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Abstract

The unprecedented development in the processing speed of the Chip Multi-Processor
(CMP) and the rise of modern data-intensive applications impose high pressure on the
memory subsystem. Due to the large working set data and low temporal locality, these
applications can not utilize cache memories fully, leading to more cache misses. It signif-
icantly increases the main memory footprint and necessitates designing of energy-efficient
and high capacity main memory. Unfortunately, the traditional memory systems, built
predominantly using DRAM are not scalable to the low nanometer regime. At this need
of the hour, the Emerging Non-Volatile Memories (NVMs) like PCM, STT-RAM, ReRAM
offer fascinating features like high density and low leakage power that are useful for build-
ing high capacity and energy-efficient memory systems. However, NVMs have asymmetric
read/write operations, where writes are costly in terms of latency and energy. Also, fre-
quent write operations to the NVM cells tend to wear out the memory cells, leading to a
shortened memory lifetime. Furthermore, the non-volatility feature of the NVMs leads to
security threats related to data confidentiality that were never encountered before. NVMs
retain data even after the system is powered down. Hence, an attacker having physical
access to the NVM DIMM can easily stream out the sensitive data stored in the NVM.
Researchers have proposed encryption-based techniques to protect the sensitive NVM con-
tent. However, encryption algorithms put high randomization in the encrypted data, which
leads to enormous bit-flips when the encrypted data is written in the NVM arrays. Hence,
the lifetime issue of the NVM devices is further complicated by encryption-induced bit-flip
spikes.

The contributions to this thesis revolve around designing policies to reduce write oper-
ations in the NVMs. In addition to extending the lifespan of standard NVMs, the contri-
butions also cover reducing bit-flips caused by encryption and providing a strong security
guarantee against data confidentiality-based attacks on NVMs. In particular, we have pro-
posed policy to reduce write-back traffic of the evicted blocks from the Last Level Cache
(LLC) to the NVM. While it reduces writes at a cache block level, the other contributions
of the thesis focus on building efficient compression and encoding techniques to reduce bit-
flips, which are fine granularity write operations and proposing wear leveling algorithms to
even out the bit-flips pressure across the memory space. In the last two contributions, we
have designed a partial encryption-based encoding policy and propose techniques utilizing
various compression and encoding techniques to reduce encryption-induced bit-flips while
ensuring confidentiality in NVMs. The proposed techniques show significant improvement
in lifetime, energy-efficiency and performance compared to the state-of-the-art techniques.

[[]X]\\
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1
Introduction

Moore’s law [1], which is regarded as one of the revolutionary theories of the 21st century,
has been the driving force behind the continuous development of semiconductor technology
over the past few decades. According to this law, the number of transistors in a chip doubles
about every two years. Higher transistor counts helped in improving performance of the
single-core machines prevalent in the early years of development of computing systems by
increasing their clock frequency. But, with the end of Dennard scaling (Power wall) [2]
and limitations of Instruction Level Parallelism (ILP) [3], the performance of the single-
core systems came to a standstill, primarily due to the excessive power consumption at
higher frequencies. It led to the rise of multi-core systems commonly known as the Chip
Multi Processors (CMP) [4]. CMPs offer high performance with low power consumption
by keeping multiple cores within the same processing die. As the transistor’s size continues
to shrink further, the number of on-chip cores is also increasing proportionally, resulting in
an epoch-making revolution in the processing speed of the CMPs. For example, Intel Xeon
Phi [5] AMD EPYC [6], and Ampere Altra [7] are some contemporary CMPs that feature
up to 120 cores in the processing chip.

The unprecedented growth in computational power facilitates the concurrent execution
of many applications. Due to the frequent interaction of these applications with the mem-
ory, the contention in the shared main memory has increased [8], [9], [10]. Unfortunately,
the memory system’s speed increases at a fairly slow rate compared to processing speed,
mainly due to the narrow width of the processor-memory off-chip bus ((e.g., standard Dou-
ble Data Rate, (DDR), memories use a 64-bit memory channel [11], [12]).). At the same
time, the limited capacity of the current memory systems leads to frequent page faults,
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causing further slowdown of the system performance. It creates a severe performance bot-
tleneck while executing such applications. To reduce the performance degradation due to the
processor-memory speed gap, fast on-chip cache memories based on temporal/spatial data
locality [13], [14] appeared as an effective innovation. However, with the advent of modern
data-intensive applications, it has become increasingly difficult for the caches to mitigate
the effects of main memory that is sluggish and has limited capacity. The voluminous data
access patterns of these applications [15], [16], [17] diminish the effectiveness of caches due
to their limited capacity. As a result, execution of these applications increases the main
memory footprint. Not only that, frequent memory accesses also account for high energy
consumption [18], which has become a matter of concern in large workstations and data
centers. Consequently, designing fast, high-capacity, and energy-efficient memory systems
is becoming the need of the hour in the current modern digital era.

At this critical juncture, the conventional main memory, built predominantly using
DRAM technology, is facing severe challenges in terms of scalability and energy efficiency
[19],[20],[21]. DRAM scaling below 30nm technology node is difficult, as factors like high re-
fresh energy, write recovery time (tWR), and Variable Retention Time become more promi-
nent [19]. In light of the difficulties experienced by DRAM, researchers are investigating
other memory technologies as alternatives to DRAM. Currently, the emerging Non-Volatile
Memories (NVM) [21], [22], [23], [24], [25], [26] appear as a strong contender of DRAM in
the main memory. NVMs show exciting features like high density, near-zero leakage power,
and non-volatility.

1.1 Modern CMPs and Memory System Trends

CMPs attach a large number of cores on the same die. In terms of power budget and pro-
cessing capability, these cores could be homogeneous or heterogeneous (or a combination of
both) [4]. While homogeneous cores can execute computationally intensive applications by
dividing the load of heavy computations among the cores, heterogeneous cores enable the
concurrent execution of many applications with a wide variety and purposes (multimedia ap-
plications, compute-intensive applications like Convolutional Neural Networks (CNN), and
less computation involved operations like spreadsheets and word processing). As all these
cores share the main memory, the interference in the main memory increases dramatically.
It leads to increased demand for memory capacity and bandwidth along with the quality of
service to provide fairness among the competing cores [27], [28], [29], [30], [31].

The nature of today’s data-intensive applications also contributes significantly to the
stress placed on the memory sub-system. Emerging applications like IoT applications, Im-
age/Video classification, speech recognition, recommendation systems, etc., process large
datasets [32], [33], [34]. Most of these applications use machine learning and data analyt-
ics to extract resourceful information from large data sets. For example, many Internet of
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Technologies Used for Main Memory and Challenges

Figure 1.1: Memory Capacity Wall [38]

Things (IoT) applications take in voluminous data from various sensors and process that
data using some learning models to arrive at key conclusions (e.g., monitoring and response
of patient’s health, navigation of self-driving cars). As a result, these applications exhibit a
large working set size, which is difficult to fit into the limited memory. It leads to frequent
page faults and degrades the system performance. Additionally, several of these applica-
tions show a low locality of reference [35], [36], [37]. Hence, conventional cache memories
optimized to improve performance end up being less effective for such applications. It leads
to cache misses and a corresponding increase in the main memory footprint.

To meet the increasing demand for memory capacity, the traditional DRAM-based main
memory is undergoing a tough scaling process. Due to the limitations of DRAM scaling, the
rate of increase in DRAM density has reached saturation. The growing discrepancy between
the number of cores and memory capacity per socket (depicted in Figure 1.1) has led to
the rise of one more significantly important wall known as Memory Capacity Wall [38].
As predicted in [38], the memory capacity per core is supposed to drop by 30%, especially
for commodity servers in about every two years. Hence, developing high capacity memory
system has paramount importance at this pivotal time.

1.2 Technologies Used for Main Memory and Chal-

lenges

Over the years, DRAM has served as the de facto standard for creating main memory.
However, the possibility of deploying several newly emerging non-volatile memories has also
been investigated in recent years. Below, we provide a quick overview of various memory
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technologies and the challenges associated with their implementation.

1.2.1 DRAM and its Challenges

Fundamentally, a DRAM cell is composed of a storage capacitor and access transistor. Each
bit of data in a DRAM cell is represented by the amount of charge on its capacitor. The
data stored in a DRAM cell is represented as logic 1(0) if the charge in the capacitor is
above(below) a certain threshold. Due to the leaky nature of the capacitor, DRAM cells
tend to lose charge over time, which could eventually cause the bits stored in the cells to
be flipped. Hence, DRAM cells need periodic refreshes to guarantee that their cells contain
correct binary values.

DRAM account for high refresh and leakage energy consumption. Furthermore, scaling
DRAM to a low nanometer regime (below 10 nm) is challenging as DRAM cells become
leakier and start containing erroneous bit values.

1.2.2 Emerging Non-Volatile Memories (NVM) and Challenges

With the DRAM scaling nearly hitting saturation, the emergence of some Non-Volatile
Memory (NVM) technologies has drawn the attention of researchers. NVMs include Spin
Transfer Torque Random Access Memory (STT-RAM), Resistive Random Access Memory
(ReRAM), Phase Change Random Access Memory (PCRAM), and many others. In contrast
to DRAM, which represents data as the charge held in its capacitor, NVMs store the bit
information in their cells in the form of resistance. They offer variable resistance to store
the bit information by changing the material properties of the cells. For instance, a PCM
cell exhibits different resistance if its constituent chalcogenide material is heated and cooled
at different rates. Logic 1(0) is represented by the cells’ high(low) resistance state.

NVMs provide many exciting features like non-volatility, high density, and low leakage
power consumption. Non-volatility features aid in minimizing power and system failures,
improving checkpointing, and speeding up application startup. Additionally, properties like
high density and low leakage power consumption support constructing large capacity and
energy-efficient main memory systems.

Despite offering many benefits, adopting NVMs as a mainstream main memory standard
is still under question. Along with the advantages, NVMs posses certain downsides that can
not be underestimated. NVMs have asymmetric costs in read and write operations, whereas
writes are costlier in terms of latency and energy consumption. The costly writes also cause
significant wear to the NVM cells, leading to their early wear out. As a result, NVMs have
limited write endurance and a shortened lifetime. Furthermore, the non-volatility feature
opens the door to major security risks, as the data stored in the NVM cells is retained even
after the system is powered down. An attacker having physical access to an NVM DIMM
can easily stream out the sensitive data stored in the NVM. This type of attack is known
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as the stolen DIMM attack [39]. Researchers have proposed encryption-based techniques to
protect data against such attacks. However, there are serious unintended consequences of
using encryption to provide security. The majority of common encryption methods exhibit
the diffusion property [39, 40], which imposes significant randomization in the generated
cipher text (encrypted text). It leads to a spike in bit-flips when the encrypted data blocks
are written in NVM arrays. As a result, the longevity issue with NVM devices is further
complicated by the dramatically increased write activity.

1.3 Motivations

NVMs are widely regarded as a competitive alternative to DRAM in the main memory due
to their high density, low leakage power consumption, and non-volatility features. However,
their direct adoption is hampered by a few intrinsic drawbacks, such as low cell endurance,
high write latency, and high write energy. Furthermore, due to the prolonged data retention
property, NVMs are vulnerable to confidentiality-based attacks.

Researchers have explored various architectural options to construct NVM-based mem-
ory systems to utilize their potential in the best possible way. Two such design choices are
Hybrid Main Memory and NVM-based Main Memory systems. Hybrid memories are built
using a small portion of DRAM accompanied by a larger NVM portion to utilize the benefits
of both memory media. In such memory systems, DRAM provides latency benefits by stor-
ing the performance-critical blocks, and NVM offers density benefits by keeping the other
blocks. On the other hand, architects have also proposed solutions at the device and archi-
tecture levels to integrate NVM in main memory fully. Although both these design choices
open up ample opportunities to build efficient main memory systems for next-generation
computers, the primary issue in deploying NVM revolves around the very nature of their
write operations. NVMs show asymmetric read/write operations where writes are much
costlier than the reads in terms of latency and energy. Frequent writes can degrade the
system performance and cause damage to the memory cells. As a result, NVMs exhibit
poor write endurance compared to traditional DRAM-based memories. For example, the
write endurance of PCM [24] and ReRAM [26] are 108 and 1011 writes, respectively, whereas
the endurance of DRAM-based memories is quite high ( > 1016 ). Also, writes contribute
to high energy consumption, as they play a dominant role in the dynamic energy consump-
tion in the NVMs. Hence, reducing write activities is a great way to improve lifetime and
minimize energy consumption in NVMs.

In this thesis, we have proposed techniques to reduce writes at two granularities, 1)
Coarse granularity (at block level) and 2)Fine granularity (at bit level). We propose our
contributions for PCM-based non-volatile memory due to its high density and excellent
scalability in CMOS fabrication [21, 41]. Since the proposed techniques are applied on the
blocks incoming to NVM before actually writing them in memory, they can reduce and
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uniformly distribute writes in NVMs, irrespective of the memory technology. Hence, they
are equally adaptable to the other NVMs as well.

The rest of the thesis considers PCM as the NVM.

Evictions of the cache blocks from the Last Level Cache (LLC) contribute to a large
fraction of writes in the PCM-based main memory. The incessant flow of write-backs coming
to PCM can damage the memory cells and lead to poor system performance. It encourages
us to develop efficient techniques that reduce costly write-backs to PCM devices.

Write activities in PCM could also be reduced at the cell level by using avenues like
compression and encoding. If the evicted blocks coming to PCM are compressed before
writing, a lot of bit-flips can be saved when the compressed data is written over the PCM
arrays. On the other hand, encoding techniques change the data bits written in PCM to
formats that reduce bit-flips. Hence, encoding performed over the compressed blocks can
further reduce bit-flips. Apart from reducing bit-flips, the distribution of writes within the
memory lines also plays an important role in the lifetime of PCM. As the compressed data
blocks are written on one side of the memory lines, the cells of the corresponding side face
more bit-flips than the other side, creating write hot spots within the memory lines. It
leads to early wear out of the cells facing more bit-flips. Hence, the lifetime of PCMs can
be improved further if the uneven distribution of bit-flips could be balanced by the periodic
shifting of the writing position of the compressed blocks within the memory lines. In this
direction, we have proposed novel compression and encoding schemes to reduce bit-flips
along with an intra-line wear leveling technique to disperse the bit-flips uniformly over the
PCM cells.

Furthermore, non-volatility feature makes the NVMs vulnerable to confidentiality-based
attacks. Due to non-volatility, the data stored in NVMs remains persistent for a long du-
ration, even after the system is powered off. Hence, a malicious attacker having physical
access to NVM DIMM can easily stream out confidential data. This type of attack, com-
monly known as Stolen DIMM attacks can be prevented if the data in NVM is protected
using encryption. But, security provisioning through encryption does not go hand in hand
with the endurance issue of the NVMs. In order to obfuscate the attackers from retrieving
the data content, encryption algorithms put high randomization in the generated cipher
text. When the encrypted cipher blocks are written, the NVM cells encounter a lot of
bit-flips. This phenomenon is known as the Avalanche Effect. The increase in bit-flips
worsens the endurance of NVMs. Bit-flips reduction methods like [42–44] optimized for
un-encrypted memories become ineffective in this context due to the high spike in bit-flips.
Therefore, bit-flip reduction in the presence of encryption is more challenging and needs
careful handling in order to maintain durability of NVMs. Our final two contributions are
related to reducing bit-flips in encrypted memory with an aim to improve their endurance.
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In other words, the proposed methods aim to extend the useful life of NVMs while also
guaranteeing the safety of data stored on them.

The primary goal of the thesis is to decrease expensive writes (at the block and bit
levels) in order to extend the lifespan of PCM. In this regard, we propose our techniques
for both DRAM-PCM based Hybrid memory and PCM -based main memory. With strict
adherence to this objective, our contributions also include ensuring data security through
encryption while lowering the encryption-induced surge in bit-flips. We have made different
contributions in the following directions.

• We develop a reuse distance-aware selective victim cache-based policy to reduce write-
backs to the PCM component of a DRAM-PCM hybrid main memory. Victim cache
holds the performance-critical blocks evicted from LLC and prevents them from getting
written back. To reduce the PCM write-backs further, we propose two techniques
based on Block Placement and Partitioning of the victim cache.

• We suggest a comprehensive approach that combines compression and encoding to
lessen bit-flips and an intra-line wear leveling strategy to distribute the bit-flips through-
out the PCM cells evenly.

• We propose a partial encryption-based encoding technique to reduce bit-flips in en-
crypted PCM-based main memory.

• We provide new strategies that utilize the benefits of various compression and data
encoding techniques to reduce bit-flips in encrypted PCM.

1.4 Thesis Objectives

The main objective of the thesis is to improve the endurance of PCM-based main memories.
The proposed techniques are designed to reduce as well as evenly distribute costly writes in
PCM memory space. Reducing writes also aids in energy consumption minimization and
improved performance. The more specific goals of the thesis are outlined below.

1. Improving Endurance of PCM using Write Reduction : We aim to design
policies that reduce writes at the PCM cells. Our techniques are designed to reduce
writes both at block level and bit level. Our proposed block level techniques reduce the
write-back traffic from LLC to PCM-based main memory. In contrast, the proposed
bit-level techniques reduce bit-flips in the PCM cells using compression and encoding.
It helps in improving the PCM lifetime as the cells tend to wear out much slowly if
write activities are reduced considerably.
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2. Improving Endurance of PCM using Write Distribution : During workload
execution, some memory cells are exposed to writing more often than the other cells,
leading to non-uniform distribution of bit-flips within the memory lines. As a result,
the cells experiencing more writes tend to wear out much more quickly than the other
cells, which degrades memory lifetime. Towards this, we have proposed an intra-line
wear leveling technique that balances the uneven write pressure within the memory
lines by periodically shifting the data content.

3. Reducing Energy Consumption : In PCM-based main memory system, writes
constitute a major portion in dynamic energy consumption. Reducing writes using
our proposed techniques can also serve the purpose of lowering energy consumption
in PCM.

4. Improving System Performance : Our techniques also remain successful in im-
proving system performance by reducing writes. Write reduction can boost system
performance as the contention for the subsequent read operations are reduced signifi-
cantly.

5. Providing Confidentiality Guarantee to the PCM data : Due to prolonged
data retention, PCM data can be stolen by streaming out confidential data from the
PCM DIMM. We propose techniques based on partial encryption and a combination
of compression and encoding that protect PCM data. These techniques are also opti-
mized to reduce the encryption-induced bit-flips to provide longevity to the PCM in
the presence of encryption.

6. Exploring Types of Memory Systems: PCM can be utilized in one of two ways,
either as (a) hybrid memory alongside DRAM or as (b) complete NVM-based main
memory. We propose techniques for both types of memory system to improve their
efficiency and usability.

1.5 Thesis Contributions

PCM-based main memories suffer from weak write endurance, leading to their early wear
out on facing frequent writes. Furthermore, non-volatility feature of such memories exposes
them to data confidentiality threats that needs further consideration. Encryption based
approaches, though provide solid security guarantee, often complicates the endurance issue
of PCM further as they increase bit-flips by imposing high degree of randomness in the
encrypted data. This thesis aims at improving the endurance hence lifetime of PCM-based
main memories using write reduction and write distribution techniques. We propose coarse-
grained (victim caching) and fine-grained (compression and partial encryption scheme) write
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Write Reduction
(Coarse and Fine-grained)

Selective Victim Caching, Block
replacement (VCRP) and placement
in Victim Cache (PPVC) (Work 1)

Proposed Compression Scheme
COMF+Adaptive Encoding 
(Work 2, 4)

Popular Word-based partial 
Encryption (Work 3)

Write Distribution

Intra-line Wear Leveling
technique (Work 2)

Improving Endurance of PCM-based Main Memories
using Write Reduction and Write Distribution

Figure 1.2: High level digram illustrating thesis contributions

reduction techniques and intra-line wear leveling technique to uniformly distribute the writes
through out the memory space. The effect of fine-grained compression-based approaches
have been demonstrated for encrypted and non-encrypted memories. Coarse-grained victim
cache based approach is proposed assuming the underlying hybrid memories as unencrypted.
However, it is supposed to show good results for encrypted PCM as well, as reduced write-
backs tend to relieve write pressure in encrypted PCM; thereby improving endurance. In
figure 1.2, we give a top level picture of the thesis before diving into the brief description of
the contributions.

In this section, we present a brief overview of the contributions of the thesis. The first
two contributions offer ways to reduce writes at the block and bit granularity, respectively.
In contrast, the final two contributions focus on minimizing bit-flips while protecting PCM
data via encryption.

1.5.1 Write Reduction Using Selective Victim Caching (Contri-
bution 1)

Hybrid memories utilize the benefits of the low latency of DRAM to improve performance
and the high density of PCM to increase main memory capacity. However, the lazy and
energy-intensive write-backs of the evicted blocks from LLC to the PCM component of hy-
brid memory limit system performance as well as its longevity. Therefore, the effectiveness
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of hybrid memories is largely impacted by the replacement policies of the LLC. The tradi-
tional cache replacement policies like Least Recently Use (LRU) are optimized to increase
hit rate in the LLC. But, these policies are oblivious of PCM’s read/write disparity, where
PCM writes are much costlier than the reads in terms of latency and energy. Hence, they
do not bring similar improvements in performance in the case of hybrid memories. Addi-
tionally, the costly PCM write-backs tend to damage the PCM component of the hybrid
memory, leading to an eventual degradation of memory lifetime.

In this contribution, we propose two block-level write reduction techniques for DRAM-
PCM-based hybrid main memories. The proposed techniques are based on using a Victim
Cache (VC) [45] that sits between LLC and main memory. The VC keeps the performance-
critical blocks evicted from the LLC. The criticality of a block is determined by its reuse
distance 1. We use the idea of reuse distance to identify the blocks with a history of
short reuse distance usage during their LLC residency. Since short reuse distance of a
block indicates its high temporal locality, the blocks that have a high Frequency of short
reuse distance during their LLC residency can be classified as the critical blocks. These
blocks have a high chance of being re-used again in the forthcoming memory references.
We therefore keep such critical blocks in the VC rather than writing them back to hybrid
memory. Based on this idea of selective victim caching, we propose two techniques that
work on the Replacement Policy and Partitioning of the VC to reduce the PCM write-backs
further. We briefly discuss these techniques below.

• Victim Cache Replacement Policy (VCRP) : VCRP prioritizes the eviction of
the DRAM blocks2 over the PCM blocks. Prior to eviction, VCRP searches two LRU
positions (LRU and LRU-1 in the LRU stack) in the VC. If a DRAM block is found
during the search, it is preferentially evicted over a PCM block. Since evicting PCM
blocks is more expensive than evicting DRAM blocks, PCM blocks are preferred to
be kept in the victim cache.

• Prioritized Partitioning of Victim Cache (PPVC): PPVC logically partitions
the VC, giving more share to the critical PCM blocks and comparatively lesser share
to the critical DRAM blocks. Thus, PCM blocks will get more space in the VC than
the DRAM blocks. While it might seem prudent to allocate all available VC space to
PCM blocks to reduce PCM write-backs, reserving some space for DRAM blocks is
necessary to prevent the abrupt degradation of system performance due to the eviction
of some important critical DRAM blocks.

1Reuse distance of a cache block is the number of distinct accesses between two consecutive accesses to
the block during its residency in the cache.

2A cache block is termed as DRAM(PCM) block if it corresponds to DRAM(PCM) partition in the
hybrid main memory
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We compare our techniques (VCRP and PPVC) with two baselines (Baseline 1: With-
out VC, Baseline 2: LLC+VC without reuse distance), and two state-of-the-art techniques:
VAIL [46] and WBAR [47]. On average, <VCRP, PPVC> reduce PCM write-backs by
<11.27%, 10.82%>, improve performance by <5.8%, 5.65%> and reduces energy consump-
tion by <11.73%, 11.52%> over Baseline 1 (without VC). The details of this work are
discussed in Chapter 3.

1.5.2 SWEL-COFAE : Write Reduction Using Compression and
Adaptive Encoding Augmented by Wear Leveling (Contri-
bution 2)

When the blocks evicted from the LLC are written in PCM, it causes bit-flips in the PCM
cells. These bit-flips are fine granularity bit-level write operations that degrade the memory
lifetime and lead to high energy consumption. Hence, reducing write activities at the bit
level (i.e., bit-flips) is necessary to improve durability and minimize energy consumption in
PCM. In this contribution, we have proposed approaches based on compression and encoding
to cut down on the bit-flips in the PCM-based main memory.

Compression reduces the effective size of the blocks written in PCM. When the reduced
blocks are written in the PCM arrays, many cells remain unexposed to writing. Hence, bit-
flips are reduced in the unexposed cells. On the other hand, encoding techniques convert
the compressed blocks to formats that reduce bit-flips in the PCM cells. We have devised a
novel compression algorithm based on the word-level similarity among the words within the
cache blocks. On top of it, we have applied an adaptive encoding technique to reduce bit-
flips further. Although reducing bit-flips improves PCM lifetime, writing of the compressed
blocks on the same side of the memory lines1 makes that side heavier in terms of bit-flips
compared to the unexposed side. In other words, the cells corresponding to the exposed
part of the memory line experience more bit-flips and tend to wear out faster than the
other cells of the memory line. The lifetime of PCM can be improved further if the uneven
bit-flips can be balanced. We have proposed two intra-line wear leveling algorithms in an
incremental fashion to ease out the imbalance created by uneven bit-flips. We term our
integrated approach of compression, encoding, and wear leveling as SWEL-COFAE. We
briefly explain the working of SWEL-COFAE below.

• Proposed Compression Technique (COMF): Our compression technique, called
COMF, exploits the data redundancy that exists among the words within the cache
blocks. The cache blocks evicted from LLC and approaching PCM contain many
words that repeat with high frequency. Our experiments using several PARSEC and
SPEC 2006 benchmarks reveal that, on average, the percentage of words repeating

1A memory line refers to an array of PCM cells where a cache block gets fitted.
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between 11-16, 6-10, 3-5, and 0-2 times are 53%, 27%, 14%, and 6%, respectively, in
a cache block containing 16 words (with size 64 bytes and word width 4 bytes). It
indicates that the words within a cache block are frequently repeated.

COMF compresses the blocks by removing the repeated occurrences (except its first
occurrence in the cache block) of the Most Frequently Occurring Word (MFW) within
the cache lines. It maintains certain meta-data (explained in detail in Chapter 4) that
help during decompression. Since compression/decompression incurs latency, we com-
press a block if the MFW frequency exceeds a predefined threshold (th). The analysis
of Compression/ Decompression in terms of area, latency, and power is discussed in
Chapter 4.

• Adaptive Encoding technique, COFAE : In order to reduce bit-flips further,
we apply a FNW [43]-based adaptive encoding strategy on the compressed blocks
produced by COMF. The combination of COMF and adaptive encoding is termed
COFAE. FNW divides the data blocks into equal-sized partitions and assigns a tag
bit to each of them. If the bit-flips in a partition is more than half of the partition size
(termed as Encoding Granularity (Granfixed)), then the bits are written in inverted
form, and the corresponding tag bit is set to 1. Else, the bits are written as it is and
the corresponding tag bit is set to 0. FNW bounds the maximum number of bit-flips in
a partition to half of Encoding Granularity. FNW reduces bit-flips to a greater extent
when the Encoding Granularity becomes finer (smaller), as supported by [43, 44, 48].
While fine Encoding Granularity is desirable, it involves more tag bits to achieve fine
granularity, resulting in large storage overhead.

In the proposed adaptive encoding approach, we encode the compressed blocks at
finer Encoding Granularity by assigning the tag bits to the compressed data bits
during runtime. Hence, the number of data bits represented by a tag bit becomes
less, resulting in finer Encoding Granularity. Note that we do not have to increase the
number of tag bits to achieve finer granularity. Since the encoding granularity gets
adjusted dynamically in real time depending on the size of the compressed block, we
term it Adaptive Encoding Granularity (Granadapt). Our encoding approach leads to
a further reduction in the bit-flips.

• Proposed Intra-line Wear Leveling Techniques : We propose two intra-line wear
leveling techniques to balance the uneven bit-flip distribution in the PCM memory
lines.

1. Orientation-based Wear Leveling Technique : In this technique, we periodi-
cally change the direction (from left-to-right and right-to-left and vice-versa) of writing
the compressed blocks in the memory lines after a specific number of writes. An ori-
entation bit indicates the orientation of writing the compressed blocks. In particular,
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orientation bit value 1(0) indicates left-to-right(right-to-left) orientation of writing.

2. Stride-based wear leveling technique : Orientation-based wear leveling in-
troduces more bit-flips towards the extreme ends of the memory lines. However, the
PCM cells corresponding to the middle portion of the memory lines remain unexposed
most of the time. It leads to an uneven distribution of bit-flips inside the memory
lines where the cells towards the ends face more bit-flips than the middle cells.

We propose a wear leveling technique, called stride-based wear leveling, that bal-
ances the bit-flip pressure within the memory lines by periodically shifting the writing
position of the compressed lines, decided by a stride distance. It leads to uniform dis-
tribution of bit-flips within the memory lines and further enhances the PCM lifetime.

We have compared the effectiveness of our proposed policy SWEL-COFAE with baseline
(DCW [42]) and four existing techniques [49], [50], [51] and READ [44]. Experimental
results show that SWEL-COFAE reduces bit-flips by 59%; reduces energy consumption by
61% and improves lifetime by 101% over the baseline DCW technique. We have given full
description of this work in Chapter 4.

1.5.3 Pop-Crypt : Reducing Encryption Overhead in NVMs by
Identification of Popular Words (Contribution 3)

In this contribution, we propose a partial encryption scheme called Pop-Crypt that provides
a robust security guarantee to the PCM data against stolen DIMM attacks and minimizes
the encryption-induced bit-flips in the PCM cells. We have adopted Advanced Encryp-
tion Standard (AES)-based counter Mode encryption (CME) due to its low decryption
penalty [39, 40]. CME uses a counter (that gets incremented with each write-back of the
block), a secret key (stored securely in the processor-side memory controller), and the block
address to generate a One-Time Pad (OTP). This OTP is XORed with plain text/cipher
text to obtain cipher text/plain text.

Our experiments reveal that many words present in the cache blocks (approaching PCM-
based main memory after LLC eviction) are repeated with high frequency over multiple
blocks. We term such words as Popular Words and store them in a table called Popular
Word Table (PWT) for future reference. Encryption of the popular words is skipped during
block encryption by maintaining their pointer to the PWT, whereas the non-popular words
are encrypted normally. Due to high percentage of popular words in the blocks, encryption
of many words are skipped. As a result, compared to the fully encrypted blocks, these
Partially Encrypted Blocks (PEB) lead to lesser bit-flips in the PCM cells upon writing.
We explicitly dedicate a period for training the PWT to collect the most popular words
in the PWT. PWT is dynamically updated during execution to contain the most popular
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words for the remaining period of execution. We maintain relevant data structures apart
from PWT at low storage overhead to facilitate the partial encryption process.

We compare our technique Pop-Crypt with a baseline that employs full encryption and
two state-of-the-art techniques, DEUCE [39] and SECRET [40]. On average, Pop-Crypt
reduces bit-flips by 38%; reduces energy consumption by 22%; and improves lifetime by
29%, over baseline, respectively. A detailed discussion of this work is given in Chapter 5.

1.5.4 Exploring Newer Avenues of Bit-flip Reduction in Encrypted
NVM Using Compression and Encoding (Contribution 4)

By utilizing the advantages of compression and encoding techniques, bit-flips in encrypted
PCMs can be effectively reduced. In this direction, we have proposed two techniques. The
working methodology of the techniques is briefly outlined below, whereas a more compre-
hensive explanation can be found in Chapter 6.

1. CoSeP: Compression and Content-based Selection Procedure to Improve
Lifetime of Encrypted Non-Volatile Main Memories

In this technique, we intelligently integrate three compression techniques, FPC, BDI, and
COMF, that vary in terms of compression ratio and coverage. FPC shows high coverage
but poor compression ratio, whereas BDI offers a fine compression ratio with poor coverage.
In contrast, our proposed compression technique, COMF (discussed in Chapter 4), strikes
a fine balance between compression ratio and coverage.

An incoming block is compressed independently using FPC, BDI, and COMF, and the
sizes of the two smallest compressed blocks are compared. Writing the smallest block after
encryption results in the fewest bit-flips in PCM if the sizes differ significantly. This is
because the smallest compressed block is much smaller in size. In this case, CoSeP makes a
greedy choice by selecting the smallest block for writing in PCM. In contrast, if the sizes of
the two smallest blocks differ by only a small margin (i.e., if the blocks are of almost equal
sizes), encryption of these similar-sized blocks can lead to significantly different bit-flips,
depending on the data content of the compressed blocks. Choosing the smallest block, in
this case, is not as wise as it was in the previous case. CoSeP offers the best outcome
in such a scenario by computing the bit-flips of the compressed blocks with the old data
contents and picking the block that leads to minimum bit-flips after encryption. In that
process, CoSeP has to invest some cycles in reading the old data from the main memory to
perform bit-flip computation, like the existing read-before-write techniques [42–44] for bit-
flip reduction. However, unlike other strategies that perform read operation to determine
bit-flip for each block before writing in main memory, CoSeP needs to perform read only
when the sizes of the smallest blocks are comparable.

CoSeP has the best overall compression ratio and coverage (0.19 and 95%, respectively)
out of the individual compression techniques (0.41 and 84% for FPC, 0.33 and 45% for
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BDI, and 0.27 and 75% for COMF). CoSeP achieves 74% and 65% reduction in bit-flips and
energy and 69% improvement in PCM lifetime over baseline (encrypted DCW).

2. CADEN : Compression Assisted ADaptive Encoding to improve lifetime
of Encrypted Non-Volatile Main Memories : Due to the encryption-induced bit-flip
spikes, the traditional encoding techniques [43, 48], developed for non-encrypted memories,
fail to achieve significant reduction in bit-flips in the presence of encryption. These encod-
ing techniques can be optimized to perform well in encrypted memories by reducing their
encoding granularity. Unfortunately, fine encoding granularity can be achieved using more
tag bits per block, which substantially increases storage overhead.

Our proposed technique, CADEN applies FNW-based adaptive encoding on the com-
pressed and encrypted data blocks, incurring only a little storage overhead. We apply
encoding adaptively on the compressed (generated by our compression technique COMF)
and encrypted block by assigning the tag bits to the compressed+encrypted data bits only.
Since tag bits point to fewer data bits, the number of data bits represented by one tag bit
reduces, resulting in finer encoding granularity. Note that we do not need to increase the
number of tag bits to achieve fine granularity. Furthermore, since COMF produces highly
compressed blocks, they reduce exposure to the PCM cells upon writing, reducing bit-flips.

The high compressibility of COMF and fine granularity encoding on the compressed
blocks enables CADEN to substantially reduce bit-flips in the PCM-based main memory,
thereby improving its lifetime. In particular, CADEN shows 52% and 57% reduction in
bit-flips and energy consumption and 2.31x improvement in lifetime over baseline.

1.6 Organization of Thesis

The rest of the thesis is organized as follows.

• In chapter 2, the background and prior works related to the contributions of the thesis
are discussed.

• We discuss our first contribution in Chapter 3. Here, we propose techniques to reduce
costly PCM write-backs in a DRAM-PCM hybrid main memory using a small victim
cache associated with the LLC. The victim cache stores critical blocks based on reuse
distance. Our proposed techniques further work on the Block Placement and Parti-
tioning of the victim cache to reduce PCM write-backs further (Objectives 1, 3, 4,
6(a)).

• Chapter 4 details our second contribution, where we have proposed a novel compression
algorithm called COFAE and an adaptive encoding approach to reduce bit-flips in
PCM-based main memory. We also propose an intra-line wear leveling technique to
distribute the bit-flips evenly within the PCM cells (Objectives 1, 2, 3, 4, 6(b)).
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• Chapter 5 presents our third contribution. Here, we have proposed a Partial encryption-
based block encoding technique to reduce bit-flips in encrypted PCM-based main
memory (Objectives 1, 3, 4, 5, 6(b)).

• Chapter 6 illustrates our fourth contribution, where we have proposed new avenues
based on compression and encoding techniques to reduce bit-flips in encrypted PCM-
based main memory (Objectives 1, 3, 4, 5, 6(b)).

• Chapter 7 concludes the thesis.
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2
Background and Related Work

As introduced in Chapter 1, the emerging NVMs are widely explored as a potential alterna-
tive for the conventional DRAM in main memory. The goal of this thesis is to make NVMs
more appropriate as a main memory standard by adopting various ways of write minimiza-
tion and write distribution. In this chapter, we initially explain the fundamental working
principles of the established DRAM-based and emerging NVM-based memory systems. We
also discuss the various shortcomings and deployment challenges of the different memory
technologies. Additionally, we have discussed various evaluation metrics used in the the-
sis. Later, we describe the state-of-the-art techniques designed to improve the endurance of
NVMs.

2.1 Main Memory Technologies

Below, we provide the working details and drawbacks of different memory technologies used
to construct main memories.

2.1.1 Dynamic Random Access Memories (DRAM)

Dynamic Random Access Memory (DRAM) is the most widely used technology to build
main memory system. DRAM was invented by Robert Dennard in 1966 at IBM. A storage
cell in DRAM is essentially composed of two elements, a capacitor and an access transistor.
The capacitor stores the binary values in the form of electrical charge, where the fully
charged and discharged states of the capacitor correspond to the binary numbers 1 and 0,
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Figure 2.1: Representational view of a DRAM cell

respectively. On the other hand, the access transistor helps in accessing the bit information
stored in the DRAM cell. Two lines, known as word line (W/L) and bit-line (B/L), are used
to connect a DRAM cell in a matrix of cells known as sub-arrays that further constitute the
DRAM memory banks. The word line and bit line are utilized for the charging/discharging
of the capacitor. A schematic diagram of a DRAM cell is shown in Figure 2.1. The read
and write operation of a DRAM cell is described below.

Read Operation : To read the bit-value stored in the DRAM cell, voltage is applied to
the word line. It causes the current to flow on the bit line. If there is no charge in the
capacitor, no current flows.

Write Operation : To write to a DRAM cell, the bit line is set with the appropriate value
(1 or 0). The cell capacitor is subsequently charged or discharged (according to the binary
value to be stored) by applying a voltage to the word line.

The charge stored in the capacitor is very small to be read reliably. Hence, it is measured by
a circuit called sense amplifier. The sense amplifier is able to pick up on even the slightest
changes in charge and relay that information as the corresponding logic level. DRAM reads
are destructive, meaning the charge stored in the capacitor flows out during read operation.
In other words, a DRAM cell can not represent the bit information accurately after a read
operation. As a result, after a read operation, an action known as a precharge is carried
out to write the bit value back into the DRAM cell. Additionally, the capacitors in DRAM
cells have a tendency to leak charge over time, causing the cells to store incorrect bit
information. Therefore, DRAM cells need to be refreshed periodically to maintain capacitor
charge. Refresh operations work similar to the read operations and ensure that the cells
hold the correct binary value.
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DRAM Challenges : The overwhelming demand for main memory with large capacity can
not be met due to DRAM’s inadequate density. In the effort toward making DRAM denser,
it has to undergo a rigorous scaling process. However, scaling DRAM to a low nanometer
regime (beyond 10nm) is encountering some unprecedented technological hurdles. Below we
highlight the key challenges faced by memory system designers during DRAM scaling.

• DRAM cells must be refreshed periodically due to their tendency to leak charge from
the cell capacitors. Unfortunately, the capacitance of the cells drops as their sizes
decrease. Additionally, the DRAM cells start to leak more at smaller cell sizes. These
two factors contribute to a shortened retention time of the DRAM cells. As a result,
DRAM cells need to be refreshed at a faster rate to retain the original information.

