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Abstract

In Software Defined Networks, where the network control plane can be programmed by

updating switch rules, consistently updating switches is a challenging problem. Updates

can cause temporary inconsistencies in the network, leading to packet losses, packet loops,

inconsistent application of network policies and corruption of states in stateful nodes, re-

sulting in safety violations, flow failures, measurement errors and lowering of throughput.

If a packet (flow) is forwarded either according to the old version of rules or the new ver-

sion of rules but not a combination of both during an update, the property of Per-Packet

Consistency, abbreviated as PPC (Per Flow Consistency, abbreviated as PFC) is pre-

served. An update that preserves PPC or PFC does not cause temporary inconsistencies.

This thesis proposes update algorithms that preserve PPC and PFC.

The ratio of the number of switches where rule updates need to be made to the

number of switches actually modified for the update is called Footprint Proportional-

ity (FP). Our solutions progressively increase FP to 1 and the number of concurrent

non-conflicting updates to an unlimited value, while always providing an all-or-nothing

semantics and supporting wildcarded rules. They work irrespective of the execution speeds

of switches or speeds of links, do not require flows in the network for updates to progress

and avoid packet buffering. Our PPC algorithm PPCU and PFC algorithm ProFlow use

data plane time stamps to decide when switches must move from new to old rules, while

accommodating time asynchrony. A proof-of-concept implementation in P4 and Mininet

demonstrates the feasibility of the algorithms. In a network with continuous PPCU up-

dates, the throughput and the total number of flows completed are higher compared to

a network with continuous random updates, and cause no safety violations. During a

ProFlow update, new flows maintain their throughput while old flows undergo a marginal

reduction, in comparison with a scenario without an update, where the first affected switch

in the flow path has both new and old rules.
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Chapter 1

Introduction

This thesis proposes algorithms for consistently updating Software Defined Networks

(SDN).

Traditional IP networks, with routers and switches running distributed protocols to

control them, are widely and successfully used today. However, managing such networks

is a complex task [15]. The interfaces offered by switches and routers are low-level in

nature, complex and proprietary, making it difficult for network operators to express high

level policies and to configure networks dynamically in response to failures or imbalance

of load. Network hardware is complex and hard to manage and therefore creates lock-in

with a specific vendor. Innovations in networking are harder because changes to networking

equipment take time. Networking equipment is varied, with middle-boxes such as intrusion

detectors, firewalls, server load balancers and network address translators, in addition to

routers and switches, adding to the complexity [39].

Switches forward incoming packets by matching their headers against rules in a

forwarding table and executing the action stored against the matching rule. The data

plane of a network forwards packets while the control plane builds the forwarding table

that decides how to forward a packet and the management plane remotely monitors

and configures the control plane. Traditional networks have the control and data planes

integrated, making the network inflexible and reducing the ability for innovation.

1



1.1 Software Defined Networks

Software Defined Networks (SDN) are characterised by two features: separation of the

data and control planes of a network by an open interface and the ability to program

the network control plane from a logically centralised controller [115, 72]. Since data and

control planes operate at different speeds and need to meet different requirements, their

separation allows them to evolve independently, allowing flexibility and room for innova-

tion in network management. The programmatic abstraction provided by the control plane

allows applications to be developed using that abstraction, and changed easily, regardless

of the network implementation. The logically centralised controller offers a unique van-

tage point - it has visibility of the entire network and can aid in formulating policies that

are beneficial to the entire network. Applications running on the controller program the

network control plane by updating the rules in the forwarding tables of switches. A typical

SDN application is traffic engineering [128, 56, 2, 60], where, the controller can monitor

the network and depending on network conditions, install rules in switches to re-route

flows. Kreutz et al. [72] provide a comprehensive survey of Software Defined Networks.

1.1.1 SDN switches

An SDN switch consists of a series of tables, with each table consisting of an ordered

set of rules with a match part and an action part. If a packet entering a switch matches

the match part of a rule, it executes the action associated with it. This function is called

packet classification. An action may be a statement such as “forward packet to port 1”,

“drop packet” etc. A series of tables may be chained together.

Hardware based Ternary Content Addressable Memories (TCAM) are the standard

devices in network switches for high-speed packet classification. The fixed-width match

fields of a TCAM consist of 1, 0 or ∗ (to denote don’t cares). Since an incoming packet

is matched with many fixed-width match fields in parallel, in hardware, it is possible to

achieve high speeds. In general, since TCAM memory space is scarce and consumes a lot

of power, it is desirable that the number of rules used is as less as possible. Specific switch

solutions that support a large number of rules (up to 1 million wildcard match flow entries)

[100], programmable switches [22] which support better usage of switch resources, disag-

gregated programmable switches which disaggregate memory and computing resources
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[29], and use of software rule tables [67] mitigate this issue.

1.1.2 SDN Controllers

A controller runs on commodity servers, providing an abstraction of the network, similar

to an operating system. It provides abstractions for the underlying network topology, de-

vice management, statistics and notifications, in addition to providing isolation between

application programs and enabling their safe execution. The abstractions enable network

applications to specify the desired behaviour in high level languages, without being con-

cerned about how that behaviour is implemented.

When a packet reaches a switch, if a rule does not exist on the switch, it forwards

the packet (and subsequent packets) to the controller. The controller now installs the

desired rule on the switch and forwards the buffered set of packets to the switch. This is

known as reactive installation of rules. Since this consumes time, rules may be proactively

installed on switches. A combination of the two methods is also possible and SDN high

level languages support the above methods [124]. Rules may be installed such that one

rule exists per flow [103, 62], or rules may be compressed, to save space and to prevent

sending a message to the controller for every new flow, using wild cards [119, 57, 80, 133].

1.1.3 Middleboxes and Network Functions

Packet headers or payloads are processed for purposes other than forwarding, to ensure

safe and optimized use of the network, using specialized equipment called middleboxes.

Since middleboxes are special-purpose hardware platforms, they are hard to maintain

and manage. Introducing new functions requires new middleboxes, additional space and

energy, and specialised training to manage them. To alleviate this problem, the same func-

tionality is implemented in software using Network Functions (NFs), which are realized

as virtual machine instances running on commodity hardware, such as standard storage,

servers and switches.

1.2 Rule Updates

Flows using the network are governed by a set of policies that control access to hosts,

switches or sections of the network. These policies are realised as rules installed on switches
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that match certain packet headers and perform actions such as dropping or modifying a

packet or forwarding it to a specific port. Policies may require to be changed [120]. Flows

may need to be re-routed dynamically in the event of a failure or network congestion

[128, 56, 2, 60], to achieve better throughput or to reduce latency or both. Network

topology may be altered to save power by switching off nodes that are less used, after re-

routing flows from them [17, 54]. Maintenance activities of the network such as upgrading

switches, fixing faults etc. must not cause disruptions to network flows [123]. Traffic may

need to be steered through specialised nodes in the appropriate order in a network [26].

Heorhiadi et al. [55] enable offline use of specialised network equipment for economical and

safe use of network resources using SDNs. These are examples of SDN network applications

and all the above result in switch updates. They also illustrate that switch updates are

central to the functioning of an SDN.

A Rule Update (RU) consists of updates to a set of switches S, called affected switches,

in the network. RUs cause temporary inconsistencies in the network, leading to packets

getting dropped, wrongly routed or packets circulating in loops. If the inconsistency caused

by an update is transient, must it be addressed at all ? Networks install policies to comply

with safety regulations or to meet commercial requirements [119]. Networks have strin-

gent security demands either due to Service Level Agreements, industry or government

regulations (for example, investment and brokerage businesses must be kept separate in a

company [119]) and policies must not be violated during a policy or a path update, so that

those requirements are met. If updates cause packets to drop, loop, get wrongly routed

and miss waypoints (that is, a network node that a packet must always traverse), leading

to reduced throughput, flow failures and policy violations, though transient, an attacker

can use updates themselves to make a network dysfunctional and to steal information

[53].

1.3 Rules, packets and RUs

In this section, we discuss the switch model assumed in the thesis, the notion of rule

asymmetry in switches and what disjoint RUs are.
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1.3.1 Switch model

A switch has an ordered set of rules K (called a table), consisting of n rules, say,

a1, a2, ...an. There may be more than one table in a switch. Each rule a has three parts: a

priority Q, a match field M and an action field A. A rule is represented as a = [Q,M,A].

An action consists of zero or more primitive actions. An example of a primitive action is

“forward packet to port 1”.

The header fields of a packet p are used in matching against rules.

Q is a natural number, with higher values having higher priority. Let a1 and a2 be

two rules. Let a1 = [Q1,M1, A1] and a2 = [Q2,M2, A2]. a1 precedes a2 if Q1 > Q2. An

incoming packet is matched with the match fields of the rules in a table and the action

associated with the highest priority rule that matches it is executed. If the switch has

more than one table, the packet is forwarded to the next table. Otherwise it is forwarded

to the next switch.

r with suitable subscripts denotes an individual rule, while R with suitable subscripts

denotes a set of rules, with ro ∈ Ro, rn ∈ Rn and ru ∈ Ru, with the suffix o denoting an

old rule (a rule to be deleted), n a new rule (a rule to be added) and u an unaffected rule.

Thus Ro denotes a set of old rules, Rn a set of new rules and Ru a set of unaffected rules.

