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Abstract

Visual Question Answering (VQA) is an exciting field of research that involves answer-
ing natural language questions asked about an image. This multimodal task requires
models to understand the syntax and semantics of the question, interact with the rele-
vant objects in the image, and infer the answer using both image and text semantics.
Due to its complex behavior, VQA has gained considerable attention from both vision
and natural language research community.

Most contributions to VQA focus on improving model performance by developing
better mechanisms for attaining question and image representations that facilitate
interaction between the two. However, despite the progress made, there is still room
for improvement in terms of the accuracy of inferred answers. To address this, various
methods have been introduced, such as attention mechanisms, that enable effective
interaction between the two input modalities.

In this context, this work contributes to the ongoing efforts to improve VQA
model performance. Specifically, novel VQA models are proposed that break down
the problem into smaller components, making it easier to predict the answer. The
focus is given on improving the attention mechanism for the two modalities, resulting
in a richer and more accurate feature representation. This work demonstrates that
improving VQA model performance can be achieved through multiple avenues, and
by combining these approaches, we can achieve even better results. These findings
have the potential to enhance the performance of VQA models and contribute to the
development of more advanced AI systems that can accurately understand and respond
to natural language questions about images.

The first model (ACA-VQA), Aggregated Co-attention based Visual Question An-
swering, aims to improve VQA performance by exploiting cross modality attention in
multiple stages. The attention is aggregated at each stage to preserve the cues obtained
from multiple stages. This proposal is benchmarked on the TDIUC and VQA2.0
dataset against state-of-the-art approaches. The experimental results demonstrated the
efficacy of multistage co-attention mechanism.

The second model (CSCA-VQA) has an attention block containing both self-
attention and co-attention on image and text. The self-attention modules provide
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contextual information of objects (for an image) and words (for a question) crucial
for inferring an answer. On the other hand, cross-modal attention aids the interaction
of image and text. To obtain fine-grained information from the two modalities, dense
attention blocks are cascaded multiple times. Benchmarking on the widely used
VQA2.0 and TDIUC datasets demonstrates the efficacy of key components of the
model and the stacking of attention modules.

The third contribution (DAQC-VQA) addresses two important issues in VQA:
answer prediction in a large output answer space and obtaining enriched representation
through cross-modality interactions. The DAQC-VQA system consists of three main
network modules. The first module is a dual attention mechanism that helps in
obtaining an enriched cross-domain representation of the two modalities. The second
module is a question classifier subsystem that identifies input question category, that
helps reduce the answer search space. The third module predicts the answer depending
on the question category. All component networks of DAQC-VQA are trained in an
end-to-end manner with a joint loss function.

Overall, this work contributes to the ongoing efforts to improve the accuracy of
VQA models and enhance their ability to accurately understand and respond to natural
language questions about images.
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Chapter 1

Introduction

1.1 Overview

Humans rely on processing information from various modalities such as vision, lan-
guage, and audio in their daily decision-making process. Hence, the ability to solve
multimodal tasks such as Visual Question Answering (VQA), Image Captioning, Video
Question Answering, Emotion Recognition, and Sentiment Analysis are considered
some of the challenges for the next generation of artificial intelligence. Multimodal
systems combine various modalities, thus expanding the boundaries of individual fields.
In particular, multimodal systems that combine computer vision (CV) and natural
language processing (NLP) have received considerable attention from the research
community over the last decade [2–5].

Fig. 1.1 Overview of a VQA System with a sample [6] illustration. An image is inpiut
to the model and a related question, VQA system will predict the answer.



The combination of vision and language in a multimodal system equips machines
with the intelligence to comprehend the content of an image and communicate in a way
that mimics human behavior. This capability has given rise to a new and promising
research area known as Visual Question Answering (VQA) [6, 2]. Humans are naturally
adept at processing, reasoning, and analyzing visual, textual, and audio information,
allowing them to answer questions related to real-world scenarios. VQA [2] seeks
to replicate this ability in computational approaches, enabling machines to perform
the same task. The primary objective of a VQA system [2, 6] is to generate a natural
language response to questions asked about a given image. In Figure 1.1, a high-level
overview of VQA task is shown. In this figure, a natural language question, “Where is
the child sitting?”, is asked about the given image, and a VQA system generates an
answer “Fridge”.

VQA is a challenging multimodal artificial intelligence task involving computer
vision, natural language processing and commonsense reasoning. VQA has gained
wide attention for several reasons. First, it has vast real-life applications for several
human computer interaction tasks, assistive systems, automation systems etc. Some
applications are as follows:

• Assistive Navigation and Scene Interpretation – Useful for assistance to visually
impaired persons. They interact with an AI system to perceive their surroundings
for deciding on further actions.

• Surveillance Video Data Analysis – Interactive natural language querying with
surveillance systems for understanding object presence and activities in huge
video surveillance datasets.

• Teaching Purpose – for kids through interactive sessions. Kids could interact
and learn from VQA based AI system by asking questions.

• Attribute based Annotation for huge data – For data with defined set of attributes,
annotation could be done by asking question if an object has some ‘X’ attribute
or not.

• AI-based Personal Assistants – Helpful in getting interactive assistance for
routine daily tasks.

• Object Recognition and Identification – Can assist users in identifying as well as
describing objects and reading text. A user with a visual impairment can inquire
about the contents of a package, the labels on etc.

• Accessibility in Smart Homes – To control and interact with smart home devices
and appliances through voice commands and questions. Users can be assisted
about the status of lights, thermostats, security cameras etc.

• Healthcare Support – Can assist patients with various needs and in understanding
their health conditions. For example, it can answer questions about medical
instructions, explain diagrams on medical devices etc.



• Employment and Workplace Assistance - Could provide assistance to individ-
uals with disabilities in the workplace by providing real-time assistance with
tasks, interpreting complex visual data, and facilitating communication with
colleagues.

Second, VQA, as a multimodal task, has the potential to significantly influence
several downstream tasks including scene interpretation, intent detection etc. A
brief discussion on VQA significance for such downstream tasks is presented in the
Section 1.2.

Third, VQA poses a significant challenge for AI in comparison to conventional
computer vision tasks such as image classification, object detection, and object recogni-
tion. The Visual Question Answering (VQA) task involves processing questions using
commonsense reasoning and object detection, identifying relations among different
objects, and understanding how they interact within an image. In some cases, it also
requires accessing external knowledge bases for additional information. To infer the
answer, VQA systems inherently solve multiple computer vision and natural language
tasks as sub-tasks. This complexity makes VQA an AI-complete task, as it requires
solving several challenging sub-problems to answer questions based on visual content.
As a result, a wide range of techniques has been developed to tackle this issue, and
much attention has been given to improving the performance in this area.

1.2 Significance of VQA

Visual Question Answering plays a crucial role in bridging the gap between computer
vision and natural language understanding. By enabling the machines to comprehend
and respond to questions asked about images, VQA surpasses the limitations of
traditional unimodal tasks, promoting an improved understanding of visual content in
context of text. This multimodal task finds application across numerous domains, from
aiding visually impaired individuals in understanding their surroundings to enhancing
image retrieval systems and robotics etc. VQA task is making machines as well as
humans to understand and talk about pictures in a more natural way.

VQA has emerged as one of the multimodal task with the potential to significantly
influence a spectrum of downstream tasks, including intent detection, entity extraction,
scene interpretation etc. By extending the capabilities of AI models to process both
images and text, it provides a richer context for understanding user queries. Down-
stream tasks in the context of VQA refer to tasks that can benefit from the capabilities
and insights gained through VQA model. Some of these downstream tasks include:



• Intent Detection: Intent detection is one of the primary tasks to operate and
do conversation with digital assistants to give relevant responses. Most of the
existing works focus on identifying intents based on textual conversation. Intent
detection could be approached as a VQA problem, where the query could be
regarding the intention of the person in the image and answer shall be identified
from a set of intentions. Multimodal intent detection could be more realistic as
it takes into account visual modality along with text and will allow systems to
identify intentions that might be ambiguous in text alone.

• Entity Extraction: The goal of entity extraction is to understand and categorize
entities such as names of people, organizations, locations, numbers etc from a
given text to gain relevant insights. Multimodal entity extraction aims to leverage
relevant image information to improve the performance. To accomplish this,
VQA is a possible way where entity extraction can be done by asking queries
for image content for the relevant entities present.

• Relation Extraction: As VQA systems can be applied for entity extraction.
It could further be extended to identify how the identified entities (objects,
attributes) are related. The query would be regarding the spatial arrangements,
contextual information in the objects while answer labels consists of possible
relations and arrangements of the objects in the image.

• Scene Interpretation: VQA could contribute to a deeper understanding of
scenes and images. This could be a valuable task in applications like autonomous
driving, where a vehicle needs to comprehend its surroundings for safe navi-
gation. Through querying VQA system autonomous vehicle can identify the
objects, assess road conditions, and respond to dynamic scenarios, contributing
to enhanced decision-making processes. Visually impaired can perceive their
surrounding conditions by interacting through VQA system.

• Annotating large datasets: VQA could be used as a tool to automate the
large-scale data annotation . Annotation could require the attributes, presence,
location of objects present in the image. A VQA system could be trained once
for the dataset that needs to be annotated. With this trained model, more data
can be annotated.

1.3 Motivation

The attention mechanism was introduced in neural machine translation (NMT) [7] and
has now become an inherent part of various machine learning algorithms. It helps to
compute the features by putting emphasis on certain parts of the input followed by
their re-weighting. This simple yet effective mechanism is found to be better than
computing the global vector for the data. In VQA, the answer for textual question
with reference to visual data needs an alignment of textual question words (or tokens)



with the image regions. This makes the attention mechanism a better choice for VQA
compared with the global feature extraction. Is standard attention mechanism enough
for VQA? This question is the primary motivational point behind this thesis. The
direct alignment of the question features with the visual image is a better choice with
respect to the global feature extraction. But the relation between the different regions
of image is also important to be incorporated in the attention mechanism.

1.4 Potential Research Gap

In standard attention mechanism, the model attends to the visual features that are most
relevant to the textual question to generate an output. However, this mechanism may
not be enough to capture all the relevant information in the multimodal data. Further,
multistage attention could give the VQA models the capability similar to the human
behaviour of looking at the data multiple times to understand a complex task. By using
multistage attention, the model can capture more fine-grained relationships between
the textual and visual data. Hence, the model can improve its understanding of the
visual and textual context to predict more accurate answers to the given questions.
In many VQA applications, the answer space can be vast, making it difficult for
the model to predict the correct answer from large search space. This motivates
the development of question categorization based VQA. To address this, a question
classification subsystem can be incorporated into the VQA system. The question
classification subsystem can identify the category of the input question, which can
then be used to reduce the answer search space. By limiting the answer search space
to a subset of possible answers that are relevant to the question category, the model
can improve its accuracy in predicting the correct answer.

1.5 Problem Definition

A visual question answering system SV QA aims to estimate the probabilities of answers
a (a ∈ A ) to an input (natural language) question q (q ∈ Q) about an image I (I ∈ I ).
Such a system is trained on the set of images I , set of questions Q associated with
images and set of all answers A . This is generally achieved by using representative
vector space embeddings of questions (f(q)) and images (g(I)) computed using deep
neural networks. The answer probability vector â and the most probable answer â are
predicted by SV QA as



â = SV QA( f(q) , g(I) )â = argmax
a∈A

P( a | SV QA( f(q) , g(I) ) ) (1.1)

The multimodal VQA task can be solved using a simple end-to-end trainable
architecture, as shown in Figure 1.2. The architecture consists of three modules: feature
extraction, feature fusion, and answer prediction. In this particular example, the image
features are obtained from a pretrained neural network, such as CNN [8, 9], while
the question is encoded using a recurrent neural network like LSTM [10]. The two
feature representations are combined to produce a joint multimodal embedding. This
joint embedding is then fed into a fully connected network for answer classification
(within a predefined set of answers) or generation. Most of the existing literature has
approached VQA as a classification task, and this thesis adopts the same approach.

VQA models are complex because they must comprehend the syntax and semantics
of natural language questions, interact with relevant objects in the image based on the
context of the question, and deduce the answer by combining information from both
image and text semantics. Many research efforts in VQA have focused on enhancing
performance by developing models that provide better mechanisms for obtaining
question and image representations that facilitate stronger interactions between the
two modalities. While this approach has yielded useful information, it is still essential
to prioritize a correct inference of the answer.

To accomplish this, much of the research introduces various methods that facilitate
strong interactions between the two input modalities. Notably, answering a question
about an image requires focusing on specific parts or regions of the image. Conse-

Fig. 1.2 Block diagram for basic VQA trainable architecture. Here, image is encoded
through pretrained CNN and question encoding is obtained from LSTM.
Both features are fused and fed to a fully connected network for answer
classification



quently, there has been significant work on developing VQA methods based on the
attention mechanism. The objective of this approach is to extract features from the
attended modality, focusing more on the region that is most relevant to inferring the
answer.

The main goal of this thesis is to develop VQA models that leverage:

• Multimodal information to improve the attention mechanism for each modality
and obtain richer feature representations.

• Interaction between modalities by generating attention for both modalities in
the context of each other using refined features.

• Prior information on question categories to increase the efficiency of answer
classification by reducing the answer space.

In next section, each contribution towards thesis is summarized followed with the
outline of thesis.

1.6 Contributions

There are multiple approaches to improving VQA model performance, and this thesis
explores two different ways, either individually or in combination. As one of the
approaches, the thesis explores enhancement of the attention mechanism for the two
modalities to obtain an improved and comprehensive feature representations. The
other approach is to break down the VQA model into smaller tasks, which reduces the
search space for the final classification. The first and second contributions of this thesis
focus on the former approach, while the third contribution combines both approaches.
Figure 1.3 provides a schematic overview of the thesis. Following sections briefly
describe each contribution.

1.6.1 Contribution 1 - Visual Question Answering with Aggregated
Co-attention

Attention is one of the indispensable components of a VQA system [11–18]. The
main objective of the first contribution is to further improve the existing dual attention
mechanism by proposing the interaction between two modalities at multiple stages.
Multistage attention attempts to mimic the human behavior to understand a complex
scene (or image) or text by looking at the scene or reading the text multiple times.
The proposed multistage attention based model first extracts the faster-RCNN-based
visual features and LSTM-based encoding of question. These features are further
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Fig. 1.3 Overview of thesis contributions

refined using cross-modality attentions in an iterative manner in multiple stages. Two
types of cross-modality attention, namely, Attention-on-Image (AoI) and Attention-on-
Question (AoQ) are used in the following manner. At a particular stage, say t, AoI is
applied and thus obtained attended visual embedding is fused with LSTM encoding of
question. And AoQ is employed on word embeddings of question in the context of the
attended visual representation obtained from AoI. Thus, attended word embeddings are
passed through LSTM to obtain attended question representation. To preserve attention
scores from different stages for each modality, aggregated attention is incorporated.
Aggregated attention implies the following.“At any stage of attention (visual (AoI)
or textual (AoQ)), the attention score will be taken as addition of attention scores
from all previous stages of the corresponding modality”. To perform the final answer
classification by the proposed model, unified visual embedding obtained from each
stage of visual attention are fused via point-wise multiplication. Similarly, question
encoding from each stage of textual attention is combined to obtain the final textual
features. These embeddings are fused to obtain the joint representation. This joint
visual and text representation is used for the final model classification.

1.6.2 Contribution 2 - CSCA: VQA with Cascade of Self- and
Co-Attention Blocks

The first contribution focuses on dual attention mechanism to reflect cross modality
interactions or relations. It ignores emphasizing the relations of objects within image
and relations among words within question. Hence, the second contribution includes
self-attention on each modality along with dual-attention. Embeddings obtained after
self-attention encodes contextual information within a single modality and that is used



to generate dual-attention based encoding. The process of self-attention and cross-
attention comprises a block of dense attention mechanism. Such a dense attention
block is employed in multiple stages to obtain enhanced representations.

1.6.3 Contribution 3 - Dual Attention and Question Categorization
based Visual Question Answering

The third contribution aims to develop a novel architecture of two levels for VQA along
with dual modality attention. The first level acts as a question classifier. It classifies
the given question into one of the pre-defined question categories. The second level
consists of the multiple answer classifiers. Each answer classifier predicts answers
amongst the answer subset belonging to a particular question category. This type of
model reduces the answer search space as the answer to be predicted is only from
the set of answers that are candidates for a question category and not from overall
answer set. To extract better features, attention is applied on both the modalities in
context of each other. To accomplish this, initial feature extraction is performed for
both modalities (salient regions of image and LSTM encoding of question). Next,
correlation is computed for each salient region of image in context of question to
compute the attended visual representation. For each question, word attention score is
calculated based on their correlation with attended and refined visual representation.
A fused representation of the two modalities is obtained by combining the attended
encodings. The fused embedding is then passed to a fully connected network to
classify the question category. At the next level, one single classifier, corresponding
to the question category predicted from previous level, is activated from a set answer
classifiers.

For all three model proposals, extensive experiments are performed on two widely
used publicly available VQA datasets, VQA2.0 [6] and TDIUC [1]. The comparative
analysis with existing models have shown that the proposed models obtain competitive
performance compared to relatively more complex models and outperforms several
baseline models.

Outline of thesis

This thesis is organized as follows:

• Chapter 1 presents the problem definition with motivation and a brief descrip-
tion of each contribution.

• Chapter 2 discusses the existing literature for VQA. More detailed description
is given for the methods in literature that are related to contributions of thesis.



• Chapter 3 introduces the ‘Multistage Aggregated Co-Attention based VQA’
model, which is based on iterative interactions between the two modalities. This
model improves upon the attention mechanism by using a multistage aggregation
approach that gradually incorporates information from both the question and
image modalities.

• Chapter 4 proposes a ‘Dense Interaction Mechanism’ to enhance the inter-
action between the two modalities and obtain a more enriched representation.
This mechanism uses a dense block architecture that facilitates multiple inter-
actions between the two modalities to create a more comprehensive feature
representation.

• Chapter 5 presents the dual-attention and question categorizer-based VQA
model (DAQC-VQA). This model uses a dual-attention mechanism that attends
to both the question and image modalities and a question categorizer that reduces
the answer space by categorizing questions based on their characteristics.

• Chapter 6 concludes this thesis and provides a summary of the contributions
and their impact on the VQA field. This chapter also identifies potential areas for
future research that build upon the work presented in this thesis. Additionally,
this chapter reflects on the significance of the contributions made to the field of
VQA and discusses their implications for real-world applications. The findings
and insights gained from this thesis can be useful in areas such as image and
video search, autonomous driving, and robotics, among others. Furthermore, this
chapter discusses the limitations of the proposed models and suggests possible
directions for addressing these limitations in future research. The importance
of developing more efficient VQA models that can be deployed in resource-
constrained environments is also highlighted. Overall, this final chapter provides
a comprehensive overview of the work presented in this thesis and highlights
the potential impact and opportunities for future research in the field of VQA.



Chapter 2

Literature Survey

Chapter Highlights

• Summary of literature review of various VQA methods is presented.

• The various VQA datasets are briefly discussed.

• Proposed thesis contributions are summarized.

2.1 Introduction

This chapter presents relevant existing works for the VQA task. VQA systems can be
broken into a modular structure with feature extractor, multimodal fusion and classifier
being the fundamental modules. The objective of the feature extractor module is to
obtain a representation or embeddings of the image and text modalities. Image embed-
dings are also referred to as visual representation or visual embeddings. Often such
representations are obtained independently for each of the two modalities. Section 2.2
discusses most commonly used methods to obtain visual and text representations.

Multimodal fusion module combines representations of individual modalities to
get a single or fused representation of the two modalities. The fused representation is
fed to the classifier module to get a final answer. Section 2.3 discusses the different
fusion methods adopted for the VQA task.

Final stage of answer prediction could be formulated as a sentence generation
or a classification problem. In the sentence generation formulation, a decoder-based
model can be designed. However, answer prediction as a classification task is the most
commonly adopted approach and this thesis has used the same using the classifier
module. The classifier module uses the fused representation as an input to a classifier.
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Fig. 2.1 General overview of VQA system with core modules. Feature extraction (vi-
sual and textual) is a common part for all approaches. For external knowledge
based methods semantic attribute extraction is an additional module. Further
these features are input to do the features improvement through attention
mechanism. Attended feature representation are then fused to fed into answer
classification network.

Figure 2.1 illustrates a view of such a modular structure of a VQA system. Apart
from these fundamental modules, attention and external KBs modules help in obtaining
enriched representation of the two modalities. For example, the attention mechanism
module aims to interpret “where to focus” in one of the modalities. Some methods
identify such regions in the image in context of the given question. While, some other
methods identify such regions in both the modalities in context of the other modality.
Recent methods also give emphasis on internal correlations among image regions and
question words, and thus aim to encode internal feature dependency as well. This
thesis discusses the different variants of attention mechanism in Section 2.4.

Subsequent sections discuss the existing works based on this modular structure.

2.2 Feature Extractor

This section discusses most commonly used feature extractors for the image and text
modalities for the VQA task.

Visual Feature Extractor: The objective of this module is to obtain a representa-
tion for the given image. Initial methods utilized pretrained CNN-based networks for
visual feature extraction. VGG [8] and ResNet [19] are the most commonly used such
pretrained CNN networks. These models were trained on ImageNet [20] dataset for
image classification task. Another set of methods [11, 21, 22] extracted features from
customized CNN in an end-to-end framework.