• DRAM scaling aggravates the issues related to Variable Retention Time (VRT). VRT
refers to the phenomenon where DRAM cells alter between high retention state (less
leaky) and low retention (more leaky) over time. It may lead to memory failures during
system operations, as some cells can shift to low retention state and start losing bit
information.

• The scaling process reduces the spacing between the DRAM cells. As a result, the
cells start interfering with each other’s operation due to the electromagnetic coupling
between the nearby cells. When this disruption exceeds a certain noise margin, the
cells start malfunctioning.

2.1.2 Non-volatile Memories (NVM)

NVMs have gained a lot of popularity in recent times as a viable candidate for building
main memory systems. Unlike DRAM, NVMs represent data by changing the material
characteristics of the cells. Out of many NVMs under research, some NVMs have reached
an advanced phase of development, and some are yet to mature. We go over three NVMs
that could be used as main memory technologies below: STT-RAM, PCM, and ReRAM.

2.1.2.1 Spin Transfer Torque Random Access Memory (STT-RAM)

STT-RAM is an emerging Magnetoresistive Random Access Memory technology. An STT-
RAM cell is composed of a Magnetic Tunnel Junction (MTJ) to store the binary information.
A pictorial representation of an STT-RAM cell is shown in Figure 2.2. As shown in Fig-
ure 2.2, the MTJ consists of two ferromagnetic layers separated by a thin insulating oxide
tunnel barrier layer made up of MgO. One ferromagnetic layer, called reference layer, keeps
its magnetic direction fixed. In contrast, the other ferromagnetic layer, known as free layer,
changes its magnetic direction based on the applied spin-polarized current. In an STT-RAM
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Figure 2.3: Conceptual view of a STT-RAM cell

cell, the binary data is stored as the magnetic direction of the free layer with respect to the
reference layer. When the magnetic direction of the free layer and reference layer are par-
allel, the MTJ has low resistance and represents a logical 0. In contrast, if their directions
are anti-parallel, then the MTJ resistance is high, representing a logical 1.

Similar to a DRAM cell, an STT-RAM cell also consists of an access transistor that
connects the storage device (MTJ) to its bit line. However, different from a DRAM cell,
the other end of the storage device is not connected to the ground; rather gets connected to
the sense line. The read and write operations for the STT-RAM cell are described below.
The diagram of an STT-RAM cell with the word line, bit line, and sense line is shown in
Figure 2.3.

Read Operation : To access the binary value stored in a STT-RAM cell, the access
transistor of the cell is enabled, and a small voltage is applied between the source line and
the bit line. It causes the current to flow across the memory cell, which is compared with a
reference current to decide the logical value (1/0).

Write Operation : In order to write a binary value to an STT-RAM cell, a large current
is applied to change the magnetic direction of the free ferromagnetic layer with respect to
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Figure 2.4: (a) Schematic of a PCM cell (b) Electrical pulses used in read and write
(SET/RESET) of a PCM cell

the reference ferromagnetic layer. Depending on the direction of the applied current, the
free layer becomes parallel or anti-parallel to represent logical 0 or 1 values, respectively.

STT-RAM chips have been commercialized and are available in the market. For example,
4Gbit STT-RAM based MTJ at 90nm technology node is fabricated by Toshiba and SkHynix
incorporation [52]. Recently, Intel and Samsung fabricated 7.2M and 8M bit STT-RAM at
22nm and 28nm technology nodes [53, 54], respectively.

2.1.2.2 Phase Change Random Access Memory (PCM)

A PCM cell consists of phase change material, called chalcogenide material, and an access
transistor. The chalcogenide material, made up of GST (an alloy of Germanium, Antimony,
and Tellurium, Ge2Sb2Te5), shows two different phases: amorphous and crystalline. The
amorphous state shows high resistance and represents the RESET state (logic 0) of the cell,
whereas the crystalline state has low resistance and represents the SET state (logic 1) of the
cell. The state of the chalcogenide material can be altered between these states by heating
the material to different temperatures. The read and write operation of the PCM cell is
described below. The schematic diagram of a PCM cell is shown in Figure 2.4(a).

Read Operation : To access the state of a PCM cell, a small voltage is applied across the
storage element, GST. Based on the amount of current flowing (sensed using access transistor
and word line processing), the state of the cell (amorphous/crystalline) that represents the
logic value is determined.

Write Operation : To SET a PCM cell, the GST material is heated to more than its
melting point (600◦C) for a short period and quickly cooled down. It changes the state to
amorphous (high resistance), representing logic 0. On the other hand, to RESET a PCM
cell, the GST material is heated to a temperature between its crystalline state temperature
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(300◦C) and melting point (600◦C) for a long duration. It changes its state to crystalline
state (low resistance), representing logic 1. Figure 2.4(b) shows the waveform of electrical
pulses during the Read and Write (SET/RESET) operations of a PCM cell.

The resistance range in the GST is large enough to allow the PCM cells to store more than
one bit per cell by dividing the resistance into multiple intermediate levels. It introduces
more memory density and results in high memory capacity. These types of PCM cells are
known as Multi-Level Cells (MLC). However, MLC PCM has worse latency and energy
consumption compared to Single Level Cell (SLC) PCM (PCM cells that we discussed
above) as writes are performed in multiple Program and Verify (P&V) iterations to code
the bits at the appropriate intermediate resistance level. Due to the high-density benefits,
MLC PCM is considered a possible option in the storage layer of the memory hierarchy,
whereas SLC PCM is more suitable for main memory.

We consider SLC PCM for our contribution. Hence, PCM necessarily means SLC
PCM in the thesis. However, the proposed techniques have the potential to show
good results for MLC PCM also as they are applied on the blocks before writing in
memory.

PCM has grown a lot in terms of commercialization. For example, Samsung electron-
ics built the 512 Mb PCRAM chip with 266 Mb/s band-width [55], at 90nm node. Later,
Samsung fabricated the 8Gb PCRAM chip at 20 nm technology with 40 Mb/s program band-
width [56]. Intel and STMicroelectronics shipped prototype samples of their first PRAM
product, called Alverstone (at 90nm technology node with a capacity of 16MB) to cus-
tomers [57] in February 2008. Intel’s 3D Xpoint is the first commercial PCM chip available
in the open market (since 2017) [58]. OptaneTM SSD and OptaneTM Memory are two
memory modules produced by Intel for persistent secondary storage and caching system for
HDDs, respectively [59].

2.1.2.3 Resistive Random Access Memory (ReRAM)

ReRAM is built by putting an oxide layer (TiO2 layer) between an inert electrode (at the
top) and an electrochemically active electrode (at the bottom). Figure 2.5 shows a schematic
view of a ReRAM cell. On applying a positive voltage to the active electrode, the metal
ions move through the oxide layer and reach the inert electrode on the other side. In this
state, the equivalent resistance of the cell is taken to be low (1). The low resistance of the
cell can be changed to a high-resistance state (0) by applying a positive voltage to the inert
electrode. ReRAM has great compatibility with CMOS processes, and therefore, it can
be fabricated in the same die where the processor and SRAM-based caches are fabricated.
These advantages make ReRAM a strong competitor of SRAM in building cache memories.
The read and write operations of a ReRAM cell are described below.

22



Main Memory Technologies

Pt

TiO2-x

TiO2

Pt

V

+

-
+

-
Top electrode

High Oxygen Vacancy
Concentration

Low Oxygen Vacancy
Concentration

Bottom electrode

Figure 2.5: Representational view of a ReRAM cell

Read Operation : To read the binary value stored in a ReRAM cell, a small voltage
is applied across the bit lines. By sensing the generated current, the bit value can be
determined.

Write Operation : A large voltage is applied across the bit lines to write a binary bit
in a ReRAM cell. To write a 0 bit, a negative bias voltage is used, which generates high
resistance ion path by increasing the thickness of the TiO2 layer, whereas a positive bias
voltage is applied to write a 1 bit in the ReRAM cell.

ReRAM has been less commercially utilized compared to STT-RAM and PCM. Fujitsu
and Panasonic are working jointly on second generation ReRAM devices [60].

Out of the three memory technologies (STT-RAM, PCM, and ReRAM), PCM and STT-
RAM are in matured stage of development and are being deployed at different layers of the
memory hierarchy. Table 2.1 [61–66] shows the comparative analysis of the above-discussed
NVMs with traditional DRAM. It can be seen from the table that STT-RAM offers higher
endurance and lower latency than the other NVMs, making them suitable for building fast
on-chip caches, replacing the traditional SRAM-based caches. PCM, on the other hand,
shows potential to be used in main memories due to its exceptional density benefits (2-4x
compared to DRAM). PCM is the most mature NVM technology with a promising scaling
capability. PCM scaling has been verified in a 20 nm device prototype and is projected to
scale below 9 nm [21]. Therefore, we have proposed our contribution for PCM-based main
memories. However, our techniques are equally adaptable to other NVMs as well.

2.1.2.4 Hybrid Main Memory

Hybrid memory is built using a large NVM memory space and a small DRAM space. It
utilizes the low latency of DRAM and high density as well as low leakage power of NVM to
construct fast and large-capacity main memory systems. PCM is the commonly used NVM
technology in hybrid memories due to its advanced phase of commercialization.
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Table 2.1: Comparative Analysis of different Memory Technologies

Features DRAM STT-RAM PCM ReRAM
Density 1X 1X 4X 2-4X
Non-volatility No Yes Yes Yes
Endurance >1015 1015 >108 >105

Read Latency (ns) 10-60 <10 50 <10
Write Latency (ns) 10-60 12.5 40-150 ∼10
Dynamic Energy Medium High High High
Static Energy Medium Low Low Low

Maturity Product
Advance
development

Advance
development

Early
development

Retention <<second >10 yr >10 yr >10 yr

DRAM PCM
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CPU

Memory
Controller
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CPU
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Controller
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Figure 2.6: (a) Exclusive (Parallel) organization (b) Inclusive (Hierarchical) organization
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From the design point of view, DRAM-PCM hybrid memory can be divided into two
categories, namely 1) Exclusive Architecture or Parallel Architecture [67, 68] and 2) Inclusive
Architecture or Hierarchical Architecture [69, 70] as shown in Figure 2.6. In Exclusive
(Parallel) (Figure 2.6(a)) architecture, a small portion of DRAM is maintained with a
larger portion of PCM in the same layer of the memory hierarchy. In contrast, Inclusive
(hierarchical) (Figure 2.6(b)) architecture employs a small layer of DRAM as a cache to
the underlying PCM-only main memory.

For applications with low locality of reference, the inclusive architecture cannot provide
performance benefits of low latency DRAM cache. Also, the management of DRAM cache
in this architecture is an overhead [68]. On the other hand, exclusive architecture fully
utilizes both DRAM and NVM memory media and manages to maintain performance even
for applications showing low locality of reference. Therefore, we have chosen the exclusive
architecture for our work and regard it as the hybrid main memory system. In this thesis,
we have explored the exclusive architecture to improve the utilization of hybrid memory.

2.2 Challenges in deploying PCM as the Main Mem-

ory Standard

PCM has certain shortcomings that need to be addressed before considering it as a suitable
main memory option. Below we discuss the problems associated with deploying PCM in
main memory.

2.2.1 Write Related Issues

PCM has asymmetric reads and writes, where the writes are much costlier than the reads in
terms of latency and energy. Below we highlight the issues that stem out due to the costly
write operations in PCM.

• PCM has higher write latency. Although the writes do not lie in the critical path of
execution, they can stall the subsequent critical reads issued to the same memory bank.
It can degrade the system performance.

• The write operations involve energy-intensive current injection to the PCM cells. It causes
thermal expansion and contraction of the storage elements in the PCM cells and limits
their endurance [21]. According to the data in Table 2.1, PCM can withstand around
108 writes, whereas DRAM can withstand more than 1015 writes. After exceeding the
limited write quota, the PCM cells show hard errors where the state of the cell remains
permanently stuck at logic zero (RESET/amorphous state) or logic one (SET/Crystalline
state) [59].
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• PCM cells tend to show non-uniform tolerance to hard errors, where endurance of some
cells is more compared to the other PCM cells. This variable write endurance can lead
to the early wear out of the more vulnerable cells.

• Programming a PCM cell to high resistance amorphous state (RESET) requires a high
current pulse and subsequent cooling of the storage element. The high temperature
generated during the RESET procedure can disturb the nearby cells. This type of error
is known as write disturbance errors [71, 72].
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Figure 2.7: Illustration of Avalanche Effect in Encryption

Figure 2.8: Comparison of bit-flips for Unencrypted Vs Encrypted PCM

2.2.2 Security Issues : Data Confidentiality-based Attacks

Non-volatility feature of PCM introduces security threats related to data confidentiality that
were not encountered before. Due to non-volatility, the data in PCM remain persistent for a
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long duration even after the system is powered off. Therefore, any attacker having physical
access to a PCM DIMM can stream out the confidential data without much difficulty.

With its robust obfuscation guarantee, encryption turns out to be an efficient way of
guarding PCM data against such malicious attackers. However, security provisioning via en-
cryption is at odds with the PCMs’ endurance issue. Due to the high level of randomization
imposed by the encryption methods to conceal the data from attackers, PCM endurance
degrades further in the presence of encryption. More specifically, even a single bit change in
the un-encrypted memory blocks can lead to a large number of bit changes in the encrypted
cipher blocks. This effect of encryption algorithms is known as the Avalanche Effect [39, 40].
An example of Avalanche Effect is shown in Figure 2.7, where a single bit change in the
plain text leads to a change of 256 bits in a cache block of 512 bits after encryption. As a re-
sult, writing encrypted blocks in PCM causes a dramatic rise in bit-flips because of the high
degree of dissimilarity between the old and new encrypted data. In such extreme conditions,
the commonly used techniques like DCW [42] and FNW [43] designed to reduce bit-flips in
normal condition can not bring fruitful outcome in the presence of encryption. In order to
visualize the gravity of this dreadful situation, the graph in Figure 2.8 shows the effects on
bit-flips (per write) in PCM-based main memories by DCW and FNW, for un-encrypted
and encrypted memories, respectively. In case of un-encrypted PCM, the average bit-flips
per write shown by DCW and FNW are 21% and 18%, respectively. In contrast, the bit-flips
spike up to 50% and 45%, respectively, for DCW and FNW, when the blocks are encrypted
using AES-based encryption. The sudden increase in bit-flips tends to degrade the lifetime
of PCM in a severe manner. Also, these costly write activities deteriorate the system per-
formance. As a result, lifetime management while delivering a decent performance is much
harder for secured PCM.

Out of many encryption algorithms, AES-based Counter Mode Encryption (AES) works
well in the PCM context, primarily due to its low decryption overhead. Below, we discuss the
working principle of the AES-based CME in detail. We also discuss the problem associated
with CME in Section 2.2.2.2 under ‘Counter Overflow Problem’.
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2.2.2.1 Counter Mode Encryption (CME)

CME uses a counter (associated with the cache line), cache line address, and a secret key
(stored securely in the processor register) to generate a One Time Pad (OTP). The OTP is
XORed with the plaintext data to generate the ciphertext. Similarly, plaintext text can be
re-generated by XORing the ciphertext with the OTP. The process of encryption/decryption
using AES-based CME is shown in Figure 2.9. The counter associated with a block is
incremented on each write-back of the block to maintain temporal exclusivity of the counter.
Temporal exclusivity of counters refers to maintaining unique counter value with time and
is essential to avoid counter reuse to protect against dictionary-based attacks [39]. The
counters are stored in the main memory, while a few frequently accessed counters are cached
in a small on-chip counter cache to reduce decryption penalty.

2.2.2.2 Counter Overflow problem

Small counters are usually preferred to increase hit-rate in the counter cache. However, they
overflow quickly after a few write-backs to a cache line. When a counter overflows, the secret
global key is changed to avoid the reuse of OTPs, which essentially leads to the re-encryption
of the whole memory, as the same global key is kept shared among all the cache lines. It
increases bit-flips enormously and causes the system to freeze until the re-encryption process
is completed. System freezing has a negative impact on the system performance. We have
discussed techniques in the Related Work Section (Section 2.4.2.3) that try to reduce the
frequency of counter overflow to improve PCM performance and lifetime.

2.3 Evaluation Metrics

In the thesis, we have used various metrics to assess the effectiveness of our proposed tech-
niques. Below, we discuss the most important metrics used in the thesis.

2.3.1 Lifetime

PCM-based main memories have limited write endurance, i.e., they can withstand only
a limited number of writes before wearing out completely. The lifetime of PCM can be
defined in two different ways: Raw Lifetime and Error-Tolerant Lifetme. We define
raw lifetime of PCM as the time span until the first breakdown of a byte in such memories.
Hence, the lifetime of these memories is inversely proportional to the maximum number of
bit-flips to a byte. Raw lifetime can be extended by using error correction techniques [73, 74]
at the expense of increased storage overhead and reduced performance. In this thesis, we
focus on improving the raw lifetime since it is the base for error-tolerant lifetime also and
use the term lifetime in place of raw lifetime for the rest of the thesis. We use the bit-flips in
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the cells to determine lifetime of PCM. Since dispersing bit-flips uniformly within memory
cells decreases bit-flip pressure within the cells, it contributes to further extending lifetime
by lowering the failure rate of the individual cells. The formula for determining lifetime is
given by equation 2.1, where N , B are the total number of blocks, number of bytes per
block in a memory bank and Wblk,b gives the count of writes to bth byte of the blkth block.

Lifetime =
1

∀Nblk=1∀Bb=1Wblk,b
(2.1)

In this dissertation, we have used raw lifetime which is the basis of error-tolerant
lifetime.

2.3.2 Energy Consumption

We follow the energy modeling similar to [41] to calculate the energy consumption in PCM.
The energy consumption in PCM is given by equation 2.2, where Nread and Nwrite are total
read and write operations taking place in the memory, and Eread and Ewrite are energy in
reading and writing a block in PCM.

EPCM = NreadEread +NwriteEwrite (2.2)

Eread is the energy involved in reading a 64 byte block from PCM, which is approximately
equal to 1.075 nJ [41]. The write energy (Ewrite) involved in writing a block, assuming
DCW [42] is enabled, is given by equation 2.3. In equation 2.3, Efixed is the constant amount
of energy (Efixed=4.1 nJ per access according to [41]) consumed during write decoding, row
selection and data comparison (during DCW), etc.

Ewrite = Efixed + Eread + EbitChange (2.3)

EbitChange is the energy involved in the actual cell writes in PCM. It depends on the
nature of flips (0 to 1 or 1 to 0) and is given by the equation 2.4, where N0→1 and N1→0

are the number of bit transitions from 0 to 1 and 1 to 0, respectively and E0→1 and E1→0

are energy consumed in writing a 1 and 0 in the memory cells, respectively. As per [41],
the values of E0→1 and E0→1 are 0.0268nJ and 0.013733, respectively.

EbitChange = N0→1E0→1 +N1→0E1→0 (2.4)
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2.3.3 Compression Ratio and Coverage

We define the Compression Ratio (CR) as the ratio between the average size of a compressed
cache block and the size of the uncompressed cache block. If bc1, bc2....,bcn are the sizes of n
compressed blocks, whereas the size of an uncompressed block is denoted by buc, then the
formula for CR is given by the equation 2.5. On the other hand, coverage is the percentage
of blocks compressed by compression, which is given by the formula in equation 2.6.

CR =
(bc1 + bc2 + ...+ bcn)/n

buc
=

∑n
i=1 bci

n× buc
(2.5)

Coverage =
Compressible Blocks

Total Blocks
× 100% (2.6)

2.4 Related Work

In light of the vast potential of NVMs, numerous architectural solutions have been proposed
to address their concerns with expensive writes and low write endurance. These works cover
the existing techniques for both secure and non-secure memories. We categorize them into
two broad divisions, namely Write Reduction techniques, and Wear Leveling techniques.
Write reduction techniques reduce the number of writes (at block and bit-level) performed on
the memory to improve NVM lifetime. In contrast, the Wear leveling techniques distribute
the writes around the memory space to equalize the uneven write distribution, thereby
minimizing the formation of write hot spots within the memory regions. This thesis mainly
focuses on reducing writes to PCM-based main memories. However, we have also proposed
a wear Leveling technique in conjunction with the proposed write minimization techniques
in Chapter 4.

2.4.1 Write Reduction Techniques

Write Reduction techniques operate on block-level (coarse granularity) as well bit-level (fine
granularity) to reduce the write operations in the NVMs. Accordingly, we divide the tech-
niques as coarse and fine granularity write reduction techniques.

2.4.1.1 Coarse Granularity (Block-level) Write Reduction

These works aim to reduce the write-back traffic of the evicted blocks from the LLC ap-
proaching the main memory. Two widely adopted approaches to reduce write-backs are a)
Adding a DRAM buffer that acts as a cache to absorb the writes heading towards NVM-
based main memories, b) Modifying LLC replacement policy to keep the highly reusable
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blocks in LLC for a longer duration. In the following, we will describe the standard state-
of-the-art techniques employing both of the aforementioned approaches.

a) Adding DRAM Cache Between LLC and NVM-based Main Memory: This
techniques [46, 69, 70, 75, 76] augment a small layer of DRAM acting as a cache to the
underlying NVM-based main memory. The DRAM cache is optimized to absorb the write-
intensive blocks evicted from LLC. By maintaining the highly reusable and write-intensive
blocks in DRAM, it is possible to reduce write-back traffic to NVM and improve its lifetime.

Appeared as one of the initial approaches, Quereshi et al., [69] proposed a series of
techniques to utilize the benefits of the DRAM cache by storing the most recently accessed
blocks in the DRAM cache. They proposed their techniques for a DRAM-PCM hybrid main
memory, where DRAM cache and PCM are organized in page granularity. Their Lazy Write
policy prevents page-fault induced fill operations in the PCM. When page faults occur, the
OS page fault handler allocates the fetched page on the DRAM cache only, skipping its
allocation in PCM. It further reduces writes to PCM by evicting only dirty blocks from the
DRAM cache. Another technique, called Line-Level Write Back (LLWB) proposed in the
same paper, minimizes PCM writes by writing at the granularity of a cache line instead of
writing the whole page. It keeps dirty bits per block (within a page) to identify the state of
a block (clean/dirty).

Part et al., [70] proposed a technique by reserving space (called write buffer) in the
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DRAM cache to keep the highly reusable blocks evicted from the DRAM cache. It reduces
PCM writes as the reusable blocks evicted from the DRAM cache have more chances to
be reused while staying in the write buffer. Based on similar insights, Yoon et al., [75]
presented a technique for IoT embedded devices that manages DRAM cache kept as two
decoupled buffers, namely large block fetch buffer and self-adaptive filtering buffer. The self-
adaptive filtering buffer keeps the highly reusable dirty sub-blocks evicted from the large
block fetch buffer to give them a second chance. It allows the reusable blocks to stay in the
large block fetch buffer up to a duration determined using the DRAM cache miss rate and
data access pattern.

CAMP [76], optimized for mobile platforms, divides the DRAM space in two regions,
namely page cache and dirty block buffer. The page cache is managed at a sub-DRAM
page (512 bytes) to improve spatial locality and bandwidth consumption gained through
large data chunks. In contrast, the dirty block buffer holds the dirty blocks at cache block
granularity (64 bytes) to reduce write-backs of the dirty blocks by increasing their occupancy
in the DRAM cache.

VAIL [46] is another technique that modifies the replacement policy of the DRAM cache
based on the recency and eviction frequency of the victim blocks. It dynamically monitors
the eviction time (that represents recency) and eviction frequency of the victim blocks to
predict their reuse possibility. The block that has the least chance of reuse in the future
is chosen as the victim. When two blocks have a comparable chance of being reused, their
clean/dirty state is examined in order to favorably evict the clean blocks over the dirty ones
since they do not result in write-backs to the PCM.

b) Cache (LLC) Management Policy to Reduce NVM Write-backs: These tech-
niques optimize the LLC replacement policies to reduce write-backs to NVM. Some tech-
niques [77–80] are proposed for pure PCM-based main memory, while the others [47, 68, 81]
are proposed for the DRAM-PCM-based hybrid main memory with exclusive architecture.

Techniques proposed in [77–80, 82] focus on reducing the write-backs to PCM-based
main memory. WADE proposed in [77] tries to keep the frequently written dirty cache blocks
in the LLC. It classifies the LLC blocks in two lists, Frequent write back and Non-frequent
write back lists using a frequent write predictor that takes into account both recency and
frequency of the blocks. The sizes of the lists are updated in real-time using a module called
segment predictor that gives the best sizes of the list to balance between performance and
write-back reduction. Zhou et al., proposed two techniques [78] related to write-back aware
cache partitioning (WQB) and balancing in write queues to reduce write-backs and improve
stall time due to write queue overflow. WCP partitions the cache among competing applica-
tions considering reduction in miss rate and write-backs, unlike other partitioning schemes
that only considers miss rate. Additionally, the WQB policy uniformly distributes the write
requests among many write queues to balance the write traffic. Uniform distribution of the
writes throughout the write queues reduces the performance deterioration brought on by
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stalls that happen when write queues fill up. Technique proposed by Jie Xu et al., [82]
preferentially evicts the cache lines with fewer dirty words. It improves performance by
reducing write service time, as write service time is proportional to the number of dirty
words in the cache lines.

The techniques proposed in [79, 80] create auxiliary space in the LLC to retain the
data blocks that are frequently written. Technique [79] proposed by Bakhshalipour et al.,
decouples a few physical ways from each set of the LLC to store the frequently written dirty
evicted blocks. It uses a predictor to identify the potential re-usability of the blocks in the
future. When it is unlikely that a block kept in the decoupled ways will be re-written, it is
written back to main memory. The technique called WALL [80] is based on the observation
that cache blocks belonging to some sets in LLC face more write-backs, while the other sets
remain highly underutilized. It employs the underutilized LLC sets as auxiliary space to
hold the frequently written dirty blocks which are evicted from the highly utilized sets.

The techniques [47, 68, 81] are proposed for DRAM-PCM based hybrid main memories.
They exploit the observation that the cost associated with eviction from LLC is highly
asymmetric for hybrid memories, as the latency and energy involved in write backs to PCM
component is significantly larger than the DRAM component of the hybrid main memory.
Therefore, decreasing PCM write backs can enhance hybrid memory’s performance and
longevity. WBAR [47] modifies the insertion and replacement policy of the traditional LRU
replacement policy keeping in view the asymmetric read/write disparity of the DRAM and
PCM blocks in hybrid memory systems. WBAR promotes and inserts a block at a distinct
position in the LRU stack of the corresponding cache set by considering its potential cost
of eviction from the set, as opposed to the LRU technique, which attempts to maximize
hit rate in the LLC by inserting a newly accessed/incoming block at the MRU position.
The potential eviction cost is determined using the type of the blocks (DRAM vs PCM)
and its state (clean vs dirty). In particular, considering the higher cost associated during
the eviction of the dirty PCM blocks, WBAR tries to keep those blocks for longer duration
in LLC. Among the clean blocks, PCM blocks get more preference over DRAM blocks,
as reading a PCM block is more latency consuming than a DRAM block if the evicted
block is re-referenced again in the upcoming memory reference. Hybrid Aware Partitioning
(HAP) [68] introduces a new performance metric called Total Miss Cost Per Kilo Instruction
(TMPKI) by taking into account the asymmetric cost involved in DRAM and PCM data
misses. It logically partitions the LLC space for DRAM and PCM, giving more share to
the PCM blocks to reduce their write backs. However, in order to minimize the TMPKI,
HAP adjusts the PCM partition periodically using two thresholds (Tlow, Thigh). If PCM
partition size is below Tlow, then performance decreases due to increase in PCM misses. In
contrast, if PCM partition size more than Thigh, performance again decreases due to rise
in DRAM misses. HAP maintains a fine balance between the DRAM and PCM partition
sizes by dynamically adjusting these two thresholds. It further reduces PCM write backs
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using its 2-chance policy that gives a second chance to the dirty victim PCM blocks to
reside in the LLC. Since maximizing hit rate may not always result in good performance in
hybrid memories, the technique calle MALRU presented by Di Chenet al., [81] uses cache
performance based on Average Memory Access Time (AMAT). It partitions the traditional
LRU chain of the cache sets in to two partitions, a reserved partition and victim partition.
It keeps the PCM blocks and DRAM blocks with good temporal locality (highly reusable)
in the reserved section, which reduces PCM write-backs and more performance is gained
due to the reusable DRAM blocks. The boundary between the victim and reserve partition
is dynamically adjusted.

The performance of the techniques based on filtering PCM writes using DRAM cache
depends on the utilization of the DRAM cache. However, it becomes difficult for the DRAM
cache to maintain high hit rate when the running applications exhibit low temporal locality,
leading to increased PCM write-backs and low performance. Also, management of DRAM
cache is an overhead in such techniques. On the other hand, the techniques that minimize
PCM write-backs by optimizing the LLC replacement policy have to sacrifice some cache
space to create auxiliary space [68, 77, 79, 81] to store the evicted dirty blocks. It leads to a
reduction in cache capacity and increased cache misses. Furthermore, some techniques [47,
68] do not use any heuristic, whereas some [80, 81] consider the current state of temporal
locality to store the dirty evicted blocks in the LLC. However, storing blocks based on such
notion may not bring fruitful outcome if the future access pattern of the blocks deviates
from the current trend.

2.4.1.2 Fine Granularity (Bit-level) Write Reduction

Bit-flips constitute the fine-granularity write operations in the NVM cells that take place
when the fresh blocks are written in NVM. Bit-flips can lead to poor NVM performance
and degraded memory lifetime. As discussed in Section 2.2.2, NVM cells face more bit-flips
when the data are stored in encrypted form to protect them against confidentiality based
attacks. The techniques that work on reducing bit-flips can be broadly divided into two
groups, Bit-flip reduction for non-secure memory and Bit-flip reduction for secure memory.
Below we highlight the key techniques for each category.

a) Bit-flip Reduction for Non-Secure Memory: Many techniques in this category
use data encoding and compression approaches to reduce bit-flips in NVMs. Encoding
techniques convert the data bits in the blocks to formats that reduce bit-flips. Compression
techniques reduce bit-flips as compressed data blocks affect fewer NVM cells upon writing.

DCW [42] and FNW [43] emerged as early encoding approaches to reduce bit-flips in
NVMs. DCW operates by omitting the redundant writes of the unaltered bits. FNW
divides the data bits into equal-sized partitions. The partition size is commonly referred to
as encoding granularity. It inverts the data bits if the number of flipped bits in a partition
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is more than half the encoding granularity. Else, the bits are written as it is. In this way,
FNW restricts the number of bit-flips to half the encoding granularity. Each partition has
a tag bit assigned to it that indicates whether the bits in that partition are written in the
inverted form (tag=1) or as it is (tag=0). FNW reduces bit-flips to a greater extent if
the encoding granularity becomes finer. However, encoding granularity can be made finer
by involving more tag bits, which increases the storage overhead. With this insight, Jie
Xu et al., developed an encoding technique called READ [44] that dynamically achieves
finer encoding granularity by assigning the tag bits to the modified words of the block
only. Therefore, it does not need to increase tag bits to encode the blocks in finer encoding
granularity. The authors also suggested another method, named SAE, which is used in
conjunction with READ to lessen bit-flips in the tag area by choosing the proper encoding
granularity, hence minimizing bit-flips throughout the PCM. Captopril [83] proposed by
Jalili et al., is based on the observation that there exists a high degree of non-uniformity
in the bit-flips experienced by the memory cells when a block is written in PCM. Using a
set of hot spot patterns, it divides the blocks into segments and pinpoints the cells that
undergo the most bit-flipping within each segment. It keeps the bits corresponding to the
hot locations of the partition in inverted form, which is indicated by assigning tag bits to
the partitions. FlipMin [48] is a technique based on coset coding [84, 85] that maintains a
set of vectors to represent each word within the cache lines. While writing a block, it selects
the most appropriate vector for each word that leads to minimum bit-flips in PCM-based
main memory. PRES [86] is another coset coding-based method that is based on the finding
that coset vectors with more randomness tend to cause fewer bit-flips. Therefore, it maps
the data bits (words) into highly random data vectors and subsequently picks up the vector
that leads to fewest bit-flips. Suzhen Wu et al., devised an approach called SimiEncode [87]
that encodes the words within the cache blocks by XORing them with a mask word, taking
use of the data similarity prevalent in the cache lines. The word that occurs most commonly
is selected as the mask word. After performing XOR operation of the words with the mask
word, the words that are similar to the mask word produce a zero word, which is written in
memory with a single tag bit to denote a zero word.

DATACON [88] proposed by Shihao Song et al., is based on the observation that during
PCM writing, the SET operation has more latency overhead, whereas the RESET operation
involves higher energy consumption. By analyzing the number of SET bits in incoming data
and SET/RESET latency-energy trade-off, it writes the data block to an all-zero or all-ones
location and stores the translation in a table maintained in the memory controller for future
access. It periodically resets unused memory to all-0/all-1 to serve write requests. In
order to expedite the address translation process, DATACON caches the frequently used
translations.

Most compression-based schemes for bit-flip reduction use FPC [89] and BDI [90] com-
pression techniques to reduce the amount of data written in NVM. FPC compresses the
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incoming blocks based on the commonly occurring patterns in the data blocks, which are
stored in a pattern table. BDI is based on the observation that the incoming cache blocks
to NVM contain many common patterns. These commonly occurring data values follow
low dynamic range i.e., they are highly similar and lie with marginal differences within the
blocks. In particular, the difference between the words present within the blocks is much
smaller in size than the individual words. Based on this, BDI compresses a block by rep-
resenting it using two common bases (the bases being the first word of the cache line and
a zero word) and the small differences between the other words over these bases. Dgien
et al., [91] proposed a compression architecture where the data blocks to be written are
compressed using an FPC-based compression engine embedded in the NVM module. A
read-modify-write protocol is used that updates only the modified bits in the NVM cells.
Baek et al., [92] offered a dual-phase compression technique that compresses the blocks
using word-level SMA compression and bit-level FPC [89] compression technique. SMA [92]
is their proposed technique that compresses blocks at word granularity by removing the
second instance of the two adjacently repeating words. In order to uncover often recurring
dynamic data patterns in the blocks, DFPC, proposed by Yuncheng Guo et al., [93] takes
advantage of the distribution of data values in the words inside the blocks. Unlike the static
patterns used by FPC, which remain consistent between applications, dynamic patterns
change from one application to another. DFPC extends the static pattern table of FPC by
including the dynamic patterns and offers scope for high degree compression. The authors
proposed an extension of DFPC in [94] to reduce latency and energy in MLC/TLC NVMs.
The extension called, Enhanced DFPC (EDFPC) encodes the compressed data blocks into
formats that correspond to lower energy/latency states in MLC/TLC NVMs. SimCom [95]
is an approximate compression technique used for bit-map data (used for Machine learning
, Computer vision) based on the pixel-level similarity in the nearby pixels. It identifies the
similar words within the blocks and compresses by representing them as base words and
runs (number of similar words).

Some techniques utilize both compression and encoding approaches on the data blocks
to minimize bit-flips. Technique [96] proposed by Dan Feng et al., first compares the sizes
of the compressed blocks generated by FPC [89] and BDI [90] and then compresses the
block using the technique that yields a smaller block size. Finally, depending on the saved
space created after compression, it opportunistically applies FlipMin [48] or FNW [43]-based
encoding on the compressed data block. FlipMin and FNW have a trade-off in terms of
encoding/decoding latency, capacity overhead, and reduction in bit-flips. FlipMin shows
better reduction in bit-flips than FNW but incurs more latency and capacity overhead than
FNW. In particular, the technique applies FNW when the saved space after compression is
low, whereas FlipMin incurring more capacity overhead is applied if saved space is more.
The meta-data related to encoding is stored in the saved space to reduce storage overhead.
FMR [97] applies FNW [43] on the FPC [89] compressed data blocks to reduce bit-flips.
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Based on the realization that FNW can not reduce bit-flip substantially if the hamming
distance between new and old data is less than half of partition size, the authors proposed
an encoding technique called Mirror-N-Write (MNW) that finds the mirror of the data bits
by reversing the order of significance (MSB bits become LSB and vice-versa) of the data
bits. It writes the mirror of the data bits if it leads to fewer bit-flips, which is indicated by
setting a bit reserved for MNW.

Many encoding techniques [43, 44, 48] discussed above incur high meta-data overhead.
These strategies have an inverse connection with storage overhead and efficiency. For exam-
ple, the ability of FNW and FlipMin to reduce bit-flips becomes high when more tag bits are
assigned. Some techniques aim to achieve high reduction in bit-flips while maintaining low
storage overhead by assigning the available tag bits to modified data [44] and compressed
data [97]. However, the efficacy of these techniques are also limited by data access patterns
and efficiency of the compression algorithms. On the other hand, the compression based
techniques [91–93] fall behind due to the shortcomings of the existing compression tech-
niques used in NVM compression. FPC and BDI, used by these techniques show a trade
off between compression ratio and coverage. FPC shows poor compressibility (high com-
pression ratio) but high coverage whereas, BDI offers high compressibility (low compression
ratio) but low coverage. Hence, designing compression algorithms that offer a fine balance
between compression ratio and coverage can turn out to be highly essential in improving
lifetime of NVMs. At the same time, proposing efficient encoding schemes incurring low
storage overhead is equally important.

b) Bit-flip Reduction for Secure Memory: Many techniques have been proposed to
reduce the excessive bit-flip surge caused by encryption, which is performed to secure the
contents of NVMs against confidentiality based attacks. We divide them into two categories
1) Techniques [39, 40, 98–100] that partially encrypt memory to reduce bit-flips and 2)
Techniques [101–103] applying compression to reduce block size.

Partial encryption-based strategies avoid encryption of clean words (within blocks) [39,
40, 99, 104] and inert blocks [98] or eliminate writes to NVM [100, 105]. i-NVMM [98] identi-
fies the working set pages (the pages that are actively accessed by the running applications).
Since the working set size is much smaller than the set of inert pages (pages that are not
currently being accessed), i-NVMM keeps the working set pages in un-encrypted form while
encrypting the inert pages using an encryption engine incorporated in the memory module.
BLE [99] divides the incoming cache lines (of size 512 bits) into four partitions of 128 bits
in size and assigns a 2-bit local counter to each partition. It performs encryption of the
modified partitions during write-backs after incrementing the corresponding counter while
keeping the data bits in the un-modified partition in their previous encrypted state. All
local counters are reset, and the entire cache line is re-encrypted when a local counter over-
flows. DEUCE [39] performs partial encryption by encrypting the words inside an incoming
cache block that get modified during an epoch interval while avoiding the encryption of the
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unmodified words. It uses two virtual counters called the leading counter (LCTR) and the
trailing counter (TCTR), derived from the main counter associated with the block. LCTR
has the same value as the main counter, whereas TCTR is derived by masking certain bits
towards the LSB side of the main counter. The LCTR gets incremented on each write,
whereas the TCTR value does not change within the epoch. Within an epoch of writes,
the collection of words modified so far are encrypted using LCTR, and the unmodified
words remain encrypted in their old values (at the start of the epoch) using the TCTR. At
the end of the epoch, LCTR becomes equal to TCTR, and all the words are re-encrypted
with the new LCTR. SECRET [40] proposed for MLC NVMs performs partial encryption
of the modified words within the incoming cache blocks using per-word local counters. It
also prevents the encryption of the zero words, which are tracked using a 1-bit zero flag
per word. When a local counter expires, all the local counters of the block are reset, the
global counter is incremented by one, and the entire cache line is re-encrypted using the
global and local counters. In MLC PCM, programming cells to certain bit patterns consume
more energy than others. For example, in 2-bit MLC, encoding cells to 00/11 states are
more energy-consuming than 01/10 states. Based on this fact, SECRET performs energy
masking on the cipher text data generated after encryption to convert them to low-energy
states. Nacre [104] proposed by Tavana et al., performs partial encryption based on the
history of data modification in different parts of the cache lines. Nacre divides the cache
lines into multiple segments and tracks modification in the segments over the write-backs
using segment counters (per segment) and a small amount of meta-data (per block). It
encrypts the blocks by XORing the modified segment bits with the OTP generated using
the corresponding segment counter. Decryption is performed by XORing the segment bits
with their corresponding OTPs, determined using the stored meta-data. Pengfei Zuo et
al., proposed a technique called DeWrite [100] that relies on the abundant duplicate data
that exists at the line level in the main memory. For each incoming cache block, DeWrite
computes a light-weight hash of the block content and looks for a match of this hash value
with an already existing block in the memory. On finding a match, it fetches the block and
compares it with the incoming data to confirm duplication. The writing of the duplicate
blocks is completely canceled, which reduces the spike in bit-flips due to encryption of all
the incoming blocks. Silent shredder [105] proposed by Awad et al., reduces writes in NVMs
caused by the data shredding operations done by the OS. During data shredding, the OS
initializes the contents of each physical memory page to zero before mapping it to a new
process, thereby eliminating the possibility of information leakage across the processes. Au-
thors experimentally verified that data shredding operations contribute a large percentage
to the overall memory writes. Silent shredder completely eliminates the shredding related
writes by making the page contents unintelligible rather than zeroing it by re-purposing
the initialization vectors used in CME. When a newly allocated page is read again, a page
of zeroes is delivered instead of reading the data from the NVMs. Based on the idea of
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applying coset coding like in [48], Longofono et al., proposed a technique called Virtual
Coset Coding (VCC) [106] that transforms data using a small set of random codewords,
called kernel codes. The encrypted data block is partitioned into segments, and segments
are evaluated against kernel codes and their inverses. The final encoded data is created by
concatenating either kernel codes or their inverse (the one that results in the fewest bit-flips)
based on bit-flips.