A packet is denoted by p and a set of packets by P . An update ui on a switch si ∈ S,

where S is the set of affected switches, is denoted by si(Roi, Rni), where Roi denotes the

set of old rules and Rni the set of new rules for si. A Rule Update U is a set of updates

u1, u2, u3, ..., un. A packet that matches any roi ∈ Roi or any rni ∈ Rni in any si ∈ S is

called an affected packet. The controller can specify the values of all the parts of a rule,

and install those rules in switches.

1.3.2 Asymmetry of rules

A packet may match more than one rule in a switch. Such rules are said to depend on each

other. For example, in Figure 1.1, the rules ru1, ro1, ru2 and ru5 depend on each other.

The solid arrows show the existing dependencies among rules and the dotted arrows, the

change in dependencies after an RU.

Figure 1.1 illustrates three types of RUs U1, U2 and U3 on a switch s1. In U1, the old

rules match exactly the same set of packets that match the new rules and vice versa. In
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Figure 1.1: Dependencies among rules. In RU U1, the old rules match exactly the same set

of packets that match the new rules and vice versa. In U2, no new rule matches a packet

with the match field 01010 or 01011. In U3, there is no old rule that matches a packet

with the match field 11001.

U1, let P be the set of packets that match 000 ∗ ∗. Then rn1 is the new rule and ro1 the

old rule that matches P at s1. Alternately, there may only be an old rule and no new rule

that matches P at a switch for an RU U2. ro2 in Figure 1.1 is an example of such an old

rule, where P is the set of packets that match 0101∗. Here, as there is no new rule that

matches P when ro2 is deleted, P will start matching ru4. In the same figure, in another

RU U3, for the set of packets P that match 11001, there are no old rules on s1 while rn3

is the new rule. Thus every affected switch may not have a set of new rules that match

all the packets that match a set of old rules, and vice versa. Furthermore, either of old

or new rules may not exist at all on an affected switch. In such cases, we say that the

new rules and the old rules of the affected switch are asymmetric. Update algorithms that

support wild carded rules must take this asymmetry of rules into account.

1.3.3 Disjoint RUs

Let P1 be the set of all packets that match at least one of Roi or Rni of an RU U1 and

let P2 be the set of all packets that match at least one of Roj or Rnj of another RU
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U2, for all si ∈ S1 and sj ∈ S2, where S1 and S2 denote the set of affected switches

for U1 and U2 respectively. U1 and U2 are said to be disjoint RUs if P1 and P2 are

disjoint. If U1 and U2 are disjoint, they can occur concurrently and every packet in the

network will be affected by at most one of the updates U1 or U2. For example, let Rni =

{[5, 1000, forward 10]}. Let si(null, Rni) be the only update in U1. Let Roj = {[5, 1 ∗

∗∗, forward 5]}. Let sj(Roj, null) be the only update of U2, where i 6= j. U1 and U2

conflict. Let Rnk = {[5, 1111, forward 10]}. Let si(null, Rnk) be the only update in U3.

U1 and U3 are disjoint. Multiple disjoint RUs, such as U1, U2 and U3 in Figure 1.1, can

be combined into one. In that case, the set of old (new) rules at an affected switch is the

union of the set of old (new) rules of each of the disjoint RUs at that switch. Disjoint

RUs are also referred to as non-conflicting RUs and non-disjoint RUs are also referred to

as conflicting RUs.

1.4 Properties preserved during RUs

Algorithms that preserve two significant properties during RUs are discussed in the thesis:

per-packet consistency and per-flow consistency. This section discusses in brief, what each

of those properties means and the motivations for preserving these properties.

1.4.1 Per-Packet Consistent Updates

In Figure 1.2(a), when switches are updated to change a route from its old path (solid

lines), to the new path (dotted lines), if sf is updated first, packets arriving at s1 will get

dropped, while if s3 is updated first, packets arriving at s3 will loop, reducing throughput

or causing flow failures. To prevent this, updates to individual switches can be sequenced.

In Figure 1.2 (a), if RUs are preformed in the sequence s6 − s5 − s3 − s2 − s1, there will

be no packet drops or loops. However, sequencing updates is not a solution for all update

scenarios: in the example in Figure 1.2 (b), s1, s3 and s5 are waypoints and it is not

possible to sequence updates such that waypoint invariance is preserved [140] when an

RU is performed to change the path of a flow shown in solid lines to the one in dotted

lines. In this case, how can waypoint invariance be preserved?

In Figure 1.2(c), sn has the following policy P installed: if destination ip = 192.168.*.*,

forward the packet to NFn. sn is connected to a stateless Network Function (NF) [64] NFn,
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Figure 1.2: Need for PPC updates

that is an Intrusion Prevention System(IPS). When the states associated with all the NFs

in a network are stored separately from the NFs in a common data store the NFs are said

to be stateless. An IPS detects and prevents attacks on the network. It is desired that a

subset of flows is forwarded to another IPS earlier in the path, at NF1 associated with

s1, to reduce the load on NFn. This is accomplished by installing P1: if destination ip

= 192.168.10.*, forward the packet to NF1, at s1, and installing Pn: if destination ip =

192.168.10.* forward to port 1, with higher priority than P , at sn, where forwarding to

port 1 results in bypassing NFn. If P1 is installed at s1, before Pn is installed at sn, some

packets will be sent to an IPS twice, once to NF1 and then to NFn, which will cause

inconsistencies in the functioning of the IPS, whereas if Pn is installed at sn before P1 is

installed at s1, some packets will not be sent to any IPS whatsoever, compromising safety.

Suppose the IPS forwards packets for further Deep Packet Inspection if there are more

than a fixed number of failed connection attempts from a source address [37]. If the SYN

of a failed connection is sent twice to such an IPS, it corrupts the state stored by the IPS.

Since installing P1 at s1 and Pn at sn simultaneously is impractical, we need them to be

installed in a per-packet consistent (PPC) [111] manner: every packet must either use the

old version of rules (only P at sn) or the new version of rules (P1 at s1 and Pn at sn) and

never a combination of both. Similarly, a PPC RU will solve the problem of preserving
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waypoint invariance in Figure 1.2(c).

In addition, languages that enable SDN application developers to specify and use

states [11] also require the order of traversal of switches that store those states to be

preserved during an update. Algorithms that preserve more relaxed properties use a PPC

preserving update as a fall-back option: CCG [140] uses a PPC preserving algorithm if it

cannot find an order of updates that preserves waypoint invariance and FLIP [122] falls

back to such an algorithm if its Integer Linear Programming algorithms do not converge.

Existing PPC algorithms are presented and compared in detail in Chapter 2, section

2.7.

1.4.2 Per-Flow Consistent Updates

A flow is defined as a sequence of packets identified by the source and destination IP

addresses, the source and destination ports and the transport protocol (the 5-tuple), with

specific starting and ending mechanisms, as defined by the protocol. A flow is assumed to

be a TCP connection, unless declared otherwise. The flow from the host that initiates a

TCP connection is called a forward flow, ff . The response from the receiving host is called

the reverse flow, fr. NFs and middleboxes usually preserve states per connection. Such

NFs require both the forward and reverse flows to traverse the same NF instance always,

thus preserving connection affinity. When the path of a flow in a network is changed, either

the sequence of NF instances through which the flow is being routed and the instances

themselves are not changed, or if they are changed, states preserved on those instances are

moved to the new instances created on the new path of the flow [45]. The former method

is said to preserve waypoint invariance. The latter method is called state migration. In

addition to NFs, switches also may have states stored on them.

PPC updates are sufficient if RUs do not involve stateful NFs (that is, NFs that

function without storing states anywhere) or middleboxes or stateful switches, or if the

RU can be performed preserving waypoint invariance. They are also sufficient if the NFs

involved in the RU are stateless [64]. However, this may not be the case for all RUs.

Waypoint invariance cannot be preserved if the waypoints are overloaded. State migration

is complex, requiring packets to be forwarded and buffered at the controller or other

intermediate modules, and requiring additional updates to switches to consistently route

packets that get buffered in this manner [130, 45].
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Many network applications that use SDNs require RUs to preserve the property of

per-flow consistency (PFC). If a packet of a flow matches either the new rules or the old

rules of an RU, it is called an affected packet and the flow is called an affected flow. In a

per-flow consistent RU, all the packets of an affected flow either use the new rules or the

old rules, but never a combination of both [111].

If PFC is not preserved during an RU, per-flow states that are maintained on NFs or

stateful switches will no longer be accurate. While not maintaining per-flow states on NFs

causes safety issues, the impact of not maintaining per-flow states on switches depends

on why those states are maintained. If, for instance, a stateful switch maintains per-flow

counters, the value of those counters will be incorrect. We propose a PFC RU as a general

solution for disparate problems that require RUs to stateful switches and NFs, whereas

existing work has specific solutions for them. Examples of such problems and existing

PFC algorithms are presented, and the algorithms are compared in detail, in Chapter 2.

1.4.3 General Requirements for PPC and PFC RUs

In this section, we discuss the characteristics common to our PPC and PFC algorithms.

All-or-nothing semantics: Updates to switches may fail. However, new rules be-

longing to an RU must be completely installed on all the affected switches or none of the

rules must be installed; rules must never be partially installed.

Footprint Proportionality: Updating only the affected switches will reduce the

number of controller-switch messages and the number of individual switch updates that

need to be successful for the RU to be successful. We characterize this need as Footprint

Proportionality (FP), which is the ratio of the number of affected switches of an RU to

the number of switches actually modified for the RU. In the best case, FP is 1, and there

is no realistic general update algorithm that achieves this while maintaining PPC or PFC,

as far as we know.