Recent feature extractors use salient regions extracted through object detection by
faster-RCNN [23]. The representation of these salient regions are then obtained from
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Fig. 2.2 Block diagram for visual feature extraction. Here, rI represents the ResNet-101
feature representation for nv salient regions detected from faster-RCNN

pretrained ResNet [19]. ResNet-101 (ResNet with 101 layers) embeddings of these
salient regions is used to represent the visual features. Figure 2.2 gives an overview of
salient region based visual feature extraction.

To model complex relations for VQA task, visual and textual features are also
represented through a graph [24–26]. Each node of graph correspond to image regions
or words in the question. Edges of graph represents relation amongst different regions
/ words. The edges between nodes capture the relationships between them, such as
spatial and semantic relationships between image regions and words in the question.
By constructing these graphs, the model can reason over the relationships between
visual and textual information, enabling more accurate and detailed answers to be
generated. Graph-based features are able to capture the complex interactions between
the visual and textual components of the VQA task, leading to improved accuracy and
robustness of question answering systems.
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Fig. 2.3 Block diagram for textual feature extraction. Here, ewj shows the GloVe word
embedding of jth word, nw is the number of words in question. Eq is the
question encoding obtained from the last hidden layer of LSTM.



Textual Feature Extractor: The objective of this module is to obtain a representa-
tion for the question. Initial approaches used one-hot encoding to represent words of
the given question, which are fed to a LSTM network. Embedding or representation of
the question is obtained from the last hidden layer of the LSTM network. Recent ques-
tion feature extractors use pretrained word embeddings instead of one-hot encoding.
Examples of most commonly used pretrained word embeddings include word2vec
[16] and GloVe [12, 27]. Textual feature extraction from pretrained word embedding
and LSTM is presented in Figure 2.3.

2.3 Multimodal Fusion

Feature fusion is an indispensable module for multimodal tasks such as the VQA task.
Figure 2.4 illustrates the basic building blocks of fusion based VQA model.

Early methods for VQA task adapted the features extracted from pretrained deep
networks. As discussed in the previous section, visual features are extracted primarily
from last hidden layer of pretrained deep convolution network such as VGG [8] or
ResNet-101 [19] trained on ImageNet [28] dataset for classification task. For textual
features, question words are represented from GloVE [29] embedding and fed to
LSTM [30]. Last hidden layer of LSTM is exploited as question encoding.

Antol et al. [2], in one of the first prominent works in VQA, used elementwise-
summation to combine visual and text representations. They used pretrained VGG
to get the image embeddings, while LSTM over one-hot encoding of question words
were used to obtain the text representation. Jabri et al. [27] primarily targeted the
multiple choice based questions. They concatenated image, question, answer triplet
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Fig. 2.4 An overview of fusion based VQA method. Features are extracted for visual
and text modality through pre-trained network. After projecting the feature
embeddings to same dimension, features are fused through elementwise sum-
mation, multiplication etc. for classification



encodings and fed to a logistic regressor. The regressor predicts whether the given
triplet is correct. Visual features were obtained from pretrained ResNet-101 model.
The question is encoded as an average of word2vec embeddings of each words.

Shrestha et al. [31] proposed unified model (RAMEN) for the VQA task that
performs well on datasets comprised of images from different domains (synthetic
and real-world images). It concatenates the features from two modalities at early
stage. These fused bimodal embeddings are projected in a shared space for learning
inter modality relationships. Further, a bi-directional GRU is used to aggregate the
bi-modal embeddings and question encoding to capture the recurrent interaction. This
aggregated representation is fed for answer classification.

Ren et al. [32] and Malinowski et al. [33] considered answer generation for the
VQA task. Ren et al. in [32] has extracted the image features from last hidden layer
of VGG net. This image embedding was treated as the first word of the question
forwarded to a LSTM network. The answers were generated by taking the outputs
from last hidden layer of the LSTM network. Authors in [33] fed CNN-based image
features along with one hot encoding of question words to a LSTM network. Output
of the LSTM network was used to generate answers.

Multimodal convolution is proposed by Ma et al. in [21] for the VQA task. After
convolution, dual modality features were obtained by flattening the feature maps from
the last layer. These features were then fused for answer classification. Gao et al. [34]
proposed the fusion of multi-modality at early stages by a question-guided convolution
kernel. It helped extract better spatial information, as kernels were generated based on
the language features to convolve with the visual features.

Multimodal Compact Bilinear (MCB) pooling was introduced by Fukui et al. [35]
to capture the complex interaction between the two modalities. It uses the outer
product-based [36] interaction between visual and textual modalities and outputs a
high-dimensional feature representation. The outer product is an expensive operation
as each and every element of one modality interacts with that of others. To address
the above problem, MCB leverages the approximation-based approach. This approach
could be presented as their convolution instead of explicitly performing the outer
product of two feature vectors. MCB outperforms the simple fusion mechanisms at the
cost of computation and resource requirements. In order to deal with the complexity
and computation issues in MCB, Kim et al. [37] have proposed another bilinear pooling-
based solution termed Multimodal Low-rank Bilinear pooling (MLB). MLB is based
on the Hadamard product of two modalities with two low-rank projection matrices. It
could generate a low-dimension output vector and thus have fewer parameters. Though
MLB’s output is low-dimension, it is observed that it converges slowly. Multimodal
Factorized Bilinear pooling (MFB) [38] was introduced to overcome the issues of



obtaining compact output features with robust, expressive representation like MCB
and MLB. MFB is inspired by matrix factorization, where projection matrices are
factorized as low-ranked matrices. As a natural extension of bilinear pooling, authors
have also proposed generalized high order pooling, Multimodal Factorized High order
pooling (MFH) [39] cascades multiple MFB blocks to learn the better and richer
representations.

MUTAN [13] further reduces the parameter in the bilinear pooling-based ap-
proaches by decreasing the mono-modal embeddings’ size and modeling their in-
teraction as accurately as possible with a full bilinear fusion scheme. BLOCK [40]
introduces the block-term decomposition for reducing the model parameters for bi-
linear fusion. Block Term Decomposition Pooling (BTDP) [41] is another bilinear
interaction-based method that performs sparse bilinear interactions between modalities.
It exploited the Block Term Decomposition theory [42–44] of tensors, resulting in a
sparse and learnable block-diagonal core tensor for multimodal fusion. It is equivalent
to conducting multiple tiny bilinear operations in different feature spaces.

DMRNet [45] has proposed multi-graph reasoning and fusion (MGRF) layer. It
adopts pretrained semantic relation embeddings to reason complex spatial and semantic
relations between visual objects. These relations are fused adaptively. Multiple layers
of the MGRF module can be stacked to form Deep Multimodal Reasoning and Fusion
Network (DMRFNet) for better reasoning and robust fused embedding. Lao et al. [46]
has proposed a Multi-stage Hybrid Embedding Fusion (MHEF) mechanism, which
comprises Dual Embedding Fusion (DEF), Latent Embedding Fusion(LEF), and
Hybrid Embedding Fusion(HEF). DEF transforms one modality embedding into the
reciprocal embedding space before fusion. Subsequently, DEF is incorporated with
LEF to obtain novel HEF. HEF is applied in multiple stages to obtain better feature
fusion.

The fusion of two modalities is an irreplaceable module for this task, but the
representations that are to be fused always have a scope of improvement. To achieve
the same, this thesis has contributed towards learning better cross modality interaction
to obtain improved feature representations. The following section elaborates on the
literature for attention mechanism based models for VQA.

2.4 Attention based Methods

In a VQA system, the attention mechanism is the way to weigh the features by
correlating one modality in the context of another. Highly correlated features will get
more attention compared to less correlated ones. Application of attention mechanism
has evolved from visual attention [11, 47–50, 26, 51–53] to co-attention or dual
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attention or cross-attention [54] and is headed towards dense attention [55, 56]. A
schematic representation of the evolution of attention mechanism is presented in
Figure 2.5.

Early attention-based VQA models [11, 34, 47–50, 26, 51–55], focused on the
image region(s) that is (are) most relevant to the given question. Models may capture
irrelevant information while looking at the entire image, and that may adversely impact
performance. The use of attention mechanism in VQA models has given significant
performance improvement as the question mostly requires to focus on a small portion
of the image. Thus, attention mechanism has become an integral part of every VQA
model. In VQA, visual attention models aim to interpret “where to look" in the image
for answering the question. In figure 2.6, the flow of visual attention based model is
presented.
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Shi et al. [47] has proposed a model that predicts the answer by selecting an
image region which is most relevant to question text. Yang et al. [11] proposed a
multi-step attention-based method that allows reasoning over fine-grained information
present in a question. They used question embeddings to generate attention distribution
over image regions. The learned attention score is used to weight the image region
embeddings. Weighted sum of image region embeddings is used as a visual feature
for next step. The model proposed by Wu et al. [57] generates multi-step attention
to reason over objects and progressively infer the answer. Sun et al. [58] introduced
second order based visual attention module derived from multiple glimpses of visual
attention. Farazi et al. [59] has proposed a question agnostic attention mechanism
that first identifies object maps in the image. Further, attention is generated for visual
features in context of the identified object maps.

An approach proposed by Anderson et al. [12] combines the top-down and bottom-
up attention modules and shows significant improvement in the performance. In this
work, the bottom-up model detects salient regions extracted using Faster-RCNN [23],
while the top-down mechanism uses task-specific context to predict the attention score
of the salient image regions. Shi et al. [16] proposed Question Type guided Attention
(QTA), which used semantics of question category to generate attention on bottom-up,
top-down image features extracted from ResNet and faster-RCNN respectively. Noh
et al. [60] proposed a recurrent deep neural network with attention mechanism, where
each node in the network can predict the answer. To optimize the network parameters,
loss is aggregated from all units. Xi et al. [17] introduced a VQA model based on multi-
objective visual relationship detection, where relevant image regions are extracted
from question-guided attention. Further, an analysis of interrelationships between
salient objects is given by word vector similarity. Here, the primary objective was
to improve the detection of inter-relations among objects. Ding et al. [18] proposed
two attention mechanisms, namely, stimulus-driven and concept-driven, which are
inspired by human psychology for image caption generation tasks. Kim et al. have
proposed Bilinear Attention Network (BAN) [61] that generates an attention map for
two modalities from Hadamard product-based interaction. Further it uses a low rank
bilinear pooling based fusion of two modalities for task of answer classification. Do
et al. [62] have proposed the attention mechanism comprising trilinear interaction
of image, question, and answer. As answers are unavailable during the test phase,
knowledge distillation is used to transfer knowledge from the trilinear model to the
bilinear model.

A few approaches exploit visual information in multiple ways from the image for
a more informative visual representation. Lu et al. [53] proposed attention for image
regions [19] and object proposals [23, 12]. The attended features (image regions and
object proposals) are fused with question features via multiplication and projected to



a common space. Huang et al. [63] proposed object-level grounding for generating
attention. They observed that, along with attention to image object regions in the
context of question words, it is informative to generate the semantic similarity between
question words and object labels.

Along with visual attention, attention to text also gives informative cues to infer
the answer. All the question words are not equally important to answer the question.
Only a few words would be more relevant. The attention on the words that leverage
the visual space and vice versa is known as co-attention. In the VQA literature, dual-
attention or cross-modality attention are also used to reflect the co-attention. Figure
2.7 shows the basic flow of dual attention based methods.

Lu et al. [54] have proposed that attention over the question, i.e., "what to see"
is equally important as "where to look" to answer a question. Question embedding
are extracted at the word level, phrase level, and question level. The attention is
applied to the image and question at each level in parallel or alternatively. The
parallel mechanism attends question and image simultaneously, while the alternative
mechanism sequentially alternates between generating image and question attention.
The usage of a stack of dense co-attention layers was proposed by Nguyen et al. [64].
Here, each word of a question interacts with each image region to generate image
attention and image regions generates attention for each word of the question. Later
attended embeddings are fused to feed into the classification network. The co-attention
blocks are stacked in multiple layers to obtain refined representation. Zhang et al. [56]
have proposed co-attention on each feature of image region guided by the question
and each feature of the question guided by the image in multiple stages. To integrate
the features, bilinear fusion is exploited with a residual module for multiple glimpses
of images and questions.

The co-attention mechanism can be further strengthened using better intra-modality
encoding. With the proposal of transformer [65] based dense attention mechanism,
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a significant improvement was observed for text-based tasks. Recently, transformer-
based dense attention has been introduced for multimodality tasks. Dense attention in
multimodality tasks encodes intra-modality, and inter-modality features [14, 15, 66–
69]. Figure 2.8 presents a general overview of dense attention based VQA models.

Gao et al. [14] proposed Dynamic Fusion with intra-and inter-modality Attention
Flow (DFAF), a stacked network that uses inter-modality and intra-modality infor-
mation for fusing features. It uses the average pooled features that can dynamically
change intra-modality information flow. Yu et al. [66] proposed a deep co-attention net-
work that follows encoder decoder-based architecture to generate dense self-attention
and co-attention. It helps to obtain the fine-grained features for multimodal tasks.
Multimodal Latent Interaction (MLIN) was proposed in [15] that leverages multimodal
reasoning through the process of summarization, interaction, and aggregation. Lu et
al. [69] proposed BERT architecture for multimodal (vision and language) learning.
This model is pretrained on a large caption dataset for better transfer learning. Further,
these pretrained models are fine-tuned for VQA tasks. Tan et al. [68] encoded the
vision and language through a large-scale transformer model termed LXMERT. It is
pretrained with a large amount of vision and language data on five multimodality tasks.
These tasks helped in learning both intra-modality and cross-modality relationships.

Cross-modality attention is crucial for VQA systems and could be improved by ex-
ploiting multiple stages. And further, if information from multiple stages are preserved
and flows in other subsequent stages, it could enhance the attention mechanism. At
each stage, attention provide cues in a different way; hence a final decision should rely
on all such cues. The cross-modality attention can be further enhanced by encoding
fine-grained information of two modalities in an end-to-end manner.

Apart from the above-discussed VQA models, there are other models that utilises
additional information. However, such extra information is not used by the proposed
models of the thesis. Following section discusses other sets of VQA methods for the
sake of completeness.
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2.5 Other Methods

Graph based Methods-: Attention based models have achieved a significant promising
performance for VQA task. But these kind of models do not always have sufficient
capability to deal with complex questions that require high level reasoning, like
‘counting’ related questions. At this end graph based models performs well. A general
flow of graph based VQA model is presented in figure 2.9.

Initially, Teney et al. [24] have introduced graph based model for “abstract scenes”
VQA. It uses a graph-based representation for image and question. The image is
represented as a scene-graph while question as a parse tree. Zhang et al. [25] first
utilizes graph model that specifically targets "counting" based questions. This method
highly relied on the engineered relations between nodes of graph. Narasimhan et
al. [70] first attempted to use graph convolution network (GCN) to answer factual
questions based on the knowledge graph. This model mainly concentrated on the
entity-relation graph extracted from the image and knowledge graph. However, this
method heavily relies on external knowledge graph related to the domain. Question-
Conditioned Graph (QCG) model was proposed by Norcliffe et al. [71]. Here, the
objects proposed from faster-RCNN act as nodes and edges define the interaction
between regions conditioned on question. For each node, a set of nodes is chosen
from the neighborhood using strongest connection criterion. This leads to a question
specific graph structure.

Graph based models in VQA mainly defines the similarity between objects as their
semantic relationships. The difference between objects could also be more informative
for establishing the relationship between nodes in the graph. To achieve this Wu et
al. [26] has proposed an object difference based graph learner (ODA), that learns
the semantic relations between the objects of image guided by question. By learning
these relationships image was represented as an object graph encoded with structural



dependencies between objects. Xiong et al. [72] proposed to construct an entity-
attribute graph from an image. A classifier is trained to infer the missing information
that are crucial for answering the queries. And final answers are predicted with graph
pattern matching. Cadene et al. [73] has proposed a multimodal relational network
(MUREL) learned to reason over image regions based on interaction with question and
models the relation between every pair of regions. To model the complex questions,
authors in [74] have proposed a graph-based attention network Relation aware Graph
Attention Network (ReGAT) to encode images in graphs. They have shown learning
the inter-object relation in the question context through graph attention improves the
model performance.

External Knowledge based Methods-: The question asked for an image can be very
complex. All questions cannot be answered about an image using only the visual
information present in it. Sometimes, to answer the question related to an image
requires the external source of knowledge, e.g., "Is the animal shown in picture is
vegetarian?". It’s difficult to answer the question without any external knowledge
source. The knowledge-based VQA models try to leverage facts from an external
knowledge base. External knowledge base (KB) helps as a guide for image question
answering. Examples of such KBs include DBpedia [75], OpenIE [76–78], Freebase
[79], NELL [80] , YAGO [81, 82], WebChild [83, 84], and ConceptNet [85]. KBs
store information in computer readable structured format for efficient extraction. They
consist of information like common sense knowledge, encyclopedic knowledge, and
visual knowledge. This knowledge could be extracted through semantic attributes
from image. Figure 2.10 presents the general work flow of external knowledge based
VQA models.

Some popular KB-based VQA methods are: ‘Ahab’ proposed by Wang et al. [86],
Ask Me Anything by Qi Wu [87] and FVQA by Wang et al. [88]. In ‘Ahab’, visual
features are first extracted from an image using CNN and using these features, a query

What object in the 
photo is used for 
transportation?

Visual Feature 
Extractor

Feature Extraction

Textual Feature 
Extractor

Input

Visual Embedding 

Text Embedding

Fusion

Fused Embedding 

● Element-wise 
summation, 
multiplication

● Concatenation
● Bilinear Pooling etc 

Classification

Knowledge Encoding 

Semantic Attribute

Fig. 2.10 An overview of External Knowledge Base method. Alongwith visual and
text features, additional features are also extracted from an external knowl-
edge base by querying through semantic attribute. Finally these knowledge
based features are encoded to fuse with dual modality features for answer
classification.



is made onto the KB. The answer is obtained by summarizing the results of the query.
FVQA [88] was proposed to improve these methods by using LSTM to map visual
features to queries. Ask me anything [87] uses a common embedding approach on
top of the information from KB. Similar to the above two methods, visual semantic
features are extracted using a CNN. A short description of the image is generated from
KB using these features. This short description is then embedded using Doc2Vec into
a fixed-sized vector. The embedded vector is finally fed into an LSTM to produce an
answer.

Wu et al. [89] have observed that that CNNs and RNNs are not able to capture
the high level concepts. To achieve this a model was proposed that is able to capture
high level concepts through external knowledge for top-k attributes of image in text
format. Zhu et al. [90] has proposed dynamic model that iteratively asks queries
from the external knowledge source. The knowledge acquired from iterative queries is
repeatedly stored in a memory bank after encoding. Another round of queries is made
based on the knowledge acquired in memory bank from previous iterations. Narsimha
et al. [91] proposed a knowledge base of facts associated with visual content. These
facts are formatted in a way to identify the visual concepts in the image, an attribute
or phrase associated with the visual entity, and relation between the entities. This
knowledge has significantly improved the model performance. The model proposed by
Song et al. [92] was based on commonsense reasoning and cross-modal BERT. To add
commonsense along with image and questions encoding, relevant entities (bounding
box) information was added from an external KB in form of a sentence. Authors of
[93][94] figured that existing KB methods inject the information without selection.
It resulted in noise for reasoning and hence led to several wrong answer predictions.
To deal with this, they represented an image by a multimodal heterogeneous graph,
which contained multiple layers of information corresponding to the visual, semantic
and factual features. An intra-modal graph convolution network extracted relevant
information from each modality and another cross-modal graph convolution aggregated
information from cross modality. This process of selection was stacked multiple times
to perform iterative reasoning predicted the optimal answer. Gui et al. [95] identified
that using external knowledge just based on tags, or relevant concepts may not always
be appropriate to add and could result in noisy information. They have proposed
a novel way to extract knowledge (implicit and explicit). The implicit knowledge
was added by using new prompts that extracted tentative answers and supporting
evidence from a frozen GPT-3 model. To add the explicit knowledge, a contrastive
learning-based knowledge retriever using the CLIP [96] model was added, where all
the retrieved knowledge were centered around visually-aligned entities. These methods
had high explainability in terms of the way they arrived at the results. Methods that
used a single complicated CNN to map images and questions directly to answers, gave
little insight into the computations performed to get the answer. On the contrary, KB



methods defined sequence and structured steps that give an advantage to these models
when trying to understand the internal dynamics.

2.6 Dataset Description & Evaluation Metrics

TDIUC and VQA2.0 are the two most commonly used datasets for the evaluation of
VQA models. This section discusses these two datasets and the corresponding evalua-
tion metrics. Other VQA related datasets are also briefly presented for completeness.

2.6.1 Task Directed Image Understanding Challenge Dataset (TDIUC)

Dataset Description: TDIUC1[1] is the largest available VQA dataset of real images. It
consists of 1,654,167 open-ended questions of 12 categories associated with 167,437
images. The dataset provides categories of questions associated with images explicitly.