Some techniques like [101–103] use compression to reduce bit-flips. CryptoComp [101]
compresses the data blocks before encryption and applies selective encryption based on the
size of the compressed blocks. It applies complete encryption to highly compressed data
blocks while encrypting only selected bytes of poorly compressed data blocks depending on
the compressed block size. In order to decrease bit-flips in MLC NVMs, CASTLE [102]
combines compression and Incomplete Data Mapping (IDM) [107] based encoding. Com-
pression minimizes the effective size of the data that needs to be written, whereas IDM
encrypts the cell bits in the states, which results in lesser energy consumption. MORE2

[103] applies compression and encoding with partial encryption to reduce bit-flips in en-
crypted PCM. It avoids full-line encryption by encrypting only the modified words of the
cache lines. The authors further proposed an encoding scheme called Morphable Selective
Encoding (MSE) that compresses the dirty words using FPC [89] while preserving the clean
words. In the process of compression, it maintains the data layout of the clean and dirty
words.

The techniques discussed above suffer from shortcomings like occasional block re-encryption,
high tag storage, overhead related to finding inert/duplicate pages, and poor compressibility
of the existing compression schemes. The partial encryption techniques [40, 99, 104] employ
per word/segment local counters, which increases meta-data overhead. Furthermore, these
techniques need to perform occasional re-encryption of the entire memory line if the local
counter corresponding to a word/segment (within the line) overflows. DEUCE [39] also
needs occasional re-encryption of the cache line when the epoch interval expires. i-NVMM
can not perform well for applications with large working set sizes. In contrast, DeWrite’s
efficiency reduces when the accuracy of predicting a duplicate block becomes low under
diverse workload execution scenarios. Compression-assisted techniques [101–103] fall short
due to the poor compression ratio of the underlying FPC algorithm used in these techniques.

2.4.2 Wear Leveling Techniques

Wear leveling techniques distribute the writes evenly across the memory space to even
out the write pressure. It reduces the chances of forming write hot spots within memory
and helps in improving memory lifetime. Based on the granularity of wear leveling, these
techniques can be classified as 1)Inter-line wear leveling and 2)Intra-line wear leveling.
Inter-line wear leveling techniques uniformly balance the writes across different physical
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Wear Leveling Techniques 

Inter-line Wear Leveling Intra-line Wear Leveling Reduce Counter Overflow
with Wear Leveling

Figure 2.11: Category Division for the Wear Leveling Techniques in NVM

memory lines, whereas Intra-line wear leveling techniques evenly distribute the bit-flips
within the memory lines. Some techniques also deal with reducing encryption overhead in
conjunction with wear leveling policies. Figure 2.11 shows the divisions of the techniques
related to wear leveling. We discuss techniques related to all these categories below.

2.4.2.1 Inter-line Wear Leveling

Segment Swapping [41] divides the memory into segments and periodically swaps the fre-
quently written (hot) segments with the less written (cold) segments. In order to count
the number of writes happened to the segments, each segment is assigned with a counter.
Segment size and swapping interval are two important parameters that need careful ad-
justments. Small segment size increases counter overhead and require time in sorting the
segments according to hotness. In contrast, the large counter size increases write overhead
during swapping operations. Also, swapping interval must be set properly as frequent swap-
ping imposes high swapping overhead where as infrequent swapping can lead to damage
of memory cells due to uneven writing. Start-Gap [108] wear leveling approach proposed
by Qureshiet al., periodically shifts each memory line to its neighboring memory line with
the help of a dummy line, called Gap line that contains no useful data. Moreover, it keeps
two registers Start and Gap that point to the first memory line and gap line respectively
and help in the translation of logical address to the physical address of the memory lines.
Gap pointer pointing to the gap line moves to the neighboring memory lines after a cer-
tain number of writes to the memory bank. Start pointer is incremented when the Gap
pointer makes a complete tour of all the memory lines in the memory bank. Due to the
slow movement of Gap pointer, some malicious attacker can damage certain lines by issuing
enough writes within the shifting period. Hence, authors move on to propose Region based
Start-Gap (RBSG) that divides the memory into regions, each operating independently us-
ing their own Start and Gap pointers. RBSG dynamically adjust wear leveling speed based
on frequency of writing. In particular, it increases the wear leveling rate for the regions that
face heavy writes. In order to prevent the attackers from tracing out useful information
about physical locations of the memory lines during wear leveling, Seong et al., proposed a
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dynamic mapping scheme [109]. It adds a new level of in-direction by mapping the logical
memory address, called Memory Address (MA) (obtained from memory controller) to physi-
cal locations of the memory blocks called Remapped Memory Address (RMA). The mapping
scheme XORes the MA with a dynamically generated key Ki. A dedicated circuit called
Security Refresh Controller (SRC) is incorporated at the memory bank level to perform the
mapping at the bank granularity. Self Adaptive Wear Leveling (SAWL) proposed by Huang
et al., [110] dynamically adjusts the wear leveling granularity based on the workload access
patterns. It stores the address mappings in the main memory while caching a few impor-
tant mappings in a SRAM-based on-chip cache managed by the memory controller. When
the hit rate in the cache becomes fairly low, SAWL merges two/three adjacent memory
regions using its region-merge operations. On the other hand, if the hit rate in the cache is
high and the hits become severely unbalanced within the regions, it splits the regions using
region-split operations.

2.4.2.2 Intra-line Wear Leveling

Techniques [41, 111] perform byte level rotation to balance the non-uniformity that exists in
the cells within the memory lines. Row shifting technique presented in [41] rotates memory
rows (consisting of many lines) one byte at a time periodically, whereas BLESS presented in
[111] shifts the line content byte wise per each write when the line do not contain any errors.
When a line faces stuck-at-fault errors, the byte shifting policy is used for error correction
than wear leveling. Young et al., [39] proposed Horizontal Wear Leveling (HWL) that
operates in conjunction with the inter line Start-Gap wear leveling techniques (discussed
above). The bits inside the memory lines are rotated periodically by a rotation amount,
which is decided using the Start and Gap pointers. The formula for rotation amount is
given by RotationAmount = Start′ % Bits in line, where Start′ equals to (Start + 1) if
the Gap has already crossed the line, otherwise Start′ equals to Start. Palangappa et al.,
[97] proposed an intra-word wear leveling technique called Rotate and Write (RNW) on the
compressed data bits produced by FPC. RNW reduces peak bit-flips within the words of the
compressed lines. WAFA [112] divides the memory pages into multiple memory units. It
allocates the memory units of each page in a rotational manner which distributes the wear
uniformly within the pages. Schechter et al., proposed an intra-line wear leveling technique
[73] that rotates the data cells within the memory line by random value at random interval
of time. Rotation offset is kept in an extra field using extra memory cells. It also keeps
one extra cell per memory line that rotates along with the data cells and is used to cover a
single stuck-at-fault error.
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2.4.2.3 Reducing Counter Overflow in Conjunction with Wear Leveling:

As discussed in Section 2.2.2, counter overflow in CME leads to whole memory re-encryption
using a new key, which leads to enormous spike in bit-flips. It also hampers system perfor-
mance as the normal memory operations are stalled during the entire re-encryption process.
Techniques [113, 114] focus on reducing the chances of counter overflow to improve NVM
lifetime and performance. Advanced Counter Mode Encryption (ACME) [113] utilizes the
disparity in write-backs issued to different memory addresses, where some addresses face
more writes compared to the other addresses. As a result, the counter corresponding to the
frequently written addresses reach saturation, while other counters remain underutilized.
ACME dynamically re-assigns the underutilized counters to the frequently written cache
lines when the line is translated from one physical location to another during wear leveling.
It leads to uniform growth of all the counters and reduces the chance of counter overflow.
COVERT [114] dynamically performs counter re-sizing by using the error correction point-
ers (ECP) of the memory lines. An ECP contains pointer to a failed memory cell and its
correct value. However, as the available ECPs of the frequently written lines get exhausted
quickly, dynamic re-sizing is performed in conjunction with the start-gap wear leveling that
maps a cache line to multiple memory locations. As a result, size of the fast growing coun-
ters can be increased by using the ECPs belonging to newly relocated memory lines, which
reduces their chance of overflow. Huang et al., proposed a technique, called RCR (Reset-
ting Counter via Remapping) [115] that resets the counter associated with a line that gets
remapped to a different location due to wear leveling. They maintain a region counter to
avoid OTP reuse and used start-gap wear leveling. The region counter records the number
of complete remapping rounds happened within the region as well as number of remapping
to each line. The region counter is concatenated with the line counter to generate OTP
during line encryption.

Wear leveling algorithms only redistribute the writes without actually reducing them
like the Write reduction techniques discussed in Section 2.4.1. Therefore, they can delay
the failure of memory cells without avoiding them eventually if heavy writes continue to
happen. Furthermore, Table based wear leveling techniques [41, 110] incur the storage
overhead of the tables containing logical to physical address mappings. In contrast, algebraic
wear leveling [39, 108] use formula to determine the mapping to reduce storage overhead.
However, these techniques lack effectiveness since they depend on pointer data structures to
decide which line to be moved, rather than simply moving the most write intensive line. For
example, Start-Gap algorithm always moves the line adjacent to the Gap line after certain
writes. Hence, write intensive lines may continue to face more writes and tend to wear out
quickly. On the other hand, for the intra-line techniques the rotation amount is usually
very small. For example, BLESS [111] shifts only at byte granularity and HWL [39] defines
rotation based on Start pointer that changes very slowly based on the Gap pointer. It is
because the Start pointer gets incremented only when the Gap pointer has moved by all the
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lines in the memory bank, which can be quite large. Hence, rotation by small strides can
lead to uneven distribution to persist even after wear leveling and degrade memory lifetime.

2.5 Summary

In light of the ever-widening gap between processing capability and memory capacity, as well
as the proliferation of the modern data-intensive applications, main memory footprint has
grown at an unprecedented rate over the years, leading to high dynamic energy consumption.
It necessitates re-designing main memory system with newer technology, as the conventional
DRAM-based memories are not scalable enough to provide the required capacity and energy
efficiency. At this juncture, the emerging non-volatile memories like PCM, STT-RAM and
ReRAM appear as a viable alternative to DRAM due to their fascinating features like high
density and low leakage power consumption. However, drawbacks like high write latency
as well energy and low write endurance hinder their chances of adoption as the mainstream
main memory standard.

In this Chapter, we have given details regarding the working principle of different mem-
ory technology including DRAM and NVMs, and the challenges associated with using such
memory technologies. This thesis focuses on improving the endurance of NVMs by propos-
ing write reduction and write distribution policies. Our contributions also provide strategies
to secure NVM data against data confidentiality-based attacks using encryption and miti-
gate the harmful impact of encryption-induced bit-flips. We have discussed the important
evaluation metrics used throughout the thesis to measure the effectiveness of our tech-
niques. Finally, we give an extensive literature survey of various techniques used to improve
endurance of NVMs.
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Write Reduction Using Selective Victim

Caching

In this chapter, we introduce two new techniques that reduce write-backs to the PCM com-
ponent of a DRAM-PCM based hybrid main memory using selective victim caching and
reuse distance. For our techniques, we associate a small victim cache with the Last Level
Cache that helps in retaining the critical DRAM and PCM blocks on chip. Victim cache be-
ing a scarce resource, we intend to keep only performance-critical blocks in the victim cache
by exploiting the idea of reuse distance. The first technique, Victim Cache Replacement
Policy (VCRP), works on the replacement policy of the victim cache by preferential eviction
of DRAM blocks over PCM blocks. In contrast, the second technique, Prioritized Partition-
ing of Victim Cache, logically partitions the Victim Cache (PPVC), giving a smaller share
to the DRAM blocks and a relatively larger share to the PCM blocks. Experimental eval-
uation on full-system simulator shows improvement in system performance and reduction
in the number of write-backs to the PCM partition of the main memory compared to the
baseline and existing techniques. Additionally, PCM reads and DRAM miss rate are also
improved, leading to further performance enhancement.

3.1 Introduction

As discussed earlier, hybrid memories built using traditional DRAM and emerging NVMs
exploit the benefits of both memory devices, where DRAM provides fast response due to
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its low read/write latency, whereas NVM provides high capacity and low leakage power
consumption. However, the performance and durability of the hybrid memories are bottle
necked by the existing cache management policies like Least Recently Use (LRU) that
are oblivious of the underlying read/write disparity of the DRAM and NVM component
of hybrid memories. The traditional cache management techniques can not bring similar
performance improvements for hybrid memories mainly due to two reasons: 1) Firstly,
evicting a dirty NVM block from the LLC is much costlier than evicting a DRAM block
because write latency of NVM is much higher than that of DRAM, 2) Also, the cost in
loading a NVM block in LLC from the main memory is costlier than loading a DRAM
block since read latency of NVM is higher than DRAM. In order to show the impact of the
LRU technique in system performance, an experiment was conducted for a SRAM based
LLC in a quad-core environment using LRU replacement policy. Figure 3.1 shows the
normalized energy of DRAM-only, hybrid memory (DRAM+PCM), and PCM-only main
memory using LRU replacement policy in the LLC. On the other hand, Figure 3.2 shows
normalized Instructions Per Cycles ( IPC ) for DRAM-only, DRAM+PCM hybrid (It is
termed as BL1 in experimental evaluation section) and PCM-only main memory system for
different PARSEC [116] benchmarks. It is evident from the figures that PCM-only memory
performs best and DRAM-only memory performs worst in terms of energy consumption,
while the scenario gets completely reversed in case of system performance, in that DRAM
being the clear winner. Therefore, we can draw conclusive evidence from the figures that
the hybrid memories (DRAM-PCM) cater to the improvements of both system performance
and energy consumption in the best possible manner, which otherwise do not go hand in
hand. However, traditional LLC management policies like LRU that lack awareness of the
underlying disparity in the read-write latency of DRAM and NVMs cannot fully utilize
the benefits of the hybrid main memories. Therefore, designing hybrid memory aware LLC
management policies that mold in accordance with the requirements of the underlying hybrid
main memory has become imperative. It will not only improve performance but also reduce
energy consumption in the hybrid memory system.

This chapter proposes two techniques based on the use of a small fully-associative victim
cache (VC) placed between the LLC and the DRAM-PCM based hybrid main memory. The
main purpose is to reduce write-backs to the PCM section of the main memory without
deteriorating the system performance. Also, our techniques work on reducing the PCM
reads from main memory, which is also an expensive operation in PCM. Unlike many other
existing techniques [47, 68] that sacrifice DRAM miss rate in order to improve the PCM
miss rate in the LLC, our techniques not only improve PCM miss rate but also take care of
DRAM miss rate by keeping critical DRAM blocks apart from critical PCM blocks in the
victim cache. It helps in improving the overall hit rate of the system and promotes further
system performance.

Both the techniques exploit the idea of reuse distance in order to identify blocks having
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Figure 3.1: Normalized Energy for DRAM-only, DRAM-PCM Hybrid and PCM-only Memory
System (Lower is better)

Figure 3.2: Variation of IPC for PCM-only, DRAM-PCM Hybrid and DRAM-only Memory
System (More is better)

a history of short reuse distance usage during their residency in the LLC. Since short reuse
distance is an indicator of high temporal locality, therefore those blocks are treated as
candidates for keeping in the VC. Note that our proposed techniques are based on Frequency
of Short Reuse Distance Usage rather than simply calculating short reuse distance to decide
the criticality of the evicted blocks. Frequency of short reuse distance usage essentially gives
how many times a block was accessed with short reuse distance during its LLC residency.
Higher frequency of an evicted block indicates that the block was accessed rigorously within
short intervals of time during its LLC residency. Therefore, higher frequency could be taken
as a strong precursor that the evicted block has a very high chance of being accessed again
in the upcoming memory references. We treat such blocks as critical blocks and consider to
store them in the VC. On the other hand, the existing techniques [117–120] tend to keep
the blocks having a current short reuse distance (with even less frequency of reuse distance
usage) for a longer period in the LLC itself. However, it could be misleading to treat such
blocks as critical, since a block showing short reuse distance temporarily does provide very
little guarantee that it would follow the same trend in the near future. Therefore, our
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techniques are more at par with the temporal locality of the blocks on which the mechanism
of caches is based.

Depending on the type of blocks to be placed (clean blocks vs dirty blocks) in VC,
each technique is explained with two variants. Most of the noteworthy works [121–123]
using selective victim caching put critical evicted blocks with high reusability in the victim
cache in order to reduce the conflict misses, particularly in the L1 Caches. Note that, these
techniques were proposed for traditional cache (SRAM-based) and main memory (DRAM-
based) systems. On the otherhand, we associate victim cache with the LLC to serve a dual
purpose. Firstly, storing of critical blocks evicted from LLC reduces the miss rate due to
additional hits gained in the VC, thus improving system performance. Secondly, increase
in the hit rate due to VC helps in reducing costly PCM write-backs to the hybrid main
memories that is highly crucial in DRAM-PCM hybrid main memory premises. Also, none
of these have worked on the victim cache replacement policy and data placement in the
victim cache. With a clear contrast with these existing techniques, our policies also work on
the replacement as well as the block placement policy of the victim cache that further helps
in retaining critical PCM blocks whose evictions are detrimental from the performance and
lifetime perspective due to their lazy and energy-intensive write-backs. Note that, the PCM
blocks are kept in the VC with more priority compared to the DRAM blocks since the reads
and mainly write-backs associated with those blocks are costlier. However, both techniques
offer some space to the critical DRAM blocks in the VC so that the system performance
does not go down abruptly due to the frequent eviction of these blocks.

3.2 Chapter Overview

3.2.1 Contributions of the Chapter

The main contributions of this chapter are summarized as follows:

• Two techniques based on victim cache are proposed in order to reduce the write-backs
of the PCM blocks. Both techniques use the idea of reuse distance to keep critical
blocks in the Victim cache.

• The first technique: Victim Cache Replacement Policy (VCRP) works on the re-
placement policy of the Victim Cache to retain PCM blocks.

• The second technique: Prioritized Partitioning of Victim Cache (PPVC) partitions
the VC into two parts, each part dedicated to DRAM and PCM blocks respectively.

• The proposed techniques are evaluated in GEM5 [124] full system simulator integrated
with NVMain [125]. The techniques are compared against two baselines (BL1 and
BL2) and two existing techniques: WBAR [47] and VAIL [46].
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(a) Reuse Distance (with unique accesses)
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(b) Reuse Distance (With non-unique ac-
cesses)

Figure 3.3: Reuse Distance

3.2.2 Chapter Organization

The rest of the chapter is organized as follows. Background is presented in Section 3.3.
Proposed Methodology is discussed in Section 3.4. Section 3.5 illustrates the experimental
evaluation, followed by summary in Section 3.6.

3.3 Background

3.3.1 Reuse Distance

Reuse distance [126] of a cache block is the number of distinct accesses that takes place
between two consecutive accesses to the block during its residency in the cache. As shown
in Figure 3.3, the reuse distance of cache block b1 in Figure 3.3a is 3 as there are three
unique accesses (b2, b3, b4) between two consecutive accesses to b1. However, in Figure
3.3b, the reuse distance of block b1 is 2 since the number of unique accesses is 2 (b2 and
b3, and b2 is accessed twice). If the cache blocks in a set of a set-associative cache are
sorted from MRU to LRU position, the position of a block in the LRU stack denotes its
reuse distance. This is because the position of a block in the LRU stack gives the number
of unique accesses that has happened to other blocks in the set since the last access to the
block. A block accessed with short reuse distance means it is accessed more frequently.
A block is said to have a short reuse distance if its reuse distance is less than half of the
associativity 1 of the cache. The frequency of short reuse distance usage is defined as the
number of times a block is accessed with short reuse distance during its residency in the
cache. Therefore, the frequency of short reuse distance usage can be linked to the locality
of blocks in the cache. Higher frequency means that the block is accessed with short reuse

1We perform a sensitivity analysis to decide the threshold of short reuse distance as half of the cache
associativity (explained in detail in Section 3.5.2.2).
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distance more number of times. It essentially indicates high temporal locality of the block.
Therefore, the blocks having high frequency of short reuse distance usage are treated as the
critical blocks since they have a higher probability of being referred again.

Determining reuse distance (short vs. long reuse distance) to predict future memory
access behavior has been in practice for the last few years. [118] proposes a prediction
based reuse distance calculation method where they relate a cache line to the load/store
instruction accessing the cache line and make prediction according to the previous behavior
of the instruction. Reuse Cache [119] by Albericio et al., proposed a decoupled tag/data
shared LLC where only data that has shown reuse are kept in the data array. On inserting
a cache block for the first time, only the tag array is filled up, while a hit for the block in
the tag array indicates more reuse of the block. In that case, the data part of the block is
fetched from the main memory and is loaded in the data array.

However, the proposal in this chapter determines reuse distance based on LRU stack, and
we rely on the frequency of short reuse distance usage rather than only short reuse distance
of a block to declare it as critical. Secondly, the previous works adjust the replacement
policy to keep the blocks having short reuse distance for longer duration in the LLC. On
the other hand, our policies keep the evicted blocks (from LLC) with a higher frequency of
short reuse distance usage (more critical blocks) in the victim cache to increase the hit rate
in the VC that helps in improving the system performance. Additionally, storing critical
DRAM and PCM blocks in the victim cache reduces costly PCM reads and PCM write-
backs while maintaining a fair DRAM miss rate. In a nutshell, our reuse frequency based
mechanism turns out to be a great weapon for improving performance as well as lifetime in
a DRAM-PCM based hybrid main memory framework.

3.3.2 Victim Cache

Victim Cache initially proposed by Jouppi et al. [127], is a fully associative cache structure
that is associated with a cache. Note that, victim cache can be associated with any level
of cache. It enhances the system performance by retaining the victim blocks evicted from
the associated cache. When a request from upper level cache (ULC) arrives, victim cache
is searched in parallel to the LLC it is associated with. In case, the block is found in the
victim cache, it is brought to the LLC replacing an invalid entry. If there is no invalid entry
available in the LLC, it is swapped with the LRU block of the LLC.

In this Chapter, Victim Cache is used in the LLC (L2 cache) as a buffer in order to
store the critical DRAM and PCM blocks, to give them a second chance before evicting
completely from the cache hierarchy. Storing PCM blocks will reduce costlier PCM write-
backs to the main memory, whereas storing critical DRAM blocks will help to enhance the
system performance. Note that, the state-of-the-art [127] victim cache stores all victims
evicted from the LLC, whereas the proposal in this chapter only stores the critical blocks
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evicted from LLC in the victim cache.

3.4 Proposed Methodology

3.4.1 Architecture
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Tag State DB NB FC

DB : Data block, NB : NVM bit, FC : Reuse Frequency Counter

Figure 3.4: Architecture of LLC associated with VC

Figure 3.4 shows the representational view of our victim cache-based architecture along
with the position of the VC in the memory hierarchy. Unlike many other existing archi-
tectures, we associate VC with the SRAM based LLC. We take VC to be a small, fully
associative cache structure that sits between LLC bank and the main memory in the mem-
ory hierarchy. The search in the VC is done in parallel with the search in the LLC bank.
Therefore, VC search does not lie on the critical path of the overall memory search. VC
acts as a support for the evicted victim blocks from LLC bank and keeps them in order to
give them a second chance before evicting completely from the cache hierarchy. The data
array of LLC bank consists of the cache blocks along with a)1-bit (NVM-bit, shown as NB
in Figure 3.4 to identify whether the block is a DRAM block or a PCM block. b) a 2-bit
saturating counter (Shown as FC in Figure 3.4) to count the number of times the cache
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block is accessed with short reuse distance during its residency in the LLC bank. When
a block is loaded into LLC bank from the main memory, the NVM-bit is set according to
the type of the block. If the block is fetched from the DRAM portion of the main memory,
NVM-bit is set to 0; otherwise, for blocks belonging to the PCM portion, it is set to 1. Also,
the frequency counter is initially set to 0. The frequency counter is incremented if a block
gets a hit in the LLC bank, and it has a short reuse distance1. Cache blocks with higher
values of frequency counter are the blocks having a history of short reuse distance usage
during their LLC residency. Therefore, these blocks are supposed to have high temporal
locality and are qualified as potential candidates to be stored in the VC.

VC being a scarce resource owing to its limited capacity, we intend to put only critical
blocks in the VC. The criticality of a cache block is defined from two perspectives:

(1) Blocks having short reuse distance usage in the recent past are the ones having high
temporal locality.

(2) The status (clean Vs dirty) of an evicted block also indicates its vitality to a large
extent. Dirty blocks are preferred over clean blocks to store in VC as they cause write-backs
to the main memory upon eviction. However, some clean blocks may also have enough
temporal locality that might improve the hit rate in a significant manner.

Keeping a strict eye on these two points, we propose two techniques in order to reduce
PCM write-backs and improve performance by maximizing hits. Furthermore, to study the
behaviour upon placing clean or dirty blocks in the VC, each technique is illustrated under
two variants.

3.4.2 Victim Cache Replacement Policy (VCRP)

VCRP works on the replacement policy of VC with an aim to increase the residency of
the PCM blocks in VC. Algorithm-1 gives the detailed procedure of what happens when a
request R for block b comes to from Upper Level Cache (ULC, L1 cache in our architecture)
to LLC bank. The various operations of VCRP are described below:

(1) Hit in LLC: When a request (R) comes for a block (b) to LLC from ULC and hits,
its reuse distance is calculated. If it has short reuse distance, its corresponding frequency
counter is incremented (line 11). Finally, a copy of the block is returned to the requester
ULC (line 12).

(2) Miss in LLC: When a request (R) comes for a block (b) and misses in LLC, the block
is searched in VC parallelly. Depending on the availability of the requested block in VC,
two cases may arise:

•Hit in VC: When the block is found in VC, it is brought to LLC by a) replacing an invalid
cache block (line 15). b) If there is no invalid block present in LLC, the LRU block of that

1We take the reuse distance of a block to be short if it is less than half of the associativity of the LLC
bank.
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Algorithm 1: VCRP [Variant VCRP allD]

1 b: Generic cache block
2 FC: Reuse Frequency Counter
3 NB: NVM bit
4 bLRU LLC : LRU block in LLC
5 bLRU V C : LRU block in VC
6 b(LRU−1) V C : LRU-1 block in VC
7 i: Invalid cache entry
8 repeat
9 for For every request R for block b do

10 if R hits in block b and bεLLC then
11 if Reusedist(b) < assoc/2 then b.FC + +
12 return b to ULC

13 else
14 if R hits in block b and b ε V C then
15 if ∃i ε LLC then Move b to i
16 else
17 call EvictFromLLC()
18 Put b in the evicted location

19 else
20 Fetch data (mem data) from main memory
21 if mem data.type == DRAM then mem data.NB = 0
22 else mem data.NB = 1
23 if∃i ε LLC then Put mem data in i
24 else
25 call EvictFromLLC()
26 Put mem data in the evicted location

27 until End of execution
28 Function EvictFromLLC()
29 ifbLRU LLC .FC > th2 & isDirty(bLRU LLC) then
30 call EntryToV C(bLRU LLC)
31 else Evict the block bLRU LLC from LLC

32 Function EntryToVC(b′)
33 if∃i ε V C then Put b′ in place of i
34 else
35 call V CReplacement()
36 Place b′ in the evicted location

37 Function VCReplacement()
38 ifbLRU V C .type == DRAM then Evict bLRU V C from VC
39 else
40 ifb(LRU−1) V C.type==DRAM then Evict b(LRU−1) V C from VC
41 else Evict bLRU V C from VC 52
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set is evicted and the block found in VC is placed in the evicted location (lines 17, 18).

•Miss in VC: Miss in VC triggers a fetch of the requested block from the main memory
to the LLC (line 20). The NVM bit is set for the fetched block depending on its type (set
0 for DRAM blocks and 1 for PCM blocks) (lines 21, 22). If the LLC contains an invalid
entry, the fetched block is placed there (line 23). If there is no invalid block in the LLC,
the LRU block of that set is evicted (line 25) and the fetched block is placed in the evicted
location (line 26).

For the evicted block from LLC, depending on the reuse frequency counter value and
status (clean or dirty) of the block, the block may or may not be stored in the VC, as
discussed below:

a. VC insertion Policy: If the reuse frequency counter of the evicted block is more
than threshold th21 (indicates the block’s high temporal locality), it is considered to be
a candidate for placing in VC. Depending on the status (clean or dirty) of the evicted
block, we give two variants of VCRP: VCRP allD and VCRP allD NC respectively. For
VCRP allD, if the frequency counter of an evicted block is more than th2 and the block is
dirty, it is placed in the VC (lines 29, 30). On the other hand, for VCRP allD NC, if the
frequency counter value is more than th2 and the block is dirty or is a PCM clean block, it
is placed in VC.

b. VC replacement policy: Generally, the evicted dirty LRU block is placed in the
first invalid entry found in the VC (line 33). In the absence of an invalid entry, another
block from the VC needs to be evicted. The block to be evicted must ideally be a DRAM
block as more priority is given to keep PCM blocks on the chip. For this, we search the last
two positions of the LRU stack of VC. If a DRAM block is found, we evict it, else we evict
the LRU block (lines 38-41).

Working example of VCRP: Figure 3.5 shows a working example of VCRP. The LLC
is taken as 8-way set associative whereas VC is a 32-way fully associative structure that sits
between LLC and the hybrid main memory. The example shows the working of VCRP allD
variant of VCRP. However, the working of VCRP allD NC is same as VCRP allD except
it allows the entry of clean, critical PCM blocks into the VC apart from dirty DRAM and
PCM blocks. The main operations of VCRP allD are illustrated under three major events:

•Hit in LLC: A request for the block B comes from ULC and hits in the LLC. The reuse

distance of B/3 is 2 since it occupies the third position in the LRU stack (sorted from MRU

to LRU). Since, the reuse distance is lesser than the half of the associativity of the LLC

(assoc/2=4), the frequency counter value of B/3 is incremented by one (becomes 3+1=4).

Finally, a copy of the block B/4 is returned to the ULC. The new configuration of the LLC

1We did extensive empirical analysis (refer to 3.5.2.3) for different values of th2 and found that th2 = 2
is the optimal value to decide the criticality of a block for 2-bit Reuse Frequency counter.
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Figure 3.5: A Working Example of the Proposed Methodology: VCRP

is shown in the figure where B/4 occupies the MRU position.

•Miss in LLC, Hit in VC: A request for block X misses in LLC but hits in VC. Depending
on the availability of an invalid entry in LLC, two cases may arise. (i) If there is an invalid

entry in LLC (shown in the second row of the Figure 3.5), the block X/3 is brought from

the VC to this invalid entry. A copy of the block X/3 is returned to the requestor ULC.

The configuration of the LLC and VC is shown in the Figure 3.5 after the operation where

the block X/3 occupies the MRU position in the LRU stack. (ii) If there is no invalid entry

available in the LLC, the block X/3 is brought to LLC by evicting LRU block 1/5 of LLC.

1/5 enters VC upon eviction from LLC as it is dirty and has reuse frequency (=5) more

than th2 (= 2). The blocks X/3 and 1/5 occupy the MRU positions in the LLC and VC

respectively and is cleary shown in the third row of the Figure 3.5.

•Miss in LLC, Miss in VC: When the request for a block is missed in both LLC and VC,
it triggers a fetch from the main memory. The fourth row of the Figure 3.5 depicts such a

situation where the block M/0 is fetched from the main memory. We take a scenario where

no invalid entry is available in both LLC and VC. Therefore, the LRU block B/3 must

be evicted from the LLC in order to make room for the incoming block M/0 . Since, the

reuse frequency counter value (=3) of B/3 is more than the threshold th2 (=2) and it is a

dirty block, we consider to store this block in the VC. However, since VC does not have any
invalid entry available, we must evict a block from the VC in order to make room for the
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block B/3 in the VC. VCRP searches two LRU positions in order to preferably victimize a

DRAM block rather than a PCM block. Therefore, the DRAM block 7/4 occupying LRU-1
position in the VC is evicted and written back to the main memory since it is dirty.

3.4.3 Prioritized Partitioning of Victim Cache (PPVC)

The policy VCRP controls the number of PCM and DRAM blocks in the VC based on their
reuse distance by concentrating on the replacement policy of VC. Another way to retain
a small number of critical DRAM blocks along with a considerably more number of PCM
blocks is to partition the VC logically. Here, a small partition is given to the DRAM blocks,
and a larger share is dedicated to the PCM blocks. The optimum DRAM: PCM ratio for a
better balancing of DRAM and PCM blocks in the VC is experimentally determined and is
discussed in the comparative analysis Section 3.5.4.5.

Utility Cache Partitioning (UCP) [128] is one of the key works in cache partitioning.
UCP was proposed to partition the shared LLC way-wise among the competing concurrently
running applications in different cores in a multi-core environment. The technique offers
more cache space to the applications that can reduce their miss rate considerably (non-
thrashing applications) by expanding their share of space. However, partitioning of Victim
Cache in PPVC has a clear difference with UCP in the sense that it is used in the DRAM-
PCM hybrid memory context to provide isolated space in the VC to the critical DRAM and
PCM blocks evicted from the LLC bank.

Algorithm-2 gives the procedure of what happens when a request R for a block b comes
from ULC to LLC. The various operations of PPVC are discussed below:

1) Hit in LLC: It is same as VCRP and is shown in the lines 12-14 in Algorithm 2.

2) Miss in LLC: If the requested block b is not found in LLC, it is searched in VC. It
can result into two cases depending on the availability of the block in VC:

•Hit in VC: When the block is present in VC, it is brought to LLC and finally, a copy
of it is returned to the requester ULC. Generally, the block is brought to an invalid entry
in the LLC (line 17). But, in the absence of such an invalid entry in LLC, the LRU block
from LLC is evicted (line 19) and the block found in VC is put in the evicted location in
LLC (line 20).

•Miss in VC: Miss in VC triggers a fetch from the main memory (line 22). The NVM-
bit of the fetched block is set according to its type (0 for DRAM, 1 for PCM) (lines 23, 24).
If LLC contains an invalid entry, the fetched block is placed there (line 25). Otherwise, the
LRU block of that set is evicted (line 27) and the block fetched from the main memory is
kept in the evicted location in LLC (line 28).

For the evicted blocks from LLC, depending on the reuse frequency and type of the
block, it may or may not be stored in the VC.

a. VC Insertion Policy: If the frequency counter of the LRU block is more than the
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Algorithm 2: PPVC [Variant PPVC allD]

1 b: Generic Cache block
2 FC: Reuse Frequency Counter
3 NB: NVM bit
4 bLRU LLC : LRU block in LLC
5 bLRU DRAM : LRU block in DRAM partition in VC
6 bLRU PCM : LRU block in PCM partition in VC
7 V CDRAM : VC Partition for DRAM blocks
8 V CPCM : VC Partition for PCM blocks
9 i: Invalid cache entry

10 repeat
11 for Each request R for block b do
12 if R hits in block b and bεLLC then
13 if Reusedist(b) < assoc/2 then b.FC + +
14 return b to ULC

15 else
16 if R hits in block b and bεV C then
17 if ∃i ε LLC then Move b to i
18 else
19 call EvictFromLLC()
20 Put b in the evicted location

21 else
22 Fetch data (mem data) from main memory
23 if mem data.type == DRAM then mem data.NB = 0
24 else mem data.NB = 1
25 if ∃i ε LLC then Put mem data in i
26 else
27 call EvictFromLLC()
28 Put mem data in the evicted location

29 until End of execution
30 Function EvictFromLLC()
31 if bLRU LLC .FC > th2 & isDirty(bLRU LLC)
32 then call EntryToV C(bLRU LLC)
33 else Evict the block from LLC

34 Function EntryToVC(b′)
35 if b′.NB == 0 then
36 if∃i ε V CDRAM then Put b′ in i
37 else Evict bLRU DRAM and place b′ in evicted location

38 else
39 if∃i ε V CPCM then Put b′ in i
40 else Evict bLRU PCM and place b′ in evicted location
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threshold th2 (line 31), we consider the block to have high temporal locality. Depending on
the status of the block (Clean or Dirty) during its LLC residency, we give two variants of
PPVC: PPVC allD and PPVC allD NC which are illustrated below:

PPVC allD: If a block has high temporal locality (reuse frequency more than th2) and it
is dirty, it is placed in the VC. If the block is a DRAM block, it is placed in the partition
reserved for the DRAM blocks in the VC. Otherwise, it is placed in the partition reserved
for the PCM blocks.

PPVC allD NC: It is same as PPVC allD except that we allow the entry of PCM clean
blocks into VC additionally.

Generally, the evicted block from LLC is stored in an invalid entry in the respective
partition in the VC (line 36 for DRAM, line 39 for PCM blocks). However, if the respective
partition does not contain any invalid block, a block needs to be evicted from the VC to
make room for the incoming block. Here is where the VC replacement policy comes into
the picture.

b. VC Replacement Policy: If the incoming block is a DRAM block, we evict the
LRU block from the partition reserved for DRAM (line 37). On the other hand, if the
incoming block is a PCM block, the LRU block from the partition reserved for the PCM
blocks is evicted (line 40).
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Figure 3.6: A Working Example of the Proposed Methodology : PPVC

Working example of PPVC: Figure 3.6 shows a working example of the PPVC allD

variant of the proposed policy PPVC. The working of PPVC allD NC is same as PPVC allD

except it allows the entry of clean PCM blocks apart from the dirty DRAM and PCM blocks
in the VC. The associativity of the LLC is 8-way set associative whereas VC is a 32-way
fully associative structure. VC is partitioned way-wise in order to keep DRAM and PCM
blocks separately. The smaller partition consisting of the first 8 ways are reserved for storing
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the DRAM blocks and the next 24 ways are reserved for storing the PCM blocks evicted
from the LLC. The operations are illustrated below under three main events:

•Hit in LLC: A request for the block 5 comes to the LLC from the ULC and hits in
the LLC( shown in the first row of the Figure 3.6). Since the reuse distance of the block
5/4 (=1) is lesser than half of the associativity of the LLC (associativity/2=4), its reuse
frequency counter value is incremented by one (becomes 4+1=5). A copy of the block 5/5

is returned to the requestor ULC. The final configuration of the LLC and VC are shown in
the Figure 3.6 where the block 5/5 occupies the MRU position in the LRU stack.

