-

formance especially when the environmental conditions are complex and dynamic.

This work reported in this thesis, thus describes such an integration of AIS and

EA based techniques, that culminates in an apt recipe for lifelong learning in the

domain of robotics.

1.5 Contributions of the Thesis

This section describes the significant contributions of the thesis in brief. The first

contribution involves learning the controllers from scratch, preserving and reusing

(or caching) them efficiently to realize embodied lifelong learning. The next con-

tribution focuses on enhancing the evolution of the individual controllers. This is

followed by a novel mechanism for neuronal level transfer learning in Deep Neural

Networks. The last contribution integrates lifelong learning with this mechanism

for transfer learning and embeds it in robot controllers to enable their transfer from

one environment to another.

1.6 Embodied Lifelong learning

This contribution highlights embodied learning from scratch and aims to evolve

controllers for a robot in an online and on-board manner, starting with no previous

information. At the core of each of the robot’s controllers, is an ANN. It may be

noted that one robot has several such ANNs each constituting a controller. The

robot’s workspace is defined by the set of all vectors each comprising the values

obtained from its sensors at a particular instant of time. A subset of these vectors

which are close-by (within a defined radius) constitutes an active region. Controllers

are evolved for each such active region.

The initial parent controller gets replaced by its mutated offspring if the latter

outperforms the former. The eviction of the parent controller also leads to the loss of

learning achieved by the parent. In this contribution, we propose a novel method to

maintain a Hall of Fame (HoF) of controllers comprising the best parents, which can

be reused in future generations. Instead of evicting the parent controller upon being
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replaced by the offspring, it is cached in an HoF. However, caching a large number

of controllers can lead to an increase in computation, thereby drastically reducing

performance. One way out is to limit the number of controllers cached in the HoF.

There is however, no real method to establish the optimal value of the number of

controllers to be cached especially when the learning is carried out in an online

and on-board manner. It is thus, essential that the system adapt to the changing

environment and regulate the number of controllers it needs to store in an HoF by

adding or evicting the cached ones as and when required. This dynamic regulation

of the number of controllers residing in an HoF calls for a proper mechanism for

eviction of the non-performing ones based on the current state of the system. The

formulation of this mechanism forms the essence of this contribution. Using two

new concepts - Resource and Concentration, a mechanism to determine which of

the controllers need to be re-selected or evicted from the HoF has been described.

This mechanism features:

1. Caching of the parent controller in a HoF upon being replaced by the offspring

controller

2. Evicting controllers based on the dynamics of the system

3. Can cater to both simulated and real-world robots

Experiments were performed both on real and simulated robots with and with-

out the use of the concept of HoF. In the non-HoF based work, there was no caching

of controllers, dynamic regulation or eviction. Experimental results show a remark-

able performance in the learning when HoF based method is used as compared to

the one which does not use it. The results also show the importance of the use

of Resource and Concentration in the eviction and re-selection of the controllers

from an HoF, respectively. This contribution helped achieve the evolution of high-

performing controllers from scratch, under various conditions, even for a complex

task viz. Phototaxis cum Obstacle Avoidance, while dynamically maintaining the

required number of controllers in HoF.
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1.7 Enchancing Neuroevolution

This contribution focuses on ameliorating the evolution of a single controller in

robots. The controller, which drives the robot, is an Artificial Neural Network

(ANN). During the evolution of these ANN-based controllers, an offspring controller

is obtained by randomly mutating all the weights of the parent controller. For such

tweaking of weights, a Gaussian-based mutation process is followed. However, if all

the weights are randomly mutated simultaneously, the performance may degrade.

Such performance degradation is observed because weights that have attained their

optimal values also get disturbed during the mutations. In this work, we propose

a novel method for mutation of weights by augmenting a new concept termed mu-

tational puissance, to every weight in the ANN. This puissance value, associated

with every weight in the ANN, is increased or decreased based on whether the per-

formance of the ANN improves or degrades. Thus, puissance indicates how each

of the weights has individually contributed to the performance of the ANN over

time. Such a puissance guided mutational strategy tends to accelerates the evolu-

tion of the ANN, thereby improving its performance over time. Experiments were

conducted to evolve ANN-based controllers for the robot using this method. Results

obtained clearly indicated that the puissance based method works better than the

methods where all the weights are mutated in a random fashion.

1.8 Neuronal Transfer Learning

If the information learned in one domain or environment could be transferred to

another, it can save a large amount of time and computation and also accelerate the

learning process in the new domain/environment. This is true, even in the world of

robotics.

Such a transfer can also aid the reusability of learning, not just within the

system but also across systems. This contribution comprises a novel mechanism to

transfer the learning achieved from one ANN to another. The ANN from which

the learning is being transferred is termed the source ANN, and the one where it

is transferred is termed, the target ANN. Conventional transfer learning methods

transfer a whole layer from the source ANN to the target ANN. Such layer-based
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transfers are known to be beneficial only when the source and target ANNs deal with

similar datasets to learn. In other words, such a transfer works when the source and

target domains are alike. Transfer learning for dissimilar domains has hardly been

successful. This work introduces a novel neuronal level transfer from the source to

the target ANN, which can work in cases where the source and target datasets are

dissimilar.

The results obtained from experiments on both shallow and deep neural net-

works establish the efficacy of the proposed method. The results indicate that the

proposed method works best in the transfer of learning in the ANNs with learning

similar data. They also highlight remarkable improvements in the case of dissimilar

data. Every transferred layer in the source DNN was divided into populations, and

the top 2, 3, and 4 neurons were transferred from each population to the respec-

tive target layers. It was observed that the lower order transfer of neurons leads to

better accuracies in the target DNNs. This work proves the effectiveness of the neu-

ronal level transfer in both shallow and deep ANNs. In the following contribution,

we focus on using this method to transfer the learned information in the robotics

domain.

1.9 Integrating Lifelong learning and Transfer Learning

This contribution focuses on transferring the information learned by the controllers

from the robot inhabiting an environment to another robot in a different envi-

ronment. The environment of the target robot can be either similar or dissimilar

compared to the source robot’s environment. In the work described in 1.6, the Hall

of Fame (HoF) pertains to a single robot in its environment. In contrast, the work

presented in this thesis introduces a strategy to transfer the HoF between the robots

of different environments, i.e., from the source robot to the target robot residing in

a similar or dissimilar environment. Instead of the conventional method of trans-

ferring the complete HoF from the source to the target, we focus on selecting and

transferring only pertinent neurons from the controllers within the source HoF to

those of the target.

The results from the experiments bring out the efficacy of such a neuronal
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transfer of controllers from one robot to another residing in a different environment.

It also accelerates the learning of the controllers in the target robot.

1.10 Outline of the Thesis

The thesis comprises six chapters. The chapter wise organization of the thesis is

given below:

1. Chapter 1: This chapter provides an introduction, survey, and the motivation

for the research presented. The major terminologies that appear in the thesis

are also discussed.

2. Chapter 2: The work done in evolving the controllers for the robot from scratch

- including preserving, reusing (i.e., caching), and evicting the controllers are

covered in this chapter together with the results obtained. The contents of

this chapter have been published in [74].

3. Chapter 3: The Chapter elaborates on the efficient neuroevolution of a robot’s

ANN based controller. Experimental results are also included herein. The

contents of this chapter are based on the work published in [72].

4. Chapter 4: In this chapter, the method of neuronal level transfer from a source

ANN to the target ANN has been described, together with the results obtained

from experiments performed. The chapter is based on the work published in

[73].

5. Chapter 5: This chapter describes how the work reported in previous chapters

can be implemented in robots. Results obtained from such an implementation

have been presented to emphasize that the contributions of the thesis can be

used in the domain of robotics.

6. Chapter 6: The conclusions and future research directions are presented in

this final chapter.

;;=8=<<
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2
Embodied Lifelong Learning

Evolutionary Robotics (ER) deals with the process of evolving controllers for

robots that mimic natural evolution, which consequently aids in learning to ex-

ecute a set of given tasks. Initially, a set of chromosomes, which constitute the

initial population, are randomly generated. These chromosomes are decoded into

controllers, downloaded onto a robot which in turn executes the task(s) in accor-

dance with the controller. While a robot carries out its tasks in an environment,

the performance of its controller is evaluated continuously.

These chromosomes or controllers are made to evolve into newer ones using

genetic operators such as reproduction, mutation, and crossover, after which the

individuals of this newly generated population are evaluated. This evolutionary

process is continued until the conditions (such as the performance score, number

of generations, etc.) set by the user are eventually satisfied [97]. Such robot con-

trollers are either evolved offline and then transferred onto the real robot, or directly

evolved on-board the robot during run time (online). In the on-board evolution of

controllers, the evolution is autonomous and occurs while the robot actually executes

the given task in the environment.

Most often each controller constitutes either a set of if-else rules, a Propor-

tional–Integral–Derivative (PID) controller or an Artificial Neural Network (ANN).

Due to their robustness to noise and a smooth input to output transformation,

ANNs have proved to be a more popular choice while modelling robot controllers
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[11, 41, 113]. Controllers are evolved to solve a defined set of tasks and are evaluated

using a fitness function [92]. The fitness function exerts a selection pressure on the

evolutionary process such that controllers with better fitness values evolve.

Traditional ER methods make use of a single controller that is evolved to ac-

complish a given task. However, if the task is complex, the evolutionary process

suffers from bootstrap and deception issues [112]. Bootstrap issues occur when the

fitness function fails to apply substantial selection pressure to evolve relevant con-

trollers with higher fitness values. Deception issues arise when the controller tends to

saturate at a local optimum and is deceived into a state that makes it cease further

learning. Incremental evolution, human-in-the-loop, or behavioral decomposition

[112] can be used to avoid such issues. In incremental evolution, a complex task

is aimed to evolve incrementally by decomposing it into individual easily solvable

components. The experimenter manually switches the evolution from one compo-

nent to another. The human-in-the-loop approach involves a human supervisor to

guide the search away from the local optimum. Behavioral decomposition [20] is an

approach, where the task to be learned by a robot is divided into various subtasks,

and the corresponding controllers are evolved to solve them. An arbitrator then

performs the job of selecting the right controller that could be effectively used to

execute a given subtask.

Semwal et al. [110], introduce an immunology inspired distributed, embodied

action-evolution cum selection algorithm, wherein different controllers for different

regions of the search space are evolved. The algorithm evolves and selects the

appropriate controller, which has the highest fitness value corresponding to the

antigenic space. The boundary of the search space for the evolution of a single

controller associated with a subtask is tuned using a hyper parameter called the

cross-reactivity threshold, ϵ. In their work they have reported that their approach

has outperformed the (1+1) Online Evolutionary Algorithm ((1+1) Online EA), in

which a single generic controller is evolved for the whole of the search space.

Generally in the evolution of controllers, if the offspring controller outperforms

its parent, the former replaces the latter. When the controllers are modelled using

Artificial Neural Networks (ANN), the past historical performance of the parent

ANN based controller is ignored and it is evicted from the system as and when it
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shows a sudden drop in fitness. The eviction of the parent from the system, results

in losing all the learned information acquired by the evicted parent controller so

far. The currently selected offspring may have performed well in a space where the

parent was poor in doing so. There is, however, no assurance that this offspring

will perform well in other regions of the search space where the parent exhibited

better performance. This strategy will thus, force the offspring to toil again and

evolve to learn to cope up in spaces where the parent had already learned to perform

well earlier. This phenomenon can be attributed to catastrophic forgetting [45] in

ANNs. Such a reset in the learning of a task by the ANN based controller is

of significant concern, where most of the aspects will need to be re-learned, thus

resulting in unnecessary delays and computational overheads in the evolutionary

learning process.

One possible workaround to circumvent this inherent forgetting is to cache the

best controllers evolved in the past and re-use them as and when required. The

cache which is much like a Hall-of-Fame (HoF) [107], comprises the best controllers

encountered so far. Whenever the fitness of the current controller drops below that

of any in the HoF, the best controller from within the HoF is selected as the next

contender.

This chapter describes an enhanced version of an earlier work on an immuno-

inspired action-evolution cum selection algorithm reported in [110], referred to herein

as iAES, by augmenting it with Halls-of-Fame that individually caches and evicts

the controllers within, based on the dynamics of the system. The proposed iAES-

HoF algorithm follows an embodied approach, where the evolution of controllers is

the result of the algorithm running on a single robot. The dynamics of the system

described in this work controls the number of controllers to be maintained in an

HoF and also decides which of them needs to be retained or evicted. The system

dynamics also decide the re-selection of a controller from the HoF. At first sight,

one may strongly feel that the the eviction and re-selection mechanism could use

Quality-Diversity (QD) based algorithms [103]. However, retaining a diverse set of

controllers based on QD algorithms, may result in the eviction of controllers that

have been exposed to various conditions. Such controllers inherently possess better

experience and more knowledge in terms of tackling a variety of inputs. The basic
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2.1. BIOLOGICAL IMMUNE SYSTEM

Figure 2.1: A Shape Space depicting the Active Regions within

objective here, is to retain controllers which are experienced and have exhibited

better performance over time rather than diverse ones. QD based algorithms would

tend to retain, diverse but inexperienced controllers, which is the reason why use of

such algorithms has been avoided.

This work introduces the concept of a Resource associated with a controller,

similar to the one referred by [50]. The Resource is either consumed or replenished

based on how well the associated controller performs. It inherently carries informa-

tion about the past performance of the controller and can thus be used to decide the

retention or eviction of the associated controller from the HoF. The concept of the

Concentration for the re-selection of the controllers from the HoF is also introduced.

This work presents results based on experiments performed in simulation and also

using a real robot. The effects of variations in ϵ, which alter the extent of search

space, and the effects of Concentration and the Resource of the controllers in the

re-selection and eviction of the controllers from the HoF, have also been studied and

presented.

2.1 Biological Immune System

The primary aim of the Biological Immune System (BIS) is to identify the self

and non-self (antigen) entities in the body and to eliminate the latter. In order

to do so, the immune system produces various cells, such as B-cells, Cytotoxic T-

cells and Helper T-cells. These cells, in turn, secrete proteins known as antibodies.

The primary function of an antibody is to identify the antigens and tag them to
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2. EMBODIED LIFELONG LEARNING

be eventually removed from the body. Recognition is based on the binding of the

antibody (Ab) on the immune cell with the antigen (Ag). This binding site on

the antibody is called the Paratope (Pt). The complementary area on the antigen

Ag, is referred to as the Epitope (Ep). An immune cell has a large number of

antibodies, all of which have the same type (shape) of paratopes. They are thus,

said to be monoclonal. An antigen, however, can have differently shaped epitopes.

The affinity (ξ) determines the extent of binding between the Paratope and the

Epitope.

2.2 Artificial Immune System

An Artificial Immune System (AIS) is the counterpart of a BIS in the computational

world. In an AIS, the state of the environment is represented as an Antigen (Ag)

which is in the form of a vector. The Antibody (Ab) is that entity which takes an

appropriate action to deal with the current environmental state, which is defined by

the Ag. Antibodies which have high paratope to epitope affinities are the ones that

are selected to quell the antigen(s). Since affinity need not be cent percent (i.e. an

exact complementary match) any given antibody can recognize the antigens whose

Epitopes lie in a part of a finite shape space as depicted in the Figure 2.1 . The

small region, referred to as the Active Region (χ) of an antibody, is characterized

by a parameter called the Cross Reactivity Threshold (ϵ). The smaller the value of

ϵ, smaller is the active region, χ, which in turn means that it would require more

distinct antibodies to cover a given shape space. On the contrary, a greater value of

ϵ would mean that each χ covers a larger area, reducing the number of distinct active

regions (χs) within the shape space. This also means a lesser number of distinct

antibodies. It may be noted that an antigen Ag whose affinity is lesser than the ϵ

of an antibody Ab will stimulate all those antibodies lying in the active region of

Ab. Antibodies stimulated by an antigen, clone themselves, thereby increasing their

concentration and consequently curbing the antigenic population. It may be possible

that an antigen lies in more than one active region, as depicted in the overlapped

regions Figure 2.1 . Since two antibodies are involved herein, the antigen is curbed

by that antibody which has greater affinity with the antigen.
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Immune Network Theory - According to the Immune Network theory or the

Idiotypic Network [61], the antibodies form a network among themselves. Apart

from the paratope, the antibodies also have an Idiotope (Id) that can match with the

paratopes of other antibodies. An antibody is stimulated when its paratope matches

complementarily with the epitope of an antigen or when its idiotope matches in a

similar manner with the paratope of another antibody; else it results in its suppres-

sion. Stimulations and suppressions respectively, lead to an increase and decrease

in the concentration of that antibody. The relevance of these metaphors to the

proposed work described herein, is detailed in the section 2.4.

2.3 Related Work

This section provides a brief overview of how an AIS has been used in the realm of

robotics. HoF based methodologies are also discussed.

2.3.1 AIS in Robotics

Artificial Immune Systems (AIS) have been used extensively to generate and arbi-

trate behaviors in robots.

In the Biological Immune System (BIS), a non-self entity or invader is termed

as an antigen while an entity belonging to BIS responsible for eliminating these

antigens is called as an antibody. In an AIS, often times the learned behaviors

emulate the antibodies while the environmental state of the system, acts as the

antigen.

Ishiguro et al. [60] state that the immune system provides a new paradigm

suitable for dealing with dynamic problems with unknown environments rather static

ones. They have proposed a BIS inspired approach to behavior based artificial

intelligence. They have applied the proposed method to control the behavior of an

autonomous mobile robot in a cluttered environment.

Lee and Sim [77] have proposed an immune system based cooperative control

method for distributed autonomous robotic systems. They have modeled the en-

vironmental condition as an antigen and the behavioral strategy as the antibody.

The robot selects the appropriate behavioral strategy based on the environmen-
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tal condition which is then either suppressed or stimulated by other robots via a

communication medium.

Watanabe et al. [124] present an immune-inspired method for decentralized

behavior arbitration. This method has been applied to a garbage-collecting au-

tonomous mobile robot. Adaptation mechanisms such as adjustment and innovation

have been incorporated where the former relates to the change in system parameters

and the latter corresponds to the adaptation in the behavioral selection process.

Singh and Nair [114] have proposed a mechanism for behavior arbitration com-

bining the innate and adaptive characteristics of an immune system. Their robot

learns to detect vulnerable areas of a track and adapts to the required speed while

moving over these portions. Their experiments were carried out using two real

robots deployed on two concentric tracks. The robot on the outer track assists the

one on the inner track in case of misalignment of the latter. The misaligned robot

records the unsafe conditions and learns to detect and adapt to such conditions in

the future.

Whitbrook et al. [129] have integrated an Idiotypic Artificial Immune System

(AIS) network with Reinforcement Learning (RL) based control system. They have

used three systems : basic RL, a simplified hybrid AIS-RL and a full hybrid AIS-RL

to test their hypotheses that account for the network advantage. They have tested

the hypotheses on a test bed comprising a Pioneer robot which navigates through

maze worlds detecting and tracking the door markers.

Nikhil et al. [94] have augmented the Idiotypic Network theory [62] with infor-

mation sharing to make multiple robots learn and adapt their behaviors to changes

in the environment. Using real robots they demonstrate how robots need to learn

the correct behaviors to push colored objects into bins of matching colors. The

robots learn to adapt and alter their behaviors even when the rules governing the

environment are changed.

In the work proposed herein, an Idiotypic Network has been leveraged for the

selection of the best controller from the Hall of Fame of controllers.
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2.3.2 Hall-of-Fame Approach

The Hall-of-Fame (HoF ) [107] approach has been widely used in conjunction with

co-evolutionary techniques. The approach relies on the fact that some of the best

performing individuals evolved over generations are cached and used as and when

needed, in subsequent generations. In co-evolution, saving good performing indi-

viduals from prior generations drives each of the species to increase their respective

levels of performance and complexity. Rosin and Blew [107] conducted experiments

to play the games of Nim and 3-D Tic-Tac-Toe using a fixed the number of members

in the Hall of Fame. The evolving individuals were pitched against the ones stored

in the HoF.

Nicolai and Hilderman [93] evolved agents which can play the no-limit texas

hold’em poker using co-evolutionary heuristics along with an HoF which had a limit

on the number of agents. They have reported an improvement in performance when

the HoF strategy was incorporated along with the co-evolution. The authors thus

emphasize the need of using and maintaining an HoF.

Nogueira et al. [95] have analysed various HoF strategies in the application

of competitive co-evolution for finding winning strategies in a two-player real time

strategy, RoboWars game. They have tested five different policies for the deletion of

the individuals stored in the HoF which either never delete the individuals or delete

a varying percentage of the individuals in the HoF. This deletion percentage forms

a hyper parameter and needs to be set by the user. They have shown that updating

the HoF based on how diverse the individuals are, allows the system to exhibit

the better performance. The diversity is measured by calculating the genotypic

distance between every pair of the individuals in the HoF. Since this process has to

be performed for every generation, it can be computationally expensive especially

when the number of individuals is high. Their method, however requires the hyper

parameters viz. the threshold distance and the percentage of individuals to be

deleted, to be found empirically.