The questions in TDIUC are acquired from the following three sources: questions
imported from existing datasets, questions generated from image annotations, and
the questions generated through manual annotations. Figure 2.11 shows the category-
wise sample distribution of questions. The distribution is highly biased due to the
collection of the images and questions from natural sources. Few question classes
and images are more frequent in nature; while, others are rare. The most significant
number of questions (approximately 0.65 million) are in the ‘Object Presence’ (with
Yes/No answers) category. On the other hand, the least number of questions (only 521)
lies in the ‘Utility Affordance’ category. Studies [6, 97, 98] have shown that VQA
models get affected by language prior bias. To avoid such issue, TDIUC introduced
a special category ‘Absurd’. This category contains questions having no semantic
relation with the associated images. Such questions have a single answer, and that
is ‘Does-Not-Apply’ [1]. Presence of the ‘Absurd’ category forces models to learn
appropriate relations between the question(s) and the visual contents of the image(s)
and prevents them to answer blindly with language prior.

Evaluation Metrics

Three evaluation metrics are defined by [1] for the VQA task. These are Overall
accuracy, Arithmetic-Mean Per Type (MPT) and Harmonic-Mean Per Type (MPT).
The Overall accuracy is the ratio of the number of correctly answered questions to
the total number of questions. VQA datasets are highly imbalanced as a few question

1https://kushalkafle.com/projects/tdiuc.html#download

https://kushalkafle.com/projects/tdiuc.html#download


Ob
j_P

re
s

Ab
su

rd

Co
lo

r

Co
un

tin
g

Ob
j_R

ec

Sc
en

e_
Re

c

Po
s_

Re
as

Sp
or

t_
Re

c

At
tri

bu
te

Ac
t_

Re
c

Se
nt

_U
nd

Ut
il_

Af
f

Question Categories

0

100000

200000

300000

400000

500000

600000

Nu
m

be
r o

f S
am

pl
es

39.73%

22.17%

11.82%

9.96%

5.66%
4.03%

2.32% 1.91% 1.73%
0.52% 0.13% 0.03%

Fig. 2.11 Distribution of 12 Categories of TDIUC Questions [1].

categories are more frequent than others. Overall accuracy is not a good evaluation
metric for such cases. The other two metrics Arithmetic-Mean Per Type (MPT) and
Harmonic-Mean Per Type (MPT) [1] are generally used to achieve unbiased evaluation.
Arithmetic-MPT computes the arithmetic mean of the individual accuracy of each
question category. This evaluation metric assigns uniform weight to each question
category. Harmonic-MPT reports the harmonic mean of individual question category
accuracy. Unlike Arithmetic-MPT, the Harmonic-MPT measures the ability of a model
to have a high score across all question categories.



2.6.2 VQA2.0

Dataset Description: VQA2.02 is one of the widely used VQA dataset of real images
with a total of 0.7M question image pairs partitioned into train, validation and test
set. For each question image pair, 10 human annotated answers are given. Figure
2.12 presents category-wise frequency of question in VQA2.0 dataset. VQA2.0 was
introduced to reduce the language bias that existed in its preceding version. Agrawal
et al. [6] came with an intuition for dealing with language prior that if a question
is asked for two similar images with different answers, then to some extent most
frequent answers that model infers blindly could be reduced (as same question has
different answer). VQA2.0 [6] has been created to address language prior bias present
in VQA1.0. For instance, for most of the questions related to sports in VQA1.0
dataset answer is “tennis” and for binary questions, answer is “yes”. As a result,
models that answered “tennis" for every sports question and answered “yes" for every
binary question give high performance to the overall metric. To overcome this, in
VQA2.0, for each triplet (I,Q,A), where I is image, Q is question, and A is the answer
respectively, another triplet (I′,Q,A′) is introduced. Here question Q makes sense for
the complementary image I′. However, the answer A′ to the question is something

2https://visualqa.org/download.html
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different than A. By adding these new complementary images to the dataset, the impact
of language priors on the models is reduced to a great extent.

Evaluation Metrics

VQA accuracy [2][6] is used for evaluating VQA1.0 and VQA2.0 (real and abstract)
datasets. As in the VQA dataset for each question, answer is collected from 10
annotators. For evaluation of a model generated answer, the score is computed using
the following formula:

Accuracy(ans) = min
{#humans that said ans

3
,1
}

(2.1)

It implies that an answer is correct if at least 3 annotators out of 10 respond that
answer.

2.6.3 Other Datasets

There are other VQA datasets that are designed with varied motivations. Such motiva-
tions include the provision of visual reasoning capability, modeling in multilingual
scenario, overcoming bias, use of external knowledge, etc. A statistical summary of
all datasets is shown in 2.1 and brief summary is given below.

DAtaset for QUestion Answering on Real-world (DAQUAR) [99] was the first
dataset for VQA task. It is based on real-world images from NYU-Depth v2 image
dataset. The question-answer pairs are of two types based on the methods it is
generated: synthetic and human. The synthetic question-answer pairs are based on
a few templates while human question-answer pairs were collected using 5 human
subjects. Images in DAQUAR are indoor scenes only; as a result questions are related
to object and location from indoor scenes. Dataset exhibits bias due to human behavior
of focusing mostly on specific objects compared to others. In DAQUAR human
generated dataset, this bias exists for table and chair objects as the highly frequent
answers with of more than 400 instances.

COCO-QA [32] is another dataset consisting of a large number of question-answer
pairs for MS-COCO [100] images. COCO-QA dataset is generated by automatically
converting the descriptions of MS-COCO images into question-answer pairs. As the
questions are generated from the description of images, it is comparatively easier
to answer them than the questions which were generated by human annotators. As
a result, it is required only to get a high-level understanding of image instead of
depth understanding and reasoning. The generated question-answer pairs are of four
categories in COCO-QA, and these categories are object, number, color, and location.



FM-IQA [22] is the only available VQA dataset in a language other than English.
It is built using images from COCO image dataset. FM-IQA consists of 316,193
Chinese question-answer pairs and their English translations. Unlike COCO-QA, type
of questions are not limited to some set of categories. The questions in FM-IQA
includes questions based on the fundamental understanding of image like the action
of objects, questions related to the presence of object class in the image, questions
related to object attributes, questions related to the positioning of objects and their
relatedness with each other. Along with simple image understanding, datasets also
contains a set of questions which requires a high level of reasoning and common sense.
Human annotators from Amazon Mechanical Turk (AMT) crowd-sourcing platform
have generated question-answers pairs for FM-IQA.

VQA1.0 [2] includes real and abstract scene images. VQA real image was the
largest of all the existing dataset when it was introduced and generated using MS-
COCO images. Human annotators from Amazon Mechanical Turk crowd-sourcing
platform had generated question-answer pairs. MS-COCO consists of a wide variety
of images with multiple objects and a different environment. As a result, VQA1.0 real
consists of a diversified collection of question-answer pairs. In VQA1.0 questions are
of open-ended as well as multiple choice types. To generate questions related to an
image, the image is shown to three annotators, and to avoid repetition of questions,
previously generated questions are shown to annotators. Detailed statistics of question-
answer pairs are stated in Table 2.1.

Visual7W [101] is a VQA dataset which has dense annotations and objects’ local-
ization in the image. The visual7W dataset contains seven types of questions: “what,
where, when, who, why, how, and which”. Compared to other VQA datasets, the
questions in this dataset are more affluent, and the answers are longer on average.
Question-answer pairs were generated through the AMT crowd-sourcing platform.
Visual 7W consists of multiple choice type questions, with four associated answers
for each question. In visual7W, object level grounding annotations are also provided
by linking of objects present in a pair of question answers and drawing bounding
boxes over those objects. There are 561,459 object groundings with an average of 12
bounding boxes associated with each image.

Similar to Visual7W, Visual Genome [102] question answering dataset consists of
questions starting with “what, where, when, who, why, how, and which”. Human
annotators generated this dataset on images from the visual genome image dataset.
Question answer pairs in the visual genome are from free form Question Answer
(QA) and Region-based Question Answer. For generating free form QA pairs, eight
questions are asked for an image with at least three different W’s from list of W’s
mentioned above. In region-based QA, pairs are generated based on a region with
specifications like regions having more than 5K pixels and length of phrase of region



Table 2.1 Datasets for VQA [Tr : Training, V : Validation, Ts : Test, OE : Open
Ended, MCQs : Multiple Choice Questions, OW : One Word, MWs :
Multiple Words, WUPS : Wu-Palmer Similarity]

Year Dataset Image Source Q/I No. of QA Pairs Type Ans. Len. Evaluation
(Ques. Cat) Metrics

2015 DAQUAR [99] NYUv2 8 6.7K OE OW or WUPS
(4) 5.6K MWs

2015 COCO-QA [32] MS-COCO 1 78.7K OE OW WUPS
(4) 38.9K

2015 FM-IQA [22] MS-COCO - 316K OE MW or Human

2015 VQAv1 [2] MS-COCO 5.6 248K OE OW( 90%) VQA
(20+) 121K or MW Accuracy

244K

2015 Abstract Clipart 3 60K OE OW( 90%) VQA
Scenes (20+) 30K or MW Accuracy

[2] 60K

2016 Visual 7W MS-COCO 6.9 327K MCQ’s OW or Accuracy
[101] (7) MW

2017 Visual MS-COCO 13.4 1.7M OE OW or Accuracy
Genome [102] (7) MWs

2017 VQAv2 [6] COCO (-) 443K OW( 90%) VQA
(20+) (5.6) 214K OE or MWs Accuracy

447K

2017 Abstract Clipart 3 60K OW( 90%) VQA
Scenes (20+) 30K OE or MWs Accuracy

[6] 60K

2017 CLEVR [103] MS-COCO 699K OW Accuracy
149K
447K

2017 TDIUC [1] MS-COCO 12 1.6M OE OW MPT
Accuracy

2017 OK-VQA [104] MS-COCO 1 14K OE OW VQA
Accuracy

2018 GQA [105] MS-COCO & Flickr 4 22M OE Accuracy
(10)



description more than four words. Free form QA pairs provide a diverse set of QA
pairs while region based pairs add a set of factual QA pairs in the dataset.

Compositional Language & Elementary Visual Reasoning (CLEVR) [103] dataset
is generated to test various aspects of visual reasoning, which includes attribute
identification, counting, comparison, spatial relationships, and logical operations.
Images in CLEVR dataset are synthetic and are generated by random sampling of
scene graph and render it using Blender. Nodes of a scene graph represent objects with
attributes, and spatially related objects are connected through edges. The question in
CLEVR is associated with a functional program that can be executed on a scene graph
of the image to obtain the answer.

OK-VQA [104] is a knowledge based VQA dataset. It is proposed primarily for
the set of questions for which only image content is not sufficient to answer. The
answer mainly relies on an image or object’s implicit property, which could be inferred
from external knowledge bases.

2.7 Discussions

In recent years, there has been massive interest in the VQA task. Despite the vast
literature, still there persists a gap between the existing VQA model and the way a
human learns. Also, compared to human efficiency, the performance gap is significant.
Table 2.2 presents the highlights of evolutionary progress made for the VQA task.
It also provides pros and cons of different methods or paradigms. The methods are
primarily separated by the main theme of the model or paradigm.

In this thesis, we try to overcome these gaps and propose solutions that try to
mimic the way humans learn. To enhance the interaction of modality, we propose an
aggregated multistage co-attention mechanism. Co-attention is core for VQA task.
Multistage co-attention keeps on improving the information flowing from one stage to
other. Further, aggregation of attention for dual modalities keeps on preserving the
attention from different stages. This method is detailed in Chapter 3. We investigate the
multistage co-attention mechanism and propose a dense attention-based mechanism
to further improve bidirectional attention. Here an end-to-end model is proposed
based on self and cross attention mechanism. Self-attention guides to encode the
intra-modality contextual information; whereas, cross-attention is a crucial mechanism
for dual-modality interaction. This model is elaborated in chapter 4. The existing
question category information is another aspect that is rarely exploited in literature.
By using question category whole answer search space could be reduced to respective
question category based answers only. With this reduced answer search space, model
could perform better with lesser confusion. This drives the proposal of the third



Table 2.2 Evolutionary Progress of VQA

Methods↓ Year Pros Cons
Fusion
Based [2]

2015 - Simple

- Low resource con-
sumption

- Focus on the global
features of the im-
age [106]

- Low performance due
to limited interaction
of modalities

Convolutional
Attention
Based [47]

2016 - Focus on salient im-
age regions

- Issues with natural
questions that contain
reasoning and count-
ing [107]

Graph
Based [24]

2017 - Model complex rela-
tion

- Good for reasoning

- Difficult to compared
with attention based
networks [107]

Object Based
Attention [12]

2018 - Object level attention

- More human like
learning

- Better Accuracy

- Issues with natural
questions that contain
reasoning and count-
ing [107]

- Trained on extracted
region features

Transformer
Based [108]

2019 - Generic

- Powerful

- High Performance

- Huge computational
cost [109]

Large Vision
Language
Models [110]

2021 - Generic

- Powerful

- High Performance

- End-to-End learning

- Required huge
amount of training
data [109]

- Huge computational
cost and resource re-
quirements



contribution, i.e., Dual Attention and Question Categorization based Visual Question
Answering (DAQC-VQA) discussed in Chapter 5. DAQC-VQA leverages the Question
Category to answer the asked question. The detailed description, empirical results and
analysis for reducing the answer search space alongwith its impact on different models
dual attention, aggregated co-attention and dense attention is presented in chapter
5. We have validated all the proposed methods on two widely used datasets on real
images, i.e., VQA2.0 and TDIUC.



Chapter 3

Visual Question Answering with
Aggregated Co-attention

Chapter Highlights

• Existing works from the literature demonstrate that attention on multi-modality
in context of each other provides a better feature representation for image and
question.

• This co-attention could be further improved if followed in multiple stages. A
single stage of attention may not be able to extract sufficiently fine grained
features suitable for the task. However, multiple glimpses through multistage
co-attention might achieve that.

• A Multistage co-attention based model with corresponding aggregated attention
of both modalities at each stage is proposed.

• Extensive experiments and analysis on TDIUC and VQA2.0 show the efficacy of
the proposed model in terms of Overall Performance and Question Category-
wise Performance.

• The publications for this works are as follows:
1. Aakansha Mishra, Ashish Anand, Prithwijit Guha, Multistage Atten-

tion based Visual Question Answering, IEEE International Conference on
Pattern Recognition (ICPR), 2021, pp. 9407-9414

2. Aakansha Mishra, Ashish Anand and Prithwijit Guha, ACA-VQA: Ag-
gregated Co-attention based Visual Question Answering. [Accepted at
Indian Conference on Computer Vision, Graphics and Image Processing
(ICVGIP), 2023]



3.1 Introduction

VQA models need to understand the syntax and semantics of the question, relate the
question with the relevant object(s) of the image, and infer the answer using both
image and text semantics. For example, in Figure 3.1, a VQA model needs to infer
from the given question that it has to find the object caboose in the given image and
identify its color. This task needs the understanding of syntax and semantics of the
given question (textual domain). Further, the model has to understand that caboose is
a part of a train and is not related to sky or any other objects in the given image (visual
domain). Finally, the model has to identify the color of the specific part of the train.
This example illustrates that the VQA task requires intricate understanding of both
textual and visual domains.

Q. What color is the 
caboose ?
Ans. Red

Q. What color is the 
caboose ?
Ans. White

Cross-Modality 
Attention

Q. What color is the 
caboose ?
Ans. Red

Cross-Modality 
Attention

Stage 1 Stage TStage t

What color is the 
caboose ?

What color is the 
caboose ?

Fig. 3.1 An example to demonstrate the idea of proposed algorithm. The input question
is asked for the color of the caboose in the given image. Initial stage (Stage 0)
of attention on image provides high score to the front part of the train, and as
a result the system answers the color as Green. In subsequent stages (Stage
2 till Stage T) both modalities make each other stronger and the final stage
predicts the correct answer Red.

A significant number of attention-based methods [12, 15, 47, 49, 73, 111] were
proposed in the literature. These methods leverage upon attention from textual (ques-
tion) to visual (image) domain to identify relevant region(s) of the image. Popular
attention models leverage on the faster-RCNN [23] (method for object detection)
features corresponding to the different regions of the image, and on LSTM frame-
work [10] for question embedding. The learned embedding of the question provides
the attention to the visual space and gives a weight to each region provided by the
faster-RCNN. The region with higher weight is assumed to be highly correlated to
the semantics of question. Most of the recent approaches use variants of the attention
module and aim to obtain high-quality attention in the visual domain for a given ques-
tion. Such unidirectional attention from textual to visual domain did help in improving
the performance of VQA models. However, recent studies indicate that these models
do overcome issues in identifying relevant region of the image, but still fall prey to
language prior bias present in the VQA datasets.

It is always not possible to answer a question by reading at once or by looking at
the image only one time. This corresponds to processing through shallow network. In



contrast, multiple glimpses of both image and question, aided by each other helps in
answering. This correspond to VQA models [11, 58, 112] employing deeper networks
with multiple stages of attention. Inspired from similar deeper VQA models, this
proposal learns the co-attention (image attention and text attention) mechanism along
with corresponding aggregation of dual modality attention from multiple stages.

To leverage the attention score from present stage in a multistage network may
not be robust in a deeper model. Attention score obtained at each stage shows the
importance of a specific image region (for image attention) or a question word (for
text attention) for that stage. For salient features, attention score(s) obtained at each
stage will be higher than other. Aggregating the attention scores from different stages
could preserve the information in a better way. This could help in extracting better
representation for both modalities, thereby resulting in significant improvement in the
model’s performance.

This work proposes a co-attention framework that considers textual to visual atten-
tion and visual to textual attention in an alternating fashion. The primary motivation to
perform visual to textual attention is to improve question embedding in the context of
visual features. Figure 3.1 shows an overview of the proposed method. Co-attention
mechanism tries to improve the question embedding based on the previously learned
attention on the image and further helps in obtaining a better representation of visual
features. This co-attention mechanism is extended to multiple stages. It may help
the model obtain a better understanding of the question, filter out the most relevant
regions, and reason over the image objects to infer the answer. As shown in Figure 3.1,
the first stage focuses on the front part of the train and not on the ‘caboose’. However,
after a few stages, it does focus on the ‘caboose’. Similarly, for the question, two
important terms ‘color’ and ‘caboose’ are recognized in the question by the model.

Extensive comparative experiments are conducted on the TDIUC [1] and VQA2.0
dataset [6] to evaluate the performance of the proposed model. Ablation analysis is
also performed to show the importance of the multistage attention module, aggregation
of attention and multistage loss in obtaining the performance gain. Key contributions
of this work are as follows:

• Multistage co-attention based model with corresponding aggregated attention of
dual modality at each stage.

• A multistage loss is proposed to overcome the gradient vanishing problem, since
the deeper model is more likely to suffer from these problems.

• Experiments and ablation analysis on TDIUC and VQA2.0 datasets show the
efficacy of proposed method.



3.2 Proposed Method

Most existing works [12][73][15][111] treat VQA as a classification problem and train
the system over all triplets (I,q,a) ∈ I×Q×A. Accordingly, the proposed framework
treats VQA as a classification task.

ACA 
Stage-1

ACA 
Stage-T

ACA 
Stage-t

Q. What color are 
the hubcaps ?

ResNet(Faster-RCNN)

G
L
o
V
E

F
U
S
I
O
N

FCNet

Ans. Red

F

Fig. 3.2 Proposed ACA-VQA framework. Here rI and Eq are ResNet-101 features of nv

regions extracted from faster-RCNN and GloVe embeddings of words in questions.
Each stage of ACA takes as input the LSTM encoding of question as well as region
features and outputs the corresponding attended modality. After T stages of attention
I(t)f and Q(t)

f features are obtained which are then fused to obtain a unified repre-
sentation, which is further passed to a fully connected network (FCNet) for answer
classification.

Initially, the input image (I) features are extracted as object proposals by using
pre-trained faster-RCNN network and the input question (q) is encoded using a LSTM
network (Subsection 3.2.1). These features are used for cross-modal interaction
through Attention of Question on Image (QoI) and Attention of Image on Question
(IoQ) in each stage of Co-Attention. This model employs multiple such stages with
Aggregated Co-Attention (Subsection 3.2.2). The model is learned in an end-to-end
manner (Subsection 3.2.4) and the answers are predicted through an element-wise
fusion of the attended features of both modalities (Subsection 3.2.3). The overall
framework of Aggregated Co-Attention based VQA (ACA-VQA) is depicted in Figure
3.2.

3.2.1 Feature Extraction

Visual Feature Extraction – Following existing literature [12], nv object region pro-
posals are obtained from the input image I by using the pretrained Faster-RCNN [23]
network. The dv dimensional ResNet-101 [19] embeddings of these region propos-
als are extracted further. Thus, salient region based image features rI ∈ Rdv×nv is
represented as follows

rI = [r1, . . .ri, . . .rnv ]; ri ∈ Rdv×1 (3.1)



Textual Feature Extraction – The input question q is either trimmed or padded to a
fixed length of nw words. These nw words are embedded in a dw dimensional space
with pretrained GloVe [29] embeddings (eq ∈Rdw×1). The question is thus represented
as Eq ∈ Rdw×nw . These GloVe embeddings are input to a LSTM network LSTM(0)

Q

and its last hidden layer is used to represent the question encoding Qe(0) ∈ Rdq×1.