•Miss in LLC, Hit in VC: The request for the block Y/3 misses in LLC but hits in VC.

Depending on the availability of an invalid block in LLC two cases may arise: (1) When

there is an invalid entry < i > available in the LLC, the block Y/3 is brought from the

VC and placed in the invalid entry. The configuration of LLC and VC after the block is
migrated to LLC from VC is shown in the second row of the Figure 3.6. (2) When there
is no invalid entry available, the LRU block of LLC is evicted. In the example, LRU block
1/5 of LLC is evicted. This block does not meet the criteria for entering into VC as it is a
clean block. Therefore, it is evicted from the LLC without allowing to enter into VC.

•Miss in LLC, Miss in VC: A miss in both LLC and VC triggers a main memory fetch

of the requested block (block M/0 shown in the fourth row of the Figure 3.6). We have

shown a situation where there is no invalid entry available in LLC as well as VC. Therefore,

the LRU block B/3 must be evicted from the LLC in order to make room for the incoming

block M/0 . Since the block B/3 is dirty and its reuse frequency counter value (=3) is

greater than th2 (indicating high temporal locality), this block is considered to be placed

in the VC. The block B/3 being a PCM block must be placed in the section reserved for

PCM blocks in the VC. However, the LRU block Z/3 of PCM section in the VC must be

evicted from the VC in order to make room for the block B/3 . The newly entered blocks

M/0 (into LLC) and B/3 (into VC) occupy the MRU position in LLC and PCM section of

the VC which is shown in the Figure 3.6.

Both VCRP and PPVC aim to reduce costly PCM write-backs, as well as PCM reads,
yet maintaining a fairly low DRAM miss rate. However, depending on various situations,
these techniques have the tendency to bring out unequal profit over one another. PPVC
maintains dedicated DRAM and PCM partitions in the victim cache. Therefore, insertion of
a PCM block into VC leads to an unavoidable costly eviction of PCM block from the PCM
partition when there is no invalid line present in the PCM portion of the VC. VCRP will
perform better in this situation as it prefers to evict DRAM blocks than PCM blocks from
the VC by scanning the 2-LRU position in the VC. However, there may be a situation, when
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Table 3.1: System Parameters

Components Parameters
Processor 2Ghz, Quad-core, X86

L1 Cache
Private, 32 KB SRAM split I/D caches, 2-way set-associative cache,
64 B block, 1cycle latency, LRU, write-back policy

L2 Cache
4 banks, SRAM, 64B block, LRU, write-back policy
Size : 4MB (1MB/bank), Associativity : 16-way

Victim Cache SRAM, 64-way Fully associative, 64 B block size per bank
Main Memory
Configuration

DRAM : 1 GB (1 channel), Open page, FRFCFS
PCM: 3 GB (3 channel), Open page, FRFCFS-WQF

Memory latency [68]
DRAM :: Read latency : 200 Cycles Write latency : 200 Cycles
PCM :: Read latency : 400 Cycles Write latency : 1000 Cycles

Memory Energy
(nJ) per block [68]

DRAM :: Read Energy 12.17, Write Energy 14.48
PCM:: Read Energy 10.68, Write Energy 20.75

one class of blocks (DRAM or PCM) get inserted into the VC too aggressively, resulting in
the forceful eviction of the critical blocks of the other class by VCRP. However, for such
cases, maintaining separate partitions for the DRAM and PCM blocks by PPVC retains a
fair collection of both classes of blocks, performing well in such situations.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

The proposed techniques, VCRP and PPVC are implemented on a full system simulator
GEM5 [124] integrated with NVMain [125], a cycle accurate memory simulator used for
DRAM and NVMs. In order to maintain coherency in both LLC and VC, Ruby module
inside GEM5 is used along with MESI CMP based cache controller. The hybrid main
memory is modeled using NVMain using DRAM and PCM in 1:3 ratio. Generally, DRAM
: PCM hybrid memories are built using small DRAM and large PCM portions to get the
high density benefits of PCM without losing the latency benefits offered by DRAM. In order
to represent such memory, we have used a small DRAM portion (1 GB) along with a large
PCM portion (3 GB) for our experiments. However, a comparison of hybrid memories with
DRAM : PCM ratio 1:3 and 2:2 is also provided in the comparative analysis (Section 3.5.4)
to show the effects of partition ratio in our proposed techniques. Table 3.1 shows the system
parameters used in our simulated system. The initial data allocation in the hybrid memory
is the default page allocation process adopted by the Linux OS kernel.

The results are evaluated using PARSEC [116] benchmark suite, which consists of many
multi-threaded applications like data mining, animations, multimedia etc. In order to sim-
ulate the behavior of multi-programmed benchmarks, we constitute 3 mixes with 4 bench-
marks taken from the PARSEC benchmark suite, as shown in Table 3.2. The various energy
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Table 3.2: Benchmarks

Multi-threaded
Canneal, Dedup, Fluidanimate (fluid), Freqmine (freq), Streamcluster
(stream), x264

Multi-programmed
Mix 1 : Canneal, Dedup, Freq, Stream, Mix 2 : Canneal, Dedup, fluid, x264
Mix 3 : freq, fluid, Stream, x264

Table 3.3: Timing and Energy Parameters for different LLC and VC Configurations

LLC/ VC Static Power (mW) Read Energy (nJ) Write Energy (nJ) Read latency (ns) Write latency (ns)
LLC Size = 1MB 138.7 0.116 0.116 1.874 1.874
LLC Size = 2MB 282.2 0.221 0.221 2.00 2.00
LLC Size = 4MB 554.3 0.330 0.330 2.180 2.180
LLC Size = 8MB 1094.5 0.432 0.432 2.043 2.043

Victim Cache
VC Size = 16 Entries 2.93 0.007 0.007 0.240 0.240
VC Size= 32 Entries 5.48 0.009 0.009 0.307 0.307
VC Size= 64 Entries 10.44 0.014 0.014 0.416 0.416

and timing parameters of LLC and VC for different sizes are reported in Table 3.3. These
values are obtained using NVSIM [129] and CACTI [130]. The results of VCRP and PPVC
are compared with two baseline architectures and state-of-the-art techniques WBAR [47]
and VAIL [46].

As mentioned in the introduction section, our policies are applicable for exclusive hybrid
memories where DRAM and PCM are kept at as part of the same main memory layer.
However, in order to show more comprehensiveness, our techniques are compared with
another technique VAIL [46] which is applied for inclusive hybrid memories, where a small
layer of DRAM is placed hierarchically above the PCM-only main memory. The DRAM
layer acts as a cache to the underlying PCM-only main memory. The results are presented
in Section 3.5.3.

•Baseline1 (LLC without VC)[BL1]: In BL1, a SRAM based LLC without any VC is
considered. The replacement policy in the LLC is LRU.

•Baseline2 (LLC with VC)[BL2]: In BL2, a SRAM based LLC associated with a fully
associative VC is considered. The replacement policy of the LLC and VC is LRU. We do
not put any filter on the entry of blocks in the VC. Every block evicted from the LLC is
put inside the VC.

•WBAR: WBAR[47] is a variant of the traditional LRU replacement policy designed to
reduce PCM write-backs in hybrid main memory. It works by changing the insertion and
promotion policy of the LRU replacement policy. Instead of inserting or promoting a cache
block to the MRU position as in LRU, WBAR places it at a distinct position in a cache set
depending on the potential cost incurred if the block is evicted from the LLC.

•VAIL: VAIL[46] is proposed for inclusive hybrid memory where a layer of DRAM is placed
hierarchically above the PCM-only main memory. The DRAM layer acts as a cache to the
PCM-only main memory. It reduces write-backs to the PCM main memory by retaining
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Table 3.4: Translation of VC Entries to Size

VC
Entries

VC Size
(KB)

16 1
32 2
64 4
128 8

the blocks with more recency and eviction count.

The proposed policy acronyms used in this chapter are given below.

•VCRP allD: Victim Cache Replacement Policy where all dirty critical DRAM and PCM
blocks evicted from LLC are put inside VC.

•VCRP allD NC: Same as VCRP allD but also allows the entry of clean, critical PCM
blocks into the VC.

•PPVC allD: Prioritized Partitioning of the VC where all dirty critical DRAM and PCM
blocks evicted from LLC are put inside VC.

•PPVC allD NC: Same as PPVC allD but also allows the entry of clean, critical PCM
blocks into the VC.

Figure 3.7: Effect on Miss Rate for Varying VC Sizes (More is better)

3.5.2 Sensitivity Analysis

Below we give sensitivity analysis on deciding the size of the VC and threshold for short
reuse distance.
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3.5.2.1 Victim Cache Size

For the size of VC, 64-way fully associative VC is chosen as it balances best the trade-
off existing between low search latency associated with a small size VC and high capacity
benefits gained from a large size VC. Figure 3.7 shows the percentage reduction in miss
rate over BL1 (LLC without VC) for 16, 32, 64 and 128 entry VC. It can be seen that for
all the benchmarks, the reduction in miss rate keeps on increasing up to a certain size of
the VC (64 entry in our experiments). Increasing VC size beyond this does not have much
influence in reducing the miss rate further. Victim cache accommodates more blocks as its
size gets larger. However, the varying working set size of the running applications results in
the under utilization of the extra space in the VC, as the critical blocks that do not belong
to the current working set remain as dead blocks inside the VC. The implication of this
phenomenon is the saturation of drop in miss rate beyond a certain threshold of VC size.
Therefore, we have taken 64-entries as VC size to carry out all our experiments. Considering
the size of a cache block to be 64 bytes, the translation of VC entries to VC size is given in
Table 3.4.

Figure 3.8: Distribution of Hits at Varying Reuse Distance

3.5.2.2 Threshold for Reuse Distance

The effectiveness of using victim cache along with LLC increases with the increase in the
residence of critical blocks in the victim cache. We perform a sensitivity analysis on the
threshold of various reuse distances before declaring a block as critical (having short reuse
distance). Figure 3.8 shows the percentage distribution of the number of hits in the LLC
obtained at a distance 0-25%, 25-50%, 50-75% and 75-100% of associativity from MRU
position across all sets. On average, percentage of hits obtained at distances 0-25%, 25-
50%, 50-75% and 75-100% are 60%, 26%, 9% and 5% respectively. It is evident from the
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Figure 3.9: Effect on Reduction in Miss rate and PCM Write-back Reduction for Varying Reuse
Distances

figure that the hits show a decreasing trend with increasing distance from the MRU position
in the sets. Most of the hits are obtained at a distance 0-25% and 25-50% of the associativity.
Also, Figure 3.9 shows the miss rate and reduction in write-backs (compared to BL1) for
distance 25%, 50% and 75% when the LLC is associated with a victim cache. Since the
distance from the MRU position essentially denotes the reuse distance, it is evident from
the figures that reduction in miss rate and PCM write-backs are commendable up to a reuse
distance equal to half of the associativity of the cache. However, they begin to saturate
after reuse distance equal to half of the associativity. Therefore, the optimum value of reuse
distance to classify a block as a critical should be set to half of the associativity of the LLC.
This will help to utilize the victim cache in the most efficient manner by keeping only the
most critical blocks evicted from the LLC.

3.5.2.3 Threshold for Criticality

Sensitivity Against Workload Types : Table 3.5 shows the percentage of critical blocks
entering VC for th=2, 4 and 8. These blocks correspond to the blocks whose frequency of
short reuse distance usage is more than 2, 4 and 8 during their residency in the LLC. As th
increases, the percentage of blocks satisfying the threshold condition decreases, meaning less
number of critical blocks enters VC for higher th. The impact of changing th is demonstrated
through improvement in VC hit rate for varying values of th. The graph in Figure 3.10 shows
the increase in hit rate if critical blocks are placed in the VC for different th. The increase
in hit rate is shown over the Baseline 2 where all the blocks evicted from LLC are placed in
the VC, irrespective of their criticality.

Out of the benchmarks, (dedup, x264) show higher data sharing whereas (canneal,
stream) show less data sharing. Accordingly, access frequency of the blocks correspond-
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Table 3.5: Critical blocks entering VC for th=2,
4 and 8

th=2 th=4 th=8

High data sharing
Dedup 34% 24% 18%
x264 36% 24% 6%

Low Data Sharing
Canneal 7% 3% 1.6%
Stream 20% 12% 8%

Mean 21% 12% 6.1%

Table 3.6: Effectiveness of Victim
Cache over Different LLC Size and Fre-
quency Threshold

LLC Size th=2 th=4 th=8
2MB 81% 77% 71%
4MB 42% 37% 35%
8MB 36% 44% 30%

Figure 3.10: Variation of Hit rate improvement for Th=2, 4 and 8

ing to dedup and x264 are more compared canneal and stream, which leads to the entry of
more critical blocks for dedup and x264. However, It is evident that for all the representative
benchmarks, hit rate initially increases for th=2 or th=4, but decreases for th=8. Based
on this, we can argue that as the threshold becomes higher, the amount of critical blocks
entering into VC reduces. Hence, for higher th values, VC space is not utilized properly,
leading to low gains in hit rate. Also, the number of counter bits to represent threshold
th=2, 4, 8 are 2, 3 and 4, respectively i.e., one extra bit is needed for each thresholds.
Hence, considering the hit rate in VC and extra counter bit needed for each threshold, we
have considered th=2 to be the suitable value for our experiments.

Sensitivity Against Memory Hierarchy Parameters: Table 3.6 shows the variation of hit
rate in VC for different LLC sizes. Selective victim caching performs well for smaller caches
as conflict misses is more for smaller caches and conflict misses lead to critical block eviction.
Therefore, VC can provide better support for the critical blocks in case of smaller caches.
However, for all sizes of LLC, increase in VC hit rate shows almost the same trend, where
it increases initially and gets saturated after th = 4.
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3.5.3 Results and Analysis

The experiments were done on a quad-core system. We conducted experiments for different
configurations of LLC and VC. The system parameters are given in Table 3.1. Out of these
configurations, 4-MB, 16-way set-associative LLC is selected for the results. However, results
related to various LLC and VC configurations are also reported for better comprehension.
In simulations, the extra time taken for the accesses and searching in the victim cache are
considered. However, the searching in the VC starts parallelly as soon as the search in the
LLC takes place. Therefore, the extra latency taken in the VC search when data is not
present in the LLC is of little significance compared to the large latency cost involved in
loading the missed block from the main memory in the absence of VC. In particular, 5 cycles
are taken during the swapping of blocks between LLC and VC, and 1 cycle extra is taken
for searching the block in the VC. The extra cycles are added in simulation in case there is
a miss in the LLC. Lastly, the DRAM:PCM VC partition ratio for PPVC is taken as 16:48
for a 64 entry VC. However, comparison of VC partition ratio of 8:56 and 16:48 is presented
in Section 3.5.4.

Figure 3.11: Normalized PCM Write-backs over BL1 (Less is better)

Effect on PCM write-backs: Figure 3.11 shows the normalized write-backs (over
BL1) of VCRP and PPVC. 〈VCRP allD, VCRP allD NC〉 reduce write-backs by 〈 11.28%,11.26%
〉,〈 5.41%, 5.39% 〉,〈 4.87%,4.86% 〉 over BL1, BL2 and WBAR respectively whereas 〈PPVC allD,
PPVC allD NC〉 reduce by 〈 11.12%,10.53% 〉,〈 5.24%, 4.6% 〉 and 〈 4.7%,4.1% 〉. Both
VCRP and PPVC outperform WBAR mainly because of the provision of the extra capacity
of VC for the PCM blocks. Also, the idea of keeping critical blocks is an added advantage
of VCRP and PPVC. VCRP further increases the residency of PCM blocks by its 2-LRU
based VC replacement policy, whereas PPVC provides a larger space for the PCM blocks
by partitioning the VC in a prioritized manner, both techniques achieving almost 4% im-
provement over WBAR. The limited capacity of VC is effectively utilized by placing only
the critical blocks based on their short reuse distance usage.
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Figure 3.12: Normalized PCM Reads over BL1 (Less is better)

Effect on PCM reads: 〈VCRP allD, VCRP allD NC〉 and 〈 PPVC allD, PPVC allD NC〉
reduce the number of PCM reads by 〈15.8%,16.71%〉 and 〈15.58%,16.62%〉 over BL1 ,
〈10.6%,11.56%〉 and 〈10.36%,11.46%〉 over BL2, 〈8.24%,9.23%〉 and 〈8.0%,9.13%〉 over WBAR
respectively (graph shown in Figure 3.12). WBAR prefers dirty PCM blocks over clean PCM
and DRAM blocks for storing in the LLC in order to increase the hit rate (from dirty blocks)
and reduce PCM write-backs. However, in our techniques, VC acts as backup storage in
order to retain critical blocks with high temporal locality. Further, VCRP prioritizes
PCM blocks by its 2-LRU VC replacement strategy, and PPVC prioritizes PCM blocks by
providing larger partition space to the PCM blocks. Therefore, the probability of PCM read
hits increases for the blocks stored in the VC. It helps in reducing the costly PCM reads
from the main memory.

Figure 3.13: Percentage Reduction in PCM Miss Rate over BL1(More is better)

Effect on PCM miss rate: Figure 3.13 shows the percentage reduction in PCM miss
rate by VCRP (〈17.76%,18.19%〉 for 〈VCRP allD, VCRP allD NC〉) and PPVC (〈16.49%,
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16.28%〉 for 〈 PPVC allD, PPVC allD NC〉 ) compared to WBAR 〈10.62%〉 over BL1.
Both VCRP and PPVC outperform WBAR in reducing PCM miss rate, the foremost rea-
son being retainment of critical PCM blocks in the VC. However, VCRP shows better
performance compared to PPVC owing to its 2-LRU based VC replacement policy that
tends to keep the PCM blocks with higher priority over the DRAM blocks. On the other
hand, PPVC does not provide any care through its replacement policy. Therefore, an in-
coming PCM block into the VC always leads to the eviction of a PCM block from the PCM
partition in the VC when there is no invalid cache line available in the VC.

Figure 3.14: Percentage Reduction in DRAM Miss Rate over BL1 (More is better)

Effect on DRAM miss rate: Figure 3.14 shows the percentage reduction in DRAM
miss rate shown by VCRP (〈15.11%,16.52%〉 for 〈VCRP allD,VCRP allD NC〉) and PPVC
(〈17.54%,17.50%〉 for 〈PPVC allD,PPVC allD NC〉) compared to WBAR 〈2.53% only〉
over BL1. Reduction in DRAM miss rate in WBAR is very less (for Canneal, x264, and
Mix3 it is negative, meaning DRAM miss rate is more compared to BL1), whereas both
the proposed techniques: VCRP and PPVC show a significant reduction in DRAM miss
rates. Both these techniques store evicted DRAM blocks with high temporal locality in the
VC to give them a second chance. However, the reason that PPVC shows more reduction
compared to VCRP is because PPVC maintains a separate reserved section for the DRAM
blocks, which increases the residency of the critical DRAM blocks in VC. On the other hand,
VCRP preferentially evicts DRAM blocks ( by scanning up to 2-LRU positions) in order to
give more priority for the retainment of the PCM blocks.

Effect on Performance: Figure 3.15 shows performance improvement by VCRP and
PPVC over BL1, BL2 and WBAR. 〈 VCRP allD, VCRP allD NC 〉 show 〈5.65%,6.01%〉
improvement over BL1, 〈3.2%,3.67%〉 over BL2 and 〈3.17%,3.54%〉 over WBAR whereas per-
formance improvement for 〈PPVC allD, PPVC allD NC〉 is 〈5.62%,5.7%〉, 〈3.26%,3,35%〉
and 〈3.13%,3.22%〉 over BL1, BL2 and WBAR respectively.

Referring back to Figure 3.2, where we compared the performance of BL1 (DRAM-
PCM hybrid) with PCM only and DRAM only memory systems, the graph in the Figure
3.15 shows that VCRP and PPVC reduce the gap between DRAM-only memory and BL2
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Figure 3.15: Performance Improvement over PCM-only (More is better)

(DRAM-PCM hybrid) to a greater extent compared to WBAR. WBAR bears a loss of
10.31% performance over DRAM-only, whereas loss in performance in VCRP and PPVC
are 〈7.71%,7.4%〉 and 〈7.82%,7.74% 〉 (for both variants of PPVC and VCRP) respectively.
In other words, our policies give around 3% improvement in performance over WBAR.

VCRP and PPVC allow the entry of critical evicted blocks in VC. VCRP further improves
performance by increasing the residency of PCM blocks over DRAM blocks by working on
the eviction strategy (2-LRU based eviction) of VC. VCRP allD NC performs better than
VCRP allD due to additional hits gained in VC from the clean PCM blocks. PPVC differs
from VCRP in the block placement strategy in VC. It saves costlier PCM write-backs
by retaining more PCM blocks due to prioritized partitioning of the VC, thus improving
performance.

As discussed in the results for PCM miss rate and DRAM miss rate, VCRP works
more effectively in reducing PCM miss rate, while PPVC reduces DRAM miss rate more
compared to VCRP. In other words, the effect of system performance gain in VCRP and
PPVC is primarily due to giving the retainment priority to critical PCM blocks (for VCRP)
and critical DRAM blocks (for PPVC), respectively. The overall effect in performance
improvement is almost same for the two proposed techniques.

Comparison Across Benchmarks: PARSEC benchmarks show wide variation in
terms of data sharing behavior, temporal locality, and off-chip bandwidth requirements [116,
131, 132]. Therefore, the improvements obtained by our techniques are different depending
on the behavior of the running benchmarks. Dedup, Freqmine, and x264 come under high
data sharing benchmarks where cache blocks are shared heavily among different threads
running across the cores. Therefore, cache blocks belonging to these benchmarks show high
reusability or possess short reuse distance. Therefore, storing such critical blocks in VC bring
more improvements, as it is reflected in the improvements of PCM reads/write-backs as
well as performance improvements. (On average, (Dedup, freq, x264) shows improvements
of (18%, 21%, 19%) in PCM write-backs, (25%,32%,29%) in PCM reads and (7%, 15%,
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17%) in performance (over BL1) for our techniques). On the other hand, Canneal and
Streamcluster are streaming applications where data reuse is very less. Also, they have high
off-chip bandwidth demand for load, store, and writeback operations. Therefore, storing
blocks of these benchmarks in VC brings less improvements compared to Dedup, freq and
x264 (On average, (Canneal, Streamcluster) show improvements of (7%,6%) in PCM write-
backs, (6%,12%) in PCM reads and (7%, 9%) in performance (over BL1)).

Figure 3.16: Normalized Energy over BL1 (Lesser is better) ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Figure 3.17: Normalized Write Energy over BL1 (Lesser is better) ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Effect on Energy: Energy consumption in hybrid memory mainly consists of the sum
of read energy and write energy. The formula for calculating energy is given by equation 3.1.
Since writes consume more energy as compared to reads in case of PCMs, therefore tech-
niques that reduce the costly PCM write-backs can contribute immensely to the reduction
of overall energy consumption in hybrid memory. The prime objective of both of our pro-
posed techniques is to reduce PCM write-backs that help in reducing energy consumption.
Additionally, caching of critical DRAM and PCM blocks in the victim cache also reduces
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DRAM and PCM reads, which assist further in the reduction of energy consumption.

Energy = #DRAMRead Accesses×DRAMRead Energy(Per Access)+

#PCMRead Accesses× PCMRead Energy(Per Access)+

#DRAMWrite accesses×DRAMWrite Energy(Per Access)+

#PCMWrite accesses× PCMWrite Energy(Per Access)

(3.1)

All the variants of the proposed techniques: VCRP and PPVC reduce PCM write-backs
as well as PCM reads significantly. As a result, energy consumption is fairly less in the pro-
posed techniques. Figure 3.16 shows reduction in energy for 〈VCRP allD, VCRP allD NC〉
by 〈11.78%,11.68%〉, 〈5.95%,5.86%〉, 〈4.8%,4.7%〉 over BL1, BL2 and WBAR respectively
where as reduction in energy by 〈 PPVC allD, PPVC allD NC 〉 is 〈11.65%,11.4%〉, 〈5.82%,5.55%〉
and 〈4.66%,4.4%〉 respectively. In particular, the reduction in write energy for 〈VCRP allD,
VCRP allD NC〉 is 〈17.77%,18.42%〉, 〈10.6%,11.3%〉 and 〈9.31%,9.34%〉 over BL1, BL2 and
WBAR respectively whereas reduction in write energy in case of 〈 PPVC allD, PPVC allD NC〉
is 〈18.44%,18.24%〉, 〈11.34%,11.12%〉 and 〈9.37%,9.3%〉 respectively. The graph in the Fig-
ure 3.17 clearly shows the trend in the reduction of write energy across different benchmarks
for BL1, BL2, WBAR and our proposed techniques.

Figure 3.18: Normalized AMAT over BL1 (Lesser is better); ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Effect on AMAT: Average Memory Access Time (AMAT) gives the average estimation
of time taken to deliver the requested data items from the memory hierarchy. An improved
AMAT (lower is better) indicates an agile memory system that assists in improving the
system performance. Considering the non-uniform load latencies of DRAM and PCM in
DRAM-PCM hybrid memories, there lie ample opportunities to work on this asymmetry
to improve AMAT in such systems. The formula for calculating AMAT in a DRAM-PCM
hybrid memory system is given by equation 3.2.

AMAT = HitT ime(L1) +MissRate(L1)[HitT ime(L2) +DRAMMissRate(L2)

×DRAMMissPenalty + PCMMissRate(L2)× PCMMissPenalty]
(3.2)
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Fortunately, both of our proposed policies, VCRP and PPVC work on reducing both
DRAM and PCM miss rate in the LLC by keeping critical blocks in the associated VC.
However, the existing technique WBAR that primarily focuses on reducing PCM write-
backs does not pay much attention to improve the DRAM miss rate. This simple yet highly
effective improvisation of reducing DRAM miss rate gives our techniques an extra edge
in improving AMAT more than WBAR. The variation of AMAT along with DRAM miss
rate and PCM miss rate is shown in Figure 3.18 for baselines (BL1, BL2), WBAR, and
our proposed techniques. On average, percentage improvement in AMAT shown by WBAR
over BL1 is 17% only whereas our proposed techniques: 〈VCRP allD, VCRP allD NC〉 and
〈PPVC allD, PPVC allD NC〉 show a considerable improvement of 〈31%, 30%〉 and 〈24%,
25%〉 over BL1 respectively. The reduction in DRAM miss rate for WBAR (over BL1) is
only 2.53% whereas reduction in DRAM miss rate by 〈VCRP allD, VCRP allD NC〉 and
〈PPVC allD, PPVC allD NC〉 are 〈15.11%, 16.52%〉 and 〈17.54%, 17.5%〉 respectively.
Similarly, reduction in PCM miss rate by WBAR is 10.62% whereas whereas reduction
in PCM miss rate by 〈VCRP allD, VCRP allD NC〉, 〈PPVC allD, PPVC allD NC〉 are
〈17.76%, 18%〉, 〈16.5%, 16.28%〉 respectively.

Comparison of AMAT of VCRP and PPVC : VCRP performs better than PPVC
in reducing AMAT because of the difference in its eviction policy. In the case of PPVC,
when a PCM block enters the VC, it must be entered into the respective PCM partition in
the VC. It results in the eviction of the LRU block in the PCM partition from the VC in
order to make room for the incoming PCM block. It increases the costly PCM write-backs,
which results in increase in AMAT in the case of PPVC. On the other hand, in the case of
VCRP, when a PCM block enters into the VC, eviction of a PCM block from the VC in not
mandatory since VCRP gives priority to the eviction of DRAM blocks from the VC upon
replacement by scanning the 2-LRU position in the VC.

Figure 3.19: Normalized IPC over PCM-only (Lesser is better); ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Comparison With Another Existing Policy : VAIL [46] proposed by Fang Zhou et
al., has similar objectives of reducing costlier PCM write-backs by modifying DRAM cache
replacement policy in a DRAM-PCM inclusive architecture. It uses a small DRAM cache
lying between the LLC and the PCM-only main memory that increases hit rate in the DRAM
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Figure 3.20: Normalized Energy over BL1 (Lesser is better); ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Figure 3.21: Normalized PCM Writebacks over BL1 (Lesser is better); ( V1 : VCRP allD, V2
: VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

cache and decreases write-backs to the PCM memory by retaining the blocks with more
recency and more number of eviction count. However, our policies are based on exclusive
hybrid memory hierarchy where DRAM and PCM are kept as part of the same layer in the
overall memory hierarchy. Due to lack of this one to one correspondence of our architecture
with VAIL, we have shown the comparison of the appropriate metrics separately. Figures
3.19, 3.20 and 3.21 show normalized performance (IPC), Energy and PCM writeback of
BL1, our proposed techniques (VCRP, PPVC) and VAIL. Table 3.7 gives the summary of
comparative analysis of our proposed techniques with VAIL.

Our techniques outperform VAIL because of the underlying difference in the idea of
defining the criticality of the evicted blocks. VAIL defines a block as critical if it was
evicted more recently and had a higher eviction count. However, recency and frequency
of eviction give lesser insight regarding the reusability of the blocks. On the other hand,
our techniques define a block as critical if it was reused enough number of times with short
reuse distance during its stay at the LLC. This idea of defining criticality is completely
in accordance with the temporal locality of the blocks on which the mechanism of caches
is based. Our techniques make further improvisations to the critical blocks stored in the
victim cache to reduce costlier PCM write-backs. VCRP works on the replacement policy
of the victim cache to deliberately evict dirty DRAM blocks rather than dirty PCM blocks
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Table 3.7: Comparison of VCRP and PPVC with VAIL (All improvements are shown over BL1);
( V1 : VCRP allD, V2 : VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

% Improvement
in Performance

%Reduction
in Energy

%Reduction
in PCM
write-backs

VAIL 3.27 9.03 9.16
V1 5.65 11.78 11.28
V2 6.01 11.68 11.26
P1 5.62 11.65 11.12
P2 5.7 11.4 10.53

from the VC by scanning 2 LRU positions in search of a DRAM block. On the other hand,
PPVC partitions the VC giving more share to the PCM blocks compared to the DRAM
blocks to lessen PCM write-backs.

Storage and Area Overhead: In the proposed techniques, a 2-bit reuse frequency
counter and 1-bit flag (per block) are used for identifying DRAM/PCM blocks of the LLC
and VC. Therefore, the total storage overhead of the VC along with the counter and flag bit
over BL1 (4MB cache, 4096 sets, with 64B block size and 42 bits tag) is 0.639%. Similarly,
the area overhead due to association of VC with the LLC is 0.137% with respect to BL1.
Note that the area overhead for the additional circuit of VC is modeled using NVSIM [129]
and CACTI [130].

3.5.4 Comparative Analysis

In addition to the above results, experiments for different LLC and VC configurations were
conducted.

3.5.4.1 Change in LLC Size

Table 3.8 shows the effect of the size of LLC on the performance of the existing technique
WBAR and our proposed policies. It can be seen from the table that the proposed policies
VCRP and PPVC perform better when the size of the LLC is small. This is because the
smaller size LLCs suffer from more conflict misses than large size LLC. Therefore, storing
critical blocks evicted from smaller LLCs in the VC can help in improving the performance.
Note that both of our proposed policies perform better than WBAR for all sizes of LLC.

3.5.4.2 Change in DRAM:PCM Partition Ratio in PPVC

In PPVC, the VC is partitioned into smaller DRAM and larger PCM section to keep the
respective blocks. This helps in retaining the critical PCM blocks, thereby reducing costly
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Table 3.8: Effect due Change in LLC Size ( V1 : VCRP allD, V2 : VCRP allD NC, P1 :
PPVC allD, P2 : PPVC allD NC)

Cache
Config

Policy
%Improvement
in performance

%Reduction in
DRAM
miss rate

%Reduction
in PCM
miss rate

% Reduction
in PCM
write-backs

%Reduction
in PCM
reads

1MB

WBAR 2.40 1.47 7.19 6.29 13.05
V1 7.53 19.23 19.17 14.17 18.09
V2 7.34 19.64 19.04 14.40 18.69
P1 7.56 18.58 18.72 14.36 18.12
P2 7.63 18.40 18.78 13.28 18.32

2MB

WBAR 2.88 2.33 8.29 7.72 14.09
V1 7.01 18.35 18.01 13.03 17.40
V2 7.63 17.92 18.95 13.56 17.81
P1 6.71 17.22 17.35 12.61 17.71
P2 6.05 17.31 17.20 12.25 17.85

4MB

WBAR 3 2.52 9.32 8 15.1
V1 6.65 17.54 17.75 11.28 16.02
V2 6.01 17.5 18.19 11.27 17.09
P1 5.62 15.11 16.49 11.13 16.5
P2 5.7 16.52 16.28 11 17.31

8 MB

WBAR 3.5 6.33 10.82 8.5 16.38
V1 4.8 14.9 15.38 9.75 15.4
V2 5.03 13.2 16.12 9.52 16.6
P1 4.32 10.02 14.03 9.88 16.23
P2 3.8 14.02 14.42 9.48 16.41

PCM write-backs. DRAM partition helps in reducing the DRAM miss rate.

Experiments were conducted for two partition ratio (DRAM:PCM= 16:48 and 8:56) of 64
entry VC for PPVC. It can be seen from the Table 3.9 that the PCM blocks get more space in
8:56 partition as compared to 16:48 partition where the reverse is true for the DRAM blocks.
As a result, the DRAM miss rate is more, and the PCM miss rate is less in 8:56 partition
compared to the 16:48 partition. Performance improvement is less in the 8:56 partition than
16:48 partition. Less space for DRAM blocks in 8:56 partition results in more critical DRAM
block eviction from the LLC, and VC does not have enough space to hold those blocks. It
results in performance degradation in 8:56 compared to 16:48 partition. However, as the
share of DRAM is only 1/4 of the total hybrid main memory (since DRAM:PCM=1GB :
3GB), the impact on the DRAM miss rate does not proportionally affect the performance.
For both the scenario, there is improvement in performance over BL1 (For both variants of
PPVC, on average, 5.64% and 4.60% performance improvements are achieved for 16:48 and
8:56 ratios respectively.).
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Table 3.9: Variation of DRAM:PCM Ratio in PPVC

Ratio Policy
%Reduction in
DRAM miss rate

%Reduction in
PCM miss rate

%Improvement
in Performance

16 : 48
PPVC allD 7.23 15.50 5.61
PPVC allD NC 7.83 16.8 5.69

8 : 56
PPVC allD 2.71 22.12 4.65
PPVC allD NC 2.79 23.93 4.56

Table 3.10: Effect due to Change in Number of Banks (LLC banks) in 8MB LLC ( V1 :
VCRP allD, V2 : VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

Number of Banks Policy
%Imp
in perf

%Reduction
in DRAM
miss rate

%Reduction in
PCM miss
rate

%Reduction
in PCM
reads

%Reduction
in PCM
wr-backs

8 Banks

BL2 2.95 8.58 7.16 4.08 4.12
WBAR 2.17 10.97 12.27 4.49 4.84
V1 4.81 14.54 13.38 6.64 6.17
V2 5.72 15.18 15.88 6.61 6.77
P1 5.20 13.86 15.24 6.23 6.09
P2 5.39 14.34 16.27 7.21 6.35

16 Banks

BL2 2.40 8.51 8.73 5.24 3.91
WBAR 3.38 8.33 12.47 7.09 4.03
V1 5.60 16.82 15.50 10.84 7.30
V2 6.54 16.35 15.23 11.43 8.39
P1 6.12 17.38 17.58 12.18 8.01
P2 5.65 16.71 17.09 11.55 8.08

3.5.4.3 Change in the Number of Banks in the LLC

Table 3.10 shows the effect of increasing the number of banks in the last level cache. For a
particular sized LLC (8 MB in the table), as the number of banks increases (from 8 to 16),
the size of each bank decreases (by a factor of 2). As discussed in the previous sections,
victim caches (associated with the banks) perform better for smaller sized banks. It is
reflected through lesser PCM reads and PCM write-backs of our policies in case of 16 banks
compared to 8 banks. Reduction in DRAM, PCM miss rate, and eventual improvement
in performance are also clear indicators of gain achieved by incorporating more number of
banks in the LLC.

3.5.4.4 Change in the Number of Victim Cache entries

The size of victim cache plays a crucial role from the perspective of performance improve-
ment, PCM writeback reduction, and overall area and storage overhead. For better system
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Table 3.11: Effect due to Change in Number of VC Entries ( V1 : VCRP allD, V2 :
VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

VC

Entries
Policy

%Imp
in Perf

%Reduction
in DRAM Miss
Rate

%Reduction in
PCM
Miss rate

%Reduction
in PCM reads

%Reduction
in PCM
write-backs

32

V1 4.1 7.43 9.4 6.33 8.06
V2 4.2 6.31 10.1 7.1 8.52
P1 3.42 7.8 10 6.81 8.41
P2 3.82 7.6 9 6.7 8.38

64

V1 5.65 17.54 17.75 16.02 11.28
V2 6.01 17.5 18.2 17.09 11.27
P1 5.62 15.11 16.5 16.5 11.13
P2 5.7 16.52 16.28 17.31 11

128

V1 6.71 18.06 17.81 17.01 11.9
V2 6.5 18.24 18.47 17.1 12.02
P1 6.2 16.9 16.73 17.05 12.04
P2 6.1 19.85 16.41 17.5 11.21

performance and costly PCM writeback reduction, it is always tempting to increase the
size of the victim cache. However, as discussed in the sensitivity analysis, increasing victim
cache size does not return rewarding benefits after a certain size of victim cache. We term
this phenomenon as the Law of Diminishing Returns of Victim Cache. Table 3.11 shows
the effect of changing the number of VC entries (for 32, 64 and 128 entries) for different
metrics. It is evident from the table that benefits obtained from victim cache associated
with LLC saturate when its size goes beyond 64 entries. Since large size of VC also aids
to the large area and storage overhead; therefore the optimal cut-off size of victim cache is
decided to be 64 entries.

3.5.4.5 Change in DRAM : PCM Ratio in Hybrid Main Memory

Exclusive hybrid memories comprise of DRAM and PCM as parts of the same main memory
layer. Generally, the capacity of the DRAM portion is much lesser than the PCM portion
in order to get the latency benefit of DRAM and the high capacity benefits of the PCM
region. We have taken DRAM: PCM ratio as 1GB : 3GB (giving lesser space to DRAM and
more space to PCM) to realize a highly dense hybrid memory system that does not have to
sacrifice the latency benefits of DRAM. However, in order to give an idea of how changing
DRAM : PCM ratio would affect our proposed techniques, experiments were conducted for
hybrid memories with DRAM : PCM ratio 2GB : 2GB. Table 3.12 presents a comparison
of performance improvement and energy reduction (over BL1) of our proposed techniques
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Table 3.12: Effect on Changing DRAM:PCM Ratio in Hybrid Main Memory ( V1 : VCRP allD,
V2 : VCRP allD NC, P1 : PPVC allD, P2 : PPVC allD NC)

DRAM:PCM
Ratio

Techniques
%Imp
in perf

%Red in
Energy

1 : 3

V1 5.65 11.78
V2 6.01 11.68
P1 5.62 11.65
P2 5.7 11.4

2 : 2

V1 10.51 7.15
V2 10.7 7.40
P1 10.2 7.45
P2 10.31 7.25

for DRAM : PCM ratio 1 : 3 and 2 : 2, respectively.