In the work described in [14], Bredeche et al. store the past ten best controllers

in an HoF of controllers. These stored controllers were then validated and assessed

in terms of their efficiency during the course of evolution. Here too the authors
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emphasize the need to keep track of the best genomes and later reuse them for

exploitation.

It has thus been noted that researchers who have used the concept of an HoF,

have always fixed the number of individuals within, a priori. This essentially means

that the maximum number of individuals that can reside in the HoF has to be

somehow fixed, either empirically or otherwise, and then set as a hyper parameter.

The eviction, the deletion percentages and diversity threshold also need to be set

as hyper parameters. Subsequent sections describe a technique that can maintain

individuals resident in an HoF based on the dynamics of the system.

2.4 Methodology

In the iAES algorithm [110], a given task was decomposed into several subtasks

and separate ANN based controllers were evolved to perform each of them in a

bottom-up manner. Based on the perceived sensory information (antigen), an ANN

based controller (antibody) which is best suited was selected to perform the subtask

and eventually evolve, if successful. This selection procedure involves comparing

the distances between the epitope of the antigen and the paratopes of all the con-

trollers (antibodies). The one with the maximum affinity i.e. the least distance,

was selected to perform the subtask. The quality of the controller was measured

by a user-defined fitness function after the subtask was executed. If the offspring

derived by mutating the parent controller performed better than the parent, then

the former replaced the latter. In the iAES algorithm, the search space is divided

into Active Regions dynamically without human intervention. Each of these Active

Regions is formed, and corresponding controllers are evolved on-the-fly. Further,

the extent of each active region in the shape space is decided by the parameter

ϵ, which is a hyper-parameter. Even when the search space expands, new active

regions and associated controllers evolve dynamically. Hence, the iAES algorithm

aids in real-time decision-making quite effectively. In their technique [110], they

evict a parent the very first time itself, it performs badly. If the parent ANN based

controller had been consistently performing well for several generations, it would

most likely mean that it had gathered more information about the search space
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than the offspring formed using mutation. In such a case, if this parent were to be

evicted the very first time it fairs worse than the offspring, there would be a large

loss of information learnt by it, from experiences in the past generations. Further,

there is no guarantee that the offspring will perform as good as the parent in fu-

ture generations. The information learned by the parent may need to be re-learnt

by the offspring by sensorimotor toil, all of which culminates in redundancy and a

waste of time and energy. Intuitively, one arrives at the conclusion that a controller

should not necessarily be evicted the moment it performs worse than its offspring.

Maintaining a cache or a Hall of Fame (HoF) for each subtask, comprising the

best controllers over generations could circumvent this problem. With many good

quality controllers evolved over the generations, it is highly likely that these caches

would become over-populated very soon. The larger the number of generations, the

larger would be the number of controllers in these caches consequently increasing

the number of affinity comparisons to be made, thereby increasing the number of

computations as well. In an embodied learning scenario, where learning is online

and on-board the robot, such computational overheads will tend to increase response

times thereby affecting the performance. One naive method would be to fix the up-

per limits of the number of controllers that could populate each of the caches. Since

a cache is associated with every subtask, if there are T subtasks then there would be

T such hyper parameters whose values would have to be empirically found and fixed

a priori. However, the tasks are divided into subtasks online. Since the number of

these subtasks is not known a priori, the number of associated caches also remains

unknown. Thus, finding and fixing the upper limits of the number of controllers

that can populate each of the caches, a priori, becomes a near impossible task. In

the work described herein, a methodology is proposed to regulate the number of

controllers in such caches or Halls of Fame based on the dynamics of the evolving

system in an online manner. Two parameters viz. Concentration and Resource,

have been defined for each controller which govern this regulation mechanism in a

dedicated manner. While Concentration determines the re-selection of a controller

from the HoF, Resource ascertains whether a controller needs to be purged from the

associated HoF. Both re-selection and purging are based on whether a controller has

performed better than the others in the associated HoF. The proposed method thus
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regulates the number of controllers in the HoFs and endeavors to retain the better

performing controllers. Results obtained from experiments performed using both

simulations and a real robot show that the learning process improves significantly

when such a HoF regulation mechanism was used.

In the further sections, the structures of the antibody and the antigen from

the perspective of the proposed iAES-HoF algorithm are elaborated and also the

inherent meta-dynamics used to maintain the HoF is described and finally, the

iAES-HoF algorithm is presented.

2.4.1 Structure of Antigen and Antibody

The antigen Ag in the present context, is an N -dimensional vector where N is the

number of sensors on-board the robot. The values of the sensors sampled from the

environment constitute the values of the antigenic vector. The structures of the

antigen and an antibody are illustrated in Figure 2.2a.

An antigen comprising an Eptiope, is matched with the Paratope of an antibody.

As illustrated in the Figure 2.2a, the epitope is a vector comprising the values of

the sensors on-board the robot.

An antibody Ab, shown in Figure 2.2a, in addition to a Paratope (Pt), consists

of a Controller (Ctr), the Concentration (C) of Ab, the Fitness value (F ) of Ctr, a

Resource (R) associated with Ab and the Identifier (ID) of Ab, each of which has

been described below.

Paratope (Pt) - When any antigen is encountered for the first time, the antigenic

epitope and the paratopes of the existing antibodies in the HoF are matched. If

there is a match, then the antibody is said to be able to deal with this antigen.

If no match is found with any of the existing antibodies, then a new antibody is

created and the epitope of the encountered antigen is set as the paratope of the

newly created antibody.

Concentration (C) - Concentration is the cumulative effect of suppressions and

stimulations received by a particular antibody from the antigen and other antibod-

ies, since its inception in the HoF. The dynamics involved with the calculation of

concentration is explained in detail in the section 2.4.2.

Resource (R) - The Resource of an antibody indicates how well it has performed
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(a) (b)

Figure 2.2: (a) Structure of the Ag and Ab (b) A Controller (Ctr) connected to
sensors and actuators(motors)

Biological Immune System Equivalents in the proposed Artifi-
cial Immune System

Antigenic Epitope (Ep) An N-dimensional vector obtained from
a set of sensors on-board the robot

Antibody (Ab) Controller based on an ANN
Paratope (Pt) An N-dimensional vector which is com-

pared with that obtained from the sen-
sors

Affinity Euclidian distance between the above
two N-dimensional vectors

Table 2.1: Some immunological metaphors in the proposed work

since its inception in the HoF of antibodies and how soon the antibody is likely to

be purged from the HoF. The calculation of the resource is detailed in the section

2.4.4.

Controller (Ctr) - A Controller can be a set of if-else rules, a PID controller

or an Artificial Neural Network. Figure 2.2b shows a generic version of such a

controller connected to sensors and actuators. In the proposed work, Ctr is a vector

which comprises the weights of the Artificial Neural Network. The weights form the

controller that drives the robot.

Fitness (F) - Fitness is obtained using the user provided fitness function for

the given task. The fitness function is task-dependent. Fitness denotes how well

the controller associated with an antibody is capable of performing a defined set of

tasks. It is thus a measure of the quality of the associated controller.

Identifier (ID) - The identifier is a number which uniquely identifies an anti-
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body in the repertoire of antibodies.

Figure 2.2a illustrates two antigens and the corresponding antibody when there

is an obstacle in the front and to the left of a robot. The epitope of an antigen and

the paratope of an antibody comprise the normalized values of the sensors attached

to the robot. The other parameters stored within an antibody are also depicted in

Figure 2.2a. Some of the pertinent immunological metaphors used in proposed work

is summarized in the Table 2.1 for the sake of clarity.

The affinity (ξ) between an antigen and an antibody is calculated based on

the Euclidean distance between the epitope of an antigen and the paratope of an

antibody. Lesser the Euclidian distance, greater is the affinity. Only if ξ is lesser than

or equal to the cross-reactivity threshold (ϵ), can an antibody tackle the antigen. In

the Figure 2.2a, both the antigens Ag1 and Ag2 can be tackled by the same antibody

Ab1. This is because, the affinity between the antigens Ag1 and Ag2 and the Ab1 is

less than the value of the ϵ, when ϵ is assumed to be 0.3.

2.4.2 The Immune Network

According to the Immune Network theory [61], the antibodies form a network and

suppress and stimulate one another. Whenever an antigen is detected in the envi-

ronment, a set of antibodies, whose ξ is lesser than ϵ, gets stimulated. Since each

antibody within this set becomes a possible candidate that can curb the antigenic

attack, they are referred to as the set of Candidate Antibodies. The best one from

among these Candidate Antibodies, is chosen to tackle the antigen. If the antigen

is effectively tackled, all other antibodies in the set of Candidate Antibodies stimu-

late this best antibody. This best antibody, in turn, suppresses all other Candidate

Antibodies. Stimulations result in an increase in the concentrations of the respec-

tive antibodies while suppressions decrease the same. This work uses a variant of

Farmer’s equation [35] to model the change in the concentrations of the antibodies.

During the antigenic attack, all the candidate antibodies receive a stimulation

from the antigen which is given by the equation below:

SAg = α ∗ ξ (2.1)
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where SAg is the stimulation from an antigen Ag, α is a positive magnifying constant

and ξ is the affinity between the respective antibodies and the antigen. The affinity

between an antibody and an antigen is calculated as per the equation below:

ξ = EUC(EpAg, P tAbj ) (2.2)

where ξ is the affinity between the antigen Ag and the antibody Abj , Ep is the

epitope of the antigen Ag, Pt is the paratope of the antibody Abj and EUC is the

Euclidean distance between the paratope and the epitope.

As mentioned earlier, the best antibody, with the highest fitness, out of the can-

didate antibodies receives stimulations from other candidate antibodies. All other

candidate antibodies, apart from the best antibody receive suppressions from the

best antibody. The stimulations or suppressions are calculated as per the equation

below:

S∇i = β ∗ C∇i∑
k∈∇C∇k

(2.3)

where ∇ is the set of candidate antibodies stimulated by the Ag at time t, S∇i

are the stimulation/s or suppression/s received by the ith antibody in the set ∇,

β is a positive magnifying constant, and ∇k is the kth Ab in the set ∇. S∇i is

used while calculating net stimulations and suppressions. Note that α and β merely

magnify the the respectively associated terms and as such do not play any role in

the dynamics.

Change in Concentrations: When the antibodies are stimulated or suppressed,

their concentrations increase or decrease proportionately. The concentrations of all

the antibodies in the candidate set increase due to stimulations from the antigen. In

addition the concentration of the best antibody among the candidates will further

increase due to the stimulations received by it from other candidate antibodies, as

per the equation below:
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Figure 2.3: Idiotypic Network formed by antibodies within an HoF

∆C∇i = SAg + ξ ∗
∑

j∈∇,j ̸=i

S∇j (2.4)

Here i is the index of the best antibody in the set ∇.

The concentrations of all other antibodies other than the best antibody in the

∇ which receive suppressions from the best antibody change as per the equation

below:

∆C∇j =SAg − ξ ∗ S∇i ∀j ∈ ∇ and j ̸= i (2.5)

This results in a decrease in the concentrations of the candidate antibodies as

compared to the best antibody, due to the suppressions received from the latter.

The final concentration of an antibody after stimulations and/or suppressions

is given by:

∀k ∈ ∇, C ′
∇k

= Ck +∆C∇k
(2.6)

Here, ∆C∇k
denotes the change, either increase or decrease as per stimulation

or suppression, in the concentration of the kth antibody in the set of candidate

antibodies, ∇.
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2.4.3 Hall-of-Fame of Antibodies

The best performing antibodies generated in order to tackle antigens within an

active region χ, are preserved in the HoFχ. Thus, there are as many Halls of Fame

as there are active regions, each containing the best set of antibodies specific to the

associated antigens in that active region. All the antibodies present in the HoFχ

of a particular χ, form the set of candidate antibodies viz. ∇. These antibodies

can thus deal with the antigens that crop up within the associated active region,

χ. If the current best antibody, having dealt with the antigen fails, i.e., if its

fitness drops below other antibodies in the repository, then one of the antibodies

from the HoF is selected as the next best antibody to deal with the antigen. The

candidate antibody which has been consistent in the past needs to be selected.

The value of the concentration of an antibody indicates the level of consistency in

performance of the antibody, in the past. A higher value of concentration would

mean the antibody received more stimulations and less suppressions from the antigen

and other antibodies over the past period. One could thus assume that such an

antibody with high concentration has been performing consistently well. Antibodies

with the high fitness values but low concentrations are the ones who have qualified

into the HoF merely by performing well against an antigen a few times and hence

cannot be deemed to be consistent. Thus, merely having a higher fitness value

does not necessarily mean that the antibody is the best. It is for this reason that

an antibody is selected which has highest concentration from those in the HoF to

replace the current best whenever the latter exhibits a drop in fitness. The current

best antibody is designated as the Champ, the antibodies other than the current

best which are resident in the HoF as Ex-Champs and the offsprings which are

generated as Mutants. The Champ and all the Ex-Champs constitute an HoF.

An antigen stimulates not only the Champ but also all the Ex-Champs in the

associated HoF as per the Eqn. 2.1. The Champ and the Ex-Champs stimulate

or suppress each other as per the Eqn. 2.3 - 2.6. The concentration of the Champ

and all the Ex-Champs in the associated HoF changes due to stimulations and

suppressions, as per the Eqn. 2.4 and 2.5 respectively. These Ex-Champs and the

Champ form an Idiotypic Network where the Champ is stimulated by all the Ex-
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Champs and all the Ex-Champs are suppressed by the Champ of the associated

HoF. This network of antibodies within an HoF that stimulate and suppress each

other, thereby forming an Idiotypic Network within the associated HoF, is portrayed

in the Figure 2.3. Since, this Idiotypic Network is local to the respective Halls

of Fame, they are termed as Local Idiotypic Networks. The overall search space

thus comprises several active regions each of which houses an HoF within which

an Idiotypic Network is conceived and maintained. Therefore there are as many

Idiotypic Networks as there are Halls of Fame and active regions.

2.4.4 Eviction of Ex-Champs from HoF

It is highly likely that the antibodies that perform well against antigens are kept

on adding to the HoF, the same could soon be over-populated. An overpopulated

HoF would mean an increase in comparisons to be made in order to choose the

best antibody (or Champ), which subsequently would result in a higher number of

computations. A mechanism to contain and regulate the number of antibodies in

the HoF is thus mandatory. A naive method would be to fix an upper limit to this

number a priori constituting a hyper parameter. Since the antigens in each active

region are bound to have different epitopes, the number of Ex-Champs generated

within each active region is bound to be different. This implies that there would be

as many such hyper parameters as there are Halls of Fame. Fixing their values a

priori would naturally be a tedious affair.

The concentration of an antibody could be used as a parameter to decide on its

eviction from its HoF. However, there could be a case when an antibody Abi, coming

into the HoF, has high fitness but lower concentration (due to low stimulations) than

those already resident in the HoF. This high fitness and low concentration value

would mean that though Abi exhibited better fitness it could be evicted earlier than

the others in case of overpopulation of the HoF. Another approach could be to use

fitness as the parameter to decide eviction. Fitness relates to the performance of

an antibody with a specific antigen within an active region. In short, the fitness of

an antibody varies with the antigen. Thus, an antibody could have a high fitness

when it is selected to join the HoF. It may have low fitness for other antigens within

the same χ. Under such conditions, better antibodies may be evicted earlier. Both
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fitness and concentration, thus turn out to have their own disadvantages in becoming

a measure to decide eviction of antibodies from an HoF.

Resource based Eviction

In this work, a quantum termed Resource (R) is defined, similar to the one described

in [50], conferred to each antibody when it first enters its associated HoF. Resource

could be visualized as virtual energy provided to an antibody. In living beings,

energy is consumed whenever work is done while it is replenished when food is

consumed. Resource is a similar parameter that is always consumed when the

antibody tackles an antigen. It is replenished based on its current Resource and the

current and past fitness values of the antibody. A quantum of Resource, R is initially

conferred onto an antibody the very first time it is made to enter its associated HoF.

The Resource value at time (t+1) denoted by Rt+1 is calculated as:

Rt+1 = Rt +∆R (2.7)

where ∆R is the change in the Resource, given by,

∆R = Rrep −Rcon (2.8)

Rcon = λmut ∗ (Rt/RMax) (2.9)

Rrep = λch (2.10)

where Rrep is the Resource replenished, Rcon is the Resource consumed, λmut is

the moving average difference in the fitness values of the Champ and the evolving

Mutants and the λch is the moving average difference in the fitness values of the

Champ, over a defined window of generations. RMax is the maximum value of the

Resource which is initially conferred to the antibody upon inception in the HoF.

The term Rt/RMax ensures that the amount of consumed resource does not exceed

the existing current resource.

An antibody is evicted from the associated HoF as and when its Resource

becomes zero.
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Ageing of Ex-Champs

It may be noted that the Resource of an antibody is consumed and replenished only

when it is selected as the Champ. The Ex-Champs in the HoF have high Resources

since their fitness values were high when they were selected as the Champ in the past.

Since their Resource values remain constant and positive, the Ex-Champs will never

be evicted, resulting in overpopulation within the HoF. In order to circumvent this

problem, an ageing factor is introduced for each of the Ex-Champs in the Halls of

Fame. This factor effects a decay of the Resource of the Ex-Champs, similar to that

described in [50], so that those which are not selected as Champs for a considerable

amount of time will eventually die out when their Resource values become equal to

zero. Ageing of Resource is governed by the equation given below:

Rt+1 = Rt − expη (2.11)

where Rt+1 and Rt are the values of the Resource of an antibody at time (t+1)

and t respectively and η is a constant (0 < η ≤ 1). The Resource value of every

Ex-Champ in the HoF is updated as per Eqn. 2.11.

2.4.5 iAES-HoF Algorithm

The proposed Immuno Inspired Action Evolution cum Selection algorithm with Hall-

of-Fame (iAES-HoF) is portrayed in Algorithm 1. The vector of values sensed by

the sensors on-board the robot forms the epitope (Ep) of the antigen (Ag). The

best matched HoFχ, the cross-reactivity threshold, ϵ, taken into consideration, is

determined by comparing the affinity of the epitope with those of the Champs within

each of the Halls of Fame. The number of comparisons to find the best matched

HoFχ is equal to the number of Halls of Fame in the system. Further, to find the

Champ resident in the selected HoFχ, a few additional number of comparisons may

be required within.

The Champ for the next generation is then chosen based on an evolutionary

strategy discussed later. While the antigen is made to stimulate the Champ and all

the Ex-Champs present in this best HoFχ, the Champ is made to suppress all the
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Algorithm 1: iAES-HoF Algorithm

1 ϵ← Constant;
2 MaxGenerations← Constant;
3 MaxEvaluations← Constant;
4 while MaxGenerations > 0 do
5 MaxGenerations←MaxGenerations− 1;
6 Ep← senseEnv();
7 Determine the best matched HoFχ using Ep
8 if no HoF matches then
9 AbNew ← createNewAntibody(Ep);

10 HoFχ ← AbNew;

11 ChampHoFχ ← getBestAb(HoFχ);
12 call Ag Stimulation(HoFχ);
13 call Ab Sti Supp(ChampHoFχ , HoFχ);
14 while MaxEvaluations > 0 AND Ag space is within χ do
15 MaxEvaluations←MaxEvaluations− 1;
16 Evolve the ChampHoFχ by any Evolutionary Algorithm

17 consumeResource(Best AbHoFχ);
18 replenishResource(Best AbHoFχ);
19 for each Abi in HoFχ do
20 if Abi ̸= Best AbHoFχ then
21 reduceResource(Abi)

Ex-Champs within HoFχ, which thereby results in a change in the concentrations

of the Champ as also all the Ex-Champs. The Resource of the Champ is consumed

and replenished as per Eqn. 2.9 and 2.10 respectively. In addition, the Resource

values of all Ex-Champs residing in HoFχ are reduced as per the Eqn. 2.11. If

the affinity between the epitope (Ep) of the current antigen Ag and the paratopes

(Pt) of the Champs of the various Halls of Fame, is beyond the cross-reactivity

threshold, ϵ, then a new antibody is created randomly and its paratope, Pt, is

aligned to the epitope, Ep, of the antigen, Ag. A pre-determined quanta of resource

and concentration are conferred to this newly created antibody before adding it to

a newly created HoF. A new HoF essentially means the creation of a new active

region χ.

To select the Champ from the HoF, tournament selection is employed. The

selection is based on the values of the concentration. Out of the selected antibodies,

the one with the highest concentration value is selected as the Champ to deal with

the current antigen. If the fitness score is used as the criteria to select the Champ
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then those antibodies who had a momentarily higher fitness would get selected as

the Champ. Since its performance would not have tested over generations, it may

or may not do well against the antigen. Hence, selection of the Champ based on

only fitness score is not a correct strategy. The aim is to select the Champ which

has performed fairly well against the antigens for a fair amount of time. Hence,

considering the concentration value as the criterion for selection of the Champ fits

this requirement.