Eq = [eq1, . . .eq j, . . .eqnw
]; eqi ∈ Rdw×1 (3.2)

Qe(0) = LSTM(0)
Q ( Eq ) (3.3)

The input to the initial co-attention stage (t = 1) are rI and Qe(0).

3.2.2 Cross-Modal Interaction through Aggregated Attention

The proposed framework ACA-VQA exploits an aggregated co-attention mechanism
at multiple stages for interaction of two modalities. In the t th stage (t = 1, . . .T ), the
visual attention scores α

(t)
v are computed first. For this purpose, the visual features rI

and the question embedding Qe(t −1) from the previous stage are projected to spaces
of common dimension dhv.

rI = [r1 . . .rnv ] =W I
v rI (3.4)

Qe(t −1) = W I
q Qe(t −1) (3.5)

Where, W I
v ∈Rdhv×dv and W I

q ∈Rdhv×dq are linear transformations. The visual attention

scores α
(t)
v ∈ R1×nv are estimated as follows.

u(t)v [i] = β
⊺
v

{
ri ⊙Qe(t −1)

}
(3.6)

α
(t)
v = SoftMax

(
u(t)v [1] . . .u(t)v [i], . . .u(t)v [nv]

)
(3.7)

Where, βv ∈ Rdhv×1 is a linear transformation. The attention score α
(t)
v [i] (i = 1 . . .nv)

indicates the correlation between the ith image region and the input question. These
visual attention scores are aggregated across multiple stages t = 1, . . .T .

The aggregated visual attention for the ith image region (i = 1, . . .nv) at the t th

stage is computed as follows.

θ
(t)
v [i] = (1− γt)θ

(t−1)
v [i]+ γtα

(t)
v [i] (3.8)

Here, γt =
1
t

(t ≥ 1) and θ
(0)
v [i] are initialized to zeros at t = 0.



θ
(0)
v [i] = 0; i = 1 . . .nv (3.9)

The image region features ri are weighed by the aggregated visual attention scores
θ
(t)
v [i] to obtain the unified visual representation EI(t) at the t th stage.

EI(t) =
nv

∑
i=1

θ
(t)
v [i]ri (3.10)

At the t th stage, the question word attention scores α
(t)
q [ j] ( j = 1, . . .nw) are gener-

ated in context of the globally attended image representation EI(t). The attention score
α
(t)
q [ j] is computed for each word representation eq j ( j = 1, . . . nw). Initially, EI(t)

and the word embeddings Eq = [eq1 . . . eqnw
] are projected to spaces of common

dimension dhq.

Eq = [eq1, . . .eq j, . . .eqnw
] =W Q

q Eq (3.11)

EI
(t)

= W Q
v EI

(t) (3.12)

Where, W Q
q ∈ Rdhq×dw and W Q

v ∈ Rdhq×dv are linear transformations. The attention
scores α

(t)
q are computed in the following manner.

u(t)q [ j] = β
⊺
q
(
EI(t)⊙ eq j

)
(3.13)

α
(t)
q = SoftMax

(
u(t)q [1] . . .u(t)q [ j] . . .u(t)q [nw]

)
(3.14)

Here, βq ∈ Rdhq×1. The attention score α
(t)
q [ j] ( j = 1 . . .nw) indicates the correlation

between the jth question word and the input image. These word attention scores are
aggregated across multiple stages t = 1, . . .T .

The aggregated word attention for the jth question word ( j = 1, . . .nw) at the t th

stage is computed as follows.

θ
(t)
q [ j] = (1− γt)θ

(t−1)
q [ j]+ γtα

(t)
q [ j] (3.15)

Here, γt =
1
t

(t ≥ 1) and θ
(0)
q [ j] are initialized to zeros at t = 0.

θ
(0)
q [ j] = 0; j = 1 . . .nw (3.16)

The word embedding eq j is weighed by the corresponding aggregated question

attention score θ
(t)
q [ j] ( j = 1, . . .nw). This leads to the attended question representation
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Fig. 3.3 Aggregation mechanism for visual and textual attention Here, θ t
v and θ t

q shows
the aggregatd attention scores for visual and text features respectively.

Ẽq(t) for the t th stage. These weighted word embeddings are input to the LSTM
network LSTM(t)

Q associated with the t th stage and its last hidden layer is used to
represent the question encoding Qe(t) ∈ Rdq×1.

Ẽq(t) =
[
θ
(t)
q [1]eq1 . . .θ

(t)
q [ j]eq j . . .θ

(t)
q [nw]eqnw

]
(3.17)

Qe(t) = LSTM(t)
Q

(
Ẽq(t)

)
(3.18)

The linear transformations and the LSTMs associated with each stage are learned
from data. The aggregation mechanism for textual and visual modality at t th stage is
demonstrated in Figure 3.3.

3.2.3 Answer Prediction

The aggregated co-attention based visual representation EI(t) and question embedding
Qe(t) are obtained from the t th stage. The representations obtained from the t th stage
are first projected to spaces of common dimension dh f to obtain the embeddings
I(t)f ,Q(t)

f ∈ Rdh f×1. These are fused through element-wise multiplication (denoted by
⊙) to obtain the final multimodal representation Ft ∈ Rdh f×1 for answer prediction at
the t th stage.

I(t)f = W I
f EI(t) (3.19)

Q(t)
f = W Q

f Qe(t) (3.20)

Ft = I(t)f ⊙Q(t)
f (3.21)



Here, W I
f ∈ Rdh f×dv and W Q

f ∈ Rdh f×dq are the linear transformations for the
respective image and question representations. The fused embedding Ft is input to
a fully connected network FCNet(t)ap for the task of answer prediction. This network
has a single hidden layer with dhc−nodes. The output layer has nc =| A | nodes. The
hidden layer nodes host Sigmoid activation function, while the output layer nodes
host the SoftMax activation function. The answer probability vector ât ∈ (0,1)nc is
computed as follows.

ât = FCNet(t)ap (Ft ;dhc;nc) (3.22)

3.2.4 Model Learning

The linear transformations W I
v , W I

q , βv, W Q
q , W Q

v , βq, W I
f and W Q

f are shared across the

T stages. The (T +1) LSTM networks (for different stages) LSTM(t)
Q (t = 0, . . .T ) are

used for computing the initial question embedding Qe(0) and the ones for the next
T stages. The fully connected networks FCNet(t)ap (t = 1, . . .T ) are used for answer
prediction. These linear transformations, the LSTMs and the fully connected networks
are learned from the data.

Let, a be the ground-truth answer corresponding to the input image-question pair
(I,q). An one-hot-encoded vector ã ∈ {0,1}nc is constructed as a target prediction
corresponding to the ground-truth answer a. A cross-entropy loss L

(t)
CE (I,q,a) between

the prediction ât and ã is minimized over all image-question-answer triplets in for
learning the VQA model parameters at t th stage as follows.

L
(t)

CE (I,q,a) =− ∑
∀(I,q,a)∈I×Q×A

nc

∑
r=1

ã[r] log(ât [r]) (3.23)

The total loss (LT ) is further defined as the summation of loss from each stage.

LT =
T

∑
t=1

L
(t)

CE (I,q,a) (3.24)

This total loss LT is minimized for all (I,q,a) triplets in I×Q×A and the error
gradient is back-propagated to learn the model components in an end-to-end manner.



3.3 Results and Discussion

The proposed approach of ACA-VQA is benchmarked on the TDIUC and VQA2.0
datasets. This section presents the quantitative analysis (Sub-section 3.3.1), ablation
studies (Sub-section 3.3.2), and qualitative results of the experiments.

Table 3.1 Question category-wise model performance on the validation / test split of
the TDIUC dataset. The proposed approach ACA-VQA is compared with
several state-of-the-art methods.

Question Type RAU MFH QTA BAN CoR BLOCK ACA-VQA
[1] [39] [16] [61] [57] [40]

Scene Recognition 93.96 92.9 93.80 93.1 94.68 92.8 93.92
Sport Recognition 93.47 93.8 95.55 95.7 95.94 93.6 95.82
Color Attributes 66.86 67.0 60.16 67.5 73.59 68.7 73.96
Other Attributes 56.49 55.9 54.36 53.2 59.59 58.0 60.46
Activity Recognition 51.60 51.8 60.10 54.0 60.29 53.2 59.81
Positional Reasoning 35.26 34.7 34.71 27.9 39.34 36.1 41.32
Object Recognition 86.11 86.1 86.98 87.5 88.38 86.3 88.41
Absurd 96.08 93.3 100.0 94.47 95.17 90.7 96.19
Utility & Affordance 31.58 35.7 31.48 24.0 40.35 34.5 40.94
Object Presence 94.38 94.1 94.55 95.1 95.40 94.2 95.54
Counting 52.1 50.7 53.25 53.9 57.72 52.2 56.53
Sentiment Und. 60.09 63.3 64.38 58.7 66.72 66.1 65.93
Overall Accuracy 84.26 84.3 85.03 85.5 86.58 83.6 86.82
Harmonic Mean 59.00 68.3 60.08 54.9 65.65 61.1 66.10
Arithmetic Mean 67.81 60.3 69.11 67.4 72.25 68.9 72.40

3.3.1 Quantitative Results

Question category-wise comparison on TDIUC dataset – Table 3.1 demonstrates
the results in terms of Question category-wise performance of the proposed model on
the TDIUC dataset compared with other baseline models as per the availability. The
last three rows present the Overall Accuracy, Arithmetic-MPT and Harmonic-MPT
respectively.

It is evident from Table 3.1 that ACA-VQA has demonstrated competitive per-
formance with respect to most of the baseline methods, and outperforms in terms of
AMPT and HMPT. These two measures provide the performance in a more uniform
way compared to overall accuracy. In case of overall accuracy all categories are given
equal weightage irrespective of the number of samples in each class. Specifically,
for ‘Utility Affordance’ ACA-VQA performs well by 5.03%, for ‘Other Attributes’
class, the model gains by 1.45%. In terms of HMPT, ACA-VQA outperforms the



top-performing baseline CoR [57] by a margin of 0.68%. On the other hand, in terms
of AMPT metrics, the performance of the BAN2-CTI [62] model is surpassed by
0.20% with the AMPT metrics of the ACA-VQA model.

Table 3.2 Overall Accuracy comparison with other state-of-the-art models on TDIUC
dataset. The Category column indicates the type of methods to which the
techniques in the second column belong.

Category Methods Overall Accuracy

FUSION

MCB[36] 81.86
MLB[37] 83.10
MUTAN[13] 82.70
BLOCK[40] 85.96

VISUAL ATTENTION

SAN[11] 82.30
BTUP[12] 82.91
QCG[71] 82.05
RAMEN[31] 86.86
QAA[113] 84.60

DENSE ATTENTION
DFAF[14] 85.55
MLIN⋆[15] 87.60

CO-ATTENTION Proposed 86.82

Overall performance comparison on TDIUC dataset – Table 3.2 indicates the
overall model performance compared with respect to the baseline models. This table
presents the results for those baseline models whose category-wise accuracy are not
available. ACA-VQA outperforms most of the baselines, except for DFAF and MLIN.
These models are particularly complex and dense attention-based architectures.

Table 3.3 Performance of ACA-VQA evaluated on data that excluded samples from
the ‘Absurd’ category during training.

Without Absurd
Metrics MCB QTA BAN ACA-VQA ACA-VQA

[36] [16] [61] αv +αq θv +θq
Overall Accuracy 78.06 80.95 81.9 84.06 83.90
Arithmetic-MPT 66.07 66.88 64.6 69.91 70.13
Harmonic-MPT 55.43 58.82 52.8 63.08 63.89

The effect of language prior is considered a major issue in VQA literature [1][6].
Language bias often leads to blind prediction of a specific answer based on only the
question. For example, consider a VQA dataset containing a large number of questions
of similar type having binary answers as ‘Yes’ or ‘No’. Additionally, the model will
be biased towrds answering to any question with ‘Yes’, if it is the answer to majority
questions. Thus, it is necessary to force the model to look into the visual content
for answering. To this end, the ‘Absurd’ question category is introduced that has
only single answer ‘DoesNotApply’. Here, the input question is completely unrelated



to the given image. Training with the ‘Absurd’ question category forces the VQA
model to consider the visual component. The ACA-VQA model is trained without the

‘Absurd’ question category to understand the effect of language bias. Table 3.3 reports
the ACA-VQA performance with respect to three baseline models in terms of three
metrics. ACA-VQA is found to outperform the baselines in terms of arithmetic-MPT
and harmonic-MPT. However, the model provides higher overall accuracy without
aggregation of attention.

Performance comparison on VQA2.0 dataset – ACA-VQA demonstrates impres-
sive overall performance in comparison to baseline models, as well as state-of-the-art
methods. Out of all the proposed baselines, proposed model surpasses the majority,
with the exception of complex attention-based architectures: BAN, BAN2-CTI, DFAF,
and MLIN.

Table 3.4 Comparison for VQA 2.0 validation split in terms of Overall Accuracy and
three categories of questions

Category Methods Yes / No Number Other Overall

FUSION

MCB[35] 77.37 36.66 51.23 59.14
MLB[37] 81.89 42.97 53.89 62.98
MUTAN[13] 81.09 41.87 54.69 62.71
MFH[39] 61.60

VISUAL ATTENTION

SAN[11] 78.40 40.71 54.36 61.70
RN[114] 80.51 41.92 54.75 62.74
BTUP[12] 80.34 42.80 55.80 63.20
BAN[61] – – – 66.0

CO-ATTENTION

BAN2-CTI[62] – – – 66.00
DoG[115] 82.16 45.45 55.70 64.29
CTDA[116] 81.26 43.24 55.67 63.65
QAA[59] – – – 60.5

DENSE ATTENTION
DFAF[14] – – – 66.21
MLIN⋆[15] – – – 66.18

CO-ATTENTION ACA-VQA 82.01 46.45 56.87 64.95

3.3.2 Ablation Analysis

ACA-VQA has two important components. First, the multistage attention modules,
and second, the aggregation of attention in both modalities. Hence, the effect of the
number of stages and that of aggregation need to be analyzed through ablation studies.
Accordingly, a set of experiments are performed performed to identify the appropriate
number of stages and to recognize the effective way of aggregating the attention of
dual modalities. Another objective of this ablation study is to analyse the impact
of stage-wise loss in comparison to a single loss applied at a final stage. The effect



of parameter sharing among different stages is also experimented. These different
ablations are presented in Tables 3.5, 3.6, 3.7, and 3.8.

Table 3.5 Effect of attention aggregation on both modalities without stage loss on
TDIUC dataset in terms of Overall Accuracy, Arithmetic-MPT & Harmonic-
MPT. NA in first column indicates that aggregation of attention is ‘Not
Applicable’ with single stage model

Attention Mode T =1 T = 2 T = 3 T = 4 T = 5

αv +αq

85.03 86.33 86.32 86.21 85.10
69.59 69.88 70.78 70.47 70.63
61.10 60.42 63.40 63.50 63.34

θv +αq
NA

86.79 86.81 86.05 85.81
71.59 71.57 71.15 70.90
64.52 64.58 64.01 63.58

αv +θq
NA

86.13 85.64 86.35 85.40
71.48 71.04 71.12 70.92
64.12 63.75 63.29 63.47

θv +θq
NA

86.74 86.44 86.20 86.18
71.84 71.58 71.75 71.37
65.27 65.07 64.98 64.74

Tables 3.5, 3.6, 3.7, and 3.8 report the results of ablation analysis for different model
variants by changing the number of co-attention stages from T = 1 . . .5. Table 3.5
demonstrates the performance in terms of TDIUC evaluation metrics. Here, the
experiments are performed by sharing the linear transformation parameters (W I

v , W I
q , βv,

W Q
q , W Q

v , βq, W I
f , W Q

f ) for all stages with different attention aggregation strategies. The
first row (αv +αq) demonstrates the model performances for no attention aggregation
in either of the modalities. The second row (θv +αq) shows the model performances for
attention aggregation along the visual modality only. Similarly, the third row (αv +θq)
demonstrates the model performances for attention aggregation along the text modality
only. The last row (θv +θq) shows the model performance for attention aggregation
applied to both visual and text modalities. It is observed that the optimal results
(second best overall accuracy of 86.74%, best AMPT of 71.84% and highest HMPT of
65.27%) are obtained for T = 2 co-attention stages with attention aggregation applied
to both modalities.

Table 3.6 shows the model performances with stage-wise loss. Here, the effects
of no attention aggregation (first row) and attention aggregation in both modalities
(second row) are also studied. All linear transformation parameters and answer
predictors are shared among the different stages. The model is found to perform
best with T = 4 co-attention stages alongwith aggregation of dual modality attention.
Additionally, it is observed from Tables 3.5 and 3.6, that training with stage-wise loss
has increased the model’s performances for all the cases (T = 2 onward). For example,



for T = 4, the overall accuracy, AMPT and HMPT have respectively increased by
0.62%, 0.35% and 0.65%.

Table 3.6 Effect of Aggregation on both modalities with stage loss on TDIUC dataset
in terms of Overall Accuracy, Arithmetic-MPT & Harmonic-MPT .

Attention Mode T =1 T = 2 T = 3 T = 4 T = 5

αv +αq

85.03 86.58 86.16 86.54 86.33
69.59 71.58 71.75 71.81 71.66
61.10 63.97 64.69 64.67 64.28

θv +θq
NA

85.94 86.83 86.82 86.78
71.84 71.78 72.10 72.03
65.27 65.36 65.63 65.62

Table 3.7 shows the model performances where the training is performed without
stage loss and all the linear transformation parameters are unshared among the different
co-attention stages. The model is found to perform well till T = 2 stages only. It
is observed that, further increment in the number of stages lead to performance
degradation. This might be attributed to overfitting on account of stage-wise increment
in model parameters.

Table 3.7 Effect of aggregation on both modalities without stage loss and unshared
parameters for classifier networks at each stage on TDIUC dataset in
terms of Overall Accuracy, Arithmetic-MPT and Harmonic-MPT .

Attention Mode T =1 T = 2 T = 3 T = 4 T = 5

αv +αq

85.03 86.61 85.29 86.81 86.69
69.59 71.77 71.26 71.39 70.39
61.10 64.56 64.18 63.51 62.18

θv +θq
NA

85.35 85.49 85.63 85.12
71.42 70.78 69.74 68.02
64.64 63.30 60.39 55.77

Finally, Table 3.8 shows the results for model training with stage-wise loss. Here,
the answer classifier network of each stage has unshared parameters while other set of
linear transformation parameters are shared among different stages. This experimental
setup is found to outperform all other configurations. The model keeps on improving
the performance till T = 3 stages of aggregated co-attention. Further increment results
in performance degradation.

It could be concluded from the ablation analysis that, the model demonstrates
a performance gain till T ≤ 4 for most experimental configurations. However, the
performance degrades for T > 4. The impact of attention aggregation is found to be
positive for all experimental configurations. The model is found to learn well with
a comparatively lower number of parameters. However, unsharing of all parameters
leads to overfitting thereby reducing model performance.



Table 3.8 Effect of Aggregation on both modalities with stage-wise loss, shared linear
transformation parameters and unshared answer predictors for each
stage. Results are reported on TDIUC dataset in terms of Overall Accuracy,
Arithmetic-MPT & Harmonic-MPT .

Attention Mode T =1 T = 2 T = 3 T = 4 T = 5

αv +αq

85.03 86.57 86.77 86.81 86.44
69.59 72.18 72.09 71.38 71.49
61.10 65.71 65.35 64.52 63.88

θv +θq
NA

85.60 86.82 86.61 86.73
71.64 72.40 71.75 71.13
64.12 66.10 64.36 62.91

In Figure 3.4, the parameter count for the ACA-VQA model is displayed. It is
worth noting that the best performing model (which includes stage loss, only unshared
answer predictor parameters, and shared linear transformations) has a relatively low
parameter count. Figure 3.5 presents the parameter count and validation accuracy for
the ACA-VQA model on the VQA2.0 dataset. The model’s performance improves up
to T = 2 stages, but beyond that, the performance decreases as the parameter count
increases.

1 2 3 4 5
No. of Stages

0

20

40

60

80

100

Pa
ra

m
et

er
s C

ou
nt

 (i
n 

M
illi

on
s)

W/O stage loss
With stage loss

Fig. 3.4 Parameter Count (in Millions) for TDIUC dataset with respect to the number
of stages incorporated in ACA-VQA model. W/O stage loss shows the count
when all parameters are unshared and no stage loss is incorporated. With stage
loss shows the parameters with shared linear transformation parameters
and unshared answer predictor parameters.



2 3 4 5
No. of Stages

63.8

64.0

64.2

64.4

64.6

64.8

65.0

Va
lid

at
io

n 
Ac

cu
ra

cy

34

36

38

40

42

44

46

48

50

Pa
ra

m
et

er
 C

ou
nt

 (
in

 M
ill

io
ns

)

Accuracy
ParamCount

Fig. 3.5 Validation Accuracy and Parameter Count (in Millions) for VQA2.0 dataset
with respect to the number of stages incorporated in ACA-VQA model. Per-
formance is reported with stage loss, with shared linear transformation
parameters and unshared answer predictor parameters.