When and how to delete old rules: A rule belonging to an older version can

be deleted only when no old packets exist in the network. Otherwise, old packets will be

dropped. This needs to be done as early as possible, to reduce the time for which old and

new rules co-exist in the network.

Concurrent disjoint RUs: Applications such as traffic engineering [17, 60, 56]

and dynamic flow scheduling due to changing workloads [2] require frequent updates to
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the network. For tenant management in cloud data centers, there are update bursts of

hundreds of changes per minute [105]. To manage a high volume of RUs, it is desirable to

perform as many disjoint RUs as possible, concurrently.

Wildcarded and longest prefix match rules: Complex policies require flows to

be grouped using wildcards [119] [57]. Support of wildcarded rules will help reduce rule

space and enable installation of rules in a proactive manner, thus relieving the burden on

switches and the controller for having to install rules for every new flow in the network

[133]. Support of longest prefix match rules is required to enable networks to scale.

Varying switch and link speeds: The controller to switch links may have different

speeds and the execution speeds of switches may vary. The RU algorithm must perform

independent of these factors.

Computing affected paths at the controller: In order to restrict the number

of switches that need to be changed, some algorithms require the controller to identify

the paths affected by an RU [69, 62, 140]. Since this is time consuming and not always

feasible, it must be avoided [140].

The need for meeting these requirements and related work are described in detail in

chapter 2.

1.5 Contributions of the Thesis

The thesis describes algorithms for per-packet and per-flow consistent Rule Updates. Our

solutions for both PPC and PFC:

1. progressively increase FP to 1

2. progressively increase the number of concurrent non-conflicting updates to an un-

limited value

3. provide an all-or-nothing semantics, that is, ensure that rules are installed at all the

affected switches or not installed at all

4. support wildcarded/longest-prefix match rules

5. do not assume that affected switches have both old and new rules matching every

affected packet - that is, rules may be asymmetric
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6. work irrespective of the execution speeds of switches or links

7. do not require flows in the network for updates to progress

8. need no packet buffering at the controller

The following algorithms are presented: The algorithm E2PU that preserves PPC,

addresses the problem of the means to ensure that old packets are removed from the

network before the next RU begins and that an all-or-nothing semantics is preserved for

an RU. CCU, the next algorithm that preserves PPC, restricts the number of switches

modified for the RU to the affected switches and the ingresses and improves concurrency of

disjoint RUs, compared to E2PU. The PFC-preserving algorithm EPCU, uses a restricted

number of exact match flows to perform a PFC RU and relies on the ability of the switch

to generate such flows. E2PU and EPCU also describe how the TCAMs within switches

may be combined with a rule table in software to improve the RU performance. Our PPC

algorithm PPCU and PFC algorithm ProFlow achieve an FP of 1, support unlimited

concurrent disjoint RUs and use data plane time stamps to decide when switches must

move from the new to the old rules, while accommodating time asynchrony. They also

exhibit the characteristics from 1 to 8 above.

A proof-of-concept implementation in P4 and Mininet demonstrates the feasibility

of PPCU and ProFlow. In a network with continuous PPCU updates, the throughput and

the total number of flows completed are higher compared to a network with continuous

random updates, and cause no safety violations. During a ProFlow update, new flows

maintain their throughput while old flows undergo a marginal reduction, in comparison

with a scenario without an update, where the first affected switch in the flow path has

both new and old rules.

1.6 Organisation of the Thesis

The thesis is divided into two parts: part 1 has the algorithms for PPC updates and part

2 those for PFC updates. The rest of the thesis is organised into chapters as follows:

Chapter 2 describes the background of the thesis, elaborates the motivations of the

problems presented and the related work.

Part 1:

12



Chapter 3 describes the PPC algorithms E2PU and CCU.

Chapter 4 describes the PPC algorithm PPCU, its implementation and evaluation.

Part 2:

Chapter 5 describes the PFC algorithm EPCU.

Chapter 6 describes the PFC algorithm ProFlow, its implementation and evaluation.

Chapter 7 concludes the thesis and presents future research directions.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter first describes the components of an SDN in detail to provide the back-

ground for the algorithms described in the thesis. It then presents the motivation for the

algorithms and a literature survey related to the algorithms.

2.2 SDN Switches

SDN separates the data and control planes, making switches simple forwarding devices,

the most notable example of which is an Openflow switch [101]. It consists of one or more

flow tables, a group table, and a channel that interfaces with the controller. A flow table

consists of a set of flow entries or rules, with match fields, priority, counters, timers, and

instructions that need to be applied to matching packets, associated with a flow entry.

Flow entries are installed in order of priority. Packets are matched with the match fields

and the instructions associated with the first matched entry are executed. If there is no

matching entry, the instructions in the table-miss flow entry are executed - this entry has

wildcards for all match fields and has the lowest priority. The instruction may be an action

such as forwarding a packet to a port or modifying a packet header, or a modification of

the pipeline. Using the Openflow protocol, the controller can add, delete or modify flow

entries. The timer associated with a flow entry is used to specify the maximum amount of

time before it is deleted by the switch. The counter is updated when packets are matched

with a flow entry. Depending on the rules installed, an Openflow switch can behave as a
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router, a switch or a middle-box. However, an Openflow switch does not support states

or data plane programmability, and the functions that can be performed at line rate are

limited.

Traditional switches are implemented as a sequence of tables, with each table dedi-

cated to a fixed function. If only some of the tables are required for a given functionality,

the remaining switch processing and table resources are wasted. If new headers need to

be added to packets, it can take years before they are realised in switches. For example,

VXLAN, a field for packet encapsulation, took 3 years to be made available on a chip, after

the feature was introduced [63]. This inspired the creation of switches with programmable

data planes.

2.2.1 Programmable Data Planes

In switches with programmable data planes, the switch data plane behaviour is specified

by the data plane program. Since the data plane behaviour and the resources such as

table sizes required to implement it are no longer fixed, switch resources can be used

according to the needs of the program. Moreover, protocol-independent packet process-

ing is supported at run-time, without sacrificing high switching speed. The abstractions

offered by a programmable data plane facilitate the design of the desired forwarding and

packet processing behaviour of switches without being restricted by the hardware avail-

able at that point in time and support stateful behaviour that is useful to implement

many switch functions. P4 [30, 24] and Domino [117] are examples of languages that are

offered by programmable data plane switches, RMT [22] and Flexpipe [102] are exam-

ples of switch architectures that support programmable data planes and Jose et al. [63]

describe a compiler for P4 for these architectures. dRMT [29] disaggregates the memory

and computing resources of a programmable switch. It moves memory to a centralized

pool and replaces the pipeline stages of an RMT with a cluster of processors that can

execute match and action operations in any order, thus improving utilisation of memory

and processing power.

P4 exposes a set of APIs to enable the controller to program switches, that is, to

provide inputs to the P4 programs running on switches. A P4 program decides what each

table in a switch can do, while the controller, through the P4 run-time APIs, decide what

each switch must do. Switches integrating the P4 APIs with Openflow for the controller-
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switch interface are currently available in the industry [131].

2.3 Controllers

A controller provides an abstraction of the network. It can control switches through com-

mands to adapt to network changes that are observed by monitoring the network.

Applications may attempt to write conflicting rules into the network or they may

attempt to provide functionality that is semantically conflicting. For example, two differ-

ent applications may attempt to change the route of a flow in a conflicting manner, by

installing conflicting rules. A power saving application may try to re-route a flow from a

path with the intention of turning off switches along that path, while a load balancing

application may attempt to move flows to the same path, creating a conflict. Controllers

such as PANE [40] solve these problems by delegating authority to applications, which are

hierarchically organised. Meta-controllers such as Athens [12], that operate above SDN

controllers, use a voting procedure.

Similar to virtualisation in computer systems, network virtualisation is used in com-

puter networks for optimised use of the resources of a physical network. Network vir-

tualisation may also be variously implemented in a distributed hypervisor implemented

across the controller and the network switches [3], an SDN high level language [43], or in

a centralised hypervisor positioned between the SDN controller and the physical network

[35].

2.4 SDN languages

There are several [124] special purpose and general high level languages such as Frenetic

[43] and NetKAT [8] for application writers to write programs for an SDN network. When

these programs run, they generate switch rules that need to be installed on switches, using

the open interface available between the controller and the switch network.

SDN languages such as Pyretic [109, 95], Procera [126] and Nettle [125] allow compo-

sition of programs by the application writer while Redactor [129] automatically achieves

such composition by mandating a declarative language to write control programs. Thus

semantic conflicts between various SDN applications are resolved before these applications
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initiate Rule Updates.

Trois et al. [124] provide a survey of various SDN languages. The compilers of these

languages may generate switch rules in the manner expected by the algorithms in the

thesis, to implement the algorithms. The run-time modules of these languages are expected

to exchange the messages required by the algorithms, with network switches.

2.5 Network Virtualisation

Network virtualisation enables a physical network to be shared by multiple virtual net-

works [35, 3], allowing tenants to specify their addresses, topologies and control logic,

and managed by a network hypervisor. This allows strong isolation between tenants, easy

migration of enterprise networks with custom topologies to another infrastructure and

optimized use of the physical network.

A hypervisor provides a general interface such as Openflow to its virtual controllers

and uses the same general interface to program the physical network. Thus the (virtual)

controllers are unaware of whether they interface with a hypervisor or a physical network.