If the antibody which has the highest concentration value in the HoF is selected,

then the ones which have just entered the HoF which have lower concentration values

currently would not get the chance to be the Champs. Since they may not get more

chances, they may be evicted from the system. Therefore, tournament selection is

employed using the concentration value to select the Champ, thus giving a chance

to the antibodies which have low concentration values as well.

The computational complexity of the proposed algorithm is analyzed and found

to be O(n). In line number 7, determining the best matched HoFχ has the com-

plexity of O(n). Similarly, line numbers 12, 13, 17 and 18 which are all functions

that are called by the algorithm, exhibit the same order of complexity. The loop in

line number 14 and the process in line 16 have the computational complexities O(1)

and O(n), respectively. The loop in line number 19 also exhibits a computational

complexity of O(n) since there is a finite number of antibodies in an HoFχ. Taking

into consideration all these, the overall computational complexity of the Algorithm

1, comes out to be O(n). The main loop of the algorithm (line number 4) is executed

for a constant MaxGenerations number of times, and hence does not play a role in

the above complexity.

In this work, (1+1) Online EA [14] is used to evolve the best controller viz.

the Champ. The Champ is mutated, with a random probability, using the Gaussian

mutation function N(0, ), to generate a Mutant. The fitness of the Mutant is deter-

mined based on its performance. Otherwise (if the Champ is not mutated), the same

is done for the Champ, which either becomes an Ex-Champ or continues to be the

Champ based on its fitness. If the fitness of the Mutant is greater than the Champ,

then the Mutant becomes the Champ, while the latter becomes an Ex-Champ. Both

of them are added on to the associated HoF. If not, the Mutant is discarded and the
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Figure 2.4: Arena in the Webots simulator

value of σ is doubled for use in the next generation. This doubling of σ is continued

till its value reaches a σmax value, after which it is set to a minimum and the process

is continued. In this method, only the mutation strategy is used and not crossover.

The tuning of the ANN-based controllers is done by Gaussian mutation. The

mutational process introduces randomness to the evolution, thereby equipping the

proposed method to handle uncertainty well. This also prevents the evolving con-

troller from getting stuck in the local optima. Also, since the active regions are

being evolved dynamically without any external intervention, the proposed algo-

rithm handles any uncertainty in the search space robustly. It is also quite robust

to handle any change or addition in the search space. It creates a new active region

if such a space is not encountered before. When it comes to maintenance of this ac-

tive region, the Concentration and Resource parameters take care of the re-selection

and eviction of the controllers from the HoF of this active region. Also, controllers

in each HoF are evolved to cater to varied scenarios in the associated active region.

2.5 Experimental setup

The experiments are performed using the two algorithms iAES and iAES-HoF both

on a simulator and a real robot. Simulations were carried out mainly to explore and

comprehend the nature and characteristics of the algorithms and enable multiple
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Figure 2.5: An Artificial Neural Network as a Robot Controller

runs. Since the real world always forms the best and ultimate test bed for evaluating

the efficacy of an algorithm, experiments were also performed using a real robot.

This provided a means to assess the performance of the algorithm in the real world.

Prior to presenting the results of the experiments performed, the simulation and

real world experimental setups are described.

2.5.1 Simulation Setup

A simulated e-puck robot available within the Webots [87] simulator was used to

test the algorithm under simulation. Figure 2.4 depicts a simulated e-puck in an

arena. Three out of the eight IR sensors on-board the e-puck are used to measure the

distance of the robot from an obstacle. Higher the values reported by the IR distance

sensor, closer is the robot to an obstacle while lower values indicate an obstacle-

free area. The e-puck also has IR based light sensors to measure the intensity

of light. An IR light sensor is used to measure this intensity during Phototaxis.

Higher light sensor values indicate higher intensities of ambient light while lower

values mean lower intensities of the same. The dimension of the arena was set to

1.5x1.5m with walls of height 0.1m height surrounding it. The walls and the three

squared solid boxes within the arena seen in Figure 2.4, acted as obstacles for the

robot. A simulated ceiling light suspended at the center of the arena within Webots,

facilitated as the light source to be used for Phototaxis.

As explained in section 2.4.1, the vector formed by the values reported by

the four sensors used, constituted the Ep of the Ag. This work uses an Artificial
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Neural Network (ANN), as shown in the Figure 2.5, as the controller Ctr within

an antibody which actually drives the robot. Since there are four sensory inputs,

the ANN too has four input nodes. As can be seen, the ANN has seven hidden

nodes and two output nodes interfaced to left and right motors of the robot. The

Hyperbolic tangent (tanh) function was used for activation.

The proposed iAES-HoF algorithm, iAES algorithm and (1+1) Online EA

were tested for the tasks of Obstacle-avoidance (OA) for 400 generations and Phototaxis-

cum-obstacle-avoidance (PT-OA) for 600 generations using the simulated e-puck

robot. In the former task, the robot when placed at any random location in the

arena, was supposed to learn to move around the arena while also avoiding the ob-

stacles. In case of PT-OA task, the robot was required to learn to move towards

the source of light while also avoiding obstacles encountered in the process making

it a more complex task than OA. It may be noted that in the first task (i.e. mere

Obstacle-avoidance) the task of avoiding the obstacles was to be learned in the ab-

sence of light while in PT-OA, the inherent Obstacle avoidance needed to be learnt

in the presence of light.

After initial experiments for different values of ϵ in the simulated environment,

it was found that the robot could learn to perform PT-OA for values ranging from

0.3 to 0.65. Thus, the ϵ values 0.3, 0.45, 0.6 and 0.65 are used for the comparative

study. The following equation was used to determine the fitness, F , of the controller

(either Champ or Mutant), associated with the task:

F =
T∑
t=0

(fO + fP ) (2.12)

where fO = vtr ∗ (1 − vro) ∗ d,

d = min1≤i≤3(1 − IRi)

where fO and fP are the fitness functions associated to the tasks of OA and

PT-OA, respectively. fO was adapted from [96]. vtrans and vrot are the translational

and rotational speeds of the robot, respectively, while d is the minimum distance of

the robot from the obstacle. d was taken to be the minimum of three values reported

by the three IR distance sensors on board the e-puck robot. fP is the normalized
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Figure 2.6: The Arena and the Firebird Robot used for experiments

value of the intensity of light obtained from the light sensor. The intensity obtained

varied from 0 (dark) to 1 (bright). Here, a higher value of fitness value F is tried

to obtain. When there is no obstacle in the path of the robot, the value of d is

high. Under such a condition, the robot needs to increase vtr and decrease vro so as

to obtain high fitness fO. When an obstacle is encountered, d is low which makes

the robot take the opposite decisions. Similarly,in the presence of light, the value

obtained by light sensor is high, thereby resulting in an increase in the value of fP .

The parameters used in the simulation experiments were as follows: α = 0.3,

β = 3, Initial concentration of Champ = 10, Rmax = 20, Window size of λch =

5, Window size of λmut = 10 and η = −0.6. The value of σmax was set as 4.

The number of evaluations of the antibody (as in the algorithm 1) was set as 20,

corresponding to 6 seconds. α and β are constants merely used for magnifying the

values within the equations 2.1 and 2.3.

The robot in the arena samples the environment through its sensors, and the

values constitute the Ep of Ag. The corresponding Ab, whose paratope matches

with this Ep is used to tackle Ag. As mentioned earlier, the Ab comprises, among

other items, a set of weights which are used by the ANN based controller (Ctr).
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2.5.2 Real Robot Setup

In order to understand how well the algorithm works in the real world, a Firebird

V 1 robot is used for the real experimentation. This robot was equipped on-board,

with three IR sensors and a light sensor, as shown in Figure 2.6,. The SharpTM

IR sensor was used to measure the distance of an obstacle from the robot. The

range of the sensor varied from 0-800mm. The light sensor values varied from 0-

255, with the lower values indicating that the robot is in the vicinity of a brighter

light source. Just as in the simulated robot experiments, the vector formed by the

values reported by these four sensors, constituted the Ep of the Ag. The same

Artificial Neural Network (ANN) having the same topology shown in the Figure 2.5

was used as the controller Ctr within an antibody. A 2mx2m sized arena (shown

in Figure 2.6) with an incandescent bulb suspended at the center to facilitate the

task of Phototaxis, was used. The arena was enclosed by walls, which acted as the

obstacles.

Just as in the simulations, the proposed algorithms were tested in the real-

world by making a real robot learn both the tasks of OA and PT-OA. However, the

results of the former task are not portrayed, as the same were very much in line

with those obtained in simulated environments and hence did not reveal anything

new. Just as in the simulations, the proposed algorithm was tested for the task of

Phototaxis-cum-obstacle-avoidance on part of the robot for 300 generations within

the above-mentioned arena. When placed in any random location in the arena,

the robot needed to learn to move towards the source of light while also avoiding

obstacles encountered in the process.

The same ϵ values 0.3, 0.45, and 0.6 are used, as in the simulations, for com-

parison. The fitness function, F , associated with the task was calculated using the

Eqn. 2.12. Since the nature of the values reported by the sensors on-board the

Firebird V robot is different from that of the simulated robot, the terms dist and

fP in Eqn. 2.12 were calculated as given below:

1More information about the Firebird V robot can be found at http://nex-
robotics.com/products/fire-bird-v-robots/fire-bird-v-atmega2560-robotic-research-platform.html
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d = min
1≤i≤3

(IRi)

fP = 1− L

Here, d is the minimum distance of the robot from the obstacle. L is the

normalized value of the Light sensor, where 0 corresponds to to the brightest light

and 1 corresponds to no light. The value of fP is higher when there is a presence

of light and vice versa when the intensity of light is low. These two values were

substituted along with other determined values in the Eqn. 2.12 to find the fitness

F . As in the case of the simulated setup, in the experiments using the real robot

too, a high fitness value is aimed at.

As in simulation, here too, the real robot placed in the arena, samples the

environment through its sensors. These sensor values constitute the Ep of Ag. The

corresponding Ab, whose paratope matches with this Ep is used to tackle Ag. As

mentioned earlier, the Ab comprises, among other items, a set of weights which are

used by the ANN based controller i.e. Ctr. All the related parameters in the real

robot experimental setup were set to those mentioned in the simulation setup. In

doing so, it is ensured that the simulated and the real setup based experiments were

performed under almost the same conditions.

2.6 Results and Discussions

In this section, the results obtained by running the iAES and the iAES-HoF al-

gorithms in both simulated and real worlds are discussed. The effect of caching

Champs in an HoF is also presented followed by the effects of varying the value of

ϵ in both these worlds. Graphs that bring out the significance of the concepts of

Concentration and Resource, in the context of selection of Champs and eviction of

Ex-Champs from the HoF s have also been presented. A total of 10 different runs

were performed in the simulation and 3 runs in the real world setup. In each of

these runs, the starting position of the robot was set to different positions. In all

45



2.6. RESULTS AND DISCUSSIONS

Figure 2.7: Evolution of Champs in (1+1) Online EA for the OA task in the
simulated world

of these runs similar results were observed, hence one of these runs are protrayed in

the results. To portray the results, the fitness values and the Cumulative Average

Fitness (CAF) are plotted versus the generations. In the case of iAES, where there

is only one Champ in the HoF, the CAF is taken as the average of the fitness values

of the Champ over the number of generations in which it has retained its position

as the Champ before eventually being evicted. In case of iAES-HoF, the CAF is the

average of the fitness values of the current Champ from the instant of time it was

inducted into the HoF. Thus, in both the cases of iAES and iAES-HoF, the CAF

value reflects the fitness of the Champs over generations till its final eviction.

2.6.1 Effect of Caching Champs

The effect of caching Champs is described from the studies conducted in the simu-

lated world using both iAES and the proposed iAES-HoF algorithms with various

ϵ values. In addition, both the algorithms are compared with the (1+1) Online EA.

Caching Champs - Simulation Results

As discussed earlier, since the search space in the (1+1) Online EA is not divided,

it evolved only one generic controller for each of the tasks - OA and PT-OA. On

the contrary, in case of the iAES and iAES-HoF experiments, since several active

regions were formed, many such controllers were evolved for each of these tasks.

Therefore, only that dominant active region is considered which encountered the
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(a) (b)

Figure 2.8: Evolution of Champs in an Active Region with ϵ = 0.3 for the OA task
in the simulated world with (a) iAES and (b) iAES-HoF

maximum number of attacks from the respective antigens. To ensure that the com-

parisons are fair, both the arena and the robot’s starting positions, chosen randomly,

were kept the same for all the sets of experiments. Hence, the resulting dominant

active region also remained the same. The figures 2.7 - 2.15 portray the changes in

fitness values over generations.

In the graphs of the iAES-HoF, each letter indicates a Champ. If the same

letter appears repeatedly in the graph, it implies that the previous Champ’s fitness

was lower due to which this particular Champ was activated from the respective

Hall of Fame. A red coloured letter indicates that this evicted Champ was put back

into the Hall of Fame. However, when the eviction and reappearance of the Champs

are closely spaced in the generations, it was difficult to explicitly indicate the same

in the graph. Hence, the appearance of a different Champ in the graph implies that

the previous one was evicted.

Numerous Champs evolved in cases of both the (1+1) Online EA and the

iAES algorithm. Since these could not be indicated using the English letters, the

evolution of the newly evolved Champs are portrayed using tiny red circles in the

graphs associated to these algorithms. These newly evolved Champs evicted their

previous ones from the system.

The graph in the Figure 2.7 represents the change in the fitness values of the

Champs versus the generations for the (1+1) Online EA. From the graph it can

be observed that there are drastic rises and falls in the fitness values. As stated
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(a) (b)

Figure 2.9: Evolution of Champs in an Active Region with ϵ = 0.45 for the OA task
in the simulated world with (a) iAES and (b) iAES-HoF

earlier, since the search space was not divided into different regions, this strategy

tried to evolve only a single generic Champ for whole of the search space, which

causes drastic fall in the fitness values when the robot moved to a space where the

current Champ had not learned to perform well. It was observed in the experiments

that the robot could not learn the OA task effectively in whole of the space.

The graphs in the Figure 2.8a and Figure 2.8b represent the change in the

fitness values of the Champs versus the generations of evolution of antibodies in

case of iAES and iAES-HoF algorithms respectively, for an ϵ value of 0.3. It can be

seen that several antibodies evolve when the iAES algorithm was used, as indicated

by the tiny red circles in Figure 2.8a. Further, the fitness values rise and fall over

the generations since the better performing mutants tend to replace the current

Champ. Unfortunately, this replacement also takes place for even a consistently

well-performing Champ when its fitness falls transiently below that of its Mutant.

The erratic changes in fitness are mainly because the new Champ does not always

perform well in the whole of the active region. Its fitness value thus often drops in

the next generation, giving rise to another inexperienced Mutant which displaces

the current Champ. On the contrary, in case of the iAES-HoF algorithm, the

Champ re-enters the hall of fame, whenever it is replaced by a Mutant. When the

Mutant’s performance falls, an Ex-Champ from the Hall of Fame takes over as the

Champ again. This greatly avoids drastic falls in the fitness values as observed in

the graph in Figure 2.8b). Thus, a comparatively stable CAF is attained in the case

48



2. EMBODIED LIFELONG LEARNING

Figure 2.10: Evolution of Champs in an Active Region with ϵ = 0.6 for the OA
task in the simulated world with iAES-HoF

Figure 2.11: Evolution of Champs in (1+1) Online EA for the PT-OA task in the
simulated world

of the iAES-HoF algorithm, as opposed to chaotic variations seen when the iAES

algorithm is used.

The graphs in the figures 2.9a and 2.9b represent the trends in fitness values

for the task of OA in case of for iAES and iAES-HoF, respectively with an ϵ value

of 0.45. Here, the fitness values are on the lower side for iAES as compared to

that when the iAES-HoF is used. The higher ϵ value of 0.45 results in creation of

larger active regions. This means the evolving controllers need to perform well in

the whole of such active regions. Unfortunately, the iAES was not able to evolve

one single controller per active region which could cater to whole of such regions,

which led to the drastic rises and falls in the fitness values as seen in the Figure

2.9a. On the contrary, in the iAES-HoF, a stable learning curve with a higher CAF

can be observed in case of iAES-HoF, due to the caching of the Champs and their
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(a) (b)

Figure 2.12: Evolution of Champs in an Active Region with ϵ = 0.3 for the PT-OA
task in the simulated world with (a) iAES and (b) iAES-HoF

Figure 2.13: Evolution of Champs in an Active Region with ϵ = 0.45 for the PT-
OA task in the simulated world with iAES-HoF

subsequent re-use, in spite of creation of large active regions.

It was found that when simulations were carried out using iAES with the ϵ

values greater than 0.45 the robot did not learn anything significant. Hence, no

graphs pertaining to these have been presented. In the Figure 2.10, for the iAES-

HoF with an ϵ of 0.6, the higher valued CAF curve suggests a fairly stable learning

behaviour as compared to the case when the ϵ value was 0.45.

It may be noted that in contrast to the (1+1) Online EA and the iAES algo-

rithm, the CAF curves of the iAES-HoF algorithm, for different values of ϵ stabilize

indicating an enhancement in both learning and performance of the respective con-

trollers.

The graph in the Figure 2.11 represent the variations in the fitness values versus
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Figure 2.14: Evolution of Champs in an Active Region with ϵ = 0.6 for the PT-
OA task in the simulated world with iAES-HoF

Figure 2.15: Evolution of Champs in an Active Region with ϵ = 0.65 for the PT-
OA task in the simulated world with iAES-HoF

the generations for the task of PT-OA for (1+1) Online EA. The Champ had higher

fitness values in a certain subspace of the search space, but when the robot moved

to other subspaces, there was a drop in the fitness values of the Champ. Even for

this task, the robot could not learn the task due to the lack of evolution of a generic

controller.

The graphs in the figures 2.12 - 2.15, depict the variations in fitness values

versus the generations for the task of PT-OA when the algorithms iAES and iAES-

HoF were used. As mentioned earlier, though PT-OA task is comparatively more

complex than OA the graphs in Figure 2.12a and Figure 2.12b show similar trends

as in the OA task when ϵ equal to 0.3. There are rises and falls in the fitness values

in case of the iAES, while a stable learning pattern can be inferred when the iAES-

HoF algorithm was used. Given the complex nature of the PT-OA task, the iAES
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(a) (b)

Figure 2.16: Evolution of Champs in an Active Region with ϵ = 0.3 for the PT-
OA task in the real world with (a) iAES and (b) iAES-HoF

was not able to learn the task for ϵ values greater than 0.3. The iAES-HoF, on the

contrary, was able to learn the task for the ϵ values 0.45, 0.6 and 0.65 with a stable

learning curve as shown in the Figure 2.13, Figure 2.14 and Figure 2.15. Though

an increase in rises and falls in the values of fitness is observed with the increasing

ϵ values, it can be seen that the learning is stable as indicated by the CAF curve in

case of the iAES-HoF algorithm.

For the values of ϵ greater than 0.3, the robot could not learn the task of PT-

OA using the iAES algorithm, whereas in the case of iAES-HoF, it was able to do

so. This is because the gradient of the light intensity in the darker areas is very low

(as shown in Figure 2.4). It is thus difficult for the same controller (or Champ) to

learn to adapt to both very low and high light intensity gradients meaning thereby

that more such controllers/antibodies are required. The iAES-HoF algorithm cir-

cumvents this drawback by making use of a host of controllers/antibodies (Champs

and Ex-Champs) within the HoF that can cater to such varied conditions.

The experiments performed in the simulated world indicate that the use of the

iAES-HoF algorithm results in a more stable learning behaviour with higher CAF

values as compared to those obtained when (1+1) Online EA and iAES was used.

The simulation results thus, validate and endorse the need to cache the Ex-Champs.
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Champs - Real World Results

As stated earlier, both the tasks OA and PT-OA are performed using iAES and

iAES-HoF algorithms running on a real robot. The controllers produced during the

learning of the former task showed trends which were similar to those obtained in

simulation. Hence, in this section, only those for the task of PT-OA are highlighted.

These tasks are not performed for the (1+1) Online EA as Semwal et al. have

already established that their proposed algorithm ( i.e. iAES ) outperforms the

(1+1) Online EA in real world experiments [110]. The corresponding graphs of

fitness values versus generations for this task, are shown in Figure 2.16 - 2.18. The

evolved antibodies both in the iAES and iAES-HoF are indicated by the English

letters. Similar to the experiments in the simulated world, multiple active regions

were evolved. For the sake of analysis, only that active region is considered which

encountered the maximum number of attacks by the associated antigens. It may be

noted that for both the algorithms, the environment and arena used were identical.

Thus, the dominant active regions also remained the same in both the cases. The

graphs depict the performance of the antibodies in the dominant active region. In

the graphs, the horizontal axis depicts the generations for which the experiment

was conducted, however it does not mean that only this particular active region was

active throughout. Other active regions are also coming up which are not indicated

in this graph.

The Figure 2.16a and Figure 2.16b represent the change in fitness values over

the generations of the antibodies in case of iAES and iAES-HoF algorithms, re-

spectively, for an ϵ value of 0.3.

