
Algorithms for Facility Location
Problems in Geometric Settings

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Pawan Kumar Mishra

Under the guidance of

Prof. S. V. Rao
Prof. Gautam Kumar Das

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

mailto:pawan.mishra@iitg.ac.in
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

Copyright © Pawan Kumar Mishra 2023. All Rights Reserved.

mailto:pawan.mishra@iitg.ac.in

Dedicated to

My Family

Abstract

Facility Location Problems (FLPs) have been the subject of extensive research because of its

diverse range of applications in VLSI, networks, clustering, and other areas. The covering

problem and the dispersion problem are two popular FLPs. Covering problem refers to

selecting a subset of covering objects from a given set of objects such that the union of the

selected objects contains all the elements. On the other hand, the dispersion problem refers

to selecting a subset of a given set of objects such that the closeness between the objects

in the selected set is undesirable. In this thesis, we investigate covering and dispersion

problems in geometric settings.

One of the most studied covering problems is the set cover (SC) problem, where the

objective is to find a minimum number of objects such that the union of all the selected

objects covers all the elements. We introduce a natural generalization of the SC problem,

where each covering object has a bound (capacity) on the number of elements it can cover.

The problem is referred to as the capacitated set cover (CSC) problem. We study the CSC

problem in geometric settings, where a set of unit disks is considered as a set of covering

objects, and the capacity of each unit disk is uniform. The problem is called the (α, P,Q)-

covering problem, and it is defined as follows.

For a set P = {p1, p2, . . . , pn} of n points and a set Q = {q1, q2, . . . , qm} of m points and

a positive integer α, a subset Q′ ⊆ Q is said to be an α-cover of P if (i) the point set P can

be partitioned into ℓ subsets P1, P2, . . . , Pℓ such that |Pi| ≤ α for each i = 1, 2, . . . ℓ, where

ℓ = |Q′| and (ii) each p ∈ Pi is covered by a unit disk centered at q′i ∈ Q′. Given a positive

integer α, a set P of n points and a set Q of m points, the objective of the (α, P,Q)-covering

problem is to find a minimum cardinality α-cover Q′ ⊆ Q of P .

We establish a necessary and sufficient condition through which one can ensure whether

iv

the given instance is feasible or not. Further, we prove that the (α, P,Q)-covering problem

is NP-complete for α ≥ 3. Finally, we propose a local search algorithm for the (α, P,Q)-

covering problem, and prove that the proposed algorithm is a PTAS.

For the dispersion problem, we introduce the concept of dispersion partial sum, which

generalizes the notion of dispersion. Based on the dispersion partial sum, we define variants

of the dispersion problem, namely the 1-dispersion problem, the 2-dispersion problem, and

the c-dispersion problem. We study the following dispersion problems in Euclidean space:

the 2-dispersion problem in both R1 and R2 and the 1-dispersion problem in R2. The

2-dispersion problem is defined as follows.

Given a set P = {p1, p2, . . . , pn} of n points, the non-negative distances between each pair

of points pi, pj ∈ P , and a positive integer k (3 ≤ k ≤ n), for each point p ∈ P and a subset S

of P , the 2-dispersion cost of the point p ∈ P with respect to S, cost2(p, S), is defined as the

sum of Euclidean distances from p to the closest point in S \{p} and the second closest point

in S\{p}. The 2-dispersion cost of the subset S is defined as cost2(S) = minp∈S{cost2(p, S)}.

The objective of the 2-dispersion problem is to find a subset S ⊆ P of cardinality k such

that cost2(S) is maximized.

In this thesis, we present a (2
√

3 + ϵ)-factor approximation result for the 2-dispersion

problem in R2. We also develop a common framework for the dispersion problem in Eu-

clidean space, which produces a 2
√

3-factor approximation result and an optimal result for

the 2-dispersion problem in R2 and R1, respectively.

Next, we study the 1-dispersion problem, which is defined as follows.

Given a set P = {p1, p2, . . . , pn} of n points, the non-negative distances between each

pair of points pi, pj ∈ P , and a positive integer k (2 ≤ k ≤ n), for each point p ∈ P and

a subset S of P , the 1-dispersion cost of the point p ∈ P with respect to S, cost1(p, S),

is defined as a distance of p to the closest point in S \ {p}. The 1-dispersion cost of the

subset S ⊆ P is defined as cost1(S) = minp∈S{cost1(p, S)}. The objective of the 1-dispersion

problem is to find a subset S ⊆ P of cardinality k such that cost1(S) is maximized.

In this thesis, we propose a 2-factor approximation result for the 1-dispersion problem

in R2.

Next, we study the dispersion problem in a metric space. We introduce a variant of the

dispersion problem, namely the c-dispersion problem. The problem is defined formally as

follows.

Given a set P = {p1, p2, . . . , pn} of n points, the non-negative distance d(pi, pj) between

each pair of points pi, pj ∈ P , and a positive integer k (c+ 1 ≤ k ≤ n), for each point p ∈ P

and a subset S of P , the c-dispersion cost of the point p ∈ P with respect to S, costc(p, S),

is defined as the sum of distances from p to the c closest points in S \ {p}. The c-dispersion

cost of the subset S of P is defined as costc(S) = minp∈S{costc(p, S)}. The objective of the

c-dispersion problem is to find a k size subset S of P such that costc(S) is maximized.

In this thesis, we propose a greedy algorithm for the c-dispersion problem, which pro-

duces a 2c-factor approximation result. We also prove that the c-dispersion problem in a

metric space parameterized by solution size is W[1]-hard.

Finally, we consider a variant of the 1-dispersion problem, where a set of locations is the

vertices of a convex polygon. This variant of the 1-dispersion problem is referred to as the

convex 1-dispersion problem, and it is defined as follows.

Given a set P = {p1, p2, . . . , pn} of n vertices of a convex polygon, the Euclidean distance

d(p, q) between each pair of vertices p, q ∈ P , the objective of the convex 1-dispersion problem

is to find a subset S of P of size k such that the cost of a subset S, cost(S) = min{d(p, q) |

p, q ∈ S}, is maximized.

In this thesis, we propose an O(n3)-time algorithm that returns an optimal result where

the objective is to select k(= 4) vertices for the convex 1-dispersion problem. We also

propose a
√

3 (≈ 1.733)-factor approximation algorithm for the convex 1-dispersion problem

for any value of k.

;;=8=<<

Declaration

I certify that:

• The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisors.

• The work reported herein has not been submitted to any other Institute

for any degree or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data,

graphs, diagrams, theoretical analysis, results, etc.) from other sources, I

have given due credit by citing them in the text of the thesis and giving

their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the

best of my knowledge and understanding and take complete responsibility

if any complaint arises.

• I am fully aware that my thesis supervisors are not in a position to check

for any possible instance of plagiarism within this submitted work.

Date:

Place: Guwahati
(Pawan Kumar Mishra)

mailto:pawan.mishra@iitg.ac.in

Acknowledgements

The pursuit of a PhD is a lengthy endeavor, and it would not have been possible

to reach this destination without the gracious support of a number of individuals.

I would like to take this opportunity to express my sincere gratitude to them for

the kind help they have provided.

In the beginning, I thank my supervisors, Professor S.V. Rao and Professor

Gautam K. Das, for all the guidance, encouragement, and assistance they have

provided to me over the last five years. They have allowed me to investigate

new directions within the scope of the research, which I greatly appreciate. I

owe them a lot because they always pointed out my simple mistakes and kept

me interested in my Ph.D. work, and I thank them very much for that.

I express my gratitude to Professor G. Sajith, Dr. Pinaki Mitra, and Dr. Deep-

anjan Kesh, members of my doctorate committee, for the insightful remarks and

ideas they provided throughout the course of my Ph.D. In addition, I express

my gratitude to the department technical officers, technical superintendents, and

administrative personnel for the complete and unconditional support they have

provided.

My younger brother, Pankaj, was always there for me when I needed him the

most and I would like to express my gratitude to him. He solved all the problems

(not related to research problems, though ;-)), making the transition to my

Ph.D. much less stressful.

My parents have shown support, patience, love, blessings, and unwavering faith.

For all of this, I am sincerely grateful and indebted to all of them. Also, obtaining

a Ph.D. while staying away from home is a challenging task unless there is

someone who can look after the parents. Ruby, my sister, is the person to whom

I owe a debt and for whom I will be grateful until the end of time.

My girlfriend, Kasturi, has been incredibly supportive and caring and I am

beyond grateful for all she has done for me. She has faith in my abilities and

has always supported me.

In addition, I would like to thank two toddlers, Chuha and TukTuk, who were

stress busters during the last phase of my Ph.D.

I thank all my friends, Akshay, Alakesh, Arijit, Aurobindo, Bala Bhaiya, Bhale,

Chaitanya, Dip, Gyanendra, Harish Da, Hemanta, Jenil, Kamal, Mirza Bhai,

Naro, Nayan, Omesh, Palash Da, Pallav, Pankaj, Parikshit Da, Pritam, San-

gram, Ujjwal Da, with whom I have spent most of the time.

Last but not the least, I would like to thank those people who discouraged,

demoralized, and menaced me at different stages of life. All of this motivated

me to take something as a challenge and work hard for it.

;;=8=<<

Certificate

This is to certify that this thesis entitled, “Algorithms for Facility Location

Problems in Geometric Settings”, being submitted by Pawan Kumar

Mishra, to the Department of Computer Science and Engineering, Indian Insti-

tute of Technology Guwahati, for partial fulfillment of the award of the degree

of Doctor of Philosophy, is a bonafide work carried out by him under my super-

vision and guidance. The thesis, in my opinion, is worthy of consideration for

award of the degree of Doctor of Philosophy in accordance with the regulation of

the institute. To the best of my knowledge, it has not been submitted elsewhere

for the award of the degree.

Date:

Place: Guwahati

...................................

Prof. S. V. Rao

Professor

Department of Computer Science and Engineering

IIT Guwahati

.....................................

Prof. Gautam Kumar Das

Professor

Department of Mathematics

IIT Guwahati

mailto:pawan.mishra@iitg.ac.in
mailto:pawan.mishra@iitg.ac.in
http://www.iitg.ac.in
http://www.iitg.ac.in

Contents

Abstract iv

Declaration viii

Acknowledgement ix

Certificate xi

List of Figures xv

List of Algorithms xviii

List of Abbreviations xix

List of Symbols xx

1 Introduction 1

1.1 Preliminaries . 13

1.2 Scope of the Thesis . 15

xii

1.3 Organization of the Thesis . 17

2 Literature Review 20

2.1 Covering Problem . 21

2.2 Dispersion Problem . 24

3 Capacitated Discrete Unit Disk Cover Problem 29

3.0.1 Overview of the Chapter . 30

3.1 A Necessary and Sufficient Condition . 30

3.2 Hardness of the (α, P,Q)-Covering Problem 33

3.3 A PTAS . 42

3.4 Conclusion . 47

4 Euclidean Dispersion Problems 49

4.0.1 Overview of the Chapter . 50

4.1 (2
√

3 + ϵ)-Factor Approximation Algorithm 51

4.2 A Common Framework for the Euclidean Dispersion Problem 57

4.2.1 2
√

3-Factor Approximation Result for the 2-Dispersion Problem in R2 58

4.2.2 2-Dispersion Problem on a Line . 64

4.2.3 1-Dispersion Problem in R2 . 68

4.3 Conclusion . 72

5 Dispersion Problem in a Metric Space 74

5.0.1 Overview of the Chapter . 75

5.1 Algorithm . 75

5.2 A Parameterized Reduction . 84

5.3 Conclusion . 86

6 Convex 1-Dispersion Problem 88

6.0.1 Overview of the Chapter . 89

6.1 Convex 1-Dispersion Problem for k = 4 . 89

6.1.1 Preliminaries . 90

6.1.2 Algorithm . 92

6.2
√

3-Factor Approximation Result for the Convex 1-Dispersion Problem . . . 100

6.3 Conclusion . 105

7 Conclusion and Future Work 107

References 111

List of Figures

1.1 Unit disks as a set of geometric objects . 5

1.2 (a) An instance of the (α, P,Q)-covering problem, (b) Unit disk centered on

the points of Q, (c) Optimal solution when α = 3, and (d) Optimal solution

when α = 2 . 6

1.3 Dispersion sum of facility placed at location p1 9

1.4 (a) dispersion sum metric, and (b) dispersion partial sum metric 11

1.5 Convex Polygon . 13

3.1 (a) An instance of the (α, P,Q)-covering problem, and (b) Construction of

bipartite graph for α = 2, here vertex vij represent jth copy of disk i. 32

3.2 (a) A planar graph G of maximum degree 3, and (b) pi for each vi ∈ V 35

3.3 (a) placement of joint points where ℓ′ = 1, (b) Placement of joint points

where ℓ′ > 1, and (c) placement of support points with respect to p1. 36

3.4 (a) Added points and line segments in the embedding, and (b) instance of

the (3, P, P)-covering problem. 38

3.5 (a) A vertex cover {v1, v3, v4} of G, and (b) the construction of J ′ and S ′. . . 40

xv

4.1 Points pa, pb, pc ∈ D[pi] . 52

4.2 H(D[OPT ′] ∪ Si,E) . 53

4.3 2-dispersion cost of p∗t with respect to OPT 54

4.4 pℓ lies outside the disk D[p∗j] . 56

4.5 q is not contained in D[p∗j] . 56

4.6 2-dispersion cost of p∗m with respect to S∗ . 61

4.7 pℓ lies outside of the disk D[p∗j] . 63

4.8 q is not contained in D[p∗j] . 64

4.9 s∗r and s∗t on left side of s∗o . 65

4.10 Snippet of S ′
4 . 66

4.11 Placement of set Si−1 ∪ {pi}. 67

4.12 Closest point of p∗j lies outside of D(p∗j). 71

5.1 q ∈ B(p), but r /∈ B(p). 77

5.2 Illustration of Lemma 5.1.1. 77

5.3 G(B(X) ∪M,E). 79

5.4 c-dispersion cost of p∗t with respect to S∗ . 80

5.5 p ∈ B(p∗j), and q /∈ B(p∗j). 83

6.1 (a) Lij, Rij for the pair (pi, pj) ∈ P , and (b) Rij = ϕ 90

6.2 Sij does not exist for the pair (pi, pj) . 91

6.3 (a) pk and pℓ are in Lij, (b) pk and pℓ are in Rij, and (c) pk is in Lij and pℓ

is in Rij . 91

6.4 Illustration of Observation 6.1.1 . 95

6.5 Illustration of Lemma 6.1.2 . 96

6.6 Illustration of Base Case . 102

6.7 Illustration of Inductive Step . 103

List of Algorithms

1 Local Search Algorithm(α, P,Q) . 43

2 Euclidean Dispersion Algorithm(P, k) . 52

3 Framework Euclidean Dispersion(P, k, γ) . 58

4 Metric Dispersion Algorithm(P, k) . 76

5 Convex 1-Dispersion Algorithm(P, 4) . 94

6 Convex 1-Dispersion Algorithm(P, k) . 101

xviii

List of Abbreviations

NP The class of non-deterministic polynomial-time solvable problems

NP-hard The class of non-deterministic polynomial-time hard problems

OPT Optimal solution

P The class of deterministic polynomial-time solvable problems

PTAS Polynomial-time approximation scheme

FPTAS Fully polynomial-time approximation scheme

VLSI Very large scale integration

SDN Software Defined Networking

FLPs Facility Location Problems

SC Set Cover

CSC Capacitated Set Cover

VC Vertex Cover

GSC Geometric Set Cover

GCSC Capacitated Geometric Set Cover

DUDC Discrete Unit Disk Cover

IS Independent set

xix

List of Symbols

Symbol Meaning

⌊x⌋ The largest integer less than or equal to x

⌈x⌉ The smallest integer greater than or equal to x

a← b Variable a gets the value of b∑
The addition of a sequence of numbers

∀ For all

∃ There exists

T (n) The time complexity of an algorithm with input size n

O(·) The asymptotic big-oh notation

| Such that

min{x, y} The minimum of x and y

The end of a proof

∅ The empty set

{.} The set notation

R2 {(a, b) | a, b ∈ R}
P A set of points in R2

p ∈ P p is a member of P

d(p, q) The Euclidean distance between p and q

Q ⊆ P Q is a subset of P

xx

P ∩ Q The intersection of P and Q

P ∪ Q The union of P and Q

P \ Q The set minus of P and Q

| · | The cardinality of a set

k A positive integer

N [p] The closed neighborhood of a point p

N(p) The open neighborhood of a point p

D(p) The open unit disk centered at a point p

D(P) The set of open unit disks centered at the points in P

D[p] The closed unit disk centered at a point p

D[P] The set of closed unit disks centered at the points in P

B(p) The open unit ball centered at a point p

B(P) The set of open unit balls centered at the points in P

Si A subset containing i points having certain properties

G = (V,E) An undirected connected simple graph with vertex set V and edge set E

e ∈ E e is a member of E

n The cardinality of V (or) the cardinality of a point set P

m The cardinality of E

NG(.) The open neighborhood of a vertex/set

{Aϵ} A collection of algorithms with ϵ as input parameter

1
Introduction

Facility location problems (FLPs) have been at the core of optimization problems in the

twentieth century and have thus been extensively studied [33,34,39,40]. In FLP, the funda-

mental challenge is to determine where to locate the facilities to achieve specific objectives.

In general, facilities are warehouses, franchises, hospitals, oil tanks, etc. [62, 74]. However,

the objectives are mainly a function of the cost of installing the facilities or a function of the

distances between the installed facilities [33, 34]. Due to the wide range of applications in

the real world, FLPs continue to be a topic of extensive and ongoing research interest. Some

1

Introduction

of the popular FLP applications include VLSI design, image processing, and clustering. In

this thesis, we study two popular FLPs in geometric settings: the covering problem, and

the dispersion problem. The covering problem refers to selecting a subfamily of sets from a

given family of sets such that the union of the selected sets contains all the elements of the

specified ground set. On the other hand, the dispersion problem refers to finding a subset of

a given set of elements such that proximity (closeness) between the elements in the selected

set is undesirable. Note that the objective of the covering problem is a function of the cost

of the installation of the facilities. In contrast, the objective of the dispersion problem is

a function of the distance between the installed facilities. In the literature, the dispersion

problem is closely related to another popular FLP, namely the Anti-Covering problem1.

When it comes to applications of covering and dispersion problems, the possibilities

are enormous. However, only a few of them are included here. The covering problem

has many applications in various domains, including wireless networks [1, 16, 53], VLSI

[56], image processing [19], computational biology [57], and computational learning theory

[59, 60]. Similarly, the dispersion problem has many applications, including the placement

of hazardous structures, the opening of franchise stores [37], geographic analysis [63], and

information retrieval [11,50]. See more applications of the dispersion problem in [18,64,70,

75].

In the covering problem, a set system (U,S) is given, where U is the set consisting of

elements and S is a family of subsets of U. The objective is to find a subfamily F ⊆ S

such that its union contains each element in U. The subfamily F is referred to as covering

set of U. One can model the covering problem in a number of different ways, depending

on the kind of application being considered. To better understand the modeling, we refer

1In the Anti-Covering problem, the objective is to select the largest possible subset of elements from a
given set of elements such that each element in the selected subset is at least a distance r units away from
other elements in the selected subset [66]. This problem is also known as the r-separation problem [38].

2

to an element in U as a “client” and a set in S as a “service provider”. Now, if a client

c ∈ U belongs to a service provider S ∈ S , we say that S can provide a service to the

client c. Similarly, S ∈ S contains a set of clients for which it can potentially provide a

service. Based on the concept of clients and service providers, we consider a few scenarios

that can be modeled using the covering problem. For example, we might need to find the

minimum number of service providers to serve all clients. This problem is referred to as the

set cover (SC) problem. In the SC problem, the objective is to find the minimum cardinality

covering set F ⊆ S . Now consider another application as follows: for each client, there are

exactly two service providers that can potentially serve it, and we need to find the minimum

number of service providers to serve all clients. This problem is called the vertex cover (VC)

problem. Furthermore, in some applications, we might have a capacity constraint for each

service provider, i.e., a bound on the number of clients it can serve, and considering the

capacity constraint, we wish to find the minimum number of service providers to serve all

clients. This problem is referred to as the capacitated set cover (CSC) problem, and it is

also a natural variant of the SC problem. In the CSC problem, in addition to a set system

(U,S), a capacity Ci is given for each set Si ∈ S . Here, Ci is a bound on the number of

elements that Si can cover (also referred to as the capacity of the set Si). Note that the

SC problem is a special case of the CSC problem, where the capacity of each set Si ∈ S is

unbounded. Based on the number of copies of each set Si ∈ S , there are two versions of the

CSC problem, namely (i) soft, and (ii) hard capacitated versions. Each set Si ∈ S has an

unbounded number of copies available in the soft capacitated version. In contrast, each set

Si ∈ S has a bound on the number of copies available in the hard capacitated version. Now

consider an application in which the services provided by a service provider are restricted to a

certain geographical region. This means that a service provider can only provide its services

to clients located within the boundaries of its geographical region. It is quite intuitive to use

3

Introduction

a geometric object to represent the geographical boundary of the service provider, while a

point can be used to represent clients. A client (point) within the geographical boundary of

the service provider (geometric object) means that the service provider can serve the client.

Taking into account the above, the SC problem can be defined in geometric settings. In the

geometric set cover (GSC) problem, a range space, analogous to a set system, is defined as

S = (X,R), where X is a set of points (finite or infinite) and R is a (finite or infinite) family

of subsets of X called ranges. Ranges are defined by the intersection of X and geometric

objects such as unit disks, unit squares, axis-parallel rectangles, and, in general, convex

pseudo-disks. The objective is to find a minimum cardinality R′ ⊆ R of the ranges such

that all points in X are covered, i.e., for all p ∈ X, there exists r ∈ R′ such that p ∩ r ̸= ϕ.

The GSC problem is a special case of the general SC problem. Although the general SC

problem is NP-hard to approximate within a factor of (1− ϵ) log n [31], some GSC problems

admit a PTAS due to the geometric properties of the object. Now, if there is a bound on the

number of points that a geometric object in R can cover, i.e., the capacity of each Ri ∈ R,

then the GSC problem is known as the geometric capacitated set cover (GCSC) problem.

In the GCSC problem, if a set of unit disks are considered as a set of geometric objects

(see Figure 1.1) and the capacity of each unit disk is uniform, then the GCSC problem is

referred to as the (α, P,Q)-covering problem, and it is defined as follows.

4

Figure 1.1: Unit disks as a set of geometric objects

(α, P,Q)-Covering Problem: For a set P = {p1, p2, . . . , pn} of n points and a set

Q = {q1, q2, . . . , qm} of m points and a positive integer α, a subset Q′ ⊆ Q is said to

be an α-cover of P if (i) the point set P can be partitioned into ℓ subsets P1, P2, . . . , Pℓ

such that |Pi| ≤ α for each i = 1, 2, . . . ℓ, where ℓ = |Q′| and (ii) each p ∈ Pi is covered

by a unit disk centered at q′i ∈ Q′. Given a positive integer α, a set P of n points

and a set Q of m points, the objective of the (α, P,Q)-covering problem is to find a

minimum cardinality α-cover Q′ ⊆ Q of P .

In Figure 1.2(c), if the capacity (α) of each disk is 3, then the set Q′ = {q1, q3} is the

optimal solution, as the unit disks centered on q1 and q3 cover all the points. Similarly,

in Figure 1.2(d), if the capacity (α) of each disk is 2, then the set Q′ = {q1, q2, q3} is the

5

Introduction

optimal solution, as the unit disks centered on q1, q2 and q3 cover all the points.

q1

q3

q2

q1

q3

q2 q1

q3

q2

(a)

(d)(c)

p1

p2
p3

p4

p6

p5

p1

p2
p3

p4

p6

p5

p1

p2
p3

p4

p5

p6

q1

q3

q2

(b)

p1

p2
p3

p4

p6

p5

Figure 1.2: (a) An instance of the (α, P,Q)-covering problem, (b) Unit disk centered on the points
of Q, (c) Optimal solution when α = 3, and (d) Optimal solution when α = 2

Motivations. Our interest in the (α, P,Q)-covering problem arises from the coverage prob-

lem in software-defined networking (SDN). In SDN, the control plane (which controls traffic

routing) is decoupled from the data plane (packet forwarding). The switches are respon-

sible for the data plane and controllers for the control plane. The SDN controller collects

information from the switches that fall into the controller’s coverage area. Depending on

6

the price of the installation of a controller, there can be a limitation on the number of

switches that a controller can communicate irrespective of the number of switches falling in

the controller’s range. In the literature, this problem is addressed as a capacitated controller

problem in SDN [83]. The constraint on the number of switches controlled by a controller

inspired us to study the (α, P,Q)-covering problem.

Next, we consider the dispersion problem. In a typical dispersion problem, a set P =

{p1, p2, . . . , pn} of n locations, a positive integer k and a distance function d(., .) are given.

Here, P is a set of desired locations where facilities can be placed. The goal is to select a k

size subset S of P and place the facilities in each location in S so that proximity (closeness)

between the facilities in S is undesirable. More specifically, in the dispersion problem, the

goal is to minimize interference between the facilities located in S. In the literature, there

are multiple variants of the dispersion problem; of which the two popular variants of the

dispersion problem are as follows: (i) Max-Min-Min, and (ii) Max-Min-Sum.

In the Max-Min-Min dispersion problem, k facilities are to be placed in order to maximize

the minimum distance that separates two facilities. We refer to the Max-Min-Min problem

as the 1-dispersion problem, and it is defined formally as follows.