Virtualisation allows a physical node to be mapped to one or more virtual nodes, a

physical link to be mapped to one or more virtual links and a physical SDN to be mapped

to one or more virtual SDNs (vSDN). The hypervisor provides abstractions for physical

links and nodes. The data plane, the control plane and the virtual addresses are isolated

from those of other virtual networks. Each virtual controller transparently interacts with

its virtual network, without being aware of the existence of other vSDNs. Hypervisors

may be centralised [35, 116], in which case multiple controllers interface with them or

distributed [3], in which case a logical hypervisor implemented in the controller and the

switches provides the functions of virtualisation. Blenk et al. [19] provide a survey of

network virtualisation hypervisors for SDNs.

2.6 Middleboxes and Network Functions

Network Functions are required to improve network performance, enhance network se-

curity or monitor traffic. An example of an NF is an Intrusion Detection System (IDS),

which detects attacks on a network. Using Network Functions Virtualization (NFV), NFs
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can be virtualized [52] and located anywhere on a path in the network, thus decoupling

functionality from location. Packets require a series of NFs to be applied to them in a

specific sequence, resulting in a Service Chain (SC) [36]. For example, a packet entering

a network may first pass through a Network Address Translator (NAT) that allocates

the packet the correct server address, followed by an IDS, which examines if there is an

attack, followed by a firewall, which drops packets or allows them to pass.

NFV separates the software of NFs from their hardware, allowing both to evolve

independently. It also allows services to grow and shrink depending on network condi-

tions and provides functionality such as inserting and removing NFs onto network paths,

depending on needs. NFV and SDN are complementary technologies but can benefit from

each other. Mijumbi and et al. [87] provide a survey of NFV.

2.7 General requirements and Per-Packet Consistent

Updates

In this section, we examine the general requirements for a PPC or a PFC RU and survey

the literature related to these requirements.

Consider an SDN whose switches have a set of rules of version 0 (v0) that needs to

be updated to version 1 (v1). As per the seminal update algorithm that preserves PPC,

two-phase update (2PU) [111], the ingress switch always tags packets with the version

number of the rule that must be applied on the packet, and the switches other than the

ingress, called the internal switches, check each packet for the corresponding version tag

before applying a rule.

The two-phase update from v0 to v1 is implemented as follows: The controller up-

dates the internal switches with v1 rules while the v0 rules remain in the switches. Next,

it updates the ingress switches with v1 rules. This also results in the ingress switches

tagging all matching packets to indicate that they belong to v1. After the last v0 packet

leaves the network, the controller instructs all the ingress and internal switches to delete

the v0 rules [111].
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2.7.1 Under-specification of two-phase update

2PU is under-specified on two matters: how to provide an all-or-nothing semantics during

an update and when old rules may be deleted from switches, while preserving PPC.

All or nothing semantics: Updates may fail and failures may be due to any of

the following causes during the update: F1) A switch fails and stops. F2) A switch fails

and restarts but without any rules in it1. F3) A link to a switch fails. F4) A switch

operates very slowly. F5) A message is not delivered correctly or not at all. F6) A switch

has unsupported features, receives wrong instructions, the flow table is full etc. and the

switch responds with an error message during the update. F7) Due to software bugs, a

switch exhibits unpredictable behaviour (hangs, does not install updates, sends wrong

messages, reboots, corrupts existing rules etc.). F8) A switch exhibits malicious behavior.

If the rate at which RUs occur in a network is high, if there is a failure, it is likely that a

failure coincides with an update.

If there are failures, we need to limit the effects due to failures on the update process.

New rules belonging to an RU must be completely installed on all the switches or none of

the rules must be installed; rules must never be partially installed. Those updates where

the two-phase algorithm is not fully executed must not change the semantics of those

updates where the algorithm is fully executed (after Bernstein et al. [18]). For example,

if the link to a switch S1 fails temporarily during a v1 update and the v1 update did not

occur on S1, it must not happen that the rest of the switches upgrade to v1 when S1

has v0 after the failed link comes up. However, 2PU does not specify a mechanism for

the controller to ensure this. If a switch fails to update, the controller does not have the

means to know that there has been an update failure. Moreover, in that case, what is to

be done with the rest of the updates that have already occurred? Another issue is that if

the rules on switches where they are already installed need to be deleted, it wastes a lot

of time as writing into and deleting from TCAM is time consuming. The controller must

know the list of valid updates active on the network. The use of tagging automatically

ensures that the update is versioned and the switch stores the previous version; however

the current update algorithm has no mechanism to ensure a rollback.

It is not within the scope of the update process to attempt complete recovery from

1Since switches do not have any non-volatile storage, no rules are permanently stored. The controller

will need to repopulate the switches.
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failures because, if there is an update failure, the next action to take is very application

specific. Hence the update process must only limit the effects due to failures. For example,

if the v1 update was to reroute packets through a switch S2 instead of S1 due to a policy

change, and S2 fails during the update, then the application may want to just abort the

update. On the other hand, if there is a routing update which changes the ingress to egress

path, if a switch fails on the new path while it is being updated to v1, the application

may want to instruct the controller to suspend the ongoing update and resume it in a

modified manner, taking advantage of the switch updates that may have already occurred

for v1.

There is existing work to provide an abstraction to develop programs that implement

fault tolerance in the network [110], algorithms to implement local fast failover [14, 20],

re-design of the controller to reduce fate-sharing between apps and the controller [27] etc.

but none on failure during an update itself.

In addition to the above, unrelated to failures and recovery from failures, applications

may wish to abort an ongoing update. Such an abort is meaningful only if it takes place

before the ingress switch updation is complete. Otherwise, the application has to issue a

new update to take the network to the desired state.

Time of deletion of old rules is unspecified: A rule belonging to an older version

must be deleted only when the switch is certain that no packet belonging to the older

version exists either within the switch or upstream from the switch. Otherwise, packets

belonging to the older version will be dropped. But deleting a rule cannot be indefinitely

delayed because TCAM space is scarce.

An internal switch knows whether there are active flows associated with a rule, but

it does not have a mechanism to know if the packet it has received is indeed the last

packet belonging to v0. Though many networks use load balancing schemes that use the

same path for all packets of a flow and distribute different flows over different links, there

are schemes that are proposed that send different packets of the same flow over different

links [33]. In such cases a switch may not know if the last packet belonging to v0 will be

sent to it at all. One of the ways to solve this is for the controller to ensure that the last

packet has crossed the switch, before it sends a delete command to that switch.

It is possible to associate an inactivity timer with each old rule such that the rule

is deleted if it is not accessed in the specified time. The timer value depends on inter-
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arrival times between packets, which could vary depending on delays in switches, which

perhaps vary due to congestion, or paths that packets traverse, which could vary due to

complex load balancing schemes. More than the value of the timer being unpredictable and

variable, the issue is that an internal switch can never be certain that there are no packets

upstream even if the timer has expired, if the timer is only associated with accessing the

rule - the rule may be deleted prematurely. It is desirable to have a mechanism to delete

the old rule set independent of the above considerations and only after ascertaining that

the new rules are effective.

Katta et al. [69] propose a method that reduces rule space in switches by splitting

an RU into several rounds that each transfer a part of the traffic to the new configuration.

zUpdate [77] finds a sequence of updates to progressively meet the end requirement of pre-

venting congestion, while SWAN [56] always reserves a percentage of link bandwidth and

finds a suitable update sequence to meet the same objective. Mahajan et al. [83] provide

a dependency table that denotes at which switch a rule must be modified to guarantee

a consistency property, before it uses a new rule. Yuan et al. [134] propose a method of

creating a dependency graph between rules such that their topological ordering is a safe

update. Dionysus [62] improves the update time by dynamically scheduling a sequence of

updates in such a manner that update speeds of different switches are taken into account.

CCG [140] provides a mechanism to enforce customize consistency properties by schedul-

ing updates based on the invariant specified for that update by a network operator. None

of these describes how and when to delete old rules. McGeer [85] proposes a method to

preserve rule space in switches during updation and addresses the problem of identifying

when the old rules can be deleted, but it requires installation of intermediate rules and

forwarding packets to the controller. No work addresses an all-or-nothing semantics.

Our algorithm, E2PU-SRT (chapter 3) addresses these questions first. All the algo-

rithms in the thesis include the solution provided in E2PU-SRT in various ways.

2.7.2 Need for concurrency

In a large data centre that supports network virtualisation and multiple tenants, each

tenant will require multiple VMs to be created [12], all belonging to a virtual network of

a certain topology. VMs will need to be assigned to servers depending on what the VM

allocator wishes to optimize. To isolate one tenant from another, for rate limiting etc.,
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the controller will need to update the virtual switches on servers. The physical switches

will need to be updated to implement the virtual network to physical network mapping

[3], [13]. We envisage that continuous updates to SDN will be common due to the large

number of varied applications available [120, 128, 56, 2, 17, 54, 123, 13, 3, 48, 60, 26, 55]

due to the flexibility and programmability of SDN.

Updates to an SDN can be frequent - MicroTE [17] proposes a fine-grained traffic

engineering mechanism for data centres that involves updating switches at the granularity

of seconds. B4 [60] proposes updates every few minutes and SWAN [56] proposes updates

as frequently as possible, to achieve high WAN utilization. If a network is updated based

on its current workload, changing workloads would necessitate frequent updates [2], for

dynamic flow scheduling. For an L4 load balancer used in a multi-tenant cloud computing

environment with 10000 nodes, on an average there are about 12000 updates per day,

with bursts of hundreds of changes per minute [105]. According to another work, cloud

providers host virtual networks of the order of 10Ks and they need to support millions of

concurrent updates of all these networks per day [47].