It is straightforward to follow from the Table 3.12 that improvements in performance
is more when the DRAM : PCM ratio is 2 : 2 than 1 : 3. Improvement in performance
is due to increase in the DRAM portion in 2 : 2 hybrid memory (increase from 1 GB to
2 GB). The DRAM read/write latencies are less compared to PCM read/write latencies,
which help in improving performance when the share of DRAM partition is more in the
hybrid memories. On the other hand, PCMs reads/writes are costlier from the perspectives
of energy consumption. Therefore, our techniques that aim to reduce both PCM read and
writes offer more rewarding results in terms of reduction in energy consumption when the
share of PCM is more in the hybrid memory. It is reflected in more reduction in energy
(over BL1) when the DRAM : PCM ratio is 1 : 3 as compared to 2 : 2. Considering today’s
demand for more scalable and highly dense memory systems, it is preferable to adopt hybrid
memory with 1 : 3 ratio as it is highly dense compared to 2 : 2 hybrid memory. However,
results confirm that our proposed techniques bring impressive improvements in performance
and energy consumption for both types of hybrid memories (DRAM : PCM=1 : 3 and 2 :
2).

3.6 Summary

Hybrid main memory composed of DRAM and PCM show immense potential for being
replacement choices of DRAM only main memory. LLC management policies act a major
role for efficient utilisation of these hybrid memories. However, the traditional LLC man-
agement policies whose only yardstick for a better system performance is improving the hit
rate, are oblivious of the underlying disparity in the miss cost of DRAM and PCM blocks.
Therefore, these policies cannot maintain similar performance as DRAM-only memories for
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the hybrid main memories.
In this chapter, two techniques are proposed based on the use of a small victim cache

associated with the LLC. Victim cache being a limited resource, for both the techniques,
only critical blocks are put in the VC based on the concept of reuse distance. The crit-
icality of the blocks is defined using the concept of reuse distance and frequency of the
block accesses. The first technique VCRP works on the replacement policy of the VC. In
contrast, the second technique PPVC gives a larger share of VC to the PCM blocks over
the DRAM blocks by logically partitioning the VC. Our techniques: 〈VCRP, PPVC〉 reduce
PCM-writes by 〈11.27%, 10.82%〉 and 〈4.86%, 4.4%〉 over BL1 and WBAR respectively.
In doing so, our techniques do not have to sacrifice DRAM miss rate and obtain 〈17.52%,
15.81% 〉, 〈85.6%, 84%〉 improvement over BL1 and WBAR respectively; and PCM reads
are reduced by 〈16.25%, 16.1%〉, 〈8.73%, 8.56%〉 over BL1 and WBAR respectively that
otherwise might have negative impact on the overall system performance. Coverage of all
aspects of improvement exploiting every nook and corner leads to performance improve-
ment of 〈5.83%, 5.66%〉 and 〈3.35%, 3.17 %〉 and energy reduction of 〈11.73%,11.52%〉 and
〈4.75%, 4.53%〉 for 〈VCRP,PPVC〉 over BL1 and WBAR respectively. Thus, designing LLC
management techniques taking into account the disparity of the latencies of hybrid main
memories can help in smoother integration of newer technologies in the memory hierarchy.
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4
SWEL-COFAE : Write Reduction Using

Compression and Adaptive Encoding
Augmented by Wear Leveling

In this chapter, we propose a word-level compression scheme called COMF to reduce bit-flips
in PCMs by removing the most repeated words from the cache blocks before writing into
memory. COMF is augmented with an adaptive granularity-based encoding technique to
form COFAE, which reduces bit-flips to a further extent. We also propose SWEL-COFAE,
an intra-line stride-based wear leveling technique to improve PCM lifetime by balancing the
bit-flip pressure within the cells of the memory lines. Experimental results show that the
proposed technique improves lifetime by 101% and reduces bit-flips and energy by 59% and
61%, respectively over baseline.

4.1 Introduction

As discussed earlier, bit-flips occur in the PCM cells as a result of writing the blocks that
are evicted from LLC. It degrades memory lifespan and increases energy consumption.
Therefore, to increase durability and reduce energy consumption in PCM, it is required to
minimize write activity at the bit level (bit-flips).

Several techniques have already been proposed to improve the lifetime of the NVM-
based main memories. These techniques can be broadly classified into two classes: 1)Write
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Activity Reduction techniques that reduce bit-flips in NVM main memories and 2)Wear
Leveling techniques that distribute the writes evenly across the memory space to minimize
the chances of failure of the individual cells due to excessive write pressure. Techniques
such as Data Comparison Write (DCW) [42] and Flip-N-Write (FNW) [43] are encoding
techniques that focus on reducing bit-flips in PCM-based main memories. In DCW, only
the modified bits of the cache blocks are written into the memory to reduce unnecessary
bit-writes. FNW is an enhancement of DCW, which bounds the maximum bit-flips to half
of the number of bits in the blocks by inverting the data if more than half of the bits in the
blocks are modified.

We proposed a compression technique called COMF that removes the repeated words
from the incoming cache blocks before writing to the PCM-based main memory. It reduces
bit-flips and improves PCM lifetime as the amount of data written to the PCM cells becomes
lesser. However, COMF can be easily augmented with encoding techniques that promote
further reduction in bit-flips. Therefore, we propose an adaptive encoding-based technique
that encodes the compressed blocks generated by COMF to further reduce bit-flips. It
helps in boosting the PCM lifetime due to reduced write activities in the PCM cells. In
order to improve the PCM lifetime further, two intra-line wear leveling techniques are also
proposed that balance the bit-flip pressure by periodically changing the orientation and
writing positions of the compressed data in the PCM memory lines.

4.2 Chapter Overview

4.2.1 Contributions of the Chapter

The main contributions of the chapter are as follows:

• We describe in detail our proposed Word-level compression technique COMF based
on the removal of most frequently occurring words from the cache blocks.

• We propose an adaptive encoding technique on the compressed data produced by
COMF. It encodes the bits in the compressed blocks opportunistically at a finer gran-
ularity. It helps in reducing the bit-flips further. The combined technique of COMF
and Adaptive Encoding is termed as COFAE.

• We propose two wear leveling techniques in incremental fashion to balance the bit-flip
distribution within the memory lines. The first technique, called Orientation-based
wear leveling changes the orientation of writing the compressed block periodically. In
contrast, the second technique called Stride-based wear leveling changes the writing
position of the compressed blocks periodically to shift the bit-flip pressure towards the
less write activity-prone middle cells of the memory lines. This integrated solution
which combines Stride-based Wear Leveling with COFAE is termed as SWEL-COFAE.
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Figure 4.1: Architecture of the Proposed Scheme : SWEL-COFAE (Shaded Part indicates our
contribution)

• A detailed analysis of hardware overhead in terms of latency, area, and power of the
COMF compressor and decompressor is also given.

4.2.2 Chapter Organization

The rest of the chapter is organized as follows. Proposed methodology is discussed in
Section 4.3. Section 4.4 illustrates the experimental evaluation, followed by summary in
Section 4.5.

4.3 Proposed Methodology

Our proposed methodology is based on the integration of three different techniques related
to compression, data encoding, and wear leveling. The high-level view of the architecture
of the proposed methodology is shown in Figure 4.1. Our proposed compression algorithm
reduces the amount of the data written in PCM by compressing the blocks incoming to
the PCM main memory. Association of Adaptive Encoding on these compressed blocks
further reduces bit-flips in the PCM cells. Finally, the wear leveling 1 algorithm acts on

1In this work, we focus on intra-line wear leveling to improve the lifetime PCM.
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Figure 4.2: Percentage Distribution of Repeated Words

the blocks (generated after Compression and Adaptive Encoding) to balance the bit-flip
pressure within the PCM cells.

4.3.1 COMF : Word-Level Compression Scheme

The cache blocks evicted from the LLC and incoming to the main memory have many re-
peated words. These blocks can be compressed by removing the most frequently occurring
words before writing into the PCM main memory. In order to measure the percentage
of repeated words in the cache blocks, we conducted an experiment for the various PAR-
SEC [116], and SPEC 2006 [133] benchmarks. Figure 4.2 shows the percentage break up in
the number of repeated words for these benchmarks. As it is evident from the figure, most
benchmarks have a high percentage of repeated words in their cache blocks. The percentage
of words occurring between 11 to 16 times in a cache block (containing 16 words) is around
54%. Similarly, the percentage of words repeating 6-10, 3-5, 0-2 times in a cache block are
22%, 15%, and 9%, respectively. The line graph in Figure 4.2 shows the average frequency of
the Most Frequently occurring Word (MFW) in the cache blocks for different benchmarks,
which is also very high (on average=10). These highly repeated MFWs can be removed
from the cache blocks (by keeping only the first word among those and removing the later
occurrences) to compress the data.

We propose a word-level compression technique called COMF for reducing bit-flips in
the PCM-based main memory. Algorithm 3 shows the compression and decompression
algorithms of COMF. As shown in Algorithm 3, a compression bit (MFWbit) is used that
tells whether the cache block is compressible or not. A 4-bit field MFWindex is used
to store the index of the first occurrence of the MFW. Finally, a field called MFWtag,
consisting of 16 bits (1 bit/word), is used to identify whether a particular word is included
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Algorithm 3: COMF Compression-Decompression

1 nuc : Total words in the uncompressed cache line
2 buc: Uncompressed cache line data, bc : Compressed cache line data
3 MFWbit : MFW Compression bit, MFWindex : MFW index in buc
4 MFWtag : MFW tag array
5 wi : ith word inside a cache line, wMFW : Most frequent word
6 freq(wi): Frequency of the ith word, maxfreq : Maximum frequency of a word in a cache line
7 Function Compression(buc)
8 for wi ε buc , i ε 1, 2, ....nuc do
9 Calculate freq(wi)

10 Find maxfreq, MFWindex

11 if maxfreq > th then
12 bc.MFWbit = 1
13 bc.MFWindex = MFWindex
14 for ∀wiε buc do
15 if ((freq(wi)! = maxfreq)||(freq(wi)==
16 maxfreq & i == MFWindex)) then
17 bc.MFWtag[i] = 1
18 Add wi to bc
19 else
20 bc.MFWtag[i] = 0

21 return bc

22 Function DeCompression(bc)
23 for i = 1 to nuc do
24 if bc.MFWtag[i] == 1 then
25 Add next word of bc to buc
26 else
27 Add wMFW to buc

28 return buc
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in the compressed form or not. The MFWindex, and MFWtag together constitute the
meta-data inside the compressed block. For every incoming block, the frequency of the
words in the block is calculated (shown in line 9). Then, the maximum frequency of the
words (maxfreq) and the index of the MFW (MFWindex) are determined (line 10). We
allow the compression of the cache blocks in which the maximum frequency of occurrence of
a word is more than a threshold 1 th (line 11). For such cache blocks, we set the compression
bit MFWBit = 1 (line 12) and set the MFWindex with the index of the first occurrence
of the MFW (line 13). Then, with a single scan of all the words in the uncompressed block,
all the repeated MFWs are removed except its first occurrence. MFWtag for a particular
word position is set as 1 if that word is actually included in the compressed block (lines 17,
18). Otherwise, the MFWtag for a word position is set to 0 if that word is removed in the
compressed block (line 20).

During decompression, the outgoing blocks are decompressed to bring them to their
original uncompressed form. The decompression is done by scanning the MFWtag array.
If MFWtag[i] = 1 for a particular word index i, then the next word from the compressed
block is added to the decompressed block (lines 24-25), else if MFWtag[i] = 0, the most
frequent word is added as the next word (lines 26-27). Then, the decompressed block is
returned to the requester LLC (line 28). COMF is a lossless compression technique as
the compressed data can be decompressed to the exact original form using the associated
meta-data.

Working Example
Figure 4.3 shows a working example of COMF based compression and decompression scheme.
The uncompressed cache block is assumed to contain 8 words (each of 4 bytes) for illustration
purposes. The word 0X00007610 is the MFW with a frequency of 5, and it occurs for
the first time at index 2. Since MFW frequency is more than th (= 3, taken for the
example), the cache block is compressed by removing the repeated words. Accordingly,
MFWbit is set to 1, and MFWindex is set to 2. Finally, the MFWtag consisting of 8
bits are set as 11110000 since the most frequent word 0X00007610 from 4th, 5th, 6th and
7th indices are removed from the compressed block while keeping only its first occurrence
at index 2. Therefore, the original cache block consisting of a total of 256 bits reduces to
144 bits (=Metadata(16 bits)+Compression Data area (128 bits)) after compression. For
decompression, the algorithm is executed in the reverse direction by constructing the block
using the meta-data and the compressed data.

1We did extensive empirical analysis for different values of th and found that th = 8 is the optimal value
(cf. Section 4.4.2.1).
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0x54300000

Most Frequent Word=0x00007610
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MFW bit MFW indexMFW tag

Compression 
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00101 11110000 0000
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0x54300000 0x0A100010 0x00007610 0x0B200200

Figure 4.3: Working Example of COMF

4.3.2 COFAE : Proposed Adaptive Encoding on the COMF Com-
pressed Blocks

In this section, we describe our new Adaptive Encoding based technique applied on the com-
pressed blocks generated by COMF. The integrated solution of COMF and Adaptive En-
coding is termed as COFAE. We present some preliminary concepts first in Sections 4.3.2.1
and 4.3.2.2 before explaining the core idea of COFAE.

4.3.2.1 Encoding Techniques

Various data encoding techniques [43, 134] have been proposed to mitigate the issues of low
write endurance and high write energy in PCM main memories. These techniques reduce
the bit-flips in PCM by transforming the bit-streams to be written in the PCM cells. We
explain the working of one of the most popular encoding techniques, FNW [43] with an
example.

In FNW, each data block is divided into partitions, and tag bits are assigned to govern
the bit-flips within each partition. While writing new data, if the number of bit-flips in
a partition is more than half of the partition size, the new data bits are written in the
inverted form, and the corresponding tag bit is set to 1. Otherwise, the bits in the partition
are written as it is, and the tag bit is reset to 0. The number of data bits represented by a tag
bit (i.e., number of bits within a partition) is termed as Encoding Granularity. The formula
for obtaining Encoding Granularity (GranFixed) of FNW that assumes a fixed granularity is
given by the Equation 4.1, where, buc is the number of bits in an uncompressed cache block,
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Figure 4.4: Bit-flips Reduction for Varying Granularity in Non-Adaptive Encoding

and T is the number of tag bits assigned for the block.

GranFixed =
buc
T

(4.1)

Figure 4.5: Variation of Adaptive Granularity over Time (calculated using Equation 4.2)

4.3.2.2 Adaptive Encoding Granularity

Studies [43, 44, 134] show that as the Encoding Granularity becomes finer (smaller), the
reduction in bit-flips by the encoding techniques increases. We conducted experiments for
varying encoding granularities (GranFixed = 64, 32, and 16) to compare the reduction in bit-
flips achieved with respect to a baseline where no encoding technique is applied. Figure 4.4

86



Proposed Methodology

shows that the reduction in bit-flips becomes more when the encoding granularity becomes
finer. On average, reduction in bit-flips are 30%, 36%, and 46% for GranFixed=64, 32,
and 16, respectively, over the baseline where no encoding technique is applied. However,
more tag bits are needed to make Encoding Granularity finer, which increases the storage
overhead.

The traditional FNW encoding that uses a fixed encoding granularity can be made to
perform more optimally if it is preceded by a compression technique. Compression results in
reduced size of the cache blocks; therefore, the tag bits for encoding could be utilized more
efficiently by assigning them to the compressed data bits only. As a result, the number of
data bits represented by a tag bit reduces due to compression, resulting in a finer Encoding
Granularity with the same number of tag bits depending on the size of the compressed block
(more the compression is, more finer is the Encoding Granularity). We define such encoding
granularity obtained by adaptively assigning the tag bits to the compressed data as the
Adaptive Encoding granularity. Note that the fixed granularity-based Non-adaptive encoding
has to increase the number of tag bits to achieve finer encoding granularity, which increases
the storage overhead. Figure 4.5 shows the variation of Adaptive Encoding Granularity
over time when FNW encoding is preceded by COMF, where GranFixed = 32. Observing
the trends for all the benchmarks, we can say that the Adaptive Encoding Granularity is
fairly below GranFixed (i.e., finer than GranFixed) during the entire time frame of 50M
cycles. It indicates a clear edge of adopting Adaptive Encoding over fixed granularity-based
Non-Adaptive Encoding. Therefore, we can achieve substantially finer encoding granularity
(hence more reduction in bit-flips) by applying adaptive encoding over the compressed blocks
generated by COMF using fewer tag bits compared to Non-adaptive encoding. The formula
for calculating Adaptive Encoding Granularity (GranAE) is given by equation 4.2, where bc
is the number of bits after the block is compressed.

GranAE =
bc
T

(4.2)

4.3.2.3 COFAE

Our proposal COFAE applies an Adaptive Encoding technique on the compressed cache
blocks produced by COMF. It reduces bit-flips by achieving finer granularity compared to the
traditional Non-Adaptive Encoding technique. In particular, once the block is compressed
using COMF, we apply GranAE (Equation 4.2) to decide the way the block gets written to
the PCM memory.

Due to compression, some portion of the block does not get written, and hence the tag
bits need not govern them. The bit-flips will reduce as the tag will point to a smaller portion
of the block. Note that the number of tag bits is fixed, but the granularity of data that
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Figure 4.6: Working Example of Adaptive Encoding on COMF Compressed Blocks (Bits shown
in red boxes show the flipped bits with respect to the old data content)

they represent changes at runtime depending on the size of compressed data. The size of
the compressed block can be easily derived using the meta-data of COMF.

Working Example of COFAE
Figure 4.6 shows a comparison between FNW-based Non-Adaptive Encoding and Adaptive
Encoding technique-COFAE. The length of data bits is taken to be 16 bits for illustration
purposes. The bit-stream consists of 8 words (w0, w1,...w7), each of 2-bits, as shown in the
figure. One tag bit is assigned that governs all the 16 bits, accounting for GranFixed=16.
The right side of the figure shows the effect of applying adaptive encoding on the compressed
data produced by COMF. The left side of the figure shows the effect of Non-adaptive en-
coding when applied on the bit-stream without compression.

During writing the new data content, if FNW is applied on an uncompressed block
(shown on the left side of the figure), the number of data bit-flips is 7 (shown in red boxes),
which is less than GranFixed/2. Therefore, the new bits are written as it is, and the tag
bit is reset to 0 (Block labeled with Box A). The total bit-flips is 7 (Tag bit-flips+Data
bit-flips=0+7=7).

When COMF is applied to the new bit-stream, it compresses it by removing the most fre-
quent words, which happens to be words w2, w3, w5, w6, and w7 with content <10> and fre-
quency 6 (we assume compression threshold, th=3 for this example; MFW frequency(6)>th),
while keeping only its first occurrence at index 0 (w0). COMF reduces the bit-stream to 6
bits (<100100>) from an initial length of 16 bits after removal of the MFWs. Since the data
bits of only the compressed block are written in the memory, therefore, the other bits need
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not be written in the PCM array. As a result, the tag bit can be assigned adaptively to the
compressed area (first 6 bits) only, resulting in GranAE=6. The number of flipped bits in
the compressed area (=5) is more than GranAE/2. Therefore, the compressed data bits are
written in the inverted form, and the tag bit is set to 1 (Box C in Figure). It results in a
total 2 bit-flips (Tag bit-flip+ Data bit-flips=1+1=2).

Suppose we use fixed granularity (GranFixed) on the compressed data, the bit-flips (=5)
are less than GranFixed/2; it will result in a total of 5 bit-flips (Box B).

It demonstrates that our adaptive encoding approach- COFAE can reduce bit-flips to a
higher degree than the traditional Non-Adaptive encoding technique that adheres to a fixed
encoding granularity. Note that COFAE does not need to increase the number of tag bits
to achieve finer encoding granularity, unlike Non-Adaptive Encoding.

4.3.3 SWEL-COFAE : Proposed Intra-line Wear Leveling Tech-
niques

COMF reduces the size of the cache blocks to be written to a great extent. However, the
compressed portion occupies the upper half of the entire cache block, and the saved space
due to compression occupies the lower half. It creates an uneven write pressure within
the PCM cells over several writes. In order to uniformly distribute the bit-flips within the
memory lines, we propose two wear leveling techniques. Below, we discuss the techniques
in detail.

1

Compressed Area Saved Space
After W writes

Orientation bit

Saved Space

0

Compressed Area

Orientation bit

Figure 4.7: Working Example of Orientation-based Intra-line Wear Leveling

4.3.3.1 Orientation-based Wear Leveling

It periodically changes the orientation of writing the compressed lines in the PCM arrays
after a specific number of writes to the line. Figure 4.7 shows a pictorial view of the
functioning of the wear leveling technique. We keep a bit called, Orientation bit that tells
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Table 4.1: Average Bit-flip Distribution at Different Bit Positions in a Memory Line by Changing
Orientation Periodically

0
-99

100
-199

200
-299

300
-399

400
-512

Std.
Dev (σ)

Dedup 0.26 0.17 0.17 0.16 0.24 0.044
x264 0.23 0.17 0.17 0.18 0.25 0.039
Fluid 0.25 0.21 0.12 0.15 0.27 0.064
Canneal 0.29 0.18 0.13 0.16 0.24 0.062
Stream 0.22 0.16 0.15 0.20 0.27 0.047
Mean 0.25 0.17 0.14 0.16 0.26 0.048

the order of writing. If the Orientation bit is 1, the compressed line is written in the left-
to-right order, thus compressed portion occupies the upper half portion. However, after a
specific number of writes (W ), the Orientation is set to 0, and then the next writing takes
place in the right-to-left order. This periodic change in the order of writing takes place after
every W number of writes.

However, with this orientation-based wear leveling approach, the cells corresponding to
the middle bits inside a memory line 1 experience relatively lesser bit-flips than the cells
towards the two extremes of the memory line. Table 4.1 shows the distribution of bit-flips
across different zones of bit locations inside the memory lines (512-bit width) for some
representative workloads. Average normalized bit-flips in the bit positions 0-99, 100-199,
200-299, 300-399 and 400-512 bit are 0.25, 0.17, 0.14, 0.16 and 0.26 respectively, accounting
for an average standard deviation (σavg) of bit-flips across these zones equal to 0.048. It
clearly shows that the cells corresponding to the bit positions (0-99 and 400-512) towards
the two ends of a memory line experience many more bit-flips compared to the middle cells
2.

4.3.3.2 Stride-based wear leveling

The uneven writes within the memory line can be balanced further by shifting the position
from where the compressed block gets written. We call this shifted distance as the Stride
Distance, and the enhanced wear leveling technique as Stride-based wear leveling. The
integrated solution of COFAE and Stride based WEar Leveling is termed as SWEL-COFAE.
In this technique, a bit called Stride Bit is kept per cache block that tells whether the block
is to be written from the ends (when Stride Bit=0) or from the Stride Distance (when Stride
Bit=1).

1A memory line refers to an array of PCM cells where a cache block gets fitted.
2Since the compression threshold for COMF is 8 (half of the total words in a cache block, Discussed in

Section 4.4.2.1), COMF produces highly compressed blocks
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Figure 4.8: Working Example of Stride-based Wear Leveling, O: Orientation Bit, S: Stride Bit,
WC : Write Count, x: Stride Distance

Figure 4.8 shows the working of Stride-based wear leveling. While writing a compressed
block in the memory line, the Orientation Bit (O) and the Stride Bit (S) are checked.
Initially, these bits are reset to zero for all blocks. Also, the write counter (WC) associated
with the block is reset to 0. The actions taken for different combinations of O and S are
discussed below:

i) O=0, S=0: Initially, the O and S bits for a block are 0. The orientation of writing
is taken to be left-to-right (L-R) (since O=0), and the block is written from the left end of
the memory line (since S=0) (As shown in Part A of the Figure 4.8).

ii) O=0, S=1: S is set to 1 after 8 writes to the memory line. From the next write
onwards, the compressed block is written with the left-to-right orientation from the Stride
Distance (shown in Part B, Figure 4.8).

iii) O=1, S=0: After another 8 writes (a total of 16 writes) to the memory line, the
orientation of writing is changed to right-to-left. The bit O is set to 1, write count (WC) is
reset to 0, and S is reset to 0. The block is written with a right-to-left orientation starting
from the right end of the memory line (shown in Part C, Figure 4.8).

iv) O=1, S=1: After 8 writes, the S is set to 1. From the next write onwards, the
block is written in right-to-left order starting from the Stride Distance (Shown in Part D,
Figure 4.8). Finally, after 8 writes (i.e., a total of 16 writes to the memory line in right-to-left
orientation), O, S, and WC are reset to 0, and the process is repeated. Therefore, the write
pressure is distributed across all the cells of the memory line.

During a read operation, the (O, S) bit pair for the block determines the retrieval of the
correct bytes of the block from memory. Finally, the original uncompressed block is returned
after decoding and decompressing. Flowchart in the figure 4.9 shows the operations done
during read and write path by SWEL-COFAE.
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Figure 4.9: Flowchart Showing the Read Path and Write Path for SWEL-COFAE; WL : Wear
Leveling

Table 4.2: System Parameters and Benchmarks

Components Parameters

Processor 2Ghz, Quad-core, X86

L1 Cache
Private, 32 KB SRAM split I/D caches,
2-way associative, 64 B block, 1 cycle latency

L2 Cache (LLC)
Shared, SRAM, 64B block, 8-way associative
10 cycle latency, Size: 8MB

Main Memory
PCM: 4 GB, 4 channels,
Memory Controller: FRFCFS, Page size : 4KB

Memory latency [50] PCM :: Read latency: 50ns, Write latency: 150ns

(De)Compression latency
Compression Latency : 3.5 ns,
Decompression Latency : 2.65 ns

Memory Energy [21]
PCM :: Read Energy (pJ/bit): 2.47
Write Energy (pJ/bit): 14.03 (SET), 19.73 (RESET)

Benchmarks:
PARSEC: Canneal, Dedup, x264, Swaptions, Streamcluster
SPEC 2006 : lbm, mcf, leslied3d, libquantum, sjeng, bzip2, namd
Mixes: pMix 1: Canneal, Dedup, Freq, Stream ; pMix 2: Freq, Fluid, Stream, x264;
sMix 1: gobmk, lbm, sjeng, namd ; sMix 2: milc, mcf, hmmer, bzip2
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Table 4.3: Analysis of the benchmarks in terms of Memory Intensity and Word Locality :
HWL/LWL/MWL = High/Low/Medium Word Locality

Benchmark MPKI WBPKI
Word
Locality (%)

Type

Canneal 3.4 1.9 56.25 LWL

Dedup 0.34 0.23 62.5 LWL

Stream 0.8 0.7 75 HWL

Swaptions 0.02 0.03 81.25 HWL

x264 2.6 0.9 75 HWL

lbm 25 18 68.75 MWL

mcf 23 6 56.25 LWL

leslie3d 9 6 68.75 MWL

libquantum 6.9 6.8 75 HWL

sjeng 8.5 8.3 81.25 HWL

namd 0.09 0.02 43.75 LWL

bzip2 8.8 5.7 56.25 LWL

gobmk 27.82 20.59 75 HWL

milc 5.68 1.62 68.75 MWL

hmmer 0.3 0.04 37.5 LWL

4.4 Experimental Evaluation

We implemented our technique on a full system simulator GEM5[124] integrated with
NVMain[125], a cycle-accurate main memory simulator designed for NVMs. The system
parameters used in the experiments are shown in Table 4.2. We evaluated our results using
multi-threaded PARSEC [116] and multi-programmed SPEC 2006 [133] benchmark suite, as
shown in Table 4.2. We selected the workloads based on memory intensity (read/write inten-
sity) and word locality, as shown in Table 4.3. The read and write intensity are measured in
terms of Misses Per Kilo Instruction (MPKI) and Write-Back per Kilo Instruction (WBPKI),
respectively. On the other hand, word-locality is defined as the percentage frequency of the
MFW in the incoming blocks. Therefore, high-word locality of a benchmark essentially
leads to the generation of highly compressed blocks by COMF. We label the benchmarks
as High-Word-Local (HWL)/Medium-Word-Local(MWL)/Low-Word-Local 1 depending on
the word locality. The mix benchmarks are composed by considering the Write-Backs per
Kilo Instruction (WBKI) of each individual benchmark. We run each SPEC workload for
1 Billion instructions by warming them up by 250M instructions. We have taken Stride
Distance=16, i.e., 1/4th of the size of a cache block (64 bytes) for SWEL-COFAE, keep-
ing in view the highly compressed blocks generated by COMF, since it can offer maximum

1Word-locality range of HWL, MWL, and LWL are => 75%, 65− 75% and <= 65%, respectively.
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balancing of bit-flips across the PCM memory cells.

We evaluate the following schemes for analysis. Out of these, six are existing techniques:
DCW, FPC, E1, E2, E3, and READ. Note that all the schemes use DCW [42] to reduce
redundant bit-flips.

• DCW [42]: Only the modified bits of the cache blocks are written to PCM main
memories to eliminate redundant bit-flips.

• FPC [89]: It compresses the cache blocks based on patterns stored in a pattern
table. Bit-flips are reduced as the amount of data written to PCM is reduced due to
compression.

• E1 (FPC with Wear Leveling) [49]: It compresses the cache blocks by FPC[89]
and then introduces an intra-word wear leveling technique to increase the lifetime of
PCM further.

• E2 (FPC with Encoding) [50]: It compresses the cache blocks using FPC [89].
Then, it opportunistically combines encoding techniques FNW [43] or FlipMin [134],
depending on the saved space, to reduce the bit-flips.

• E3 (FPC/BDI with Encoding) [51]: For an incoming block, the sizes of the
compressed blocks generated by FPC and BDI compression are determined. Then,
the block is compressed using the compression technique that produces smaller size
block. Finally, encoding is applied on the compressed data.

• READ [44]: It reduces bit-flips in PCM-based main memories by using fine granu-
larity encoding, obtained by eliminating the writes of the clean words from the cache
blocks.

• HWL from DEUCE [39]: Performs intra-line (Horizontal) wear leveling using al-
gebraic start-gap method.

• COMF : Proposed method to compress block depending on the most frequently
occurring words in the cache block.

• COFAE : COMF augmented with Adaptive Encoding to get more reduction in bit-
flips.

• SWEL-COFAE : Combination of COFAE with stride-based wear leveling, which
helps to shift the write pressure to the middle portion of memory lines.
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Figure 4.10: Compression Ratio for BDI, FPC, COMF and Dual-phase (COMF+FPC,
COMF+BDI) (Less means more compression, Lesser is better)

4.4.1 Results and Analysis

We present results for the metrics: bit-flips, energy, lifetime, Cycles Per Instruction (CPI),
and Average Memory Access Time (AMAT). All the results are normalized over DCW.

4.4.1.1 Compression Ratio (CR)

Figure 4.10 shows the CR of BDI, FPC, COMF, and dual-phase compression (COMF+FPC,
COMF+BDI) for various benchmarks (we have given formal definition of Compression ratio
and Coverage in Section 2.3.3). It is evident from Figure 4.10 that we get a fairly good
CR for all benchmarks. Certain benchmarks like Streamcluster, Swaptions, x264 have an
impressive CR due to the high percentage of repeated words present in the cache blocks of
these benchmarks (cf. Figure 4.2). We experimentally found that, the CR of BDI=0.30,
FPC = 0.40, COMF = 0.31, and COMF+FPC=0.20, COMF+BDI=0.11 while for DCW it
is 1 since it does not use compression. Note that a lower CR indicates higher compression.

COMF outperforms FPC due to a better CR. BDI and COMF have similar CRs; how-
ever, BDI has lesser coverage [51]; meaning it is effective on a relatively smaller percentage
of blocks compared to COMF. Therefore, overall, COMF outperforms the existing methods.

Bit-flips and energy consumption mainly depend on the number of bits written in PCM.
Therefore, the effect of wear leveling is not visible in the evaluation of bit-flips and energy
calculation. Hence, we have not shown the results of E1 and SWEL-COFAE for energy and
bit-flips (as they are the same as FPC, COFAE, respectively).
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Figure 4.11: Normalized Bit-flips over DCW (Less is better)

4.4.1.2 Effect on Bit-flips and Energy Consumption

Compression reduces the number of bits written in the PCM memory, thereby saving a lot
of bit-flips. The reduction in bit-flips has a one-to-one correspondence with the reduction in
energy consumption and enhancement of PCM lifetime. Figure 4.11 shows normalized bit-
flips of various techniques over DCW. On average, the reduction in bit-flips shown by FPC,
E2, E3, READ, COMF, and COFAE are 34%, 41%, 46%, 39%, 47% and 59% respectively.

k̄COFAE = CR× k̄FNW (4.3)

Equation 4.3 shows the average bit-flips 1 when adaptive encoding, COFAE, is applied
to the compressed blocks: Since, CR < 1, therefore, k̄COFAE < k̄FNW . As per [43], we
have k̄FNW < k̄DCW . Therefore, we can conclude that k̄COFAE < k̄FNW < k̄DCW . Similarly,
worst case bit-flips for DCW and FNW are N and N/2, respectively. Whereas, the worst
case bit-flips in COFAE (= CR× (N/2)), which is scaled by CR is clearly lesser than DCW
and FNW.

COMF outperforms the other three compression-based techniques FPC, E2, and BDI/FPC-
based E3. Improvement over FPC and E2 is mainly because of its lower CR, leading to
reduced size blocks, which in turn reduces the amount of data written to the PCM and
reduces bit-flips. E3 compresses the blocks with BDI or FPC based on the resultant size
of the compressed block. Although BDI shows low CR, its low coverage forces most of
the incoming blocks to be compressed using FPC (which has high CR). As a result, our

1Average bit-flips in a memory method m is denoted as k̄m, where m can be DCW, FNW and COFAE.
Note that k̄m =

∑N
i=1 ipi, where, pi is the probability of i bit-flips. As per [43].
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Figure 4.12: Normalized Energy over DCW (Lesser is better)

technique is able to perform better than E3. On the other hand, READ encodes the blocks
adaptively without compression by avoiding the writing of the clean words. Therefore, it
cannot reduce the amount of data written to PCM, leading to poor performance compared
to FPC and COMF. Finally, COFAE attains finer encoding granularity by adaptively en-
coding the compressed blocks produced by COMF. It helps in reducing bit-flips to a higher
degree.

For PCM-based main memories, write energy plays a dominant role in the overall energy
consumption. We have given the formula for calculating energy consumption in PCM in
Section 2.3.2. Figure 4.12 shows the breakup of read and write energy for PCM, which
clearly demonstrates the dominance of write energy over read energy (On average, write
energy is 5x times more than read energy). Since, the techniques that reduce bit-flips
also reduce write energy consumption; therefore they play a significant role in reducing
overall energy consumption in PCM. As discussed above, COMF/COFAE reduce bit-flips
considerably. It helps in reducing energy consumption. Figure 4.12 shows the normalized
energy consumption by existing techniques FPC, E2, E3, READ, and proposed techniques
COMF and COFAE over DCW. The reductions in energy consumption (over DCW, for
representative benchmarks) by FPC, E2, E3, READ, COMF, COFAE are 36%, 44%, 48%
39% 48% and 61% respectively.

It is also evident from Figures 4.11 and 4.12 that the benchmarks having more compress-
ibility (i.e., higher word locality) like x264, swaptions, streamcluster show more reduction in
bit-flips. It can be observed from Table 4.4 that more reduction in bit-flips and energy con-
sumption1 can be obtained for the highly compressible benchmarks (Rows 4, 5, 6) compared
to the benchmarks showing lesser compressibility (Rows 1, 2, 3).

4.4.1.3 Effect on Lifetime

PCM-based main memories have limited write endurance, i.e., they can withstand only a
limited number of writes before wearing out completely. Similar to Non-volatile caches, the
lifetime of PCM can be defined in two different ways: Raw Lifetime and Error-Tolerant

1Measured as percentage reduction compared to DCW.
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Table 4.4: Relationship between Compressibility and Reduction in Bit-flips, Energy, CR : Com-
pression Ratio, WL : Word Locality

CR WL
%Red.
in
Bit flips

%Red
in
Energy

Row
No

Less
Compress

Canneal 0.51 56.25 40% 29% 1
Dedup 0.54 62.5 28% 15% 2
namd 0.62 43.75 42% 40% 3

Highly
Compress

Stream 0.22 75 67% 70% 4
Swap 0.3 81.25 74% 75% 5
x264 0.24 75 60% 65% 6

Table 4.5: Average Bit-flip Distribution at Different Bit Positions in a Memory Line after ap-
plying Stride-based Wear Leveling

0
-99

100
-199

200
-299

300
-399

400
-512

Std.
Dev (σ)

Dedup 0.21 0.18 0.20 0.21 0.20 0.012

x264 0.21 0.20 0.19 0.21 0.19 0.01

Fluid 0.18 0.20 0.22 0.19 0.21 0.015

Canneal 0.19 0.20 0.20 0.19 0.22 0.012

Stream 0.22 0.21 0.18 0.19 0.20 0.015

Mean 0.20 0.19 0.19 0.20 0.20 0.005

Lifetime. In this work, we focus on improving the raw lifetime since it is the base for
error-tolerant lifetime [74] (For details, kindly refer to Section 2.3.1).

COMF enhances the PCM lifetime by reducing bit-flips in the PCM cells. The reduction
in bit-flips is more for COMF than FPC, E2, E3, and READ (explained above). The addition
of adaptive encoding (COFAE) and stride-based wear leveling to COFAE (SWEL-COFAE)
catalyzes the lifetime improvement to a further extent. Compared to the orientation-based
wear leveling (cf. results from Table 4.1), the stride-based wear leveling shifts the bit-
flips towards the less write activity-prone middle cells of the memory lines, which gives
a better balance of bit-flips within the PCM cells. As shown in Table 4.5, the average
normalized bit-flips in the bit positions 0-99, 100-199, 200-299, 300-399 and 400-512 bit are
0.20, 0.19, 0.19, 0.20 and 0.20 respectively (with σavg=0.005). An achievement of a fairly
uniform distribution compared to the previous uneven distribution : 0.25, 0.17, 0.14, 0.16,
0.26 (with σavg=0.048, from Table 4.1). In particular, Stride-based wear leveling achieves a
reduction of 89% in average standard deviation (σavg) of bit-flips across the bit positions over
orientation-based wear leveling. This uniformity in the bit-flips reduces maximum writes to
the individual cells and leads to an eventual improvement in the PCM lifetime. Table 4.6
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Table 4.6: Bit-flips, IntraV and Lifetime improvement of Stride-based over Orientation-based
Wear Leveling

Benchmarks
%Reduction

in peak bit-flips
% Reduction

in IntraV
%Lifetime

Improvement

Canneal 32 18 12

Dedup 20 40 22

x264 14 25 27

Fluid 39 42 32

Stream 10 22 6

Mean 20 30 17

shows the percentage reduction in peak bit-flips and IntraV 1and the eventual improvement
in lifetime by stride-based over the orientation-based approach. On average, the reductions
in maximum writes and IntraV are 20% and 30%, respectively, whereas the improvement in
lifetime is 17%.

SWEL-COFAE outperforms DEUCE-based Horizontal Wear Leveling (HWL) with an
improvement of 11% over HWL. The rotation amount2 defined in HWL is same for all the
blocks, and it changes very slowly depending on a Start pointer. Therefore, it can not evenly
distribute the bit-flips within the blocks that face frequent writes. On the contrary, SWEL-
COFAE uses a more localized policy where rotation amount is defined for individual blocks,
which changes depending on the number of writes issued to a particular block. Therefore,
the bit-flips within the memory lines can be more evenly distributed by SWEL-COFAE than
HWL.

Finally, the improvement in lifetime for E1, E2, E3, READ, HWL and SWEL-COFAE
over DCW are 50%, 39%, 57%, 58%, 81% and 101% respectively (shown in Figure 4.13).
A variant of application of our proposal could be to perform wear leveling (i.e., position of
block writing) before encoding. This gives similar results to performing encoding followed

1Defined in [74] for Intra-set write variation LLC and re-written for Intra-Block write variation (IntraV)
for NVM in [111], where BFi, j is the write count of cell j in block i, and BFavg is the average bit-flips
count and N is the total number of blocks.