3.3.3 Qualitative Results

The qualitative results of ACA-VQA are demonstrated in figure 3.6. Each figure shows
the top-2 salient regions obtained from the proposed model. Saliency of regions is
defined by the visual attention obtained from the model. Results are demonstrated
on different categories of TDIUC dataset like ‘color’, ‘object presence’, ‘object
recognition’ etc. It can be observed that the regions with the highest scores in the
model are more likely to infer the most relevant concepts necessary to arrive at the
correct answer. These regions serve as an indicator of the model’s attention to specific
areas of the input image that are crucial in making accurate answer predictions.

Consider the image shown in Figure 3.6a with associated question “What color
is the clock ?”. Here, the most relevant object is ‘clock’. the corresponding attention
score for the region belonging to clock is highest amongst all the proposed regions.
Similarly, consider the ‘object presence’ category of question ‘Are there any knives
in the picture ?’ associated to the image in Figure 3.6f. To answer this, the model
has inspected the ‘knife’ in the image. Similarly, consider the other images shown
in Figures 3.6c, 3.6d, 3.6e, 3.6f, 3.6g, 3.6h, 3.6i, 3.6j, 3.6k, 3.6l, and their
question-answer pairs. Here, the model has shown the ability to capture the most
relevant regions for answer prediction.



(a) Q. What color
is this clock ?

Ans: Gold ✔

(0.35, 0.31)
GT: Gold

(f) Q. Are there
any knives in
the picture ?
Ans: Yes ✔

(0.66, 0.33)
GT: Yes

(c) Q. What color
is the woman’s
shirt ?
Ans: Blue
✔(0.57, 0.27)
GT: Blue

(d) Q. What vehi-
cle is shown in
the photo?
Ans: Airplane
✔ (0.49, 0.2)
GT: Airplane

(e) Q. What color
is the sky?

Ans: Blue ✔

(1.0, 0.0)
GT: Blue

(f) Q. Is there a
vehicle in the
photo ?
Ans: Yes ✔

(0.9, 0.06)
GT: Yes

(g) Q. What ani-
mal is in the
picture ?
Ans: Giraffe
✔ (0.47, 0.18)
GT: Giraffe

(h) Q. What food
is in the picture
?
Ans: Cake ✔

(0.7, 0.22)
GT: Cake

(i) Q. Are there
any cup in the
picture ?
Ans: Yes ✔

(1.0, 0.0)
GT: Yes

(j) Q. What colors
are the towels ?

Ans: White ✔

(0.99, 0.01)
GT: White

(k) Q. Are there
any vehicles in
the picture ?
Ans: Yes ✔

(0.47, 0.21)
GT: Yes

(l) Q. What type of
vehicle is this in
picture ?
Ans: Train ✔

(0.56, 0.24)
GT: Train

Fig. 3.6 Qualitative results from proposed model on different category question for
TDIUC dataset. Visualization of top-2 attention scores obtained for image
regions. Top-2 salient regions identified with visual attention scores are
represented as (top1, top2).



3.4 Error Case Analysis

In terms of the three defined evaluation metrics, proposed model demonstrates com-
petitive performance compared to most of the models. However, it’s important to
highlight that it falls short in comparison to the other methods, which relies on rela-
tional reasoning techniques involving the encoding of relationships between objects
through multiple sub-chains. We further analyse the failure cases of our model to
gain better insight. Some of the analyzed failure cases are presented in the Figure-3.7.
Our observation indicates the one of more of the following reasons could be most
prominent bottleneck for the proposed approach.

– Questions about tiny visual content : Some of the questions are highly fined-
grained or are very specific in the following sense. The corresponding images
contain very tiny visual information that can be very difficult even for the human
to answer. In the Figure 3.7a, it can be observed that the identifying another
person, who is mostly occluded and only a tiny fraction of head is visible, is
very difficult to correctly answer the question on number of people present. In
such scenarios model mostly gives incorrect answers.

– Misidentification of Question Context: Despite its proficiency in recognizing
regions and keywords, the model occasionally falls in accurately identifying
the specific context in question. This leads to incorrect predictions. As it could
be seen in the Figure 3.7b, the question is about emotion but model is unable
to understand the content and provides the object recognition result. However,
the relation modeling could help in such cases to provide the context, e.g., the
relation between ball, grass, dog may help to draw the happiness conclusion.

– Misalignment with Ground Truth: In some cases, the given ground truth
may not be correct. For example, the given ground truth answer is three in
Figure 3.7c, and the predicted answer is four. However, the predicted answer
can be considered as correct since there are more laptops in the image compared
to the ground truth.

– Common-Sense Reasoning: The approaches that models the common sense rea-
soning (through relation modeling, symbolic AI etc) outperforms the proposed
model for some specific sets of questions. This provides the extra information
about the image and helps to infer the better conclusion. However, one notable
limitation of the proposed model is lack of common-sense reasoning. It ap-
pears to excel in identifying regions and keywords correctly but may produce
answers that defy common-sense expectations. For instance, it might provide
an activity-related response to a binary-type question, which highlights a gap in
its reasoning abilities. The failure case presented in the Figures 3.7d, 3.7f, 3.7e
occurs because of the weak relationship model among the objects.

– Lack of Relational Reasoning: Notably, the model appears to lack the ability
to perform relational reasoning effectively. It may struggle to comprehend and
utilize the relationships between objects or elements within the image or question,
resulting in sub-optimal answers. Developing this relational reasoning capacity



(a) Q. How many people are
shown on the bus?
Ans. One✗ (0.27, 0.12)
GT: Two

(b) Q. What is the emotion
the dog is showing?
Ans. Yarn✗ (0.16, 0.10)
GT: Happiness

(c) Q. How many laptops
are there?
Ans. Four✗ (0.23, 0.19)
GT: Three

(d) Q. What season is this?
Ans.Piano ✗ (0.52, 0.24)
GT: Christmas

(e) Q. Is the person happy?
Ans.Street✗(0.57 0.24)
GT: Yes

(f) Q. Is the boy scared?
A.Swimming✗ (0.62, 0.07)
GT: No

(g) Q. What are they play-
ing?
Ans.Running✗(0.74,
0.04)
GT: Soccer

(h) Q. What is the girl
doing?
Ans.Standing✗(0.16,
0.15)
GT: Walking

(i) Q. What is the giraffe do-
ing?
Ans. Standing✗ (0.68,
0.09)
GT: Eating

Fig. 3.7 Wrong predictions from ACA-VQA

is essential for the model to provide more contextually accurate responses. For
example, it can be observed in the Figure 3.7g that for the asked question about
game playing, the proposed model responded ‘running’ as the answer. This
response is reasonable if other context and relation between the objects are
ignored. However, if the relationship between the ground, person, and ball are
present, the scenario is very different. We believe that incorporation of the ability
to handle relations among objects in the proposed model may help significantly
to overcome this drawback.

– Region-Based Predictions: In some instances, the model seems to rely heavily
on region-based information for making predictions. However, it may struggle
to pinpoint the most relevant regions, resulting in answers that do not align



with the question’s. It can be observed in the Figures 3.7h, 3.7i, the results
highly depend on the identified attention region. In both the cases, in the
attended region the giraffe and one of the girls is standing. Hence, the predicted
results can also be considered as valid. In fact, this aligns with the examiners’
another comment regarding multilabel classification. Reformulating the task
as multilabel classification with appropriate changes in the datasets will help
resolve such errors.

In summary, the proposed model exhibits strengths in object and keyword identifi-
cation but faces challenges in accurately recognizing relations among specific objects
and making predictions that align with both the question and ground truth. Addi-
tionally, enhancing the model’s common-sense reasoning capabilities is crucial for
improving answer quality. In light of these insights, there arises a further necessity to
delve into the explainability and interpretation of the attention models that underlie
the proposed approach.

3.5 Discussions

In this chapter, a co-attention mechanism is presented that extracts attended features of
both modalities by operating across multiple stages. To preserve the information from
different stages, the attention scores obtained in both modalities are aggregated across
stages. This ensures that the information from all stages are preserved and utilized in
the model. A multistage loss is introduced to prevent the issues of gradient vanishing.
Also, most parameters are shared across co-attention stages to avoid performance
degradation due to overfitting. The proposed method (ACA-VQA) is benchmarked
on the TDIUC and VQA2.0 datasets. It was observed that the proposed multistage
aggregated co-attention model demonstrates competitive performance compared to
state-of-art methods. The model’s efficacy was further confirmed through ablation
analysis, which demonstrated the effectiveness of utilizing multistage attention, aggre-
gation, and stage-wise loss in the model.

Co-attention is a vital component of VQA models that facilitates the extraction of
cross-modality information for inferring the answer. In this context, intra-modality
interaction can enhance the model’s capability by focusing on the within-modality
details that should have higher weightage. To this end, the next chapter proposes an
approach that utilizes intra-modality interaction followed by cross-modality attention.
This approach aims to extract richer features from the input data and improves the
model’s overall performance on the VQA task.





Chapter 4

CSCA: VQA with Cascade of Self- and
Co-Attention Blocks

Chapter Highlights

• The proposal on ACA-VQA (Chapter 3) focused on a dual attention mechanism
to reflect cross-modality interactions. However, it did not emphasize the inter-
object (within image) and inter-word (within question) interactions.

• The present chapter includes self-attention on each modality along with cross-
attention. Embeddings obtained after self-attention encodes contextual informa-
tion within a single modality and that is used further to generate cross-attention
based encoding.

• The process of self-attention and cross-attention comprises a block of dense
attention mechanism. Such dense attention blocks are further cascaded to obtain
enhanced representations.

• Detailed performance analysis conveys that the proposed model is comparable
with existing state-of-art VQA models on two benchmark datasets: TDIUC and
VQA2.0.

• The publication for this works is:
– Aakansha Mishra, Ashish Anand, Prithwijit Guha, "CSCA: VQA with

Cascade of Self- and Co-Attention Blocks" [Manuscript Under Review]

4.1 Introduction

The previous chapter proposed a cross-modal multistage aggregated attention-based
VQA model. This chapter proposes another multistage VQA model by incorporating
dense attention on dual modality features. This dense attention mechanism is a



combination of cross-modal and intra-modal interactions. This approach aims to
extract richer features from the input data by focusing on both the inter- and intra-
modality interactions. The proposed model’s dense attention mechanism allows it
to capture both the cross-modality and intra-modality information effectively. By
incorporating dense attention, we can capture more detailed information and improve
the model’s performance on the VQA task. Overall, our proposed approach aims to
improve the performance of VQA models by leveraging the strengths of both cross-
modal and intra-modal interactions. By doing so, we can extract more informative
features from the input data and improve the model’s ability to answer questions
accurately.

What color is the women's t-shirt ? What color is the women's t-shirt ?What color is the women's t-shirt ?

SCA-1 SCA-NInput Image

Question

What color is the women's t-shirt ?

SCA-t

What color is the women's t-shirt ? What color is the women's t-shirt?

SCAInput Image

Question

Fig. 4.1 An example to illustrate the attention relevance for dual modality through
cascaded SCA module [top figure]. Without cascaded module the attention is
not getting refined and hence not able to give better attention [bottom figure].

Recent attention-based models have taken inspiration from transformer-based
models [65] to include self-attention (SA) as well. The SA helps in incorporation
of internal correlation within a modality. For text modality, SA encodes internal
correlation among words to obtain informative representation of the given sentence.
Similarly, for image modality, SA helps in encoding correlation among the salient
regions of image. Figure 4.1 shows an example for illustration. The given question is

“What color is the women’s shirt?. Salient regions within image include ‘woman’. It
is likely to be informative if the region consisting of ‘women’ keeps the contextual
information such as “dress she is wearing”, “hair color” as well as correlation with



other salient objects. Here, women’s shirt could be one of the more correlated region
with respect to some other salient objects. SA helps in encoding such information.

Based on the advantages of each of the following modules: self-attention (SA),
co-attention (CA) and cascade of attention mechanisms, this work proposes combining
them together in a systematic manner. Towards this objective, the proposed model
builds one self- and co-attention based attention block (SCA), that combines both
SA and CA in a specific way. For each of the text and image modalities, a specific
SA module obtains a feature representation for the respective modality. Then the
co-attention module uses self-attended representation of one modality and attends
(takes attention) on the self-attended representation of the other modality to obtain
cross-modality contextual representation for the second modality. Thus, there are two
SA modules (one for each text and image modalities) and two co-attention modules
within a single SCA block (Figure 4.2). In one complex attention block of SCA, both
modalities guide itself to capture internal correlation and each other to learn the robust
representation of each of the visual and textual domains.

SCA
EI(t-1) EI(t)

EQ(t-1) EQ(t)

SA

SA

CA

CA

Fig. 4.2 Overview of the proposed model. An attention block, referred to as SCA,
comprises of self-attention (SA) and co-attention (CA) modules. Multiple
such attention blocks are cascaded, where output of some (t −1)th block is
presented as input to the t th block.

The proposed model exploits the niche attributes of the different attention mecha-
nisms and further combines them together in a dense attention module (SCA block).
A Cascade of multiple SCA blocks (CSCA) is used to extract fine-grained information.
Figure 4.2 gives the overview of the t th SCA block which takes representations of ques-
tion and image of the (t−1)th block as input, and provides the improved representation
of question and image.

CSCA model comprises of self- and cross-attention blocks cascaded in an alternate
manner. Initially, self attention mechanism is applied for each of vision and text feature
inputs to obtain representations encoding the intra-modality contextual information.
These representations are then used as inputs to cross attention mechanism. Initial
attention blocks may not be able to capture the relevant semantics for intra and inter
modalities. While after learning through cascades of attention blocks, model learns
the better multimodal feature representations.



The figure 4.1 [top row] serves as an illustrative example to highlight the impact
of the cascaded Self and Cross-Attention (SCA) module within the model. In the
initial SCA block, the model’s attention is directed towards a broad range of image
regions, encompassing various objects such as ’cat,’ ’women,’ ’window,’ and others.
Additionally, it exhibits a degree of focus on specific words like ’color’ and ’t-shirt,’
as indicated by their attention scores. With the inclusion of multiple SCA blocks,
notably after the tth block, the model’s attention gradually refines, shifting towards
more concentrated image regions. This transition is accompanied by changes in
word attention scores. Ultimately, in the final SCA block, the model’s attention is
concentrated on the most salient image region within the context of the given question.
Simultaneously, the attention mechanism for the question becomes finely tuned to the
most pertinent words that enable accurate responses.

When contrasting the results with and without the SCA module 4.1 [bottom row],
it becomes evident that a single round of attention may not suffice to capture all the
relevant image regions and question words effectively. The cascaded SCA module
contributes to a progressive and refined attention process, enhancing the model’s ability
to grasp contextual information and produce more accurate answers.

To analyse and evaluate the model performance, extensive experiments are per-
formed on two widely used VQA datasets: VQA2.0 [6] and TDIUC [1]. Ablation
analysis experiments are also performed to understand the impact of the important
components of the proposed model. Primary contributions of this work are as follows:

• A dense attention based VQA model comprising of cascaded attention blocks.

• The core of each attention block consists of self-attention and co-attention so
that the two modalities guide each other to obtain an enriched representation.

• Extensive performance evaluation along with ablation analysis of the proposed
model on the two benchmark datasets – TDIUC and VQA2.0.

4.2 Proposed Approach

The proposed framework treats VQA as an answer classification task following existing
works like [12][14][2][6][15]. The input image I (I ∈ I ) and the associated natural
language question q (q ∈ Q) are first subjected to feature extraction (Subsection 3.2.1).
Pretrained deep networks are used to extract features from a few salient image regions.
The network embeddings are used to represent the input image. Similarly, a pretrained
network is used to obtain the word embeddings of the associated input question. These
word embeddings collectively represent the input question. The feature embeddings
of both image and text modalities are subjected to self-attention mechanism (Subsec-
tion 4.2.2) for capturing the relationships among different regions of I and words of
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w2 wnw

Faster-
RCNN

GloVe Word 
Embedding
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Cascaded Self- and Cross-Attention (CSCA) 
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Fig. 4.3 Functional block diagram of the proposed approach. Initial feature extraction
stage is followed by a cascade of self-attention and co-attention mechanisms.
Final attended features are fused through element-wise multiplication and are
fed to a fully connected network for answer classification.

q. The self-attended representations of these two modalities are further processed by
co-attention modules (Subsection 4.2.3). This single stage of Self and Co-Attention
mechanism cascade forms a single SCA block (Figure 4.2). Multiple SCA blocks
are cascaded to obtain further fine grained representations of both modalities. The
embeddings obtained from the final SCA block are fused (Subsection 4.2.4) and fed to
the answer classification network (Subsection 4.2.5) to predict the answer probability
vector â. The framework of proposed model is presented in Figure 4.3

4.2.1 Feature Extraction

Visual features (rI ∈ Rdv×dnv) and Textual features (Eq ∈ Rdw×nw) are extracted by the
process detailed in section 3.2.1. All feature embeddings in rI and Eq are projected to
spaces of common dimension (d, say) to obtain the respective initial feature embedding
matrices as rI(0) and Eq(0).

rI(0) = W I
c rI (4.1)

Eq(0) = W Q
c Eq (4.2)

Here, W I
c ∈ Rd×dv and W Q

c ∈ Rd×dw are linear transformations. These representations
are provided as input to the self- and co-attention modules.

4.2.2 Self-Attention

The self-attention (SA) mechanism is one of the key components of the proposed
model. It is incorporated for both textual (question as collection of words) and visual
(image as top-nv salient regions) modalities. At the t th (t = 1, . . .T ) block, the input
to SA are rI(t − 1) and Eq(t − 1). Following [65], the SA uses keys and queries,



  K                         V                    Q
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Fig. 4.4 Multihead Attention Mechanism. Here, nh heads simultaneously process input
data K, V and Q in parallel. The output of all heads are concatenated to present
the attended representation.

both of dimension dKQ and values of dimension dV S respectively. The Multi-Head
Attention [65] is incorporated to capture the attention from different aspects. For this,
nh parallel heads are added, where each head is considered to learn the relationships
from different view (for image) and context (for question).

Let EM = {em1 . . .eml} be a matrix of l feature embeddings, where em ∈ Rdm×1

and EM ∈ Rdm×l . For visual features, EM = rI(t −1), l = nv and dm = d. Similarly,
for question features, EM = Eq(t −1), l = nw and dm = d.

The query (Q(h)
S ), key (K(h)

S ) and value (V (h)
S ) matrices for the hth head can be

respectively expressed as follows

Q(h)
S =

(
W QS

h

)⊺
EM (4.3)

K(h)
S =

(
W KS

h

)⊺
EM (4.4)

V (h)
S =

(
WV S

h

)⊺
EM (4.5)

where, W QS
h ∈ Rdm×dKQ , W KS

h ∈ Rdm×dKQ and WV S
h ∈ Rdm×dV S are linear transforma-

tions. Using {Q(h)
S ,K(h)

S ,V (h)
S }, the inner product of query is performed with all the

keys and is divided by
√

dKQ for more stable gradients [65]. The SoftMax function is



applied on the inner product to obtain the attention weights for question words and
salient image regions. A scaled inner product based attention is computed for all the
heads in the following manner.

Hh =
(

V (h)
S

)
SoftMax

Q(h)
S

⊤
K(h)

S√
dKQ

 (4.6)

MH(EM) =WmhH; H = [H1 . . .Hh . . .Hnh] (4.7)

Here, Wmh ∈ Rdm×(nh×dV S) is the linear transformation. The output ( MH(EM) ) of
multi-head attention module is passed through fully connected feed forward layers
with ReLU activation and dropout to prevent overfitting. Further, residual connections
[19] followed by layer normalization are applied on top of fully connected layers
for faster and more accurate training. The layer normalization is applied over the
embedding dimension only. Finally, the self-attended embeddings of the input feature
EM are obtained as SEM = {sem1 . . .seml} where sem ∈ Rdm×1 and SEM ∈ Rdm×l .
For visual modality SEM = r̃I(t −1) and for text SEM = Ẽq(t −1).

4.2.3 Co-Attention

For cross-modal interactions, the co-attention module intakes the representations of
two modalities and generates attention in context of each other. To facilitate this, the
self-attended embeddings Ẽq(t −1) and r̃I(t −1) are taken as input. For generating
image attention in context of question words, keys and values are generated from
self-attended intermediate question representation while the query is obtained from
the image itself (following Equation 4.6). Thus, the query (Q(h)

C ), key (K(h)
C ) and value

(V (h)
C ) are respectively computed as follows.

Q(h)
C =

(
W QC

h

)⊺
Ẽq(t −1) (4.8)

K(h)
C =

(
W KC

h

)⊺
r̃I(t −1) (4.9)

V (h)
C =

(
WVC

h

)⊺
Ẽq(t −1) (4.10)

Here, W QC
h ∈ Rdm×dKQ , W KC

h ∈ Rdm×dKQ and WVC
h ∈ Rdm×dKV are linear transforma-

tions. Similarly, for cross-modal question attention, the query is obtained from self-
attended question embeddings. While the keys and values are obtained from self-
attended image embeddings. These queries, keys and values are similarly processed
following Equations 4.6 and 4.7 to obtain the multi-head attention. This is fed to fully
connected layers with ReLU, dropout, skip connections and layer normalization. The
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Fig. 4.5 Self-attention and Co-attention mechanism overview. Here, EM denotes the
input modality. For self-attention KS, VS, QS are obtained from the same input
modality, while for cross modal attention Q would be from another modality.

output of this network provides the final output of the co-attention module. Figure 4.5
demonstrates the overview of the self-attention and co-attention mechanism.