2PU [111] does not support concurrency as all the switches in the network need to be

updated for a single update. Existing algorithms that preserve PPC and allow concurrent

RUs limit the maximum number of concurrent RUs [81, 140], with CCG [140] becoming

impractical if the number of paths affected by the RU is large. CCG uses fast concurrent

update methods but only preserves properties that are not as strict as PPC and falls back

to a two-phase update (2PU) [111] for these cases: 1) an RU affects multiple independent

paths and therefore calculating the paths affected by the RU becomes time-consuming 2)

if all paths must traverse n waypoints, the old and the new paths can be thought of to

consist of n− 1 segments and the update of a new segment may depend on the update of

an old segment. 3) properties such as path length constraints need to be met. For these

cases, CCG does not support concurrent RUs. Ludwig et al. [79] propose an algorithm

that complies with the property of relaxed loop freedom, which ensures that there are

only transient loops during the RU, but does not preserve PPC. Dionysus [62] preserves

PPC and is concurrent, but works only when any forwarding rule at a switch matches

exactly one flow. It does not work where the network uses wildcard rules or longest-prefix

matching.

Statesman [123] and other work [93], [40], [129] and [12] deal with conflict resolutions
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for concurrent updates. Frenetic [43] supports functions that a program can call to com-

pose non-conflicting rules and ultimately updates the network using 2PU [42]. NetKAT [8]

supports a “slicing” [50] abstraction using which conflicting rules can be run on different

slices of the network. In these efforts, the emphasis is, variously, on conflict detection,

resolution and composition of policies within a program whereas we require algorithms to

be able to handle disjoint updates from any source, even from multiple controllers, at a

level close to the switches and preserving PPC. While FIXTAG [25] allows fault-tolerant

concurrent updates, the tag complexity is exponential in the network size and therefore

not practical, whereas REUSETAG [25] reduces tag complexity but allows only sequential

updates.

Our algorithm CCU (chapter 3) improves the concurrency of disjoint PPC updates

compared to 2PU and our algorithms PPCU (chapter 4) and ProFlow (chapter 6) support

unlimited concurrency of disjoint per-packet and per-flow consistent updates, respectively.

All the algorithms assume that the controller issues only disjoint updates, using conflict

resolution methods discussed in section 2.4.

2.7.3 Footprint Proportionality

A two-phase update(2PU) [111] requires changes to all the switches in the network, even

if the update is intended only for one switch. Our algorithm E2PU-SRT (chapter 3) falls

in this category. This also causes doubling of all the rules on all the switches and all the

tables in a switch while the RU takes place, further reducing its scalability. Concurrent

RUs cannot be performed, even if they are disjoint. To improve this, a class of algorithms

[69, 62, 140] identify and compute the paths associated with the affected switches, and

update all the switches along those paths (path aware algorithms); however, they either

do not support wildcard rules or longest-prefix match routing, or if they do, discovering

affected paths is computation intensive. Another class restricts the changes to the affected

switches and the network ingresses, without computing paths, namely, our algorithm CCU

(chapter 3) and “General Update”, referred to as GU [81] from now on (ingress affecting

algorithms). These, however, have upper limits on the number of disjoint updates sup-

ported and all ingresses need to be updated even if only one switch is affected. TimeFlip

[91] expects switches to be synchronized to a clock and schedules updates to occur at

specific times (timed updates); however, this does not take into account clock synchro-
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nisation inaccuracies, realistic controller-switch delays [140], non-uniform switch speeds

and scheduling inaccuracies at switches. A detailed comparison is in Table 2.1.

For path aware algorithms [69, 62, 140], every switch in the path, which may be

across the network, needs to be changed, even to modify one rule on one switch. If one rule

affects a large number of paths, such as “if TCP port=80, forward to port 1 ”, computing

the paths affected is time consuming [140]. For both 2PU and path-aware methods, the

number of rules used in every switch modified during the update doubles. The problem is

exacerbated in practical switches, as switches supporting RMT [22, 63, 21] Intel’s FlexPipe

[102] etc. usually use more than one table and every rule in every table in every switch

needs to be changed even if the actual change is only for one rule in one table in one

switch. Hence the update time is disproportionately large, even if the number of rules

updated is small.

In a data centre with a Fat Tree topology with a k-ary tree [1] where the number of

ports k = 48, the number of ingress switches is about 92% of the total number of switches.

Even to modify one rule in a switch, all of the ingresses will need to be modified, for ingress

affecting algorithms.

Updating only the affected switches will reduce the number of controller-switch mes-

sages and the number of individual switch updates that need to be successful for the RU

to be successful. We characterize this need as footprint proportionality (FP), which is the

ratio of the number of affected switches of an RU to the number of switches actually

modified for the update. In the best case FP is 1, and there is no realistic general update

algorithm that achieves this while maintaining PPC or PFC, as far as we know.

McGeer [86] proposes an algorithm that has no overheads to achieve a PPC update,

but it depends on finding a correct sequence of updates. We have already given examples

of waypoint invariance and policy installations where it is not possible to find an up-

date sequence such that PPC is satisfied. McGeer [85] provides another general solution;

however, it relies on installing an intermediate rule in affected switches that diverts all

affected packets to the controller during the course of an update, which is impractical in a

real network as it incurs a high overhead on the controller and the controller-switch links,

affects packet throughput and is not scalable. Though it preserves PPC, it preserves only

a weak form of PFC.

As mentioned earlier, there are update algorithms that use data plane time stamping
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Table 2.1: Comparison with prior algorithms

Method PPC guar-

anteed

Ratio of

affected to

modified

switches

Varying

switch,

link speeds

immate-

rial

No path

computing

Supports

wild-

carded and

lpm rules

All-or-

nothing

semantics

Con-

current

updates

Tolerates

sync. inac-

curacies

Two-phase (2PU) [111] X < 1 X1 X X X X -

Two-phase enhanced (E2PU)

(chapter 3)

X < 1 X X X X X -

Path aware [140, 69] X < 1 X X X X X -

Path aware dynamic ordering [62] X < 1 X X X X X -

Path unaware ingress affecting -

GU [81], CCU (chapter 3)

X < 1 X X X X Limited -

Timed update [91] Condi-

tionally

2

1 X X X X Condi-

tionally

3

X

PPCU (chapter 4) X 1 X X X X X X

1 Underspecified

2 If switches are accurately synchronized,scheduling accuracy is high and switches/links have uniform speeds

3 If scheduling accuracy is high regardless of the number of updates

26



[90, 92, 101, 91] for PPC updates. However, they 1) require accurate and synchronous

time stamping [90] 2) depend on an estimate for the time at which the update must

take place 3) do not take into consideration variable delays between the controller and

the switches [140], leading to messages getting delayed or lost 4) depend on scheduling

accuracy at switches, which is not guaranteed as multiple processes run on a switch and

therefore a scheduled update may not execute exactly at the time it was scheduled. These

practical issues result in them not guaranteeing an all-or-nothing semantics or per-packet

consistency for RUs.

Our update algorithms, PPCU (chapter 4) and ProFlow (chapter 6), have an FP

of 1 and complete in a finite number of steps regardless of the execution speeds of the

switches involved and regardless of the relative speeds of the controller-switch links, while

preserving PPC and PFC, respectively.

2.7.4 Need for rules with wildcards/longest prefix match

Complex policies commonly group flows together using wildcarded rules [119] [57]. In-

stalling wildcarded rules for selected flows or rule compression in TCAM for flows or poli-

cies [137] reduces both space occupancy in TCAM [80] and prevents sending a message to

the controller for every new flow in the network [133]. Installing policies using wildcarded

rules is not restricted to ingresses, as ingresses may not have enough space and space

may be saved by sharing them across flows by installing them in internal switches [66].

Longest-prefix matching (lpm), where the destination address with the longest matching

prefix is chosen in case of a conflict, is commonly used in large networks to enable the

network to scale and it is important that updates support such rules. Using switches for

traffic splitting, whether for load balancing or multipathing use wild carded rules [128] or

prefix-matching rules [65]. Switchreduce [59] provides solutions for the tradeoff between

visibility of rules and space occupancy. Thus in a real network, using wildcard or longest

prefix match rules regardless of the switch location in the network is inevitable. Many

of the existing update algorithms that preserve PPC or PFC do not address rules that

cater to more than one flow [62] [140]. Supporting wildcards/lpm also results in updates

that require only removing rules and not adding any rule or vice versa, on one or more

switches in a network, as in the example given in Figure 1.2 (c), or rule asymmetry. Most

SDN application level programming languages already support proactive installation of

27



Figure 2.1: PFC Updates to a Service Chain

rules [94, 43, 109, 8, 120, 84] and some of them support aggregating rules using wild cards

[43, 94, 109, 8]. All the algorithms in this thesis support wild carded and lpm rules.

2.7.5 Preventing safety violations in the network

There are tools that perform a static verification of the network to detect safety violations

[70, 71, 78] and some that generate tests and verify adherence to policies dynamically [37].

There are tools that intercept updates to check if they violate operator specified policies

[139] and repair them. Our focus is to prevent safety violations during network updates.

2.8 Per-Flow Consistent Updates

A per-flow consistent update is useful to solve problems in several areas such as Service

Chaining [36], Server Load Balancing, [128] Network Functions Virtualization [103] and

Network Virtualization [35, 3]. In this section, we examine the motivations for using a

PFC RU in these areas and describe related work.