1-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distances between each pair of points pi, pj ∈ P , and a positive integer k

(2 ≤ k ≤ n), for each point p ∈ P and a subset S of P , the 1-dispersion cost of

the point p ∈ P with respect to S, cost1(p, S), is defined as a distance of p to the

closest point in S \ {p}. The 1-dispersion cost of the subset S ⊆ P is defined as

cost1(S) = minp∈S{cost1(p, S)}. The objective of the 1-dispersion problem is to find

a subset S ⊆ P of cardinality k such that cost1(S) is maximized.

7

Introduction

Motivations. When we investigate the 1-dispersion problem in the logistics context in

the real world, we find a huge variety of applications. These applications include the es-

tablishment of franchise stores, the installation of missile launch pads, the establishment of

hazardous structures such as nuclear power plants and oil tanks, and many more. Now, we

will discuss some of the applications of the 1-dispersion problem. Consider a scenario where

there exist n desired locations/sites available to open fast food franchise stores in an area;

the objective is to select exactly k (≤ n) locations from n desired locations so that stores

located in these selected k locations are mutually far from each other. Basically, it is not de-

sirable to have two stores that share the same clientele. Another instance where the problem

of dispersion arises is during the installation of missile launch pads. When multiple launch

pads are grouped together in the same area, it is possible for a single adversary to eliminate

all of them at once. Therefore, these launch pads must be distributed to the greatest extent

possible to ensure that an accident on one of the launch pads has no implications for others.

In addition to logistic settings, the 1-dispersion problem has various applications, provided

that we can define the right measure of closeness. One of such possible applications in which

the 1-dispersion problem could be used is in the introduction of new products to the market;

however, this would require us to define the appropriate closeness between the products.

Suppose that a company wants to introduce k new diverse products from a total of n possi-

ble new products and wants to do so in such a way that the products launched are diverse in

nature (with regard to quality, price, shape, etc..) Therefore, if an appropriate measure of

the closeness between products is defined, then the 1-dispersion problem can be used to find

k new diverse products from a total of n possible new products. The 1-dispersion problem

also has application in information retrieval, where we need to locate a small subset of data

with some desirable variety from an extended data collection such that a small subset may

be used as a fair sample to provide an overview of the large data set [11, 50].

8

Next, to define the Max-Min-Sum problem, a metric dispersion sum is introduced. To

define the dispersion sum, assume that k locations are selected (to place facilities) from n

desired locations (see Figure 1.3(a)). Then, for a facility, the dispersion sum depends on the

other k− 1 located facilities. The dispersion sum of a facility is the sum of the distances to

other k− 1 facilities. See Figure 1.3(b) for an illustration of the definition of the dispersion

sum. In Figure 1.3(b), the dispersion sum of the facility at p1 is
∑k

i=2 d(p1, pi).

p2
p3

p
k−1

p1

pk

p2
p3

p
k−1

p1

pk

(a) (b)

Figure 1.3: Dispersion sum of facility placed at location p1

In the Max-Min-Sum problem, k facilities are to be placed in order to maximize the

smallest of the dispersion sum. Note that the 1-dispersion problem is a special case of

the Max-Min-Sum problem, where for a facility, the dispersion sum is the distance to the

closest placed facility, rather than adding the distances to all other k−1 placed facilities. In

both Max-Min-Min and Max-Min-Sum problems, for a located facility, we take into account

(i) the facility located closest to it and (ii) all other k − 1 located facilities, respectively.

Consequently, one can explore only two extremes of a dispersion spectrum. Therefore, it is

reasonable to examine an intermediate metric that considers the effect of some facilities, but

9

Introduction

not all. Hence, the concept of dispersion partial sum, a more general metric, is introduced.

Now, to define the dispersion partial sum, assume that k locations are selected (to place

facilities) from n desired locations. Then, for a facility, the dispersion partial sum is the sum

of the distance of the pre-specified number of the closest facilities. Hence, the concept of a

dispersion partial sum generalizes the Max-Min-Sum dispersion problem. For each facility,

if the dispersion partial sum is the sum of the distance of the c (≤ k) closest placed facilities,

then the Max-Min-Sum problem is referred to as the c-dispersion problem. The c-dispersion

problem is defined formally as follows.

c-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distance d(pi, pj) between each pair of points pi, pj ∈ P , and a positive integer

k (c + 1 ≤ k ≤ n), for each point p ∈ P and a subset S of P , the c-dispersion cost of

the point p with respect to S, costc(p, S), is defined as the sum of distances from p to

the c closest points in S \{p}. The c-dispersion cost of the subset S of P is defined as

costc(S) = minp∈S{costc(p, S)}. The objective of the c-dispersion problem is to find a

subset S ⊆ P of size k such that costc(S) is maximized.

Motivations. Consider a scenario in which a franchiser wants to open six stores in a city

(out of n desired locations) so that the stores are far from each other. Now, if the stores

are opened at these six locations: p1, p2, p3, p4, p5, p6, then the dispersion sum metric for the

store located at p1 gives the false impression that all the stores at p2, p3, p4, p5 and p6 are

scattered from the store located at p1 (see Figure 1.4 (a)). This is because the stores located

at p2, p4 and p6 are far from the location p1. On the other hand, the stores located at p3

and p5 are relatively close to the store located at p1 (see Figure 1.4(b)). For the scenario

considered in Figure 1.4, to get a better idea of the dispersion, it would be wise to look at

10

the two closest stores. Thus, to precisely measure the dispersion, it would make more sense

to consider a fixed number of the closest open stores using the dispersion partial sum as a

metric. See Figure 1.4(b), where the two closest stores of p1, i.e., p3 and p5, are considered.

p3
p2

p5

p4

p1 p1

p2

p5

p4

p3

(a) (b)

p6 p6

Figure 1.4: (a) dispersion sum metric, and (b) dispersion partial sum metric

Based on the scenario discussed in the example in Figure 1.4, where it was shown that for

a facility, the two closest facilities are relevant to effectively comprehend the dispersion, we

introduce another variant of the Max-Min-Sum dispersion problem, called the 2-dispersion

problem. The 2-dispersion problem is defined as follows.

11

Introduction

2-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distances between each pair of points pi, pj ∈ P , and a positive integer k

(3 ≤ k ≤ n), for each point p ∈ P and a subset S of P , the 2-dispersion cost of the

point p ∈ P with respect to S, cost2(p, S), is defined as the sum of Euclidean distances

from p to the closest point in S \ {p} and the second closest point in S \ {p}. The

2-dispersion cost of the subset S of P is defined as cost2(S) = minp∈S{cost2(p, S)}.

The objective of the 2-dispersion problem is to find a subset S ⊆ P of cardinality k

such that cost2(S) is maximized.

To this point, in all the dispersion problems that have been considered, a given set of

locations is regarded as an arbitrary set of points on the plane. However, a set of locations

can be restricted to certain geometric objects, such as lines, circles, convex polygons, etc..

Now consider a variant of the 1-dispersion problem, where a set of locations is the vertices

of a convex polygon. This variant of the 1-dispersion problem is referred to as the convex

1-dispersion problem, and it is defined as follows.

Convex 1-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n vertices of a

convex polygon, the Euclidean distance d(p, q) between each pair of vertices p, q ∈ P ,

the objective of the convex 1-dispersion problem is to find a subset S ⊆ P of vertices of

size k such that the cost of a subset S, cost(S) = min{d(p, q) | p, q ∈ S}, is maximized.

Motivations. The inspiration for studying the problem came when we tried to open chain

stores for a large amusement park. Consider the following scenario: we have a park whose

geographical boundary forms a convex polygon C (see Figure 1.5), and the preferred loca-

tions for opening food chain stores are located only on the vertices of C. Let the number of

12

Preliminaries

preferred locations be n. The objective is to open k food chain stores out of all preferred n

locations so that the stores are mutually far from each other. Basically, we need to eliminate

or avoid self-competition among stores.

Figure 1.5: Convex Polygon

1.1 Preliminaries

The complexity class P comprises problems for which a deterministic polynomial-time al-

gorithm exists. In computational complexity theory, the notion of polynomial-time leads to

several complexity classes. One of the most important classes defined using polynomial-time

is NP (nondeterministic polynomial time). NP is the complexity class of decision problems1

that can be solved on a non-deterministic Turing machine in polynomial time. The two

main types of problem widely studied with respect to class NP are:

NP-hard problem: A problem H is NP-hard when every problem L in NP can be

reduced in polynomial-time to an instance of H; that is, that is, assuming a solution for the

reduced instance of H one can produce the solution of the problem L in polynomial time.

1A decision problem is a computational problem that can be posed as a yes–no question of the input
values.

13

Introduction

NP-complete problem: A problem is NP-complete when it is both NP-hard and in

NP.

The overwhelming majority of interesting optimization problems are NP-hard. There-

fore, we consider designing approximation algorithms for these problems.

Approximation algorithm: An approximation algorithm A for a given problem P

finds a solution close to the optimal solution, with provable guarantees on how far the

returned solution is to the optimal one. Note that the algorithm A runs in polynomial-time

for all instances of the problem. An algorithm A is a ρ factor approximation for the problem

P if, for all instances of the problem P , an algorithm A produces a feasible solution whose

value is within ρ-factor of the optimal solution value.

Polynomial-Time Approximation Scheme (PTAS): An algorithm A is said to be

polynomial-time approximation scheme (PTAS) for a minimization (resp. maximization)

problem P if, for any instances of P and given any rational value ϵ > 0, A is a (1 + ϵ)

(resp. 1 − ϵ)-factor approximation algorithm for the problem P . Note that the running

time of A must be polynomial in the input size of the problem, but not necessarily in 1/ϵ.

An algorithm A is said to be fully polynomial-time approximation scheme (FPTAS) if the

running time of A is required to be polynomial both in the input size of the problem and

in 1/ϵ.

We define common notion in Parameterized Complexity here.

Parameterized Problem: A parameterized problem is a language L ⊆ Σ∗×N, where

Σ is a fixed and finite alphabet. Any (I, k) ∈ Σ∗ ×N is called instance of L. (I, k) is called

a Yes instance of L if (I, k) ∈ L, otherwise called a No instance. For an instance (I, k), k is

called the parameter.

14

Scope of the Thesis

Next, we define fixed-parameter tractability.

Fixed-Parameter Tractability: Let L ⊆ Σ∗×N be a parameterized problem. We say

that L is a fixed-parameter tractable (FPT) if there exists a computable function f : N→ N,

a constant c and an algorithm A that takes as input an instance (I, k) of L, runs in time

f(k).|I|c and correctly decides if (I, k) ∈ L.

Parameterized Reduction: Let A,B ⊆ Σ∗ × N be two parameterized problems. A

parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A,

outputs an instance (x′, k′) of B such that:

• (x, k) is an Yes instance of A if and only if (x′, k′) is an Yes instance of B

• k′ ≤ g(k) for some (non-decreasing) computable function g, and

• the running time is f(k)|x|O(1) for some (non-decreasing) computable function f .

If there is a parameterized reduction from A to B, and B is FPT, then A is also FPT

(Theorem 13.2 [28]).

W-hardness: Downey and Fellows [32] introduced the notion of W -hierarchy to classify

the hardness of parameterized problems. It is sufficient for our thesis goals to state that we

have the following hierarchy: FPT ⊆ W [1] ⊆ W [2] ⊆ · · ·. Similar to the NP-hardness, if

there is a parameterized reduction from a W [t]-hard problem A to a parameterized problem

B, then B is W [t]-hard. Under the assumption that FPT ̸= W [1], we can conclude that a

W [1]-hard problem is not FPT.

1.2 Scope of the Thesis

In this thesis, we consider the facility location problem, more specifically the covering and

dispersion problems. We study both problems because of their wide applications in the

15

Introduction

real world. See [1, 16, 19, 53, 56, 57] and [18, 64, 70, 75] for some applications of the covering

problem and the dispersion problem, respectively. Most of the problems that we consider in

this thesis are NP -hard, and the status of the hardness of other problems is unknown. We

study a variant of the covering problem, namely the (α, P,Q)-covering problem. We study

variants of the dispersion problem in Euclidean space, namely the 2-dispersion problem

in R1 and R2, and the 1-dispersion problem in R2. Furthermore, we study the dispersion

problem in a metric space. In a metric space, we introduce a variant of the dispersion

problem, namely, the c-dispersion problem. We further study the dispersion problem for

the restricted input, where given set of points are in convex position. We refer to it as the

convex 1-dispersion problem. For the (α, P,Q)-covering problem, we establish a necessary

and sufficient condition that ensures the feasibility of the given instance, prove that the

(α, P,Q)-covering problem is NP-complete for α ≥ 3, and also propose an algorithm that

admits a PTAS. For the 2-dispersion problem in R2, we propose a simple polynomial-

time algorithm that produces the (2
√

3 + ϵ)-factor approximation result, for any ϵ > 0.

We improve the approximation factor to 2
√

3 in R2. We also present a polynomial-time

algorithm for the 2-dispersion problem in R1 that returns an optimal solution. We further

propose a 2-factor approximation algorithm for the 1-dispersion problem in R2. Next, for

the c-dispersion problem in a metric space, we present a polynomial-time algorithm which

yields a 2c-factor approximation result. We also show that the c-dispersion problem in a

metric space parameterized by the solution size k is W [1]-hard. Finally, we study the convex

1-dispersion problem. We propose an O(n3)-time algorithm that returns an optimal result

where the objective is to select k(= 4) vertices. We also propose a
√

3 (≈ 1.733)-factor

approximation algorithm for the convex 1-dispersion problem.

16

Organization of the Thesis

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2: Literature Review. In this chapter, we discuss existing work on covering

and dispersion problems.

Chapter 3: Capacitated Discrete Unit Disk Cover Problem. In this chapter, we

start with a description of the (α, P,Q)-covering problem. We establish a necessary and

sufficient condition through which one can ensure whether the given instance is feasible or

not. Furthermore, we prove that the problem is NP-complete for α ≥ 3 and propose a local

search algorithm that admits a PTAS for the (α, P,Q)-covering problem.

Chapter 4: Euclidean Dispersion Problem. In this chapter, we present a (2
√

3 + ϵ)-

factor approximation result for the 2-dispersion problem in R2. We also develop a common

framework for the dispersion problem in Euclidean space, which returns a 2
√

3-factor ap-

proximation result and an optimal result for the 2-dispersion problem in R2 and R1, respec-

tively. Using the common framework, we propose a 2-factor approximation result for the

1-dispersion problem in R2.

Chapter 5: Dispersion Problem in a Metric Space. In this chapter, we study the

c-dispersion problem in a metric space and propose a greedy algorithm that produces a

2c-factor approximation result. We also prove that the c-dispersion problem in a metric

space parameterized by the solution size is W[1]-hard.

Chapter 6: Convex 1-Dispersion Problem. In this chapter, we study the convex 1-

dispersion problem. We study a variant in which the objective is to select the k(= 4) vertices

of a convex polygon. We propose an iterative algorithm that produces an optimal solution

in O(n3) time. In addition, we also propose a
√

3-factor approximation result for the convex

1-dispersion problem for any value of k.

17

Introduction

Chapter 7: Conclusion and Future Work. In this chapter, we discuss concluding

remarks of the thesis and some open problems which can be considered for future research.

;;=8=<<

18

2
Literature Review

In this chapter, we discuss the state-of-the-art results for the covering and dispersion prob-

lems. We discuss the existing results for both problems in both general and geometric

settings. The chapter is divided into two sections. In Section 2.1, we discuss the state-of-

the-art results for the covering problem. In Section 2.2, we study the existing results for the

dispersion problem.

20

Covering Problem

2.1 Covering Problem

The set cover (SC) problem is one of the most popular covering problems. In 1974, Johnson

[58] proposed a greedy algorithm for the SC problem that produces an O(log n)-factor

approximation result. Moreover, unless P=NP, the approximation factor for the SC problem

cannot be improved [9, 31, 42]. The vertex cover (VC) problem is another interesting

variant of the covering problem which has been extensively studied. Unless P=NP, Safra

and Dinur [30] showed that the VC problem cannot be approximated within a factor of 1.36.

In 1982, Wolsey [81] proposed a greedy algorithm for the hard capacitated version of the

SC problem and achieved a O(log n)-factor approximation result. In 2003, Guha et al. [52]

introduced the soft capacitated VC problem. An application in the field of glycology has

motivated Guha et al. to study the soft capacitated VC problem. The problem was based

on research done by Glycodata, a biotechnology company. They formulated the problem

in ILP and used a simple LP rounding scheme on the relaxed LP and proposed a 4-factor

approximation result. They improved the factor to 2 using a primal dual approach. Gandhi

et al. [47] proposed a 2-factor approximation algorithm for the soft capacitated VC prob-

lem using dependent rounding. Chuzhoy and Naor [25] were the first to address the hard

capacitated VC problem. They discussed both weighted and unweighted versions of the

hard capacitated VC problem. They showed that for the weighted hard capacitated VC

problem, it is NP-hard to approximate within a factor of (1− ϵ) log n. They also presented

an algorithm with an approximation factor 3 for the unweighted version. In 2006, Gandhi

et al. [46] studied the hard capacitated VC problem and proposed a 2-factor approximation

result. Although the weighted version of the hard capacitated VC problem is NP-hard to

approximate within a factor of (1− ϵ) log n, Gandhi et al. [47] proposed a 2-factor approx-

imation algorithm by allowing each vertex to be used at most twice the given bound. In

21

Literature Review

2012, Saha and Khuller [72] were the first to define the hard capacitated VC problem for hy-

pergraphs and multigraphs. They obtained a 38-factor approximation result for multigraphs

and a max{6f, 65}-approximation result for hypergraphs, where each hyperedge is of size at

most f . They proposed a method based on LP rounding for both problems. In 2014, Che-

ung et al. [24] gave a 2.155-factor approximation algorithm for multigraphs and a 2f -factor

approximation algorithm for hypergraphs for the hard capacitated VC problem. Inspired

by the above result, in 2017, Wong [82] proposed a 2-factor approximation algorithm and

a f -factor approximation algorithm for multigraphs and hypergraphs, respectively. The al-

gorithms for both problems are based on iterative rounding to natural LP relaxation. It is

known for the VC problem for hypergraphs, the best-known approximation ratio is also f ,

as it cannot be improved even further according to the unique game conjecture.

Now, we discuss the state-of-the-art results for the SC problem in geometric settings.

Recent research has emphasized the geometric set cover (GSC) problem, which refers to the

situation in which there are no limitations on the number of elements a geometric object

can cover. One of the most studied GSC problems is the Discrete Unit Disk Cover (DUDC)

problem, where a set of n points and a set of m unit disks are given as input. It is a well-

studied problem and has wide application in wireless networks [29]. Note that the (α, P,Q)-

covering problem is the same as the DUDC problem, for α = |P |. The DUDC problem is

NP-complete [48]. The first constant factor approximation algorithm for the DUDC problem

was proposed by Brönnimann and Goodrich [14]. They made an interesting relation between

the DUDC problem and the ϵ-net 1. Brönnimann and Goodrich used the theorem proposed

by Haussler and Welz, which states that for range spaces with VC dimension d, there exists

an ϵ-net of size O(d
ϵ
log d

ϵ
) [55]. The constant factor approximation algorithm proposed

1For a given range space S = (X,R), an ϵ-net is a subset P ⊆ X such that P ∩ R ̸= ϕ for all R ∈ R
with |R| ≥ ϵn.

22

Covering Problem

by Brönnimann and Goodrich depends on the large constant value in the size of ϵ-net.

Subsequently, many constant-factor approximation results have been published using various

techniques. In 2004, Călinescu et al. [15] proposed a 108-factor approximation algorithm

that runs in polynomial-time. They obtained a 108-factor approximation algorithm for the

DUDC problem by decomposing the instance. They derived an algorithm to find the unit

disks required to cover points in an equilateral triangle with unit length sides. Furthermore,

they gave a 6-factor approximation algorithm to find the unit disks required to cover each

equilateral triangle. Also, they showed that a unit disk covers points with no more than 18

triangles, giving a total approximation factor of 108. In 2006, Ambühl et al. [5] improved

the approximation factor to 72 in O(m2) time. They obtained a 2-factor approximation

algorithm to cover points in squares of size 1√
2
× 1√

2
. In total, it is required to compute it

for 36 such squares, which leads to 72-factor approximation algorithm. In 2007, Carmi et

al. [17] further improved the approximation factor from 72 to 38 with an increase in the

running time from O(m2) to O(m6). This algorithm decomposes planes into squares of size

1√
2
× 1√

2
. They used a different variety of procedures to cover points in the square using

disks. In 2010, Claude et al. [27] improved the approximation factor result and proposed

a 22-factor approximation algorithm with the running time of O(m2n4). This was possible

because of the improved algorithm for Line-Separable DUDC 1. Using the idea of Ambühl et

al. [5] and Claude et al. [27], Das et al. [29] obtained an 18-factor approximation algorithm.

The running time of the algorithm is O(n log n + m logm + mn), which is a significant

improvement compared with other previously proposed algorithms. A year later, in 2012,

Fraser et al. [44] proposed a 15-factor approximation algorithm for the DUDC problem.

They used the decomposition of Das et al. [29] to obtain the 15-factor approximation result.

1In the Line-separable DUDC problem, the plane is divided by a line ℓ into two halves ℓ+ and ℓ−, and
all the points in a given set P are in the plane ℓ− and the center of unit disks are in ℓ+ ∪ ℓ− such that each
point in P are covered by at least one disk centered in ℓ+ [29].

23

Literature Review

In 2013, Manjanna et al. [7] proposed a (9 + ϵ)-factor approximation algorithm, which runs

in O(max(m6n,m2(1+6/ϵ)+1)) time. In 2009, Mustafa and Ray [68] obtained a PTAS using a

local search algorithm 1. The time complexity of the local search algorithm is O(mnO(ϵ−2)).

Compared with other previously proposed constant factor algorithms, the time complexity

of this local search algorithm is extremely high. The algorithm can be easily implemented

due to its simplicity. This is one of the advantages of using a local search algorithm. This

algorithm is also applicable to disks of any arbitrary radius. It also gives a PTAS for

arbitrary radius disks. The GSC problem in which geometric objects other than disks have

also been studied extensively; see [6, 20,26,51,67,78].

2.2 Dispersion Problem

In 1977, Shier [73] introduced the 1-dispersion problem on a tree network and established a

relation between the 1-dispersion problem and the k-center problem. Shier showed that the

1-dispersion problem and the (k − 1)-center problem are dual problems and established an

equivalence between both problems. In 1981, Chandrasekaran and Daughety [22] studied

the 1-dispersion problem on a tree network and proposed a polynomial-time algorithm. In

1982, Chandrasekaran and Tamir [23] also studied the 1-dispersion problem and the k-center

problem on a tree network. They showed that if the set of locations is a finite subset of

the continuum set of points on the edges, then there exists an equivalence between the 1-

dispersion problem and the (k − 1)-center problem on a tree network. So, using a k-center

algorithm on a tree (proposed in [45]), a linear-time algorithm can be devised for the 1-

dispersion problem on a tree. In 1990, Erkut [36] proved that the 1-dispersion problem is

NP-hard by showing a reduction from the clique problem. In 1991, White [80] studied the

1The local search algorithm is an iterative algorithm that starts with a feasible solution and improves
the solution after each iteration until a locally optimal solution is reached.

24

Dispersion Problem

1-dispersion problem and proposed a 3-factor approximation algorithm. In 1991, Tamir [76]

studied the 1-dispersion problem on a general graph, where a continuum set of points on the

edges are considered as locations, and showed that if a continuum set of locations on a graph

is given, then the 1-dispersion problem cannot be approximated within a factor of 3
2

unless

P = NP . Tamir [76] also proposed a heuristic that yields a 2-factor approximation result for

the 1-dispersion problem on a graph. Later in 1994, Ravi et al. [70] studied the 1-dispersion

problem on complete graphs, where each edge is associated with a non-negative weight

(distance that maintains the triangle inequality). They independently analyzed the same

heuristic proposed in [76] (for the 1-dispersion problem on complete graphs) and showed that

the same heuristic produces a 2-factor approximation result for complete graphs. Further-

more, they also demonstrated that, unless P = NP , the 1-dispersion problem on complete

graphs does not have a better than 2-factor approximation result. In 1991, Megiddo and

Tamir [65] designed an O(k2 log2 n) time algorithm for the k-center problem on a line when

points are ordered. Note that the same algorithm can be adapted to solve the 1-dispersion

problem on a line (the points are not necessarily ordered) in polynomial time. In 2007,

Bhattacharya and Shi [10] proposed a linear-time algorithm for the k-center problem on a

line, where the points are not necessarily ordered. This algorithm can be adapted to solve

the 1-dispersion problem on a line (the points are not necessarily ordered) in polynomial

time. Wang and Kuo [79] introduced the 1-dispersion problem in geometric settings. They

considered the problem in a d-dimensional space with a Euclidean distance function be-

tween two points and proposed a dynamic programming algorithm that solves the problem

in O(kn) time for d = 1. Furthermore, they proved that for d = 2, the problem is NP-hard.

Recently, in 2018, Akagi et al. [2] established a relation between the 1-dispersion problem

and the independent set (IS) problem, and proposed an exact algorithm for the 1-dispersion

problem. They proposed an O(nwk/3 log n) time algorithm, where w < 2.373. In [2], they

25

Literature Review

also studied two special cases of the 1-dispersion problem where the set of points (i) lies on

a line, and (ii) lies on a circle. They proposed a polynomial-time exact algorithm for both

special cases.

The max-sum dispersion problem is another popular variant of the dispersion problem.

Here, the objective is to maximize the sum of the distances between the k facilities. Tamir

[76] showed that the problem on a line has a trivial solution in O(n) time. He also proved that

the problem can be solved in O(kn) time if the points are on a tree. Later, Ravi et al. [70]

studied the problem on a line independently and gave a O(max(kn, n log n)) time algorithm.