IntraV =
1

BFavg.N

N∑
i=1

√√√√√√∑512
j=1

(
BFi,j −

∑512
j=1BFi,j/512

)2

511
(4.4)

2Rotaion amount is determined using pointers Start and Gap that point to a starting memory line and
a dummy gap line, respectively. Gap pointer along with the gap line moves to the neighboring line after a
certain number of writes to the bank. Start is incremented when Gap pointer makes a complete tour of all
the memory lines in the bank. Rotation amount = Start′ %Bits in line, where Start′ equals (Start+1) if
the Gap has already crossed the line, otherwise Start is equal to Start.
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Figure 4.13: Normalized Lifetime over DCW (More is better)

by wear leveling, as the main impact is from size reduction due to block compression.

4.4.1.4 Effect on System Performance

Cycles Per Instruction (CPI)
Lesser CPI indicates an improvement in the system performance. Compression helps in
quicker delivery and writing of compressed data on read and writes, respectively. Therefore,
the large main memory read and write latencies can be very well reduced with compression.
Results related to performance are shown in Figure 4.14. Since COMF achieves a better CR
than FPC, therefore savings in main memory read and write cycles due to compression will
be more for COMF/COFAE. This minimization of write bits improves the access speed by
reducing the response time, which in turn improves the performance. On the other hand,
in the case of READ, the reduction in bit-flips is not as high as COMF/COFAE. Therefore,
the improvement shown by READ is lesser compared to COMF/COFAE. BDI/FPC-based
compression in E3 brings less benefit as the selection done between the two methods depends
on the CR as well as coverage. On average, the techniques FPC, E2, E3, READ, COMF,
and COFAE improve CPI by 18%, 20%, 21%, 19%, 21%, and 25% over DCW, respectively.
In particular, COFAE uplifts the performance by 4% over COMF.

Benchmarks having high write intensity (lbm, mcf, leslie3d, sjeng) show higher improve-
ments in CPI than the benchmarks with low write intensity (dedup, stream, swap, x264,
bzip2). COFAE reduces the write service time due to high compression, leading to improved
CPI for write-intense benchmarks. Furthermore, COFAE also shows high improvement in
performance for benchmarks (mcf, bzip2, leslie3d) where the reads are much more than the
writes. This is due to the reduced read service time of the compressed blocks stored in
PCM. In particular, the performance improvement shown by COFAE for benchmarks with
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Figure 4.14: Normalized CPI over DCW (Lesser is better)

high write intensity, low write intensity and when reads are much more than writes are 31%,
14%, and 22%, respectively. High degree of compression, decent coverage of COMF, and
adaptive encoding make COFAE robust enough to perform well in all these scenarios com-
pared to other compression-based techniques where the degree of compression (e.g., FPC)
or coverage (e.g., BDI) is low.

Average Memory Access Time (AMAT)
AMAT gives the average estimated time taken to deliver the data items from the memory
hierarchy. Compressed blocks stored in the PCM arrays can be delivered quickly, reducing
the LLC miss penalty. COMF outperforms FPC and BDI in reducing AMAT. Compared
to FPC, COMF produces smaller blocks, owing to its smaller CR. On the other hand,
although BDI shows comparable CR with COMF, the percentage of blocks compressed by
BDI is lesser.

As shown in Figure 4.15, shows AMAT for BDI, FPC, and COMF normalized over
DCW. Reduction in AMAT by BDI, FPC, and COMF is 42%, 57%, and 64% over DCW,
respectively. Comparison of AMAT is shown only for compression techniques because the
reduction in block size affects AMAT, whereas the encoding techniques do not reduce block
size, and hence we do not show AMAT results for COFAE and other methods.

4.4.2 Comparative Analysis

In addition to the above results, we also provide results related to varying compression
threshold, number of encoding tag bits and cache block size for better comprehension of our
proposed technique.
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Figure 4.15: Normalized AMAT Over DCW (Lesser is better)

Table 4.7: Effect of Varying Compression Threshold on Compression Ratio (CR) and Latency
Overhead; Benchmarks are classified based on write intensity as Low (L), Medium (M), High (H)

th= 4 th= 8 th= 12

CR
%Latency
Overhead

CR
%Latency
Overhead

CR
%Latency
Overhead

Canneal (H) 0.38 3.9 0.51 2.4 0.6 1.12
Dedup (M) 0.46 3.7 0.54 3.1 0.73 2.2
Freqmine (L) 0.45 3.1 0.52 2.3 0.56 0.88
Fluid (M) 0.25 3.6 0.35 2.1 0.4 1.54
Stream (L) 0.15 3.9 0.22 3.7 0.35 3.3
Swaptions (L) 0.13 4.6 0.3 4.4 0.4 3.9
x264 (M) 0.15 3.8 0.24 3.5 0.34 3.3
Mean 0.25 3.8 0.37 2.9 0.47 2
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Table 4.8: Effect of different number of Tag Bits on Storage Overhead and Bit-flip reduction for
Non-Adaptive Vs. Adaptive Encoding

Tag Bits
%Storage
Overhead

Non-Adaptive
Encoding-FNW

Adaptive Encoding
-COFAE

Gran
%Red.
In
Bitflips

Gran
%Red.
in
Bitflips

8 1.56 64 44 25 51
16 3.12 32 49 12 58
32 6.25 16 56 6 66

4.4.2.1 Compression Threshold of COMF

COMF uses a threshold (th) to decide whether a block is compressible or not. If the
frequency of the MFW in a block is more than th, the block is compressed. Otherwise, the
block is written in PCM without compression. However, there exists a trade-off between
the CR and latency overhead associated with the compression/decompression. For lower
values of th, the number of blocks compressed by COMF increases, which leads to a smaller
CR. A smaller CR indicates that the average size of the cache blocks becomes smaller
after compression, which helps in reducing the bit-flips and energy consumption in PCM.
However, the delay associated with compression/decompression increases with the increase
in the number of compressed blocks. It is evident from Table 4.7 that as th increases, the
latency overhead decreases but at the cost of an increased CR. On average, for th = 4, 8, and
12, the CR are 0.25, 0.37, and 0.47, respectively, whereas the percentage latency overhead
are 3.8%, 2.9%, and 2%, respectively. For th = 4, CR is lowest but, latency overhead is
highest; while for th = 12, the scenario gets reversed with lowest latency overhead and
highest CR. Therefore, we decided to take th = 8 for our experiments that best balances
the inherent trade-off between CR and latency overhead.

4.4.2.2 Comparison of Non-Adaptive Vs Adaptive Encoding for Different Num-
ber of Tag Bits

Adaptive Encoding on the compressed blocks leads to finer granularity compared to its Non-
Adaptive counterpart. In order to give an average estimate of the Encoding Granularity
achieved using Adaptive Encoding, we define a term called Effective Granularity (Graneff )
as follows:

Graneff =
buc
T
× CR = GranFixed × CR (4.5)
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Table 4.9: Compression Ratio (CR) Vs Compression/Decompression Latency Overhead (OH) for
Different Cache Block Sizes

Block Size=64 B Block Size=128 B

CR OH CR OH

th=4 0.25 3.8 th=12 0.22 5.7

th=8 0.36 2.9 th=16 0.34 4.8

th=12 0.46 2 th=20 0.44 3.6

Table 4.10: Non-adaptive-FNW Vs Adaptive-COFAE for Varying Cache Block Size; %RB :
% Bit-flip reduction over DCW ; SO : Storage Overhead; GF : Fixed Encoding Granularity
(GranFixed) ; Ge : Effective Encoding Granularity (Graneff )

Block Size=64 bytes Block Size=128 bytes
FNW COFAE FNW COFAE

SO GF %RB Ge %RB SO GF %RB Ge %RB
Tag=8 bits 1.56% 64 44 25 51 Tag=16 bits 1.56% 64 38 24 46
Tag=16 bits 3.125% 32 49 12 58 Tag=32 bits 3.125% 32 42 14 52
Tag=32 bits 6.25% 16 56 6 66 Tag=64 bits 6.25% 16 48 8 62

where CR is the Compression Ratio (buc and T are defined in equation 4.1, CR is
calculated using Equation 2.5). As GranFixed = buc/T (as defined in Section 2.2.1), we can
also write the equation using GranFixed.

The numerator (buc × CR) in the Equation 4.5 gives the average number of bits in
a compressed block. Therefore, Graneff essentially denotes the average number of bits
in the compressed blocks that are represented by one tag bit. In other words, Graneff

gives a representational value of the average Adaptive Encoding Granularity to gauge the
effectiveness of the Adaptive Encoding utilized by COFAE.

Table 4.8 shows the effect of different number of tag bits on storage overhead and bit-flip
reduction for Adaptive Vs. Non-Adaptive Encoding. It is evident from the table that using
the same number of tag bits, Graneff achieved by adaptive encoding is finer compared to
the GranFixed. As a result, the reduction in bit-flips is more for our proposed Adaptive En-
coding based scheme-COFAE than the Non-Adaptive Encoding-FNW. It is also interesting
to observe from Table 4.8 that the reduction in bit-flips achieved by COFAE is better than
the reduction achieved by FNW even after using twice the number of tag bits (compared
to COFAE). For example, the reduction in bit-flips by COFAE is 51% using only 8 tag bits
(i.e., storage overhead due to tag bits = 1.56%), whereas FNW is able to achieve a similar
reduction of 49% by using 16 tag bits (storage overhead =3.12%). It establishes the fact
that our Adaptive Encoding can achieve much more bit-flip reduction than Non-Adaptive
Encoding at a relatively lower storage overhead.
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Table 4.11: Percentage Reduction in Bit-flips
and Energy on Supplementing COFAE with FPC
and SAE

Techniques
%Reduction
in Bit Flips

%Reduction
in Energy

FPC 34 34
E2 41 42
E3 47 47
READ 35 35
COMF 47 48
COMF+SAE 50 52
COFAE 59 61
COFAE+SAE 63 64
COFAE+FPC 65 67

Table 4.12: Effect on Lifetime on Supplement-
ing SWEL-COFAE with FPC

Technique Lifetime
DCW 1
E1 1.52
E2 1.40
E3 1.61
READ 1.56
SWEL-COFAE 2.01
SWEL-COFAE+FPC 2.28

4.4.2.3 Change in the Cache block size

Effect on Compression Threshold : Table 4.9 shows the relation between CR and compres-
sion/decompression latency overhead for different block sizes. High compression thresholds
are needed for 128 byte blocks in order to maintain a similar CR and latency overhead as
that of 64 byte blocks. It is also evident from the table that threshold (th=16) equal to half
the number of words (32 words in 128 byte block) in the block balances the trade-off between
CR and latency overhead (discussed in Section 4.4.2.1) in the best possible manner, similar
to 64 byte block where the threshold is set to 8. Higher latency overhead for 128 byte blocks
is due to high compression/decompression latency involved in compressing/decompressing
large size blocks.

Effect on Tag Bits used for Encoding : Table 4.10 shows the reduction in bit-flips by Non-
Adaptive-FNW Vs. Adaptive-COFAE for 64 byte and 128 byte blocks. It can be seen from
the table that the number of tag bits used should be double for 128 byte blocks compared
to 64 byte blocks for similar storage overhead, effective encoding granularity (Graneff ), and
reduction in bit-flips. Similar to 64 byte blocks, COFAE outperforms FNW for 128 byte
blocks also in reducing bit-flips, since the degree of compression gets maintained for larger
blocks also, which results in finer granularity encoding for compressed blocks.

4.4.3 Effect of supplementing COMF/COFAE with FPC and SAE

COMF compresses the cache blocks at a word-level granularity. However, it can be easily
integrated with the compression techniques that operate on the bit-level granularity, making
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COMF a dual-phase compression scheme 1. We integrate FPC [89], a popular bit-level
compression technique on top of COMF as the second phase of compression. Out of many
bit-level compression techniques, we have selected FPC because of its low implementation
and storage overhead. FPC compresses the words within a cache block based on the data
patterns stored in a table.

When COFAE is backed by FPC, it leads to more reduction in bit-flips, energy consump-
tion, and more longevity of PCM main memory. Tables 4.11 and 4.12 show the effect of using
FPC as a second phase compression. Reduction in bit-flips and energy consumption when
FPC is augmented with our proposed scheme are 65% and 67% over DCW, respectively,
while improvement in lifetime is 128%. More specifically, SWEL-COFAE, on integration
with FPC achieves reduction of 47% in bit-flip, 37% in energy, and lifetime improvement of
49% over FPC-only technique.

Sequential flips Aware Encoding (SAE) [44] technique can also be integrated on top of
COMF and COFAE to reduce bit-flips further. SAE helps in reducing the bit-flips in the
tag area by selecting the appropriate encoding granularity, which otherwise may be high
when fine granularity encoding is applied. The results of augmenting SAE on top of COMF
and COFAE are shown in Table 4.11. Both COMF and COFAE show improvement in
effectiveness when SAE is augmented with them.

4.4.4 Overhead Analysis

Storage Overhead: SWEL-COFAE needs a total of 19 bits of meta-data (1 compression
bit for COMF, 16 bits for encoding tags, and 2 bits (i.e., 1 orientation bit and 1 stride
bit) for stride-based wear leveling) per cache block. Therefore, the storage overhead of
SWEL-COFAE is 19

512
∗ 100% = 3.7%.

Hardware Overhead Analysis: We implemented the design of COMF Compressor/ De-
compressor module in synthesizable Verilog Hardware Description Language (HDL). We
then performed placement aware logic synthesis in Genus Synthesis Solution from Ca-
dence (15nm technology node). The obtained latency, power, and area values of Compres-
sor/Decompressor are shown in Table 4.13. Table 4.14 shows the area, power and latency
values in two technology nodes (15nm, 45nm) for a better comparison. The latencies are
very small compared to the large main memory latency, so they have little impact on per-
formance. The compressor/decompressor hardware occupies 0.16% of a standard memory
controller like the one mentioned in [135, 136], at 15nm technology node. Finally, as COFAE
uses adaptive encoding compared to static encoding of FNW, it needs 1.16x and 1.19x more
area and power, respectively, compared to FNW.

1The rationale behind supplementing FPC with COMF is to show the ease of integration of COMF with
any existing compression technique, although COMF alone provides nice compression.
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Table 4.13: Latency, Area and Power Analysis of the COMF hardware

Compression Decompression
Latency (ns) 3.5 2.65
Area (µ2) 2252.46 75
Total Power (mW) 0.788 0.062

Table 4.14: Latency, Area and Power Analysis of the COMF hardware for 15nm and 45nm nodes

COMF @ 45nm COMF @ 15nm
Latency (ns) 8.43, 6.43 3.5, 2.65
Area (µ2) 13500 2252.46
Power (mW) 5.42 0.788

Table 4.15: Comparison of Storage Overhead, Normalized Bit-flips, Energy and Lifetime over
DCW

Technique
Overhead
(%)

Bit-flips Energy Lifetime

DCW 0 1 1 1
E1 6.25 0.66 0.65 1.52
E2 0.2 0.59 0.58 1.40
E3 0.4 0.53 0.54 1.61
READ 7.8 0.65 0.64 1.56
SWEL-COFAE 3.7 0.42 0.41 2.01
SWEL-COFAE+FPC 3.9 0.35 0.33 2.28
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4.4.5 Comparison of Capacity overhead, Bit-flips, Energy and
Lifetime

Table 4.15 shows a comparative analysis for DCW, E1, E2, E3, READ, SWEL-COFAE, and
when dual-phase compression is applied by supplementing COFAE with FPC[89] (SWEL-
COFAE+FPC). SWEL-COFAE alone shows improved results in terms of bit-flips, energy,
and lifetime while incurring comparable/better capacity overhead (3.7%) than other meth-
ods. Combining COFAE with FPC and wear leveling (SWEL-COFAE+FPC), we get even
better improvements in terms of bit-flips, energy, lifetime, and performance. The increase
in storage overhead when our proposed technique is supplemented with FPC is very less (an
increase from 3.7% to 3.9%).

4.4.6 Discussion

FPC-based techniques like [49, 50] show poor compressibility and high meta-data overhead.
On the other hand, COMF provides more compressibility at a relatively lower meta-data
overhead, leading to reduction in bit-flips in PCM. COFAE reduces bit-flips to a further
extent by associating Adaptive Encoding on the COMF compressed blocks. Advantages of
COFAE with FNW[43] is discussed in Section 4.3.2.2. COMF/COFAE can be made more
effective by augmenting SAE[44] on top of them. Finally, SWEL-COFAE that integrates
COFAE with stride-based wear leveling turns out to be more effective in balancing the
intra-line bit-flips than the state-of-the-art wear leveling techiques RNW [97] and HWL
[39] (comparison between SWEL-COFAE and HWL is provided in Section 4.4.1.3). SWEL-
COFAE also provides better uniformity of bit-flips than RNW as RNW leads to an increased
write pressure in one half of memory line where the compressed data gets written.

4.5 Summary

Non-volatile memories are promising candidates for constructing high-density and energy-
efficient main memories. However, downsides like limited write endurance and high write
energy thwart their scope of adoption. In this chapter, we propose a word-level compres-
sion technique called COMF to reduce bit-flips in PCM-based main memories. COMF is
augmented with an adaptive granularity-based encoding that reduces bit-flips to a greater
extent. The combined technique of COMF and Adaptive Encoding is termed as COFAE. In
order to improve the PCM lifetime further, we propose an intra-line wear-leveling technique
with COFAE that distributes the intra-line bit-flips by periodically changing the orientation
of writing and shifting the bit flip pressure towards less write activity prone middle cells.
The integrated solution of COMF, Adaptive Encoding, and Stride-based wear leveling is
termed as SWEL-COFAE.
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Experimental results show that SWEL-COFAE reduces bit-flips by 59%, 35%, 28%, 36%
; reduces energy consumption by 61%, 19%, 14%, 22% and improves lifetime by 101%, 22%,
27%, 19% over DCW and three state-of-the-art techniques E1 [49], E2 [50] and READ [44],
respectively, while incurring a smaller capacity overhead of 3.7%. Thus, seeking newer
avenues of data compression, paired with wear leveling, can assist in the longevity of PCM-
based main memories.
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5
Pop-Crypt : Reducing Encryption Overhead
in NVMs by Identification of Popular Words

The non-volatility feature of the NVMs may lead to stealing of the sensitive data stored in
NVMs due to their prolonged data retention. Memory encryption turns out to be a viable
option to provide data security. However, the existing encryption techniques, on account
of their diffusion property, increase the number of bit-flips in the NVM cells, thus leading
to their early wear out. Therefore, security and lifetime issues of the NVMs are difficult
to go hand in hand. In this chapter, we identify words that are repeated across several
memory blocks and term them as popular words. The proposal is to avoid the encryption
of the popular words by maintaining them in a reference table. In our proposal, Pop-Crypt,
every block to be written to the memory gets partially encrypted in which the popular
words are replaced with pointers to the reference table, and other words get encrypted.
The partially encrypted blocks reduce the number of bit-flips in PCM, thereby improving
its lifetime significantly. Experimental results show that Pop-Crypt considerably improves
lifetime, energy consumption, and system performance over baseline and state-of-the-art
techniques.

5.1 Introduction

The non-volatility feature of the NVMs offers help in dealing with the power/system failures,
check pointing improvement [137], and reducing applications start-up [138]. However, due
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Figure 5.1: AES-based Counter Mode Encryption

to non-volatility, the data in NVMs remain persistent even after the system is powered
down. Therefore, an attacker having physical access to an NVM DIMM can easily stream
out confidential data. This type of attack is called Stolen DIMM attack [39, 40]. Encryption
offers a firm security guarantee to the data against such attacks. AES-based counter mode
encryption (CME) [39, 113] has been adopted in NVM premises due to its low decryption
penalty. CME uses a counter, a secret key (stored securely in the processor-side memory
controller), and the line address to generate a One Time Pad (OTP). The OTP is XORed
with the plain text/cipher text to obtain the cipher text/plain text, as shown in Figure 5.1.

However, encryption shows diffusion property [39], i.e., changing even a small number
of bits in the plain text results in enormous bit-flips in the generated cipher text. These
write-activities tend to shorten the NVM lifetime severely. Unfortunately, the commonly
used techniques like DCW, FNW to reduce bit-flips do not show impressive outcomes for
encrypted memories. Therefore, there is a strong need to develop solutions that control
the deterioration of the lifetime of encrypted NVMs due to the diffusion property of the
encryption techniques. Existing techniques DEUCE [39] and SECRET [40] partially encrypt
the incoming cache lines by avoiding the encryption of the unmodified words. However, these
methods need occasional re-encryption of the whole cache blocks, which increases bit-flips.
In this contribution, we take a different approach to avoid encryption of the frequently
occurring words that are repeated across the cache blocks. This is done by maintaining a
table of such words and writing the index for the word from this table in the respective word
position instead of encrypting it while writing the block in PCM. Our experimental results
confirm that many words present in the incoming cache lines to PCM are repeated with a
high frequency across the cache lines. We call these words as Popular Words and collect
them in a table called Popular Word Table (PWT) inside the memory controller for future
reference. The encryption of these popular words can be skipped during block encryption,
which reduces bit-flips in PCM. Since the set of popular words varies across applications, a
period known as the training period is explicitly dedicated to collect the popular words in
the PWT. The PWT is updated at runtime to contain the collection of the most popular
words during the entire period of execution.
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Figure 5.2: Percentage Frequency Distribution of the Popular Words

5.2 Chapter Overview

5.2.1 Contributions of the Chapter

The main contributions of the chapter are as follows :

• We propose a technique called Pop-Crypt that avoids the encryption of the frequently
occurring words (popular words) in the incoming cache lines. It reduces bit-flips in
the PCM cells significantly.

• We have provided necessary sensitivity analysis on determining the suitable size of
the PWT, selecting the appropriate word length, and the length of training interval
of Pop-Crypt.

5.2.2 Chapter Organization

The rest of the chapter is organized as follows. The motivation is presented in Section 5.3.
The proposed methodology is discussed in Section 5.4. Section 5.5 illustrates the experi-
mental evaluation, followed by summary in Section 5.6.

5.3 Motivation

There exists a high degree of word-level redundancy in the data blocks that get written to
the main memory. The data blocks are modified by the applications and travel through the
memory hierarchy. In particular, these data blocks are the cache lines evicted by the Last
Level Cache (LLC). Our experimental results confirm the existence of some highly frequent
words across these cache lines coming to PCM. We divide the words as hot, warm, and
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Figure 5.3: Percentage Count of Popular Words

cold if their frequency of occurrence is more than 500, between 100-500, and less than 100,
respectively, during application execution. Note that we determine these thresholds based
on the frequency of the words across several benchmarks. Figures 5.2 and 5.3 show the
percentage distribution of frequency and counts of the hot, warm, and cold words, respec-
tively. It is evident from Figure 5.2 that the frequency of hot words dominates the frequency
of warm and cold words (On average, 82%, 6%, and 12%, respectively). Interestingly, the
count of hot words is very less compared to the warm and cold words, as can be seen clearly
in Figure 5.3 (On average, 14%, 12%, and 74%, respectively). These figures show that the
words that occur with high frequency are very few. We term such highly frequent words as
popular words. These popular words can be maintained in a small table for future reference.
When the incoming cache blocks are encrypted before writing to PCM, the encryption of
the popular words inside the cache blocks can be skipped1. When these Partially Encrypted
Cache Blocks (PEB) are written to PCM, a lot of bit-flips are saved, thereby enhancing the
lifetime of PCM.

5.4 Proposed Methodology

In this section, we will first explain the architecture of our proposed methodology. Then,
we will describe in detail the working principle of our proposed technique : Pop-Crypt.

1Pop-crypt partially encrypts the popular words present within the incoming cache blocks. However,
the non-popular words remain encrypted in their previous encrypted state. Hence, when an adversary scans
the entire block, he will still find the entire block in encrypted state.
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Figure 5.4: Architecture of the Proposed Technique : Pop-Crypt

5.4.1 Architecture

Figure 5.4 shows the architectural view of Pop-Crypt. We extend the memory controller by
incorporating an AES engine for encryption/decryption. A counter cache is maintained to
improve performance that stores the counters of the recently accessed blocks. The frequent
words are kept in the Popular Word Table (PWT). A Popular Word Training Table (PWTT)
is used for collecting the information regarding the newly popular words. A small storage
called Pointer Pool keeps the memory addresses of the blocks containing the PWT indices.

Pop-Crypt partially encrypts the incoming cache blocks by skipping the encryption of
the popular words in them. The words of an incoming block are searched in the PWT
(shown by arrow A1). Encryption of the popular words is skipped by keeping only their
PWT index in the respective word position (shown by A2). On the other hand, the non-
popular words are encrypted by XORing them with the respective bits of the generated
OTP. A Bit Presence Vector (BPV) (dedicating 1 bit per word) is formed to keep track
of the popular/non-popular words inside a block. The BPV and PWT indices help in
identifying the popular words during the decryption process. PWTT keeps information of
the other frequent words that have a high chance of becoming popular in the near future.
A new word with high frequency is declared popular and brought to PWT (shown by B1)
by replacing the cold Least Recently Used (LRU) entry in the PWT (Shown by B2). The
blocks that share the evicted cold word from PWT are re-encrypted using the addresses
stored in the pointer pool (shown by B3). We term the blocks that contain the indices of
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PWT for popular words and encrypted non-popular words as Partially Encrypted Blocks
(PEBs). Since the frequency of the popular words is high, the PEBs contain many words
whose encryption are skipped, leading to a reduction in bit-flips in PCM.

5.4.2 Proposed Technique : Pop-Crypt

Pop-Crypt aims to reduce bit-flips in PCM by skipping the encryption of popular words
present inside the cache lines. In order to maintain the collection of the popular words,
we need certain data structures that get updated at runtime. In this section, we briefly
elaborate on these data structures, the process of constructing the PWT, and its use during
normal execution.

5.4.2.1 Data structures used

Below we describe the data structures used by our technique : PopCrypt.

(a) Popular Word Table (PWT)
It is a small table with 64 entries 1 containing the information of the most frequently accessed
words present in the incoming cache lines to PCM. The various fields of a PWT entry are :

• Word : The popular word which is 32 bits in length.

• Frequency: It is a 16-bit field that gives the frequency of occurrence of the corre-
sponding word.

• Timestamp: The time at which the word last appeared in an incoming cache line to
PCM.

• Hot bit: 1-bit field that indicates that the word’s frequency is more than a predefined
threshold. The word is declared as a hot word.

• Valid bit: 1-bit field that indicates whether the PWT entry is free (0) or allocated
(1).

• Pointer to Address list: A 10-bit pointer to the address list associated with cold
word entry.

(b) Popular Word Training Table (PWTT)
It collects the information of the newly popular words. The entries have the same fields

1We give sensitivity analysis on various sizes of PWT in Section 5.5.2.1
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Figure 5.5: Flowchart of the Working of Pop-Crypt

(except the pointer to address list field) as the PWT. We keep the size of PWTT (512-
entries) sufficiently high relative to PWT to accommodate the information of a large number
of newly popular words.

Since the popular words are distinct across the applications, we use an initial training
(of length 100M cycles 1) phase at the beginning of application execution to identify the
popular words. Accordingly, we divide the execution of Pop-Crypt into two phases: 1)
Training Phase 2) Normal Execution. At the end of the training phase, the popular words
are identified, and PWT is updated. However, certain new popular words may get identified
beyond the training phase. Our policy keeps updating the PWT at runtime with the help
of the PWTT in order to include such newly popular words in the PWT. Figure 5.5 gives
the overall working steps of Pop-Crypt.

(c) Pointer Pool
The hot words in the PWT are found in abundance in memory, and we do not keep track
of which addresses have used these hot words. However, for cold words, we keep track of
the addresses using them. This is done so that in case we need to replace a cold word with
another word in the PWT; we will have to re-encrypt the addresses using this cold word.

1We give a sensitive analysis in Section 5.5.2.2 on setting the duration of training phase as 100M cycles.
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The addresses are maintained as list of pointers. To keep the storage overhead to an optimal
value, the storage required for such pointers is maintained as a pool of pointers, called the
Pointer pool. Whenever a cold word is evicted, the addresses sharing it are re-encrypted,
and the pointer storage is freed. These free pointer locations can be used by newer cold
words in the PWT.

This process is done in the background without hampering normal read/write opera-
tions to reduce its effect on system performance. Also, our experiments reveal that the
likelihood of PWT evictions after the training phase is very low (Refer to Section 5.5.2.4
and Table 5.3). When the memory pages are relocated to different memory regions/swapped
to disk, the pointer pool is updated by updating the lists associated with the PWT entries
to reflect the new memory addresses. Each entry in the pointer pool has the following fields:

1. Free bit : It tells whether the entry contains the address of a memory block (with Free
bit=0) or free (Free bit=1).

2. Physical address of the memory block containing a popular word if Free bit=0, else
that field is empty.

3. Next Index field that points to the next entry in a list.

5.4.2.2 Steps During Execution

The PWT is constructed by following a training period. Once the training interval is
completed, the PWT is used for normal operations. Note that the training using PWTT
continues in the background during normal operation to identify newer words (if any) to
update the PWT.

1) Training Phase
In this phase, popular words are collected in the PWT using the PWTT (shown as rectangle
A.1 in the flowchart in Figure 5.5). For any incoming cache line, its words are searched in
the PWTT for a match. On finding a match in an entry in the PWTT, the corresponding
frequency field of the entry is incremented. On the other hand, if the word is not found in
the PWTT, a new entry for the word is created by removing the least frequent entry from
the PWTT. At the end of the training phase, PWTT contains the entries of the topmost
512 frequent words. Out of these, the top 64 word entries are copied to the PWT so that it
contains the top 64 most frequent words (Rectangle A.2 in Figure 5.5).

Reliability of PWT: Keeping in view the possible loss of the PWT and pointer pool
contents during a system power off, their backup is taken (in encrypted form) in PCM after
the training phase is over. Any subsequent updates in PWT and pointer pool are also
sent to the PCM storage during idle time slots (i.e., when the memory requests are less).
Note that PWT gathers popular words of all the applications running concurrently in the
system. Our experiments reveal that some highly frequent popular words are shared across
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different benchmarks (12%-17% for the workload Mixes) which remain present in the PWT
even after the context switches. Also the popular words belonging to different applications
change infrequently after the training phase (kindly refer to Figure 5.13 and Section 5.5.2.2).
Therefore, context switch of the running applications do not impact the performance of Pop-
Crypt. Note that, dictionary compression techniques compress data based on the frequent
values present in the dictionary. However, many of such techniques [139, 140] are non-
adaptive in nature which build their dictionary statically via profiling or by using a training
period for a small duration of time to gather the frequent values. On the other hand, the
adaptive approach incurs high overhead as the evicted entry leads to further updates in the
data items that refer to the evicted entries [141, 142]. Pop-Crypt adaptively updates the
PWT without degrading the performance.

2) Normal Operation
At the beginning of normal operation, the words collected in the PWT during the training
phase are considered as cold word. We declare a cold word as hot if its frequency is more
than a threshold. Although the popular word entries in the PWT are identified during
the training phase, some newly popular words continue to enter the PWT (as cold words)
beyond the training phase. In such circumstances, we need to make room in the PWT by
evicting the LRU entry among the existing cold entries. As this entry has been used during
the PEB construction, it would create problems during the decryption of the PEBs that
contain the index of this to be evicted PWT entry. We remove this probable anomaly by
maintaining addresses of the memory blocks that contain the indices of cold PWT word
entries. A list of addresses of the PCM blocks sharing a cold word is maintained for its
corresponding PWT entry using the nodes of the pointer pool. In particular, the lists of
addresses are maintained only for the cold word entries since the cold words are more prone
to eviction from the PWT than the hot word entries. Also, the associated addresses that
share a cold word are very few. After the end of the training phase, the PEB construction
(B.1 in Figure 5.5) or PEB decryption (B.2 in Figure 5.5) takes place depending on the type
of request (write/read) coming to the memory controller.

5.4.2.3 Partially Encrypted Block (PEB) Construction and Decryption

(1) PEB Construction
Algorithm 4 describes the detailed procedure of the steps to be taken once an evicted cache
block (b) from LLC reaches the memory controller. The various operations related to PEB
construction are discussed below.

The OTP is generated using the counter associated with the cache block (b), its address,
and the key (line 8, Algorithm 4). Alongside, the words in b are searched in the PWT
to identify the popular words. On finding a match in the PWT, the encryption of the
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Algorithm 4: Pop-Crypt : PEB Construction

1 n : Total words in a cache line
2 b: Unencrypted cache line data, bPEB : Partially encrypted cache block
3 wi : ith word inside b,
4 wiPEB : ith word inside a PEB,
5 addrb : Physical address of the cache block b
6 ctrb : Counter associated with block b for counter mode encryption
7 for Every block b coming to PCM memory do
8 OTP = AES encrypt(ctrb, addrb, key)
9 for ∀ wi ε b, i = 1, 2..., n do

10 if wi hits in index j in PWT then
11 wiPEB = j
12 BPV [i] = 1
13 UpdatePWT (j, addrb)

14 else
15 wiPEB =wi XOR OTP (i)
16 BPV [i] = 0
17 UpdatePWTT (wi)

18 Add wiPEB as the next word in bPEB

19 Function UpdatePWT(j, addr)
20 PWTentry[j].freq + +
21 PWTentry[j].TS = curT ick()
22 if PWTentry[j].HotBit == 0 then
23 if PWTentry[j].freq > HotThreshold then
24 PWTentry[j].HotBit = 1
25 Free pointer list associated with the entry j

26 else
27 Add addr to the pointer list

28 Function UpdatePWTT(w)
29 if w hits jth entry in PWTT then
30 PWTTentry[j].freq + +
31 if PWTTentry.freq>Th then
32 Insert w by evicting cold LRU PWT entry after Re-encrypting PEBs and freeing the

pointer list associated with the LRU entry
33 else
34 Place w by replacing the least frequent entry from PWTT
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popular word is skipped by replacing the word with its index from the PWT (line 11). A
Bit Presence Vector (BPV) is created to identify the encrypted vs. non-encrypted words
in the cache block. The BPV bits for the popular/non-popular words are set/reset to 1/0
(lines 12, 16). We show a pictorial example of PEB construction/decryption later in this
Section for better understanding of the reader. During execution, the PWT and PWTT
entries are also updated (lines 13 and 17, respectively) to keep track of the popular words.
These steps are described in the next subsection.

(2) PEB Decryption
During decryption, the BPV associated with a PEB is scanned bit-wise. If BPV for a word
position is 1, it indicates that the word is a popular word. Therefore, the actual word is
fetched from the PWT by using the index present in the word position. On the other hand,
BPV=0 indicates that the word is non-popular, and hence it was encrypted during PEB
construction. The corresponding un-encrypted word is generated by XORing the encrypted
word with the corresponding bits of the OTP. Finally, the decrypted block is sent to the
requester LLC.

5.4.2.4 Update PWT and PWTT

During PEB construction, we continue to update the metadata in the PWT and PWTT
to gather any recently becoming popular words and also update the pointer list for new
addresses using the cold words. This is done for bookkeeping and to take care of the
dynamic nature of application profiles.

Update PWT: On getting a hit in the PWT for a popular word wi, the corresponding
entry at index= j is updated by incrementing its frequency field (line 20) and updating its
timestamp field with the current timestamp (line 21).

• Hit in a Cold Entry: If the word is cold, then the address of the PCM block containing
this word is added to the corresponding pointer list (line 27). If the frequency of the
word exceeds a certain threshold (HotThreshold1), the word is declared hot by setting
its HotBit field to 1 (line 24). Our experiments reveal that the words that become hot
are likely to remain hot, and therefore, they are rarely evicted from the PWT. As a result,
the addresses present in the pointer list of the word entry that has newly become hot are
freed (line 25) for judicious utilization of the limited size of the pointer pool. However,
before the release of the address pointers, the indices of that PWT entry present in the
PEBs at the corresponding memory addresses are replaced with the encrypted version of
the word. Note that we do these operations in the background to lessen their impact on
the system performance.

1We did extensive empirical analysis to set the value of HotThreshold=100.
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• Hit in the Hot entry: For the hot words, the addresses of the blocks using the word
need not be added to the list of address pointers as their chances of eviction from the PWT
are very less. However, in the rare events of eviction of hot words from the PWT, the
whole memory is encrypted using a different key of the AES. This is a routine procedure
adopted in practice at the time of counter overflow in CME [113].

System execution passes through different phases [143, 144], where each phase is marked
by some repetitive program behavior in terms of performance characteristics (like IPC
improvement, cache miss ratio etc) and resource requirements (Cache size, write buffer
etc). Generally, the execution phases are stable and long enough with short transition
periods ([143]) between the phases. Pop-Crypt adapts nicely to the change in the execu-
tion phase. It dynamically updates the PWT using the PWTT to contain the popular
words belonging to the subsequent execution phase. In this process, Pop-Crypt enters
new popular words by primarily evicting the cold words (followed by re-encryption of
the blocks associated with the evicted entry) from the PWT. Since the PWT eviction is
very low for all the benchmarks (kindly refer to Table 5.3), therefore, the eviction of the
cold words alone is enough to accommodate new words in the PWT in most of the cases.
However, on the rare occasion of hot word eviction, the whole memory is re-encrypted
using a different key of AES, as mentioned above.

Update PWTT: On a miss in the PWT, the word wi is encrypted (line 15) and its
BPV bit is reset to 0 (line 16). As we continue to identify the newly popular words during
execution, we update PWTT (line 17). On getting a hit for the word wi in PWTT (say,
in the jth entry), the frequency field of the entry in the PWTT is incremented (line 30).
If the frequency of the word exceeds a threshold, we consider bringing this word to PWT,
assuming it to be a good candidate for placing in the PWT (line 31). The entry for the
word wi is then inserted in the PWT by evicting the cold LRU entry (line 32). In order
to make judicious use of the limited pointer pool, the address pointers associated with the
LRU entry must be freed. However, before doing so, the PEBs that contain the PWT index
of this evicted entry must be replaced with the encrypted version of the evicted word. On
getting a miss for the word wi in the PWTT, it is placed in the free entry after removing
the least frequent entry from the PWTT (line 34).

5.4.2.5 Working Example

Figure 5.6 shows a working example of PEB construction/decryption by Pop-Crypt. We
take a cache block having 8 words (A, C, B, D, F , H, B, L) for illustration purposes. The
initial BPV for the block is <00000000>. Out of these 8 words, words A and B are popular
at indices 4 and 5 in PWT, respectively. The other fields associated with a PWT entry are
not shown for simplicity. During PEB construction, the OTP for encryption is generated
by the AES controller using the counter associated with the cache block, its address, and

121



Pop-Crypt : Reducing Encryption Overhead in NVMs by Identification of
Popular Words

Index Word

4
5

A

AES

A C B D F H B L

eC eD eF eH eL

+ + + + +

4 55

eC eD eF eH eL4 55

ctr addr key

OTP

PWT
PEB

Unencrypted
cache block PEB

+ + + + +

A C B D F H B L

Unencrypted
cache block

AES

ctr addrkey

OTP

Index Word

4
5

A
B

PWT

PEB Construction PEB Decryption

7 6 5 4 3 2 1 0Word Idx Word Idx  7 6 5 4 3 2 1 0

BPV : 1 0 0 0 0 01 1

BPV  0 0 0 0 0 0 0 0 BPV  1 0 1 0 0 0 1 0

B

Part A Part B

Figure 5.6: Working Example of PEB Construction and Decryption

the key. The non-popular words C, D, F , H and L are XORed with the corresponding
bits of this OTP to get encrypted words eC , eD, eF , eH and eL . On the other hand, the
popular words A and B occurring at index positions 7 (A), 5 (B), and 1 (B) of the cache
block are replaced with their PWT indices 4, 5, and 5, respectively. The generated PEB
and the corresponding BPV (<10100010>) for the block are shown in part A of Figure 5.6.
Note that instead of writing the full word, we only write the index using few bits (6 bits
for 64-entry PWT), and the remaining portion is kept unused (shown in shaded part). The
unused bits are unaltered and do not contribute to any bit-flips.