2.8.1 Service Chaining:

It is possible that due to network load or other dynamic considerations, some of the flows

in a network need to be rerouted [76]. In Figure 2.1(a), let us assume that some of the
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flows traversing sa − s1a − s1b − s1c − sc need to be re-routed to sa − s2a − s2b − s2c − sc.

At the same time, instead of the Service Chain NF1a − NF1b, now they must traverse

NF2a − NF2b, where NF2a is another instance of NF1a and NF2b is another instance of

NF1b. Besides, let us assume that the switch s1c maintains the state associated with a

flow, for instance, to check which flows are large [118]. Therefore, if flows are moved from

the first path to the second, the states associated with the NFs as well as the switches

must be moved. Instead, a PFC update may be performed, where only the flows that

begin after the RU is effective (the new flows), are moved to the new path, while the rest

of the flows (the old flows), continue to use the old path. The forward and reverse flows of

a given flow, new or old, will thus traverse the same SC. In this example, all the switches

are affected - the switches in the new path are affected because new rules for the forward

and reverse flows need to be added to them, and in the old path, because rules need to

be deleted from them. We shall first examine the existing PFC solutions and why they

are inadequate.

Existing PFC solutions: In order to keep track of each individual flow, a microrule

is added for each flow, where the match for the rule is based on the header fields that

uniquely identify a flow. A time-out is associated with each microrule which is triggered

when no matches take place for the time-out period and a suitable associated action is

taken. The microrule is an exact copy of the original rule, except that its headers match

exactly that of a flow.

Devoflow [32] proposes a switch that can support a “clone” command and usage of

this to support PFC is examined by Reitblatt et al. [111]. When this command is set for

a rule with wildcards in an ingress switch, the switch installs a microrule for each new

header seen that signals a new flow. Subsequent packets of that flow match that microrule.

Consider an SDN whose switches have a set of rules of version 0 (v0) installed first, that

needs to be updated to version 1 (v1). The algorithm uses clone rules when any update

is installed. Thus, for example, all v0 rules are clone rules. This results in v0 microrules

being generated and installed for every flow, right after the v0 update. To update with v1

rules, they are installed and they too are made clone rules; v0 rules are deleted at the same

time (v0 microrules are not deleted now). Now a new flow will create a new microrule and

v1 rules will apply while old flows will match their existing microrules and so v0 rules will

apply. However, this solution has the following issues: 1) Microrules are always present and
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the overheads of these microrules will affect the performance of a switch. 2) It is unclear

when the microrules must get deleted. 3) Since the rules are versioned, all the tables in all

the affected switches need to be modified for one RU, thus making the solution inefficient

and limiting the number of disjoint RUs to 1. Alternately, all the paths affected by an

RU may be found and rules with the new version installed only in all the tables in all

the switches in those paths, which is computation intensive and inefficient, especially so

if wildcarded rules are used in switches. 4) This solution does not consider synchronizing

forward and reverse flows. 5) Cloning rules is not supported on real switches. Softcell [61]

is the only existing solution as far as we know, that performs PFC updates considering

forward and reverse flows, but it uses software switches at the edge that can generate one

rule per flow and is meant only for a specific network architecture for a cellular network.

Existing non-PFC solutions: Instead of a PFC update, a loss-free and order-preserving

state migration (LOSM) [130, 45], intended for scaling NFs in and out, where the state

of all flows and the flows themselves are moved consistently with the migrated state

to the new NFs may be considered. Another solution, TFM, decouples state migration

and packet transfer using a TFM Box, developed as a virtual NF implemented on the

source and destination NFs, thus impacting scalability. It also incurs additional updates

to switches to forward packets to the TFM box. However, these solutions are specified

only for individual NF instances and not for NF chains [136]. A simple extension of the

state of the art mechanism intended for NF migration to be able to support movement of

a flow from one service chain to another (such as TFM [130]), is complex and inefficient

as it requires movement of packets already in transit involving several NFs, and buffering

packets. Another LOSM solution, OpenNF [45], forwards packets to the controller and

requires further consistency preserving updates, for steering flows in and out of the con-

troller, besides making the controller a bottleneck. Stratos [44] migrates the affected NF

instances themselves to the new path, in the case of a network bottleneck, which is an

expensive solution. Besides, it requires one rule per flow. Split/Merge [107] also provides

state migration but it is not loss-free and order-preserving. E2, which does not require

state migration, routes all flows through the old NF first [103], thus expecting NFs to

have high processing capability; additionally, it requires installation of rules other than

those warranted by the RU. All the above require changes to NFs themselves [52]. While

none of the above migrates switch states, SwingState [82] does, but it does not migrate
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the states of NFs. Woo et al. [132] use a Distributed State Object to store states associ-

ated with flows to facilitate easy migration of flows. However, this requires all NFs to be

written using their framework and does not consider stateful switches. Using a PFC RU

circumvents the need for migrating the states of switches as well as NFs. Additionally,

any number of NFs and stateful switches may be present in the path of the flow.

Session based solutions: Nicutar et al. [98] propose using MPTCP to insert middle-

boxes into sessions. But this requires a TCP session to be first established before insertion

of a middlebox. If a particular session needs to be blocked, the middlebox/NF is not al-

ready in place to take that decision, thus preventing the inserted NFs from blocking

sessions if required and causing security issues. Dysco [135] uses a session level protocol

that requires an agent installed in all hosts, including NFs, and therefore does not consider

stateful switches in the path. Also, it requires buffering of packets at the agents during

migration, like the LOSM solutions.

Timed update and flow migration solutions: Existing timed update solutions [138,

91, 92] do not preserve PFC or tolerate practical time asynchrony, scheduling inaccuracies

of switches or variable controller-switch delays. Ludwig et al. present an algorithm to [79]

preserve waypoint enforcement only for packets, and do not preserve PFC. A large body

of work (Table 3 in [41]) deals with migrating flows while preventing congestion. However,

these do not preserve PFC.

In summary, we need PFC RUs to modify only the affected switches and the affected

rules, and support wild carded rules. They must be able to perform an unlimited number

of concurrent disjoint updates. They must not require changes to NFs or buffering of

packets or addition of new rules, yet must be practical. They must be able to support

migration of flows from more than one NF (a service chain) or a set of stateful switches

or a combination of both. No existing solution addresses all the above.

2.8.2 Adding or deleting NFs:

In Figure 2.1 (b), two NFs - an IDS and a Firewall (FW) - are added to an existing Service

Chain. The switches s1b and s1c are the affected switches because rules need to be added

to them to forward packets to and from the new NFs added. The IDS, added to detect

SYN flooding attacks, examines the number of SYNs and matching FINs (or RSTs) [127]

and if there is a mismatch between them that is statistically significant, issues an alert.
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Therefore only new flows must pass through the IDS, as an old flow will cause a mismatch.

Similarly, removing an NF from an SC requires allowing the old flows traversing the NF

to be completed before the NF is removed. Both the cases require PFC RUs.

Slick [9] decomposes middleboxes or NFs into elements of fine granularity. For exam-

ple, an element could be a module calculating a packet checksum. It allows programmatic

specification of what elements should operate on a flow. Placing the elements and steering

of traffic through them is done by the run-time of Slick. However, it does not support wild

carded rules - it installs one rule per flow - and the mechanism to maintain PFC while

adding or deleting elements is unspecified. (If the old and new paths have only stateless

NFs [64] and switches, inserting a new NF (for example a Deep Packet Inspector that

operates at the packet level) will require only a PPC RU.)

2.8.3 Network Virtualization:

Let us assume that a virtual network has a switch sb connected to an IDS. sb is mapped

to two physical switches, s1b and s2b, as shown in Figure 2.1(c). The forward flow of a

connection traverses s1a− s1b− s1c and the reverse flow traverses s2c− s2b− s2a. Initially,

sb has a policy P1 that forwards all packets to the IDS. Later, it installs a new policy P2

on s1b and s2b (the affected switches) that whitelists all packets destined to a port, thus

bypassing the IDS. If P2 is applied to a packet p, say a SYN, in the forward flow ff , the

packet is not forwarded to the IDS. Now the SYN+ACK of fr reaches s2b. If P2 is not yet

effective there, the packet is forwarded to the IDS, causing an inconsistent state in the

IDS. On the other hand, if P2 is not yet effective at s1b when the SYN of ff traverses it,

the packet is forwarded to the IDS. If P2 is effective for fr, when SYN+ACK reaches s2b,

the packet bypasses the IDS, causing the IDS to issue an alert erroneously, if there are

many such occurrences.

COCONUT [47] solves a subset of the problems arising due to network Virtualiza-

tion that require only weak causal consistency (weaker than PFC) and not PFC. In this

solution, both rules and packets are assigned version numbers and if a packet of version

v traverses a switch whose highest version of a matching rule is v+ 1, it applies that rule

to the packet. Because of this, packets belonging to existing old flows will also switch to

the new version, thus not preserving PFC. To preserve connection affinity, a shell, which

interfaces with the hypervisor, stores the latest version of a packet as it exits the network
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Figure 2.2: Load Balancing switch and re-ordering of packets

and on a packet of the reverse flow, it appends the stored version number. When an up-

date is completed, the shell is instructed to clear the tag associated with a version of the

update and also to stop tagging for the time during which packets are getting deleted.

Thus every update requires co-ordination with the shell. Besides, since it uses per-RU tag

bits, it provides only limited concurrency of disjoint RUs.