4.2.4 Cascading & Fusion

A single SCA block comprising of self-attention (intra-modality interaction) and co-
attention (inter-modality interaction) generates an enriched representation (rI(t),Eq(t))
of its input visual and textual features.

Existing works [11][112] suggest the stacking of multiple such blocks to obtain
further fine grained representations. This is accomplished by cascading multiple SCA
block to T stages. Let rI(T ) ∈ Rd×nv and Eq(T ) ∈ Rd×nw be the respective visual and
question representations obtained from the final (T th) SCA block.



The feature representations are obtained by averaging the attended embeddings of
two modalities. So, the final visual embedding I f is obtained as follows.

I f =
1
nv

nv

∑
i=1

rI(T )[:, i] (4.11)

Similarly, the question encoding Q f is evaluated in the following manner.

Q f =
1

nw

nw

∑
j=1

Eq(T )[:, j] (4.12)

The unified multimodal representation F ∈ Rd×1 is obtained by fusing I f and Q f

through element-wise multiplication.

F = I f ⊙Q f (4.13)

The fused embedding F is fed to a fully connected network for answer prediction.

4.2.5 Answer Prediction

The fused embedding F is fed to fully connected network with single hidden layer of
dimension dhp. The number of labels at the output layer is nc (nc =| A |). The output
answer probability vector â is predicted as follows.

â = FCNet
(
F;dhp;nc

)
(4.14)

4.2.6 Model Learning

Let, a be the ground-truth answer corresponding to the input image-question pair
(I,q). An one-hot-encoded vector ã ∈ {0,1}nc is constructed as a target prediction
corresponding to the ground-truth answer a. This model uses cross-entropy loss for
answer prediction and is defined as

Lc(I,q,a) =−
nc

∑
j=1

ã[ j]log(â[ j]) (4.15)

The combined set of parameters for proposed model includes the ones for feature
extraction, blocks of dense attention and fusion mechanism.



Table 4.1 Category-wise comparison of CSCA with previous state-of-the-art methods
on the TDIUC dataset

Question Type SAN RAU MCB QTA BAN CSCA
[11] [1] [36] [16] [61]

Scene Recognition 92.3 93.96 93.06 93.80 93.1 94.48
Sport Recognition 95.5 93.47 92.77 95.55 95.7 95.85
Color Attributes 60.9 66.86 68.54 60.16 67.5 75.51
Other Attributes 46.2 56.49 56.72 54.36 53.2 60.89
Activity Recognition 51.40 51.60 52.35 60.10 54.0 61.00
Positional Reasoning 27.9 35.26 35.40 34.71 27.9 42.14
Object Recognition 87.50 86.11 85.54 86.98 87.5 89.11
Absurd 93.4 96.08 84.82 100.0 94.47 97.28
Utility & Affordance 26.3 31.58 35.09 31.48 24.0 40.35
Object Presence 92.4 94.38 93.64 94.55 95.1 96.34
Counting 52.1 48.43 51.01 53.25 53.9 60.70
Sentiment Und. 53.6 60.09 66.25 64.38 58.7 67.19
Overall Accuracy 82.0 84.26 81.86 85.03 85.5 88.12
Harmonic Mean 53.7 59.00 60.47 60.08 54.9 67.05
Arithmetic Mean 65.0 67.81 67.90 69.11 67.4 73.34

Table 4.2 Comparing Overall Accuracy of CSCA for TDIUC dataset

Model Overall Accuracy Arithmetic Mean
BTUP[12] 82.91 68.82
QCG[71] 82.05 65.67
BAN2-CTI[62] 87.00 72.5
DFAF[14] 85.55 NA
RAMEN[31] 86.86 72.52
MLIN[15] 87.60 NA
CSCA 88.12 73.34

Table 4.3 Performance of CSCA on TDIUC data (except Absurd category samples)
trained without ‘Absurd’ Category samples

Metrics MCB QTA BAN BAN2-CTI CSCA
[36] [16] [61] [62]

Overall Accuracy 78.06 80.95 81.9 85.0 85.30
Arithmetic-MPT 66.07 66.88 64.6 70.6 71.21
Harmonic-MPT 55.43 58.82 52.8 63.8 65.40



4.3 Results and Discussion

The proposed approach of CSCA-VQA is benchmarked on the VQA2.0 and TDIUC
datasets. This section presents the experimental setup details (Sub-section 4.3.1), quan-
titative analysis (Sub-section 4.3.2), basic analysis (Sub-section 4.3.3), ablation studies
(Sub-section 4.3.4), and qualitative results (Sub-section 4.3.5) of the experiments.

4.3.1 Implementation Details

For visual feature representation, nv = 36 (for TDIUC) and nv = 100 (for VQA2.0)
image regions are extracted. Dimensions of each image region feature is taken as
dv = 2048. The question length set to nw = 14 words by trimming or padding (as
necessary). The GloVe word embeddings of dw = 300 dimensions are considered. The
hidden space dimensions are kept as: d = 512, dKQ = 64. For multi-head attention,
nh = 8 number of heads are used. Model is trained for 15 epochs with batch size of 64
samples for experiments and analysis. The number of hidden layer nodes of the answer
prediction sub-system is set to dhp = 1024. The Adamax optimizer [117] is used with
a decaying step learning rate. The initial learning rate is set to 0.002 and it decays by
0.1 after every 5 epochs. The proposed model is built on PyTorch framework and is
trained on NVIDIA-GTX 1080 GPU.

4.3.2 Quantitative Results

Overall Performance & Category-wise Performance Comparison on TDIUC
Dataset – Tables 4.1 and 4.2 present the respective class-wise and overall performance
for the TDIUC dataset. In terms of the overall accuracy, Arithmetic-MPT (AMPT)
and Harmonic-MPT (HMPT) measures, the proposed model CSCA exhibits better
performance compared to most of the baseline methods. Also, in terms of class-wise
accuracy, CSCA leads in all except one class. A significant relative gain of 12.6% is
observed compared to the next best performing model for the ‘Counting’ category of
questions. Table 4.3 presents the results for different models trained ‘Without Absurd’
category of questions. It is observed that CSCA performs better than the existing ones
for all three defined evaluation metrics.

Overall Performance & Category-wise Performance Comparison on VQA2.0
Dataset – Table 4.4 demonstrates the results on test-dev and test-std splits of the
VQA2.0 dataset. Performance of the proposed model CSCA is comparable with that of
the best among the existing methods. The models LXMERT [68], ViLBERT [69] are
pretrained for multiple vision and language based tasks and are fine-tuned for VQA.



Here, CSCA has obtained 67.36% accuracy on the validation set. This is around 1%
improvement over the best performance among the existing methods.

Table 4.4 Model performance on VQA 2.0 dataset: Validation, Test-Dev & Test-Std
splits. CSCA is compared with several state-of-the-art methods including
Fusion based, Visual Attention and Dense Attention based methods (sepa-
rated by horizontal lines).

Methods Val Test-Dev Test-Std

Overall Yes / No Number Other Overall Overall
MCB [35] 59.14 78.46 38.28 57.80 62.27 53.36
MLB [37] 62.98 83.58 44.92 56.34 66.27 66.62
MUTAN [13] 62.71 82.88 44.54 56.50 66.01 66.38
MFH [39] 62.98 84.27 49.56 59.89 68.76 –
BLOCK [40] 64.91 83.14 51.62 58.97 68.09 68.41
SAN [11] 61.70 78.40 40.71 54.36 61.70 –
BTUP [12] 63.20 81.82 44.21 56.05 65.32 65.67
BAN [61] 65.81 82.16 45.45 55.70 64.30 –
v-VRANet [118] – 83.31 45.51 58.41 67.20 67.34
ALMA [119] – 84.62 47.08 58.24 68.12 66.62
ODA [120] 64.23 83.73 47.02 56.57 66.67 66.87
BAN2-CTI [62] 66.00 – – – – 67.4
CRANet [121] – 83.31 45.51 58.41 67.20 67.34
CoR [57] 65.14 84.98 47.19 58.64 68.19 68.59
MUREL [73] 65.14 84.77 49.84 57.85 68.03 68.41
DFAF [14] 66.66 86.09 53.32 60.49 70.22 70.34
MLIN [15] 66.53 85.96 52.93 60.40 70.18 70.28
LXMERT [68] – – – – – 72.5
ViLBERT [69] – 70.55 70.92
CSCA 67.36 86.57 53.58 61.06 70.72 71.04

4.3.3 Basic Analysis

Effect of Training Data Size on Performance – An analysis is performed to observe
the effect of the variation of training dataset size on model performance. The primary
objective of this experiment was to ascertain whether a model trained on a smaller
dataset can provide similar performance as the one learned from the complete set.
To explore this, the model is trained with four different datasets obtained from the
original VQA2.0 dataset. The first three datasets are obtained by random shuffling
of all samples of the VQA2.0 dataset followed by the extraction of 25%, 50% and
75% samples. The fourth one is the complete VQA2.0 dataset (i.e. 100%). Other
experimental setups like hidden dimension, number of answer classes are kept similar
to the original setup for all variants of the dataset. The Epoch-wise performances
for the four different datasets are shown in Figure 4.6a. As expected, the model
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Fig. 4.6 Illustrating the learning curves on training datasets formed with different
amounts of instances from VQA2.0. (a) Performance on validation set of
VQA2.0 with respect to the number of epochs. (b) Overall accuracy for
VQA2.0 dataset with different proportion of the training data.

performance improved with an increase in training dataset size. It can be observed that
in all four settings, the model performance evolves over a different number of epochs
in a similar fashion. However, Figure 4.6b indicates that the relative gain achieved by
increasing the training dataset size from 25% to 50% is significant compared to that
by increasing from 50% to 75% or 75% to 100%. This observation may be attributed
to the fact that in a collection of randomly shuffled datasets, not many novel instances
were encountered during the subsequent increase of the training data.

Effect of Number of SCA Blocks – In one pass, it is difficult for a model to grasp
all relevant information through a representation. Thus, attention blocks in cascade
extract the fine-grained information and pass it on to the next one for further refinement.
A set of experiments are performed to identify the optimal number of blocks in the
cascade. Additionally, the effect of different independent attention mechanisms (SA
only, CA only, SCA) for answer prediction is also analyzed. In Figure 4.7a, overall
performance for validation split of VQA2.0 dataset is given with respect to varying
number of blocks. Figure 4.7b shows the parameter counts with respect to the number
of blocks. As per expectation, it is observed that the models perform poorly with single
attention blocks (SA only, CA only, SCA). However, the performance is observed to
rise only up to four number of blocks. Increasing the number of blocks beyond four
does not lead to any further performance improvement. However, adding more blocks
also lead to an increase in the number of model parameters (Figure 4.7b). Furthermore,
one can observe that only CA module can perform better than using only the SA
module. This is as per the expectation. Similarly, Figure 4.8 shows that the model
performance keeps improving until the fourth SCA block for the TDIUC dataset. The
model performance starts deteriorating with a further increase in the number of blocks.
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Fig. 4.7 Number of attention blocks incorporated. (a) Validation accuracy for VQA2.0
‘val’ split with respect to attention blocks. (b) Parameter counts with respect
to attention blocks

4.3.4 Ablation Analysis

The proposed model performs self-attention on the two modalities to obtain intra-
modality correlated features. Then the co-attention module uses respective representa-
tions of the two modalities to obtain cross-modality correlated features by performing
attention for one modality in the context of another. In this ablation analysis, we exam-
ine the impact of individual attention module in various combinations to understand
their importance. We also analyze the set of correct predictions obtained in these
settings.
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Fig. 4.8 Validation Accuracy and Parameter Count (in Millions) for TDIUC dataset
with respect to the number of SCA blocks incorporated in the VQA model.

Table 4.5 and 4.6 present the results of ablation analysis experiments in terms of
performance and complexity. The complexity is expressed in terms of the number
of model parameters. The first row of the table shows the model performance when
neither of the attention is incorporated. The features for both modalities are fused



Table 4.5 Evaluating model performance on VQA2.0 dataset to investigate the effect
of different basic attention modules of the proposed model

SA CA Yes / No Number Other Overall Parameter
Accuracy (in Millions)

✗ ✗ 69.95 36.42 50.19 55.80 22
✓ ✗ 79.08 40.75 49.96 59.69 15
✗ ✓ 81.17 44.63 56.34 64.13 25
✓ ✓ 84.92 49.51 58.71 67.36 42

Table 4.6 Evaluating model performance on TDIUC dataset to investigate the effect of
number of attention blocks and self-attention & cross attention.

SA CA Overall Parameter
Accuracy (in Millions)

✗ ✗ 69.18 7
✗ ✓ 70,46 21
✓ ✗ 87.42 25
✓ ✓ 88.12 36

directly via element-wise multiplication without applying self- or co-attention. Second
row shows the performance when only self-attention (SA only) is incorporated on both
modalities and answer prediction is based on the fused embedding of the self-attended
representations of the individual modalities. Here, the fused representation is obtained
via element-wise multiplication. Third row shows the results when only co-attention
(CA only) is incorporated on image and question in the context of the other. The last
row shows the results from the proposed model that comprises of both self-attention
and co-attention in cascade (SCA).

As per expectation, the model without any attention mechanism provides the low-
est performance (first row). The “SA only” model provides lower performance as it
lacks the interaction of two modalities and learns a comparatively poor representation
(second row). Co-attention is the crucial component for multi-modality that is found
to perform better than self-attention. In terms of computational complexity, a simple
fusion-based model uses the least number of parameters, while the proposed model
(SCA) requires the highest number of parameters. However, the performance improve-
ment, especially for VQA2.0 dataset, overcomes the complexity issue. We observe
that the change in model performance is similar for both datasets in this analysis.

Figure 4.9 shows the model’s performance over various attention mechanisms
for the different types of questions category on VQA2.0 dataset. The following are
observed from the results for the ‘Number’ category of questions. While using the
SA only and CA only blocks, the respective models show the overall performances
of 65% and 73%. Models using SA and CA attention individually predicts 7% of
samples correctly that are not correctly classified by any of the other models. Similarly,
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Fig. 4.9 SCA: Self-Attention & Co-attention, SA: Only self-attention is applied on
text and visual features, CA: Cross-Modality Attention on text as well as on
visual features guided by each other.

the model using SCA block classifies 12% of samples correctly that are not correctly
classified either by the models using SA or CA only. Thus, the models using SCA
blocks achieved the best performance. The same pattern was observed over the other
question types i.e., ‘Yes/No’ and ‘Other’. The detailed result for all the question types
are shown in figure 4.9.

4.3.5 Qualitative Results

The qualitative results are presented in Figure 4.10 to demonstrate the efficacy of
the proposed model. For this, two salient regions of a given image with the highest
attention scores are highlighted. These are the attention scores obtained after cascading
T = 4 SCA blocks. The question words that obtain the highest attention scores are also
highlighted. As evident from Figure 4.10a, the proposed model CSCA is able to focus
on relevant image regions and question words. The top-2 salient regions corresponding
to the binary question “Are there any cows in the picture?" are the ones that capture
the cows and hence, the model responds by the answer ‘Yes’. Similarly, Figures 4.10b,
4.10c, 4.10d, 4.10e, 4.10f, 4.10g, 4.10h, 4.10i, 4.10j, 4.10k, 4.10l show that the
model is trying to identify the salient image regions and relevant question words to
predict the appropriate answer.

However, the model made errors as well. One of the reasons was incorrect attention
to image regions. As shown in Figure 4.11a, the model’s focus is primarily on the
position from where it seems like this room is a kitchen. If the attention is given to
other regions, the answer will likely change to ‘living room’. In 4.11b for question
‘What color is the wall in back of the desk ?’, the model focuses on the other side of the



(a) Q. Are there
any cows in the
picture ?
Ans: Yes ✔

(0.59, 0.21)
GT: Yes

(b) Q. What shape
is the stop sign
?
Ans: Octagon
✔(0.85, 0.15)
GT: Octagon

(c) Q. How many
potted plants ?

Ans: 2
✔ (0.80, 0.17)
GT: 2

(d) Q. What is the
color of the
ground ?
Ans: White ✔

(0.22, 0.22)
GT: White

(e) Q. What is the
lady doing ?

Ans:Sitting ✔

(0.78, 0.18)
GT: Sitting

(f) Q. What is the
weather like ?

Ans: Cloudy
✔ (0.37, 0.28)
GT: Cloudy

(g) Q. What colors
are the chair ?

Ans: Brown
✔ (0.78, 0.18)
GT: Brown

(h) Q. Are there
any bottles in
the photo ?
Ans: Yes ✔

(0.43, 0.25)
GT: Yes

(i) Q. How many
horses are
there?
Ans:1 ✔ (0.31,
0.25)
GT: 1

(j) Q. Is there any
food in the
photo?
Ans: Yes ✔

(0.53, 0.23)
GT: Yes

(k) Q. Are there
any umbrellas
in the photo?
Ans: Yes ✔

(0.32, 0.15)
GT: Yes

(l) Q. Is there a
horse in the
photo ?
Ans: Yes ✔

(0.41, 0.19)
GT: Yes

Fig. 4.10 Qualitative results for our proposed method CSCA. Attention for image
obtained with cascade of T = 4 SCA blocks is presented. (top1, top2)
attention score values correspond to the top two attention weight obtained
for top-2 salient regions, that are relevant to infer the answer. The question
words shown in blue are the ones that get the highest attention score.



desk instead of the back. The predicted answer is ‘green’, the color on the side-wall of
the desk.

(a) Q. What room is shown in the pic-
ture ?
Ans: Kitchen ✗ (0.48, 0.13)
GT: Living Room

(b) Q. What color is the wall in back
of the desk ?
Ans: Green ✗ (0.79, 0.15)
GT: Gray

Fig. 4.11 Failure cases where wrong attention leads to incorrect answer prediction.

Attention Map Visualization – Consider the image-question pair (I,q) shown in
Figure 5.7(a). The attention maps obtained from the self- and cross-attention modules
of the first (SCA(1)) and final SCA block (SCA(4)) are visualized in Figures 4.12 – 4.13.
Figure 4.12a shows salient regions in context of text semantics. Figures 4.12b, 4.12c
show the Question-on-Question (QoQ) self-attention map for the question obtained
from the SA modules associated with q in SCA(1) and SCA(4) respectively. It can be
observed that after SCA(1), the self-attention map consider most words in the question.
However, after SCA(4), the model is seen to focus on more relevant words like ‘what’,
‘large’, ‘background’ and ‘furniture’, while the attention on remaining words reduces.
Figures 4.13a, 4.13b show the Question-on-Image (QoI) cross-attention map obtained

(a) (b) (c)

Fig. 4.12 Attention of Question-on-Question (QoQ) as output of SA module (associ-
ated with question) of (a) Bounding box visualization (b) first SCA block
SCA(1), and (c) final SCA block SCA(4). Note the differential attention
values and corresponding changes in correlation between relevant word pairs
like (what, furniture), (the, furniture), (background, of ) etc. Here, Dark color
signifies higher attention value.



(a) (b)

Fig. 4.13 Attention Map Visualization for (I,q) pair of Figure 5.7(a): Attention of
Question-on-Image (QoI) as output of CA module (associated with image)
of (a) first SCA block SCA(1), and (b) final SCA block SCA(4). Here, Dark
color signifies higher attention.

from the CA modules associated with I in SCA(1) and SCA(4) respectively. The
figure-4.13a and 4.13b shows the cross-attention using the question word to the image
region. The attention map obtained after SCA(1) shows a poor attention distribution
(Figure 4.13a). However, this significantly improves at the output of the CA module
of last block SCA(4) (Figure 4.13b). The correlations between image-regions and
question-words are represented by this attention map. It is observed that specific
words like large, furniture, background have developed higher correlations with few
most semantically relevant regions e.g., 9,11. Also, the remaining image-regions and
question-words have very low correlation and they mostly do not contribute to the final
joint embedding.

4.4 Discussions

This chapter presented a VQA model that incorporated a dense attention mechanism to
extract informative features from the input data. The dense attention mechanism was
achieved by exploiting both self-attention and co-attention. This enabled the model to
capture both the intra-modality and cross-modality interactions of the input features.
The self-attention mechanism allowed the model to obtain improved representations
within a single modality. For instance, in the case of an image, a salient region
interacts with every other region, and the final representation inherits the contextual
information for all regions. Similarly, for an input question, self-attention provides
a representation of every single word, thereby capturing the contextual information
for other words as well. The proposed model also utilized cross-modal interaction
between two modalities, which was further strengthened by self-attention of the two
modalities. Attention blocks were cascaded multiple times to facilitate refined cues of



visual and textual features, enhancing the model’s ability to extract more informative
features from the input data. The model’s effectiveness was confirmed through detailed
experiments and analysis performed on two benchmark VQA datasets. The results
demonstrated that the proposed dense attention-based VQA model outperformed
several state-of-the-art VQA models, thereby achieving significant improvements in
the accuracy.