The various letters in the square brackets indicate the antibodies that evolved

over the generations. It can be seen that in case of the iAES algorithm, as soon as a

Mutant (for instance, [B] in Figure 2.16a) performs better than the current Champ

([A] in Figure 2.16a), the former replaced the latter. This happens even when the

Champs have performed well for several generations. For example, the antibody

[E] initially achieved a high fitness value but since it did not perform well for an

antigen within its associated active region, its fitness dropped drastically. A Mutant

[F] which performed better in the next generation, thus replaced the antibody [E]
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(a) (b)

Figure 2.17: Evolution of Champs in an Active Region with ϵ = 0.45 for the PT-
OA task in the real world with (a) iAES and (b) iAES-HoF

(a) (b)

Figure 2.18: Evolution of Champs in an Active Region with ϵ = 0.6 for the PT-
OA task in the real world with (a) iAES and (b) iAES-HoF

as the Champ, causing the latter to be evicted though it had performed fairly well,

earlier. It can also be seen that this new Champ, [F], which was well primed to

tackle a specific antigen, was soon replaced by another newer Mutant [G] after a

subsequent attack by a new antigen within the same active region. Similar events

can seen to have occurred with other antibodies as well, resulting in instability in

the learning exercise and hence the gradient. This is indicated by the rise and fall

of the CAF of the Champs (blue line in Figure 2.16a) over the generations.

The experiments conducted with the iAES-HoF algorithm exhibited a com-

paratively stable and better learning paradigm. Since the past Champs are being

cached, whenever a drastic fall in the fitness value of a Champ occurs (for instance,

54



2. EMBODIED LIFELONG LEARNING

[G] in Figure 2.16b)), an Ex-Champ in the associated HoF (for instance, [E] in Fig-

ure 2.16b) replaces the current Champ, unlike that in case of the iAES algorithm

where a new and naive Mutant takes over as the Champ. In the proposed algorithm,

instead of evicting the current Champ immediately (as in case of the iAES algo-

rithm), it was cached in the associated HoF. Though rises and falls in the fitness

values can be observed even in case of the iAES-HoF algorithm, the caching and

re-use of the Ex-Champs with higher concentrations, resulted in a higher and more

stable CAF (blue line in Figure 2.16b)).

The Figure 2.17a and Figure 2.17b represent the changes in fitness values of

the antibodies over the generations for both the iAES and iAES-HoF versions of

the algorithm, respectively, for ϵ equal to 0.45. For the iAES algorithm, the drastic

rise and fall in the fitness values is more prominent than the previous case (when

ϵ = 0.3). More number of naive mutants also seem to have been evolved and

replaced the corresponding Champs, without improving the fitness of the Champs.

The CAF thus, also exhibits turbulence (blue line in the Figure 2.17a) causing

degraded learning.

In case of iAES-HoF algorithm with an epsilon value of 0.45, there is no drastic

fall in the fitness values. This is because, the Ex-Champs are re-selected as Champs

from the HoF selected based on their concentrations. The learning seems to be

more stable than that of the iAES algorithm, as indicated by the corresponding

CAF curve (blue line in the Figure 2.16b).

Similar trends were observed when the ϵ value was set to 0.6. The Figure 2.18a

and Figure 2.18b represent the changes in fitness values over the generations of the

antibodies in case of iAES and iAES-HoF algorithms, respectively for an ϵ value

of 0.6. In Figure 2.18b, initially for around 125 generations, the learning took place

in one active region, after which it switched to the second more dominant active

region. The graph in Figure 2.18b thus, commences from the 125th generation. It

may be noted that the final value of the CAF was highest when ϵ was 0.45 while for

the other two, viz. 0.3 and 0.6, the CAF had lower values.

As is clear from the discussions above, the results obtained from both sim-

ulation and real-world experiments seem markedly similar strongly indicating the

viability of the proposed algorithm in practical scenarios. It may however be ob-
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served that in the simulated world, the iAES-HoF could learn the PT-OA task in

spite of the fact that the intensity gradient of light was not prominent in the darker

areas of the arena (as seen in Figure 2.4). This was not so in case of the iAES

algorithm. The studies above strongly indicate the efficacy of caching Champs in

an HoF.

2.6.2 Effect of ϵ

ϵ divides the search space into several active regions. More the value of ϵ, lesser is

the number of active regions and more is the hyper volume of each of these active

regions. Higher hyper volumes indicate higher number of diverse antigens causing

more number of antibodies to evolve within. Generating generic antibodies to cater

to a high number of diverse antibodies becomes a difficult exercise. Higher values

of ϵ can thus slow down the learning process.

Low hyper volumes resulting from lower values of ϵ have lower numbers of

diverse antigens. Thus, only a few antibodies per active region, need to be evolved

to cater to them. This may initially seem to increase the learning rate. However,

every time an antibody is generated to tackle an antigen within a specific active

region, the next antigenic attack that succeeds this event, invariably occurs at a

neighbouring active region. Thus, the learning exercise is switched constantly from

one active region to another which in turn slows down the learning rate. In terms

of the two algorithms discussed herein, this could be explained based on the system

constantly switching from one HoF of an active region to that of another. Such

a switching tends to give lesser chances to an antibody to learn to tackle antigens

within their respective active regions. Thus, dividing the search space using ϵ is

critical while solving a problem.

The iAES algorithm endeavours to find one generic antibody per active region

that can tackle all antigens within. Evolving such an antibody to cater to a diverse

set of antigens is naturally difficult. Thus, increasing or decreasing ϵ does not

ameliorate the learning problem. Lower values of ϵ will aid in evolving a generic

antibody but the resulting increased switching between active regions (due to diverse

antigenic attacks) tends to decrease the learning rate. Likewise, an increased value

of ϵ, reduces the switching but also makes it difficult to evolve a generic antibody for
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that active region. The iAES-HoF algorithm may also suffer from similar problems

due to switching and diversity of antigens as in the iAES version. However, since

iAES-HoF uses a set of generic antibodies, rather than merely one generic antibody,

the chances of evolving this set to cater to most of the antigens associated to an

active region is higher thereby improving the learning rate. In the simulated robot

experiments, it was found that for ϵ equal to 0.3, 0.45 and 0.6, the numbers of

active regions generated, were found to be: (a) For the task of OA - 7, 4 and 2 for

the respective ϵ values (in both iAES and iAES-HoF ). (b) For the task of PT-OA

- 11 (in both iAES and iAES-HoF ), 7 and 3 (in iAES-HoF ) for the respective ϵ

values. Since the tasks OA and PT-OA were of different complexities, their number

of active regions also varied. In the real robot experiments, for the task of PT-OA,

for ϵ equal to 0.3, 0.45 and 0.6, the number of active regions generated, in both

iAES and iAES-HoF, were found to be 13, 5 and 2, respectively. Thus, in case

when ϵ is 0.3 for the task of PT-OA, the relevant graphs in Figure 2.16a and Figure

2.16b show a drastic rise and fall in fitness values due to switching between several

active regions, while when ϵ is equal to 0.6 (Figure 2.18a and Figure 2.18b), the

system remained in the same active region due to its high hyper volume, in spite

of a diverse antigenic attack. Here too, the rise and falls were prominent due to

the diversity of antigenic attacks resulting in the production of newer antibodies

with lower concentrations. With ϵ equal to 0.45 (Figure 2.17a and Figure 2.17b),

the number of active regions was moderate thereby lowering the switching between

such regions. Consequently, antibodies within an active region were exposed to the

associated antigens more frequently before a switch to another active region. In case

of the iAES-HoF algorithm, this aspect increased the chances of antibodies within

an active region evolving into better ones resulting in an enhanced learning process.

The higher values of CAF especially in the case when ϵ was set to 0.45 indicate this

enhancement in learning.

Further, to determine if there is a statistically significant difference between

the iAES-HoF and iAES algorithms, the non-parametric Mann-Whitney U test

[85] with different ϵ values for both the simulated and real-world experimental runs

were conducted. The significance level for all the runs were set at 0.01. In the

simulations, for the task of OA, the p-values were found to be 0.00002 and 0.00001
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for the values of the epsilon 0.3 and 0.45, respectively. Similarly, in the real world

experiments, the p-values, for the PT-OA task, obtained with the significance level

of 0.01 were found to be 0.0002, 0.00001 and 0.0009 for the values of ϵ 0.3, 0.45

and 0.6 respectively. The Mann-Whitney U test was not conducted for those ϵ

values for which the iAES failed to learn the tasks. All the p-values from the

tests, in both the simulation and real-world experiments, were found to be less than

the significance level set as 0.01. This shows that for all the runs the results are

statistically significant and not just stochastically variant.

2.6.3 Significance of Resource

The value of the concentration of an Ab indicates the overall stimulations and sup-

pressions it has received from the antigen and other antibodies in the HoF. Higher

the concentration of an antibody, larger the diverse set of antigens it can handle.

In a sense, higher concentrations reflect the generic nature of an antibody. High

concentration antibodies thus, have high performance. Concentration has thus been

used to grade and select the best antibody from the HoF. A higher value of Resource

indicates how consistently an antibody has been able to tackle antigens compared

to the mutants and the Ex-Champs in the associated HoF. Ex-Champs that have a

Resource value equal to or below 0 are definitely those who have been performing

inconsistently. Thus, Resource has been used to decide the eviction of Ex-Champs

from an HoF.

Using both concentration and Resource constitutes a win-win situation. Ini-

tially, when an antibody enters the HoF, irrespective of its concentration, its Re-

source value is high. This ensures a higher life time within the HoF and hence

increases its chances of being selected as a Champ. Every time a Champ is selected

and proves itself to be better than its Mutant, both its concentration and Resource

increase. This results in an increase in its life time within the HoF as also its chances

of becoming a Champ again.

If the value of concentration of any antibody in an HoF is high but its Resource

value is low, it means that this antibody performed well initially and was re-selected

as the Champ several times over the generations, but unfortunately in the further

generations did not prove to be better than the Mutant. If a Ex-Champ is not se-
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(a) (b)

Figure 2.19: (a) Concentration and (b) Resource values of the antibodies in the
prominent HoF with ϵ set as 0.45 in iAES-HoF algorithm

lected for several generations, its concentration value would increase only marginally,

as it receives the stimulation only from the antigen and not other antibodies in the

HoF, while its Resource value would drop based on Eqn. 2.11. An antibody in

an HoF with low values of both concentration and Resource thus clearly indicates

that it was not selected as the Champ and that it has been lying in the HoF for a

long period of time. Thus, a low value of Resource, irrespective of the value of the

concentration, essentially indicates the high amount of time the antibody inhabited

the HoF without being selected as the Champ.

It can be inferred that the Resource of an antibody can be used as the factor to

decide whether or not the antibody should be evicted out of the HoF. Resource of

an antibody increases as and when the antibody is selected as the Champ, thereby

increasing its life span within the HoF. Had concentration been taken as the factor

for such evictions then a fresh Mutant which has just beat the Champ would eventu-

ally get fewer chances of being selected as the Champ. In addition, one would need

to define the maximum number of Ex-Champs (N) that could be accommodated

within an HoF. Imagine a case when a Mutant M1(g) becomes the Champ in the

gth generation. Its concentration increases to CM1(g) because of the stimulations

from the antigen and all the current Ex-Champs in the associated HoF. If M1(g)

were to perform well for the subsequent δ generations, and continue to reign as the

Champ, its concentration would rise, to say C
′
M1

(g+ δ). If all the Ex-Champs in the

associated HoF had earlier retained their position as a Champ for more than δ gen-
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erations, their respective concentrations would be naturally more than C
′
M1

(g + δ).

IfM1 fails to retain its position as Champ after g+δ, it would become an Ex-Champ

and reside in the associated HoF. In successive generations, since its concentration

C
′
M1

, is lower than those of the others in the HoF, its chances of being re-selected as

the Champ based on concentration is bound to remain very low. This would mean

its concentration would never increase, making it a useless entity within the HoF.

Subsequently, when the HoF is full, M1 would become one of the prime candidates

to be evicted. It is thus, evident that a concentration based eviction mechanism

would never provide appropriate opportunities to the Ex-Champs within an HoF to

participate in the selection process.

Unlike concentration, Resource values, are consumed or replenished based on

2.9 and 2.10 respectively. These values indicate how well the Champ or Ex-Champ

performed over a window of time in the recent past. Higher values of Resource

provide an indicator to its performance and indirectly suggest that it be retained

for a longer amount of time within the HoF. Resource thus, acts as a measure of a

dynamically varying life time of a Champ or Ex-Champ based on its performance.

The decay of Resource within an HoF emulates the waning of the life time of an

Ex-Champ. Eventually when the value of the Resource become zero or negative, it is

apparent that the Ex-Champ has served its purpose and can now be removed from

the HoF. It is for this reason that Resource is chosen as the parameter for eviction

of an Ex-Champ from an HoF.

Figure 2.19a and Figure 2.19b respectively depict the Concentration and the

Resource values of all the Champs that evolved over generations when ϵ was equal to

0.45 in real robot experiments for the task of PT-OA. In the Figure 2.19a, the steep

rise in the Concentration of a Champ is due to the stimulations it received from both

the antigen and the Ex-Champs in the associated HoF. The rise in concentration

in case of an Ex-champ within an HoF, is not as drastic because it receives more

of suppressions from the Champ than stimulations from the antigen. Suppressions

and stimulations from the antigen and other antibodies thus tend to create a local

idiotypic network [64] within each active region. In the Figure 2.19b, it can be

observed that the Resource in case of Champs either remains constant due to almost

equal consumption and replenishment (when there is no drastic increase in its fitness
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over generations) or rises due to excessive replenishment (when there is an increase in

its fitness over generations). On the contrary, the Ex-Champs within an HoF merely

decay with time thereby ageing them, as seen in the Figure 2.19b The graphs for

both Resource and concentration terminate at a point when the Resource becomes

equal to zero indicating the eviction of the concerned antibody from the associated

HoF. If the values of the positive magnifying constants α and β, used in calculating

the values of Concentration, are increased (or decreased), then the respective values

will only be magnified up (or down) without any changes in the pattern of the trend-

lines seen in the graphs in the figures 2.19a and 2.19b. These constants do not affect

the functioning of the algorithm.

2.7 Summary of the Chapter

This chapter aimed to achieve embodied lifelong learning, evolving controllers in an

online and on-board manner with no previous information. The iAES algorithm

evolved one controller for every active region, whereas the proposed iAES-HoF al-

gorithm evolved a set of best controllers for each such active region by maintaining

a Hall of Fame (HoF) for every active region.

While the use of the iAES algorithm resulted in one controller for every active

region, the iAES-HoF algorithm evolved a set of the top performing controllers for

each such active region by maintaining a Hall of Fame (HoF) for every such region.

The HoF comprises not only the current Champ but also the Ex-Champs. In-

stead of eliminating an Ex-Champ, the iAES-HoF algorithm adds it to the HoF of

the relevant active region, thereby preserving the information learned by it. This

generic set of controllers (or antibodies) within an HoF, including the Champ and

Ex-Champs, is thus able to tackle most of the antigens within the associated active

region. Antibodies within an HoF form an Idiotypic Network. Idiotypic Network in

turn fortifies and increases the life times of the better performing antibodies while

ensuring the eviction of the poorly performing and non-participating ones. The

concepts of Concentration and Resource aided the enhancement re-selection and

eviction mechanism of the antibodies within an HoF. In addition, these parameters

regulated the number of antibodies in an HoF based on the dynamics of the sys-
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tem, thereby circumventing the issue of deciding this number a priori consequently

reducing a hyper-parameter.

The experiments also bring out the significance of the cross reactivity threshold,

ϵ. This parameter is responsible for dividing the search space into several active

regions such that a balance between the number of controllers and the active regions

is maintained. Lower values of ϵ result in larger active regions, resulting in a higher

number of antibodies in each HoF, encountering diverse antigens. The learning thus

becomes slower. With higher values of ϵ, smaller active regions evolve with fewer

antibodies in each HoF, encountering similar antigens. The switching of active

regions was prominent in this case, which also resulted in slower learning.

The proposed work not only evolved the controllers in an online and on-board

manner but also regulated their number dynamically, thereby achieving embodied

lifelong learning. The work described in this chapter used conventional neuroevo-

lution to evolve the neural controllers. The next chapter focuses on the second

contribution of the thesis where a new mechanism to enhance the process of neu-

roevolution, has been described.

;;=8=<<
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3
Enhancing Neuroevolution

Evolutionary algorithms (EA) deal with mimicking the Darwinian theory of nat-

ural evolution to solve real-world problems. In an EA, a population of individuals

is created by using different techniques of selection, crossover, mutation, and repro-

duction. These operations are repeated over generations to eventually produce high

performing or fitter solutions for the problem at hand [8]. Contrary to traditional

techniques that work to refine a single solution, an EA does so on a population of

such solutions. The convergence of such a population of solutions can be hastened

by running the EA on parallel computing machines. EAs are mostly employed to

solve optimization problems where the number of possible solutions is huge, and al-

ternative heuristics-based solutions are computationally expensive. Some EA based

solutions [34, 16] have been reported to even beat deep learning-based approaches

in terms of both accuracy and time.

Conventional Artificial Neural Networks (ANN) are generally trained by ad-

justing the weights within, using gradient-based algorithms that greedily reduce er-

rors using back-propagation. Neuroevolution [3] is another way of training an ANN

wherein the weights are evolved using an EA. Such neuroevolutionary algorithms

can also be used to evolve the architecture of the ANN, neural connections, the as-

sociated hyper-parameters, and even the learning algorithm. These are beyond the

capability of traditional gradient-based algorithms. Of late, the techniques of neu-

roevolution have been used in tandem with deep learning algorithms [88] to obtain
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state of the art results. An ANN can be trained using neuroevolution by altering the

values in the weight matrices based on Gaussian mutation [14]. Generally, either all

the weights within the matrices are mutated, or a randomly selected set is subjected

to mutation. The ANN is then evaluated to check whether the mutation yielded the

desired outcome or not. This process is continued until the required behaviors are

evolved [97]. The performance of the ANN is measured based on a task-dependent

Objective or Fitness functions, which helps calculate the Fitness values [132].

Not all mutations yield a favorable result. Some of these random mutations

could prove to be beneficial in training the ANN, while others may cause adverse

effects. Such pernicious effects delay the discovery of solutions, thereby increasing

the time required for training. A mechanism to decide as to which weights need to

be mutated should thus, be part and parcel of such learning algorithms.

In this work, a novel mutational puissance based strategy is proposed that can

augment random mutation and help evolve ANNs with higher fitness values. A

mutational puissance is allocated to every weight in an ANN. Mutational puissance

provides an indication of the effect of past mutations of the associated weight on

the performance of the ANN. It also gives an intuition of the mutational impact on

the performance, if the respective weight is mutated.

The puissances associated with the weights are consumed and replenished

based on the efficacy of the evolving ANN. If the performance of the ANN im-

proves as a result of the mutation, then the puissances of the respective weights

accumulate. Otherwise, these puissances dwindle, indicating an adverse effect on

the performance. These mutational puissances guide the process of mutation con-

sequently aiding the ANNs to evolve into better ones. To overcome the possibility

of the ANN getting stuck in the local optima, random mutation is augmented along

with the puissance based mutation. The proposed algorithm was used to evolve an

ANN-based controller for a robot that eventually learned to execute the tasks of ob-

stacle avoidance and phototaxis. The learning was performed online and on-board

the robot.
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3.1 Related Work

Few have reported techniques for moderating mutation in neuroevolution. Lehman

et al. [78] proposed safe mutations for deep recurrent neural networks through out-

put gradients. Their work focused on evolving deep neural networks without altering

the behavior of solutions by using what they term as safe mutation operators. These

operators are used on the weights to scale the degree of the mutation of each weight

according to the sensitivity of the outputs. The operators facilitate the network to

explore other areas in the search space without deviating from their functionality.

The safe mutational operators evolve deep recurrent networks guided by gradient

information without taking the performance into account.

Dahal and Zhan [22] have introduced a methodology to evolve the structures of

Convolutional Neural Networks (CNN) by a series of recombination and mutational

operators. Recombination was performed using the Highest Varying k-Features

Recombination (HVk-FR) method. In their methodology, mutations are random

and refer to aspects such as adding a new convolution layer, changing the size of

a filter used, changing the activation function, etc. They have shown that their

proposed method using combination, recombination, and mutation results in an

ANN that has better accuracy.

Though mutation is used to overcome local optima issues, the use of random

mutation may lead a search astray. In the work reported herein, a fairly controlled

mutation mechanism is proposed that takes into account the performance of evolving

the ANN. This work introduces a novel puissance-based mechanism to mutate the

weights, which in turn can result in better-performing ANNs. The concept of a

mutational puissance ensures that those weights that contribute adversely to the

performance of the ANN are debarred from mutating, thus resulting in fitter ANNs.