They also proposed a 4-factor approximation algorithm if the distance function satisfies the

triangle inequality and also presented a (1.571 + ϵ)-factor approximation algorithm when

the vertices are points on the 2-dimensional Euclidean space and the Euclidean distance

between two points is the weight of the corresponding edges, where ϵ > 0. In [13] and [54],

the approximation factor of 4 improved to 2. One can see [8, 21, 35, 37, 38, 49, 66] for other

variants of the dispersion problem.

Compared to the 1-dispersion problem, a handful of research has been done on the

c-dispersion problem. In 2013, Lei and Church [63] introduced the c-dispersion problem,

and in 2015 an efficient formulation of the c-dispersion problems was proposed [64]. In

2018, Amano and Nakano [3] proposed a greedy algorithm for the 2-dispersion problem

in a metric space. They have shown that the proposed greedy algorithm produces an 8-

factor approximation result for the 2-dispersion problem in a metric space. In [3], they

also proposed a 2c2-factor approximation algorithm for the c-dispersion problem in a metric

space. In 2020, Amano and Nakano [4] analyzed the same greedy algorithm proposed in [3],

and showed that the greedy algorithm produces a 4
√

3 (≈ 6.92)-factor approximation result

for the 2-dispersion problem when the distance function between two points is the Euclidean

distance.

26

Dispersion Problem

The design of an efficient algorithm for the convex 1-dispersion problem is open [2].

Recently in 2022, Kobayashi et al. [61] studied the convex 1-dispersion problem, where the

objective is to select k = 3 vertices and proposed an O(n2) time algorithm to calculate the

optimal value. Now, we consider a variant of the convex 1-dispersion problem, where the set

of locations is a set of points inside a polygon and vertices of a polygon, and the objective

is to select k = 3 points. In this problem, the goal is to find a triangle inside the convex

polygon whose length of the smallest side is maximum. In 2020, Sadhu et al. [71] studied

this problem and proposed an O(n2) time algorithm to select three points.

;;=8=<<

27

3
Capacitated Discrete Unit Disk Cover Problem

In this chapter, we study the geometric capacitated set cover (GCSC) problem, where a set

of unit disks is considered as a set of geometric objects and the capacity of each unit disk

is uniform. We refer to such a GCSC problem as the (α, P,Q)-covering problem, and it is

defined as follows:

29

Capacitated Discrete Unit Disk Cover Problem

(α, P,Q)-Covering Problem: For a set P = {p1, p2, . . . , pn} of n points and a set

Q = {q1, q2, . . . , qm} of m points and a positive integer α, a subset Q′ ⊆ Q is said to be

an α-cover of P if (i) the point set P can be partitioned into ℓ subsets P1, P2, . . . , Pℓ

such that |Pi| ≤ α for each i = 1, 2, . . . , ℓ, where ℓ = |Q′| and (ii) each p ∈ Pi is

covered by a unit disk centered at q′i ∈ Q′. Given a positive integer α, a set P of n

points and a set Q of m points, the objective of the (α, P,Q)-covering problem is to

find a minimum cardinality α-cover Q′ ⊆ Q of P .

3.0.1 Overview of the Chapter

Goal of the Chapter. To (i) establish a necessary and sufficient condition through which

one can ensure the feasibility of the given instance of the (α, P,Q)-covering problem, (ii)

prove that the (α, P,Q)-covering problem is NP-complete for α ≥ 3, and (iii) design a

polynomial-time approximation scheme (PTAS) for the (α, P,Q)-covering problem.

Organization of the Chapter. The remainder of the chapter is organized as follows. In

Section 3.1, a necessary and sufficient condition is established that ensures the feasibility

of the given instance of the (α, P,Q)-covering problem. In Section 3.2, we prove that the

(α, P,Q)-covering problem is NP-complete for α ≥ 3. Furthermore, in Section 3.3, we

propose a PTAS for the same problem and finally conclude the chapter in Section 3.4.

3.1 A Necessary and Sufficient Condition

In this section, we establish a necessary and sufficient condition to check the feasibility of

an instance of the (α, P,Q)-covering problem, i.e., to check if there exists an α-cover for

a set P with respect to a set Q. To state the condition, we construct a bipartite graph

30

A Necessary and Sufficient Condition

G = (V1 ∪ V2, E) for a given instance of the (α, P,Q)-covering problem, where V1 is the set

of vertices corresponding to each point in Q and V2 is the set of vertices corresponding to

each point in P and E = {e = vivj | vi ∈ V1 and vj ∈ V2, and a unit disk centered at qi

covers pj}. Note that P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm}. We define the open

neighborhood of a vertex u ∈ V2, denoted by NG(u), as the set of open neighbors of u in G.

Similarly, we define the neighborhood function for a subset B ⊆ V2, denoted by NG(B), as

NG(B) =
⋃

u∈B NG(u).

Theorem 3.1.1. An α-cover for a set P with respect to a set Q exists if and only if for any

subset V ′
2 ⊆ V2, |NG(V ′

2)|α ≥ |V ′
2 |.

Proof. (Necessity.) Suppose that there is an α-cover of P with respect to Q. Let Q′(⊆ Q)

be an α-cover of P with respect to Q. Now, assume for a subset V ′
2 ⊆ V2, |NG(V ′

2)|α < |V ′
2 |.

Since |NG(V ′
2)| and |V ′

2 | are positive integers, therefore, there exist at least |V ′
2 | − |NG(V ′′

2)|

points of P corresponding to the vertices of V ′
2 that cannot be covered by any point of Q′.

Therefore, it is a contradiction to the assumption that Q′ is an α-cover of P with respect

to Q.

(Sufficiency.) Given a set P = {p1, p2, . . . , pn} of n points, a set Q = {q1, q2, . . . , qm} of

m points and a positive integer α, we construct another bipartite graph G′ = (V ′
1 ∪ V2, E),

where V ′
1 = {vij | 1 ≤ i ≤ m and 1 ≤ j ≤ α} is a set of vertices corresponding to

the set of points in Q such that for each point qi ∈ Q, we consider α vertices in V ′
1 , i.e.,

vij (j = 1, 2, . . . , α) and V2 is the set of vertices corresponding to the points in P and

E = {e = vijvℓ | vij ∈ V ′
1 and vℓ ∈ V2, and a unit disk centered at qi covers pℓ} (see

Figure 3.1). Observe that |NG′(B)| = |NG(B)|α for any B ⊆ V2. Suppose that for each

subset V ′
2 ⊆ V2, |NG(V ′

2)|α ≥ |V ′
2 |. This leads to |NG′(V ′

2)| ≥ |V ′
2 | for each subset V ′

2 ⊆ V2.

Therefore, G′ has a matching M of size |V2| (Hall’s Theorem). For each vertex vij ∈ V ′
1 of

31

Capacitated Discrete Unit Disk Cover Problem

the matching M , if we consider all the points corresponding to vertex vi ∈ V1, we get an

α-cover of a set P with respect to a set Q.

The algorithm to find a feasible solution is based on the maximum matching algorithm

in a bipartite graph. Here, we construct the bipartite graph from any arbitrary instance

of the (α, P,Q)-covering problem, which leads us to find a feasible solution in polynomial

time. We construct the bipartite graph in a similar approach to G′ (the sufficiency part

of Theorem 3.1.1). Therefore, the total number of vertices in the bipartite graph G′ is

|V | = |V1| + |V2| = αm + n and the maximum possible number of edges |E| = αmn. Note

that the construction of the bipartite graph takes O(αmn) time. If the size of the maximum

matching in the bipartite graph G′ is exactly n (i.e., if the condition of Theorem 3.1.1 is

true), then the input instance has a feasible solution.

p4

p1

p2

p3 p5

p6

p7

p8

p9
p7

p6

p5

p4

p8
p9

p1
p2
p3

(a) (b)

v11
v12

v21
v22

v31

v32

v41

v42

q1 q2 q3

q4

Figure 3.1: (a) An instance of the (α, P,Q)-covering problem, and (b) Construction of bipartite
graph for α = 2, here vertex vij represent jth copy of disk i.

32

Hardness of the (α, P,Q)-Covering Problem

3.2 Hardness of the (α, P,Q)-Covering Problem

In this section, we show that the (α, P,Q)-covering problem is NP-complete for α = 3. Using

the NP-complete proof for the (α, P,Q)-covering problem for α = 3, we can conclude that the

(α, P,Q)-covering for α ≥ 4 is also NP-complete. Next, we show that the (3, P,Q)-covering

problem is NP-complete by proving that the (3, P, P)-covering problem is NP-complete.

Note that the (3, P, P)-covering problem is a special case of the (3, P,Q)-covering problem.

We show a polynomial-time reduction from the decision version of the vertex cover (VC)

problem on a planar graph of degree at most 3 to the decision version of the (3, P, P)-covering

problem. This reduction will ensure that the (3, P, P)-covering problem is NP-complete.

Note that the vertex cover problem on a planar graph of degree at most 3 is known to be

NP-complete [48].

Decision version of the VC problem on a planar graph (Vc-Pla)

Instance: ⟨G, k⟩, where G = (V,E) is an undirected planar graph with maximum

degree 3, and k is a positive integer.

Question: Does there exist a vertex cover V ′(⊆ V) of G such that |V ′| ≤ k ?

Decision version of the (3, P, P)-covering problem

Instance: ⟨P, k′⟩, where P is a set of points in R2, and k′ is a positive integer.

Question: Does there exist a 3-cover P ′(⊆ P) of P with respect to P such that

|P ′| ≤ k′ ?

33

Capacitated Discrete Unit Disk Cover Problem

To prove the NP-completeness of the (3, P, P)-covering problem, we first construct an

instance ⟨P, k′⟩ of the (3, P, P)-covering problem from a given arbitrary instance ⟨G =

(V,E), k⟩ of the planar vertex cover problem such that there exists a vertex cover V ′(⊆ V)

of G satisfying |V ′| ≤ k if and only if there exists a 3-cover P ′(⊆ P) of P with respect to P

satisfying |P ′| ≤ k′.

We construct ⟨P, k′⟩ from ⟨G = (V,E), k⟩ as follows: we first embed the planar graph

G = (V,E) into a planar grid using Lemma 3.2.1 and Corollary 3.2.1.1. Subsequently, we

construct P in four steps, where we add a set of points at each step. We introduce points

in the planar embedding in each step so that exactly two consecutive points are within a

unit distance apart (see Figure 3.4(b)). For details, see Steps 1, 2, 3, and 4 of the proof of

Lemma 3.2.2.

Lemma 3.2.1 ([77]). Given a planar graph G = (V,E) with maximum degree 4, the graph

G can be embedded in the plane such that its vertices are in integer coordinates and its

edges are line segments of the form x = i or y = j, for integers i and j.

We can embed the planar graph as stated in Lemma 3.2.1 in linear time with at most

two bends along each edge [12]. See Figure 3.2(b) for a planar embedding of the planar

graph.

Corollary 3.2.1.1. Given a planar graph G = (V,E) with maximum degree 3, the graph

can be embedded in the Euclidean plane with each of its vertices at (3i, 3j) and its edges

as a sequence of line segments on the lines x = 3i or y = 3j for integers i and j.

Lemma 3.2.2. Let G = (V,E) be a planar graph with maximum degree 3. An instance of

a (3, P, P)-covering problem can be constructed from G in polynomial time.

Proof. We construct an instance of (3, P, P) in the following four steps.

34

Hardness of the (α, P,Q)-Covering Problem

Step 1: Embedding. The instance of G is embedded in the plane using the algorithms

proposed in [12]. In the embedding, each edge in G is a sequence of connected line seg-

ment(s). The length of the line segments used in this embedding is three units. Let ℓ be

the total number of line segments in the embedding. We add a point pi for each vi ∈ V in

the embedding and name it node points (see Figure 3.2 (b)).

v1

v2

v3 v4

p1

p2

p3 p4

3

3

(a)

(b)

Figure 3.2: (a) A planar graph G of maximum degree 3, and (b) pi for each vi ∈ V .

Step 2: Adding extra points to the embedding. We classify the line segments in the

embedding into two categories, namely, proper and improper. A line segment is proper if

none of its end points corresponds to node points. Line segments other than the proper

line segments are named improper line segments. For each improper line segment (pi, pj) of

length 3 units, where both pi and pj are node points, we add two points at distances 0.72

35

Capacitated Discrete Unit Disk Cover Problem

and 1.22 units with respect to both pi and pj. Thus, we add four points in the process. See

the line segment (p1, p2) in Figure 3.3(a). For each line segment of length greater than 3

units, we add points as follows: (i) add a point in the joining point (grid point) of each line

segment other than the node points and name it as bend points (see empty circular points

in Figure 3.3(b)), and (ii) for each improper line segment, we add three points at distances

0.75, 1.5, and 2.25 units from the node point (see the points added with respect to the point

p2 in line segments between p2 and p3 in Figure 3.3(b)), and for each proper line segment we

add two points at distances 1 and 2 units from its end points, i.e., bend points (see points

added between two bend points in line segments between p2 and p3 in Figure 3.3(b)). The

points added in this step for the line segments between p2 and p3 are explained in detail in

Figure 3.3(b). We name the points added in this step as joint points.

p2

p3 0.75

1

p1

p2

0.72

1.22

p1

0.70

0.99

0.32

0.75 0.75 0.75

0.75 0.75 0.75 0.75

1

10.72

1.22

(a) (b)

(c)

x1

y1

Figure 3.3: (a) placement of joint points where ℓ′ = 1, (b) Placement of joint points where ℓ′ > 1,
and (c) placement of support points with respect to p1.

36

Hardness of the (α, P,Q)-Covering Problem

Step 3: Adding extra points. For each node point pi, add a line segment of 0.70 units

of length (on the line x = 3i or y = 3j for some integers i or j), without coincident with

other line segments. We can add such line segments on the x = 3i or y = 3j lines without

losing planarity, since the maximum degree of G is 3. Now, add a point (say xi) on the new

line segments at a distance of 0.70 units from each node point pi, and add another point

(say, yi) at a distance of 0.32 units from xi touching the line at a distance of 0.99 units from

pi. Note that the distance between two points yi (with respect to pi) and yj (with respect

to pi) is greater than one unit. See both the points x1 and y1 added with respect to p1 in

Figure 3.3(c). Note that if the Euclidean distance between any two points in the embedding

is at most 1 unit, then we can say that these two points are connected. According to the

placement of yi, it is only connected to xi as the distance of yi to all other points excluding

xi is greater than one unit. The points added in this step are named support points.

Step 4: Construction of P. We denote the set of node points, the set of joint points,

and the set of support points by N , J , and S, respectively. Here, N = {pi | vi ∈ V },

J = {q1, q2, . . . , q3ℓ+|E|} and S = {xi, yi | vi ∈ V }. We construct P = N ∪J ∪S by removing

all line segments from the embedding. See Figure 3.4. Observe that |N | = |V |(= n),

|S| = 2|V |(= 2n) and |J | = 3ℓ + |E|, where ℓ is the total number of line segments in the

embedding and |E| is the total number of edges in G. Since G is planar, |E| = O(n). It also

follows from Lemma 3.2.1 that ℓ = O(n2). Therefore, P can be constructed in polynomial

time.

37

Capacitated Discrete Unit Disk Cover Problem

p1

p2

p3 p4

3

3
(a)

p1

p2

p3 p4

(b)

Figure 3.4: (a) Added points and line segments in the embedding, and (b) instance of the (3, P, P)-
covering problem.

Theorem 3.2.3. (3, P, P)-covering problem is NP-complete.

Proof. For a given set P ′ ⊆ P and a positive integer k, we can verify whether P ′ is a 3-cover

of P with respect to P itself such that |P ′| ≤ k in polynomial time. Hence, the (3, P, P)-

covering problem is in NP. Now, we prove the hardness of the (3, P, P)-covering problem

by reducing Vc-Pla to it. Let G = (V,E) be an instance of the Vc-Pla. Construct an

38

Hardness of the (α, P,Q)-Covering Problem

instance P of the (3, P, P)-covering problem as discussed in Lemma 3.2.2.

Lemma 3.2.4. G has a vertex cover of size at most k if and only if P has a 3-cover of size

at most k + ℓ + n.

Proof. Necessity. Let D ⊆ V be a vertex cover of G such that |D| ≤ k. Let N ′ = {pi ∈

P | vi ∈ D}, i.e., N ′ be the set of points in P that correspond to the vertices in D. Let

S ′ ⊆ S be a set of n points chosen from S such that of the two support points associated

with each point pi ∈ N , we select the closest support point xi in S ′, i.e., S ′ = {xi | pi ∈ N}.

From each set of points corresponding to a line segment in the embedding, we choose 1

point such that the set of chosen points, say J ′(⊆ J), together with N ′ and S ′ will form a

3-cover of desired cardinality in P . Initially, J ′ = ∅. As D is a vertex cover, every edge in

G has at least one of its end vertices in D. Let (vi, vj) be an edge in G and vi ∈ D (the

tie can be broken arbitrarily if both vi and vj are in D). Note that the edge (vi, vj) is

represented as a sequence of line segments in the embedding. Start traversing the points (of

(vi, vj)) from pi, where pi corresponds to vi, and add every third point to J ′ encountered in

the traversal without including pj (see (p3, p4) in Figure 3.5 (b), the cross points are part

of J ′ while traversing from p3). Apply the above process to each edge in G. Observe that

the cardinality of J ′ is ℓ as we choose 1 point from each set of points on a segment in the

embedding. Let P ′ = N ′ ∪ J ′ ∪ S ′. Now, we argue that P ′ is a 3-cover of P with respect to

P . Each pi ∈ N is covered by xi in S ′. Together with pi, xi covers itself and yi. Therefore,

each xi covers at most 3 points and S ′ ensures coverage for the set S and N . Now, it remains

to prove that all the points in J are also covered. For any point pi ∈ N , there are at most 3

neighbor points of pi in J (since the maximum degree of G is 3). Choose each point pi ∈ N ′

(i.e., the corresponding point vi ∈ D in G), it covers all its neighboring points in J and all

other points in J are covered by at least one point qj ∈ J ′. The existence of qj is guaranteed

39

Capacitated Discrete Unit Disk Cover Problem

by the way we constructed J ′ and any point qj ∈ J ′ covers at most 3 points, including itself

and its neighbors qj−1 and qj+1. Therefore, every point in P is covered by at least one point

in P ′, and each point pi ∈ P ′ covers no more than 3 points. Thus, P ′ is a 3-cover of P and

|P ′| = |N ′|+ |J ′|+ |S ′| ≤ k + ℓ + n.

v2

v3 v4

v1

(a)

p1

p2

p3
p4

(b)

Figure 3.5: (a) A vertex cover {v1, v3, v4} of G, and (b) the construction of J ′ and S′.

Sufficiency: Let P ′ ⊆ P be a 3-cover of size at most k + ℓ + n. We prove that G has a

vertex cover of size at most k with the help of the following claims.

Claim(i): At least one of the support points corresponding to each node point belongs to

P ′.

40

Hardness of the (α, P,Q)-Covering Problem

Proof of Claim (i): The claim follows from the fact that the support point yi corresponding

to node pi is covered only by the support points xi and/or yi.

Claim(ii): The points corresponding to each segment in the embedding must contribute

at least 1 point to P ′, i.e., |J ∩ P ′| ≥ ℓ, where ℓ is the total number of segments in the

embedding.

Proof of Claim (ii): For each edge (vi, vj) in G, there exist some line segments that

connect pi to pj in the embedding. Let ℓ′ be the number of line segments between pi and

pj, then the total number of points between pi and pj is 3ℓ′ + 3, including pi and pj. Now, if

both pi and pj are in P ′, then pi and pj can cover themselves along with its neighbor points

(say qi and qj within these ℓ′ segments). So, in the worst case (3ℓ′ + 3− 4) = 3ℓ′− 1 number

of points remains to be covered. It needs at least
⌈
3ℓ′−1

3

⌉
= ℓ′ number of points. Thus, the

claim follows.

Claim(iii): If pi and pj correspond to the end vertices of an edge (vi, vj) in G, and both pi, pj

are not in P ′, then there must be at least ℓ′+1 points in P ′ from the points corresponding to

the segment(s) representing the edge (vi, vj), where ℓ′ is the number of segments representing

the edge (vi, vj) in the embedding.

Proof of Claim (iii): Let (vi, vj) be an edge in G such that pi and pj are not in P ′. By

Claim (ii), |J ∩ P ′| ≥ ℓ. Therefore, the points corresponding to each segment between pi

and pj representing the edge (vi, vj) contribute at least ℓ′ points in P ′. We argue that if

both pi and pj are not in P ′, then the number of points in P ′ from the points corresponding

to each segment representing the edge (vi, vj) is at least ℓ′ + 1. Based on our construction

of points in the embedding, if there exist ℓ′ segments between the points pi and pj, then we

consider exactly 3ℓ′ + 1 points between them. Observe that one point can cover at most 3

points. Thus, to cover 3ℓ′ + 1 points, at least
⌈
3ℓ′+1

3

⌉
= ℓ′ + 1 points are required.

Now, we show that by removing and/or replacing some points in P ′, a set of k points

41

Capacitated Discrete Unit Disk Cover Problem

from N can be chosen such that the set of corresponding vertices in G is a vertex cover.

The points in S ′ account for the n points in P ′ (due to Claim (i)). Let P ′ = P ′ \ S ′ and

D = {vi ∈ V | pi ∈ P ′ ∩ N}. If any edge (vi, vj) in G has none of its end vertices in D,

then we do the following: consider the sequence of points corresponding to the segments

representing the edge (vi, vj) in the embedding. Since both pi and pj are not in P ′, there

must exist a segment that has two of its points in P ′ (due to Claim (iii)). Now consider the

points corresponding to the segment that has two points in P ′. Delete one of the points in

the segment and introduce pi (or pj). Update D and repeat the process until each edge has

at least one of its end vertices in D. Therefore, D is a vertex cover in G and |D| ≤ k (due

to claim (ii)).

By Lemma 3.2.4, we prove that the (3, P, P)-covering problem is NP-hard. We have

already shown that the (3, P, P)-covering problem is in NP. Therefore, the (3, P, P)-covering

is NP-complete.

3.3 A PTAS

We use the local search algorithm to find an α-cover for the (α, P,Q)-covering problem.

We prove that the local search algorithm produces a PTAS (see Algorithm 1 for a detailed

pseudo-code). Here, we assume that every instance of the (α, P,Q) covering problem has a

feasible solution. Furthermore, it can be verified as follows: Actually, the (α, P,Q)-covering

problem is a special case of hard capacitated set cover problem, where the bound on the

number of available copies of each covering set is at most one. Consider the maximum flow

problem for the directed graph G = (V,E) as follows: (i) V = V1∪V2∪{s, t}, where V1 and

V2 are the set of vertices corresponding to the points sets Q and P respectively, s is a source

42

A PTAS

vertex and t is a terminal vertex, and (ii) E = E1 ∪ E2 ∪ E3, where E1 = {(s, v) : v ∈ V1},

E2 = {(u, v) : u ∈ V1, v ∈ V2 and the point corresponding to the vertices u and v are within

a unit distance apart}, and E3 = {(u, t) : u ∈ V2} such that the capacity of each edge in

E1 is α and the capacity of each edge in E2 ∪ E3 is 1. If the maximum flow in the network

mentioned above is exactly n, then the input instance has a feasible solution. Thus, the

feasibility of an instance can be checked in O(n2m) time.

Algorithm 1 Local Search Algorithm(α, P,Q)

Input: A set P of n points, a set Q of m points, and a positive integer α.
Output: An α-cover subset Q′(⊆ Q) of P with respect to Q.

1: Q′ ← Q. /*Assume that the given instance has a feasible solution.*/
2: while there exist B ⊆ Q′ of size at most k and B′ ⊆ Q of size at most k − 1 such that

Q′′ = (Q′ \B) ∪B′ is a feasible solution for the (α, P,Q)-covering problem.
3: set Q′ ← (Q′ \B) ∪B′.
4: endwhile
5: Report Q′.

Lemma 3.3.1. The running time of Algorithm 1 is O(n2m2k) for some positive integer k.

Proof. The number of local improvement steps is bounded by the number of points in the

set Q. Hence, there is a scope for at most m local improvement steps. In each step, it

is required to verify at most
(
m
k

)(
m
k−1

)
≤ m2k−1 different local improvements (see line 2 in

Algorithm 1). The time to check whether a certain local improvement is possible takes

O(n2m) time. Therefore, the overall time complexity of the algorithm is O(n2m2k).

A subset Q′ ⊆ Q is called k-locally optimal if it is not possible to perform the local

improvement step. Now, we prove that Algorithm 1 produces a (1+ϵ)-factor approximation

result. First, we introduce the notion of locality condition before delving into the proof. It

is stated as follows.

43

Capacitated Discrete Unit Disk Cover Problem

Locality condition: Let Qopt ⊆ Q be an optimal solution of the (α, P,Q)-covering problem

and Q′ ⊆ Q be an α-covering set returned by the local search algorithm (Algorithm 1). It is

possible to construct a bipartite planar graph G = (Q′ ∪Qopt, E) such that for each p ∈ P ,

there exist two vertices u ∈ Qopt and v ∈ Q′ share an edge (u, v) ∈ E. Note that u ∈ Qopt

and v ∈ Q′ share an edge if their Euclidean distance is less than or equal to 1.

The locality condition for the range space consisting of points and disks is established

in [69]. The locality condition for the (α, P,Q)-covering problem can be established with

the help of arguments similar to those in [69]. We define the neighborhood of the vertices

in the graph G, i.e., NG(u) is the set of neighbors of u in the bipartite planar graph and the

neighborhood function for the subset Y of the vertices of the graph G, NG(Y) =
⋃

u∈Y NG(u).