During PEB decryption, BPV associated with the block is scanned bitwise to identify
the indices of the popular words. The BPV corresponding to words at indices 0, 2, 3, 4,
and 6 are zero. It indicates that the words at these index positions are non-popular (hence,
they were encrypted) in the original cache block. The original words are derived by XORing
the corresponding encrypted words with the respective bits in the OTP. On the other hand,
the BPV bits are 1 for words with indices 1, 5, and 7. It indicates that these are popular
words, and hence, contain indices of their PWT entries in the PEB. The indices (4 and 5
for words A and B, respectively) are looked up in the PWT, and the corresponding original
words are inserted in the block. The original block after PEB decryption is shown in Part
B of Figure 5.6.
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Table 5.1: System Parameters and Benchmarks

Processor
CPU 2Ghz, Quad-core, X86

L1 Cache
Private, 32 KB SRAM split I/D caches,
2-way associative, 64 B block, 1 cycle latency

L2 Cache (LLC)
Shared, SRAM, 64B block, 8-way associative
10 cycle latency, Size: 8MB

Main Memory (Using PCM)

Capacity
PCM: 4 GB, 4 channels,
Memory Controller: FRFCFS, Write buffer depth : 32

Memory Latency Read latency: 50ns, Write latency: 150ns

Memory Energy
PCM :: Read Energy (pJ/bit): 2.47,
Write Energy (pJ/bit): 14.03 (Set), 19.73 (Reset)

PWT/PWTT Latency 1.78ns/2.73ns (Per access).
PWT/PWTT Energy 0.34nJ/2.94nJ (Per access).

Encryption Parameters
AES latency [100] 96ns Per line
AES energy [100] 5.9 nJ Per 128-bit block
Counter Cache 2MB per memory controller
Benchmarks and their classification (High/Medium/Low) based on WBPKI
Canneal(Med), Dedup(High), Freq (Low), Fluid (Low), Stream (Low), x264 (Med)
Mix1 : <gobmk, lbm, sjeng, bzip2> (High),
Mix2 : <milc, mcf, hmmer, bzip2>, (High)
Mix3 : <calculix, sjeng, h264ref, leslie3d> (Low)

5.5 Experimental Evaluation

We implement our technique Pop-Crypt on a full system simulator GEM 5[124] integrated
with NVMain[125], a cycle-accurate main memory simulator designed for NVMs. The sys-
tem parameters used in the experiments are shown in Table 5.1. We evaluate our results
using multi-threaded PARSEC[116] and multi-programmed SPEC 2006 [133] benchmark
suite. Note that the SPEC mixes are composed by considering the Write-Backs per Kilo
Instruction (WBKI) of each individual benchmark. We run the SPEC 2006 workloads for
1B instructions after warming them up by at least 250M instructions. We have catego-
rized the benchmarks as High, Medium and Low write intense benchmarks, based on their
Write Back Per Kilo Instruction (WBPKI) (shown in Table 5.1) We have taken the AES
encryption latency and energy to be 96ns per line and 5.9nJ per 128-bit block based on
the specifications [145]. The PWT/PWTT access latency and Energy are calculated using
CACTI [130] tool and are reported in the Table 5.1. These latency and energy are negli-
gible compared to read/write latency and energy (per block). So, they have little impact
on overall energy consumption and system performance. We have taken into account these
values during our evaluations.

We evaluate our technique Pop-Crypt with state-of-the-art techniques DCW [42], FNW [43],
SECRET [40] and DEUCE [39]. We take DCW to be the baseline for our evaluations. We
have also shown the effectiveness of combining FNW with Pop-Crypt. Note that all the
techniques use DCW [42] to reduce redundant bit-flips.
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• Baseline (DCW) [42]: Only the modified bits of the cache blocks are written to PCM
to eliminate redundant bit-flips.

• FNW [43]: It inverts the data if more than half of the bits in the cache blocks are
modified and bounds the maximum bit-flips to half of the number of bits in the blocks.

• SECRET [40]: It avoids the encryption of the clean and zero words with the help of
local counters and bits to identify zero words (associated per word). In the event of the
local counter overflow, all the local counters are reset and the entire block is re-encrypted.

• DEUCE [39]: DEUCE partially encrypts the words inside an incoming cache block that
gets modified during an epoch interval while avoiding the encryption of the unmodified
words.

• Pop-Crypt: It is our proposed technique that skips the encryption of the popular words
inside the incoming cache lines by replacing the popular words with their PWT indices.

• Pop-Crypt+FNW: Pop-Crypt is combined with FNW to make it more effective.

5.5.1 Results and Analysis

The proposed technique Pop-Crypt, along with the baseline DCW [42], and existing tech-
niques (FNW [43], DEUCE [39] and SECRET [40]) are evaluated in terms of bit-flips,
energy, lifetime, Average Memory Access Time (AMAT) and Instructions per cycle (IPC).
All the results are normalized over DCW.

Figure 5.7: Normalized Bit-flips over DCW (Less is better)
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Figure 5.8: Normalized Energy over DCW (Less is better)

5.5.1.1 Effect on Bit-flips and Energy Consumption

Pop-Crypt avoids the encryption of popular words inside the incoming cache lines while
encrypting only the non-popular words. Since the number of popular words is high, the
encryption of many words is avoided. It reduces the bit-flips in the PCM cells to a great
extent and mitigates the harmful implications of the Avalanche Effect of encryption. Fig-
ure 5.7 shows the normalized bit-flips of DCW, FNW, DEUCE, SECRET and our proposal
Pop-Crypt along with Pop-Crypt+FNW. On average, the reduction in bit-flips (over DCW)
shown by FNW, DEUCE, SECRET Pop-Crypt, and Pop-Crypt+FNW are 13%, 29%, 34%,
38% and 51%, respectively.

Pop-Crypt outperforms the existing techniques DEUCE and SECRET in reducing bit-
flips. DEUCE encrypts only the words inside the incoming cache lines that get modified
over an epoch of 32 writes, avoiding the encryption of the unmodified words. However,
DEUCE needs occasional re-encryption of all the words at the end of the epoch interval,
which increases the bit-flips. SECRET employs per word local counters and zero bits (to
identify the zero words) to avoid the encryption of the clean and zero words inside the
blocks. However, when a local counter corresponding to a word expires, the local counters
of all the words are reset, and the entire block is encrypted using a new counter, which
increases bit-flips. Also, SECRET can not perform optimally in the scenarios where the
incoming cache blocks contain a high percentage of modified words. In such cases, since
the encryption of the modified words can not be avoided, it leads to frequent expiry of
the local counters. On the other hand, Pop-Crypt adopts a different approach by avoiding
encryption of the popular words. The efficacy of Pop-Crypt lies in the availability of a large
percentage of Popular words (as mentioned in Section 5.3) across the incoming cache lines.
The combination of Pop-Crypt with FNW reduces bit-flips further. For some benchmarks
like x264 and Mix3, the reduction in bit-flips is more as Pop-Crypt achieves a high hit rate
in the PWT due to their high frequency of the hot words (with lesser hot word counts)
(kindly refer to Figures 5.12, 5.2 and 5.3, respectively).

In PCM-based memories, the write energy dominates over the read energy and holds
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a larger share in the overall energy consumption. Therefore, the techniques that reduce
bit-flips also reduce energy consumption. Pop-Crypt reduces write energy (more compared
to DEUCE, SECRET and FNW) due to reduction in bit-flips in the PCM cells. Hence,
Pop-Crypt remains successful in reducing the overall energy consumption. Figure 5.8 shows
the normalized energy consumption in PCM (Energy as the sum of read energy and write
energy) 1. The values of read energy and write energy per bit are shown in Table 5.1. On
average, the reduction in energy consumption by FNW, DEUCE, SECRET, Pop-Crypt, and
Pop-Crypt+FNW are 6%, 18%, 20%, 22% and 27%, over DCW, respectively.

Figure 5.9: Normalized Lifetime Over DCW (More is better)

5.5.1.2 Effect on PCM Lifetime

PCM-based main memories have limited write endurance, i.e., they can withstand only a
limited number of writes before wearing out completely. Similar to Non-volatile caches, the
lifetime of PCM can be defined in two different ways: Raw Lifetime and Error-Tolerant
Lifetime. In this work, we focus on improving the raw lifetime since it is the base for
error-tolerant lifetime [74] (For details, kindly refer to Section 2.3.1).

Reduction in bit-flips by Pop-Crypt results in the decrease in write activities in the PCM
cells. It helps in promoting PCM lifetime by relieving the excessive write pressure in the
PCM cells induced by encryption. Since the reduction in bit-flips shown by Pop-Crypt is
more compared to FNW, DEUCE and SECRET; therefore Pop-Crypt gets a clear edge in

1Note that we have shown the background energy consumption for Pop-Crypt. Background energy is
the energy consumed during the eviction of cold entries from PWT, which leads to writing the re-encrypted
versions of the PEBs that share the evicted PWT entry in the PCM. Background energy is negligible
compared to read and write energy due to lesser PWT evictions from the PWT, as confirmed by the
experiments, shown in Table 5.3.
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improving PCM lifetime to a greater extent compared to FNW, DEUCE and SECRET.
The addition of FNW over Pop-Crypt enhances PCM lifetime further for most benchmarks.
However, for dedup, the lifetime improves marginally for Pop-Crypt+FNW over Pop-Crypt
since the variation of bit-flips in the words inside the cache lines of dedup is less uniform
than the other benchmarks. On average, the percentage improvement in lifetime shown by
FNW, DEUCE, SECRET, Pop-Crypt, and Pop-Crypt+FNW are 15%, 21%, 24%, 29%, and
36%, over DCW, respectively (Shown in Figure 5.9).

Figure 5.10: Normalized AMAT over DCW (Less is better)

5.5.1.3 Effect on Average Memory Access Time (AMAT)

An incoming cache block is written in PCM arrays over multiple write slots ([39]) since
the current available for writing is not enough to write all the bits of the block at one go.
Since the reduction in bit-flips reduces the number of bits to be written in the PCM cells,
therefore, it can speed up the write service latency by reducing the number of slots required
to write a cache line in PCM. Reduction in write service latency also reduces read service
latency by reducing the memory contention for reads. Reduction of read/write latencies
reduces the Average Memory Access Time (AMAT), which helps in improving the system
performance. Pop-Crypt outperforms FNW, DEUCE and SECRET due to its ability to
reduce write slots while performing the writes of cache lines in PCM arrays. In particular,
the reduction in average slots 1 per write by FNW, DEUCE, SECRET, Pop-Crypt, and
Pop-Crypt+FNW are 10%, 15%, 22%, 27%, 30%, respectively, over DCW. On average, the
reduction in AMAT shown by FNW, DEUCE, SECRET, Pop-Crypt, and Pop-Crypt+FNW
are 6%, 18%, 21%, 23% and 27%, over DCW, respectively (shown in Figure 5.10).

1We take write-width per slot to be 128 bits; therefore, the write of a cache line of 64 bytes can take up
to a maximum of 4 slots, as in [39].
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Figure 5.11: Normalized Speedup over DCW (More is better)

5.5.1.4 Effect on Performance

As mentioned above, reduction in bit-flips minimizes the latency involved in writing a cache
block in PCM arrays. Pop-Crypt reduces bit-flips in encrypted PCM by skipping the en-
cryption of the popular words. Since popular words are highly prevalent in all the workloads
(as backed up by our experiments, discussed in Section 5.3), therefore, Pop-Crypt is able
to maintain a fair hit rate in the PWT for all the workloads with varying write intensity
(measured in terms of WBPKI) (kindly refer to Figure 5.12). As it is evident from Fig-
ure 5.12, Pop-Crypt is robust enough to maintain a fair hit rate in the PWT even under
high WBPKI scenarios. As a result, Pop-Crypt reduces bit-flips to a high extent by skipping
the encryption of the popular words, leading to reduced latency while servicing the writes.
Servicing the writes quickly reduces the main memory write cycle latency. Not only that,
it reduces the memory contention for reads. It helps in improving the system performance,
which is measured in terms of Instruction Per Cycle (IPC). As discussed above, Pop-Crypt
reduces the write service latency, resulting in the improvement of IPC. On average, the im-
provement in IPC shown by FNW, DEUCE, SECRET, Pop-Crypt, and Pop-Crypt+FNW
are 4%, 8%, 9%, 11% and 13%, respectively (shown in Figure 5.11).

5.5.2 Sensitivity Analysis

Below, we give sensitivity analysis on the size of PWT, interval length of training phase,
word-size and capacity of the pointer pool.
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Figure 5.12: Variation of PWT Hit Rate with the Size of PWT (H, M, L indicates High, Medium,
Low Write Intense Benchmarks, respectively)

5.5.2.1 Size of PWT

The popular words can be accommodated in a small-sized PWT since their count is very few
(illustrated in Section 5.3) across the incoming blocks. Increasing the size of PWT beyond
a certain size brings no significant benefits since the few popular words that are stored in
the additional space remain as dead words and are accessed rarely. Figure 5.12 shows the
variation of PWT hit rate for PWT size 16, 32, 64, and 128 entries for some representative
benchmarks. We have selected two benchmarks, each from the high, medium, and low write
intense category, as shown in Table 5.1. The hit rates are higher for the benchmarks with
low/med WBPKI (like Stream, Mix3, x264) and vice-versa. However, all the benchmarks
show fair hit rates, justifying the robustness of Pop-Crypt for different scenarios of write
intensity. A higher PWT hit rate indicates that the words stored in PWT are accessed
with high frequency. It is evident from the figure that the hit rate initially increases as the
size of the PWT increases and becomes stable after 64 entries. This size is sufficient even
for the benchmarks with high WBPKI since the number of popular words is still less for
these benchmarks, as evident from our experiments. We found experimentally that the hit
rate obtained using a 256-entry PWT for dedup and Mix2 (high WBPKI) is around 70%
and 75%, respectively. However, keeping in view the high storage overhead in the memory
controller for such large PWT, we decided to keep the size of PWT as 64 entries for these
benchmarks, as well. It shows that 64 entries are sufficient to hold the vital popular words
in the PWT. Hence, we have decided to take PWT size of 64 entries for our experiments.
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Figure 5.13: % of New Words Inserted over Time Interval

5.5.2.2 Training Phase Interval Length

We found experimentally that a large number of newly popular words insert initially after the
application execution starts, and this number decreases slowly as the execution continues.
Figure 5.13 shows the percentage of new words entering PWT up to 150M cycles (from
the beginning of application execution) at different time intervals. It is evident that the
percentage of new words entered is very high initially but slowly decreases later. This is
because, as we stated in section 5.3, the words that are repeated frequently across the cache
lines are very few, and they enter PWT in the initial periods of the application execution
itself. For most of the benchmarks, the entry of new words in PWT shows a declining trend
after around 100M cycles after the start of the application execution.

Table 5.2 shows the percentage ratio of the training phase length over the total length
of application execution. Note that this percentage ratio varies across the benchmarks since
the total execution cycles vary across the benchmarks (For example, x264 and canneal are
the shortest and longest benchmark, respectively). We can see that the training phase
occupies only a small fraction of the overall application execution.

5.5.2.3 Word Size

Pop-Crypt reduces more bit-flips for popular words of larger sizes. This is because skipping
encryption of large-sized words reduces more bit-flips compared to small-sized words. Also,
overhead due to the BPV bits is lesser for larger words since the lesser BPV bits are required
for blocks having larger words. However, the PWT and PWTT entries, which are maintained
in the memory controller, occupy more space for large-sized words (%reduction in bit-flips,
BPV overhead, and PWT+PWTT overhead are shown in Tables 5.4 and 5.5, respectively
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Table 5.2: Percentage ratio of training phase
length (TL) to the application execution length
(AL)

Benchmarks % Ratio of TL/AL
Canneal 0.62
Dedup 3.5
Fluid 4
Freq 1.43
Stream 4.3
x264 7.5
Mix1 7.4
Mix2 3.84
Mix3 7.24
Mean 3.51

Table 5.3: Percentage PWT
evictions per 100 writes

Benchmarks %PWT evictions
Canneal 0.02
Dedup 0.13
Fluid 0.98
Freqmine 0.58
Stream 0.35
x264 1.29
Mix1 1.69
Mix2 3.65
Mix3 0.27
Mean 0.47

for word size 16, 32, 64 bits). In order to keep low storage overhead (due to PWT+PWTT)
in the memory controller yet maintaining a fair reduction in bit-flips and low BPV storage
overhead, we have taken the word size of 32 bits for our experiments.

5.5.2.4 Capacity of the Pointer Pool

The addresses of the memory blocks sharing the cold words in PWT are maintained as lists
for each cold word entry. These lists are formed using the nodes present in the pointer pool.
However, the pointer pool should be limited in size in order to reduce the storage overhead
in the memory controller. Our experiments reveal that the percentage of PWT evictions due
to the insertion of newly popular words in the PWT is negligible after the training period (as
shown in Table 5.3). For Mix benchmarks, the popular words belonging to the constituent
workloads get collected during the training period. Since the constituent benchmarks have
only a few popular words, the space in the PWT can sufficiently hold the popular words
belonging to these Mix benchmarks, leading to lesser PWT eviction. Therefore, we decide
to keep the addresses of only 1000 words in the pointer pool shared by the cold entries in
the PWT.

5.5.3 Overhead Analysis

Pop-Crypt uses 28-bit line counters for CME similar to [39]. The size of the BPV is 16 bits
per cache line. Therefore, the storage overhead 1 due to the BPV bits is only 3.12%. The

1Compared to the baseline that applies DCW on encrypted memory using CME with 28-bit counters
per line
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Table 5.4: Percentage reduction in Bit-flips by Pop-Crypt over DCW for different word sizes

16-bit 32-bit 64-bit
Canneal 44% 47% 51%
Dedup 11% 19% 57%
Fluid 31% 35% 59%
Freq 29% 36% 57%
Stream 32% 43% 60%
x264 43% 48% 64%
Mix1 36% 49% 52%
Mix2 17% 24% 28%
Mix3 56% 58% 62%
Mean 30% 38% 53%

Table 5.5: Storage overhead due to PWT, PWTT and BPV bits for different word sizes

16-bit word 32-bit word 64-bit word

for PWT +PWTT
856+6208
=7064B

984+7232
=8216B

1240+9280
=10520B

For BPV 6.25% 3.1% 1.56%

storage overheads of DEUCE (6.25% with word size 16 bits) and SECRET (6.25% with word
size 64 bits) are higher compared to Pop-Crypt since DEUCE uses fine granularity words
(2B word size), whereas SECRET use per word local counters. Also, unlike DEUCE[39]
and SECRET[40] that use multiple AES engines, Pop-Crypt uses only one AES engine.
Based on the highly optimized energy-efficient hardware implementation given by Mathew
et al. [146], the area overhead due to AES is 0.02mm2 at 22 nm technology node. Following
standard Intel i7 die size (160mm2) at 22nm [147], the area overhead due to the AES engine
is 0.0125%, which is negligible in practice.

Storage Overhead in the Memory Controller: As shown in Figure 5.4, a PWT
entry consisting of 〈Word(32),Frequency(16),Timestamp(64), HotBit(1), Pointer to

address list(10)〉 has a length of 123 bits. Therefore, the total space required for 64
entry PWT is 984 bytes. On the other hand, a PWTT entry has a length of 113 bits. Note
that the fields in the PWTT field are the same as the PWT, except the 10-bit pointer field
is not present in the PWTT entry. Therefore, a 512-entry PWTT consumes a size of 7232
bytes. Finally, the pointer pool that stores a total of 1000 addresses (each address is of size
64 bits) of the cold words needs a total capacity of 8000 bytes. The total storage required
in the memory controller is 984 + 7232 + 8000 = 16216 bytes≈16KB.
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5.6 Summary

Non-volatile memories are promising candidates for constructing high-density and energy-
efficient main memories. However, the non-volatility feature of the NVMs opens the door to
data confidentiality-based attacks like Bus-snooping and stolen DIMM attacks. Encryption
techniques that are used to provide safety to the NVM data lead to enormous bit-flips in
the NVM cells, which degrades the NVM lifetime severely.

In this chapter, we propose a technique called Pop-Crypt that avoids the encryption of
the popular words, which are repeated with high frequencies across several cache blocks,
while encrypting only the non-popular words. The generated partially encrypted blocks
reduce bit-flips, energy consumption and improve PCM lifetime. It also improves system
performance due to reduction in write service latency. On average, Pop-Crypt reduces bit-
flips by 38%, 29%, 11%, 6%; reduces energy consumption by 22%, 16%, 5%, 4% and improves
lifetime by 29%, 13%, 7%, 5% over DCW, FNW, DEUCE and SECRET respectively. Thus,
seeking newer avenues related to the identification and management of data similarity can
assist in longevity enhancement of the encrypted PCM-based main memories.
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6
Exploring Newer Avenues of Bit-flip
Reduction in Encrypted NVM Using

Compression and Encoding

In the last chapter, we presented Pop-Crypt, a partial encryption-based method that by-
passes encryption of the words that frequently repeat inside blocks to minimize bit-flips in
encrypted PCMs. This chapter explores additional ways based on compression and encod-
ing for minimizing bit-flipping in PCMs while preserving memory security via encryption.
In particular, we offer two approaches that compress the data blocks prior to encryption to
mitigate the avalanche effect (refer to Section 2.2.2) of encryption. The first method, called
CoSeP utilizes compression techniques FPC, BDI, and COMF (COMF is our technique
proposed in Chapter 3) to get an optimum balance of compression ratio and coverage. On
the contrary, CADEN, the second technique, encodes the compressed and encrypted blocks
before writing to reduce bit-flips.

6.1 Introduction

Encryption provides strong security guarantee to the sensitive data stored in NVMs against
data confidentiality based attacks (kindly refer to Section 2.2.2). However, most of the
existing encryption techniques show diffusion property [39, 101] i.e., changing even a single
bit in the plain text leads to enormous bit-change in the cipher text [39], which severely
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degrades the NVM lifetime. It renders the existing encoding techniques like DCW [42],
FNW [43] obsolete in the presence of encryption, particularly due to the coarse encoding
granularity (Please refer to Section 4.3.2.1 for the definition of encoding granularity) adopted
by these techniques. In contrast, encoding using fine granularity could bring more reduction
in bit-flips. But, it is not affordable as high meta-data overhead is incurred to achieve fine
granularity. Compression-based approaches [51, 101, 102] also need improvisation as the
existing compression techniques like BDI and FPC can not optimize Compression Ratio
(CR) and Coverage simultaneously (Refer to Section 2.3.3 for definition). For instance,
BDI offers a good CR but a low coverage, whereas FPC offers a large coverage but a poor
CR. Our proposed technique COMF balances this trade-off to a large extent, as discussed in
chapter 3. However, a judicious blending of these compression techniques could offer even
further balance in CR and coverage.

In this chapter, we present methods that demonstrate potential new avenues for con-
trolling the bit-flip surge brought on by encryption. Specifically, our proposed solutions
aim to mitigate the trade-offs between CR/coverage of compression and fine granularity
encoding/storage overhead of the encoding techniques. The first technique, called CoSeP,
intelligently integrates the existing compression techniques FPC and BDI with our proposed
compression technique COMF to obtain an optimum balance between CR and coverage.
In contrast, the second technique, called CADEN, encodes the compressed and encrypted
blocks at finer encoding granularity, incurring lower storage overhead to reduce bit-flips.

6.2 Chapter Overview

6.2.1 Contributions of the Chapter

The main contributions of the chapter are as follows :

• We propose a technique called CoSeP that makes a greedy choice by selecting the
smallest block generated by BDI, FPC, and COMF to get optimum balance between
CR and coverage.

• We propose a technique called CADEN that adaptively encodes the compressed+encrypted
blocks by assigning the tag bits dedicated for the entire block to the compressed data
bits only, resulting in finer granularity.

6.2.2 Chapter Organization

The rest of the chapter is organized as follows. CoSeP and CADEN are described in detail in
Sections 6.3 and Section 6.5, respectively. The specifics related to CoSeP like Observations,
Working principle and Experimental evaluation are presented in Sections 6.3.1, 6.3.2 and
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6.4, respectively. On the other hand, Proposed methodology and experimental evaluation
of CADEN are described in Sections 6.5.1 and 6.6, respectively. Finally, summary of the
chapter is presented in Section 6.7.

6.3 Proposed Method 1 - CoSeP : Compression and

Content-based Selection Procedure to Improve Life-

time of Encrypted NVM

CoSeP considers two important parameters, 1) Compressed Block Size (CBS) and the 2)
Content of the compressed blocks to reduce bit-flips in the encrypted PCM. In particu-
lar, CoSeP is based on the efficient use of three state-of-the-art compression techniques :
FPC [89], BDI [90] and COMF [148, 149], which vary in terms of CR and coverage. CoSeP
selects the optimal technique depending on CBS of the blocks produced by FPC, BDI, and
COMF. If the CBSs of the two smallest blocks differ by a large margin, then the smallest
block can result in minimum bit-flips upon writing in PCM as its size is considerably smaller.
In such cases, CoSeP makes a greedy choice by selecting the smallest block. In contrast, if
the two CBSs are similar, it is beneficial to compute bit-flips of the compressed data with
the old content. Since the resultant compressed blocks’ data contents are different, these
similar-sized blocks lead to different bit-flips on writing after encryption. CoSeP utilizes
such opportunities by selecting the technique that leads to lesser bit-flips.

Figure 6.1: Bit-flip Variation and Percentage Count of Blocks whose CBS differ by ∆=3 bytes
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Table 6.1: Compression Ratio and Coverage of FPC, BDI, COMF and Selective

Benchmark FPC BDI COMF Selective

lbm
CR 0.7 0.56 0.59 0.4
Cov 89 20 59 99

leslie3d
CR 0.3 0.29 0.28 0.18
Cov 70 64 82 93

libquantum
CR 0.35 0.27 0.22 0.16
Cov 95 90 85 95

sjeng
CR 0.3 0.28 0.11 0.06
Cov 92 60 80 99

bzip2
CR 0.48 0.35 0.25 0.22
Cov 72 22 58 94

Canneal
CR 0.57 0.42 0.54 0.5
Cov 85 36 82 95

x264
CR 0.32 0.25 0.22 0.15
Cov 90 67 85 97

Mean
CR 0.41 0.33 0.27 0.19
Cov 84 45 75 95

6.3.1 Observations

CoSeP is based on two observations, which are as follows.

Observation 1 : An intelligent selection among the state-of-the-art techniques FPC, BDI,
and COMF helps in achieving better Compression Ratio (CR) and Coverage. Compression
techniques minimize bit-flips by reducing the size of the incoming blocks to PCM. However,
the existing techniques FPC, BDI, and COMF differ in terms of CR and Coverage (as
shown in Table 6.1). The trade-off between CR and Coverage can be balanced by selecting
the appropriate technique at runtime, which gives the smallest block. This is evident from
the column named ‘Selective’ in the table, which shows better CR (=0.19) and Coverage
(=95%). It indicates that most of the blocks are compressed, and the resultant blocks are
sufficiently small.

Observation 2 : A considerable percentage of blocks compressed using FPC, BDI, and
COMF are of comparable sizes, and they lead to different bit-flips upon encryption. The
line graph in Figure 6.1 shows the percentage of compressed blocks produced by FPC, BDI,
and COMF whose sizes differ by at most ∆=3 bytes 1. On average, 30% of the compressed
blocks produced by FPC, BDI, and COMF lie in close proximity of 3 bytes. However, the
data contents of the generated blocks are different (Example given in Figure 6.3). As the
contents are different, it leads to varying bit-flips after encryption. Figure 6.1 also shows

1We selected ∆= 3 bytes based on the analysis given in Section 6.4.1.
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Find CBS using BDI Find CBS using COMFFind CBS using FPC 

Block from LLC

Find CBSmin1 &
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giving CBSmin1
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smallest blocks
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BFmin2
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Write encrypted
block giving BFmin1

Encrypt compressed
block and write to

PCM

Figure 6.2: Flowchart describing the Working of CoSeP; (CBSmin1/CBSmin2 : Smallest/Second
CBS, BFmin1/BFmin2 : Least/Second Bit-flips)

the normalized bit-flips1(in bars) shown by FPC, BDI, and COMF. It demonstrates the
dis-similarity in the bit-flips upon encrypting similar-sized compressed blocks.

6.3.2 Working principles of CoSeP

CoSeP optimizes CR and Coverage by selecting the appropriate compression technique.
Flowchart in Figure 6.2 illustrates the working of CoSeP.

Encoder (Write Path): When a block evicted from the Last Level Cache (LLC) reaches
the memory controller, CBS due to FPC, BDI and COMF are determined, and two smallest
block are compared.
1) If the difference in size of two smallest blocks is ≥ ∆ (3 bytes in our experiments), then
we choose the block with the least CBS. We keep two compression bits (00: FPC, 01: BDI,
and 10: COMF) that indicate the technique used to compress the block. Also, we keep
a 9-bit CBS field per block that tells the size of the compressed blocks. These fields are
required during the decryption/decompression process. The compressed block is encrypted
and written in the PCM arrays.
2) If the difference in size of two smallest blocks is < ∆ (3 bytes in our experiments), then
we assume that the blocks are of similar sizes. The blocks are encrypted parallelly using the
two AES controllers, and their bit-flips with the old memory content is determined. The
compressed block that leads to least bit-flips is chosen. The tag bits related to CBS are

1It is the bit-flips for the compressed blocks whose sizes differ by ∆=3 bytes per block
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0x09A40178 0x09A4C2F0

b'111 0x09A40178 0xB 0xB 0xB 0x09A4C2F0

FPC Prefixes (24 bits)

0x09A40178 0x0000 0x00 0xA6C0 0xC178

Base1 Base2

2 bytes

11101001 0x09A40178 0x000000000x0000000B 0x09A4A838 0x09A4C2F0

MFW  
tag

0010

MFW
index

COMF 

Total Bit-flips=129

0x4ba7099

Total Bit-flips=189

CBS=132 bits

CBS=152 bits

CBS=172 bits

0xc6c0990f b'1100

FPC

0x37d5e8f6 0x1ab52465 0x17013efa 0xc5c970

0x0000000 0x0B 0x0B 0x0B 0x0B

4 byte

Encryption

1 byte4 byte

0xd4f219e3 0xc22cef3b 0x76f29ad

b'000 b'001 b'001 b'111 b'001 b'001 b'111 0x09A4A838

BDI

Encryption

0x00000000 0x0000000B 0x0000000B 0x09A4A838 0x0000000B 0x0000000B

Figure 6.3: Working Example of CoSeP

maintained along the block, and the compression bits are stored in the compressed block in
the saved space.

Decoder (Read Path): When a read request for a given block arrives at the memory
controller, the compressed and encrypted block is decrypted up to the CBS. Then, based
on the compression bits, the block is decompressed using the corresponding compression
technique. Finally, the block is returned to the requester LLC.

6.3.2.1 Working Example of CoSeP

Figure 6.3 shows the versions of a block when compressed using FPC, BDI, and COMF. The
contents of the compressed blocks are entirely different based on the compression technique
used. The two smallest blocks are produced by FPC and BDI, whose sizes differ by 152−
132 = 20 bits (< ∆). CoSeP encrypts these compressed blocks independently1. The bit-flips
due to FPC and BDI for a particular memory block are 129 and 189 bits upon encryption,
respectively. Hence, CoSeP selects the FPC compressed+Encrypted block and writes it in
the PCM arrays, with compression and CBS bits as <00> and <10000100>, respectively.

6.4 Experimental Evaluation : CoSeP

Simulation Framework. We implement CoSeP on GEM5 [124] integrated with NVMain [125].
The processor frequency is 2Ghz. L1 I/D caches are two-way associative with 32KB capacity
with one cycle latency. L2 cache is 8-way associative, 4MB in size with 10 cycle latency. It

1contents of the encrypted blocks are obtained by running AES-based CME independently on the FPC
and BDI compressed blocks during Gem5+NVMain simulation
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Figure 6.4: Percentage Reduction in Bit-flips for Varying ∆

is shared among the cores, while L1 caches are private to the cores. We model PCM with 4
channels, with total capacity of 4GB. The memory controllers use the FRFCFS scheduling
policy. The latency/energy of PCM are 50ns/(2.47pJ/bit) for read and 150ns/(<14.03pJ/bit
(SET),19.73pJ/bit (RESET)>) ( [21, 51]) for write.

Workloads. The results are evaluated using multi-threaded PARSEC [116] and multi-
programmed SPEC 2006 [133] benchmark suite. The selected benchmarks are diverse in
terms of memory intensity (<MPKI, WBKI> for PARSEC and SPEC benchmarks are
<2.23, 1.61> and <10.38, 7.74>). We run each SPEC workload for 1B instructions after
warming them up by at least 250M instructions.

Comparison with Prior Work. We compare CoSeP with DEUCE [39], FPC [89], BDI [90]
and COMF [148]. Our CompressionOnly approach chooses the block with minimum CBS
generated by FPC, BDI, and COMF, whereas CoSeP further reduces bit-flips by selecting the
compressed block that leads to minimum bit-flips when two minimum CBSs are comparable.
The improvements are shown over DCW [42] set as the baseline for encrypted memory.

6.4.1 Sensitivity Analysis on ∆

Figure 6.4 shows the reduction in bit-flips over DCW for various values of ∆ (∆=1B,
2B,...,6B) for three representative benchmarks. Reduction in bit-flips increases initially
up to ∆= 3 bytes and then becomes stable. It indicates that for higher values of ∆, the
extra benefit gained by selecting blocks (based on bit-flips) becomes stable. Hence, we set
∆= 3 bytes as the cut-off value, after which CoSeP utilizes its greedy approach of selecting
the most compressed block.
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Figure 6.5: Normalized Bit-flips over DCW (Lower is better)

Figure 6.6: Normalized Energy over DCW (Lower is better)
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Figure 6.7: Normalized Lifetime over DCW (More is better)

6.4.2 Results and Analysis

1. Effect on Bit-flips and Energy Consumption : CoSeP optimizes CR and Coverage
by integrating FPC, BDI, and COMF. It reduces bit-flips as the blocks get compressed
significantly. CoSeP further reduces bit-flips by selecting the compressed block that leads
to minimum bit-flips when the difference between the two smallest compressed blocks is
marginal. Hence, it outperforms FPC, BDI, and COMF. It also shows more reduction in
bit-flips than DEUCE since DEUCE leads to occasional re-encryption of the blocks, which
increases bit-flips, whereas, CoSeP does not perform any re-encryption. Some benchmarks
like libquantum, sjeng, leslie3d show more reduction in bit-flips due to their fairly low CR
(As shown in Table 6.1).

CoSeP remains successful in reducing energy consumption due to its ability to reduce
bit-flips to a great extent, as write energy occupies a major portion in the total PCM
energy consumption. CoSeP also reduces the energy involved in encryption by encrypting
only the compressed portion of the blocks. On average the reduction in <Bit-flips, Energy>
by FPC, BDI, COMF, DEUCE, CompressionOnly and CoSeP are <49%, 44%>, <38%,
35%>, <52%, 46%>, <49%, 44%>, <67%, 60%> and <74%, 65%>, respectively (shown
in Figures 6.5 and 6.6).

2. Effect on Lifetime : Lifetime can be defined as Raw Lifetime and Error-Tolerant
Lifetme. In this work, we focus on improving the raw lifetime since it is the base for
error-tolerant lifetime (Please refer to Section 2.3.1 for definition of lifetime). Reduction
in bit-flips relieves write pressure in the cells, improving lifetime. Improvement in lifetime
shown by FPC, BDI, COMF, DEUCE, CompressionOnly and CoSeP over DCW are 43%,
21%, 50%, 49%, 55%, and 69%, respectively (shown in Figure 6.7).

3. Cycles Per Instruction (CPI): Compression helps in faster delivery and writing of
the requested blocks on read and writes, respectively. It reduces the large main memory
read/write cycles and improves CPI. The optimal CR/Coverage provided by CoSeP and its
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Figure 6.8: Normalized CPI over DCW (Lower is better)

Figure 6.9: Normalized AMAT over DCW (Lower is better)

ability to reduce write bits improves its access speed than DEUCE, which results in better
CPI. CoSeP also reduces encryption latency since encrypting compressed blocks incurs lesser
latency.

4. Average Memory Access Time (AMAT): Compressed blocks can be delivered
quickly from main memory, which reduces LLC miss penalty and improves AMAT. CoSeP
reduces AMAT more compared to the other techniques due to its high compressibility
and Coverage. On average, the improvement in <CPI,AMAT> shown by FPC, BDI,
COMF, DEUCE, CompresionOnly and CoSeP are <12%,26%>, <10%,18%>, <14%,27%>,
<13%,29%>, <12%,28%>, <16%,34%> respectively over DCW (Figures 6.8 and 6.9).
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Table 6.2: Comparison of Latency, Area and Energy of FPC, BDI and COMF

FPC BDI COMF

Latency (ns)
Compression 2 2 3.5
Decompression 1 - 2.65

Energy (pJ/512 bits)
Compression 2.1 3.9 2.75
Decompression 1.2 - 0.16

Area (mm2) Total Area 0.0258 0.014 0.002

6.4.3 Overhead Analysis of CoSeP

A. Storage Overhead : CoSeP needs 9 bits to store the size of the compressed blocks,
accounting for a storage overhead of 1.75%. Note that compression bits do not contribute
toward overhead as they are stored in the saved space within the compressed blocks.
B. Hardware Overhead Analysis:
1. Compression/decompression : The overhead of COMF Compressor/Decompressor are
determined using synthesizable Verilog code and synthesis using Genus tool from Cadence
(15nm technology node). The values for FPC and BDI are taken from [51, 90]. BDI has low
decompression overhead in terms of latency and energy, so these values are negligible, as
per [90] (marked by the symbol “-”) (Refer to Table 6.2). We discuss the overhead associated
with the compression/decompression process under the effect on latency, area and energy
consumption.

• Effect on Latency : Since the three compression techniques can determine CBS in
parallel, the worst-case compression latency is the largest of these latencies. On the
other hand, decompression can be done based on the compression bits.

• Effect on Energy Consumption : During compression, the energy consumption will
be sum of all the three compression algorithms as they are run in parallel. However,
during decomrpession, energy consumption will be specific to only the algorithm that
was used to compress the block. CoSeP approach can be re-designed by using more
efficient compression algorithms that consume less energy during compression to cut
down the energy consumption cost.

• Effect on Area : The three compression/decompression engines altogether will occupy
almost 0.0418 mm2 area in the memory controller (Shown in table 6.2). However,
the area overhead considering all the compression/decompression engine is still less
(1.4%) for a standard memory controller having size of 2.8mm2, as mentioned in
papers [135, 136]

2 . Encryption : CoSeP uses two AES controllers to encrypt the two minimum blocks whose
sizes differ marginally. We set the latency of AES encryption to 96ns per line [100]. We use
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improve lifetime of Encrypted Non-Volatile Main Memories

Table 6.3: Reduction in Bit-flips for different Encoding Granularity. < G,T > represents
Granstatic and number of the corresponding Tag bits.

Benchmark
< G, T >

<64,8> <32,16> <16,32>
lbm 20 22 27
leslie3d 27 31 36
libquantum 25 34 46
sjeng 38 45 54
canneal 23 26 28
dedup 32 35 37
fluid 50 54 57
freq 41 46 49
x264 34 38 41
Mean 31 36 40

a 2MB counter cache in the memory controller to store the counters of the recently accessed
blocks to avoid fetching of counters from main memory.