3.2 Methodology

An evolutionary algorithm involves applying the operators of Recombination, Muta-

tion, and Selection to evolve fitter individuals over generations. The evolved fitter

individuals are selected and carried over to the next generation. In the purview of

neuroevolution, various algorithms are proposed not just to evolve weight matrices
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of the ANNs but also the architecture, associated hyperparameters, and even the

associated learning algorithms. The proposed work focuses on evolving the connec-

tion weights of the ANN-based on a novel concept referred herein as a Mutational

Puissance, ψ. Each weight in the weight matrices is associated with a mutational

puissance, which changes as the ANN evolves. The purpose of this puissance is

to moderate the mutation of the associated weight, thereby yielding fitter ANNs

during the process of evolution.

The general idea of an evolutionary algorithm is, the operators of recombination

or mutation are applied to the parent solution(s) to generate a child solution(s). If

the child is fitter than the parent, the former replaces the latter. In this work, a

simple fitness-based (1+1) evolutionary strategy [14] is considered to evolve ANNs,

where there is a parent ANN, and the child ANN is evolved by mutating the former.

3.2.1 Concept of Mutational Puissance

Nair et al. [91] have used the concept of a resource to model the natural waxing and

waning of synthetic emotions. Every emotion has an associated emotional resource

that is consumed and replenished based on the inputs to the systems. Penalties tend

to consume them while rewards replenish such resources. These resources also decay

with time irrespective of the rewards and penalties. The resource thus models the

rise and fall of emotions. Godfrey et al. [49] have used a similar concept to control

a population of mobile agents in a network in a decentralized manner. They have

used the resource to model the concept of stigmergy and achieved unilateral backing

off on the part of agents that clone. Jha et al. [63] describe the use of a potential

that is similar to a resource that generates an innate drive within an agent that, in

turn, aids it in deciding whether or not to switch from one behavior to another.

Mutational puissance (ψ), used herein, is based on similar grounds. It aids

as a heuristic in the selecting weights that need to be mutated. Weights that have

higher mutational puissances are the ones that are prone to be selected as candidates

to be mutated. If the mutations result in an ANN exhibiting better performance,

the puissances of the weights that were mutated are replenished; else, they are

reduced. The puissances of the other weights that remain untouched, however,

decay over time. This process is carried out for every generation to yield a better

66
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set of weights eventually and, consequently, an ANN exhibiting better performance.

The dynamics that govern the change in mutational puissance, ψ, are described in

subsequent sections.

Consumption and Replenishment of ψ

The consumption of the ψ of the associated weights depends on how well the parent

ANN performed against the evolving child ANNs. Consumption is proportional to

the current value of the ψ and the difference in fitness values of the parent and the

evolving child ANN.

If the performance of the parent is higher than that of the evolved child ANN,

then the quantum of consumption of the associated puissances of the mutated

weights increases proportionately.

The replenishment of ψ is proportional to the moving average of the differences

in the fitness values of the parent and the child ANN over a window of generations.

Puissances, of only those weights which are mutated, are consumed and replenished.

The value of ψ of the mutated weights at generation ’n+1’ is given by,

ψn+1 =


ψmax, if (ψn +∆ψ) > ψmax

ψn +∆ψ, otherwise

(3.1)

where the ∆ψ is the change in the ψ at generation n and is given by,

∆ψ = ψr − ψc (3.2)

ψr = µp ∗ µch (3.3)

ψc = µch ∗ (ψn/ψmax) (3.4)

where ψr and ψc are the amount of ψ consumed and replenished respectively,

µp is the moving average difference in the fitness of the parent of the previous

generation and the current generation over a defined window of generations, µch

is the moving average difference in the fitness of the parent and the fitness of the

child over a defined window of generations. This window is reset when a child ANN

outperforms and replaces the parent. ψmax is the maximum ψ (all these terms are
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of generation n).

Decaying of Mutational Puissance

As stated earlier, for a given parent, only a certain number of weights are mu-

tated. Hence, the puissances of only those weights which were mutated are con-

sumed/replenished. The ones which do not participate in the mutation thus retain

their original puissances. This causes an accumulation of ψ in those weights, which

aided in the evolution of better ANNs. Accumulation of ψ may also be observed

in weights whose mutations resulted in fitter ANNs in earlier generations but were

overthrown by the current weights, which yielded ANNs with better fitness values.

Intuitively, one may state that such weights with accumulated values have already

been tuned to their current best values and hence should not be disturbed or mu-

tated, unless required. Unfortunately, since the algorithm chooses weights with

higher ψ, these weights tend to get selected again for mutation, causing instability

in the fitness gradient. Under such conditions, the very objective of using muta-

tional puissance to guide the evolution of the ANNs towards higher fitness values,

is compromised. In order to avoid such a scenario and ensure that other weights

also get selected for mutation, a decay mechanism is applied on the puissances of

all such non-selected weights. A policy is formulated for the mutational puissances,

ψ, to decay over generations. The ψ value of a non-mutated weight at the (n+1)th

generation is given by,

ψn+1 = ψn − exp−κ (3.5)

where ψn+1 and ψn are the mutational puissance in the (n + 1)th and (n)th

generations respectively, and κ is a constant, (0 < κ ≤ 1). In brief, the puissances

of the mutated weights are updated as per the equation 3.4, while those of the

non-mutated weights are updated as per the equation 3.5.
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Algorithm 2: Mutational Puissance assisted Neuroevolutional Algo-
rithm

1 initialise puissance();
2 MaxGen← Constant;
3 while MaxGen > 0 do
4 MaxGen←MaxGen− 1;
5 if random() > Pre−eval then
6 recover(Champion);
7 FChampion ← Run Eval(Champion);

8 else
9 if random() < Prdm mutate then

10 Challenger =Mutate Random Weights();

11 else
12 Challenger =Mutate Puissance Weights();

13 recover(Challenger);
14 FChallenger ← Run Eval(Challenger);
15 if FChallenger > FChampion then
16 Champion = Challenger;
17 FChampion ← FChallenger;
18 ψChampion ← ψChallenger;
19 σ ← σmin;

20 else
21 σ ← σ ∗ 2;

22 Consume Replenish Puissance();

3.2.2 Proposed Mutational Puissance assisted Neuroevolutional

Algorithm

A puissance-based mutation is incorporated in the (1+1) algorithm [14]. The (1+1)

algorithm is the simplest version of the (µ + λ) algorithm, where a µ number of

parents are mutated, resulting in a number of λ children. As it implies, (1+1) is

a version of (µ + λ) where a single parent is mutated to produce a single child. In

the (1+1) algorithm, the parent controller is termed as Champion. The weights of

the Champion are mutated to produce the child, which is termed as the Challenger.

Based on a random probability, either the Champion is reevaluated, and its fitness

is updated, or the Challenger is generated and evaluated. If the fitness value of the

Challenger is higher than that of the Champion, then the former replaces the latter.

The extent of mutation of the Champion to generate a Challenger is governed by

a parameter σ. This parameter is doubled whenever a Challenger fails to defeat
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the Champion. When Challenger defeats the Champion the σ value is set to a

predefined minimum value.

The proposed mutational puissance based algorithm is outlined in Algorithm

2. The puissances associated with the weights in the weight matrices are first

initialized to the maximum value of the ψ, viz. ψmax, and the maximum number

of generations is also initialized to a value MaxGen. As per the original (1+1)

algorithm, the Champion (i.e. the Parent ANN) or a Challenger (i.e., the Child

ANN) which is evolved by mutation, is evaluated in every generation based on a

random probability Pre−eval. If the current Champion is selected for evaluation

its fitness, FChampion is updated. Otherwise, a Challenger is evolved using the

proposed mutation algorithm. The recover function, just executes the Champion or

Challenger ANN accordingly, without evaluating. This is to nullify any bias before

the evaluation of the respective ANN-based controllers.

In this case, based on a random probability Prdm mutate the Challenger is

evolved either by mutating random number of weights of the Champion (function

Mutate Random Weights) or by mutating the weights of the Champion as per the

ψ values associated with the weights (function Mutate Puissance Weights).

In the function Mutate Puissance Weights, the weights which have got higher

puissances are made to mutate. A minimum of 25% of the total number of weights

are empirically set to mutate in a weight matrix. Once the Challenger is evolved in

either of the ways, it is then evaluated, and its fitness, FChallenger, is determined.

If the fitness of the Challenger is greater than that of the Champion, then the

former is made to replace the latter as the new Champion and the value of σ, which

is the extent of mutation, is set to a minimum value. If the Challenger fails to

beat the Champion, then the σ value is doubled for the next generation. σ thus

embeds somatic hyper-mutation [66] into the algorithm. After the re-evaluation of

the Champion or the evolution of the Challenger, the puissances of all the weights

are updated as per the equations 3.4 and 3.5.

The hybridizing of both random and ψ based mutation was done to ensure that

those weights which have lower ψ values also get an opportunity in the evolutionary

process. If this were not done, the weights having higher ψ would most likely hog the

show and land the evolutionary process at a local optimum. Thus, a combination
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Figure 3.1: Arena in the Webots Simulator

of random mutations and ψ based mutations can be perceived to be a better option

in evolving ANNs.

3.3 Experimental Setup

The proposed algorithm was used and tested in the domain of robotics; wherein

neuroevolution was used to evolve ANN controllers. Experiments were conducted

using the Webots simulator [87]. As depicted in figure 3.1, an arena of the dimension

of 1.5*1.5m surrounded by walls 0.1m high was used in the experiments. The walls

and the three squared solid boxes in the arena acted as obstacles for the simulated

e-puck robot. A ceiling light, right in the middle of the arena, was used to light up

the area, and the other parts of the arena were made to be dark.

The e-puck robot had eight IR distance sensors on-board, whose higher values

indicated the presence of an obstacle, while the lower values indicated that the sur-

roundings are obstacle-free. The robot was also armed with IR based light sensors

on-board. The higher values of these sensors indicated the presence of high intensi-

ties of light, while lower values meant either the absence or lower intensities of light.

The ANN being evolved was the controller of the robot, and the term controller and

ANN are used interchangeably.

The algorithm was used to evolve two separate neuro controllers for two tasks,

viz. obstacle avoidance and phototaxis. One set of experiments was conducted with

the task of obstacle avoidance. In another set of experiments, the tasks were both

obstacle avoidance and phototaxis, where the robot’s goal was to evolve a controller
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Figure 3.2: Structure of the Artificial Neural Network being evolved

that could avoid obstacles and also find its way towards the light source.

In order to evaluate the performance, the associated fitness value of each task

was found. The fitness equation for obstacle avoidance is given as:

FO = ST ∗ (1− SR) ∗ (1− dmax) (3.6)

where ST and SR are translational and rotational speeds respectively, and dmax

is the maximum distance value out of all the eight sensor readings obtained from

the robot. The fitness equation for the phototaxis is given as:

FR = FO + L (3.7)

where FR is the fitness equation of the robot, FO is the fitness of the obstacle

avoidance task, and L is the value of the light sensor from the robot. It may be

noted that the obstacle avoidance task is less complicated than phototaxis since the

latter inherently includes the task of avoiding obstacles, too, during its movement

towards the light source.

The structure of the ANN being evolved is shown in figure 3.2. The input layer

corresponds to the sensors on-board the robot. Eight distance sensors, together

with a light sensor, constitute a 9-node input layer. The hidden layer consists of 13

nodes, while the output layer has two nodes, corresponding to the speeds of the left

and right motors, respectively. The values of the hyperparameters are as follows:
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ψmax = 100 ; MaxGen was set to 400 for obstacle avoidance and 600 for phototaxis

; Pre−eval = 0.3 ; Prdm mutate = 0.3 ; σmin = 0.01 and κ = 0.6. The evaluation

time in the run eval function was set to thirteen seconds, i.e., the respective ANN

controller was evaluated after it was run for thirteen seconds.

3.4 Results and Discussions

In this section, the results of the attempts to evolve the ANNs for the tasks of

obstacle avoidance and phototaxis are discussed. Experiments were performed by

varying the mutation strategies in the (1+1) algorithm as given below:

1. All Weights Mutated (AW-M): All the weights of all the weight matrices were

mutated randomly.

2. Random Number of Weights Mutated (RMW-M): A random number of weights

were mutated in the weight matrices.

3. ψ based mutation (ψ-M): The mutations of the weights were performed based

solely on their ψ value.

4. Hybrid of Random and ψ based Mutation (RND+ψ-M): The mutations of

weights were carried out using the proposed algorithm, both using random

and ψ-based method as discussed earlier in algorithm 2.

In each of these experiments, the graphs of the fitness values of the evolving

Champions vs. the Generations are plotted. The number of generations for the

task of obstacle avoidance was set to 400, and that of the phototaxis along with

obstacle avoidance was set to 600. The fitness values of the task phototaxis with

obstacle avoidance are higher than the task of just obstacle avoidance because the

fitness equation of phototaxis has got an extra term L, which is the value of the

light sensor, as seen in the equation 3.7.

The graph in figure 3.3 depicts the variations in the fitness values of the Cham-

pion being evolved across generations in the AW-M strategy for the task of obstacle

avoidance. As seen in the graph, the fitness curve falls to low values and, at times,

to even zero. This indicates that a few mutations resulted in drastic falls in fitness
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Figure 3.3: Variation in the Champion fitnesses of the AW-M version - Obstacle
Avoidance

Figure 3.4: Variation in the Champion fitnesses of the AW-M version - Phototaxis

values. It inherently justifies that not all mutations contribute to improvement in

performance. The graph in figure 3.4 depicts the variations of the Champion evolved

across generations for the task phototaxis. Here too, the fitness values seem to rise

and fall. The variations imply the complex nature of the task phototaxis, which

makes it challenging to evolve a single ANN controller that can tackle such a task.

The figures 3.5 and 3.6 depict the fitness values of evolving Champions over

generations for the tasks of obstacle avoidance and phototaxis, respectively, for the

RMW-M strategy of mutation. In this version, as the mutations are completely

random, there is nothing that guides the process of mutation. Hence, over the gen-

erations, there is hardly any improvement in the performance of the ANN controller.

In the relatively complex task of phototaxis (shown in figure 3.6), too, the varia-

tions in the fitness values remain very random, suggesting that the learning has been
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Figure 3.5: Variation in the Champion fitnesses of the RMW-M version - Obstacle
Avoidance

Figure 3.6: Variation in the Champion fitnesses of the RMW-M version - Photo-
taxis

unsatisfactory.

The figures 3.7 and 3.8 portray the fitness values of the evolving Champions

over generations for the respective tasks of obstacle avoidance and phototaxis using

the ψ-M strategy. This is a variation of the proposed algorithm 2, where the function

Mutate Random Weights is skipped, and the weights are mutated solely on the

basis of the values of ψ-M by the function Mutate Puissance Weights. Though

this strategy performs better than the previous one for the simpler task of obstacle

avoidance, as seen in figure 3.7, it does not seem to perform as much for the task of

phototaxis. This suggests that the use of ψ based mutation does have an advantage

over the previously discussed ones. However, it implies that merely following ψ-M

based mutation limits the exploration and may not produce fitter ANNs, as seen in
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Figure 3.7: Variation in the Champion fitnesses of the ψ-M version - Obstacle
Avoidance

Figure 3.8: Variation in the Champion fitnesses of the ψ-M version - Phototaxis

figure 3.8.

The variation of the fitness values over the generations using the RND+ψ-M

mutation strategy,(viz. the proposed mutational puissance-based algorithm 2), is de-

picted in the figures 3.9 and 3.10 for the tasks of obstacle avoidance and phototaxis.

For obstacle avoidance, the graph shows a faster and stabler convergence than the

ψ-M strategy, indicating that the hybrid version is more effective and provides a fair

chance for all weights to participate in the evolution of the ANN. As for the task

of phototaxis, the graph in figure 3.10 clearly outperforms its earlier counterparts

by exhibiting a fairly steady increase in the fitness values indicating the effective-

ness of the hybridized strategy. The mutational puissance seems to have guided the

evolution of the ANNs towards better fitness values and not deviate if a fitter one

is evolved. In contrast, the random mutations facilitate the much-required explo-
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Figure 3.9: Variation in the Champion fitnesses of the RND+ψ-M version - Ob-
stacle Avoidance

Figure 3.10: Variation in the Champion fitnesses of the RND+ψ-M version -
Phototaxis

ration and ensure that the evolution does not get stuck in a local optimum. The

proposed algorithm can thus be said to effectively balance random and puissance

guided mutation strategies to evolve ANN controllers exhibiting better performances

eventually.

Effect of Decay

The decay mechanism proposed in the algorithm avoids the accumulation of muta-

tional puissances associated with the weights of the ANN. If these puissances get

accumulated, it is highly possible that they misguide the evolution by forcing the

associated weights to be selected more often for the mutation process. In order to

test the efficacy of using such a decay, experiments are conducted using the proposed
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Figure 3.11: Variation in the Champion fitnesses of the RND+ψ-M version with-
out the decaying of Puissance - Obstacle Avoidance

Figure 3.12: Variation in the Champion fitnesses of the RND+ψ-M version with-
out the decaying of Puissance - Phototaxis

algorithm 2 but this time devoid of the decay mechanism. The graphs in figures

3.11 and 3.12 represent the variations in the fitness values of the Champion over

generations for the tasks of obstacle avoidance and phototaxis respectively, when

the decay of the associated mutational puissances, governed by the equation 3.5,

was not incorporated in the RND+ψ-M version. From the graphs, it can be seen

that the fitness variations exhibited are not as stable as those of their respective

counterparts (graphs in figures 3.9 and 3.10), which used the decay mechanism.

This is so because the removal of decay caused the accumulation of the puissances

in the case of the non-mutated weights.

The weights with accumulated puissances were thus selected for mutation while

evolving the Challenger. These weights were those that did not contribute to evolv-
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ing better ANNs having higher fitness values. The removal of the decay mechanisms

thus resulted in the creation of neuro controllers with poor performance, as seen in

the graphs in figures 3.11 and 3.12. On the contrary, when the decay mechanism

was incorporated, the graphs in figures 3.9 and 3.10, show the variations in fitness

values over generations, to possess better and stabler learning or fitness curve. This

justifies the need to incorporate a decay mechanism for mutational puissance.

3.5 Summary of the Chapter

This contribution described in this chapter, focused on a simple yet novel mecha-

nism to enhance neuroevolution. In the neuroevolutionary techniques, the weights

of an ANN are updated by the method of Gaussian mutation. During such a mu-

tation process, either all or a random number of weights are updated. Such weight

updations can result in deterioration of learning. The novel mutational strategy de-

scribed herein mutated the weights of the ANN based on their respective Mutational

Puissance values. These Mutational Puissance values are consumed or replenished

based on whether the performance of the ANN deteriorated or improved. Mutation

Puissances thus, acted as memories, capturing the contribution of the associated

weights on the performance of the ANN. These values guided the mutation in the

right direction, thereby improving the learning process of the ANN.

The results obtained from real experiments, indicate that just using Puissances

could still lead the ANN towards a local optimum. A mix of random and mutational

puissance based strategies seem to yield better results.

The contributions till now focused on learning the task in just only one envi-

ronment. It may be noted that a robot could be transported to another similar or

different environment. Learning in robots could be adversely affected when there is

a change in the environment.

The next chapter discusses how the information learned in one environment can

be transferred and used in another where a different task needs to be performed.

Before formulating and implementing such a transfer of learned information in the

open world of robotics, the next chapter focuses on a closed world problem to achieve

such a transfer from one environment to another. The subsequent chapter, thus,
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describes a new method to determine specific portions of an already learned ANN

model and transfer them to another such ANN model which can be used in learning

in the other environment. The source and target environments pertain to different

datasets.

;;=8=<<
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Neuronal Transfer Learning

Artificial Neural Networks (ANN) constitute one of the prominent and most ef-

fective supervised learning methodologies, where a mapping between a set of inputs

and their corresponding outputs can be learned. These input-output pairs are most

often in the form of a dataset. Part of the data within this set, is used to train

the ANN while the remaining is used for testing. Learning is performed using the

training set. The trained ANN (also referred to as a model) is then applied to the

test data to crosscheck the accuracy and performance of the learning. Once trained,

the ANN model can be used in conjunction with the dataset or data from the same

domain. In other words, the trained ANN model often holds only for the same type

of data on which it is tuned. The same training exercise and testing needs to be

repeated as and when the dataset is changed. Rather than starting from scratch,

researchers have tried to take some or all the layers from an already learned model

of an ANN, to train on a new dataset. This method often leads to a reduction in

the number of computations and consequently time. This reusing of already trained

models to learn a new set of information is termed as Transfer Learning [100].

In transfer learning [81], either a few or all the layers of the trained source

ANN (ANNS) model are transferred to the target ANN (ANNT ) which is required

to learn from a different dataset. The transfer of layers refers to transferring the

associated weights of these layers to the target ANN. After transfer of the layers to

the ANNT , the corresponding weights are changed as per the learning algorithm,
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along with the other ones. In other scenarios, the transferred weights are frozen

in ANNT and are not changed by the learning algorithm [117]. However, it is

not always true that all these neurons in these transferred layers are beneficial in

the training process. In fact, the non-beneficial neurons could, hamper and retard

the learning process or even lead the search to a local optimum, culminating in

a condition referred to as negative transfer [123]. Such adverse effects caused by

certain neurons also increase the time required (or the epochs) to train the ANNT .