Lemma 3.3.2. Let Qopt ⊆ Q be an optimal solution and Q′ ⊆ Q be returned by Algorithm

1. Assume Qopt ∩ Q′ = ϕ and if there exists a planar bipartite graph G = (Q′ ∪ Qopt, E),

then for every subset Q′′ ⊆ Q′ of size almost k, |NG(Q′′)| ≥ |Q′′|.

Proof. Let G = (Q′ ∪Qopt, E) be a bipartite graph. Since both Q′ and Qopt are α-cover sets

for the point set P with respect to Q, for each point p ∈ P there exist a point q′ ∈ Q′ and

a point qopt ∈ Qopt such that the Euclidean distance between (i) p and q′, and (ii) p and qopt

is less than or equal to 1.

Claim 3.3.1. For any Q′′ ⊆ Q′, (Q′ \Q′′) ∪NG(Q′′) is an α-cover of P with respect to Q.

Proof of Claim. If there is a point pi ∈ P that is covered by the unit disk centered at a

point in Q′′, then one of the neighbors in NG(Q′′) also covers the point pi due to the locality

condition. Therefore, NG(Q′′) covers all the points covered by Q′′. So, (Q′ \Q′′) ∪NG(Q′′)

is an α-cover of P with respect to Q.

The above claim implies that if Q′′ ⊆ Q′ is a set of at most k unit disks, then |NG(Q′′)| ≥

|Q′′|, otherwise, there is scope for a local improvement step.

44

A PTAS

Without loss of generality, assume that Qopt ∩ Q′ = ϕ. If not, let I = Qopt ∩ Q′,

Q∗
opt = Qopt \ I, Q′′′ = Q′ \ I and let P ′ be the set of points that are not covered by the

disks centered at I. Q∗
opt and Q′′′ are disjoint. Also, Q∗

opt is an α-cover of minimum size for

the point set P ′. Now, we establish a relation between |Q′′′|and |Q∗
opt|, which will help us

prove that the proposed algorithm admits a PTAS. Now, we state a theorem that helps us

establish a relation between |Q′′′|and |Q∗
opt|, and it is as follows.

Theorem 3.3.3. [41] For any planar graph G = (V,E) of n vertices, there is a set X ⊆ V

of size at most c1n√
r
, such that V \X can be partitioned into n/r sets V1, V2, . . . , Vn/r satisfying

i. |Vi| ≤ c2r

ii. N(Vi) ∩ Vj = ϕ for i ̸= j, and

iii. |N(Vi) ∩X| ≤ c3
√
r

where c1, c2, c3 > 0 and N(.) define the neighborhood function.

Lemma 3.3.4. |Q′′′| ≤ (1 + c/
√
k)|Q∗

opt| for some constant c.

Proof. Lemma 3.3.4 follows from Lemma 3.3.2 and Theorem 3.3.3.

To do so, we assume r = k/c2 in Theorem 3.3.3, then |Vi| ≤ k. Let Q′′′
i = Q′′′ ∩ Vi and

Q∗
opti

= Q∗
opt ∩ Vi. From Lemma 3.3.2, |Q′′′

i | ≤ |Q∗
opti
| + |N(Vi) ∩ X| for all i. Otherwise,

Q′′′ ∩ N ′(Vi) can be replaced by Q∗
opti

, which contradicts the fact that Q′′′ is a k-locally

optimal subset. Now,

|Q′′′| ≤ |X|+
∑
i

|Q′′′
i |

≤ |X|+
∑
i

|Q∗
opti
|+

∑
i

|N(Vi) ∩X| (See above discussion)

45

Capacitated Discrete Unit Disk Cover Problem

≤ c1n√
r

+ |Q∗
opt|+

n

r
c3
√
r (See Theorem 3.3.3)

≤ c1n√
r

+ |Q∗
opt|+

n√
r
c3

≤ |Q∗
opt|+ c

n√
r

≤ |Q∗
opt|+ c

|Q∗
opt|+ |Q′′′|
√
r

= (1 + c/
√
k)|Q∗

opt|

Thus, |Q′′′| ≤ (1 + c/
√
k)|Q∗

opt|, where c is a constant.

Theorem 3.3.5. |Q′| ≤ (1 + c/
√
k)|Qopt| for some constant c.

Proof. Since Q′′′ = Q′ \ I, |Q′| = |Q′′′|+ |I|. Therefore,

|Q′| ≤ (1 + c/
√
k)|Q∗

opt|+ |I| (By Lemma 3.3.4)

= (c/
√
k)|Q∗

opt|+ |Q∗
opt|+ |I|

= (c/
√
k)|Q∗

opt|+ |Qopt| (Since Q∗
opt = Qopt \ I)

≤ (c/
√
k)|Qopt|+ |Qopt|

= (1 + c/
√
k)|Qopt|

Thus, |Q′| ≤ (1 + c/
√
k)|Qopt| for some constant c.

Theorem 3.3.6. Algorithm 1 produces (1 + ϵ)-factor approximation result in O(n2m2k).

Proof. The approximation result follows from Theorem 3.3.5 using k = O(ϵ−2), and the

time complexity result follows from Lemma 3.3.1.

46

Conclusion

3.4 Conclusion

In this chapter, we studied the (α, P,Q)-covering problem. We proposed a necessary and

sufficient condition through which one can ensure the feasibility of the given instance. We

proved that the problem is NP-complete for α ≥ 3. Further, we proposed a local search

algorithm that admits a PTAS for the (α, P,Q)-covering problem.

;;=8=<<

47

4
Euclidean Dispersion Problem

In this chapter, we study variants of the dispersion problem in Euclidean space. In Chapter

1, we introduced a notion of the dispersion partial sum1 metric, which captures the idea of

dispersion in a more general way. Using the dispersion partial sum as a metric, we define

a variant of the dispersion problem, namely the 2-dispersion problem. The 2-dispersion

problem is defined formally as follows.

1For a facility, the dispersion partial sum is the sum of the distances of the pre-specified number of the
closest facilities.

49

Euclidean Dispersion Problems

2-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distances between each pair of points pi, pj ∈ P , and a positive integer k

(3 ≤ k ≤ n), for each point p ∈ P and S ⊆ P , the 2-dispersion cost of p with respect

to S, cost2(p, S), is defined as the sum of distances from p to the closest point in

S \ {p} and the second closest point in S \ {p}. The 2-dispersion cost of S is defined

as cost2(S) = minp∈S{cost2(p, S)}. The objective of the 2-dispersion problem is to

find a subset S ⊆ P of cardinality k such that cost2(S) is maximized.

In this chapter, we also study the 1-dispersion problem in Euclidean space. It is defined

formally as follows.

1-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distances between each pair of points pi, pj ∈ P , and a positive integer k

(2 ≤ k ≤ n), for each point p ∈ P and S ⊆ P , the 1-dispersion cost of p with respect

to S, cost1(p, S), is defined as a distance of p to the closest point in S \ {p}. The

1-dispersion cost of S is defined as cost1(S) = minp∈S{cost1(p, S)}. The objective of

the 1-dispersion problem is to find a subset S ⊆ P of cardinality k such that cost1(S)

is maximized.

4.0.1 Overview of the Chapter

Goal of the Chapter. (i) Designing a (2
√

3 + ϵ)-factor approximation algorithm for the

2-dispersion problem in R2, where ϵ > 0, and (ii) developing a common framework for the

dispersion problem in Euclidean space using which we improve the approximation factor to

2
√

3 for the 2-dispersion problem in R2, propose an optimal algorithm for the 2-dispersion

problem in R1, and propose a 2-factor approximation result for the 1-dispersion problem in

50

(2
√

3 + ϵ)-Factor Approximation Algorithm

R2.

Organization of the Chapter. The remainder of the chapter is organized as follows. In

Section 4.1, we propose a (2
√

3 + ϵ)-factor approximation algorithm for the 2-dispersion

problem in R2, where ϵ > 0. In Section 4.2, we propose a common framework for the

dispersion problem in Euclidean space. Using the framework, we propose a 2
√

3-factor

approximation algorithm for the 2-dispersion problem in R2, a polynomial-time optimal

algorithm for the 2-dispersion problem on a line, and a 2-factor approximation algorithm

for the 1-dispersion problem in R2. Finally, we conclude the chapter in Section 4.3.

4.1 (2
√
3 + ϵ)-Factor Approximation Algorithm

In this section, we propose a (2
√

3 + ϵ)-factor approximation algorithm for the 2-dispersion

problem, where ϵ > 0. The algorithm is based on a greedy approach. We briefly discuss the

algorithm as follows. Let I = (P, k) be an arbitrary instance of the 2-dispersion problem,

where P = {p1, p2, . . . , pn} is the set of n points in R2 and k ∈ [3, n] is a positive integer.

Initially, we choose a subset S3 ⊆ P of size 3 such that cost2(S3) is maximized. Next, we

add a point p ∈ P into S3 to construct a set S4, i.e., S4 = S3 ∪ {p}, so that cost2(S4) is

maximized, and continues this process until the construction of the set Sk of size k. The

pseudo-code of the algorithm is described in Algorithm 2.

Let OPT = {p∗1, p∗2, . . . , p∗k} be an optimal solution of the 2-dispersion problem for input

I = (P, k). For p ∈ P , we define a disk D[p] as follows: D[p] = {q ∈ R2 | d(p, q) ≤
cost2(OPT)

2
√
3+ϵ

}. Accordingly, we define a subset of disk, D[S], for S ⊆ P as D[S] = {D[p] | p ∈

S}.

51

Euclidean Dispersion Problems

Algorithm 2 Euclidean Dispersion Algorithm(P, k)

Input: A set P = {p1, p2, . . . , pn} of n points, and a positive integer k (3 ≤ k ≤ n).
Output: A subset Sk ⊆ P of size k.

1: Compute {pi1 , pi2 , pi3} ⊆ P such that cost2({pi1 , pi2 , pi3}) is maximized.
2: S3 ← {pi1 , pi2 , pi3}
3: for (j = 4, 5, . . . , k) do
4: Let p ∈ P \ Sj−1 such that cost2(Sj−1 ∪ {p}) is maximized.
5: Sj ← Sj−1 ∪ {p}
6: end for
7: return (Sk)

Lemma 4.1.1. For any point pi ∈ P , |D[pi] ∩OPT | ≤ 2.

pa pa

pb pc
pcpb

D[pi] D[pi]

Figure 4.1: Points pa, pb, pc ∈ D[pi]

Proof. On the contrary, assume that there are three points pa, pb, pc ∈ D[pi] ∩ OPT . Let

S = {pa, pb, pc}. Without loss of generality, assume that cost2(pa, S) ≤ cost2(pb, S) and

cost2(pa, S) ≤ cost2(pc, S), i.e., d(pa, pb) + d(pa, pc) ≤ d(pa, pb) + d(pb, pc) and d(pa, pb) +

d(pa, pc) ≤ d(pa, pc) + d(pb, pc), which leads to d(pa, pb) ≤ d(pb, pc) and d(pa, pc) ≤ d(pb, pc).

Notice that maximizing d(pa, pb) + d(pa, pc) results in minimizing d(pb, pc)(see Figure 4.1).

The minimum value of d(pb, pc) is
√

3 cost2(OPT)

2
√
3+ϵ

as both d(pa, pb) and d(pa, pc) is less than

equal to d(pb, pc). Therefore, by the packing argument inside a disk, d(pa, pb) + d(pa, pc) is

maximum if pa, pb, pc are on an equilateral triangle and on the boundary of the disk D[pi].

52

(2
√

3 + ϵ)-Factor Approximation Algorithm

Then, cost2(S) ≤ d(pa, pb) + d(pa, pc) ≤
√

3 cost2(OPT)

2
√
3+ϵ

+
√

3 cost2(OPT)

2
√
3+ϵ

= 2
√

3 cost2(OPT)

2
√
3+ϵ

<

cost2(OPT), which leads to a contradiction to the optimal value cost2(OPT). Therefore,

for any pi ∈ P , D[pi] contains at most two points in OPT .

Consider the set Si with i < k, an i-th size solution in the Algorithm 2. Let U =

Si ∩ OPT . Assume that S ′
i = Si \ U and OPT ′ = OPT \ U. Note that for any disk

D[p∗ℓ] ∈ D[OPT ′], |D[p∗ℓ] ∩ U| ≤ 1 (by Lemma 4.1.1).

Lemma 4.1.2. For some D[p∗j] ∈ D[OPT ′], D[p∗j] contains at most one point in Si, i.e.,

|D[p∗j] ∩ Si| ≤ 1.

Proof. On the contrary, assume that there does not exist any D[p∗j] ∈ D[OPT ′] such that

|D[p∗j] ∩ Si| ≤ 1, i.e., for each D[p∗v] ∈ D[OPT ′], |D[p∗v] ∩ Si| > 1. Construct a bipartite

graph H(D[OPT ′] ∪ Si,E) as follows: (i) D[OPT ′] and Si are two partite vertex sets, and

(ii) (D[p∗j], p) ∈ E if and only if p ∈ Si is contained in D[p∗j](see Figure 4.2).

D[OPT ′] Si = S ′
i ∪ U

U

D[p∗j]

p

S ′
i

Figure 4.2: H(D[OPT ′] ∪ Si,E)

Claim 4.1.1. For a disk D[p∗t] ∈ D[OPT ′], if |D[p∗t] ∩U| = 1, then any point in D[p∗t] ∩ S ′
i

is not contained in any disk in D[OPT ′] \ {D[p∗t]}.

53

Euclidean Dispersion Problems

Proof of the Claim. On the contrary assume that a point p ∈ D[p∗t] ∩ S ′
i is contained in

a disk D[p∗w] ∈ D[OPT ′] \ {D[p∗t]} (see Figure 4.3). Therefore, p ∈ D[p∗t] ∩ D[p∗w] implies

d(p∗t , p
∗
w) ≤ 2 × cost2(OPT)

2
√
3+ϵ

. Since |D[p∗t] ∩ U| = 1, let D[p∗t] ∩ U = {p∗u}. Now, consider the

2-dispersion cost of p∗t with respect to OPT , i.e., cost2(p
∗
t , OPT) ≤ d(p∗t , p

∗
u) + d(p∗t , p

∗
w) ≤

cost2(OPT)

2
√
3+ϵ

+ 2 × cost2(OPT)

2
√
3+ϵ

= 3 × cost2(OPT)

2
√
3+ϵ

< cost2(OPT), which is a contradiction to the

optimality of OPT (see Figure 4.3). Thus, any point in D[p∗t] ∩ S ′
i is not contained in any

disk in D[OPT ′] \ {D[p∗t]}, if |D[p∗t] ∩ U| = 1. □

D[p∗t]
D[p∗w]

p∗t
p∗w

p∗u

≤ 2× cost2(OPT)

2
√
3+ϵ

≤ cost2(OPT)

2
√
3+ϵ

D[p∗u]

p

Figure 4.3: 2-dispersion cost of p∗t with respect to OPT .

Now, for all D[p∗ℓ] ∈ D[OPT ′] that satisfy the condition of Claim 4.1.1, we remove D[p∗ℓ]

from D[OPT ′] to get D[OPT ′′] and D[p∗ℓ]∩S ′
i from H to get S ′′

i repeatedly, followed by U to

construct H ′ = (D[OPT ′′], S ′′
i). Since |D[OPT ′]|+ |U| = |OPT | = k, and |S ′

i|+ |U| = |Si| <

k, therefore |D[OPT ′]| > |S ′
i|. During the construction of H ′ = (D[OPT ′′], S ′′

i), the number

of vertices removed from the partite set S ′
i is at least the number of vertices removed from

the partite set D[OPT ′]. Therefore, |D[OPT ′′]| > |S ′′
i |.

Thus, the lemma follows from the fact that the degree of each vertex in D[OPT ′′] is at

least 2 and the degree of each vertex in S ′′
i at most 2 in the bipartite graph H ′, which leads

to a contradiction as |D[OPT ′′]| > |S ′′
i |.

54

(2
√

3 + ϵ)-Factor Approximation Algorithm

Theorem 4.1.3. For any ϵ > 0, Algorithm 2 produces a (2
√

3 + ϵ)-factor approximation

result in polynomial time.

Proof. Let I = (P, k) be an arbitrary input instance of the 2-dispersion problem, where

P = {p1, p2, . . . , pn} is the set of n points in R2 and k is a positive integer. Let Sk =

{p1, p2, . . . , pk} be the output of Algorithm 2 for instance I. We know that OPT =

{p∗1, p∗2, . . . , p∗k} is an optimal solution of the 2-dispersion problem for the instance I.

To prove the theorem, we need to show that cost2(OPT)
cost2(Sk)

≤ 2
√

3+ϵ. Here, we use induction

to show that cost2(Si) ≥ cost2(OPT)

2
√
3+ϵ

for each i = 3, 4, . . . , k. Since S3 is an optimum solution

for 3 points (see line number 1 of Algorithm 2), therefore, cost2(S3) ≥ cost2(OPT) ≥
cost2(OPT)

2
√
3+ϵ

holds. Now, assume that the condition holds for each i such that 3 ≤ i < k. We

will prove that the condition, i.e., cost2(Si+1) ≥ cost2(OPT)

2
√
3+ϵ

, holds for (i + 1) too.

We know by Lemma 4.1.2 that there exists at least one disk D[p∗j] ∈ D[OPT ′] such that

|D[p∗j]∩Si| ≤ 1. Now, consider the case where |D[p∗j]∩Si| = 1, then the distance of p∗j to the

second closest point in Si is greater than cost2(OPT)

2
√
3+ϵ

(see Figure 4.4). Therefore, we can add

the point p∗j ∈ OPT to the set Si to construct the set Si+1. Now, consider the case where

|D[p∗j]∩ Si| = 0, then the distance of the point p∗j ∈ OPT to any point of Si is greater than

cost2(OPT)

2
√
3+ϵ

. Note that in both cases cost2(p
∗
j , Si+1) ≥ cost2(OPT)

2
√
3+ϵ

. So, by adding the point p∗j

to the set Si, we can construct the set Si+1 such that cost2(Si+1) ≥ cost2(OPT)

2
√
3+ϵ

.

Now, we argue that for any arbitrary point p ∈ Si+1, cost2(p, Si+1) ≥ cost2(OPT)

2
√
3+ϵ

. We

consider the following two cases: Case (1) p∗j is not one of the closest points of p in Si+1, and

Case (2) p∗j is one of the closest points of p in Si+1. In the Case (1), cost2(p, Si+1) ≥ cost2(OPT)

2
√
3+ϵ

by the definition of the set Si. In the Case (2), suppose that p is not contained in the disk

D[p∗j], then d(p, p∗j) ≥
cost2(OPT)

2
√
3+ϵ

. This implies cost2(p, Si+1) ≥ cost2(OPT)

2
√
3+ϵ

. Now, if p is

55

Euclidean Dispersion Problems

p∗j

pℓ

pi

D[p∗j]

Figure 4.4: pℓ lies outside the disk D[p∗j]

contained in D[p∗j], then there exists at least one of the closest points of p that is not

contained in D[p∗j], otherwise it leads to a contradiction to Lemma 4.1.2. Assume that q

is one of the nearest points of p that is not contained in D[p∗j] (see Figure 4.5). Since

d(p, q) ≥ cost2(OPT)

2
√
3+ϵ

, therefore, cost2(p, Si+1) ≥ cost2(OPT)

2
√
3+ϵ

. Therefore, by constructing the set

Si+1 = Si ∪ {p∗j}, we ensure that the cost of each point in Si+1 is greater than or equal to

cost2(OPT)

2
√
3+ϵ

.

p∗j

p

q

D[p∗j]

Figure 4.5: q is not contained in D[p∗j]

Since our algorithm chooses a point (see line number 4 of Algorithm 2) that maximizes

cost2(Si+1), the algorithm will always choose a point in iteration i+1 such that cost2(Si+1) ≥

56

A Common Framework for the Euclidean Dispersion Problem

cost2(OPT)

2
√
3+ϵ

.

With the help of Lemma 4.1.1 and Lemma 4.1.2, we conclude that cost2(Si+1) ≥
cost2(OPT)

2
√
3+ϵ

and thus the condition also holds for (i + 1).

Therefore, for any ϵ > 0, Algorithm 2 produces a (2
√

3 + ϵ)-factor approximation result

in polynomial time.

4.2 A Common Framework for the Euclidean Disper-

sion Problem

In this section, we propose a general framework for the dispersion problem. It is a common

framework for the 1-dispersion, 2-dispersion problems in R2 and 1-dispersion / 2-dispersion

problems in R. The input of the algorithm is (i) a set P = {p1, p2, . . . , pn} of n points, (ii)

an integer γ for the γ-dispersion problem, and (iii) an integer k (γ+ 1 ≤ k ≤ n). In the first

line of the algorithm, we set the value of a constant λ. If γ = 2 and the points are in R2

(resp. R), then we set λ = 2
√

3 (resp. λ = 1), and if γ = 1 and the points are in R2, then we

set λ = 2. We prove that the algorithm is a λ-factor approximation algorithm. We use Si

(⊆ P) to denote a set of points of size i. We start the algorithm with Sγ+1 ⊆ P that contains

γ + 1 points as a subset of the solution set. Next, we iteratively add one by one point from

P to the set to obtain a final solution set, i.e., if we have a solution set Si of size i, then we

add one more point into Si to obtain the solution set Si+1 of size i + 1. Let α = costγ(Si).

Now, we add a point from P \ Si into Si to get Si+1 such that costγ(Si+1) ≥ α
λ
. We stop

the iterative method if we have Sk or if adding more points is not possible. We repeat the

above process for each distinct Sγ+1 ⊆ P and report the solution for which the γ-dispersion

57

Euclidean Dispersion Problems

cost value is maximum.

Algorithm 3 Framework Euclidean Dispersion(P, k, γ)

Input : A set P of n points, a positive integer γ and an integer k such that γ + 1 ≤
k ≤ n.

Output: A subset Sk ⊆ P such that |Sk| = k and β = costγ(Sk).

1: If γ = 2(resp. γ = 1), then λ ← 2
√

3 (resp. λ ← 2) for points in R2, and if points are
on a line then λ← 1 .

2: β ← 0 // Initially, costγ(Sk) = 0
3: for each subset Sγ+1 ⊆ P consisting of γ + 1 points do
4: Set α← costγ(Sγ+1)
5: Set ρ← α/λ
6: if ρ > β then
7: flag ← 1, i← γ + 1
8: while i < k and flag ̸= 0 do
9: flag ← 0
10: choose a point p ∈ P \ Si (if possible) such that costγ(Si ∪ {p}) ≥ ρ and

costγ(p, Si) = minq∈P\Si
costγ(q, Si).

11: if such point p exists in step 10 then
12: Si+1 ← Si ∪ {p}
13: i← i + 1, flag ← 1
14: end if
15: end while
16: if i = k then
17: Sk ← Si and β ← ρ
18: end if
19: end if
20: end for
21: return (Sk, β)

4.2.1 2
√

3-Factor Approximation Result for the 2-Dispersion Prob-

lem in R2

Let S∗ ⊆ P = {p1, p2, . . . , pn} be an optimal solution for a given instance (P, k) of the

2-dispersion problem and Sk ⊆ P be a solution returned by greedy Algorithm 3 for the

given instance, provided γ = 2 as an additional input. A point s∗o ∈ S∗ is said to be a

58

A Common Framework for the Euclidean Dispersion Problem

solution point if cost2(S
∗) is defined by s∗o, i.e., cost2(S

∗) = d(s∗o, s
∗
r) +d(s∗o, s

∗
t) such that (i)

s∗r, s
∗
t ∈ S∗, and (ii) s∗r and s∗t are the first and second closest points of s∗o in S∗, respectively.

We call s∗r, s∗t supporting points. Let α = cost2(S
∗). Here, we consider the 2-dispersion

problem in R2, so the value of λ is 2
√

3 (line number 1 of Algorithm 3).

Lemma 4.2.1. The triangle formed by three points s∗o, s
∗
r and s∗t does not contain any point

in S∗ \ {s∗o, s∗r, s∗t}, where s∗o is the solution point and s∗r, s
∗
t are supporting points.

Proof. Suppose that there exists a point s∗m ∈ S∗ inside the triangle formed by s∗o, s
∗
r, and s∗t .

Now, if d(s∗o, s
∗
r) ≥ d(s∗o, s

∗
t) then d(s∗o, s

∗
t)+d(s∗o, s

∗
m) < d(s∗o, s

∗
t)+d(s∗o, s

∗
r), which contradicts

the optimality of cost2(S
∗). A similar argument will also work for d(s∗o, s

∗
r) < d(s∗o, s

∗
t).

Here, ρ = α
λ

= cost2(S∗)

2
√
3

. We define the open disk D(pi) and the closed disk D[pi] centered

at pi ∈ P as follows: D(pi) = {pj ∈ P | d(pi, pj) < ρ} and D[pi] = {pj ∈ P | d(pi, pj) ≤ ρ}.

For a subset S ⊆ P , let D(S) = {D(p) | p ∈ S} and D[S] = {D[p] | p ∈ S}.

Lemma 4.2.2. For any point p ∈ P , D(p) contains at most two points of the optimal set

S∗, i.e., |D(p) ∩ S∗| ≤ 2.

Proof. On the contrary, assume that there are three points pa, pb, pc ∈ D(p)∩S∗. Using argu-

ments similar to those discussed in the proof of Lemma 4.1.1, cost2({pa, pb, pc}) is the maxi-

mum if pa, pb, pc is on the equilateral triangle inside D(p). Therefore, d(pa, pb) = d(pa, pc) =

d(pb, pc). Now, cost2({pa, pb, pc}) = d(pa, pb) + d(pa, pc) <
√

3ρ +
√

3ρ = 2
√

3ρ = cost2(S
∗).

Therefore, pa, pb, pc ∈ S∗ and cost2({pa, pb, pc}) < cost2(S
∗) lead to a contradiction.

Lemma 4.2.3. For any three points pa, pb, pc ∈ S∗, there does not exist any point p ∈ P

such that p ∈ D(pa) ∩D(pb) ∩D(pc).