Another solution [84] uses packets to carry the states of switches they traverse,

updating switches along the way, providing event-driven consistency, but not PFC. In

an event-driven consistent update, a new set of rules will become effective only after an

event occurs in the network. This solution requires flows to be present in the network,

in the absence of which (or during their quiescent periods), the controller broadcasting

the necessary state information to switches is suggested, an expensive operation. A PFC

update will not solve all the problems posed by McClurg et al. [84], and their solution

will not solve the problems presented here.

The inconsistency issues during RUs in virtualized networks described above can be

solved if the RUs are per-flow consistent. PFC RUs need to progress regardless of whether

flows are present or active in the network during the time of the RU.

2.8.4 Load Balancing:

Let a Load Balancing (LB) switch sb be connected to two servers IPda and IPdb, as shown

in Figure 2.2 (a). Services offered by IPda and IPdb are accessed through a gateway switch

(not shown), which offers a single IP address to external clients [128]. The gateway switch

and the LB switch are within a data centre network. sb examines the source IP address of

all the packets (IP1 or IP2) it receives and stamps the destination IP address as IPda. To
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reduce the load on IPda, the controller issues an RU to sb (the affected switch) to direct

a set of flows originating from IP2, to a new server IPdb (shown in dotted lines). If the

flows that already exist to IPda are directed to IPdb, since the latter does not have an

existing connection with the sources of these flows, those flows get terminated abruptly.

If a PFC compliant RU is used, the ongoing flows to IPda will naturally complete, while

the flows that begin after the RU is effective will be directed to IPdb.

Wang et al. [128] provide two solutions for updating a load balancer. In the first

solution, assume that all packets from source IP address 0∗ need to be sent to server

replica IPdb, instead of IPda. During the update, the controller installs transition rules

that direct all packets with source address as 0∗ to the controller. The controller examines

the next packet of all such connections - if it is a SYN, it is a new connection; otherwise,

it is an existing connection. The controller then installs microrules with soft timeouts,

that direct the new connections to IPdb and the old connections to IPda. The controller

examines all packets with source address 0∗ for 60 seconds to see if there is any missed

connection; if not, it installs the rule that directs packets with source address 0∗ to IPdb,

at a lower priority than the microrules. In the second solution, the controller first installs

the new rule that directs all traffic to IPdb, at a lower priority. Next, it installs temporary

rules with inactivity timeouts, dividing the address space of 0* into several parts that

direct all the traffic to the old replica, at a higher priority, and deletes the old rule. Upon

timeout, the temporary rules are deleted and the new rules take effect. While the first

solution has the disadvantage of loading the controller, the second causes the update to

be ineffective for a fraction of the flows as long as at least one flow exists in that fraction,

either because an old flow is long-lasting or because new flows keep matching this rule.

During an RU, no rule must delay the time at which the RU is effective for any new

flow. Moreover, there should be no need to buffer packets or install additional rules.

2.8.5 Packet re-ordering:

In Figure 2.2(b), an RU changes the path s3 − s1 − s4 −NF1 to s3 − s2 − s4 −NF1 of a

forward flow from s3 to NF1. All the switches except s4 are affected by the RU - s3 and s2

are affected because rules must be added and s3 and s1 because old rules must be deleted.

A packet p traversing the new path may reach s4 earlier than the packets sent before p,

which are traversing the old path. If NF1 is a redundancy elimination decoder and p was
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encoded with respect to packets that preceded it [7], the RU will cause NF1 to function

incorrectly. Besides, re-ordering of packets may cause TCP to erroneously conclude that

there is congestion in the network, thereby degrading application throughput [75, 73].

Switches take a lot of care not to re-order packets [114], but updates could result in

packets that are re-ordered and if updates need to be performed frequently, the impact

will be high. An RU that preserves PFC prevents re-ordering of packets due to the RU

itself.

Foerster et al. [41] provide a survey of SDN update algorithms.
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Part I

Per-Packet Consistent Updates
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Chapter 3

Two Algorithms for Per-Packet

Consistent Updates

3.1 Introduction

We have examined in detail the need to preserve per-packet consistency (PPC) in Chapter

2. Two-phase update (2PU) [111], the seminal algorithm to preserve PPC, requires changes

to all the switches in the network, even if the RU is intended only for one switch. It is

underspecified on two matters: 1) how to detect when the last packet of the old rule

set has left the network and therefore exactly when to delete the old rules 2) preserving

all-or-nothing semantics of the RU. We describe an algorithm, E2PU-SRT (Enhanced

2 Phase Update with Software Rule Tables), enhancing the two-phase update, to handle

1) and 2) above. It also specifies how to effectively use a software cache to supplement

the TCAM, during an RU. However, E2PU-SRT does not support concurrent updates.

The second algorithm that we describe in this chapter, CCU (Concurrent Consistent

Updates), supports concurrent updates that are disjoint. In addition, it requires updates

to only the affected switches and the affected rules and all the ingresses of the network.
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3.2 Enhanced 2 Phase Update with SRT (E2PU-SRT)

3.2.1 Switch Model

Since TCAM space is scarce, it is desirable to use a software cache to supplement the

TCAM such that rules may be installed either in the TCAM or in a rules table imple-

mented in software, called the Software Rules Table (SRT). Since switching in a TCAM is

faster, all the rules that are frequently accessed may be periodically moved to the TCAM

while the remaining rules are stored in the SRT. Adding (removing) rules to (from) a

TCAM incurs high overhead [62], while doing the same to an SRT is faster. For this

algorithm, to speed up updates, we assume that there is a Software Rules Table (SRT)

associated with the TCAM such that the switch checks if a matching rule exists in the

TCAM first and if it does not, it checks the SRT. For moving rules into and out of the

TCAM, algorithms such as CacheFlow [67] may be used. Other than this, the switch

model in section 1.3.1 of Chapter 1 is used.

3.2.2 Algorithm at the control plane

Consider an SDN whose switches have a set of rules of version 0 (v0) that needs to

be updated to version 1 (v1). E2PU-SRT addresses failures F1 through F6 and the other

issues identified in section 2.7.1, while preserving PPC. Figure 3.1 illustrates the algorithm

at the control plane, assuming that ingress switches do not act as internal switches for

any flow affected by the update. The algorithm at the control plane is as follows:

1. The controller sends “Commit” with the new rules to all the affected switches. All

the affected internal switches (this could include ingress switches that receive rules

by virtue of them acting as internal switches for other paths that belong to this

update) install the new rules into the SRT. The ingress switches do not yet install

the rules that tag packets with v1 or policy rules, but store them internally.

2. Each switch that processes “Commit” sends back “Ready to Commit”.

3. The controller receives “Ready to Commit” from all the switches and then and

only then sends “Commit OK” to all the affected switches. As soon as the ingress

switches receive “Commit OK” they stop sending packets tagged v0 and switch over
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Figure 3.1: E2PU-SRT: Algorithm at the control plane

41



to v1. After receiving “Commit OK”, a switch may move the v1 rules to TCAM at

any time.

4. Each switch that processes “Commit OK” sends “Ack Commit OK” to the con-

troller. Each ingress switch sends the current time with this message, called Ti.

5. After receiving “Ack Commit OK” from all the affected ingresses, the controller

notes the latest value of Ti received and saves it as Tdel. Now it sends “Discard Old”

to all the switches where rules need to be deleted. It sends Tdel and the v0 rules to

be deleted as a part of “Discard Old”.

6. When each internal switch receives “Discard Old” it deletes the list of rules received

in “Discard Old”, whenever its current time Ti > Tdel+M , where M is the maximum

lifetime of a packet within the network. The ingresses delete immediately.

7. Each switch that processes “Discard Old” sends a “Discard Old Ack”. When the

controller receives all the “Discard Old Ack” messages the update is complete.

When a packet is tagged v0 (v1) at the ingress, rules that check for v0 (v1) are

applied on that packet as it traverses the network.

The v0 rules can be in the TCAM or the SRT, for the internal switches. However,

the algorithm assumes that the v0 rules are in the SRT, for all ingresses. If they are in the

TCAM, upon receiving “Commit”, those ingresses must install v1 rules in the SRT, at a

lower priority. Then, upon receiving “Commit OK”, they must delete the v0 rules from

the TCAM. This variation is referred to as E2PU-SRT′.

It is possible to implement sending and acknowledging a message in Openflow using

the barrier command [101].

After Tdel, no v0 packets are injected by any ingress into the network. After M units

of time after that, all the v0 packets that were in the network would have left it. Therefore

deleting v0 rules at this point will not cause any packet to be dropped.

3.2.3 Handling Failures and Application Aborts

If one (or more) of the switches is unable to process a “Commit” due to any of the failures

F1 through F6 in section 2.7.1, the controller will not receive “Ready to Commit” at all, or

on time. Similarly, the controller may not receive “Ack Commit OK” from some ingresses.
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The controller now performs the following actions for this update: 1) suspend the update

2) preserve the tag used for the current update 3) inform the application. The application

can choose to abort the update, in which case the controller aborts the update. Since v1

rules are stored in the SRT, deleting them will not be time consuming. The application,

instead of aborting the update, may send some modifications to the update, such as

addition or deletion of rules to new or existing switches. This is more likely if the update

is partially installed and partially effective, as in the case where the controller has received

“Ack Commit OK” from only some of the ingresses. In that case, the controller sends a

“Commit” for adding v1 rules, using the tag preserved for this application. The existing

v0 rules and the v1 rules that were installed earlier (because they are superseded by a new

set of v1 rules) may get added to the list of rules to be deleted (later, using “Discard Old”).