6.5 Proposed Method 2 : CADEN : Compression As-

sisted ADaptive Encoding to improve lifetime of

Encrypted Non-Volatile Main Memories

CADEN utilizes compression and fine granularity encoding at low storage overhead. We use
our compression algorithm COMF([148]) to reduce the effective size of the incoming cache
blocks before writing in PCM. The compressed blocks are then encrypted using AES-based
encryption. The compressed blocks reduce bit-flips in PCM. Subsequently, CADEN encodes
the compressed and encrypted blocks at a finer encoding granularity by assigning the tag
bits to the compressed data, which further reduces bit-flips.

We take FNW for our adaptive encoding approach due to its low complexity. FNW
divides the data bits into partitions and assigns one tag bit to each partition. The number
of data bits assigned to one tag bit is termed as Encoding Granularity (Granstatic). For
each partition, if the number of bit-flips between the new and old data is more than half of
Granstatic, then the data bits in the partition are written in inverted form. It is indicated by
setting the corresponding tag bit for the partition as 1. Else, the tag bit is set as 0, and the
bits are written as it is (FNW is explained in detail in Section 4.3.2.1). FNW bounds the
maximum bit-flips to half of the number of bits in the partition. FNW shows more reduction
in bit-flips for finer (smaller) Granstatic. The reduction in bit-flips for Granstatic= 64, 32
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Is block
compressible?
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Encrypt the
whole block

Encrypt the
Compressed

block

Calculate Gran= 
Granadapt=CBS/T

Is Bit-flips>Gran/2? 
(for each partition)

Calculate Gran= 
Granstatic=BS/T

No

Invert the bits and
write in PCM

Write the bits 
 as it is

Adaptive
Encoding

Static
Encoding

Incoming cache
block to PCM

Yes

Yes

Figure 6.10: Flowchart of CADEN (BS : Uncompressed block size, CBS: Compressed block size,
T : Total tag bits)

and 16 are 31%, 36% and 40% respectively, indicating more reduction for finer Granstatic

(as shown in Table 6.3). But, to achieve finer Granstatic, more tag bits/block are needed,
which increases the storage overhead.

6.5.1 Proposed Methodology : CADEN

6.5.1.1 Motivation

COMF reduces the size of the incoming cache blocks to PCM. Compressed blocks reduce
bit-flips upon writing in PCM. Bit-flips could be reduced further by encoding the compressed
blocks at a finer granularity. Since compression reduces effective data to be written, the
tag bits dedicated for the original uncompressed block can be judiciously used by assigning
them to the compressed data portion only. In such cases, the available tag bits will govern
fewer data bits during encoding which leads to finer encoding granularity. As a result,
the compressed blocks can be encoded at a much finer granularity compared to Granstatic

without increasing the number of tag bits. We term this encoding granularity that depends
on the size of the compressed block as the adaptive encoding granularity (Granadapt). Fine
granularity (Granadapt) encoding on the compressed blocks aids further reduction in bit-flips.
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Tag bits Tag bits

Figure 6.11: Working Example of CADEN (bits marked red are the flipped bits compared to the
old data bits)

6.5.1.2 Working Principle of CADEN

The compressed blocks produced by COMF are encrypted using AES-based counter mode
encryption [39]. CADEN applies FNW-based encoding adaptively by assigning the tag bits
to the compressed data bits. Note that since the tag bits dedicated for a block is fixed, the
number of partitions created by encoding is equal to the number of tag bits, where one tag bit
is assigned to one partition. Since the tag bits point only to the compressed data bits, the size
of the partitions reduces compared to static encoding, resulting in finer encoding granularity
(we term it as adaptive encoding granularity (Granadapt)). Finer encoding granularity brings
more reduction in bit-flips (cf. Table 6.3). Granadapt maintains a direct relationship with
CR where a low CR (highly compressed block) leads to more fine Granadapt and vice-versa.
Finally, the encoded blocks using Granadapt are written in PCM. On the other hand, the
fewer blocks that are left uncompressed are encoded using Granstatic. Figure 6.10 shows a
flowchart of CADEN.

6.5.1.3 Working Example of CADEN

As shown in Figure 6.11, we take an incoming block of size 8 bits with 2 encoding tag bits.
On the left, we show the working of FNW-based static encoding where the whole block is
encrypted followed by encoding, whereas the right part shows CADEN where the block is
first compressed, then encrypted, and then adaptive encoding is applied on it. If the block
is encrypted directly without compression (left part of Figure 6.11), Granstatic is 4 since
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each tag bit is assigned to 4 data bits. In that case, for each of the two partitions (Partition
A and B), the bit-flips is 2. Since bit-flips <= Granstatic/2, the bits are written as it is,
leading to a total of 4 bit-flips.

In contrast, CADEN first compresses the block using COMF (right side of Figure 6.11)
to get the content <0010>. The compressed block (<0010>) becomes <1101> upon
encryption. Finally, CADEN applies adaptive encoding on this. Since only the com-
pressed+encrypted data needs to be written, the 2 tag bits can be assigned only to the
compressed+encrypted data bits. It results in a finer adaptive granularity Granadapt = 2
since each tag bit now governs two data bits. The bit-flips in the new partition A′ is 1.
Since bit-flip<= Granadapt/2, the bits in A′ is written as it is with the corresponding tag bit
reset to 0. On the other hand, bit-flips in partition B′ is 2, which is more than Granadapt/2.
Hence, the bits in B′ are written in inverted form with the tag bit set as 1. It results in 2
bit-flips.

6.6 Experimental Evaluation : CADEN

6.6.1 Experimental Setup

We implement CADEN on a full system simulator GEM5 [124] integrated with NVMain [125].
The processor frequency is 2Ghz. Both L1 I/D caches are two-way associative with 32KB
capacity with one cycle latency. L2 cache is 8-way associative, 8MB in size with 10 cy-
cle latency. L2 cache is shared among the cores, while L1 caches are private to the cores.
We model PCM as main memory with 4 channels, having a total capacity of 4GB. The
memory controllers (dedicated per channel) use the FRFCFS scheduling policy. The la-
tency/energy of PCM are taken as 50ns/(2.47pJ/bit) for read and 150ns/(<14.03pJ/bit
(SET),19.73pJ/bit (RESET)>) ([21, 51]) for write. We take the AES encryption latency
and energy as 96ns/line and 5.9nJ/128-bit block based on [145].

Workloads: We evaluate our results using multi-threaded PARSEC [116] and multi-
programmed SPEC 2006 [133] benchmarks. The selected benchmarks are diverse in terms
of memory intensity. We run SPEC 2006 workloads for 1B instructions after warming them
up by at least 250M instructions.

6.6.2 Evaluation Metrics

We show our results in terms of a) Reduction in bit-flips b) Reduction in energy, c) Im-
provement in lifetime, and d) Improvement in performance (Cycles per Instruction (CPI)).
We model PCM energy as the aggregate of read, write, and encryption/decryption energies.
These energies mainly constitute the dynamic energy for PCM. We ignore the PCM leakage
energy as it is negligible [21]. PCM shows a limited write endurance as its cells can with-
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Table 6.4: Percentage (%) Reduction in bit-flips over DCW

Benchmark DEUCE BDIAE FPCAE CADEN

lbm 27 13 21 47

mcf 33 32 60 62

leslie3d 23 56 70 73

libquantum 42 41 35 45

Canneal 31 24 52 54

Dedup 17 25 30 33

Fluid 31 34 50 55

Freq 10 41 44 59

Mix1 29 46 45 48

Mix2 36 39 42 66

Mix3 38 57 61 74

Mean 27 35 47 54

stand only a limited number of writes before wearing out. We approximate lifetime as the
average number of bit-flips on the cells, as mentioned in [51].

Comparison with prior work: We compare CADEN with DEUCE [39], FPC, and BDI. We
support FPC and BDI with adaptive encoding (termed as FPCAE and BDIAE) to make an
appropriate comparison with CADEN. We take a baseline where DCW is applied on the
encrypted PCM.

6.6.3 Results for Bit-flips, Energy and Lifetime

Table 6.4 shows reduction in bit-flips by CADEN over DEUCE, BDIAE and FPCAE. CA-
DEN outperforms DEUCE due to its high compression and the resulting finer encoding
granularity, whereas DEUCE only encrypts the modified words in the blocks over epoch in-
tervals without compressing the blocks. COMF shows low CR and high coverage compared
to BDI and FPC and leads to more finer granularity when the compressed blocks are encoded
(cf. Table 6.5). Many PCM cells remain unexposed when the highly compressed blocks are
written to PCM. Also, compressed blocks result in finer encoding granularity which reduces
bit-flips further. Table 6.6 shows comparison of bit-flips by using non-adaptive static FNW
and adaptive encoding based CADEN for different tag bits. CADEN brings more reduction
compared to FNW at a relatively lower storage overhead due to fine granularity encod-
ing. For example, FNW shows 36% reduction using 16 tag bits, whereas CADEN brings
47% using only 8 tag bits. Benchmarks like mcf, leslie3d, freq have lesser CR than dedup,
libquantum (CR for mcf, leslie3d, freq, dedup and libquantum are 0.45, 0.14, 0.35, 0.61,
0.56, respectively). For benchmarks with low CR, the reduction in bit-flips is more (refer to
Table 6.4) compared to the other benchmarks, as they lead to highly compressed block and
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Figure 6.12: Normalized Energy Consumption Over DCW (Less is better)

Figure 6.13: Normalized Lifetime Over DCW (More is better)
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Table 6.5: CR, Coverage and Adaptive Encoding Granularity for BDI, FPC and COMF(∗ : Less
is better, + : More is better)

CR∗ Cov+ Gran∗static Gran∗adapt
BDI 0.41 50% 32 21
FPC 0.34 70% 32 14
COMF 0.25 79% 32 12

Table 6.6: Comparison of Storage Overhead (SO), % Reduction in Bit-flips (RB) over DCW for
FNW and CADEN for different Tag Bits (Gs : Granstatic, Ga : Granadapt)

Tag
Bits

SO
FNW CADEN
Gs RB Ga RB

8 1.56% 64 31% 25 47%
16 3.12% 32 36% 12 52%
32 6.25% 16 40% 6 55%

fine granularity encoding. Bit-flip reduction also minimizes energy consumption as writes
hold a dominant part in the energy consumption in PCM. It also results in an enhanced life-
time of PCM. The improvement in <energy, lifetime> shown by DEUCE, BDIAE, FPCAE

and CADEN are <27%, 1.37x>, <36%, 1.57x>, <53%, 2.03x> and <59%, 2.38x> over
DCW, respectively (Figures 6.12 and 6.13). Reduction in worst-case bit-flips corresponding
to the hottest location is 9% for CADEN compared to 8%, 7%, 3% for FPCAE, BDIAE and
DEUCE over DCW, respectively.

6.6.4 Results for Performance

A PCM block is written over multiple slots [39] due to limited write current. Reduction in
bit-flips reduces the write service time by reducing the write slots. It improves performance
due to reduction in costly PCM write latency. Hence, CADEN shows better performance
than DEUCE (which does not use compression), and FPC and BDI that offer lesser com-
pression. In particular, the improvement in CPI shown by DEUCE, BDIAE, FPCAE and
CADEN are 6%, 12%, 9% and 16%, respectively (shown in Figure 6.14).

6.6.5 Overhead Analysis

1. Storage Overhead. CADEN needs 17 bits of meta-data (1 compression bit and 16 encoding
tag bits) per block. Hence, storage overhead is (17/512)× 100% = 3.3% only.
2. Hardware Overhead. The compressor/decompressor latency of COMF are 3.5ns and
2.65ns, respectively. The design was implemented using Verilog HDL and synthesized using
Genus synthesis solution from cadence at 15nm technology node. The latency involved in
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Figure 6.14: Normalized CPI Over DCW (Less is better)

determining Granadapt is negligible as the compressed block size can be calculated using
the compression meta-data. The latencies are very small compared to memory latency,
incurring a negligible impact on the performance.

6.7 Summary

Non-volatile Memories are considered as suitable candidates for replacing DRAM in main
memories. Approaches to secure NVM contents using encryption causes degradation of
memory lifetime due to encryption-led bit-flips. In this chapter, we propose two techniques
called CoSeP and CADEN that explore the benefits of compression and encoding to reduce
bit-flips in encrypted PCM-based main memories. CoSeP offers an integrated approach
by combining three compression techniques FPC, BDI, and COMF, to deliver optimal CR
and Coverage. CoSeP achieves 74 % and 65% reduction in bit-flips and energy and 69%
improvement in PCM lifetime over DCW. In contrast, CADEN combines the effect of our
word-level compression technique COMF with an adaptive encoding approach to reduce bit-
flips in encrypted PCM. High compressibility and fine granularity encoding enable CADEN
to outperform existing techniques FPCAE, BDIAE and DEUCE by 10%, 21% and 27% in
reducing bit-flips. Hence, exploring new direction using compression and encoding can assist
in finding solutions to improve lifetime of NVMs in presence of encryption.
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7
Conclusion

This thesis aims to improve the lifetime of the emerging non-volatile memories so that they
can be utilized more effectively as a mainstream main memory standard. In order to achieve
this goal, we focused our efforts in the following directions: 1) Reducing expensive writes to
NVMs at the block and bit level, and distributing the writes evenly within memory blocks,
2) Providing security to the NVM data against confidentiality-based attacks using encryp-
tion and lessening the impact of encryption-driven bit-flip spikes on NVM lifetime. Towards
proposing solutions for the first direction, we propose write-back reduction schemes that
store the performance critical blocks evicted from the LLC in a small size victim cache.
Based on Block placement and Replacement policy of the victim cache, we propose two
techniques that reduce write-backs to the PCM component of a DRAM-PCM hybrid main
memory. We also provide strategies to reduce bit-flipping write activities in PCM-based
main memory. Towards this, we have developed a compression technique based on data
similarity within the words of the memory blocks and an adaptive encoding approach that
operate on the compressed data. Furthermore, our wear leveling approach evenly distributes
the bit-flips within the memory lines to improve PCM lifetime further. On the other hand,
for proposing solutions for the second direction, we propose a partial encryption scheme
called Pop-Crypt that partially encrypts the memory blocks by eliminating encryption of
the frequently appearing data words inside the blocks. This scheme reduces bit-flips initi-
ated by the diffusion property of encryption. We also offer new avenues based on the efficient
amalgamation of the existing compression algorithms with our proposed compression tech-
nique and encoding techniques to reduce bit-flips in encrypted memories, thereby improving
their lifetime. This chapter sums up all the proposed contribution of this dissertation along
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with the future directions for research.

7.1 Summary of Contributions

1. Reducing PCM write-backs using selective victim caching, block placement
and refined replacement policy : In order to reduce the write-backs to the PCM compo-
nent of DRAM-PCM based hybrid main memories, we propose two techniques called VCRP
and PPVC that store the evicted blocks from the LLC in a small victim cache associated
with the LLC. Keeping in view the limited capacity of the victim cache, we use the concept
of reuse distance to keep only the critical blocks in the victim cache. We define the notion
of criticality of the blocks based on the history of short reuse distance usage during their
residency in the LLC. When a block is accessed frequently with short distance, it means
that it has been used frequently enough during its LLC residency to have the potential to
be used again in future memory references.

Our proposed policies keep such critical blocks inside the victim cache rather than writing
them back to the main memory after eviction from LLC. Furthermore, to reduce PCM write-
backs to hybrid memories further, VCRP and PPVC work on the replacement policy and
block placement policy of the victim cache. Specifically, VCRP aims to retain the PCM
blocks for a longer duration than the DRAM blocks in the victim cache by preferentially
evicting the DRAM blocks over the PCM blocks. In contrast, PPVC logically partitions the
victim cache, maintaining a smaller space for the DRAM blocks and a relatively larger space
for the PCM blocks. While allocating larger space for the PCM blocks helps in retaining the
critical PCM blocks in the victim cache, storing critical DRAM blocks in the victim cache
gives performance benefits, as their early eviction can degrade the system performance.
On average, <VCRP, PPVC> reduce PCM write-backs by <11.27%, 10.82%>, improve
performance by <5.8%, 5.65%> and reduces energy consumption by <11.73%, 11.52%>
over baseline.

2. Improving PCM lifetime using Compression, Adaptive Encoding and Stride-
based Intra-line Wear Leveling : In this contribution, we have proposed an integrated
approach using compression, data encoding, and intra-line wear leveling to reduce and uni-
formly distribute the bit-flips in the PCM cells. In that direction, we have developed a
compression technique called COMF that exploits the abundant word-level data similarity
within the data blocks. In particular, it compresses the blocks by removing the repeated
instances of the most frequently occurring words inside the block. COMF provides a fine
compression ratio and high coverage. On top of the compressed blocks generated by COMF,
we apply FNW-based encoding adaptively by assigning the encoding tag bits to the com-
pressed data bits only. It results in finer encoding granularity and reduces bit-flips to a
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greater extent. Finally, we propose an intra-line wear leveling technique that periodically
shifts the writing position (determined using a stride distance) of the compressed data to
distribute the bit-flips uniformly within the cells of the memory lines. The integrated ap-
proach of compression, encoding, and wear leveling is termed SWEL-COFAE. Experimental
results show that SWEL-COFAE reduces bit-flips by 59%; reduces energy consumption by
61% and improves lifetime by 101% over the baseline DCW [42] technique.

3. Improving lifetime while securing NVMs via Encryption using Partial En-
cryption Scheme : Non-volatility feature of the NVMs leads to potential security threats
related to data stealing, as the sensitive data remains persistent even after the system is
powered off. Encryption is a standard solution to protect the data in NVMs due to its
high obfuscation. However, most of the standard encryption algorithms put high random-
ization in the generated encrypted data, leading to enormous bit-flips when the data are
written in NVM in encrypted form. This is termed as the Avalanche Effect of the encryption
algorithms.

In this contribution, we have proposed a technique called Pop-Crypt that eliminates the
encryption of the frequently occurring data words that appear across several memory blocks.
The frequent words are termed as Popular words and are stored in a table called Popular
Word Table (PWT) inside the memory controller. Indices to the corresponding popular word
in the PWT are maintained in the respective word position of the blocks to help during the
de-encryption process. It reduces bit-flips due to encryption and improves lifetime of the
encrypted PCMs. Pop-Crypt reduces bit-flips by 38%; reduces energy consumption by 22%;
and improves lifetime by 29%, over baseline, respectively.

4. Exploring Avenues related to Compression and Encoding to reduce bit-flip
in Encrypted PCM : In this contribution, we continue to find new strategies to deal with
the trade-off between security provisioning via encryption and increased bit-flip as a result
of encryption. We find that existing compression and encoding techniques can be utilized
to build new approaches to reduce bit-flip in encrypted PCMs. Accordingly, we propose two
techniques called CoSeP and CADEN based on the efficient integration of compression and
encoding techniques.

The first technique, CoSeP integrates the existing compression techniques, FPC [89],
BDI [90], and our proposed technique COMF. It compares the sizes of the two smallest
blocks generated by these techniques. If the size differs by a wide margin, CoSeP selects
the smallest block. In contrast, if the blocks differ only by a small margin, the bit-flips
due to the two smallest blocks are computed, and the block that leads to minimum bit-
flip is selected. The rationale behind computing bit-flip in this case is that similar-sized
compressed blocks can result in highly dis-similar bit-flips upon encryption based on the
content of the compressed data blocks. CoSeP optimizes compression ratio and coverage
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Aim of the thesis : Enhancing Endurance of Non-Volatile Main Memories by
Coarse-To-Fine Write Reduction and Intra-line Wear Leveling

Contribution 1
(VCRP+PPVC)

Reducing PCM write-backs in
DRAM-PCM hybrid memories
using selective victim caching.

PCM write-reduction 11%
Performance gain 5.7%

Contribution 3 
(Pop-Crypt) 

Encryption-based encoding to
reduce bit-flips by skipping

encryption of Popular words.

Lifetime improvement 1.29x
Energy reduction 22%

Contribution 2 
(SWEL-COFAE) 

Improving PCM endurance by
write using Compression and

Encoding, Intra-line wear leveling
 

Lifetime Improvement 2.1x
Enegy reduction 61%

Contribution 4 
(CoSeP+CADEN) 

Lessening bit-flips in Encrypted
PCM utilizing Compression
and Encoding techniques.
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Figure 7.1: Summary of the Thesis Contributions

more compared to the individual techniques FPC, BDI and COMF. It achieves 74% and
65% reduction in bit-flips and energy over DCW, respectively.

The second technique, CADEN applies adaptive encoding on the compressed (generated
by our proposed technique COMF) and encrypted data before writing the blocks to PCM.
In this process, as the compressed block is encoded by utilizing all the encoding tag bits, it
results in finer encoding granularity and achieves more reduction in bit-flips. Due to small
compression ratio of COMF, the granularity of encoding is finer in the case of CADEN
compared to the techniques that apply encoding on top of compressed blocks generated by
FPC and BDI. CADEN achieves 52% and 51% reduction in bit-flips and energy over DCW.
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Table 7.1: Variation of DRAM, PCM miss rate and reduction in Write-back when VC is associ-
ated with LLC of sizes 4MB, 8MB and 16MB

%Reduction
in DRAM miss rate

%Reduction
in PCM miss rate

%Reduction in
PCM write-back

4MB
VCRP 17.5% 17.75% 11.13%
PPVC 15.11% 16.5% 11%

8MB
VCRP 14.9% 15.4% 9.52%
PPVC 10.02% 14.03% 9.8%

16MB
VCRP 8.2% 11.21% 7.1%
PPVC 7% 9% 6.8%

Table 7.2: Reduction in Write-backs and bit-flips for SWEL-COFAE, Pop-Crypt, CADEN and
CoSeP for LLC sizes 8MB and 16MB compared to 4MB LLC

LLC
Configuration

Write-back
reduction (%)

Bit-flip Reduction (%) Compared
to LLC = 4MB
SWEL Pop-Crypt CADEN CoSeP

LLC = 8MB 25% 6% 20% 22% 21%
LLC = 16MB 58% 17% 58% 52% 54%

7.2 Impacts of using Bigger LLCs

Table 7.1 shows the reduction in DRAM, PCM miss rate and reduction in PCM write-back
(over baseline which does not include victim cache) when victim cache is associated with
bigger LLCs. It is evident from the table that our proposed techniques of selective victim
caching becomes less effective for larger LLCs. It is because, for smaller LLC, the conflict
misses will be high. Since conflict misses lead to eviction of critical blocks from the LLC,
victim cache can provide better support by keeping such blocks for future reuse. But, for
larger LLCs, eviction of the critical block will be less and selective victim caching turns out
to be less effective.

Table 7.2 shows the effect of having larger LLCs for the proposed fine-grained approaches
(SWEL-COFAE, Pop-Crypt, CADEN and CoSeP). As the LLC becomes larger, write-backs
coming to PCM-based main memory reduce. As a result, the amount of incoming blocks
to be compressed/encrypted also gets reduced which leads to reduced bit-flips compared to
smaller LLC (4MB). It also lessens the latency and power consumption of compression and
encryption. Table 7.2 reports the reduction in write-backs and bit-flips achieved for bigger
LLCs compared to LLC having a size of 4MB for our proposed policies. It is evident from
the table that along with write-backs, bit-flips reduces proportionally for 8MB and 16MB
LLC compared to 4MB LLC. In other words, larger LLCs nicely supports our proposed
fine-grained policies to gain better improvement in lifetime by reducing the load on the
compression/encryption engines. Among the fine-grained policies, Pop-Crypt, CADEN and
CoSeP show more reduction in bit-flips compared to SWEL-COFAE as they are applied on
encrypted PCM where bit-flips gets enormously spiked up due to the diffusion principle of
encryption.
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7.3 Scope for Future Work

The contributions of this thesis can be extended in several ways. Some of the possible future
research directions are listed below.

• In this thesis, we have proposed compression and encoding techniques for SLC PCM.
In the future, the techniques can be extended for MLC PCM, where the endurance
and energy consumption issues are more complicated.

• In chapter 4, we have proposed an intra-line wear leveling technique that periodically
shifts the compressed data within the memory lines to distribute the bit-flips evenly.
However, non-uniformity of writes also exists at the line level, where some lines face
more writes than the other lines during system execution. This work can be extended
by proposing an inter-line wear leveling technique that balances the uneven write
distribution across the memory lines.

• As described in Section 2.2.2.2, overflow of the counters associated with memory blocks
in counter mode encryption leads to full memory re-encryption using a new key. It
stalls the system until the whole memory is re-encrypted, leading to enormous bit-flips
due to full memory re-encryption. We can propose techniques to reduce the frequency
of counter overflow in counter mode encryption.

• Apart from confidentiality-based attacks, we can also propose solutions to reduce the
degradation of lifetime caused by write attacks where the adversaries issue frequent
writes to some locations of memory with the intention of wearing them out. Early
detection of such attacks and measures to be taken during an ongoing attack are the
two research directions that we can work on in the future.

[[]X]\\
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Appendix

A.1 Simulation Framework

This appendix focuses on the simulation framework used in our experiments. We have
used a GEM5-NVMain based co-simulation framework and used PARSEC and SPEC 2006
benchmark suite. In the following sections, we give brief overview of GEM5 and NVMain
and the methodology used for integrating the two simulators. Finally, we describe the
characteristics of the benchmarks used for the experiments.

A.1.1 GEM 5

GEM5 [124] is a modular event driven computing system simulation framework. Due to
the highly modular structure, a user of this simulator can focus on one aspect of the code
without the understanding of the entire code base. GEM5 offers diverse models of CPU,
system execution mode, and memory system models.

From historical point of view, GEM5 was built by combining the best features of two
existing simulators M5 and GEMS. M5 provides the diverse CPU models and multiple
Instruction Set Architectures (ISA), where GEMS offers memory systems with the support
of cache coherence protocols and the complete interconnection network. Below, we briefly
discuss the features and the modules of M5 and GEMS.
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Figure A.1: Overview of NVMain Architecture

A.1.1.1 M5

M5 is a full system simulator that generates a complete target system or a virtual machine
that runs on top of the host system. It is open source and acts as an alternative to the com-
mercial simulators like Simics. It was developed to measure the throughput of interconnect
and network protocols. M5 is flexible enough to support various CPU models, including
in-order and out-of-order modes of execution. Moreover, M5 supports various ISAs like
ALPHA, ARM, MIPS, Power SPARC and X86.

A.1.1.2 GEMS

GEMS comprises of two major modules: Ruby and Garnet. Ruby simulates the complete
memory hierarchy of CMPs comprising L1 cache, L2 cache, memory banks and directories
etc. Each component in Ruby is termed machine and is identified by its unique machine ID.
The components communicate with each other using their machine IDs via the underlying
Network on Chip (NoC), managed by Garnet. Garnet offers a variety of network topologies
for NoC and models the real-time events for transferring packets through the NoC.

The request for a block from M5 processor is passed to the Ruby module of GEMS. If
the requested block is found in the simulated first level of cache, then it is directly sent to
the M5 processor and the processor continues its execution. Otherwise, the processor gets
stalled until the block is delivered in the event when miss occurs. The timing dependent
functional simulation is handled by Ruby.

A.1.2 NVMain

NVMain is an architectural level simulator for modeling main memory using conventional
DRAM and the emerging Non-volatile memories. It integrates seamlessly with GEM5,
enabling cycle-level simulation of a variety of main memory technologies in the system.
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Furthermore, NVMain can also take traces as inputs to run trace-based simulation. Apart
from incorporating the NVM timing parameters, NVMain also captures the unique features
of NVMs by provisioning of modeling for endurance, fault recovery and MLC operation.

In NVMain, every module is created as separate objects that can be added/removed from
the simulator. An overview of the architecture of NVMain is shown in Figure A.1. Every
objects in the simulator captures its own timing parameters. The timing parameters related
DRAM, SRAM and NVM technologies are taken from DRAM data sheets and parameters
provided by CACTI and NVSIM, respectively. In order to specify the memory system
hierarchy and the general configuration parameters like number of ranks, banks, rows and
columns and other parameters like address mapping scheme, encoder/decoder, row buffer
policies etc, configuration files are used.

NVMain provides both single bank and inter-bank timing models. For a single bank of
NVM, data restoration time is taken as zero as data stored in the cells are not destroyed.
Therefore, the data restoration time for NVMs can inhibit consecutive reads to different
rows belonging to the same bank. For inter-bank modeling, timing parameters like tFAW
(for Four Activation Window) and tRRD (Row-to-Row activation delay) are introduced.
tFAW denotes the minimum interval where four activations can occur. tRRD eliminates the
current hungry row activation times. These timings are applied during activation within
the same as well as across different banks.

NVMain calculates energy consumed by each device, where each device consists of mul-
tiple banks. It computes total energy consumption as the summation of energy consumed
by all the device. Energy consumed by the DRAM components are derived from the typi-
cal IDDx parameters for the read and write operations. In contrast, for NVM technology,
NVMain takes per bit write energy from NVSIM to calculate power consumption. En-
durance model in the simulator keeps tracks of the total number of bits written during
simulations. Energy of the unchanged bits is subtracted from the total write energy con-
sumption.

NVMain provides implementation of different memory controllers according to the mem-
ory technology and types. In order to model different types memory controller (DRAM,
PCM), different configuration files are used where values of different parameters can be fed.
For our work, we have taken memory systems with four channels. Each channel is associated
with a memory controller. For creating hybrid memory (Work1), channel 0 is associated
with DRAM controller while the other three channels are associated with PCM controllers.
NVMain adopts PCM specific parameters from the Samsung’s 2012 ISSCC [56] paper.

A.1.3 GEM5-NVMain Co-simulation Framework

In the GEM5-NVMain co-simulation framework, NVMain obtains memory requests from
GEM5 at specific time instants. The requests trigger different actions in NVMain like en
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queuing and scheduling of requests, data transfer to main memory, bank latency compu-
tation and transfer data back to controller etc. These actions need to be executed before
GEM5 proceeds with its subsequent tasks.

During simulation, an interfacing object called NVMainMemory is created from Abstract-
Memory class of GEM5 and NVMObject class of NVMain. The GEM5 requests appear in
the form of request packet, namely pkt. The information of packet pkt is transferred onto a
new NVMain specific request packet (req) before submitting the request to NVMain. The
interfacing object stores pkt and the corresponding req in a map data structure to keep track
of the issued memory requests. The information of completion of memory requests is noti-
fied to the interfacing object with the help of the function called RequestCompleted. Then,
the corresponding pkt is retrieved from the map data structure and sent back to GEM5.
Furthermore, NVMainMemory, the interfacing object and NVMain are cycled using the tick
function, which transfers the GEM5 cycles to NVMain. Figure A.2 shows a pictorial view
of the co-simulation framework of GEM5 and NVMain.

A.1.4 Timing and Power Modeling Tools : CACTI and NVSIM

GEM5-NVMain simulation framework is not able to model the latency, power and area of
different memory technologies at different cache hierarchy. However, main memory related
parameters are given by NVMain. In order to find the different parameters related to cache,
we have used two well known simulators CACTI 6.5 [150] and NVSIM [129] to simulate
the cache at device/circuit level. CACTI 6.5 is useful for modeling SRAM based caches
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where as NVSIM models different emerging memory technologies like STT-RAM, ReRAM,
PCM and the NAND flash etc. According to the ITRS reports [151], the caches based on
SRAM and NVM memory technologies can be of three categories based on the power and
performance modes : a) HP : known as High Performance cell that consumes large power
with a very fast accessibility b) LSTP : Low Standby Power cells that incur low power when
idle. However, they are relatively slower than the HP caches because transition from low
standby power mode to active mode incur extra cycles c) LOP, known as the Low Operating
Power cells consume lesser power in both the modes, standby as well the active mode. It
the slowest among the three modes. Furthermore, CACTI and NVSIM supports three types
of cache accesses : fast, sequential and normal. In our work, we have used the fast mode
to model the caches. In this mode, the cache tag and data arrays are searched in parallel
to identify for cache hit and miss. Internally, NVSIM uses the empirical modeling used by
CACTI, but also includes several features which are not present in CACTI. We summarize
some of the features shown by NVSIM below.

• It facilitates the user to model their memory cell configuration.

• It gives various design optimization options for buffer like latency, area etc.

• It facilitates the modeling of the memory banks in a bus like structure and H-tree like
structure.

• It models various data sensing schemes rather than only the voltage based sensing.

A.2 Result Analysis

During the experiments, the co-simulated framework of GEM5 and NVMain logs different
statistics of the running applications. The complete stats are composed of two types of stats,
given by GEM5 and NVMain respectively. Some of the important information needed in
this thesis are given below.

1. GEM5 Related Stats

• Total Cycles Executed : This metric records the summation of all the cycles exe-
cuted in all the cores.

• Total simulated instruction : It collects the instructions executed in each core and
gives the summation of all the instructions executed.

• L1 Demand Access : GEM5 records the demand hits/misses during access to each
L1 cache bank private to a core.
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• L2 Demand Access : GEM5 records the demand hits/misses during accesses to the
shared L2 bank.

2. NVMain Related Stats

• Memory Reads: It gives the total number of read requests issued to the main
memory. NVMain also collects the read requests to each memory sub-modules like
channel, rank, bank, subarray etc.

• Memory Writes: It gives the total number of write requests issued to the main
memory. NVMain also collects the write requests to each memory sub-modules like
channel, rank, bank, subarray etc.

• Endurance: For endurance, we have used the byte model of the endurance module of
NVMain. It gives the worst-case and average-case write counts to an individual byte
of the NVM main memory.

Apart from this, we have also added some extra statistics needed for our analysis. We
highlight such stats below. While the first three stats are added to the GEM5 stats, the
latter stats are added to the NVMain stats.

• DRAM Reads/Writes (GEM5 Stats): It gives the total read and write counts to
the DRAM portion of the DRAM-PCM hybrid main memory.

• NVM Reads/writes (GEM5 Stats): It gives the total read and write counts to
the PCM portion of the DRAM-PCM hybrid main memory.

• DRAM/NVM Miss Rate (GEM5 Stats): It gives the miss rates of the DRAM/NVM
blocks in the LLC, where the underlying main memory consists of DRAM and PCM.

• Bit-flips (NVMain Stats): Aggregate bit-flips in all the memory cells when a new
cache line is written in NVM-based main memory.

• Compression Ratio (NVMain Stats): Average size of a compressed block relative
to the original block size, as determined by the formula 2.5.

• Coverage (NVMain Stats): Percentage of compressible blocks, as determined by
the formula 2.6.
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A.3 Benchmarks

Benchmarks are real world applications run on the simulated architecture created by sim-
ulators. Based on the simulation results, the power and performance related parameters
are evaluated for the new architecture. PARSEC, SPEC CPU 2006 and SPLASH-2 etc are
popular benchmark suites used in architectural research. In this thesis, we have used multi-
threaded PARSEC and multi-programmed SPEC CPU 2006 benchmark suite to determine
the effectiveness of our proposed architectural solutions. The detailed description of these
benchmarks is given below.

A.3.1 PARSEC

The Princeton Application Repository for Shared-Memory Computers(PARSEC) [116] suite
is a collection of multi-threaded benchmarks designed specifically for the evaluation and
validation of the next generation CMPs. It was developed collaboratively by Princeton
university and Intel to help the research community for efficient designing of the future
computing systems. It is open source and widely accepted in academic as well industrial
research. PARSEC version 2.1 suite contains 12 applications, each application is parallelized
and multi-threaded. The applications are selected from diverse areas of the real world
like computer vision, animation physics, finance, media processing etc. Table A.1 shows
the detailed description of the benchmarks. Due to multi-threading, these applications
share data between the spawned threads. Table A.2 shows the data sharing and exchange
behavior of the applications. Each benchmark in the PARSEC benchmark suite has their
own working set and input sizes : small, medium and large. Depending on the requirement
and architecture design, users can run benchmarks with the appropriate input sizes.

A.3.2 SPEC 2006

Standard Performance Evaluation Corporation (SPEC) CPU 2006 [133] is an industry stan-
dard benchmark suite developed to determine the performance of compiler, processor and
the memory hierarchy. Below we describe the two types of suites of SPEC 2006 that focuses
on two types of compute-intensive performance.

• CINT 2006 benchmark suite : The benchmarks are used to evaluate the perfor-
mance of the compute-intensive integer operations. It contains 12 benchmarks and
the description of the benchmarks is provided in Table A.3.

• CFP 2006 benchmark suite: These benchmarks are used to evaluate the perfor-
mance of the compute-intensive floating point operations. It contains 17 benchmarks
and the description of these benchmarks is provided in Table A.4.
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Table A.1: The Inherent Key Characteristics of PARSEC Benchmarks

Benchmarks
Application
Domain

Parallelization
Working set

Model Granularity
blackscholes Financial Analysis data-parallel coarse small
bodytrack Computer Vision data-parallel medium medium
canneal Engineering unstructured fine unbounded
dedup Enterprise Storage pipeline medium unbounded
facesim Animation data-parallel coarse large
ferret Similarity Search pipeline medium unbounded
fluidanimate Animation data-parallel fine large
freqmine Data Mining data-parallel medium unbounded
streamcluster Data Mining data-parallel medium medium
swaptions Financial Analysis data-parallel coarse medium
vips Media Processing data-parallel coarse medium
x264 Media Processing pipeline coarse medium

Table A.2: The Data Usage Behavior of PARSEC Benchmarks

Benchmarks
Data Exchange

Sharing Exchange
blackscholes, swaptions low low
bodytrack, freqmine high medium
canneal, dedup, ferret, x264 high high
facesim, fluidanimate, streamcluster, vips low medium
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Table A.3: Application Domains of Various CINT 2006 Benchmark Suite

Workload Programming Language Application Domain
400.perlbench C Programming Language
401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: Go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics / Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalancbmk C++ XML Processing

SPEC 2006 suite adopts different ways to quantify the performance of computer. For
example, SPECrate metric measures the number of distinct tasks a computer can complete
in a definite time. In contrast, SPECspeed is a metric to determine the speed with which a
computer completes a given task.

A.4 Benchmark Running Procedure

In order to evaluate the proposed architectural solutions, we have used several multi-
threaded and multi-programmed benchmarks in the simulation. PARSEC benchmarks are
used for multi-threading. The number of threads in each PARSEC benchmark depends
on input size and the load of the program. In the PARSEC benchmark, multi-threading
execution occurs within a period of time called Region Of Interest (ROI). The scanning
and initialization of the variables are performed before entering ROI. Finally, the workload
completes its execution as the ROI finishes after generating the output. In this section,
we illustrate the execution procedure of different multi-threaded and multi-programmed
benchmarks. In contrast, multi-programmed benchmarks are built by combining various
SPEC2006 benchmarks. For example, we can create a mix benchmark by combining four
benchmarks bzip2, mcf, milc and leslie3d for a four core CMP. The individual application
run on their specific cores until completion of the specified number of instructions.

1. Running of Multi-threaded benchmarks : PARSEC benchmarks suite contains
many multi-threaded applications. We run PARSEC benchmarks individually in the sim-
ulated system up to the completion of the benchmark. During the entire simulation, four
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Table A.4: Application Domains of Various CFP 2006 Benchmark Suite

Workload Programming Language Application Domain
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry
433.milc C Physics/Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C, Fortran Biochemistry / Molecular Dynamics
436.cactusADM C, Fortran Physics / General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology / Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C, Fortran Weather
482.sphinx3 C Speech recognition

stats are dumped in the generated stats file that comprises of 1) statistics for M5 full booting
process 2) statistics before entering ROI that include initialization and the spawning of the
threads 3) The statistics pertaining to the ROI 4) statistics from the end of the ROI till
the end of the simulation exit. The third statistics corresponding to the ROI represents the
actual execution of the PARSEC applications.

2. Running of Multi-programmed benchmarks : SPEC multi-programmed bench-
marks are loaded one by one and each benchmark is run for a warm up phase of 250 million
instruction. The warm up phase is essential to move beyond the compulsory misses in the
cache, and prepares the proposed architecture to settle properly for simulation. After warm
up phase, each benchmark is run for 1 billion instruction to collect the stats necessary for
analyzing the performance of the proposed architectural design.
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