59

Euclidean Dispersion Problems

Proof. On the contrary, assume that p ∈ D(pa) ∩D(pb) ∩D(pc). This implies d(pa, p) < ρ,

d(pb, p) < ρ and d(pc, p) < ρ. Therefore, D(p) contains three points pa, pb and pc, which is

a contradiction to Lemma 4.2.2. Thus, the lemma.

Corollary 4.2.3.1. For any point p ∈ P , if D′′ ⊆ D(S∗) is the subset of disks that contains

p, then |D′′| ≤ 2.

Proof. The proof follows from Lemma 4.2.3.

Lemma 4.2.4. For any point p ∈ P , if D′ ⊆ D[S∗] is the subset of disks that contains p,

then |D′| ≤ 3 and the point p lies on the boundary of each disk in D′.

Proof. The proof follows from similar arguments in Lemmas 4.1.1 and 4.2.3.

Let N ⊆ P be a subset of points such that 3 ≤ |N | < k, and cost2(N) ≥ ρ. Consider

U = N ∩ S∗, and let |U| = u. Let U′ = S∗ \ U and N ′ = N \ U. Without loss of generality,

assume that U′ = {p∗1, p∗2, . . . , p∗k−u}.

Lemma 4.2.5. For some D[p∗j] ∈ D[U′], D[p∗j] contains at most one point in N , i.e.,

|D[p∗j] ∩N | ≤ 1.

Proof. On the contrary, assume that each D[p∗j] ∈ D[U′] contains at least two points in N .

Construct a bipartite graph G(D[U′] ∪ N,E) as follows: (i) D[U′] and N are two partite

vertex sets, and (ii) (D[p∗j], u) ∈ E if and only if u ∈ D[p∗j].

Claim 4.2.1. For any disk D[p∗m] ∈ D[U′], if |D[p∗m]∩U| = 1, then any point in D[p∗m]∩N ′

is not contained in any disk in D[U′] \ {D[p∗m]}.

Proof of the Claim. On the contrary, assume that a point p ∈ D[p∗m]∩N ′ is contained in a

disk D(p∗w) ∈ D[U′] \ {D[p∗m]} (see Figure 4.6). Therefore, d(p∗m, p
∗
w) ≤ d(p∗m, p) + d(p, p∗w) ≤

60

A Common Framework for the Euclidean Dispersion Problem

cost2(S∗)

2
√
3

+ cost2(S∗)

2
√
3

, which implies d(p∗m, p
∗
w) ≤ 2 × cost2(S∗)

2
√
3

. Since |D[p∗m] ∩ U| = 1, let

D[p∗m] ∩ U = {p∗y}. Now, consider the 2-dispersion cost of p∗m with respect to S∗, i.e.,

cost2(p
∗
m, S

∗) ≤ d(p∗m, p
∗
y) + d(p∗m, p

∗
w) ≤ cost2(S∗)

2
√
3

+ 2 × cost2(S∗)

2
√
3

= 3 × cost2(S∗)

2
√
3

< cost2(S
∗),

which is a contradiction to the optimality of S∗ (see Figure 4.6). Thus, any point in D[p∗m]∩

N ′ is not contained in any disk in D[U′] \ {D[p∗m]}, if |D[p∗m] ∩ U| = 1.

D[p∗m]
D[p∗w]

p∗m
p∗w

p∗y

≤ 2× cost2(OPT)

2
√
3

≤ cost2(OPT)

2
√
3D[p∗y]

p

Figure 4.6: 2-dispersion cost of p∗m with respect to S∗

Now, for all D[p∗t] that satisfies the condition in Claim 4.2.1, we remove all such D[p∗t]

and D[p∗t] ∩ N ′ in G, followed by U to construct G′ = (D[U′′], N ′′). Since |D[U′]| + |U| =

|S∗| = k, and |N ′| + |U| = |N | < k, therefore |D[U′]| > |N ′|. During the construction

of G′ = (D[U′′], N ′′), the number of vertices removed from the partite set N ′ is at least

the number of vertices removed from the partite set D[U′] (see Claim (i)). Therefore,

|D[U′′]| > |N ′′|.

Thus, the lemma follows from the fact that the degree of each vertex in D[U′′] is at least

2 and the degree of each vertex in N ′′ is at most 2 in the bipartite graph G′, which leads to

a contradiction as |D[U′′]| > |N ′′|. Therefore, there exists at least one disk D[p∗j] ∈ D[U′]

61

Euclidean Dispersion Problems

such that D[p∗j] contains at most one point in N .

Theorem 4.2.6. Algorithm 3 produces a 2
√

3-factor approximation result for the 2-dispersion

problem in R2.

Proof. Since it is the 2-dispersion problem in R2, so γ = 2 and set λ = 2
√

3 in line number 1

of Algorithm 3. Now, assume α = cost2(S
∗) and ρ = α

γ
= cost2(S∗)

2
√
3

, where S∗ is an optimum

solution. Here, we show that Algorithm 3 returns a solution set Sk of size k such that

cost2(Sk) ≥ ρ = cost2(S∗)

2
√
3

. Let s∗o is the solution point and s∗r and s∗t be the supporting points

in S∗, i.e., cost2(S
∗) = d(s∗o, s

∗
r)+d(s∗o, s

∗
t). Now, consider the case where S3 = {s∗o, s∗r, s∗t} in

line number 3 of Algorithm 3. Our objective is to show that if S3 = {s∗o, s∗r, s∗t} in line number

3 of Algorithm 3, then it computes a solution set Sk of size k such that cost2(Sk) ≥ cost2(S∗)

2
√
3

.

Note that any other solution returned by Algorithm 3 has a 2-dispersion cost better than

cost2(S∗)

2
√
3

. Therefore, it is sufficient to prove that if S3 = {s∗o, s∗r, s∗t} in line number 3 of

Algorithm 3, then the size of Sk (updated) in line number 17 of Algorithm 3 is k as every

time Algorithm 3 adds a point (see line number 12) in the set with the property that 2-

dispersion cost of the updated set is greater than or equal to cost2(S∗)

2
√
3

. Therefore, we consider

S3 = {s∗o, s∗r, s∗t} in line number 3 of Algorithm 3.

We use induction to establish the condition cost2(Si) ≥ ρ for each i = 3, 4, . . . , k. Since

S3 = {s∗o, s∗r, s∗t}, therefore cost2(S3) = α > ρ holds. Now, assume that the condition

cost2(Si) ≥ ρ holds for each i such that 3 ≤ i < k. We will prove that the condition

cost2(Si+1) ≥ ρ holds.

Consider Y = Si ∩ S∗ and Y = S∗ \ Y . Since i < k and Si ⊆ P with the condition

cost2(Si) ≥ ρ, there exists at least one disk D[p∗j] centered at a point p∗j ∈ Y that contains

at most one point in Si (by Lemma 4.2.5). Suppose that D[p∗j] contains exactly one point

62

A Common Framework for the Euclidean Dispersion Problem

pt ∈ Si, then pt is the first closest point of p∗j in Si. Now, by Lemma 4.2.5, we claim

that the second closest point pℓ of p∗j in Si lies outside the disk D[p∗j] (see Figure 4.7).

Since d(p∗j , pℓ) ≥ ρ, therefore cost2(p
∗
j , Si+1) ≥ ρ. Now, if D[p∗j] does not contain any point

in Si, then the distance from p∗j to any point in Si is greater than or equal to ρ. So,

cost2(p
∗
j , Si+1) ≥ ρ. Thus, we can add the point p∗j to the set Si to construct the set Si+1,

where cost2(p
∗
j , Si) ≥ ρ.

p∗j

pt

pℓ

D[p∗j]

Figure 4.7: pℓ lies outside of the disk D[p∗j]

Now, we argue for any arbitrary point p ∈ Si+1, cost2(p, Si+1) ≥ ρ. We consider the

following two cases: Case (1) p∗j is not one of the closest points to p in Si+1, and the Case

(2) p∗j is one of the closest points to p in Si+1. In the Case (1), cost2(p, Si+1) ≥ ρ by the

definition of the set Si. In the Case (2), suppose that p is not contained in disk D[p∗j],

then d(p, p∗j) ≥ ρ. This implies that cost2(p, Si+1) ≥ ρ. Now, if p is contained in D[p∗j],

then at least one of the closest points of p is not contained in D[p∗j], otherwise it leads to

a contradiction to Lemma 4.2.5. Assume that q is one of the closest points of p that is

not contained in D[p∗j] (see Figure 4.8). Since d(p, q) ≥ ρ, therefore, cost2(p, Si+1) ≥ ρ.

Therefore, by constructing the set Si+1 = Si ∪ {p∗j}, we ensure that the cost of each point

in Si+1 is greater than or equal to ρ.

63

Euclidean Dispersion Problems

p∗j

p

q

D[p∗j]

Figure 4.8: q is not contained in D[p∗j]

Since there exists at least one point p∗j ∈ Y such that cost2(Si+1) = cost2(Si∪{p∗j}) ≥ ρ,

therefore, Algorithm 3 will always choose a point (see line number 10 of Algorithm 3) in

iteration i + 1 such that cost2(Si+1) ≥ ρ.

So, we conclude that cost2(Si+1) ≥ ρ and thus the condition also holds for (i + 1).

Therefore, Algorithm 3 produces a set Sk of size k such that cost2(Sk) ≥ ρ. Since

ρ ≥ cost2(S∗)

2
√
3

, Algorithm 3 produces 2
√

3-factor approximation result for the 2-dispersion

problem.

4.2.2 2-Dispersion Problem on a Line

In this section, we discuss the 2-dispersion problem on a line L and show that Algorithm 3

produces an optimal solution for it. Let the set P = {p1, p2, . . . , pn} be on a horizontal line

arranged from left to right. Let Sk ⊆ P be the solution returned by Algorithm 3 and S∗ ⊆ P

be an optimal solution. Note that the value of γ is 2 (for the 2-dispersion problem) and the

value of λ (line number 1 of Algorithm 3) is 1 in this problem. Let s∗o be a solution point and

s∗r, s
∗
t be supporting points in S∗, i.e., cost2(S

∗) = d(s∗o, s
∗
r) + d(s∗o, s

∗
t). Let S∗

3 = {s∗o, s∗r, s∗t}.

64

A Common Framework for the Euclidean Dispersion Problem

We show that if S3 = S∗
3 in line number 3 of Algorithm 3, then cost2(Sk) = cost2(S

∗). Let

S∗ = {s∗1, s∗2, . . . s∗k} be arranged from left to right.

Lemma 4.2.7. If s∗o is the solution point and s∗r, s
∗
t are supporting points in the optimal

solution S∗, then both points s∗r and s∗t cannot be on the same side on the line L with

respect to s∗o and three points s∗r, s
∗
o, s

∗
t are consecutive on the line L in S∗.

s∗os∗ts∗r
L

Figure 4.9: s∗r and s∗t on left side of s∗o

Proof. On the contrary, assume that both s∗r and s∗t are on the left side of s∗o, and s∗t lies

between s∗r and s∗o (see Figure 4.9). Now, d(s∗t , s
∗
o) + d(s∗t , s

∗
r) < d(s∗o, s

∗
t) + d(s∗o, s

∗
r) which

leads to a contradiction that s∗o is a solution point, i.e., cost2(S
∗) = d(s∗o, s

∗
r)+d(s∗o, s

∗
t). Now,

suppose that s∗r, s
∗
o, s

∗
t are not consecutive in S∗. Let s∗ be a point in S∗ such that either

s∗ ∈ (s∗r, s
∗
o) or s∗ ∈ (s∗o, s

∗
t). If s∗ ∈ (s∗r, s

∗
o), then d(s∗o, s

∗
r)+d(s∗o+s∗t) > d(s∗o, s

∗)+d(s∗o+s∗t),

which leads to a contradiction that s∗r is a supporting point. Similarly, we can show that

if s∗ ∈ (s∗o, s
∗
t), then s∗t is not a supporting point. Thus, s∗r, s

∗
o, s

∗
t are consecutive points on

the line L in S∗.

Lemma 4.2.7 says that if s∗o is a solution point, then s∗o−1 and s∗o+1 are supporting points

as s∗1, s
∗
2, . . . , s

∗
k are arranged from left to right.

Lemma 4.2.8. Let S3 = {s∗o, s∗o−1, s
∗
o+1} and α = cost2(S3). Now, if Si = Si−1 ∪ {pi}

constructed in line number 12 of Algorithm 3, then cost2(Si) = α.

65

Euclidean Dispersion Problems

Proof. We use induction to prove cost2(Si) = α for i = 4, 5 . . . , k.

Base Case: Consider the set S4 = S3∪{p4} constructed in line number 12 of Algorithm

3. If s∗o is a solution point and s∗o−1, s∗o+1 are supporting points and cost2(p4, S3) ≥ α,

therefore p4 /∈ [s∗o−1, s
∗
o+1] (otherwise one of s∗o−1 and s∗o+1 will not be a supporting point,

for details, see Lemma 4.2.7). This implies p4 either lies in [p1, s
∗
o−1) or (s∗o+1, pn]. Assume

p4 ∈ (s∗o+1, pn]. In Algorithm 3, we choose p4 such that cost2(p4, S4) ≥ α and cost2(p4, S4) =

minq∈P\S3 cost2(q, S4) (see line number 10 of Algorithm 3). Therefore, p4 ∈ (s∗o+1, s
∗
o+2].

Let S ′
4 = {s∗1, s∗2, . . . , s∗o−2} ∪ S4 ∪ {s∗o+3, s

∗
o+4, . . . , s

∗
k}. Suppose p4 = s∗o+2 and we know

that S3 = S∗
3 then S ′

4 = S∗. So, cost2(S
′
4) = cost2(S

∗) = α. This implies cost2(S4) =

α. Now assume that p4 ∈ (s∗o+1, s
∗
o+2), then we will also show that cost2(S

′
4) = α. We

calculate cost2(p4, S
′
4) = d(p4, s

∗
o+1) + d(p4, s

∗
o+3) = d(s∗o+2, s

∗
o+1) + d(s∗o+2, s

∗
o+3) ≥ α and

cost2(s
∗
o+3, S

′
4) = d(s∗o+3, p4) + d(s∗o+3, s

∗
o+4) ≥ d(s∗o+3, s

∗
o+2) + d(s∗o+3, s

∗
o+4) ≥ α (see Figure

4.10). Thus, if p4 ∈ (s∗o+1, s
∗
o+2), then cost2(S

′
4) = α. Therefore, if k ≥ 4, then p4 exists

and cost2(S4) = α. Similarly, we can prove that if p4 ∈ [p1, s
∗
o−1), then cost2(S

′
4) = α,

where S ′
4 = {s∗1, s∗2, . . . , s∗o−3} ∪ S4 ∪ {s∗o+2, s

∗
o+4, . . . , s

∗
k}. In this case also p4 exists and

cost2(S4) = α.

s∗o−1 s∗o s∗o+1 s∗o+2 s∗o+3
p4 s∗o+4

Figure 4.10: Snippet of S′
4

Now, assume that Si = Si−1 ∪ {pi} for i < k such that cost2(S
′
i) = α and cost2(Si) = α,

where S ′
i = {s∗1, s∗2, . . . , s∗u} ∪ Si ∪ {s∗v, s∗v+1, . . . , s

∗
k}. If pi ∈ (s∗o, pn], then s∗v−1 ∈ S∗ is the

left most point in the right of pi and u ≥ k − (i + k − v + 1) = v − i− 1 with each point of

Si are on the right side of s∗u (see Figure 4.11(a)) and if pi ∈ [p1, s
∗
o), then s∗u+1 ∈ S∗ is the

66

A Common Framework for the Euclidean Dispersion Problem

right most point in the left of pi, where v ≥ u + i + 1 (see Figure 4.11(b)).

p1 p2 pns∗u s∗v
Si−1

pi

(b)

p1 p2 pns∗u s∗v
Si−1

pi s∗v−1

(a)

s∗u+1

Figure 4.11: Placement of set Si−1 ∪ {pi}.

We prove that cost2(Si+1) = α, where Si+1 = Si ∪ {pi+1}. It follows from the fact that

the size of Si is less than k, and the set {s∗1, s∗2, . . . , s∗u} ∪ {s∗v, s∗v+1, . . . , s
∗
k} ̸= ϕ and the

similar arguments discussed in the base case.

Lemma 4.2.9. The running time of Algorithm 3 on the line is O(n4).

Proof. Since it is the 2-dispersion problem on a line, the algorithm starts by setting λ = 1

in line number 1 of Algorithm 3, and then compute the solution set for each distinct S3 ⊆ P

independently. Now, for each S3, the algorithm selects a point iteratively based on the greedy

choice (see line number 10 of Algorithm 3). Now, to choose the remaining (k − 3) points,

the total amortize time taken by the algorithm is O(n). So, the overall time complexity of

Algorithm 3 on the line consisting of n points is O(n4).

Theorem 4.2.10. Algorithm 3 produces an optimal solution for the 2-dispersion problem

on a line in polynomial time.

67

Euclidean Dispersion Problems

Proof. Follows from Lemma 4.2.8 that cost2(Si) = α = cost2(S
∗
3) for 3 ≤ i ≤ k, where

S3 = {s∗o, s∗r, s∗t}. Therefore, cost2(Sk) = α. Also, Lemma 4.2.9 says that Algorithm 3

computes Sk in polynomial time. Thus, the theorem.

4.2.3 1-Dispersion Problem in R2

In this section, we show the effectiveness of Algorithm 3 by showing 2-factor approximation

result for the 1-dispersion problem in R2. Here, we set γ = 1 as input along with input P

and k. We also set λ = 2 in line number 1 of the algorithm 3.

Let S∗ be an optimal solution for a given instance (P, k) of the 1-dispersion problem

and Sk ⊆ P be a solution returned by the greedy Algorithm 3 provided γ = 1 as an

additional input. Let s∗o ∈ S∗ be a solution point, i.e., cost1(S
∗) = d(s∗o, s

∗
r) such that s∗r

is the closest point to s∗o in S∗. We call s∗r the supporting point. Let α = d(s∗o, s
∗
r) and

ρ = α
2
. We define the open disk D(pi) and the closed disk D[pi] centered at pi ∈ P as

follows: D(pi) = {pj ∈ P | d(pi, pj) < ρ} and D[pi] = {pj ∈ P | d(pi, pj) ≤ ρ}. For S ⊆ P ,

let D(S) = {D(p) | p ∈ S} and D[S] = {D[p] | p ∈ S}.

Lemma 4.2.11. For any point s ∈ P , D(s) contains at most one point of the optimal set

S∗.

Proof. On the contrary, assume that pa, pb ∈ S∗ such that pa and pb are contained in D(s).

If two points pa and pb are contained in D(s), then d(pa, pb) ≤ d(pa, s)+d(pb, s) <
α
2

+ α
2

= α,

which leads to a contradiction to the optimality of S∗. Thus, the lemma.

Corollary 4.2.11.1. For any two points pa, pb ∈ S∗, there does not exist a point s ∈ P

that is contained in D(pa) ∩D(pb).

Proof. On the contrary, assume that s is contained in D(pa)∩D(pb). This implies d(pa, s) <

68

A Common Framework for the Euclidean Dispersion Problem

α
2

and d(pb, s) <
α
2

. Therefore, D(s) contains two points pa and pb, which is a contradiction

to Lemma 4.2.11.

Lemma 4.2.12. For any point s ∈ P , if D′ ⊆ D[S∗] is the set of disks that contain s, then

|D′| ≤ 2 and the point s lies on the boundary of both disks in D′.

Proof. The proof follows from the similar arguments in Lemma 4.2.11.

Corollary 4.2.12.1. For any point s ∈ P , if D′′ ⊆ D(S∗) is a subset of disks that contains

s, then |D′′| ≤ 1.

Proof. Follows from Corollary 4.2.11.1 and Lemma 4.2.12.

Let M ⊆ P be a subset of points such that 2 ≤ |M | < k, and cost1(M) ≥ α
2
. Let

V = M ∩S∗ and |V| = v. Consider V′ = S∗ \V and M ′ = M \V. Without loss of generality,

assume that V′ = {p∗1, p∗2, . . . , p∗k−v}.

Lemma 4.2.13. For some D(p∗j) ∈ D(V′), D(p∗j) does not contain any points in M , i.e.,

|D(p∗j) ∩M | = ϕ.

Proof. On the contrary, assume that each D(p∗j) ∈ D(V′) contains at least one point in the

set M . Now, we construct a bipartite graph G(D(V′)∪M ′,E) as follows: (i) D(V′) and M ′

are two partite vertex sets, and (ii) (D(p∗j), u) ∈ E if and only if u ∈ M ′ is contained in

D(p∗j).

According to the assumption, each disk D(p∗j) ∈ D(V′) contains at least one point in the

set M . Note that disks in D(V′) does not contain a point in V, otherwise a contradiction to

Lemma 4.2.11. Therefore, the total degree of the vertices in D(V′) in G is at least k−v. On

the other hand, the total degree of the vertices in M ′ in G is at most |M ′|−v (see Corollary

4.2.12.1). Since |M ′| < k, the total degree of the vertices in M ′ in G is less than k − v,

69

Euclidean Dispersion Problems

which leads to a contradiction that the total degree of the vertices in D(V′) in G is at least

k − v. Thus, there exists at least one disk D(p∗j) ∈ D(V′) such that D(p∗j) does not contain

any points in M .

Theorem 4.2.14. Algorithm 3 produces a 2-factor approximation result for the 1-dispersion

problem in R2.

Proof. Since it is the 1-dispersion problem in R2, so γ = 1 and set λ = 2 in line number 1

of Algorithm 3. Now, assume α = cost1(S
∗) and ρ = α

λ
= cost1(S∗)

2
, where S∗ is the optimum

solution. Here, we show that Algorithm 3 returns a solution set Sk of size k such that

cost1(Sk) ≥ ρ. More precisely, we show that Algorithm 3 returns a solution Sk of size k such

that cost1(Sk) ≥ ρ. Let s∗o be the solution point and s∗r be the supporting point in S∗. Our

objective is to show that if S2 = {s∗o, s∗r} in line number 3 of Algorithm 3, then it computes

a solution Sk of size k such that cost1(Sk) ≥ ρ. Note that any other solution returned by

Algorithm 3 has a 1-dispersion cost better than cost1(S∗)
2

. Therefore, it is sufficient to prove

that if S2 = {s∗o, s∗r} in line number 3 of Algorithm 3, then the size of Sk (updated) in line

number 17 of Algorithm 3 is k as every time Algorithm 3 added a point (see line number

12) into the set with the property that 1-dispersion cost of the updated set is greater than or

equal to ρ (= cost1(S∗)
2

). Therefore, we consider S2 = {s∗o, s∗r} in line number 3 of Algorithm

3.

We use induction to establish the condition cost1(Si) ≥ ρ for each i = 3, 4, . . . , k.

Since S2 = {s∗o, s∗r}, therefore cost1(S2) = α > ρ holds. Now, assume that the condi-

tion cost1(Si) ≥ ρ holds for each i such that 3 ≤ i < k. We will prove that condition

cost1(Si+1) ≥ ρ also holds for (i + 1).

Consider Y = Si ∩ S∗ and Y = S∗ \ Y . Since i < k and Si ⊆ P with the condition

cost1(Si) ≥ ρ = α
2
, there exists at least one disk, say D(p∗j) centered at a point p∗j ∈ Y

70

A Common Framework for the Euclidean Dispersion Problem

that does not contain any points in Si (by Lemma 4.2.13). We will show that cost1(Si+1) =

cost1(Si ∪ {p∗j}) ≥ ρ.

Now, if D(p∗j) does not contain any points in Si, then the distance of p∗j to any point

in Si is greater than or equal to ρ (see Figure 4.12). Therefore, cost1(p
∗
j , Si+1) ≥ ρ. So, we

construct Si+1 = Si ∪ {p∗j} so that cost1(Si+1) ≥ ρ.

p∗j

pℓ

D(p∗j)

Figure 4.12: Closest point of p∗j lies outside of D(p∗j).

Now, we argue for any arbitrary point p ∈ Si+1, cost1(p, Si+1) ≥ ρ. We consider the

following two cases: Case (1) p∗j is not one of the closest points of p in Si+1, and Case

(2) p∗j is one of the closest points of p in Si+1. In the Case (1), cost1(p, Si+1) ≥ ρ by the

definition of the set Si. In the Case (2), p is not contained in disk D(p∗j) (by Lemma 4.2.13),

thus d(p, p∗j) ≥ ρ. This implies that cost1(p, Si+1) ≥ ρ. Therefore, by constructing the set

Si+1 = Si ∪{p∗j}, we ensure that the cost of each point in Si+1 is greater than or equal to ρ.

Since p∗j ∈ Y such that cost1(Si+1) = cost1(Si ∪ {p∗j}) ≥ ρ, therefore Algorithm 3 will

always choose a point (see line number 10 of Algorithm 3) in iteration i + 1 such that

cost1(Si+1) ≥ ρ.

So, we can conclude that cost1(Si+1) ≥ ρ and thus condition holds for (i + 1) too.

Therefore, Algorithm 3 produces a 2-factor approximation result for the 1-dispersion

71

Euclidean Dispersion Problems

problem in R2.

4.3 Conclusion

In this chapter, we proposed a (2
√

3+ϵ)-factor approximation algorithm for the 2-dispersion

problem in R2, where ϵ > 0. The best known approximation factor available in the literature

is 4
√

3 [4]. Next, we proposed a common framework for the dispersion problem. Using

the framework, we further improved the approximation factor to 2
√

3 for the 2-dispersion

problem in R2. We studied the 2-dispersion problem on a line and proposed a polynomial-

time algorithm that returns an optimal solution using the developed framework. Note that

for the 2-dispersion problem on a line, one can propose a polynomial-time algorithm that

returns an optimal value in relatively low time complexity, but to show the adaptability

and flexibility of our proposed framework, we presented an algorithm for the same problem

using the developed framework. We also proposed a 2-factor approximation algorithm for

the 1-dispersion problem using the proposed common framework to show the effectiveness

of the framework.