In the next chapter, the VQA problem is approached by leveraging the prior ques-
tion category information associated with every image-question pair. This information
is utilized to reduce the search space for answer classification. Instead of classifying
the answer from a larger space, it is predicted from a smaller set partitioned based on
the question category information. This approach aims to improve the efficiency of
the VQA model and reduce the computational overhead of the classification process.



Chapter 5

Dual Attention and Question
Categorization based Visual Question
Answering

Chapter Highlights

• The available VQA datasets have question category information associated with
each image, question, answer triplet. However, existing works in the literature
rarely used this information.

• Inspired from human behavior of question answering, this chapter proposes a
novel architecture for VQA that exploits the question category information.

• Additionaly, an improved feature representation is obtained by dual attention.

• Extensive Experiments are performed on two benchmark VQA datasets, viz.,
TDIUC and VQA2.0 to demonstrate the efficacy of the proposal in terms of
Overall Performance and Question Category-wise Performance.

• Publications related to this chapter are as follows:
1. Aakansha Mishra, Ashish Anand, Prithwijit Guha, CQ-VQA: Visual Ques-

tion Answering on Categorized Questions. In Proceedings of International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.

2. Aakansha Mishra, Ashish Anand, Prithwijit Guha, Dual Attention and
Question Categorization based Visual Question Answering, IEEE Transac-
tion on Artificial Intelligence (TAI), vol. 4(1), pp. 81–91, 2022

5.1 Introduction

Attention mechanism has played a significant role in improving the VQA model per-
formance. Initial VQA models adopting attention mechanism [6, 11–18, 97] focused



on finding relevant regions in image pertaining to the given question. Attention on
image regions using textual features has become a default component of VQA models.
However, recent studies [54][49][122][112] have indicated that image conditioned
attention on question further helps models obtain improved question representation.
Thus, to obtain an enriched representation with cross-modality interactions, dual
attention mechanism is incorporated with the text and image modalities.

Furthermore, some studies [16][123] indicate that reducing the answer search
space with the help of Question Categorizer helps in performance improvement. Such
an approach is motivated by the general human behaviour for answering a question.
For example, consider the input question “What is the color of grass?". Realizing
the fact that the question is about color, helps in simplifying the task in choosing
the answer as a color name. Similarly, a VQA model may first identify the question
category (color, say). Thus, instead of exploring the entire answer space, the question
category information helps the VQA model to focus on a smaller search space (e.g.
answers specific to color category only).

Motivated by the above observations, this chapter proposes the Dual Attention and
Question Categorization based Visual Question Answering system (DAQC-VQA). The
DAQC-VQA combines subsystems for Dual Attention, Question Categorization and
Answer Prediction. Figure 5.1 illustrates the overview of DAQC-VQA. The proposed
model uses a dual attention mechanism to obtain enriched cross-domain textual and
image features at the first stage. The question classifier subsystem uses the fused
features of the two modalities to obtain the question category. Question classification
is followed by an activated answer prediction network corresponding to the predicted
question category.

The key contributions of this work can be summarized as follows.

• Dual Attention – Attention on Image (AoI) and Attention on Question (AoQ) to
obtain an enriched representation of both modalities.

• Question Categorization – Question type identification for answer space reduc-
tion leading to performance improvement in answer prediction.

• Extensive Experiments on two benchmark VQA datasets, viz., TDIUC and
VQA2.0 to demonstrate the efficacy of DAQC-VQA in terms of Overall Perfor-
mance and Question Category-wise Performance.

5.2 Proposed Method

The Visual Question Answering (VQA) system predicts an answer probability vector
â in response to an input image I ∈ I and an associated natural language question



Fig. 5.1 An overview of the proposed DAQC-VQA system. Image and question will
be input to the model. Attention is generated for salient regions of image
in context of question and for each word of question in context of attended
image. On the basis of attended fused representation question category will
be predicted. On the basis of predicted question category, answer will be
classified from the set of answers corresponding to that category.

q ∈ Q. Following recent works [12][2][97][98], this proposal formulates the VQA
task as a classification problem. Here, â is predicted using features of the inputs (I,q).

A pretrained object proposal network (Faster-RCNN [23]) is used to capture the
most prominent regions of the input image I. These region proposals are further
processed by the pretrained ResNet-101 network [19] for visual feature extraction.
Similarly, the GloVe embeddings [29] of the words in q are processed by a LSTM
network for computation of question encoding. Detailed descriptions of visual and
textual feature extraction are provided in the Subsection 3.2.1.

These visual and textual features (or embeddings) are attended to further focus on
the prominent image regions and words in q. This attention mechanism is elaborated
in Subsection 5.2.2. These attended visual and textual features are then fused by
elementwise multiplication to obtain a (multimodal) joint embedding (Subsection
5.2.3). This joint embedding is used further for answer prediction.

Classification of large number of categories (here, the number of answers nc =|A |)
is often considered a hard problem. However, the answer set A can be decomposed
into its subsets by using an additional (and often available) information on question
categories. Instances of such question categories are Yes/No, Color specific, Object
specific, Action specific etc. For example, the Yes/No category questions will have a
two element answer set {yes,no}. Similarly, other question categories will have their
corresponding answer sets of lesser size.



Fig. 5.2 The functional block diagram of DAQC-VQA. Features are extracted from two
input modalities. These feature representations are exploited for generating
attention scores in context of the other modality. AoI represents the Attention-
on-Image module based on LSTM based question encoding. AoQ shows the
Attention-on-Question in context of attended visual representation. FCNetqcs

is the question category classifier. And, FCNet(l)aps represents the lth answer
prediction sub-module, which performs the final answer prediction.

Let qc ∈QC (|QC |= nqc) be the category label of input question q. This proposal
first classifies an input question q to one of these nqc categories. Each question category
corresponds to an answer set Am (∪nqc

m=1Am = A ). The question categorization stage
leads to the selection of one from nqc independent answer prediction subsystems. The
final predicted answer is provided by the selected subsystem.

The components of the VQA system are trained by using the attended features of the
joint visual and textual modalities to minimize loss functions over question categories
and answers for all input pairs (I,q) ∈ I ×Q and corresponding ground-truth pairs
(qc,a) ∈ QC ×A . Figure 5.2 illustrates the functional block diagram of DAQC-VQA.
This consists of the following subsystems – (a) visual and (b) textual feature extraction;
attention mechanism for (c) image and (d) text embeddings; (e) feature fusion; (f)
question categorization, and (g) answer prediction. These subsystems are detailed in
the following subsections.

5.2.1 Feature Extraction

Visual features (rI) are extracted by the process detailed in section 3.2.1 and are given
as follows

rI = [r1, . . .ri, . . .rnv ] , ∀ri ∈ Rdv×1 (5.1)

where ri is the embedding of the ith (i = 1, . . .nv) image region.



Textual features (Eq) are obtained as defined in 3.2.1 and are given as follows

Eq = [eq0, . . .eq j, . . .eqnw
] & ∀eq j ∈ Rdw×1 (5.2)

A question encoding qe ∈ Rdq×1 is further obtained by processing Eq by a LSTM
network LST MQ.

5.2.2 Attention Mechanism

DAQC-VQA exploits dual attention on the following two modalities. These are
Attention on Image (AoI) and Attention on Question (AoQ), and are discussed as
follows.
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Fig. 5.3 Block diagram for demonstrating the Attention on Image guided by question.

Attention on Image (AoI) signifies the focus on important image regions with
respect to the words in the question. The task of this subsystem is to compute an
unified and attended visual embedding ωI using the attention scores α

(i)
I ∈ (0,1)

corresponding to each ri (i = 1, . . .nv). Here, a higher value of α
(i)
I indicates a greater

correlation between the ith image region and q. The embedding ωI is obtained as the
attention score weighted sum of the image region embeddings. The unattended visual
features ri and the question encoding qe are first transformed to a dhi dimensional



space followed by a non-linear transformation (Equations 5.3 and 5.4).

r̃i = σ
(

W I
a ri

)
(5.3)

q̃e = σ

(
W Q

a qe

)
(5.4)

Here, r̃i ∈ Rdhi×1 (i = 1, . . .nv) are the transformed visual features, q̃e ∈ Rdhi×1

is the transformed question encoding, and W I
a ∈ Rdhi×dv and W Q

a ∈ Rdhi×dq are the
transformation matrices.

The attended visual features r̃Ii (i = 1, . . .nv) are element-wise multiplied (desig-
nated by ⊙) with q̃e to produce intermediate embeddings, say U = [u1, . . .ui, . . .unv ].
The attention scores αI = [α

(1)
I , . . .α

(i)
I , . . .α

(nv)
I ] are obtained by linearly transforming

U by using the parameter vector W A
a ∈ R1×dhi (Equations 5.5 and 5.6).

ui = r̃Ii ⊙ q̃e (5.5)

αI = SoftMax
(

W A
a U

)
(5.6)

The parameters of W I
a , W Q

a and W A
a are learned during overall model training. The final

unified and attended visual feature representation ωI is obtained as the attention score
weighted sum of the nv attended visual embeddings (Equation 5.7). The functional
block diagram for obtaining attended visual representation is presented in Figure 5.3.

ωI =
nv

∑
i=1

α
(i)
I × ri (5.7)

The Attention on Question (AoQ) subsystem aims at generating attended question
embedding by processing the attended visual representation ωI. Each word embedding
eq j ( j = 1, . . .nw) is assigned a weight based on ωI. A higher attention score is
attributed to a word that is more relevant to the image semantics. The primarily
attended visual embedding ωI and the word embeddings eq j; ( j = 1 . . .nw are non-
linearly transformed to a dhq-dimensional space (Equations 5.8 and 5.9).

eq j = σ

(
UQ

a eq j

)
(5.8)

ω = σ
(

U I
a ωI

)
(5.9)

Here, eq j ∈ Rdhq×1 ( j = 1, . . .nw) are the transformed word embeddings, ω ∈
Rdhq×1 is the transformed visual representation, and UQ

a ∈ Rdhq×nw and U I
a ∈ Rdhq×dv

are the transformation matrices.

The transformed embeddings eq j ( j = 1, . . .nw) and ω are element-wise multiplied
to obtain the intermediate embeddings V =

[
v1, . . .v j, . . .vnw

]
. These are further



transformed to obtain the word-wise attention scores αQ =
[
α
(1)
Q , . . .α

( j)
Q , . . .α

(nw)
Q

]
using the parameter vector UA

a ∈ R1×nw (Equations 5.10 and 5.11).

v j = eq j ⊙ω (5.10)

αQ = SoftMax
(

UA
a V

)
(5.11)

The word embeddings eq j are multiplied with their corresponding attention scores

α
( j)
Q to obtain the attended embeddings eq(a)

j ∈ Rdw×1 ( j = 1, . . .nw). These attended
embeddings Ea

q ∈ Rdw×nw are input to the LSTM network LST Maq to obtain the final
attended question encoding ωQ ∈ Rdq×1 (Equations 5.12, 5.13 and 5.14).

eq(a)
j = α

( j)
Q × eq j (5.12)

Ea
q =

[
eq(a)

1 , . . .eq(a)
j , . . .eq(a)

nw

]
(5.13)

ωQ = LST Maq
(
Ea

q
)

(5.14)

The parameters of UQ
a , U I

a, UA
a and LST Maq are learned during overall model training.
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5.2.3 Fusion

The attended visual (ωI) and textual (ωQ) embeddings are linearly transformed to ωI ∈
Rd f and ωQ ∈ Rd f respectively. The transformed embeddings are fused by element-
wise multiplication to obtain the joint multimodal embedding ωF (Equations 5.17).

ωI = V I
f ωI (5.15)

ωQ = V Q
f ωQ (5.16)

ωF = ωI ⊙ωQ (5.17)

The parameters of the transformation matrices V I
f ∈ Rd f×dv and V Q

f ∈ Rd f×dq are
learned during overall model training. The joint embedding ωF is further used for
question categorization and answer prediction.

5.2.4 Question Category and Answer Prediction

The question classifier subsystem is a single layered feed forward network FCNetqcs

with SoftMax activation function at its output layer containing | QC |= nqc nodes. The
fused embedding ωF is input to FCNetqcs to obtain the predicted question category
vector p̂q ∈ (0,1)nqc as output. The predicted question category q̂c is selected by the
winner-take-all strategy (Equations 5.19).

q̂pc = FCNetqcs ( ωF ) (5.18)

q̂c = argmax
m=1,...nqc

q̂pc[m] (5.19)

This proposal has nqc answer prediction subsystems (APS, henceforth). These APS
are single layered feed-forward networks FCNet(m)

aps (m = 1, . . .nqc). Each network has
soft-max activation function at the output layer containing | Am | nodes. The fused
embedding ωF is input to the APS FCNet(q̂c)

qcs corresponding to the predicted question
category q̂c. This APS produces the predicted answer category vector â(q̂c) ∈ (0,1)|Aq̂c |.
This is considered as the output answer probability vector â.

â(q̂c)
p = FCNet(q̂c)

aps ( ωF ) (5.20)

The networks FCNetqcs and FCNet(m)
aps (m = 1, . . .nqc) are trained using their asso-

ciated loss functions and are described next.



5.2.5 Model Training

The VQA system has the following learnable components – (a) LST MQ in textual
feature extraction subsystem; (b) W I

a , W Q
a and W A

a in attention on image subsystem;
(c) UQ

a , U I
a, UA

a and LST Maq in attention on question subsystem; (d) V I
f , V Q

f in fusion

subsystem; (e) FCNetqcs as question categorization subsystem; and (f) FCNet(m)
aps

(m = 1, . . .nqc) as answer prediction subsystems. The parameters of these VQA system
components are learned in an end-to-end manner using the losses associated with
question categorization and answer prediction.

An one-hot-encoded ground-truth question category vector q̃gc ∈ {0,1}nqc can be
constructed using the knowledge of ground-truth category label qc of input question q.
The cross-entropy loss LQCS is formulated as follows (Equation 5.21).

LQCS =−
nqc

∑
m=1

q̃gc[l] log(q̂pc[l]) (5.21)

Let a be the ground-truth answer corresponding to the input image-question pair
(I,q). The one-hot-encoded ground-truth answer vector ã(m)

g can be formed for every
FCNetaps

(m) (m = 1, . . . ,nqc). Note that, all elements of ã(m)
g are set to zero, if a /∈ Am.

Let, â(m)
p be the answer-vector predicted by FCNet(m)

aps . The cross-entropy loss L
(m)

APS is
formulated as follows.

L
(m)

APS =−
|Am|

∑
l=1

ã(m)
g [l] log

(
â(m)

p [l]
)

(5.22)

The total loss LT is defined as the sum of the losses associated with the question
categorization and answer prediction subsystems and is given by

LT = LQCS +
nqc

∑
m=1

δ [m−qc]L
(m)

APS (5.23)

The gradient of LT is computed and backpropagated to learn the parameters of
the DAQC-VQA components.

5.3 Experiment Design

The proposed approach of DAQC-VQA is benchmarked on the VQA2.0 and TDIUC
dataset. This section presents the baseline methods (Sub-section 5.3.1) and experimen-
tal setup details (Sub-section 5.3.2).



5.3.1 Baseline Methods

The performance of DAQC-VQA is compared against the following baseline methods.

1. Fusion based Methods – Fusion of text and image features play an important
role in VQA performance. The state-of-art VQA models like MCB [35], MLB
[37], MFH [39], MUTAN [13], and BLOCK [40] are chosen as baseline as they
primarily contribute towards the fusion of two modalities.

2. Attention based Methods – The performance of DAQC-VQA against baseline
methods chosen from the following three attention-based categories.

• Visual Attention – SAN [11], BAN [61], BTUP [12], BAN2-CTI [62],
CTDA [116], DoG for VQA [115], QTA [16], and QAA [59] are chosen
as visual attention based baseline VQA methods.

• Co-attention – MUTAN [13] is chosen as the baseline method under the
co-attention category.

• Dense attention – DFAF [14], and MLIN [15] are chosen as dense attention
based baseline VQA methods.

All the chosen baseline methods have been discussed in Chapter 2.

5.3.2 Implementation Details

For all experiments (TDIUC & VQA2.0), nv = 36 region proposals are used for
visual feature extraction. Each region is represented using ResNet-101 embeddings
of dv = 2048 dimensions. Question length is set to nw = 14 words by trimming or
padding (as necessary). Dimension of pretrained GloVe word embedding is kept
as dw = 300. For obtaining LSTM encoding of question, hidden and output layer
dimensions of LST M are set to 1024, i.e., dq = 1024. All hidden layer dimensions
in attention modules are kept as 1024, i.e., dhi = dhq = 1024. Dimension of fused
embedding is also set to d f = 1024. Number of question categories for TDIUC and
VQA2.0 are respectively set to nqc = 12 and nqc = 3. The model is trained for 17
epochs with a batchsize of 512. The Adamax optimizer [117] is used with a decaying
step learning rate. The initial learning rate is set to 0.002 with a decay factor of
0.1 after each 5 epochs. The code of the present implementation is available at -
https://github.com/akkkb/DAQC_VQA.

5.4 Results and Discussions

This section presents the performance comparison of the proposed DAQC-VQA
system with the baseline models (Sub-section 5.4.1). Basic analysis for dataset size

https://github.com/akkkb/DAQC_VQA


and error propagation is presented in Sub-section 5.4.1. An ablation analysis is also
performed to investigate the importance of some of the components of DAQC-VQA
(Sub-section 5.4.1).

Table 5.1 Performance comparison of DAQC-VQA with state-of-the-art in terms
of Category-wise Performance, Overall Accuracy, Arithmetic-MPT and
Harmonic-MPT on TDIUC dataset.

Question Type MCB SAN RAU BAN QTA DAQC-VQA
[35] [11] [1] [61] [16]

Scene Recognition 93.06 92.3 93.96 93.1 93.80 94.18
Sport Recognition 92.77 95.5 93.47 95.7 95.55 95.49
Color Attributes 68.54 60.9 66.86 67.5 60.16 74.27
Other Attributes 56.72 46.2 56.49 53.2 54.36 61.00
Activity Recognition 52.35 51.4 51.60 54.0 60.10 60.22
Positional Reasoning 35.40 27.9 35.26 27.9 34.71 41.44
Object Recognition 85.54 87.5 86.11 87.5 86.98 88.41
Absurd 96.08 84.82 93.4 96.08 100.0 100.0
Utility & Affordance 35.09 26.3 31.58 24.0 31.48 35.67
Object Presence 93.64 92.4 94.38 95.1 94.55 95.53
Counting 51.01 52.1 48.43 53.9 53.25 57.85
Sentiment Und. 66.25 53.6 60.09 58.7 64.38 68.14
Overall Accuracy 81.86 82.3 84.26 85.5 85.03 87.84
Arithmetic-MPT 67.90 65.0 67.81 67.4 69.11 72.68
Harmonic-MPT 60.47 53.7 59.00 54.9 60.08 65.40

5.4.1 Quantitative Results

Question category wise comparison on TDIUC dataset – Table 5.1 compares the
performance of DAQC-VQA on the TDIUC dataset with the other baseline models.
Here we have only compared with the models for which question category wise results
are available on the TDIUC dataset. The first 12 rows tabulate the class-wise accuracy
values for the respective 12 question categories. The last three rows present the
performance in terms of Overall Accuracy, Arithmetic-MPT and Harmonic-MPT [1].

It can be observed that DAQC-VQA outperforms all the chosen baseline mod-
els on all three evaluation metrics. QTA [16] and MCB [35] demonstrated the best
performance among all baseline models in terms of AMPT and HMPT, respectively.
DAQC-VQA obtains relative performance improvements of 5.16% and 8.15% com-
pared to QTA and MCB, respectively.

DAQC-VQA also outperforms other methods in multiple category-wise accuracy
values. For example, notable performance gains of 8.36% and 17.06% are witnessed
for ‘Color’ and ‘Positional Reasoning’ question categories respectively. It is notewor-
thy to mention that most of the baseline models (under comparison) exploit complex



Table 5.2 Comparison of Overall Accuracy of DAQC-VQA with other state-of-the-art
models on TDIUC dataset.

Category Methods Overall Accuracy

FUSION

MLB[37] 83.10
MUTAN[13] 82.70
MFH[39] 84.30
BLOCK[40] 85.96

VISUAL ATTENTION

BTUP[12] 82.91
QCG[71] 82.05
RN[114] 84.61
RAMEN[31] 86.86

CO-ATTENTION
BAN2-CTI[62] 87.0
QAA[59] 84.60

DENSE ATTENTION
DFAF[14] 85.55
MLIN⋆[15] 87.60

CO-ATTENTION DAQC-VQA 87.84

Table 5.3 Comparison for VQA 2.0 validation split

Category Methods Yes / No Number Other Overall

FUSION

MCB[35] 77.37 36.66 51.23 59.14
MLB[37] 81.89 42.97 53.89 62.98
MUTAN[13] 81.09 41.87 54.69 62.71
MFH[39] 61.60

VISUAL ATTENTION

SAN[11] 78.40 40.71 54.36 61.70
RN[114] 80.51 41.92 54.75 62.74
BTUP[12] 80.34 42.80 55.80 63.20
BAN[61] – – – 66.0

CO-ATTENTION

BAN2-CTI[62] – – – 66.00
DoG[115] 82.16 45.45 55.70 64.29
CTDA[116] 81.26 43.24 55.67 63.65
QAA[59] – – – 60.5

DENSE ATTENTION
DFAF[14] – – – 66.21
MLIN⋆[15] – – – 66.18

CO-ATTENTION DAQC-VQA 82.15 43.57 56.39 64.51

and deeper attention networks, while DAQC-VQA employs a comparatively simpler
attention network.