It is thus, imperative to devise a manner in which one can identify neurons in

the various layers that can prove to be beneficial, when transferred. This naturally

would not only accelerate the training process but also culminate in a better and

more accurate model.

This chapter presents an immuno-inspired strategy to identify neurons within

an ANNS which can ameliorate learning when transferred to the ANNT . For clar-

ity, such neurons have been termed as Hot neurons while the remaining ones are

referred to as Cold neurons. Neurons within a specific layer are looked upon as a

population and compete with one another during the learning process. The internal

competition within a population of neurons in a layer, leads to the formation of a

kind of Local Idiotypic network as described by Jha et al. [65] which in turn is sim-

ilar to an Idiotypic Network [61]. The winning neuron which is the one with lowest

loss, is stimulated by the rest of the neurons in the population causing an increase

in its associated concentration or temperature. The winning neuron, in turn, also

suppresses the other neurons in the population by decreasing their respective con-

centration or temperature. Over time the neurons that have been stimulated more

often get hotter (increased temperature) while the others tend to become colder

(decreased temperature). The temperature of a neuron thus, acts an indicator of

its performance in terms of the losses it has suffered as compared to the others.

The hotter neurons when transferred to the ANNT show enhanced performance

and low convergence times. Results obtained by performing such transfers while

learning truth tables of logic gates and also Devanagari, Japanese scripts and En-

glish numerals throw insights into the effectiveness of this immuno-inspired Transfer

Learning methodology.

The contributions of the work presented herein can be summarised as below:
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• An immuno-inspired paradigm that can aid in identifying specific or Hot neu-

rons in each of the layers within the source ANN that can be transferred to

the target ANN, so as to enhance its accuracy and reduce convergence time.

• A heuristic that can convey, as to when to opt for this technique over conven-

tional full layer-wise transfer methods.

4.1 Background

4.1.1 Transfer Learning

Of late, Transfer Learning (TL) has received more attention among the machine

learning community who use deep learning. [100, 81, 127] report various categories

of TL and their associated enhancements. In [118], Tan et al. describe TL where

layers within deep neural networks are transferred. Fine-tuning an already trained

model is a common technique followed by many researchers. Long et al.[80] present

a method where only the last few layers of a deep network are fine-tuned. Kornblith

et al. [71] explore various cases of fine-tuning in the transferred networks. Apart

from tuning, it is also essential to identify the specific layers of an ANN that are to

be transferred. Yosinski et al. in [133] study the transfer of initial, mid, and last

layers of the deep networks. According to Yosinski et al., the information learned

by the initial layers is more generic. Deeper into the network, the information

becomes more specific to the data on which the network is being trained. Guo et

al. [54], propose a strategy to select the layers which are to be fine-tuned. Based

on a policy network, they decide whether the input is to be passed through a set

of fine-tuned or pre-trained layers. Wei et al. [126], propose a methodology for TL

based on past experiences. They initially, learn and optimize a reflection function

which encrypts the transfer learning skills from past experiences. This function

then aids in deciding the layers which need to be transferred. Rosenstein et al. [106]

discuss on the question of whether to or not to, effect such a transfer. They apply

the Hierarchical Naive Bayes method and conclude that the TL works best when

the source and the target data are similar and not so well in the case of dissimilar

data.
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4.1.2 The Idiotypic Network

In the Biological Immune system, the non-self entities (termed as Antigens) are

identified and eventually removed from the body. For eliminating such antigens,

the immune cells secrete proteins called as Antibodies which are responsible for the

tagging of antigens for their removal. Different antibodies recognize different types

of antigens. The various antibodies can recognize each other as self. In his Nobel

Prize winning work, Jerne [61] postulated that antibodies form a network among

themselves which he termed as the Idiotypic network (IN). This IN is formed irre-

spective of the presence of an antigen. Whenever an antibody detects an antigen

or other antibodies, the former antibody is stimulated by the latter; else, it is sup-

pressed. These stimulations and suppressions result in an increase or decrease in

the concentrations of the respective antibodies. INs have been used in a plethora

of applications including Robotics and machine learning [109, 128, 58, 110, 111].

Jha et al. [65] have proposed the formation of Localized Idiotypic Networks (LIN),

where various INs form in the vicinity of a set of antibodies at a node in computer

network. They have described a novel architecture to emulate the Biological equiva-

lent of INs. Bersini and Varela in [12] have proposed a methodology that hybridizes

between the biological lessons and the engineering needs. They emphasize how the

biological realities can assist the problem-solving in artificial neural networks and

genetic algorithms.

In this work, concept of a IN is applied to identify the Hot neurons in a source

neural network so that they can be transferred to the target neural network. Rather

than identifying whole layers of neurons that need to be transferred and re-tuned,

this chapter presents a method to identify the specific neurons within such layers,

which when transferred can yield better performance of the target ANN.

4.2 Methodology

In conventional TL techniques (also termed as network transfer strategies), individ-

ual layers of the source ANN (ANNS) are transferred to the target ANN (ANNT ).

The ANNS is the one initially trained on a certain dataset, DS , while The ANNT

is the one that has to be trained using a different dataset, DT . Transfer of a layer
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Figure 4.1: Two layers from ANNS transferred to ANNT

means that the associated weights of the neurons in those layers are transferred to

the ANNT . The figure 4.1 shows the transfer of two hidden layers, viz. the 2nd and

3rd, from an ANNS to an ANNT . All the weights in the ANNT , except those cor-

responding to the transferred layers, are initialized randomly. During the training

process of the ANNT , the weights associated with the transferred neurons remain

frozen (unchanged), while all the others change as per the back-propagation rule.

4.2.1 Immuno-inspired Idiotypic network based Transfer

This work proposes an Idiotypic Network (IN) inspired transfer of neurons from

ANNS to ANNT , where only some of the neurons in the layers are transferred.

As explained earlier in section 4.1, in an IN, the antibodies form a network by

stimulating or suppressing the others based on conditions. This work metaphorizes

the neurons as antibodies that form an Idiotypic-like network. The neurons in each

layer constitute a population and form an Idiotypic Network which is local to that

layer. If the number of neurons in a layer is large, then these are divided into

populations of neurons, with an IN formed within each population.

Every neuron in the ANNS is associated with a Temperature which is akin

to the Concentration [111] of an antibody in the IN. At the end of an epoch in

the training phase, the neuron which has lowest loss is stimulated by the others

within its population. Likewise, this neuron suppresses the others. These suppres-

sions and stimulations cause a neuron’s temperature to increase (or decrease) with

stimulations (or suppressions) much like in the biological Idiotypic Network. Thus,

at the end of the training, some neurons in every layer will have higher temper-

atures than the others in their respective populations. The weights of these high
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Figure 4.2: Stimulations and Suppressions of the neurons in a population in
ANNS

temperature, Hot neurons, are then transferred to the ANNT and frozen so that

back-propagation does not have any effect on them. Thus, instead of transferring

the whole layer to ANNT , only the Hot neurons are transferred. The weights of the

other non-transferred neurons in the ANNT are now re-tuned to achieve convergence

and learning.

Ascertaining Hot Neurons in ANNT

At every epoch, a neuron is stimulated if that neuron has the lowest loss in that

population; otherwise, it is suppressed. This mechanism is shown in fig. 4.2. These

suppressions and stimulations result in a change in the temperature associated to

the neurons. To model the change in the temperature of the neurons, this work uses

a variant of Farmer’s equation [35].

Let the set L contain all the layers in ANNS and Li ∈ L be the ith layer in

L. Let N i be the set of neurons in this layer Li, with n number of neurons in N i.

Every neuron N i
k ∈ N i, is associated with a temperature, Θi

k. These n neurons

constitute a population which form an Idiotypic Network local to the layer Li. In

each epoch, letN i
j be the neuron with the lowest loss in this population. The amount

of stimulation received by N i
j from all other neurons in this population is given by:

86



4. NEURONAL TRANSFER LEARNING

τ ij = (1− |Ψi
j |) ∗ ωi

j (4.1)

ωi
j =

n∑
k=1

(β ∗Θi
k) where k ̸= j

where τ ij is the stimulation received by the neuron N i
j , Ψ

i
j is the net loss at

that neuron (|Ψi
j | being the absolute value), β is a positive constant (0 > β ≥ 1) to

scale down the temperature values, ωi
j is the sum of the temperatures of all other

neurons except N i
j and n is the number of neurons in that population. For every

epoch, the suppression received by all other neurons in the population is given by:

ιil = β ∗ (|Ψi
l|) ∗ (Θi

l/Ω
i
l) where ∀l ∈ N i and l ̸= j (4.2)

Ωi
l =

n∑
k=1

Θi
k

where ιil is the suppression received by the neuron N i
l , Ψ

i
l is the net loss at that

neuron (|Ψi
l| being the absolute value) and β is a positive constant (0 > β ≥ 1) to

scale down the temperature values and Ωi
l is the sum of the temperatures of all the

neurons. The changes in temperature of the neuron with lowest loss, N i
j , and that

of all the other neurons are governed by the following equations:

Θi
j = Θi

j + τ ij (4.3)

Θi
l = Θi

l − ιil where ∀l ∈ N i and l ̸= j (4.4)

Algorithm 3 portrays the method of identification of the Hot neurons in the

training process of ANNS . The Θ values of all the neurons are initialized before

the training process begins. In every epoch, both the forward and the backward

propagations are performed in the conventional manner and the losses for every

neuron in each epoch are recorded. For every layer, the neuron which has incurred
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Algorithm 3: Algorithm to ascertain Hot Neurons

1 Initialise Θ values
2 Li ← set of layers from which neurons will be selected
3 for every epoch do
4 forward prop()
5 backward prop()
6 for every Li ∈ L do
7 N i ← Set of all the neurons in Li

8 j ← Index of the Neuron with lowest loss
9 Calculate τ ij and Stimulate N i

j

10 for every N i
l ∈ N i where l ̸= j do

11 Calculate ιil and Suppress N i
l

12 Update Θ values of all neurons

13 for every Li ∈ L do
14 Determine ϑi

the lowest loss is stimulated by the rest of the neurons in this layer. The stimulations

received by this neuron are calculated based on τ ij , Ψ
i
j and ωi

j as per the equation

4.1. All other neurons in this layer are then suppressed by this neuron using ιil and

Ωi
l as per the equation 4.2. The value of Θ associated to the neuron N i

j and also all

other neurons are updated using the equations 4.3 and 4.4, respectively.

Once the training is complete, the set ϑi is determined, comprising the top best

Hot neurons within the layer i, with higher Θ values.

Each of the Hot neurons in this set has its respective associated set of neuronal

weights. These weights are the ones that are transferred to the ANNT in the TL

process, so as to reduce the overall loss of training, consequently increasing the

efficacy of the target model.

Transferring of Hot Neurons to ANNT

After the Hot neurons in the ANNS are ascertained during the training process, they

are transferred to the ANNT before training the latter. The weights associated with

these transferred Hot neurons are frozen (remain unchanged) in the ANNT while

those of the others are initialized randomly and allowed to be re-tuned based on the

propagation. Figure 4.3 depicts the transfer of the red coloured Hot neurons from

ANNS to ANNT wherein they remain frozen (blue).
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Figure 4.3: Idiotypic Network-based transfer of Hot Neurons (Red) from ANNS

to ANNT where their weights remain frozen (blue)

After the transfer and freezing of the weights of the Hot neurons in the ANNT ,

it is trained using the target dataset, DT .

4.3 Experimental Setup

The proposed strategy of ascertaining the Hot neurons while training a source ANN

and then transferring them to a target ANN was experimentally tried out in three

different ways. The first set of experiments was targeted to a problem where ANNS

was trained to learn the XOR logic, and the corresponding Hot neurons were iden-

tified in the process. These Hot neurons were then transferred to two other target

ANNs viz. ANNT1 and ANNT2 which were made to learn AND and OR logic, re-

spectively. It may be noted here that, learning the target OR from source XOR logic

is fairly easier, as the respective truth tables have higher similarity as compared to

that of the target AND logic.

In the second set of experiments, the source ANN was a Convolutional Neural

Network (CNN), representated as CNNS , trained on the character dataset of De-

vanagari scripts [1]. The Hot neurons obtained during its training were then trans-

ferred to two other target CNNs viz. CNNT1 and CNNT2 . CNNT1 was a CNN

used to learn to classify handwritten digits in the MNIST dataset [76]. CNNT2 was

another CNN used to learn to classify ten rows of Japanese Hiragana in Kuzushiji-

MNIST (KMNIST) dataset [19]. Here too, one may note that the source character

dataset of the Devanagari scripts and the target datasets MNIST are fairly dissim-

ilar. As for the target dataset KMNIST, this dissimilarity is very high.
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In the third set of experiments, the source ANN used was a CNN trained on

the MNIST dataset (CNNS) whose Hot neuronal weights were used in a the target

CNNT comprising a CNN used to learn to classify the digits from the USPS dataset

[59]. Since both the MNIST and USPS datasets contain English numerals 0 through

9, their contents are very similar.

To maintain pellucidity, the degree of transfer carried out is defined in the form

of ▶δ where δ stands for the number of Hot neurons transferred (or the degree of

transfer) from each population. δ = 0 indicates no neurons were transferred, i.e.,

starting afresh using randomly initialized weights. δ = λ indicates that all neurons

in the layer were transferred.

4.3.1 Experiment #1:Transfer of Hot neurons from a XOR ANNS

to OR and AND ANNT s

The ANNS , which was trained to learn the XOR logic, had an input layer, two

hidden layers comprising six neurons each, and an output layer. The neural network

was implemented using the Numpy library. The sigmoid activation function was used

in all the layers, and the temperatures Θ of all the neurons were initialized to 10.

The learning rate was set to 0.1, and the network was trained for 10000 epochs. The

value of β was set to 0.03. The targets, ANNT1 and ANNT2 used to learn AND

and OR logic, respectively, had the same neural architecture as ANNS .

In the case of the proposed Idiotypic network-based transfer, the Hot neurons

from ANNS were transferred from both the hidden layers to corresponding layers

in ANNT1 and ANNT2 .

For comparison, the complete layer-wise transfer of neurons (where all the neu-

rons of both the hidden layers of ANNS were transferred to ANNT1 and ANNT2),

was also tried out separately. All the weights associated with the non-transferred

neurons of ANNT1 and ANNT2 were initialized randomly, in both these cases, viz.

the proposed Idiotypic network-based transfer and the complete layer-wise transfer.

The weights associated with the transferred neurons, in both these cases were frozen

during the training phases of ANNT1 and ANNT2 . The number of epochs used to

train these target ANNs was fixed at 10000, just as the source ANN.

In order to get a better understanding, the transfer experiments were carried
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out based on different conditions and their combinations. In this case, the experi-

ments are conducted where the transfers were of the form: ▶0, ▶3, ▶4 and ▶λ. For

each of these transfers, 15 trials of experiments were conducted.

4.3.2 Experiment #2: Transfer ofHot neurons from a CNNS trained

using Devanagari Character Dataset to those CNNT1 and CNNT2

trained using MNIST and KMNIST, respectively

The source ANN used was a CNN with three 5x5 convolutional layers and two fully-

connected layers. The first convolutional layer consisted of 10 channels, followed by a

ReLU activation. The second convolutional layer consisted of 20 channels, followed

by a 2x2 max-pooling followed by a ReLU activation. The third convolutional

layer consisted of 32 channels, followed by a dropout layer, 2x2 max-pooling, and

ReLU activation. Two fully-connected layers with 512 and 200 neurons, respectively,

followed these convolutional layers. Each of these fully connected layers was followed

by the ReLU activation. A final softmax layer followed the fully connected layers.

The number of output classes was 46. PyTorch framework was used to train all the

CNNs viz. CNNS , CNNT1 and CNNT2 .

The Devanagari character dataset consists of gray scale images each having

a dimension of 32x32x1. The training and testing sets included 73600 and 18400

images, respectively. The hyperparameters used were as below: Learning rate = 0.01

; Batch size during training = 64 ; Batch size during testing = 1000 ; Momentum

= 0.5 ; Stochastic Gradient Descent (SGD) as the optimization method ; β = 0.03;

Initial Θ value = 10.0.

Since each convolutional layer had a larger number of neurons as compared

to the layers in the CNNS , the neurons are divided into populations and evolved

the Idiotypic Networks within each of them to reap the Hot neurons. The Hot

neurons were identified and transferred from each of these populations within the

convolutional layers to the convolutional layers in CNNT1 and CNNT2 .

The CNNT1 for MNIST was a CNN that comprised two 5x5 convolutional

layers and two fully-connected layers. The first convolutional layer consisted of 10

channels, followed by a 2x2 max-pooling and then by ReLU activation. The second

convolutional layer consisted of 20 channels, followed by a dropout layer, 2x2 max-
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pooling, and ReLU activation. Two fully-connected layers with 320 and 50 neurons,

respectively, followed the convolutional layers. Each of these fully connected layers

was followed by ReLU activation. A final softmax layer followed the fully connected

layers. The number of output classes was 10. The CNNT2 for KMNIST also had

the same architecture as CNNT1 .

Both the MNIST and KMNIST datasets consist of gray scale images having

dimensions 28x28x1. 60000 images were used as the training set and 10000 for the

test set. All hyperparameters were set to the same values as that of the CNNS used

to learn the Devanagari script.

For the Idiotypic Network based transfer, ▶2,▶3 and ▶4 are followed, trans-

ferring respectively top 2, 3 and 4 Hot neurons from each of the population from

the first two convolutional layers of CNNS to the first two convolutional layers of

CNNT1 and CNNT2 . For the complete layer-wise transfer ▶λ, all the neurons from

the first two convolutional layers were transferred. For each of these transfers, 10

trials were conducted.

4.3.3 Experiment #3:Transfer of Hot neurons from CNNS trained

on MNIST to CNNT to train on USPS

The architecture of CNNS for MNIST in this case was same as that of the network

used to train MNIST architecture mentioned in the subsection 4.3.2. The CNNT for

USPS was a CNN with two 5x5 convolutional layers and two fully-connected layers.

The first convolutional layer consisted of 10 channels, followed by ReLU activation.

The second convolutional layer consisted of 20 channels, followed by a dropout layer,

2x2 max-pooling, and ReLU activation. Both the fully connected layers were the

same as the MNIST as elaborated in section 4.3.2, with the same values of the all

the hyperparameters.

The USPS dataset consists of grayscale images, dimensions of each image being

16x16x1. There were 7291 and 2007 images in the training and test set, respectively.

All other hyperparameters were the same as the MNIST in section 4.3.2. Here also,

for the Idiotypic Network-based transfer,the following transfers are experimented:

▶2,▶3,▶4, ▶λ Thus, the top 2, 3 and 4 Hot neurons, respectively, are transferred

from each of the populations from the first two convolutional layers of CNNS to the
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Figure 4.4: Variations of temperatures (Θ) of the neurons in the first hidden layer
versus the epochs during the training of ANNS to learn XOR logic

Figure 4.5: Variations of losses of the neurons in the first hidden layer versus the
epochs during the training of ANNS to learn XOR logic

first two convolutional layers of CNNT . For each of these transfers, 10 trials were

conducted.

4.4 Results and Discussions

This section presents the results of the proposed method of transferring Hot neurons

for both the experiments described earlier.

4.4.1 Results from Experiment#1: XOR to AND and OR logic

The graphs in figures 4.4 and 4.5 show the variations of the temperature Θ and losses

associated with each of the six neurons in the first hidden layer during the training

of ANNS to learn the XOR logic. It can be observed from these graphs, that when
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the loss associated with a neuron as compared to others at a particular epoch, is

lowest, it is stimulated. These stimulations tend to increase the temperature of the

neuron with the lowest loss in that epoch. This neuron in turn suppresses the ones

with higher losses thereby decreasing their respective temperatures. For instance,

it can be observed in the figure 4.5 that initially the neuron-3 incurs the lowest

loss till around the 3000th epoch. This results in a rise in its associated Θ value

as seen in the figure 4.4 due to the stimulations it receives from the other neurons

during these epochs. On the contrary, the temperatures of all other neurons show a

comparatively decreasing trend due to the suppressions received from the neuron-3.

Between the epochs 3000 and 4000, since the neuron-2 incurs the lowest loss, its

temperature increases while those of the others go down. Such trends cause the

temperatures of the neurons having lower losses to increase over successive epochs

and become Hot neurons.

Similar trends can be observed in the figures 4.6 and 4.7 for the second hidden

layer. The ANNS converged after 8000 epochs. Beyond this, the loss values for

neurons in both the hidden layers become negligible and their corresponding tem-

peratures attain different maximum values. Figure 4.8 and 4.9 depict the training

losses over epochs when the transfers were carried out based on ▶0, ▶3, ▶4 and ▶λ

to learn AND and OR logic, respectively. In the case of AND, it can be observed

that for ▶3 and ▶4, the losses of the corresponding target ANNs attained a near

zero value much earlier than that of the ▶0. As for ▶λ, the corresponding target

ANN converged to a higher loss indicating its poor performance. In the case of OR,

the losses incurred in ▶λ attained a near zero value slightly faster than that in the

cases of ▶3 and ▶4, and significantly faster than the case ▶0.