;;=8=<<

72

5
Dispersion Problem in a Metric Space

In this chapter, we study the dispersion problem in a metric space. For the completeness of

the chapter, we define the metric space as follows.

Metric Space. A metric space is a pair (X, d), where X is a set of elements and d is

a function (metric) from X ×X to R such that for any x, y, z ∈ X, the following four

conditions hold: (i) d(x, y) ≥ 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) + d(y, z) ≥ d(x, z)

and (iv) d(x, y) = 0 if and only if x = y.

74

Algorithm

In Chapter 1, we introduced the c-dispersion problem using the metric dispersion partial

sum1. Here, we formally define the c-dispersion problem as follows.

c-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n points, the non-

negative distance d(pi, pj) between each pair of points pi, pj ∈ P , and a positive integer

k (c + 1 ≤ k ≤ n), for each point p ∈ P and S ⊆ P , costc(p, S) is defined as the sum

of distances from p to the c closest points in S \ {p}. The cost of a subset S of P is

defined as costc(S) = minp∈S{costc(p, S)}. The objective of the c-dispersion problem

is to find a k size subset S of P such that costc(S) is maximized.

5.0.1 Overview of the Chapter

Goal of the Chapter. To (i) present a polynomial-time algorithm for the c-dispersion

problem in a metric space which yields a 2c-factor approximation result, and (ii) prove that

the c-dispersion problem in a metric space parameterized by the solution size k is W [1]-hard.

Organization of the Chapter. In Section 5.1, we discuss our proposed algorithm and the

analysis of the algorithm in details, we prove the W [1]-hardness of the c-dispersion problem

in a metric space parameterized by the solution size k in Section 5.2, and finally in Section

5.3, we conclude the chapter.

5.1 Algorithm

In this section, we propose an algorithm for the c-dispersion problem in a metric space

(X, d). We will show that the proposed algorithm guarantees a 2c-factor approximation

result for the c-dispersion problem in a metric space. Now, we discuss the algorithm as

1For a facility, the dispersion partial sum is the sum of the distance of the pre-specified number of the
closest facilities.

75

Dispersion Problem in a Metric Space

follows. Let I = (P, k) be an arbitrary instance of the c-dispersion problem in a metric

space (X, d), where P = {p1, p2, . . . , pn} is the set of n points and k ∈ [c+ 1, n] is a positive

integer. It is an iterative algorithm. Initially, we choose a subset Sc+1 ⊆ P of size c + 1

such that costc(Sc+1) is maximized. Next, we add a point p ∈ P to Sc+1 to construct Sc+2,

i.e., Sc+2 = Sc+1∪{p}, so that costc(Sc+2) is maximized, and continue this process until the

construction of Sk of size k. The algorithm is described below.

Algorithm 4 Metric Dispersion Algorithm(P, k)

Input: A set P = {p1, p2, . . . , pn} of n points, and a positive integer k (c + 1 ≤ k ≤ n),
along with distance function d.
Output: A subset Sk ⊆ P of size k.

1: Compute Sc+1 = {pi1 , pi2 , . . . , pic , pic+1} ⊆ P so that costc(Sc+1) is maximized by ex-
haustive search.

2: for (j = c + 2, c + 3, . . . , k) do
3: Let p ∈ P \ Sj−1 such that costc(Sj−1 ∪ {p}) is maximized.
4: Sj ← Sj−1 ∪ {p}
5: end for
6: return (Sk)

Let S∗ = {p∗1, p∗2, . . . , p∗k} ⊆ P be an optimum solution for the c-dispersion problem for

the instance (P, k), i.e., costc(S
∗) = max

S⊆P,|S|=k
{costc(S)}. We define the ball B(p) for each

point p ∈ P as follows: B(p) = {q ∈ P |d(p, q) < costc(S∗)
2c
} and for a subset S of P , let

B(S) = {B(p) | p ∈ S}. See Figure 5.1 for a demonstration of the definition of a ball.

Lemma 5.1.1. For any point p ∈ P , B(p) contains at most c points of the optimal set S∗.

Proof. On the contrary, assume that B(p) contains c + 1 points of the optimal set S∗.

Without loss of generality, assume that p∗1, p
∗
2, . . . , p

∗
c+1(∈ S∗) are contained in B(p). This

implies that d(p, p∗i) <
costc(S∗)

2c
for each i = 1, 2, . . . , c+ 1. Since the distance function d(., .)

76

Algorithm

p

q

r
costc(S∗)

2c

Figure 5.1: q ∈ B(p), but r /∈ B(p).

satisfies the triangle inequality, therefore, d(p∗1, p
∗
j) ≤ d(p∗1, p)+d(p, p∗j), for j = 2, 3, . . . , c+1

(see Figure 5.2). So, this further implies
∑c+1

j=2 d(p∗1, p
∗
j) ≤

∑c+1
j=2 d(p∗1, p) +

∑c+1
j=2 d(p, p∗j) <

2c× costc(S∗)
2c

= costc(S
∗). This leads to a contradiction that p∗1, p

∗
2, . . . , p

∗
c+1 ∈ S∗.

p∗1

p∗2

p∗3p∗c

p∗c+1

p

B(p)

Figure 5.2: Illustration of Lemma 5.1.1.

Observation 5.1.2. From Lemma 5.1.1, we observe that for any point p∗i ∈ S∗, B(p∗i)

contains less than c points of the set S∗ \ {p∗i }.

77

Dispersion Problem in a Metric Space

Lemma 5.1.3. Let S ⊆ S∗. If there exists a point p ∈ P that is included in each ball in

B(S), then |S| ≤ c.

Proof. On the contrary, assume that |S| > c. Without loss of generality, assume that

S = {p∗1, p∗2, . . . , p∗c , p∗c+1}. So, each ball in B(S) = {B(p∗1), B(p∗2), . . . , B(p∗c), B(p∗c+1)} con-

tains p. Since p is contained in B(p∗1), B(p∗2), . . . , B(p∗c) and B(p∗c+1), therefore, each of

d(p∗1, p), d(p∗2, p), . . . , d(p∗c , p), d(p∗c+1, p) is less than costc(S∗)
2c

. Here, {p∗1, p∗2, . . . , p∗c , p∗c+1} ⊆ S∗.

So, B(p) contains c + 1 points, p∗1, p
∗
2, . . . , p

∗
c , p

∗
c+1, of the optimal set S∗, which is a contra-

diction to Lemma 5.1.1.

Now, consider a subset M ⊆ P of points such that c + 1 ≤ |M | < k, and costc(M) ≥
costc(S∗)

2c
. Let X = M ∩ S∗ and x = |X|. Let X = S∗ \X and M ′ = M \X. Without loss of

generality, assume that X = {p∗1, p∗2, . . . , p∗k−x}. Here, B(X) = {B(p∗1), B(p∗2), . . . , B(p∗k−x)}.

The following lemma states that there exists a point in the optimal set S∗ that is not in the

set M , i.e., p∗j ∈ X, such that the ball B(p∗j) contains less than c points of the set M , i.e.,

|B(p∗j) ∩M | < c.

Lemma 5.1.4. For some B(p∗j) ∈ B(X), |B(p∗j) ∩M | < c.

Proof. On the contrary, assume that B(p∗j) ∈ B(X) contains at least c points of the set

M for each j ∈ [1, k − x]. Note that B(X) = {B(p∗1), B(p∗2), . . . , B(p∗k−x)}. Construct a

bipartite graph G(B(X) ∪M,E) as follows: (i) B(X) and M are two partite vertex sets,

and (ii) (B(p∗j), u) ∈ E if and only if u ∈M is contained in B(p∗j) ∈ B(X) (see Figure 5.3).

Claim 5.1.1. For B(p∗t) ∈ B(X), if |B(p∗t) ∩ X| = w, then less than (c − w) balls in

B(X) \ {B(p∗t)} contain points of B(p∗t) ∩M ′, i.e., there exist at most c − w − 1 balls in

B(X) \ {B(p∗t)} has non-empty intersection with B(p∗t) ∩M ′.

78

Algorithm

B(X) M = M ′ ∪X

X

B(p∗j)

u

M ′

Figure 5.3: G(B(X) ∪M,E).

Proof of the Claim. On the contrary, assume that more than (c − w) balls in B(X) \

{B(p∗t)} has non-empty intersection with B(p∗t)∩M ′. By Observation 5.1.2, B(p∗t) contains

less than c points of the optimal set S∗ \ {p∗t}, and we know that B(p∗t) contains w points of

the set X, so w < c. Therefore, c− w > 0. We assumed that each B(p∗ℓ) ∈ B(X) contains

at least c points of M , so |B(p∗t) ∩M ′| ≥ c− w.

Without loss of generality, assume that each ball in {B(p∗1), B(p∗2), . . . , B(p∗c−w)} ⊆

B(X)\{B(p∗t)} contains some points of B(p∗t)∩M ′. Since each ball B(p∗ℓ) in {B(p∗1), B(p∗2), . . .

, B(p∗c−w)} contains some points of B(p∗t)∩M ′, therefore d(p∗ℓ , p
∗
t) ≤ 2× costc(S∗)

2c
(see the red

dashed line in Figure 5.4). Let B(p∗t) ∩ X = {p∗x1
, p∗x2

, . . . , p∗xw
} (all the blue points inside

the ball B(p∗t) in Figure 5.4). Thus, the distance of each (blue) point of B(p∗t) ∩X to p∗t is

less than or equal to costc(S∗)
2c

(see the blue dashed line in Figure 5.4).

Note that {p∗1, p∗2, . . . , p∗c−w, p
∗
t , p

∗
x1
, p∗x2

, . . . , p∗xw
} are in S∗, so the c-dispersion cost of p∗t

with respect to S∗, i.e., costc(p
∗
t , S

∗) ≤
∑w

j=1 d(p∗t , p
∗
xj

) +
∑c−w

ℓ=1 d(p∗t , p
∗
ℓ) ≤ w × costc(S∗)

2c
+

(c − w) × 2 × costc(S∗)
2c

= (2c − w) × costc(S∗)
2c

< costc(S
∗), which is a contradiction to the

optimality. See Figure 5.4 for an illustration of calculating the cost of p∗t with respect to S∗.

Thus, less than (c− w) balls in B(X) \ {B(p∗t)} contain points of B(p∗t) ∩M ′. □

79

Dispersion Problem in a Metric Space

p∗1

≤ 2× costc(S
∗)

2c

p∗x1

p∗xw

p∗2

p∗c−w

≤ costc(S
∗)

2c

p∗t

B(p∗t)
B(p∗1)

B(p∗2)

B(p∗c−w)

p∗ℓ

B(p∗ℓ)

Figure 5.4: c-dispersion cost of p∗t with respect to S∗

Now consider a ball B(p∗t) ∈ B(X) that contains w (< c) points from the set X. Since

B(p∗t) contains at least c points (by assumption), it implies |B(p∗t) ∩M ′| ≥ c − w. By the

above claim, the points of B(p∗t)∩M ′ (all the points of M ′ that are contained in B(p∗t)) are

contained in less than c−w balls in B(X) \ {B(p∗t)}. Let the set of balls in B(X) \ {B(p∗t)}

that contains points of B(p∗t) ∩M ′ be denoted by Xp∗t . Consider the connected component

Cp∗t in G consisting of B(p∗t), Xp∗t and B(p∗t)∩M ′. We denote the number of vertices of Cp∗t in

B(X) as αp∗t and the number of vertices of Cp∗t in B(p∗t)∩M ′ as βp∗t . Note that αp∗t = |Xp∗t |+1

and βp∗t ≥ c − w. As |Xp∗t | ≤ c − w − 1, αp∗t = |Xp∗t | + 1 ≤ (c − w − 1) + 1 ≤ c − w. This

further implies αp∗t ≤ c−w ≤ βp∗t . So, αp∗t ≤ βp∗t . We remove all such connected components

repeatedly (one by one) in G followed by X to construct G′ = (B(X) ∪M ′′,E′). Note that

B(X) ⊆ B(X) and M ′′ ⊆ M ′. Since |B(X)| + |X| = |S∗| = k and |X| + |M ′| = |M | < k,

therefore |B(X)| > |M ′|. While constructing G′ = (B(X)∪M ′′,E′), the number of vertices

removed from the partite set B(X) is at most the number of vertices removed from the

80

Algorithm

partite set M ′. Therefore, |B(X)| > |M ′′|.

Now, we can ensure that the balls in B(X) never contained any points of the set X,

otherwise they would have been removed in the construction process of G′. Moreover,

by assumption, each ball in B(X) contains at least c points in the set M . Therefore, it

implies that each ball in B(X) contains at least c points in the set M ′. Furthermore, the

construction of G′ ensures that each ball in B(X) contains at least c points in the set M ′′

only.

Thus, the lemma follows from the fact that the degree of each vertex in B(X) is at least c

and the degree of each vertex in M ′′ is at most c (according to Lemma 5.1.3) in the bipartite

graph G′ = (B(X) ∪M ′′,E′), which leads to a contradiction as |B(X)| > |M ′′|.

Lemma 5.1.5. The running time of Algorithm 4 is O(max{nc+1, n3}).

Proof. In line number 1, the algorithm computes Sc+1 in a way that maximizes costc(Sc+1).

To compute it, the algorithm calculates costc(Sc+1) for each distinct subset Sc+1 ⊆ P sep-

arately. Therefore, the algorithm invests O
(

n
c+1

)
= O(nc+1) time to compute Sc+1 so that

costc(Sc+1) is maximized. Now, to choose a point in each iteration, the algorithm takes

O(n2) time. Here, the number of iterations is bounded by k ≤ n. So, to construct a set Sk

of size k from Sc+1, the algorithm takes O(n3) time. Thus, the overall time complexity is

O(max{nc+1, n3}).

Theorem 5.1.6. Algorithm 4 produces 2c-factor approximation result in polynomial time

for the c-dispersion problem.

Proof. Let I = (P, k) be an arbitrary input instance of the c-dispersion problem in a metric

space (X, d), where P = {p1, p2, . . . , pn} is the set of n points, and k ∈ [c+ 1, n] is a positive

integer. Let Sk and S∗ be an output of Algorithm 4 and an optimum solution, respectively,

81

Dispersion Problem in a Metric Space

for instance I. To prove the theorem, we show that costc(S∗)
costc(Sk)

≤ 2c, i.e., costc(S∗)
2c

≤ costc(Sk).

Here, we use induction to show that costc(Si) ≥ costc(S∗)
2c

for each i = c + 1, c + 2, . . . , k.

Since Sc+1 is an optimum solution for c + 1 points (see line number 1 of Algorithm 4),

therefore costc(Sc+1) ≥ costc(S
∗) ≥ costc(S∗)

2c
holds. Now, assume that the condition holds

for each i such that c + 1 ≤ i < k. We will prove that the condition holds for (i + 1).

Consider Y = S∗ ∩ Si and Y = S∗ \ Y . Since i < k and Si ⊆ P such that costc(Si) ≥
costc(S∗)

2c
, therefore, there exists at least one ball B(p∗j) ∈ B(Y) that contains less than c

points in Si (see Lemma 5.1.4). So, the distance of p∗j to one of the c closest points in Si

is greater than or equal to costc(S∗)
2c

. Now, we will show that the algorithm constructs a set

Si+1 in the (i + 1)-th iteration such that costc(Si+1) ≥ costc(S∗)
2c

. We use the following claim

to prove the above statement.

Claim 5.1.2. costc(Si ∪ {p∗j}) ≥
costc(S∗)

2c
.

Proof of the Claim. To prove that costc(Si∪{p∗j}) ≥
costc(S∗)

2c
, we need to ensure that the

c-dispersion cost of each point p ∈ Si∪{p∗j} with respect to Si∪{p∗j} is greater than or equal

to costc(S∗)
2c

, i.e., costc(p, Si ∪{p∗j}) ≥
costc(S∗)

2c
. Since the distance of p∗j to one of the c closest

points in Si is greater than or equal to costc(S∗)
2c

, therefore costc(p
∗
j , Si∪{p∗j}) ≥

costc(S∗)
2c

. Now,

we will show that the c-dispersion cost of an arbitrary point p (̸= p∗j) ∈ Si∪{p∗j} with respect

to Si ∪ {p∗j} is also greater than or equal to costc(S∗)
2c

. To prove costc(p, Si ∪ {p∗j}) ≥
costc(S∗)

2c
,

we consider the following two cases: Case (1) p∗j is not one of the c closest points of p in

Si ∪ {p∗j}, and Case (2) p∗j is one of the c closest points of p in Si ∪ {p∗j}. In Case (1), since

p belongs to the set Si and p∗j is not one of the c closest points of p in Si ∪ {p∗j}, therefore

costc(p, Si ∪ {p∗j}) ≥
costc(S∗)

2c
(by the definition of Si). In Case (2), suppose that p is not

contained in B(p∗j), then d(p, p∗j) ≥
costc(S∗)

2c
. This implies costc(p, Si ∪ {p∗j}) ≥

costc(S∗)
2c

.

Now if p is contained in B(p∗j), then at least one of the c closest points of p in Si ∪ {p∗j} is

82

Algorithm

not contained in B(p∗j), otherwise it leads to a contradiction to Lemma 5.1.4. Assume that

q ∈ Si ∪ {p∗j} is one of the c closest points of p that is not contained in B(p∗j) (see Figure

5.5(a) and 5.5(b)). Thus, the sum of the distances from p to the c closest points in Si∪{p∗j}

is greater than d(p, p∗j) + d(p, q) ≥ d(p∗j , q) ≥ costc(S∗)
2c

(in both cases of Figure 5.5(a) and

5.5(b)). So, costc(p, Si ∪ {p∗j}) ≥
costc(S∗)

2c
. Therefore, costc(Si ∪ {p∗j}) ≥

costc(S∗)
2c

. □

p∗j p∗j

pp
q

q

B(p∗j) B(p∗j)

Figure 5.5: p ∈ B(p∗j), and q /∈ B(p∗j).

By the above claim, we know that there exists a point p∗j ∈ Y , such that costc(Si∪{p∗j}) ≥
costc(S∗)

2c
. Since the algorithm always selects a point (see line number 3 of Algorithm 4) that

maximizes costc(Si+1), therefore it will always select a point in the (i + 1)-th iteration to

construct a set Si+1 whose c-dispersion cost is greater than or equal to the c-dispersion cost

of Si ∪ {p∗j}, i.e., costc(Si+1) ≥ costc(Si ∪ {p∗j}) ≥
costc(S∗)

2c
.

With the help of Lemma 5.1.1, Lemma 5.1.3 and Lemma 5.1.4, costc(Si+1) ≥ costc(S∗)
2c

and thus the condition holds for (i+1). Also, Lemma 5.1.5 says that Algorithm 4 computes

Sk in polynomial time. Therefore, Algorithm 4 produces 2c-factor approximation result in

polynomial time for the c-dispersion problem.

83

Dispersion Problem in a Metric Space

5.2 A Parameterized Reduction

In this section, we prove that the c-dispersion problem in a metric space (X, d) parame-

terized by the solution size k is W [1]-hard. We show a parameterized reduction from the

k-independent set problem parameterized by the solution size k (known to be W [1]-hard [43])

to the c-dispersion problem in a metric space (X, d) parameterized by the solution size k.

We define a parameterized version of both problems as follows.

k-Independent Set Problem

Instance: A graph G = (V,E) and a positive integer k.

Parameter: k.

Problem: Does there exist an independent set of size k in G ?

c-Dispersion Problem

Instance: A set P of n locations and a positive integer k.

Parameter: k.

Problem: Given a bound 2c, does there exist S ⊆ P of size k such that costc(S) is 2c ?

Theorem 5.2.1. The c-dispersion problem in a metric space (X, d) parameterized by the

solution size k is W [1]-hard.

Proof. We prove this by giving a parameterized reduction from the k-independent set prob-

lem parameterized by the solution size k in simple undirected graphs to the c-dispersion

problem in a metric space (X, d) parameterized by the solution size k. Now, we present

a method to construct an instance of the c-dispersion problem from an instance of the

k-independent set problem in polynomial time.

84

A Parameterized Reduction

Let G = (V,E) be an arbitrary instance of the k-independent set problem. Here,

V = {v1, v2, . . . , vn}. We construct an instance of the c-dispersion problem from the given

instance of the k-independent set problem. We use the set V of vertices of G as a set of

locations P , i.e., P = {pi | vi ∈ V } of n points. The distance between the points pi, pj ∈ P

as follows: d(pi, pj) = 1 if (vi, vj) ∈ E, and d(pi, pj) = 2, otherwise. Note that the distance

function satisfies the triangle inequality. Thus, the entire process of constructing an instance

of the c-dispersion problem in a metric space takes polynomial time.

Claim 5.2.1. G has an independent set of size k if and only if there exists S ⊆ P of size

k, such that costc(S) = 2c.

Proof of the Claim. Necessity: Let I ⊆ V be an independent set of G such that |I| = k.

We construct a set S ⊆ P by selecting k points in P that correspond to the vertices in

I, i.e., S = {pi|vi ∈ I}. Note that |S| = k. Since I is an independent set, therefore, by

the construction of an instance of the c-dispersion problem from G, the distance between

any two points in S is 2. This implies that for each p ∈ S, costc(p, S) = 2c. Therefore,

costc(S) = 2c.

Sufficiency: Suppose that there exists a S ⊆ P of size k, such that costc(S) = 2c. Since

costc(S) = 2c, this implies that there exists a point p ∈ S such that costc(p, S) = 2c and for

all q ∈ S\{p}, costc(q, S) ≥ costc(p, S) = 2c. Now, for a point q ∈ S\{p}, if costc(q, S) > 2c,

then according to the pigeonhole principle, the distance of q to one of the c closest points

in S is greater than 2, which is not possible according to our construction of an instance of

the c-dispersion problem. So, for all points q ∈ S, costc(q, S) = 2c. Now, we can create a

set I ⊆ V by selecting the vertices corresponding to each point in S, i.e., I = {vi | pi ∈ S}.

Since the distance between each pair of points is 2, therefore there does not exist any edge

in I. Thus, I ⊆ V is an independent set of size k. □

85

Dispersion Problem in a Metric Space

Since the k-independent set problem parameterized by the solution size k is W [1]-hard,

therefore, the reduction in the above claim proves that the c-dispersion problem in a metric

space (X, d) parameterized by the solution size k is also W [1]-hard.

5.3 Conclusion

We studied the c-dispersion problem in a metric space. We presented a polynomial-time

2c-factor approximation algorithm for the c-dispersion problem in a metric space, which

is an improvement over the previous best approximation factor 2c2 [3]. For c = 1, the

proposed algorithm produces a 2-factor approximation result, which matches the best known

result [70, 76]. We further studied the hardness of the c-dispersion problem in the domain

of parameterized complexity and proved that the c-dispersion problem in a metric space is

W[1]-hard parameterized by the solution size k.

;;=8=<<

86

6
Convex 1-Dispersion Problem

In this chapter, we study a variant of the 1-dispersion problem, where a set of locations is

the vertices of a convex polygon. This variant of the 1-dispersion problem is referred to as

the convex 1-dispersion problem and is defined as follows.

88

Convex 1-Dispersion Problem for k = 4

Convex 1-Dispersion Problem: Given a set P = {p1, p2, . . . , pn} of n vertices of a

convex polygon in anti-clockwise order, the Euclidean distance d(p, q) between each pair

of vertices p, q ∈ P , the objective of the convex 1-dispersion problem is to find a subset

S ⊆ P of size k such that the cost of a subset S, cost(S) = min{d(p, q) | p, q ∈ S}, is

maximized.

6.0.1 Overview of the Chapter

Goal of the Chapter. (i) Designing O(n3) time algorithm for the convex 1-dispersion

problem for k = 4, and (ii) designing a
√

3 (≈ 1.733)-factor approximation algorithm for

the convex 1-dispersion problem.

Organization of the Chapter. The remainder of the Chapter is organized as follows: in

Section 6.1, we design an iterative algorithm for the convex 1-dispersion problem for k = 4,

which produces an optimal solution in O(n3) time. In Section 6.2, we propose a
√

3-factor

approximation result for the convex 1-dispersion problem, and finally conclude the chapter

in Section 6.3.

6.1 Convex 1-Dispersion Problem for k = 4

In this section, we propose an iterative algorithm for the convex 1-dispersion problem for

k = 4. To discuss the algorithm in detail, we introduce a few definitions that are required

in the design and analysis of the algorithm.

89

Convex 1-Dispersion Problem

6.1.1 Preliminaries

Let P = {p1, p2, . . . , pn} be a set of n vertices of a convex polygon in anti-clockwise order,

and for the pair (pi, pj) of vertices in P , we define Lij ⊆ P as the subset of vertices to

the left of the line segment pipj, i.e., all vertices encountered in counter clockwise order

traversing from pi to pj (excluding pi and pj). Similarly, we define Rij ⊆ P for the pair

(pi, pj) of vertices as the subset of vertices to the right of the line segment pipj, i.e., all

vertices encountered in the clockwise order traversing from pi to pj (excluding pi and pj).