Overall performance comparison on TDIUC dataset – Table 5.2 compares
overall performance of DAQC-VQA with the other baseline models for which question
category-wise results are not available. It can be observed that DAQC-VQA again
obtains the best performance across all the baseline models. Its performance with
MLIN [15] is comparable. However, MLIN incorporates 100 object region proposals
from Faster-RCNN, while DAQC-VQA uses only 36. The DAQC-VQA system has
31M trainable parameters for TDIUC dataset.



Comparative analysis on VQA 2.0 – Table 5.3 compares the performance of
DAQC-VQA with state-of-the-art models on validation split of VQA2.0 dataset. For
this dataset, models employing dense and complex attention mechanisms such as,
DFAF [14], MLIN [15], BAN [61] and BAN2-CTI [62] have obtained the best overall
performance. However, the performance of DAQC-VQA is comparable with other
state-of-the-art models on VQA 2.0 dataset even using significantly lesser number of
parameters than those methods. Table 5.5 compares the number of trainable parameters
with that of some of the existing methods.

Performance of Question Categorization with ACA-VQA & CSCA-VQA –
A new series of experiments were conducted to investigate the impact of question
categorization on multistage attention. In order to achieve this, the fused embedding
(ωF) for the question categorization subsystem (FCNetqcs) and answer prediction
subsystem (FCNetaps) was obtained from the "Aggregated Co-Attention VQA" (ACA-
VQA) model, which was introduced in Chapter 3. The ACA-VQA model with three
stages, stage-wise loss, and unshared answer predictor parameters was found to be the
best-performing model. The embedding was obtained from the highest-performing
ACA-VQA model, and the performance on the TDIUC dataset for three evaluation
metrics is shown in the first row of Table 5.4. Furthermore, question categorization-
based classification was analyzed for the "Cascaded Self- and Co-Attention VQA"
(CSCA-VQA) model (Chapter 4). The results for TDIUC with four blocks of attention
are presented in the second row of Table 5.4.

Table 5.4 Model performance with multistage attention models ACA-VQA 3 and
CSCA-VQA 4 for TDIUC dataset.

Input Overall Accuracy Arithmetic-MPT Harmonic-MPT
ACA-VQA [3] 87.32 70.59 60.20
CSCA-VQA [4] 87.50 70.29 58.16
DAQC-VQA 87.84 72.68 65.40

The results shown in Table 5.4 indicate that the performance of the question
categorization subsystem decreases with the use of multistage attention models. This
suggests that as the attention mechanism becomes more complex and effective, the
categorizer’s performance worsens. In contrast, simpler models with a single stage
attention mechanism tend to perform well with a question categorizer. Based on this
observation, we conducted thorough experiments and analysis on a dual-attention-
based single-stage model, called DAQC-VQA, to assess its effectiveness. By focusing
on a simpler model with only one stage, it is expected to achieve a better balance
between attention and categorization performance.



Table 5.5 Computational Complexity in terms of model parameter count for VQA2.0
dataset.

Model MCB MLB MUTAN MFH BAN DAQC-VQA
[35] [37] [13] [39] [61] (Ours)

Parameter Count 63 25 62 62 76 34
(in Millions)
Accuracy 59.14 62.98 63.61 61.6 66.0 64.51

5.4.2 Basic Analysis

Impact of Training Data Size on Performance – An additional experiment was
performed with varying amount of training instances to obtain the learning curves.
This experiment aimed to analyse the importance of the amount of training examples
in the proposed model. In particular, four datasets were created using 25%, 50%, 75%
and 100% of training samples from the VQA2.0 dataset. In each training dataset, the
original proportions of class-wise answers were maintained. The experimental results
are summarized in Figure 5.5. Figure 5.5a shows the performance on validation set
over the epochs during training. It can be seen that the performance curves are similar
for all the four cases. However, as expected, the performance improves with increasing
training dataset size. The same is reflected in Figure 5.5b in terms of overall accuracy.

Cascading Error Analysis – The proposed model categorizes the input question
first and then selects one (through winner-take-all strategy) of several answer classifier
sub-systems to predict the answer. Thus, question misclassification in the first stage
may lead to wrong answer prediction. The effect of this cascading error is analyzed
(using VQA2.0 dataset) by computing the percentages of answers correctly or wrongly
predicted corresponding to correct (first row) or incorrect (second row) question
categorization. The results of this analysis are shown in Figure 5.6. The accurate
answer prediction rate for for wrong question categorization is 0.17%. This low rate
correct answer prediction is attributed to the limited number of answers that overlap
between different question categories. For example, the question “What material is the
necklace made from?” falls under the category of “attribute” while the question “What
color is the border of the clock?” falls under the category of “color”. In both cases, the
correct answer is “Gold”. It is observed that even with incorrect question categorization,
only 0.69% of the answers are wrongly predicted. This is quite low compared to the
answer prediction error even with correct question categorization. Thus, in proposed
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Fig. 5.5 Illustrating the learning curves on training datasets formed with different
amounts of instances from VQA2.0. (a) Performance on validation set of
VQA2.0 with respect to number of epochs. (b) Overall accuracy for VQA2.0
dataset with different proportion of training data.

Fig. 5.6 Question Categorizer – Answer Predictor cascade error analysis.

model, the cascading error induced by first stage of question categorization is very
low.

5.4.3 Ablation Analysis

DAQC-VQA employs a dual attention mechanism to encode question and image
representations. These representations of the two modalities can be combined together

Table 5.6 Ablation Analysis I – Comparison of model performance with different
variants of input to Question Classifier for TDIUC dataset.

Input Overall Accuracy Arithmetic-MPT Harmonic-MPT
Q 87.18 69.36 60.97
QA 87.54 70.91 60.30
IA ⊗Q 87.52 72.08 64.45
IA ⊗QA 87.84 72.68 65.40

Table 5.7 Ablation Analysis II – Comparison of model performance with different
variants of input to Question Classifier for VQA2.0 dataset.

Input Yes / No Number Other Overall Accuracy
Q 81.93 42.74 55.78 63.89
QA 81.97 42.09 56.01 63.95
IA ⊗Q 81.99 43.38 56.09 64.15
IA ⊗QA 82.15 43.57 56.39 64.51



Table 5.8 Ablation Analysis III – Performance Analysis by training Without ’Absurd’
category.

Input Overall Accuracy Arithmetic-MPT Harmonic-MPT
Q 84.07 68.16 60.29
QA 84.13 68.76 59.47
IA ⊗Q 83.46 68.69 61.44
IA ⊗QA 84.21 69.05 59.59

Table 5.9 Evaluating model performance on VQA2.0 dataset to investigate the effect
of Dual Attention and Question Categorization.

DA QC Yes / No Number Other Overall Parameter
Accuracy (in Millions)

✗ ✗ 79.08 40.75 49.96 59.69 15
✗ ✓ 79.15 41.73 50.10 59.92 18
✓ ✗ 78.67 40.95 48.30 58.74 28
✓ ✓ 82.15 43.57 56.39 64.51 34

in various ways and subsequently provided as input to the question classifier and
answer prediction subsystems. An ablation analysis is performed to identify a proper
choice of input embedding to question classifier subsystem from the following four
variants.

The First and simplest variant considers only the LSTM encoding of Question
and is indicated by Q. The second variant QA utilizes image to question attention and
considers the question representation encoded with attended word embeddings in the
context of the image.

Both the third and fourth variants use fusion mechanism. In the third variant
(IA ⊗Q), the embedding is obtained by fusion of LSTM encoding of question and
image attended question. Fourth variant, indicated by IA⊗QA, is obtained by the fusion
of attended image and attended question encoding. The results of this ablation analysis
on TDIUC and VQA2.0 datasets are reported in Tables 5.6 and 5.7 respectively.

It is observed that in both cases, the best performances are obtained by using
IA ⊗QA as an input embedding to the question classifier subsystem. However, the
impact of the choice of input embedding is more prominent in the TDIUC dataset than
in VQA2.0.

The effect of language prior is a major issue in VQA where the answer prediction
is dictated by the language bias present in training data [1][6] but not by the visual
content. This phenomenon motivated the second set of ablation analysis experiments
involving the TDIUC dataset. The Absurd category of questions (having no relation
with the image) helps in identifying the language induced bias. These experiments
involve the DAQC-VQA system training Without Absurd category. The results indicate



a drop in the overall model performance when trained without the Absurd category
(Table 5.8). This implies that model learning with the Absurd category indeed helps in
reducing language prior bias.

Another set of ablation analysis is performed to investigate the role of our key
contributions, namely, Dual Attention and Question Categorization. Here, experiments
are performed with models having different combinations of dual attention and question
categorization components and the results are presented in Table 5.9. The performance
of primary model neither deploying dual attention nor question categorization is
shown in first row. This model simply fuses the features of two modalities and
feeds resulting embedding to the classifier for answer prediction. Here, the model
performance is relatively poor. The impact of the question categorization component
was assessed by performing question categorization before passing them to the answer
predictor networks. This was done instead of directly feeding the fused embeddings
to the answer classifier network. An improvement of 1.59% is obtained in overall
performance, thereby showing the efficacy of question categorization module (second
row). Another experiment (third row) presents the role of dual attention (only) in the
model. A fusion based approach is not able to capture the interaction of two modalities.
On the other hand, dual attention provides the features that capture the interaction of
correlated elements of both question and image in a better way. The incorporation
of dual attention gives a significant improvement in the performance. Last row of
table demonstrates the model with both question categorization and dual attention
incorporated in the system. This combination outperforms all the models in terms of
overall accuracy as well as individual class-wise accuracies.

5.4.4 Qualitative Results

The qualitative evaluation of the DAQC-VQA system is performed through the visu-
alization of results (Figure 5.7). The results show the top-2 salient regions and their
attention scores generated by a baseline approach and the AoI module of the DAQC-
VQA system. Here, the visual attention based bottom-up top-down model [12] is
used as baseline. The baseline uses IA ⊗Q fused embedding for answer classification.
These results are demonstrated in figure 5.7 on TDIUC dataset for different categories
like object recognition, activity recognition, object presence and others.

In Figure 5.7a, the visual attention of baseline model focuses on a region that
captures the girl with a higher score. DAQC-VQA has top-2 scores corresponding to
the region that includes the girl’s hands and the food. Similarly, for 5.7c, DAQC-VQA
focuses on the complete picture of food to infer the answer.

However, DAQC-VQA also gets confused for some samples, leading to wrong
inference. For example, in Figure 5.8a, DAQC-VQA assigns highest score to a knife



(a) Q. What is the
girl doing?

Ans: Sit-
ting ✗ (0.2,
0.19)
GT: Eating

(b) Q. What is the
girl doing?

Ans: Eating
✔ (0.27, 0.23)
GT: Eating

(c) Q. What food
is shown in the
photo?
Ans: Sand-
wich✗(0.14,
0.12)
GT: Cake

(d) Q. What food
is shown in the
photo?

Ans: Cake ✔

(0.14, 0.14)
GT: Cake

(e) Q. What food
is shown in the
picture?
Ans: Cake ✗

(0.36, 0.27)
GT: Pizza

(f) Q. What food
is shown in the
picture?
Ans: Pizza ✔

(0.78, 0.17)
GT: Pizza

(g) Q. Are there
any knives in
the photo?
Ans: Yes ✗

(0.24, 0.1)
GT: No

(h) Q. Are there
any knives in
the photo?
Ans: No ✔

(0.52, 0.19)
GT: No

Fig. 5.7 Qualitative results were obtained from DAQC-VQA. The salient regions
corresponding to the Top-2 attention scores are presented (top1, top2). The
left image corresponds to the baseline model (without question classification),
and the right image presents the DAQC-VQA model.

(a) Q. What food is in the photo ?
Ans: Carrot ✗ (0.44, 0.19)
GT: Cake

(b) Q. What vehicle is in the picture ?
Ans: Truck ✗ (0.75, 0.09)
GT: Car

Fig. 5.8 Poor performance cases of DAQC-VQA due to failure in capturing relevant
relations.



that resembles a carrot. Thus, the answer to the question of inferring the food is
wrongly predicted as carrot. Similarly, in Figure. 5.8b the question is on identifying a
vehicle in the scene. However, DAQC-VQA focuses on a truck while the ground-truth
answer is car.

5.5 Discussions

This chapter introduced a novel approach to Visual Question Answering by using Dual
Attention and Question Categorization (DAQC-VQA). The dual attention mechanism
is used to extract richer feature representations for both image and text modalities by
allowing cross-modal interactions. This means that the model attends to both the image
and the question at the same time, allowing for more informative representations to be
extracted. The question categorizer was introduced further to reduce the search space
for answer prediction. By categorizing the input question, the system can identify the
relevant information and focus on answering only the necessary components of the
question. The proposed DAQC-VQA was realized through an end-to-end trainable
system with a joint loss function. This means that the entire model can be trained
in a single step, while improving the overall efficiency of the VQA system. The
DAQC-VQA is validated on two benchmark VQA datasets (TDIUC and VQA2.0) and
compared against several state-of-the-art approaches. The quantitative and qualitative
evaluations demonstrated the competitive and often better performance of DAQC-VQA
compared to the baseline models. Also, it was observed that the question categorizer
performed better with simpler single stage dual attention model compared to the ones
equipped with multiple stages of dense attention mechanism.





Chapter 6

Conclusions and Future Work

This thesis has proposed VQA methods that improve the attention module and thus
extract richer representation for multimodal features. These improved feature represen-
tations are then fused and fed to perform the task of answer classification. Extensive
experiments and analysis are performed on two widely used publicly available VQA
datasets i.e., TDIUC and VQA2.0.

There are three main contributions of the thesis. In the first contribution (presented
in Chapter 3), a multistage co-attention based VQA (ACA) model is proposed. Atten-
tion on visual and textual modality is applied in alternate manner in context of each
other. Attention aggregation is performed to preserve the attention for corresponding
modality from each stage. Results and analysis demonstrated the effectiveness of
utilizing multistage attention, aggregation and stage-wise loss in the model.

Chapter 4 presents the second contribution, where the self-attention mechanism
based architecture (CSCA) is proposed along with cross-modality attention to encode
the fine grained information from dual modality. It was observed that cascading of
self- and co-attention blocks multiple times helped in facilitating model’s ability to
extract informative features from the input data.

Finally, in Chapter 5, a novel architecture (DAQC) is presented that solves the VQA
problem by splitting it into two sub-problems. First, the input question category is
identified and accordingly an answer prediction sub-system is activated. This splitting
helps in reducing the answer search space for final answer classification. Along-with
this a dual attention mechanism is proposed to obtain better feature representation
of visual and textual features. Both qualitative and quantitative results on TDIUC
and VQA2.0 datasets demonstrated the competitive and often better performance of
DAQC-VQA compared to the baseline models.

Table 6.1 presents the performance of the three models, namely ACA-VQA, CSCA-
VQA, and DAQC-VQA, on the VQA2.0 and TDIUC datasets. Additionally, the table



shows the parameter count for each model. The final version of the ACA-VQA model
for VQA2.0 consists of two stages, while for TDIUC, it has three stages. Each stage has
its own loss, shared linear transformation parameters, and unshared answer predictors.
The final CSCA model for both datasets has four stages and performs the best among
all three contributed models, outperforming the others on two datasets.

Table 6.1 ACA-VQA, CSCA-VQA and DAQC-VQA model performance for VQA2.0
and TDIUC dataset

Methods VQA2.0 TDIUC

Overall Param Count A-MPT H-MPT Overall Param Count
Accuracy (in Millions) Accuracy (in Millions)

ACA-VQA [3] 64.95 32 72.40 66.10 86.82 30
CSCA-VQA [4] 67.36 43 73.34 67.05 88.12 29
DAQC-VQA [5] 64.51 34 72.68 65.40 87.84 31

Based on the results obtained across the models, the thesis makes the following
conclusions:

• Co-attention applied in multiple stages helps in obtaining improved feature
representation.

• Co-attention coupled with self-attention further helps in refining feature repre-
sentation which in turn leads to improved performance for the VQA task.

• Finally, a relatively simpler model relying on partitioned answer spaces using
question-category information and a single stage co-attention can also achieve
significant performance.

6.1 Scope of Thesis

In this section a discussion is presented to encompass the evolving research landscape,
which notably includes the dynamic realm of LLMs and and VLMs.

This thesis takes on a crucial role by focusing on the enhancement of Visual
Question Answering (VQA) as a classification task. Leveraging attention mechanisms
across dual modalities, this work contributes innovative approaches to VQA, aiming
to augment the performance of existing models. The implications of this thesis
extend beyond the realm of VQA. Attention mechanisms serve as a powerful tool for
modeling interactions between visual and textual data. The novel attention mechanisms
introduced in this thesis hold the potential for adaptation in a wide range of cross-modal
tasks, including image captioning, content-based image retrieval, and autonomous
navigation systems. Additionally, the thesis addresses the nuances of specific question
types, such as recognition, counting, and sentiment understanding, shedding light on



the challenges posed by these questions. The methodologies developed here can serve
as valuable reference points for researchers seeking to improve the performance of
VLMs in handling diverse and complex queries.

VLMs [124][125][126][127][128][129] are known for their impressive perfor-
mance for multimodal tasks, but they come with significant complexity as well as
are trained on billions of data samples. It requires huge computational resources to
train these models. As the current research direction leans towards developing LLMs
and VLMs, these models have grown substantially in size and complexity, which
poses a challenge when it comes to deploying them on edge devices due to their high
computational demands.

To address this challenge, the methods proposed in this thesis can be leveraged
to transfer the knowledge embedded in VLMs to smaller, more lightweight models.
This transfer of knowledge has the potential to significantly enhance the efficiency
of incorporating VQA models into real-world applications. By doing so, we can
bridge the gap between the powerful capabilities of VLMs and the practical constraints
of deploying models on resource-constrained edge devices, making advanced VQA
systems more accessible and usable in a wide range of real-life scenarios.

6.2 Potential Future Research Works

Within the scope of this thesis, the goal revolves around solving the VQA as a classifi-
cation task. To this end, significant contributions are made through the introduction of
various attention mechanisms that operate across dual modalities. Further these mech-
anisms are unified with VQA pipeline in a way that they result in a better architecture
leading to competitive performance with similar class of state of the art methods.

However, the proposed approaches faced certain challenges and have limitations.
Following discussion highlights some of the prominent challenges, that can be ad-
dressed in the future work.

– The methodologies put forth in the thesis exhibit performance limitations when
confronted with questions that necessitate advanced reasoning capabilities.
The current methods lack the explicit means to engage in relation reasoning,
which, if incorporated, has the potential to significantly augment the efficiency
and accuracy of the models. This is particularly required in scenarios where
questions demand complex relational understanding, such as identifying intricate
interactions between entities or attributes.

– One drawback of the current model is its susceptibility to performance degra-
dation in the presence of noisy input data. The absence of mechanisms to



effectively handle noisy data impedes the model’s ability to maintain consis-
tent performance levels across various real-world scenarios. So, improving the
model’s ability to deal with noisy information is a crucial way to make it better.
By equipping the model with robust preprocessing techniques, noise detection
algorithms, or adaptive learning strategies, its capacity to filter out and mitigate
the impact of noisy inputs can be significantly bolstered.

– Another scope for improvement could involve the incorporation of contextual
embeddings and domain-specific knowledge to enhance the model’s understand-
ing and performance. The current model might lack the capacity to effectively
leverage contextual cues and domain-specific information present in the ques-
tions, answers, and images. By integrating pre-trained contextual embeddings,
such as BERT (Bidirectional Encoder Representations from Transformers) or
GPT (Generative Pre-trained Transformer), the model can better grasp the nu-
anced semantics of the text and images. These embeddings capture contextual
relationships between words and phrases, enabling the model to better under-
stand the implicit connections in complex questions and answers.

– Harnessing the power of VLMs: This works did not exploit VLMs. Future
works can leverage VLMs to make smaller and lightweight models. That will
significantly enhance the efficiency of incorporating VQA models into real-
world applications.

In addition to the above-mentioned future work directions, the following problems
can also be considered. These problems were not particularly addressed in this work.

1. Multilingual Datasets in Indian Context: Existing and widely available
datasets for VQA are in English language. Also, the associated images are
mostly cast in the western context. To make it more relevant for real life pur-
pose in Indian context, it would be better to develop multilingual datatsets with
images cast in Indian context.

2. Model Compression for Edge Devices: For real life applications, VQA mod-
els should be compressed so that it could be deployed on edge devices like
smartphones, tablets or other low power embedded processors. Accordingly, the
models need to be compressed to enable them to infer on such devices.

3. Multimodal Dialog: One round of communication may not suffice the require-
ments of real life applications. Accordingly, datasets and models should be
developed to enable text or multimodal dialog around images and videos.

4. Unseen Data Inference: Availability of labeled data is always a concern for
ML tasks. Models should be proposed that could perform well even there is
unavailability of annotated data in hand. To develop the VQA model that is
capable to infer answer for unseen objects or question could make VQA ready
for more general purpose.
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