It may be observed that in case of the XOR to AND transfer, the truth tables

are fairly dissimilar, then a lower non-zero degree of transfer seems to perform

better, whereas for the XOR to OR transfer, where the truth tables are similar, a

higher degree of transfer performs better. Thus in the latter case of similarity, a full

layer-wise transfer (▶λ) is advised.
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Figure 4.6: Variations of temperatures (Θ) of the neurons in the second hidden
layer versus the epochs during the training of ANNS to learn XOR logic

Figure 4.7: Variations of losses of the neurons in the second hidden layer versus
the epochs during the training of ANNS to learn XOR logic

4.4.2 Transferring Hot neurons from Devanagari Character dataset

to learn MNIST and KMNIST data

Initially the CNNS is trained as mentioned earlier, with the Devanagari character

dataset. The Hot neurons were ascertained in every population of neurons in the first

and second convolutional layers. These neurons were transferred to first and second

convolutional layers of CNNT1 and CNNT2 to train using MNIST and KMNIST

datasets, respectively. Table 4.1 shows the test accuracies for each of these cases

over the epochs for the transfers: ▶2, ▶3, ▶4 and ▶λ. It can be observed that for

both the MNIST and KMNIST datasets, the transfers ▶2, ▶3 and ▶4 outperformed

▶λ in every epoch. Further, it may be noted that the transfers ▶2 and ▶3 performed

better than▶4. It can be observed from table 4.1 that for both MNIST and KMNIST
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Figure 4.8: Variations of losses values over epochs during training of ANNT1 to
learn AND logic for ▶0, ▶3, ▶4 and ▶λ transfers

Figure 4.9: Variation of training loss over epochs during the training of ANNT2 to
learn OR Logic with ▶0, ▶3, ▶4 and ▶λ transfer

datasets, that as the degree of transfers, δ, increases, the target CNN requires more

epochs to reach the same accuracy values as those of the lower degree ones.

As discussed in section 4.4.1, here too since MNIST and KMNIST datasets

are fairly dissimilar, the Idiotypic Network-based transfer of Hot neurons seems to

perform better than the complete layer-wise transfer.

4.4.3 Transferring Hot neurons fromMNIST dataset to USPS dataset

Here a source CNN was initially trained using MNIST dataset. After the training,

the Hot neurons in each population of neurons in the first and second convolutional

layers were ascertained were transferred to the first and second convolutional layers

of CNNT to learn the USPS data. Table 4.2 shows the test accuracies of the CNNT
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Table 4.1: Test accuracies of target CNN using MNIST and KMNIST after the
transfer from source CNN trained using Devanagari Character dataset (values in
bold indicate the best accuracies for each epoch)

Epoch
Accuracies MNIST (in %) Accuracies KMNIST (in %)
▶2 ▶3 ▶4 ▶λ ▶2 ▶3 ▶4 ▶λ

0 19.68 16.89 7.41 14.11 10.11 7.10 9.29 13.25

1 93.31 94.17 93.21 93.20 67.41 68.41 70.19 69.54

2 95.56 95.91 94.61 94.14 74.34 73.12 74.99 70.77

3 96.44 96.72 95.70 94.43 76.47 75.80 76.29 72.47

4 97.09 97.22 96.22 94.44 78.01 77.81 78.22 74.46

5 97.16 97.29 96.41 95.05 79.34 78.77 78.70 76.24

6 97.66 97.66 96.86 95.26 79.91 80.52 79.59 76.69

7 97.62 97.62 96.88 95.31 80.78 81.28 79.63 75.99

8 97.85 97.79 97.31 95.59 81.80 81.58 80.00 75.85

9 98.05 97.74 97.08 95.57 82.68 82.61 80.69 77.60

10 98.22 97.99 97.42 95.70 83.22 83.67 80.61 76.90

11 98.12 98.00 97.29 95.52 82.91 83.96 82.24 76.95

12 98.29 98.03 97.70 95.76 83.90 83.67 81.74 78.07

13 98.28 98.16 97.68 95.99 84.43 84.49 82.14 77.47

14 98.35 98.26 97.63 95.67 83.97 84.81 82.56 77.94

15 98.43 98.12 97.80 96.22 84.20 85.47 82.06 78.85

over the the epochs for the transfers ▶2, ▶3, ▶4 and ▶λ. It can be observed from

the table that the overall trend indicates for higher values of δ, higher performance

is achieved in lesser epochs.

It maybe noted that the datasets MNIST and USPS are fairly similar and hence

as observed in the results in the section 4.4.1, the ▶λ performed better than ▶2 and

▶3.

From the results, it can be summarized that when the source and the target

datasets are fairly dissimilar, the Idiotypic Network-based transfer using Hot neu-

rons significantly outperforms the complete layer-wise method. When the datasets

are similar, it can be seen that a complete layer-wise transfer performs better than

the proposed method.

4.5 Summary of the Chapter

This chapter introduced a novel transfer learning method in neural networks, where

instead of transferring complete layers of neurons, a set of pertinent or Hot neurons
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Table 4.2: Test accuracies of target CNN using USPS after the transfer from source
CNN trained using MNIST dataset (values in bold indicate the best accuracies for
each epoch)

Epoch
Accuracies USPS (in %)
▶2 ▶3 ▶4 ▶λ

0 10.41 12.51 16.79 16.54

1 56.55 62.88 77.03 82.61

2 76.38 79.57 83.31 86.15

3 81.96 82.86 86.95 87.54

4 82.96 84.65 87.99 88.09

5 84.90 86.15 88.89 89.64

6 87.10 87.39 89.89 89.84

7 87.49 87.89 90.13 90.33

8 88.14 88.99 90.48 90.58

9 88.34 89.39 90.28 90.98

10 89.14 89.59 91.03 90.48

11 89.04 90.58 91.78 91.28

12 90.13 90.53 91.73 91.28

13 90.08 90.28 91.18 91.78

14 90.43 91.18 92.23 91.48

15 90.58 91.23 92.18 91.83

was identified to be transferred.

An Immuno-Inspired algorithm proposed in this work aids in the identification

of these Hot neurons from within the source ANN, which, when transferred to the

target ANN, facilitates the faster convergence of the target ANN. The algorithm

proposed used the concept of an Idiotypic Network to evolve the temperatures as-

sociated with the neurons within various layers of the source ANN. The results, on

both shallow and deep neural networks, clearly indicate that the proposed neuronal

transfer method outperforms the conventional layer based transfer in the cases when

the source and target datasets are dissimilar. The chapter however, describes the

use of the Immuno-Inspired transfer of neurons from source to target ANNs only in

a closed world, i.e. learning from datasets made available. One cannot thus, be sure

whether such a transfer mechanism will be beneficial in the robotics domain. It is

important to verify whether this mechanism proves to be good, when a robot, whose

controller has learned to adapt in one environment, is made to inhabit a different

environment. The next chapter thus, describes how this Immuno-inspired neuronal

transfer learning can be applied in an open world so as to achieve embodied lifelong
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learning in robots.
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5
Integrating Lifelong Learning and

Transfer Learning Mechanisms

In the realm of evolutionary robotics, the controller of a robot is what actually

drives it. This controller could, for instance be a Proportional–Integral–Derivative

(PID) based one or one that uses a set of if-else rules, Bayesian networks or an Artifi-

cial Neural Network (ANN). Among these, the latter is widely used as the controller

of the robot due to its smooth input to output transition. Conventional supervised

learning controllers use ANNs constituting weights (or weight matrices), that are

generally updated using backpropagation. However, in the case of neuroevolution,

where the weights within these ANN based robot controllers are evolved using evolu-

tionary techniques. These weights are updated by random Gaussian mutation. The

quality of an ANN controller is determined by its fitness, which in turn indicates

how well the robot performs the defined goal(s) using this controller.

In neuroevolutionary techniques, it is difficult for a single controller to learn to

perform a task efficiently. Things deteriorate if the task is a complex one. Under

such a condition, the evolutionary process suffers from the issues of bootstrap and

deception and often ends up in local optima. Various methods have been introduced

to overcome these issues which include incremental evolution, human-in-the loop,

behavioral decomposition, etc. [46]. However, all these methods need some interfer-

ence by an external entity and thus do not provide for an appropriate solution when
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robot controller needs to evolve in an online and on-board manner. A recent work in

[110], introduces an Immuno-Inspired methodology to evolve robot controllers even

for complex tasks in an online and on-board manner. A hyper parameter termed

the Cross Reactivity Threshold, denoted by ϵ divides the search space into various

active regions on-the-fly. Instead of evolving a single controller, they describe the

evolution of an ANN based controller for each such active regions within the search

space. Thus, the robot is actually controlled by a set of controllers which have been

evolved in an online and on-board manner. Using the sensor vector space, the robot

determines which active region it is currently in, and uses the associated controller.

In case, it has visited this region for the first time, it generates a new controller for

this region using random weights and makes it learn them manner in which it needs

to act in that region. They have shown that the use of this methodology aids in

efficiently learning a complex task in the given environment.

However, the major drawback of this work [110] is that the it evolves just

one controller per active region. The evolved controller is a mutated version of the

former and replaces it if it performs better. Once the learned parent controller

is replaced by the evolving (mutated) child controller, the learning achieved by

the parent in the past, is lost. This phenomenon is akin to catastrophic forgetting

[46] exhibited in neural controllers, where the already learned information is reset

and thus, lost. The work reported in Chapter 2, proposes an enhanced Immuno-

Inspired algorithm termed iAES-HoF, where a Hall of Fame (HoF) of controllers is

maintained per active region rather than just a single one as in [110]. Rather than

use a fixed population of controllers in an HoF, the number of controllers in each

HoF is maintained dynamically based on the dynamics of the system. The technique

ensures that the HoFs are populated by only the better performing controllers. The

other non performing or unused ones are automatically evicted. Thus, many HoFs

(one per active region), each caching a repertoire of the best evolved controllers are

maintained for a given task and environment.

It may be noted this work pertains to a given environment. However, if a robot

which has learned to inhabit an environment, E, needs to be translocated to another

similar or dissimilar environment E’, the overall evolutionary process may need to

be started from scratch. This can be both time and energy consuming. Instead of
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evolving from scratch, if the pertinent controllers evolved in E can be transferred

to the robot situated in E’ it can give it the right head start, rather than starting

from scratch, thereby saving both time and energy. TL is known to work effectively

when the source and target datasets (environments) are similar [119, 122]. If the

source and target datasets (environments) are dissimilar, the source repertoire may

not work well in the target leading to what is termed as Negative Transfer condition

[134]. It is further challenging if the tasks that the source repertoire has learned

is different from the target task that is to be learned. The work proposed in this

chapter, describes a mechanism to identify the neurons to be transferred from a

controller in the learned source repertoire to the target environment when the source

and target environments are aiming to learn dissimilar tasks.

A transfer learning algorithm, termed as NeuroEvotionary-Transfer (NeEvoT)

algorithm catering to embodied evolution identifies prominent neurons in each of

ANN-based robot controllers within every HoF belonging to the source repertoire.

We have associated a Temperature with every neuron within each of the controllers

in this repertoire. While the source repertoire is being evolved, the temperatures of

the neurons in the evolving controllers are changed proportionate to the gradients in

both their respective fitness values and weights. Neurons with higher temperatures

are tagged as Hot neurons. This source repertoire, along with Hot neurons, is

transferred to the robot located in the target environment to accelerate its learning

process. Simulations conducted using robots in the source and target environments

indicate the efficacy of the transfer (NeEvoT) algorithm of repertoire in source and

target environments for similar and dissimilar tasks.

The main contribution of this work is a transfer learning algorithm applicable

for embodied neuroevolution in robots which can hasten the learning process in

environments where the robots are required to learn similar or dissimilar tasks.

Subsequent sections provide TL and related work, the algorithm used for evo-

lution of the repertoire of robot controllers, the NeEvoT algorithm, followed by

experiments performed, their results, discussions and conclusions.
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Transfer Learning (TL) is a mechanism where the knowledge acquired is transferred

from a source domain to a target domain [82]. Such a transfer of knowledge is aimed

to hasten the learning process in the target domain. TL is mostly successful in the

cases where the source and target domains are similar [99].

In the realm of Evolutionary Algorithms (EA), various methods of TL have

been proposed. Friess et al. [47] propose a method to learn an evolutionary search

strategy that reflects the rough characteristics of a fitness landscape. This search

strategy could eventually be transferred and adapted to other similar problems of

interest. They focus on transferring the learned information to a target problem class

that is similar to the source problem class. They have used benchmark problems to

demonstrate effectiveness of their strategy.

Mouret and Maguire [90] have proposed a Multi-task MAP-Elites algorithm,

which is an extension to MAP-Elites. Their algorithm solves numerous robotic tasks

simultaneously by evaluating the fitness of individual tasks separately. They have

used a high-performing solution of a robotic task to find solutions to other similar

tasks. A task-selection operator is used to select similar tasks.

In [18], Chen et al. have described a TL based parallel evolutionary algorithmic

framework for bi-level optimisation. In their framework, upper level variables pa-

rameterize a set of lower level problems and the latter is optimized. The performance

of their algorithm was evaluated by experimental studies on various bi-level opti-

mization benchmark problems. However, they state that the lower level problems

must share some similarities with those of upper level ones during the optimization

process.

Ma et al. in [83] have proposed a two-level TL algorithm to solve Multi-Task

Optimisation (MTO) problems. They implement intra-task and inter-task learning

at both lower and upper levels, across all dimensions based on transfer of decision

variables. Correlation and similarity among the component tasks have been used

improve the effectiveness of MTO. They categorically state that their transfer is

effective only when the component tasks are similar.

In [21], Da et al. introduce an evolutionary framework to enable online learning
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and exploit the similarities across optimization problems. Their work aims to achieve

the algorithmic realization of the transfer optimization paradigm. They highlight

that the similarities in the optimization problems may be less apparent on the surface

and are revealed during the process of evolution. They have analyzed the efficacy

their proposed work, both theoretically and practically, on a series of numerical

examples.

In the Chapter 4, an Immuno-Inspired TL paradigm in a supervised learning

setup for dissimilar datasets was proposed. The neurons, termed as Hot neurons, are

identified from the source ANN only after completing the learning process. These

Hot neurons are transferred to the target ANN, and their associated weights are

frozen. The target ANN is then trained on a dataset dissimilar to the source dataset.

Results obtained from experiments performed using both shallow and deep ANNs

established the efficacy of their work in transfer learning, especially in the case of

dissimilar source and target datasets. Their studies are restricted to learning using

static datasets. In addition, since the source ANN needs to essentially complete

learning of the associated dataset, the technique cannot be used on an as is where

is basis in the realm of embodied evolution of robot controllers.

In all these works, except for the one in Chapter 4, transfer learning is effective

only when the source and target tasks/environments are similar. Current state

of the art transfer learning methods seem to have this as the main requirement.

Literature survey indicates that no earnest attempt has been made to realize TL in

evolutionary application domains where the sources and targets are dissimilar.

5.0.2 Evolving the repertoire of Robot Controllers - iAES-HoF Al-

gorithm

Since our proposed work makes use of iAES-HoF algorithm to evolve robot con-

trollers, a brief description of the same is provided herein. In this algorithm, the

search space of a robot is dynamically divided into Active Regions. A Hall of Fame

comprising robot controllers is evolved and maintained for each of these Active Re-

gions. The set of all Halls of Fame constitutes a repertoire of robot controllers for

a given environment. Two dynamically varying parameters viz. Concentration and

Resource associated with of the controllers within an HoF control their re-selection
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and eviction. The number of robot controllers within in each HoF, thus, varies based

on the system dynamics. The incorporation of this algorithm in both the source and

target environments hence results in lifelong learning in both the environments.

5.1 Methodology

This section elaborates the proposed NeEvoT algorithm for embodied evolution of

robot controllers in two different environments. We denote the source and target

environments as ES and ET , respectively. A robot controller constitutes an ANN,

which uses an evolutionary strategy and in turn drives the robot. The fitness of this

evolving controller is determined by a task-dependent fitness function.

5.1.1 NeEvoT Algorithm

For clarity we denote ReS and ReT as the repertoire of robot controllers being

evolved by two distinct robots inhabiting the source and target environments ES

and ET respectively. ET is comparatively more a complex environment as compared

to ES . The ReS of the robot in ES is evolved continuously using the iAES-HoF al-

gorithm as described in Chapter 2. In ReS , a neuron within a controller is associated

with a Temperature (Θ).

The ANNs used in conjunction with the TL algorithm described in Chapter

4, used supervised learning. At the end of every training epoch (or iteration), the

value of loss was based on the predicted value. This loss was back-propagated to

every layer of the ANN, and consequently, to every weight based on which the

neuronal temperatures were updated. However, in the case of evolutionary learning

in ANNs, the weights are randomly mutated using Gaussian mutation, rather than

backpropagation. Since the concept of loss is absent in this case, there is a need of a

new measure to determine the values of temperatures associated with the neurons.

Determining Hot Neurons in ES

In this work, the combination of fitness values of the controllers being evolved and

their respective weights are considered in determining the temperature of the neu-

rons. Let the value of the fitness of a controller be fg at generation g. The weights
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Algorithm 4: Algorithm to update the θ of Neurons in Neuroevolu-
tion on controllers

1 initialize θ();
2 MaxGen← Constant;
3 while CurrGen < MaxGen do
4 CurrGen← CurrGen+ 1;
5 get best controller();
6 mutate controller();
7 f ← evaluate controller();
8 for every Li ∈ L do
9 for every neuron do

10 determine θ();
11 update θ();

12 update ReS();

of this controller are mutated in the next generation g + 1 and its corresponding

fitness f(g+1) is evaluated. If f(g+1)>fg, it indicates an improvement in the learning

implying that the controller evolved at (g+1) is better than its predecessor and the

mutations have proved to be effective; else there is a degradation. Since, the change

in weights as also fitness values govern the quality of learning over the generations,

the temperature of each neuron i of a controller j is calculated using the equations

below:

θnew = ∆f ∗ Λ (5.1)

∆f = fg+1 − fg

Λ =
n∑

k=1

(w[k]g+1 − w[k]g)

θg+1 = θg + θnew (5.2)

where ∆f denotes the difference in the fitness values of the (g + 1)th and gth

generations, Λ is the sum of the differences in the weights at the (g+1)th and the gth

generations of a neuron. The temperatures of all the neurons in all the controllers

are calculated for every generation. If the gradient of the change in the weights of a
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neuron over subsequent generations is negative, it implies that the neuron has not

contributed significantly to the learning process. As can be seen from the above

equations, under such conditions the increase in temperature could be insignificant

or negative. Thus, over generations, the temperature of a neuron will indicate its

influence on the learning exercise. Higher values of the same indicate that the

associated neuron is hot and has positively contributed in the learning, making it a

potential candidate for a transfer to ET .

Algorithm 4 portrays the method to determine the temperature, θ of a neuron.

Initially, the values of θ are conferred the same positive constant values. In the

function get best controller(), the best controller from the pertinent HoF at that

instant of time is retrieved from the ReS and mutated after which the fitness of

the mutated controller is determined. The temperatures of all the neurons in the L

layers that need to be transferred is then determined as per the equations 5.1 and

5.2. The top n hot neurons within the transferable layers of every controller are

marked and the complete source repertoire ReS is transferred to the target robot

where it serves as its external repertoire (ReEx).

5.1.2 Learning in the Target Environment

In order to evolve the target repertoire ReT , in the Target environment ET , we have

used the same iAES-HoF learning algorithm. The transferred repertoire from ES

to ET is termed as an External Repertoire ReEx in ET . At every generation, at the

step get best controller(), the best controller is chosen either from the ReEx or ReT

based on a random probability, pex. Since the target robot now has two repertoires

- one being its own and the other which is externally transferred - it needs to choose

the best controller from one of these. Selection of the repertoire is done based on

random probability. If it chooses a controller from its own internal repertoire, then

it follows the procedure detailed in the iAES-HoF algorithm. Otherwise, it extracts

the weights associated with the hot neurons of the best controller from the external

repertoire, ReEx. A new controller with random weights is first generated. The

weights of the hot neurons are then conferred to the appropriate links within this

newly generated controller which forms the Challenger. If this challenger outper-

forms the current best controller from ReT , then the former is added to ReT ; else
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Figure 5.1: Source ES and the Target ET environments in the Webots simulator

it is discarded.

5.2 Experimental Setup

The experiments to test the proposed algorithm were carried out using the Webots

simulator [87]. Snapshots of the source, ES , and the target, ET , environments

within two separate instantiations of the Webots simulator are shown in the figure

5.1. Both ES and ET had the same arena dimensions of 1.5mX1.5m, surrounded

by walls 0.1m high. In both the environments, the solid boxes and the walls acted

as obstacles. As can be observed in 5.1, the placement of the obstacles is however,

different. In addition, the target environment, ET , has a light suspended from the

ceiling at the centre of the arena. The simulated robot used was an e-puck, which

has eight IR distance sensors and eight IR light sensors.