See Figure 6.1(a) for an illustration of both definitions. Now, for the pair (pi, pj), we define

an assisting subset Aij ⊆ P as the set of vertices where the distance of each vertex in Aij

from both pi and pj is greater than or equal to d(pi, pj), i.e., Aij = {pℓ ∈ P | d(pi, pℓ) ≥

d(pi, pj) ∧ d(pj, pℓ) ≥ d(pi, pj)}.

pi

pj

Lij

Rij

pi

pj

Lij

(a) (b)

pipj
pipj

Figure 6.1: (a) Lij, Rij for the pair (pi, pj) ∈ P , and (b) Rij = ϕ

For the pair (pi, pj) ∈ P , we define a supporting subset Sij ⊆ P of four vertices such

that cost(Sij) = d(pi, pj) and {pi, pj} ⊆ Sij. Note that a supporting subset does not need

to exist for each pair of vertices. For example, in the convex polygon in Figure 6.2, there is

no supporting subset Sij for the pair (pi, pj) as there are no vertices in the polygon whose

90

Convex 1-Dispersion Problem for k = 4

distance from both pi and pj is greater than or equal to d(pi, pj). Furthermore, we define

the types of supporting subsets for the pair (pi, pj) depending on the positions of both pi

and pj. If there exists a supporting subset Sij = {pi, pj, pk, pℓ} for the pair (pi, pj), then

there are three possible orientations for Sij (see Figure 6.3).

pi

pj

Lij

Rij

Figure 6.2: Sij does not exist for the pair (pi, pj)

pi
pi pi

pj

pj

pj

(a) (b) (c)
pk

pk

pkpℓ

pℓ
pℓ

Lij

LijLij

Rij Rij

Rij

Figure 6.3: (a) pk and pℓ are in Lij, (b) pk and pℓ are in Rij, and (c) pk is in Lij and pℓ is in
Rij

In Figure 6.3(a) (resp. 6.3(b)), both pk and pℓ are in Lij (resp. Rij). We say such Sij as

a one-sided supporting subset for the pair (pi, pj). On the other hand, in Figure 6.3(c), both

pk and pℓ are not together either in Lij or Rij. We say such Sij as a two-sided supporting

subset for the pair (pi, pj).

91

Convex 1-Dispersion Problem

6.1.2 Algorithm

In this section, we present an iterative algorithm for the convex 1-dispersion problem, where

k = 4. Now, we discuss the outline of our algorithm, which is as follows. Let I = (P, 4) be an

arbitrary instance of the convex 1-dispersion problem. Our algorithm starts by initializing

a variable max, which is used to compare costs in each iteration.

We discuss in detail all the steps involved in an iteration for the pair (pi, pj) ∈ P . Assume

that d(pi, pj) = ρ. If ρ is less than or equal to the current value of max, then the algorithm

does not iterate for the pair (pi, pj). Otherwise, the algorithm iterates and decides whether

there exists a supporting subset or not. If a supporting subset exists, then max is updated

to ρ, else the algorithm proceeds with the other pair of vertices in P . To discuss all steps

in an iteration for the pair (pi, pj) ∈ P , we assume that d(pi, pj) = ρ is greater than the

current value of max, i.e., ρ > max.

Step (i) First, we traverse P in the clockwise order from pi in Rij till it finds a vertex pu that

belongs to Aij. Next, we traverse P in counter clockwise order from pj in Rij until we find a

vertex pv that belongs to Aij. Thereafter, the algorithm compares the distance between pu

and pv, if d(pu, pv) ≥ ρ, then there exists a one-sided supporting subset Sij = {pi, pj, pu, pv},

else we select pu in {pu, pv}, and further traverse in clockwise order from pu in Ruv, till we

either find a vertex pr such that d(pu, pr) ≥ ρ or d(pv, pr) ≥ ρ, or finally encounters pv. If

there exists a vertex pr, then we have a one-sided supporting subset Sij = {pi, pj, pr, pu/pv};

otherwise there does not exist any two vertices in Rij using which we can construct a

one-sided supporting subset (see Lemma 6.1.2). In the case of a non-existing one-sided

supporting subset using vertices in Rij, we perform the following step.

Step (ii) First, we traverse P in the counter clockwise order from pi in Lij till we find

a vertex ps that belongs to Aij. Next, we traverse P in clockwise order from pj in Lij

92

Convex 1-Dispersion Problem for k = 4

until we find a vertex pt that belongs to Aij. Thereafter, the algorithm compares the

distance between ps and pt, if d(ps, pt) ≥ ρ, then there exists a one-sided supporting subset

Sij = {pi, pj, ps, pt}, else we select ps in {ps, pt}, and further traverse in the counter clockwise

order from ps in Lst, until we either find a vertex pw such that d(ps, pw) ≥ ρ or d(pt, pw) ≥ ρ,

or finally encounter pt. If there exists a vertex pw, then we have a one-sided supporting

subset Sij = {pi, pj, pw, ps/pt}; otherwise there does not exist any two vertices in Lij using

which we can construct a one-sided supporting subset (see Lemma 6.1.3). In the case of

a non-existing one-sided supporting subset using vertices in Lij, we perform the following

step.

Step (iii) So after ensuring that there does not exist any one-sided supporting subset for

the pair (pi, pj), we try to find a two-sided supporting subset for the pair (pi, pj) by checking

whether one of d(pu, ps), d(pu, pt), d(pv, ps), d(pv, pt) is greater than or equal to ρ or not. If

so, then there exists a two-sided supporting Sij = {pi, pj, pu/pv, ps/pt}; otherwise, there

does not exist a two-sided supporting subset Sij for the pair (pi, pj) (see Lemma 6.1.4 and

Corollary 6.1.4.1).

We iterate the above steps for each pair of vertices in P and return a maximum cost

supporting subset. See the pseudocode of the algorithm in Algorithm 5.

Observation 6.1.1. For a pair (pi, pj), if pu ∈ Rij (resp. pt ∈ Lij) is the first vertex

encountered traversing in clockwise order from pi (resp. pj) and pv ∈ Rij (resp. ps ∈ Lij)

is the first vertex encountered traversing in counter clockwise order from pj (resp. pi), then

Ruv ⊆ Rij (resp. Lst ⊆ Lij). See Figure 6.4 for an illustration of the observation.

Consider the following scenario where pu is the first vertex encountered traversing in

clockwise order from pi and pv is the first vertex encountered traversing in counter clockwise

order from pj such that both pu and pv belong to Aij. Note that {pu, pv} ∈ Rij. Similarly,

93

Convex 1-Dispersion Problem

Algorithm 5 Convex 1-Dispersion Algorithm(P, 4)

Input: A set P = {p1, p2, . . . , pn} of n vertices of a convex polygon.
Output: An optimal subset Sij ⊆ P and cost(Sij).

1: max← 0
2: for each pair (pi, pj) ∈ P do
3: d(pi, pj) = ρ
4: if ρ > max then
5: if Rij ̸= ϕ then
6: Traverse in the clockwise (resp. counter clockwise) order from pi (resp. pj) in Rij

till finds a vertex pu (resp. pv) that belongs to Aij (if exists).
7: if d(pu, pv) ≥ ρ then
8: max ← ρ, Sij = {pi, pj , pu, pv}, continue;
9: else

10: Traverse in the clockwise order from pu in Ruv (till we encounter pv), or finds a
vertex pr ∈ Ruv such that d(pu, pr) ≥ ρ or d(pv, pr) ≥ ρ (if exists).

11: if d(pu, pr) ≥ ρ or d(pv, pr) ≥ ρ, then max ← ρ, Sij = {pi, pj , pr, pu/pv},
continue;

12: end if
13: end if
14: end if
15: if Lij ̸= ϕ then
16: Traverse in the counter clockwise (resp. clockwise) order from pi (resp. pj) in Lij

till finds a vertex ps (resp. pt) that belongs to Aij (if exists).
17: if d(ps, pt) ≥ ρ then
18: max ← ρ, Sij = {pi, pj , ps, pt}, continue;
19: else
20: Traverse in the counter clockwise order from ps in Lst (till we encounter pt), or

finds a vertex pw ∈ Lst such that d(ps, pw) ≥ ρ or d(pt, pw) ≥ ρ (if exists).
21: if d(ps, pw) ≥ ρ or d(pt, pw) ≥ ρ, then max ← ρ, Sij = {pi, pj , pw, ps/pt},

continue;
22: end if
23: end if
24: end if
25: if (pu == pv and ps == pt) or (d(pu, ps) ≥ ρ or d(pu, pt) ≥ ρ or d(pv, ps) ≥ ρ or

d(pv, pt) ≥ ρ) then
26: max ← ρ, Sij = {pi, pj , pu/pv, ps/pt}.
27: end if
28: end if
29: end for
30: return Sij and max

94

Convex 1-Dispersion Problem for k = 4

pupi

pj
pv

ps

pt

Rij
Ruv

Lij

Lst

Figure 6.4: Illustration of Observation 6.1.1

ps is the first vertex encountered traversing in counter clockwise order from pi and pt is

the first vertex encountered traversing in clockwise order from pj such that both ps and pt

belong to Aij. Note that {ps, pt} ∈ Lij.

Lemma 6.1.2. If there exists any one-sided supporting subset Sij such that other vertices

apart from pi and pj of Sij belong to Rij, then there must exist a one-sided supporting

subset S ′
ij that contains pu and/or pv.

Proof. Let Sij be a one-sided supporting subset such that other vertices apart from pi and

pj of Sij belong to Rij. Let d(pi, pj) = ρ. Now, we will show that there exists a one-

sided supporting subset S ′
ij that contains pu and/or pv. Note that pu is the first vertex

encountered traversing in clockwise order from pi and pv is the first vertex encountered

traversing in counter clockwise order from pj such that both pu and pv belong to the set Aij.

Now, if d(pu, pv) ≥ ρ, then S ′
ij = {pi, pj, pu, pv} is a one-sided supporting subset containing

both pu and pv. Now, if d(pu, pv) < ρ, then S ′
ij = {pi, pj, pu, pv} is not a supporting

subset. By assumption, we know that there exists Sij, so now we will show that there

exists a one-sided supporting subset S ′
ij that contains pu or pv. Let Sij = {pi, pj, pk, pℓ}.

Without loss of generality, assume that pk is encountered before pℓ if traversed in clockwise

order from pu. To show that S ′
ij is a supporting subset containing either pu or pv, we

95

Convex 1-Dispersion Problem

consider a line ℓ1 passing through both pi and pu, and a line ℓ2 passing through both pj

and pv, respectively. Since d(pu, pv) < d(pi, pj), therefore ℓ1 and ℓ2 are not parallel to each

other (see Figure 6.5). Let q be the intersection point of ℓ1 and ℓ2. Since the polygon is

convex, therefore, both pk and pℓ are within the triangle △puqpv. By assumption, both

pk and pℓ belong to Sij, so d(pk, pℓ) ≥ ρ. Now if min{d(pu, pk), d(pv, pℓ)} = d(pu, pk),

then d(pu, pℓ) > d(pk, pℓ) ≥ ρ, and so S ′
ij = {pi, pj, pu, pℓ} is a one-sided supporting subset

containing pu. Similarly, if min{d(pu, pk), d(pv, pℓ)} = d(pv, pℓ) then d(pv, pk) > d(pk, pℓ) ≥

ρ, and so S ′
ij = {pi, pj, pv, pk} is a one-sided supporting subset containing pv.

pi

pj

pu

pv

pk pℓ

ℓ1

ℓ2
q

Figure 6.5: Illustration of Lemma 6.1.2

Lemma 6.1.3. If there exists any one-sided supporting subset Sij such that other vertices

apart from pi and pj of Sij belong to Lij, then there must exists a one-sided supporting

subset S ′
ij that contains ps and/or pt.

Proof. Similar to the proof of Lemma 6.1.2.

Lemma 6.1.4. Sij = {pi, pj, pu/pv, ps/pt} is a two-sided supporting subset.

Proof. Without loss of generality, assume that Sij = {pi, pj, pu, ps} is not a two-sided sup-

porting subset. Since Sij is not a two-sided supporting subset and {pu, ps} ∈ Aij, therefore it

96

Convex 1-Dispersion Problem for k = 4

implies that d(ps, pu) < d(pi, pj). Now consider a triangle△pspipu, since d(pi, pu) ≥ d(pi, pj),

d(pi, ps) ≥ d(pi, pj) and d(ps, pu) < d(pi, pj), therefore ∠pspipu < 60◦. Similarly, we can

prove that ∠pspjpu < 60◦. Now consider a triangle △pipupj, since d(pi, pu) ≥ d(pi, pj) and

d(pj, pu) ≥ d(pi, pj), therefore ∠pipupj ≤ 60◦. Similarly, we can prove that ∠pipspj ≤ 60◦.

Now, consider the quadrilateral ♢pspipupj, the sum of the four angles of the quadrilat-

eral ♢pspipupj is less than 360◦. This is in contradiction to the fact that the sum of the

four angles of the quadrilateral is 360◦. So, we conclude that d(pu, ps) ≥ d(pi, pj). Thus,

Sij = {pi, pj, pu, ps} is a two-sided supporting subset. Using a similar argument, we can

prove that Sij = {pi, pj, pu, pt}, Sij = {pi, pj, pv, pt} and Sij = {pi, pj, pv, ps} are also a

two-sided supporting subset.

Now, consider the following scenario where pv = pu and pt = ps such that both pv and

pt belong to Aij.

Corollary 6.1.4.1. Sij = {pi, pj, pv, pt} is a two-sided supporting subset.

Proof. Similar to the proof of Lemma 6.1.4.

Lemma 6.1.5. For any pair (pi, pj), if d(pi, pj) is greater than the current value of max

and there exists a supporting subset Sij, then Algorithm 5 always updates max = d(pi, pj).

Proof. Let for the pair (pi, pj), d(pi, pj) be greater than the current value of max and there

is a supporting subset Sij. We know that the algorithm first finds whether there exists a

one-sided supporting subset and only if it does not exist, then the algorithm tries to find a

two-sided supporting subset.

Now, we will show that the algorithm updates max = d(pi, pj) if there exists a (i)

one-sided supporting subset and/or (ii) two-sided supporting subset.

97

Convex 1-Dispersion Problem

For case (i), let Sij be a one-sided supporting subset. Without loss of generality, assume

that other vertices apart from pi and pj of Sij belong to the set Rij. By Lemma 6.1.2,

we know that if there exists any one-sided supporting subset Sij, then there exists a one-

sided supporting subset S ′
ij that contains pu and/or pv, where pu ∈ Rij is the first vertex

encountered traversing in clockwise order from pi and pv ∈ Rij is the first vertex encountered

traversing in counter clockwise order from pj such that {pu, pv} ∈ Aij. Now, if d(pu, pv) ≥

d(pi, pj), then S ′
ij = {pi, pj, pu, pv} is a one-sided supporting subset. Thus, max = d(pi, pj)

is updated in line number 8 of Algorithm 5. Now, if d(pu, pv) < d(pi, pj), then S ′
ij =

{pi, pj, pu, pv} is not a supporting subset. By assumption, we know that there exists a one-

sided supporting subset, so let Sij = {pi, pj, pk, pℓ} be a one-sided supporting subset. Note

that {pk, pℓ} belongs to Rij. So, by Lemma 6.1.2, S ′
ij = {pi, pj, pu, pℓ} or S ′

ij = {pi, pj, pv, pk}

is a one-sided supporting subset. Since the algorithm traverses in clockwise order from pu,

it eventually encounters pk or pℓ. Thus, max = d(pi, pj) is updated in line number 11 of

Algorithm 5.

For case (ii), since there does not exist a one-sided supporting subset for the pair (pi, pj),

therefore, the algorithm further tries to find a two-sided supporting subset. Let Sij be a

two-sided supporting subset for the pair (pi, pj). We know that in the process of finding a

one-sided supporting subset for the pair (pi, pj), the algorithm traversed in clockwise (resp.

counter clockwise) order from pi (resp. pj) in Rij and found pu (resp. pv). Here, both pu and

pv belong to the set Aij. Similarly, the algorithm traversed in counter clockwise order (resp.

clockwise) from pi (resp. pj) in Lij and found ps (resp. pt). Here, both ps and pt belong

to the set Aij. So, by Lemma 6.1.4, Sij = {pi, pj, pu/pv, ps/pt} is a two-sided supporting

subset. Thus, max = d(pi, pj) is updated in line number 26 of Algorithm 5. Moreover, if

pv = pu and pt = ps, then Sij = {pi, pj, pv, pt} is a two-sided supporting subset (by Corollary

6.1.4.1), and max = d(pi, pj) is updated in line number 26 of Algorithm 5.

98

Convex 1-Dispersion Problem for k = 4

Lemma 6.1.6. The running time of Algorithm 5 is O(n3).

Proof. Algorithm 5 iterates over all the pair of vertices in P and updates the value of max

in each iteration. So, to find a supporting subset in each iteration, the algorithm needs to

visit all the vertices in P . Thus, finding a supporting subset in an iteration requires O(n)

time. Therefore, the running time of Algorithm 5 is O(n3).

Theorem 6.1.7. Algorithm 5 produces an optimal result in O(n3) time for the convex

1-dispersion problem where k = 4.

Proof. Let S∗ = {p∗o, p∗r, p∗s, p∗t} ⊆ P be an optimal solution and Sij = {pi, pj, pk, pℓ} ⊆ P

be a solution returned by Algorithm 5 for instance I = (P, 4). We know that cost(S∗) =

max
S⊆P
|S|=4

{cost(S)} and let p∗o ∈ S∗ be a solution vertex and p∗r be the closet vertex of p∗o in S∗.

So, cost(S∗) = d(p∗o, p
∗
r). Now, we will show that cost(Sij) = cost(S∗).

Let cost(Sij) ̸= cost(S∗). So, cost(Sij) < cost(S∗). We know that Algorithm 5 iterated

for each pair of vertices in P , so it also iterated for the pair (p∗o, p
∗
r). Since there exists a

supporting subset Sor = {p∗o, p∗r, p∗s, p∗t}, therefore, by Lemma 6.1.5 the value of max must

be updated to d(p∗o, p
∗
r) in some iteration of the algorithm. Since our algorithm returns a

supporting subset Sij = {pi, pj, pk, pℓ}, therefore d(pi, pj) must be greater than the value

of max in one of the iterations of the algorithm. So, d(pi, pj) > (p∗o, p
∗
r). Thus, it implies

cost(Sij) > cost(S∗), which is a contradiction that S∗ is an optimal solution. Therefore,

cost(Sij) = cost(S∗).

99

Convex 1-Dispersion Problem

6.2
√
3-Factor Approximation Result for the Convex

1-Dispersion Problem

In this section, we propose a
√

3-factor approximation algorithm for the convex 1-dispersion

problem. The algorithm is based on a greedy approach. We explain the algorithm briefly as

follows. Let I = (P, k) be an arbitrary instance of the convex 1-dispersion problem, where

P = {p1, p2, . . . , pn} is the set of n vertices of a convex polygon in anti-clockwise order and

k is a positive integer. We use Si(⊆ P) to denote a set of points of size i. Initially, we start

the algorithm S2 ⊆ P containing 2 points as a subset of the solution set. Let α = cost(S2).

Now, we add a point from P \S2 to S2 to get S3 such that cost(S3) ≥ α√
3
. Next, for the i-th

iteration, the algorithm adds a point to the set Si to obtain Si+1, i.e., if we have a solution

set Si such that cost(Si) ≥ α√
3
, then the algorithm adds a point to Si to obtain a set Si+1

of size i + 1 such that cost(Si+1) ≥ α√
3
. We stop this iterative method if we have Sk or no

more point addition is possible. We repeat the above process for each distinct S2 ⊆ P and

report the solution for which the cost value is maximum.

Let S∗ ⊆ P be an optimal solution and Sk ⊆ P be a solution returned by Algorithm 6

for a given instance (P, k) of the convex 1-dispersion problem. A point p∗o ∈ S∗ is said to be

a solution point if cost(S∗) is defined by p∗o, i.e., cost(S
∗) = d(p∗o, p

∗
r) such that (i) p∗r ∈ S∗,

and (ii) p∗r is the closest point of p∗o in S∗. Let α = cost(S∗) and ρ = α√
3
. For each point

p ∈ P , an open disk centered at p is defined as follows: D(p) = {q ∈ R2 | d(p, q) < ρ}.

Lemma 6.2.1. Let S2 = {p∗o, p∗r} in line number 2 of Algorithm 6. For each iteration

i ∈ [2, k − 1), if the algorithm adds pi to Si to construct Si+1, then there exist at least

(k − i− 1) points in S∗ \ Si+1 such that the distance of each (k − i− 1) point from all the

points in Si+1 is greater than or equal to ρ.

100

√
3-Factor Approximation Result for the Convex 1-Dispersion Problem

Algorithm 6 Convex 1-Dispersion Algorithm(P, k)

Input : A set P of n vertices of a convex polygon and an integer k.
Output: A subset Sk ⊆ P such that |Sk| = k and β =cost(Sk).

1: β ← 0
2: for each subset S2 ⊆ P consisting of 2 points do
3: Set α← cost(S2)
4: Set ρ← α√

3
5: if ρ > β then
6: flag ← 1, i← 2
7: while i < k and flag ̸= 0 do
8: flag ← 0
9: choose a point p ∈ P \ Si (if possible) such that cost(Si ∪ {p}) ≥ ρ and

cost(p, Si) = minq∈P\Si
cost(q, Si).

10: if such point p exists in step 9 then
11: Si+1 ← Si ∪ {p}
12: i← i + 1, flag ← 1
13: end if
14: end while
15: if i = k then
16: Sk ← Si and β ← ρ
17: end if
18: end if
19: end for
20: return (Sk, β)

Proof. Base Case. For i = 2. Let p3 be added to S2 to construct S3. Based on the type of

points, we classify p3 in the following two cases: Case (i) p3 ∈ S∗, and Case (ii) p3 /∈ S∗. For

Case (i), from the definition of the optimal set S∗, all k − 3 points of S∗ \ S3 have distance

greater than or equal to ρ with respect to each point in S3. For Case (ii), if there does not

exist at least (k−2−1) = k−3 points of S∗\S3 such that their distances from all the points

in S3 is greater than or equal to ρ, then there exist at least two points of S∗ \ S3 present

in D(p3). Without loss of generality, assume that two points p∗j and p∗k are in D(p3). Since

both p∗j and p∗k are in D(p3), therefore d(p3, p
∗
j) < ρ = α√

3
and d(p3, p

∗
k) < ρ = α√

3
. Note that

both p∗j , p
∗
k ∈ S∗. So, d(p∗j , p

∗
k) ≥ α. Thus, ∠p∗jp3p

∗
k >

2π
3

(see Figure 6.6(a)). Since p∗o, p
∗
r, p

∗
j

101

Convex 1-Dispersion Problem

and p∗k are in S∗, the mutual distance between them is greater than or equal to α. The

algorithm selected p3 in iteration 3 of Algorithm 6 and added to the set S2 to construct S3,

this implies that the minimum distance of p3 from the points in S2 must be less than or equal

to the minimum distance of p∗j from the points in S2. We assumed that p∗j is in D(p3). Now,

consider a △p∗op3p
∗
j , where d(p∗o, p

∗
j) ≥ d(p∗o, p3) and d(p∗o, p

∗
j) ≥ d(p3, p

∗
j), then ∠p∗op3p

∗
j ≥ π

3

(see Figure 6.6(b)). Thus, the internal angle at p3 is greater than 2π
3

+ π
3

= π. This leads

to the contradiction that the internal angle of a convex polygon is greater than π. Similar

arguments will also justify the case for p∗r. Thus, there exist at least (k − 2 − 1) = k − 3

points of S∗ \ S3 such that their distances from all points in S3 are greater than or equal to

ρ.

p3

p∗j

p∗k

D(p3)

> 2π
3

p3

p∗j

p∗k

D(p3)

> 2π
3

(a) (b)

≥ π
3

p∗o

Figure 6.6: Illustration of Base Case

Now, assume that the condition is true for 3 ≤ i ≤ k − 3. We will show that it is

true for k − 2. Let pk−1 be added to Sk−2 to construct Sk−1 in (k − 2)-th iteration. We

know by hypothesis that there exist at least (k − (k − 3)− 1) = 2 points of S∗ \ Sk−3 after

the (k − 3)-th iteration such that their distances from all the points in Sk−3 are greater

than or equal to ρ. Without loss of generality, assume that p∗u and p∗v are two points of

S∗ \ Sk−3 that satisfy the above condition. Based on the type of points, we classify pk−1

in the following two cases: Case (i) pk−1 ∈ S∗ and Case (ii) pk−1 /∈ S∗. For Case (i), from

102

√
3-Factor Approximation Result for the Convex 1-Dispersion Problem

the definition of the optimal set S∗ and the induction hypothesis, there exists at least 1

point of S∗ \Sk−2 after the (k− 2)-th iteration such that their distances from all the points

in Sk−2 are greater than or equal to ρ. For Case (ii), as pk−2 ̸= p∗u and pk−2 ̸= p∗v, and

if there does not exist a point of S∗ \ Sk−2 after the (k − 2)-th iteration such that their

distances from all the points in Sk−2 are greater than or equal to ρ, then both p∗u and p∗v

are in D(pk−1). Since both p∗u and p∗v are in D(pk−1), therefore d(pk−1, p
∗
u) < ρ = α√

3
and

d(pk−1, p
∗
v) < ρ = α√

3
. Note that both p∗u, p

∗
v ∈ S∗. So, d(p∗u, p

∗
v) ≥ α. Thus, ∠p∗upk−1p

∗
v >

2π
3

(see Figure 6.7(a)). The algorithm selected pk−1 in the (k−2)-th iteration and added to the

set Sk−2 to construct Sk−1, this implies that the minimum distance of pk−1 from the points in

Sk−2 must be less than or equal to the minimum distance of p∗u from the points in Sk−2, i.e.,

minq∈Sk−2
{d(pk−1, q)} ≤ minq∈Sk−2

{d(p∗u, q)}. Let ps ∈ Sk−2 be the closest point of pk−1 and

pt ∈ Sk−2 be the closest point of p∗u. So, d(ps, pk−1) ≤ d(pt, p
∗
u) ≤ d(ps, p

∗
u). Now consider

△pspk−1p
∗
u, where d(ps, p

∗
u) ≥ d(ps, pk−1) and d(ps, p

∗
u) ≥ d(pk−1, p

∗
u), then ∠pspk−1p

∗
u ≥ π

3

(see Figure 6.7(b)). Thus, the internal angle at pk−1 is greater than 2π
3

+ π
3

= π. This leads

to the contradiction that the internal angle of a convex polygon is greater than π. Thus,

there exists at least (k − (k − 2)− 1) = 1 point of S∗ \ Sk−2 such that their distances from

all points in Sk−2 are greater than or equal to ρ.

pk−1

p∗u

p∗v

D(pk−1)

> 2π
3

pk−1

p∗u

p∗v

D(pk−1)

> 2π
3

(a) (b)

≥ π
3

ps

pt

Figure 6.7: Illustration of Inductive Step

103

Convex 1-Dispersion Problem

Lemma 6.2.2. The running time of Algorithm is O(n4).

Proof. Algorithm 6 iterates over all the pair of vertices in P independently, and for each

pair, the algorithm try to compute the solution set of size k. The algorithm iterates k

times, and in each iteration selects a point based on the greedy choice (see line number 9

of Algorithm 6). Now, for choosing a point in each iteration, algorithm takes O(n) time.

Note that k(≤ n). So, to constrict a set Sk of size k, algorithm takes O(n2) time. Hence,

the overall time complexity of Algorithm 6 is O(n4).

Theorem 6.2.3. Algorithm 6 produces a
√

3-factor approximation result for the convex

1-dispersion problem in polynomial time.

Proof. Now, consider the case where S2 = {s∗o, s∗r} in line number 2 of Algorithm 6. Our

objective is to show that if S2 = {s∗o, s∗r} in line number 2 of Algorithm 6, then it computes

a solution set Sk of size k such that cost(Sk) ≥ ρ. Note that any other solution returned by

Algorithm 6 has a cost better than ρ. Therefore, it is sufficient to prove that if S2 = {s∗o, s∗r}

in line number 2 of Algorithm 6, then the size of Sk (updated) in line number 16 of Algorithm

6 is k and cost(Sk) ≥ ρ, since every time Algorithm 6 added a point (see line number 11)

to the set with the property that the cost of the updated set is greater than or equal to ρ.

Therefore, we consider S2 = {s∗o, s∗r} in line number 2 of Algorithm 6.

By Lemma 6.2.1, we can ensure that if the algorithm starts from S2 = {s∗o, s∗r}, then

after (k − 2)-th iteration there exists at least k − (k − 2) − 1 = 1 point of S∗ \ Sk−2 such

that their distances from all points in Sk−2 is greater than or equal to ρ. Without loss of

generality, assume that p∗t ∈ S∗ \ Sk−2 is a point that satisfies the above condition.

104

Conclusion

Observation 6.2.4. cost(Sk−2 ∪ {p∗t}) ≥ ρ.

Since there exists at least one point p∗t ∈ S∗ \ Sk−2 such that cost(Sk−2 ∪ {p∗t}) ≥ ρ,

therefore, Algorithm 6 will always choose a point (see line number 9) in (k− 1)-th iteration

such that cost(Sk) ≥ ρ. So, we can conclude that cost(Sk) ≥ ρ. Also, Lemma 6.2.2 says

that Algorithm 6 computes Sk in O(n4) time. Therefore, Algorithm 6 produces a
√

3-factor

approximation result for the convex 1-dispersion problem in polynomial time.

6.3 Conclusion

In this chapter, we studied the convex 1-dispersion problem. We proposed an iterative

algorithm that produces an optimal solution for the convex 1-dispersion problem for k = 4

in O(n3) time. To our knowledge, apart from a straightforward O(n4) time algorithm,

so far no other exact algorithm is known for the convex 1-dispersion problem for k = 4.

The NP-hardness of the convex 1-dispersion problem is unknown, and the problem is open

from the point of designing a polynomial-time exact algorithm. Till date, we know that

there exists a 2-factor approximation result for the 1-dispersion problem [76], and it cannot

be improved further [70]. Thus, applying the same algorithm, we can obtain a 2-factor

approximation result for the convex 1-dispersion problem. We designed a
√

3 (≈ 1.733)-

factor approximation algorithm for the convex 1-dispersion problem for any value of k, which

is a significant improvement over the known result.

;;=8=<<

105

7
Conclusion and Future Work

In this chapter, we summarize the work done, highlight the contributions, and suggest di-

rections for possible future work. We have studied a variant of the geometric capacitated

set cover problem, namely (α, P,Q)- covering problem, and variants of the dispersion prob-

lem, namely, the 2-dispersion problem in R1 and R2, the 1-dispersion problem in R2, the

c-dispersion problem in a metric space (X, d), and the convex 1-dispersion problem.

107

Conclusion and Future Work

For the (α, P,Q)-covering problem, we established a necessary and sufficient condition

that ensures the feasibility of the given instance. We also proposed an algorithm to check the

feasibility of an instance of the problem. Moreover, we proved that the (α, P,Q)-covering

problem is NP-complete for α ≥ 3. We proposed a local search algorithm that admits a

PTAS. In future work, we would like to design a constant factor approximation algorithm

for the (α, P,Q)-covering problem, which has a relatively lower time complexity. We would

also like to study the hardness of the (2, P, Q)-covering problem.

For the dispersion problems, we introduced the concept of dispersion partial sum, which

generalizes the notion of dispersion. Based on the dispersion partial sum, we defined new

variants of the dispersion problem, namely the 1-dispersion problem, the 2-dispersion prob-

lem and the c-dispersion problem.

We studied the 2-dispersion problem in R2, and proposed a polynomial-time algorithm

that produces a (2
√

3 + ϵ)-factor approximation result, for any ϵ > 0. Next, we developed a

common framework for designing an approximation algorithm for the dispersion problem in

Euclidean space. With this common framework, we improved the approximation factor to

2
√

3 for the 2-dispersion problem in R2. We proposed a polynomial-time algorithm, which

returns an optimal solution for the 2-dispersion problem when points are placed on a line

using the same framework. We also used the same framework to achieve a 2-factor approx-

imation algorithm for the 1-dispersion problem in R2. The approximation factor results

presented in this thesis for both the 1-dispersion problem and the 2-dispersion problem in

R2 are the best to date, so in future work, we would like to improve the approximation

factor results for both problems. Moreover, one can think of studying the hardness of the

approximation for both problems. We would also like to design an approximation algorithm

for the c-dispersion problem in Euclidean space.

Next, we studied the c-dispersion problem in a metric space and presented a polynomial-

108

time algorithm that yields a 2c-factor approximation result. For c = 1, the proposed al-

gorithm produces a 2-factor approximation result, which matches the best known result

[70, 76]. Moreover, unless P=NP, there does not exist a (2 − ϵ)-factor approximation al-

gorithm for the 1-dispersion problem, for any ϵ > 0 [70]. We further showed that the

c-dispersion problem in a metric space parameterized by the solution size k is W [1]-hard.

As a future direction, one can think of investigating the hardness of approximation of the

c-dispersion problem for c > 1.

Finally, we studied the convex 1-dispersion problem. We proposed an iterative algorithm

that produces an optimal solution in O(n3) time where the objective is to select k(= 4)

vertices. We would like to design an efficient algorithm for the convex 1-dispersion problem

for any value of k. We also proposed a
√

3-factor approximation algorithm for the convex

1-dispersion problem for any value of k. As a future direction, we would like to improve the

approximation factor for the problem.

;;=8=<<

109

Publication from the Contents of the Thesis

Papers published/submitted in international journals:

[J1] Pawan K. Mishra, Sangram K. Jena, Gautam K. Das and S. V. Rao, Capacitated

Discrete Unit Disk Cover, Discrete Applied Mathematics (DAM), 285: 242-251,

2020.

[J2] Pawan K. Mishra and Gautam K. Das, Approximation Algorithms for the Eu-

clidean Dispersion Problems, (Submitted to Computational Geometry: Theory

and Applications (CGTA), Minor Comments Addressed).

[J3] Pawan K. Mishra and Gautam K. Das, Dispersion Problem in a Metric Space,

(Submitted to Theoretical Computer Science (TCS)).

[J4] Pawan K. Mishra, S. V. Rao and Gautam K. Das, Dispersion Problem on a Con-

vex Polygon, (Submitted).

Papers published in international conference proceedings:

[C1] Pawan K. Mishra, Sangrm K. Jena, Gautam K. Das and S. V. Rao, Capacitated

Discrete Unit Disk Cover, in In Proceedings of 13th International Conference and

Workshop on Algorithms and Computation (WALCOM), Lecture Notes in Computer

Science, pages 407-418, 2019.

[C2] Pawan K. Mishra and Gautam K. Das, Approximation Algorithms for the Eu-

clidean Dispersion Problems, in In Proceedings of the 33rd Canadian Conference

on Computational Geometry (CCCG), pages 303-311, 2021.

;;=8=<<

110

References

[1] Zoë Abrams, Ashish Goel, and Serge Plotkin. Set k-cover algorithms for energy effi-

cient monitoring in wireless sensor networks. In Proceedings of the 3rd international

symposium on Information processing in sensor networks, pages 424–432, 2004. [Pg.2],

[Pg.16]

[2] Toshihiro Akagi, Tetsuya Araki, Takashi Horiyama, Shin-ichi Nakano, Yoshio Okamoto,

Yota Otachi, Toshiki Saitoh, Ryuhei Uehara, Takeaki Uno, and Kunihiro Wasa. Exact

algorithms for the max-min dispersion problem. In Proceedings of the 12th International

Workshop on Frontiers in Algorithmics, pages 263–272, 2018. [Pg.25], [Pg.27]

[3] Kazuyuki Amano and Shin-Ichi Nakano. Away from rivals. In Proceedings of the 30th

Canadian Conference on Computational Geometry, pages 68–71, 2018. [Pg.26], [Pg.86]

[4] Kazuyuki Amano and Shin-Ichi Nakano. An approximation algorithm for the 2-

dispersion problem. IEICE Transactions on Information and Systems, 103(3):506–508,

2020. [Pg.26], [Pg.72]

111

REFERENCES

[5] Christoph Ambühl, Thomas Erlebach, Matúš Mihalák, and Marc Nunkesser. Constant-

factor approximation for minimum-weight (connected) dominating sets in unit disk

graphs. Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, pages 3–14, 2006. [Pg.23]

[6] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ϵ-nets for axis-parallel rect-

angles and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. [Pg.24]

[7] Manjanna Basappa, Rashmisnata Acharyya, and Gautam K. Das. Unit disk cover

problem in 2d. Journal Discrete Algorithms, 33:193–201, 2015. [Pg.24]

[8] Christoph Baur and Sándor P Fekete. Approximation of geometric dispersion problems.

Algorithmica, 30(3):451–470, 2001. [Pg.26]

[9] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient prob-

abilistically checkable proofs and applications to approximations. In Proceedings of the

25th ACM symposium on Theory of computing, pages 294–304, 1993. [Pg.21]

[10] Binay Bhattacharya and Qiaosheng Shi. Optimal algorithms for the weighted p-center

problems on the real line for small p. In Proceedings of the 10th Workshop on Algorithms

and Data Structures, pages 529–540, 2007. [Pg.25]

[11] Sayan Bhattacharya, Sreenivas Gollapudi, and Kamesh Munagala. Consideration set

generation in commerce search. In Proceedings of the 20th international conference on

World wide web, pages 317–326, 2011. [Pg.2], [Pg.8]

[12] Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Com-

putational Geometry, 9(3):159–180, 1998. [Pg.34], [Pg.35]

112

REFERENCES

[13] Benjamin Birnbaum and Kenneth J Goldman. An improved analysis for a greedy

remote-clique algorithm using factor-revealing lps. Algorithmica, 55(1):42–59, 2009.

[Pg.26]

[14] Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite vc-

dimension. Discrete & Computational Geometry, 14(4):463–479, 1995. [Pg.22]

[15] Gruia Călinescu, Ion I Mandoiu, Peng-Jun Wan, and Alexander Z Zelikovsky. Selecting

forwarding neighbors in wireless ad hoc networks. Mobile Networks and Applications,

9(2):101–111, 2004. [Pg.23]

[16] Mihaela Cardei, My T Thai, Yingshu Li, and Weili Wu. Energy-efficient target coverage

in wireless sensor networks. In Proceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies., pages 1976–1984, 2005. [Pg.2], [Pg.16]

[17] Paz Carmi, Matthew J Katz, and Nissan Lev-Tov. Covering points by unit disks of

fixed location. In Proceedings of the 18th International Symposium on Algorithms and

Computation, pages 644–655, 2007. [Pg.23]

[18] Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Local search for max-sum

diversification. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 130–142, 2017. [Pg.2], [Pg.16]

[19] Chi-Kwong Chan and Lee-Ming Cheng. Hiding data in images by simple lsb substitu-

tion. Pattern recognition, 37(3):469–474, 2004. [Pg.2], [Pg.16]

[20] Timothy M Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted

capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In

113

REFERENCES

Proceedings of the 23rd ACM-SIAM symposium on Discrete Algorithms, pages 1576–

1585, 2012. [Pg.24]

[21] Barun Chandra and Magnús M Halldórsson. Approximation algorithms for dispersion

problems. Journal of algorithms, 38(2):438–465, 2001. [Pg.26]

[22] R Chandrasekaran and Andrew Daughety. Location on tree networks: p-centre and

n-dispersion problems. Mathematics of Operations Research, 6(1):50–57, 1981. [Pg.24]

[23] R Chandrasekaran and Arie Tamir. Polynomially bounded algorithms for locating

p-centers on a tree. Mathematical Programming, 22(1):304–315, 1982. [Pg.24]

[24] Wang Chi Cheung, Michel X Goemans, and Sam Chiu-wai Wong. Improved algorithms

for vertex cover with hard capacities on multigraphs and hypergraphs. In Proceedings

of the 25th ACM-SIAM symposium on Discrete algorithms, pages 1714–1726, 2014.

[Pg.22]

[25] Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM Journal

on Computing, 36(2):498–515, 2006. [Pg.21]

[26] Kenneth L Clarkson and Kasturi Varadarajan. Improved approximation algorithms for

geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007. [Pg.24]

[27] Francisco Claude, Gautam K Das, Reza Dorrigiv, Stephane Durocher, Robert Fraser,

Alejandro López-Ortiz, Bradford G Nickerson, and Alejandro Salinger. An improved

line-separable algorithm for discrete unit disk cover. Discrete Mathematics, Algorithms

and Applications, 2(01):77–87, 2010. [Pg.23]

114

REFERENCES

[28] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algorithms,

volume 5. Springer, 2015. [Pg.15]

[29] Gautam K Das, Robert Fraser, Alejandro López-Ortiz, and Bradford G Nickerson. On

the discrete unit disk cover problem. International Journal of Computational Geometry

& Applications, 22(05):407–419, 2012. [Pg.22], [Pg.23]

[30] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.

Annals of mathematics, pages 439–485, 2005. [Pg.21]

[31] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings

of the 46th ACM symposium on Theory of computing, pages 624–633, 2014. [Pg.4],

[Pg.21]

[32] Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer

Science & Business Media, 2012. [Pg.15]

[33] Zvi Drezner. Facility location: a survey of applications and methods. Springer Series

in Operations, 1995. [Pg.1]

[34] Zvi Drezner and Horst W Hamacher. Facility location: applications and theory. Springer

Science & Business Media, 2004. [Pg.1]

[35] Erhan Erkut. The discrete p-dispersion problem. European Journal of Operational

Research, 46(1):48–60, 1990. [Pg.26]

[36] Erhan Erkut, Thomas Baptie, and Balder Von Hohenbalken. The discrete p-maxian

location problem. Computers & Operations Research, 17(1):51–61, 1990. [Pg.24]

115

REFERENCES

[37] Erhan Erkut and Susan Neuman. Analytical models for locating undesirable facilities.

European Journal of Operational Research, 40(3):275–291, 1989. [Pg.2], [Pg.26]

[38] Erhan Erkut, C ReVelle, and Y Ülküsal. Integer-friendly formulations for the r-

separation problem. European Journal of Operational Research, 92(2):342–351, 1996.

[Pg.2], [Pg.26]

[39] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models,

algorithms and case studies. Springer Science & Business Media, 2009. [Pg.1]

[40] Reza Zanjirani Farahani, Maryam SteadieSeifi, and Nasrin Asgari. Multiple criteria

facility location problems: A survey. Applied mathematical modelling, 34(7):1689–1709,

2010. [Pg.1]

[41] Greg N Federickson. Fast algorithms for shortest paths in planar graphs, with appli-

cations. SIAM Journal on Computing, 16(6):1004–1022, 1987. [Pg.45]

[42] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM

(JACM), 45(4):634–652, 1998. [Pg.21]

[43] Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer Science &

Business Media, 2006. [Pg.84]

[44] Robert Fraser and Alejandro López-Ortiz. The within-strip discrete unit disk cover

problem. Theoretical Computer Science., 674:99–115, 2017. [Pg.23]

[45] Greg N Frederickson. Optimal algorithms for tree partitioning. In Proceedings of the

2nd ACM-SIAM Symposium on Discrete Algorithms, pages 168–177, 1991. [Pg.24]

116

REFERENCES

[46] Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan.

An improved approximation algorithm for vertex cover with hard capacities. Journal

of Computer and System Sciences, 72(1):16–33, 2006. [Pg.21]

[47] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. De-

pendent rounding and its applications to approximation algorithms. Journal of the

ACM, 53(3):324–360, 2006. [Pg.21]

[48] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory

of NP-completeness. Freeman, 1979. [Pg.22], [Pg.33]

[49] AJ Goldman and PM Dearing. Concepts of optimal location for partially noxious

facilities. Bulletin of the Operational Research Society of America, 23(1):B85, 1975.

[Pg.26]

[50] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversifi-

cation. In Proceedings of the 18th International conference on World wide web, pages

381–390, 2009. [Pg.2], [Pg.8]

[51] Sathish Govindarajan, Rajiv Raman, Saurabh Ray, and Aniket Basu Roy. Packing and

covering with non-piercing regions. In Proceedings of the 24th European Symposium on

Algorithms, volume 57, pages 1–17, 2016. [Pg.24]

[52] Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex cover-

ing. Journal of Algorithms, 48(1):257–270, 2003. [Pg.21]

[53] Himanshu Gupta, Zongheng Zhou, Samir R Das, and Quinyi Gu. Connected sensor

cover: Self-organization of sensor networks for efficient query execution. IEEE/ACM

transactions on networking, 14(1):55–67, 2006. [Pg.2], [Pg.16]

117

REFERENCES

[54] Refael Hassin, Shlomi Rubinstein, and Arie Tamir. Approximation algorithms for

maximum dispersion. Operations research letters, 21(3):133–137, 1997. [Pg.26]

[55] David Haussler and Emo Welzl. ϵ-nets and simplex range queries. Discrete & Compu-

tational Geometry, 2(2):127–151, 1987. [Pg.22]

[56] Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and

packing problems in image processing and vlsi. Journal of the ACM, 32(1):130–136,

1985. [Pg.2], [Pg.16]

[57] Chengbang Huang, Faruck Morcos, Simon P Kanaan, Stefan Wuchty, Danny Z Chen,

and Jesus A Izaguirre. Predicting protein-protein interactions from protein domains

using a set cover approach. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 4(1):78–87, 2007. [Pg.2], [Pg.16]

[58] David S Johnson. Approximation algorithms for combinatorial problems. Journal of

computer and system sciences, 9(3):256–278, 1974. [Pg.21]

[59] Michael J Kearns. The computational complexity of machine learning. MIT press, 1990.

[Pg.2]

[60] Jyrki Kivinen, Heikki Mannila, and Esko Ukkonen. Learning hierarchical rule sets. In

Proceedings of the 5th annual workshop on Computational learning theory, pages 37–44.

ACM, 1992. [Pg.2]

[61] Yasuaki Kobayashi, Shin-Ichi Nakano, Kei Uchizawa, Takeaki Uno, Yutaro Yamaguchi,

and Katsuhisa Yamanaka. An o(n2)-time algorithm for computing a max-min 3-

dispersion on a point set in convex position. IEICE Transactions on Information and

Systems, 105(3):503–507, 2022. [Pg.27]

118

REFERENCES

[62] Alfred A Kuehn and Michael J Hamburger. A heuristic program for locating ware-

houses. Management science, 9(4):643–666, 1963. [Pg.1]

[63] Ting L Lei and Richard L Church. A unified model for dispersing facilities. Geographical

Analysis, 45(4):401–418, 2013. [Pg.2], [Pg.26]

[64] Ting L Lei and Richard L Church. On the unified dispersion problem: Efficient formula-

tions and exact algorithms. European Journal of Operational Research, 241(3):622–630,

2015. [Pg.2], [Pg.16], [Pg.26]

[65] Nimrod Megiddo and Arie Tamir. An o(p2 log2 n) algorithm for the unweighted p-center

problem on the line. Technical report, Technical Report 1981, revised 1991, Department

of Statistics, Tel Aviv, 1991. [Pg.25]

[66] I Douglas Moon and Sohail S Chaudhry. An analysis of network location problems

with distance constraints. Management Science, 30(3):290–307, 1984. [Pg.2], [Pg.26]

[67] Nabil H Mustafa, Rajiv Raman, and Saurabh Ray. Qptas for geometric set-cover

problems via optimal separators. arXiv preprint arXiv:1403.0835, 2014. [Pg.24]

[68] Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.

Discrete & Computational Geometry, 44(4):883–895, 2010. [Pg.24]

[69] Nabil Hassan Mustafa and Saurabh Ray. Ptas for geometric hitting set problems via

local search. In Proceedings of the 25th Symposium on Computational geometry, pages

17–22, 2009. [Pg.44]

[70] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. Heuristic and

special case algorithms for dispersion problems. Operations Research, 42(2):299–310,

1994. [Pg.2], [Pg.16], [Pg.25], [Pg.26], [Pg.86], [Pg.105], [Pg.109]

119

REFERENCES

[71] Sanjib Sadhu, Sasanka Roy, Soumen Nandi, Subhas C Nandy, and Suchismita Roy.

Efficient algorithm for computing the triangle maximizing the length of its smallest side

inside a convex polygon. International Journal of Foundations of Computer Science,

31(04):421–443, 2020. [Pg.27]

[72] Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover with hard ca-

pacities. In Proceedings of the 39th International Colloquium on Automata, Languages,

and Programming, pages 762–773, 2012. [Pg.22]

[73] Douglas R Shier. A min-max theorem for p-center problems on a tree. Transportation

Science, 11(3):243–252, 1977. [Pg.24]

[74] John F Stollsteimer. A working model for plant numbers and locations. Journal of

Farm Economics, 45(3):631–645, 1963. [Pg.1]

[75] Marcin Sydow. Approximation guarantees for max sum and max min facility disper-

sion with parameterised triangle inequality and applications in result diversification.

Mathematica Applicanda, 42(2):241–257, 2014. [Pg.2], [Pg.16]

[76] Arie Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathe-

matics, 4(4):550–567, 1991. [Pg.25], [Pg.26], [Pg.86], [Pg.105], [Pg.109]

[77] Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on

Computers, 100(2):135–140, 1981. [Pg.34]

[78] Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In

Proceedings of the 42nd ACM symposium on Theory of computing, pages 641–648.

ACM, 2010. [Pg.24]

120

REFERENCES

[79] DW Wang and Yue-Sun Kuo. A study on two geometric location problems. Information

processing letters, 28(6):281–286, 1988. [Pg.25]

[80] Douglas J White. The maximal-dispersion problem. IMA Journal of Mathematics

Applied in Business and Industry, 3(2):131–140, 1991. [Pg.24]

[81] Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering

problem. Combinatorica, 2(4):385–393, 1982. [Pg.21]

[82] Sam Chiu-wai Wong. Tight algorithms for vertex cover with hard capacities on multi-

graphs and hypergraphs. In Proceedings of the 28th ACM-SIAM Symposium on Discrete

Algorithms, pages 2626–2637, 2017. [Pg.22]

[83] G. Yao, J. Bi, Y. Li, and L. Guo. On the capacitated controller placement problem

in software defined networks. IEEE Communications Letters, 18(8):1339–1342, 2014.

[Pg.7]

121

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	Abstract
	Declaration
	Acknowledgement
	Certificate
	List of Figures
	List of Algorithms
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Preliminaries
	1.2 Scope of the Thesis
	1.3 Organization of the Thesis

	2 Literature Review
	2.1 Covering Problem
	2.2 Dispersion Problem

	3 Capacitated Discrete Unit Disk Cover Problem
	3.0.1 Overview of the Chapter
	3.1 A Necessary and Sufficient Condition
	3.2 Hardness of the (,P,Q)-Covering Problem
	3.3 A PTAS
	3.4 Conclusion

	4 Euclidean Dispersion Problems
	4.0.1 Overview of the Chapter
	4.1 (23 +)-Factor Approximation Algorithm
	4.2 A Common Framework for the Euclidean Dispersion Problem
	4.2.1 23-Factor Approximation Result for the 2-Dispersion Problem in R2
	4.2.2 2-Dispersion Problem on a Line
	4.2.3 1-Dispersion Problem in R2

	4.3 Conclusion

	5 Dispersion Problem in a Metric Space
	5.0.1 Overview of the Chapter
	5.1 Algorithm
	5.2 A Parameterized Reduction
	5.3 Conclusion

	6 Convex 1-Dispersion Problem
	6.0.1 Overview of the Chapter
	6.1 Convex 1-Dispersion Problem for k=4
	6.1.1 Preliminaries
	6.1.2 Algorithm

	6.2 3-Factor Approximation Result for the Convex 1-Dispersion Problem
	6.3 Conclusion

	7 Conclusion and Future Work
	References