The robot in in ES was made to learn the task of obstacle avoidance. The

tasks to be learnt by the robot inhabiting ET was complex. In addition to obstacle

avoidance, this robot needed to learn the task of avoiding obstacle while performing

phototaxis. The fitness functions used were the same as that in Chapter 2 (equations

3.6 and 3.7). It may be noted that though the task of obstacle avoidance is common

to both the robots, ANN based controllers evolved by the robots in ES and ET are

completely different. Therefore from the perspective of neuroevolution, the tasks

maybe deemed to be dissimilar.

The architecture of the ANN being evolved in both the environments were

same. ANNs with five input neurons corresponding to the four distance sensors and

a light sensor on-board the robot, followed by a hidden layer with eight neurons

and a two-neuron output layer were used in the experimentation. The hidden layer
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Figure 5.2: Variation in the θ values and the Controller fitness values over a short
term of generations in ES

Figure 5.3: Variation in the Controller fitness values over generations in the case

T
{0}
= in ET

within these ANNs formed the layered to be trsansferred. The hyperparameter

values used in both ES and ET are as follows: MaxGen = 1000 ; in ET only: pex

= 0.5.

5.3 Results and Discussions

Experiments were carried out as per the settings elaborated in the previous section

5.2. Two sets of experiments were performed. In the first set, denoted as T=, both

the environments, ES and ET , evolved controllers to carry out the same task of

obstacle avoidance. The second set, designated T̸=, comprised the case where ES
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Figure 5.4: Variation in the Controller fitness values over generations in the case

T
{5}
= in ET

evolves controllers for the task obstacle avoidance. The repertoire ReS including

the hot neurons, generated in this experiment, was then transferred to ET so as to

evolve ReT for a task different from that learned in ES . This new task was that

of obstacle avoidance cum phototaxis, just as the one cited in Chapter 2. It may

be noted that the robots in the source and target environments do not commence

their learning at the same time. The robot in ES , was made to have a head start

so that it performed a substantial amount of learning before effecting a transfer

of its repertoire to the other robot in ET . The robot in ET was thus, made to

commence its learning only after it peer in ES completed 500 generations. In each

set of experiments, T= and T̸=, the following runs were conducted:

1. Case 1 - T
{0}
= or T

{0}
̸= : Evolving the controller from scratch and utilizing

transferrred repertoire

2. Case 2 - T
{5}
= or T

{5}
̸= : Transferring top 5 Hot Neurons from the hidden layer

3. Case 2 - T
{6}
= or T

{6}
̸= : Transferring top 6 Hot Neurons from the hidden layer

4. Case 2 - T
{7}
= or T

{7}
̸= : Transferring top 7 Hot Neurons from the hidden layer

5. Case 2 - T
{λ}
= or T

{λ}
̸= : Transferring all the neurons from the hidden layer,

i.e., complete layer transfer
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Figure 5.5: Variation in the Controller fitness values over generations in the case

T
{6}
= in ET

Before elaborating on the results obtained from these experiments, it may only

be apt to notice the significance of the variation of temperature, θ on the extent of

learning, over the generations. Figure 5.2 depicts the variations of temperature and

fitness (the learning performance of a controller) over some generations. As can be

seen from this graph, initially from the 11th to 12th generation, the fitness increases

sharply. This nature is followed by the temperatures of all the neurons. From the

12th 13th generation, as the fitness drops, there is a slight negative gradient in

temperatures of all neurons. Subsequent portions of variation in fitness indicate

clearly that whenever the fitness gradient is positive, it increases the current tem-

perature of the neurons, proportionately. It can also be observed that from the 13th

to the 14th generation, the fitness rises causing the corresponding temperatures to

also increase. The temperature of Neuron 1 can be seen to increase more sharply

mainly because of higher difference between the weights of the current and earlier

generations. This essentially means that the weights of this neuron were mutated

to a higher extent, which in turn implies that Neuron 1 seems to play a more im-

portant role in the learning process as compared to the other neurons. In brief, one

may conclude that both fitness and the extent of mutation of weights, both play a

vital role in governing the temperature of a neuron. The temperature of a neuron

thus, aggregates both the fitness values and the extent of mutations performed over
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Figure 5.6: Variation in the Controller fitness values over generations in the case

T
{7}
= in ET

Figure 5.7: Variation in the Controller fitness values over generations in the case

T
{λ}
= in ET

generations, thereby making it a fair indicator of a neuron’s contribution to the

learning process. Thus, transferring of the hotter neurons to the target can hasten

the learning process at the target. Temperature of a neuron can act as a metric

while identifying and transferring neurons to the target environment.
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5.3.1 Evolving Similar Tasks T=

The graphs in the figures 5.3-5.7 depict the variations in fitness values and the

Cumulative Average Fitness (CAF) over generations for the transfer of the repertoire

from ES to ET , where both the environments are evolving the same task of obstacle

avoidance (T=). Though the task remains the same, it may be noted that the

environments are not similar. The controller thus, needs to adapt to ET . To avoid

clutter, all graphs for each of the transfer cases, have been depicted in different

figures. The best controllers evolved from the shared external repertoire (External

repertoire ReEx) are highlighted in the graphs (figures 5.4 - 5.7) using tiny red dots.

Note that the figure 5.3 has no red dots, as it represents the case of no transfer,T
{0}
= .

In the case of T
{0}
= (figure 5.3), where there is no transfer of repertoire (i.e. the

controller evolves from scratch), it can be observed that there are numerous rises

and falls in the fitness values over generations and the learning curve is not smooth.

In addition, the CAF curve does not drastically fall to zero due to the underlying

iAES-HoF algorithm and the presence of HoFs.

In the cases T
{5}
= and T

{6}
= (figures 5.4 and 5.5), where the top 5 and 6 neurons

are transferred, respectively, the graphs seem to improve in steadiness with higher

CAF values as compared to that in case of T
{0}
= , indicating a marked improvement

in performance. In the cases T
{7}
= and T

{λ}
= (figures 5.6 and 5.7), the curves seem

to fluctuate lesser and end up with higher CAF values than the previous ones. One

may therefore conclude that when tasks are same, higher order transfers (i.e. when

more number of hot neurons from a layer, are transferred) as in the top 7 (figure

5.6), and complete layer transfer (all neurons in that layer as in figure 5.7) exhibit

superior performances.

In lower order transfers, like T
{5}
= and T

{6}
= , only a few top hot neurons are

transferred while the weights of the others initialized to random values at the target

end. This causes the controller to forget a portion of the already learned task

making it toil again in ET to regain and relearn the same task. It is because of

this that we observe greater fluctuations in the fitness curves in figures 5.9 and 5.10

as compared to higher order transfers. In higher order transfers, T
{7}
= and T

{λ}
= ,

since, the corrections to be made to the weights is far lesser, the curve exhibits
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Figure 5.8: Variation in the Controller fitness values over generations in the case

T
{0}
̸= in ET

Figure 5.9: Variation in the Controller fitness values over generations in the case

T
{5}
̸= in ET

comparatively lesser jitters over the generations.

Figure 5.13 shows the bar graph of the CAF values at the 1000th generation

for all the transfers performed so far for the same task. The CAF values attained by

the higher order transfers (including full transfers) seem to have higher CAF values

than the lower order ones. Performing higher order transfers therefore, seem to be

more suited in cases when the tasks at the source and the target are the same.
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Figure 5.10: Variation in the Controller fitness values over generations in the case

T
{6}
̸= in ET

Figure 5.11: Variation in the Controller fitness values over generations in the case

T
{7}
̸= in ET

5.3.2 Evolving Dissimilar Tasks T̸=

The graphs in the figures 5.8-5.12 depict the variation of fitness values and CAF

over generations after the transfer of the repertoire from ES to ET . Both the

environments are dissimilar and evolve the dissimilar tasks of obstacle avoidance

and obstacle avoidance cum phototaxis. In the current case, the controllers within

the repertoire in ET not only need to evolve and learn to perform the new task but

also have to ensure their adaptation to the dissimilar environment. This makes the
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Figure 5.12: Variation in the Controller fitness values over generations in the case

T
{λ}
̸= in ET

Figure 5.13: Cumulative Average Fitness at 1000th generation for Similar tasks

T̸= scenario a more challenging one. The best controllers evolved from the shared

repertoire (External repertoire ReEx) at ET are highlighted in all graphs in figures

5.9-5.12 using tiny red circles. In the graph for T
{0}
̸= , shown in figure 5.8, since the

repertoire is not transferred to the target, the controllers need to be evolved right

from scratch. The challenging nature of the scenario, mentioned earlier, adds to

the toil. The fitness curve is thus, not smooth and the CAF does not attain a high

value.

In the cases T
{5}
̸= and T

{6}
̸= (figures 5.9 and 5.10), where the top 5 and 6 neurons,

respectively, are transferred, a marked improvement can be observed in the fitness

curves. Beyond 500 generations, both curves seem to hold on to values above 175.
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Figure 5.14: Cumulative Average Fitness at 1000th generation for Dissimilar tasks

It can be noted that the T
{6}
̸= transfer fares better than T

{5}
̸= . When the order

of transfer is increased as in T
{7}
̸= and T

{λ}
̸= , the fitness curve exhibits more rises and

falls as compared to its lower order counterparts. After 500 generations, the fitness

values seem to saturate to values less than 175. Thus, when the tasks are dissimilar,

it can be clearly observed that lower order transfers (like the top 5 or 6) perform

better than the higher order ones. It may be noted that the fitness values in the

cases of T= and T̸= are different since corresponding equations 2.12 governing them

are different.

When the ES and ET are evolving the dissimilar tasks, some of the neurons

evolved in the ES are not suitable to be used in the controllers within the ET . In

higher order transfers the neurons have already adapted to the task in ES . These

need to be first reset and then made to relearn the new task in ET . This makes the

fitness curves of T
{7}
̸= and T

{λ}
̸= to fluctuate more often resulting in comparatively

lower fitness values than their lower order counterparts.

Figure 5.14 depicts the bar graph of the CAF values at the 1000th generation

for all the transfers performed so far for the dissimilar tasks. Contrary to the

observations in the CAF values for T= (figure 5.13), the ones in T̸=, attain higher

CAF values for lower orders as compared to the higher order ones (including full

transfers).

Performing lower order transfer in T̸= scenarios therefore, seems to be more

beneficial when the tasks at the source and the target environments are dissimilar.

Whereas, in the cases of lower order transfers, few of the neurons that are
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tuned the source task have to be adapted, and the since other neurons are random

initialized, they will have to learn the task without any resetting. Since, there is no

extra energy expended to reset the learning, the lower order transfer fare very well

than higher order ones and also maintain a higher fitness values as observed in the

graphs in figures 5.9 and 5.10. This can also be clearly understood by observing

the value of CAF at 1000th generation as depicted in figure 5.14. The CAF values

attained by the lower order transfers of top 5 and top 6 (T
{5}
̸= and T

{6}
̸= ) are higher

than the higher orders of transfer and also the case when there is no transfer (T
{0}
̸= ).

5.4 Summary of the Chapter

This chapter captures the essence of all the work reported in the earlier chapters of

this thesis and presents the same embedded in a robotic application scenario. The

first and second chapters dealt with how the embodied learning can be achieved in

the robots addressing the challenges elaborated in Chapter 1. These chapters also

focused on how such a learning can be enhanced in the domain of neuroevolution.

The third chapter focused on the concept of transfer learning in closed world prob-

lems, addressing the problem of such transfers amongst dissimilar domains. Finally,

this chapter focused on applying transfer learning on embodied robots. The appli-

cation described herein adapted the iAES-HoF algorithm proposed in Chapter 2

for evolving robot controllers in one environment and then transferring the learned

information via neurons, using a modified version of the neuronal transfer learning

algorithm presented in Chapter 4. In brief, the chapter provides a proof of con-

cept on the working of the algorithms reported in earlier chapters in the realm of

Immuno-inspired Embodied Life-long learning.

From the results of this chapter, it can be concluded that the transfer of Hot

neurons of all the controllers of the source repertoire ReS from source environment

ES to the target repertoireReT in the target environment ET is beneficial in both the

cases of same and dissimilar tasks. In the case, where both ES and ET are evolving

the same tasks, higher order transfers are beneficial and accelerate the learning.

Whereas, in the case of dissimilar tasks, lower order transfers are beneficial. Robotic

simulations performed using Webots indicate that the proposed transfer learning is
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beneficial even in cases where the robots in the source and target environments carry

out dissimilar or new tasks. The simulations performed can be directly adapted to

the real world robots, that inhabit the real environments.

;;=8=<<
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6
Conclusions and Future Research

Directions

6.1 Conclusions of the Thesis

The thesis aimed at achieving embodied lifelong learning in robots by addressing

all the challenges elaborated in Chapter 1, in the best possible way given both

the time and resources. The first contribution elaborated in Chapter 2, focuses on

achieving embodied lifelong learning in a robot. The search space was divided into

various active regions on the fly, governed by the parameter ϵ. A Hall of Fame

of controllers evolved and maintained for every active region. An artificial neural

network constituted a controller, which was evolved by neuroevolution. The pa-

rameters Concentration and Resource governed the re-selection and eviction of the

controllers from an HoF. The Concentration and Resource values of the controllers

were dynamically tuned based on the performance of the respective controllers and

were not set a priori. Choosing the value of ϵ also played an important part in evolv-

ing the controllers. A high value of ϵ led to evolving large active regions and posed

a challenge to evolve controllers catering to diverse antigens encountered in each of

such large active regions. Whereas a lower value of ϵ lead to small active regions and

switching of controllers from one active region to another without achieving the de-

sired learning. The experiments done on both simulated and real robots established
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the efficacy of the proposed Immuno-Inspired evolutionary algorithm.

In embodied lifelong learning, the robot controllers are evolved by neuroevolu-

tionary techniques, and the Immuno-Inspired algorithm maintains the halls of fame

of robot controllers. The second contribution focuses on how the neuroevolution to

evolve the robot controllers can be enhanced. With every weight of the ANN, a

Mutational Puissance was associated, and Mutational Puissances are increased or

decreased based on the performance of the associated ANN-based controller. In-

stead of mutating all the weights of the ANN, the mutation of weights is guided by

these Puissances. Experiments showed that a combination of random and Puissance-

guided mutation leads to better learning of robot controllers.

In the following two contributions, the thesis focuses on transferring the learned

information to a target environment. Before implementing the transfer in the open

world of robotics, the third contribution deals with transferring the learned informa-

tion from source to target in a closed world problem. The proposed Immuno-Inspired

Methodology identifies the Hot neurons from the source ANN trained on a source

dataset to the target ANN to be trained on the target dataset. The proposed neu-

ronal transfer learning method works even when the source and the target datasets

are dissimilar. The experimental results establish the efficacy of the method on both

shallow and deep neural networks.

The final contribution discussed in Chapter 5, emphasizes how the work de-

scribed in the earlier chapters can be integrated and applied to the realm of robotics.

The work reported in this chapter is an attempt at displaying the practicality of

the overall work. It combines the use of HoFs and transfer learning to show how

neuroevolution can be embodied in robots so as to achieve life-long learning amongst

robots. The methodology and application presented in this chapter focuses on the

neuronal transfer of ANN-based robot controllers from the source HoF to the target

HoF. Hot neurons are identified from within the controllers of all the HoF and then

transferred to the target end to eventually accelerate the learning process. The ex-

perimental results indicate improved learning in the target robot controllers after

the transfer is affected, even if the source and target environments of the respective

robots are different and when they need to learn new tasks.
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6.2 Future Research Directions and Applications

This thesis addresses the challenges of embodied lifelong learning in an online and

on-board manner in robots and also provides scope for further research possibilities,

some of which are elucidated below. In the first contribution, the hyperparameter ϵ

was set to a certain value to divide the shape space into various active regions. Since

ϵ governs the number of active regions and hence the number of HoFs, ascertaining

and assigning a value to it requires to be performed empirically. As already men-

tioned, higher values of ϵ would mean lesser number of controllers thereby increasing

the learning load on these controllers. Lower values could cause an explosion in the

number of active regions and associated controllers. The associated algorithm, needs

to be augmented so that ϵ is tuned in an adaptive manner based on the environment

of the robot. Its value needs to be determined and also changed based on the inter-

actions of the robot(s) with the environment and the performance of the respective

controllers during run time. The algorithm could start off with a random value

of ϵ and either increase or decrease it based on hypermutation [115] controlled by

the performance of the controllers. In addition, it may be noted that the proposed

algorithm generates active regions, all of which which, have the same size. In brief,

it divides the entire search space into active regions of the same size. In the real

world, such a uniform division of the search space may not always be the best op-

tion. Contiguous portions of the search space where fairly homogeneous antibodies

(controllers) can cater to the problems within, could be accommodated in a large

single active region (high ϵ). On the contrary, those portions which require diverse

antibodies could be split into numerous small active regions (low ϵ). In other words,

there needs to be a mechanism to split the entire search space into active regions of

different sizes that cater to the actual requirements of these regions. In the second

contribution, the Puissance-based strategy the extent of mutation of weights could

be made to be adaptive in nature so that not all weights need to be mutated by

the same extent. This strategy could also be extended to be used in Multi-Robot

Scenarios and for problems involving multi-objective optimization.

In the last two contributions involving transfer learning, the number of top

hot neurons is a hyper parameter that needs to be fixed a priori. Methodologies
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to find the apt value of this parameter also needs to be evolved. The similarity

and dissimilarity of the source and target datasets/tasks also need to be quantified

to gain insights into determining the extent of such transfer. In the open world of

robotics, a mechanism for the robot to feel a change in its environment, still remains

an open challenge.

The contributions made in this thesis can be applied to scenarios where the

environment changes dynamically, and embedded learning mechanisms need to keep

pace with these changes while also retaining the knowledge already acquired in the

past. Such locales include Automated Autonomous vehicles, which need to learn

new tasks on-the-fly or dynamically, without forgetting the already learned ones,

could also use the algorithms proposed in this thesis. Autonomous Ground Vehicles

(AGV) in warehouses that need to learn to perform tasks, drones carrying out their

assigned tasks, also could benefit accordingly. AGVs learning to perform tasks in

the warehouses, may require to adapt to the changing environmental conditions

within caused by the goods being moved in and out frequently. By incorporating

the embodied lifelong learning presented in Chapter 2, AGVs can not only learn

but also preserve the information learned over time. The retention and elimination

of the learned behaviors could be autonomously decided by the AGVs without any

external intervention. The learned behaviors from the AGVs in one warehouse can

be also be transferred to other AGVs inhabiting other warehouses by adapting the

works presented in Chapters 4 and 5. Since it may be always the case that the tasks

at these warehouses are similar, learning of the dissimilar ones can be hastened using

the proposed transfer learning techniques.

;;=8=<<
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.1 List of Abbreviations

Terms Abbreviations

ANN Artificial Neural Network

ER Evolutionary Robotics

EA Evolutionary Algorithm

BIS Biological Immune System

AIS Artificial Immune System

HoF Hall of Fame

iAES Immuno-Inspired Action-Evolution cum Selection Algorithm

IN Immune Network

Ctr Controller that drives the robot

ID Identifier of an Antibody

iAES −HoF Immuno-Inspired Action-Evolution cum Selection Algorithm with

Hall-of-Fame

IRSensor Infrared Sensor

OA Obstacle Avoidance

PT −OA Phototaxis cum-obstacle-avoidance

CAF Cumulative Average Fitness

CNN Convolutional Neural Networks

AW −M All Weights mutated

RMW −M Random Number of Weights Mutated

LIN Local Idiotypic Network

TL Transfer Learning

MNIST Modified National Institute of Standards and Technology database

KMNIST Kuzushiji-MNIST

NeEvoT NeuroEvotionary-Transfer Learning Algorithm

.2 Glossary of Terms
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Terms Description

Active Region Small region in the search space of a robot determined by
ϵ

Affinity Extent of binding between an antibody and an antigen

Antibody Proteins secreted by living organisms that will tag antigens
for removal

Antigen A foreign entity attacking a living entity.

Artificial Immune
System (AIS)

Computational Model inspired from BIS

Biological Immune
System (BIS)

Immune System present in the Vertebrates

Champ The best controller of an active region

Cross Reactivity
Threshold (ϵ)

A parameter that divides the search space of the robot in
to many small regions.

Epitope Part of antigen where an antibody binds

Ex-Champ The controller which was the Champ before, and now re-
siding in the HoF.

Fitness Value The quality of the controller

Hall of Fame (HoF) Set of controllers of every Active Region

Hot Neurons Neurons that have significantly contributed to the learning

Mutant The controller that tries to outperform the Champ.

Mutational Puis-
sance

Associated with the weights of an ANN and guiding the
learning process

Paratope Binding site of antibody, that binds with epitope of match-
ing antigen

Temperature of the
Neurons

Extent of the hotness of the neurons
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