The switches may thus receive more than one “Commit” and “Commit OK” messages

with the same tag, before receiving a “Discard Old”. If there is a failure after the controller

receives “Ack Commit OK” from all ingresses, the application must issue a new update,

if required, as all the new rules have now been successfully installed and are effective. If

the application requests the controller to abort the update before the controller has sent

any “Commit OK”, the controller aborts the update. If the controller aborts the update,

all v1 rules are deleted.

All subsequent algorithms in this thesis use the same set of messages. The nodes

to which the messages are sent and the contents of the messages vary, depending on the

algorithm. In all cases, to provide an all-or-nothing semantics, timers are required to be

started at the controller. This and other error-handling semantics are not presented to

simplify the explanation.

Alternate Designs for Deleting the Old Rules: It is possible for the controller

to wait for an additional time of M after receiving the acknowledgement from the last

ingress switch and then send a message to all the switches requesting them to delete

the old rules immediately. However, the last ingress switch may take some time to send

“Ack Commit OK” to the controller, because it is far away from the controller or because

the switch is just slow. Each internal switch only needs to wait until its time exceeds

Tdel +M , which is faster than the controller waiting for M units of time after it receives

the last “Ack Commit OK”. It is possible to further optimize this by the controller sending

“Discard Old” messages as soon as it receives “Ack Commit OK” from an ingress, to all
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the internal switches that accept v0 packets only from that ingress.

3.2.4 Switches without an SRT

If the switches in a network do not have an SRT, when an internal switch receives a

“Commit” with new rules, it installs the rules in the TCAM and sends back “Ready to

Commit”. The controller, on receiving “Ready to Commit”, needs to send “Commit OK”

to only the ingresses. The ingresses install the new v1 rules in the TCAM. The rest of

the algorithm remains the same. If the controller wishes to abort the update, the switches

that have already installed the rules need to incur the overhead of deleting them from the

TCAM. Section 3.2.5 gives further comparisons.

3.2.5 Analysis of E2PU-SRT

The parameters of interest during a PPC are: 1) Parameter 1: Duration for which

the old and new rules exist at each type of switch 2) Parameter 2: Duration within

which new rules become usable 3) Parameter 3: Message complexity - the number of

messages required to complete the protocol and 4) Parameter 4: Time complexity -

the total update time. Parameters 3 and 4 are along the lines of complexity measures in

distributed systems [18].

The purpose of the analysis is to understand what the above depend upon.

The symbols used in the analysis is as per Table 3.1. It is assumed that the time

taken for the sum of the propagation times and switch delays between the controller and

the switches is uniform (δ). Let the time taken for all insertions (tu) and deletions (td) be

uniform and let the processing time at each switch be negligible. The time at which the

last switch sends “Ready to Commit” is Tc1+δ+tu, assuming the sum denotes the longest

time taken. Let the number of rules that need to be removed (no), added to switches in

general (nn) and added to the ingress to meet its ingress functions (ni) be uniform across

switches.

We need to consider different kinds of switches while evaluating various parameters:

Case 1) ingress switches, with Case 1.1 where the ingress switch is not an internal switch

and Case 1.2 where the ingress switch is also an internal switch, Case 2) internal switches

where new rules do not need to be installed but old rules need to be removed, Case 3)
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Table 3.1: Symbols Used in the Analysis of E2PU

Symbol Meaning

Tc1 Time at which the controller sends “Commit”

δ The message transmission time between the controller and a switch

tu The time taken to insert rules in a switch (TCAM or SRT)

td The time taken to delete rules from the SRT

tdt The time taken to delete rules from the TCAM

ts The time for which a switch waits after it receives “Discard Old” and before

it deletes rules

no The number of old rules that need to be removed

nn The number of new rules that need to be added

ni The number of new rules that need to be added to the ingress, to meet its

ingress functions

ko The number of switches where new rules do not need to be installed but old

rules need to be removed

kn The number of switches where only new rules need to be installed (this

includes such ingresses too)

kc The number of switches where old rules need to be removed and new rules

need to be added (this includes such ingresses too)

ki The number of ingress switches where new rules need to be installed

internal switches where only new rules need to be installed and Case 4) internal switches

where old rules need to be removed and new rules need to be added. For Case 1.2, to

simplify the presentation, it is assumed that there are no old internal rules to be deleted.

For all ingresses, it is assumed that old ingress rules need to be removed and new ingress

rules added.

The time elapsed at each stage of the RU is shown in Figure 3.1. The results of the
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Table 3.2: Analysis of E2PU

Parameter E2PU-SRT E2PU-SRT′

1, Case 1.1 2δ + td 2δ + tu + tdt

1, Case 1.2 4δ + tu + td 2δ + tdt

1, Cases 2,3 NA NA

1, Case 4 4δ + tu + ts + td 4δ+ tu+ ts+ td+ tdt

2 3δ + 2tu 3δ + 2tu + tdt

3 2ko + 6kc + 4kn 2ko + 6kc + 4kn

4 6δ + 2tu + ts + td 6δ+2tu+ts+td+tdt

analysis are shown in Table 3.2.

Parameter 1: Duration of overlap

Case 1.1: When the ingress switch receives a “Commit”, there are no rules in the

switch. At Tc1+3δ+2tu, there are no+ni rules. At Tc1+5δ+2tu+td, there are nn+ni rules.

Therefore the time for which the old and the new rules coexist in the switch is Tc1+5δ+2tu+td

- (Tc1+3δ+2tu) = 2δ+td.

Case 1.2: At Tc1+δ+tu, there are no+nn rules. At Tc1 +3δ+2tu, there are no+nn+ni

rules. At Tc1 + 5δ + 2tu + td, there are nn+ni rules. Therefore the time for which the old

and the new rules coexist in the switch is 4δ+tu+td.

For cases 2 and 3, there is no overlap of rules.

Case 4: At Tc1+δ+tu, there are no + nn rules and at Tc1+5δ+2tu+ts+td there are

nn rules. The duration of overlap is 4δ+tu+ts+td.

Since the internal switches have a larger overlap duration, they need to have bigger

SRTs or TCAMs than the ingresses.

Parameter 2: Duration within which new rules become usable: After 3δ+2tu

units from the beginning of the update, the ingress switches to the new rules and they

are usable.

Parameter 3: Message Complexity: For E2PU-SRT, kn+kc messages of type

“Commit”, “Ready to Commit”, “Commit OK” and “Ack Commit OK”, and ko+kc

messages of type“Discard Old” and “Ack Discard Old” are sent, totalling to 2ko+6kc+4kn.

Parameter 4: Total Update Time: The total update time is 6δ + 2tu + ts + td.
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If v0 rules of an ingress are in the TCAM, they need to be deleted from the TCAM,

taking time tdt and updated in the SRT, taking time tu. Therefore Parameter 1 changes

to Tc1 + 3δ + 2tu + tdt - (Tc1 + δ + tu) = 2δ + tu + tdt for case 1.1, Tc1 + 3δ + 2tu + tdt -

(Tc1 + δ+ 2tu) = 2δ+ tdt for case 1.2 and for case 4, it increases by tdt. Parameters 2 and

4 increase by tdt. The parameters if v0 rules of an ingress are in the TCAM are shown

under E2PU-SRT′ in Table 3.2.

3.2.5.1 Observations:

1. For networks without an SRT, parameters 1,2 and 4 worsen because the value of tu

increases significantly and tdt > td, though the formulae remain the same. However,

the number of messages used reduces to 2ko + 4kc + 2kn + 2ki, as there is no need

to send Commit OK and Ack Commit OK to the internal switches.

2. If v0 rules for all the switches are in the SRT, the parameter values reduce as the

time to delete rules reduces. If some of the internal switches (but not ingresses) have

v0 rules in the TCAM, their deletion times will dominate parameters 1 and 4.

3. Since a mix of rules in TCAM and SRT is going to be a practical scenario, to reduce

these parameters, mechanisms for fast deletions, such as to disregard a rule from a

switch by quickly marking it as deleted and physically removing it later, must be

considered.

4. For small networks the update and delete times will dominate δ and ts (the network

diameter). For large networks, with all rules in the SRT, δ and ts will have a larger

influence on the parameters.

5. For PPC with SRT, the new rules get installed fairly quickly and the old rules are

removed as soon as is feasible.

6. 2PU [111] does not specify a method to delete old rules and it does not specify

whether every message that the controller sends to switches is acknowledged. There-

fore a comparison of E2PU with 2PU is not straightforward. Due to these reasons,

Parameters 1 (duration of overlap of old and new rules), 3 (message complexity)

and 4 (total update time) of E2PU cannot be compared with that of 2PU. In fact,

the total update time of 2PU cannot be analytically determined, as it is not fully
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specified. However, assuming that 2PU expects an acknowledgement from all the

switches, E2PU-SRT fares better than 2PU for Parameter 2 (duration within which

new rules become usable), as the value of tu is lesser for E2PU-SRT.

A qualitative comparison of E2PU with other algorithms that preserve PPC is given in

Table 2.1 of Chapter 2.

3.2.6 Summary of E2PU

In E2PU-SRT, we identified areas where the basic update algorithm for SDNs is under-

specified and described enhancements for update algorithms for PPC, exploiting the avail-

ability of an SRT. We also analyzed the algorithm quantitatively.

For real implementations, it is desirable that rules in every switch in the network

are not modified for every update. One method to accomplish this is for the controller to

identify the exact paths affected by every rule change [71], whenever practically possible,

and modify switches only along those paths. Another method is to modify only those

switches where there is a genuine rule change, by installing v1 rules always in the SRT at

a higher priority compared to the v0 rules and matching with the rules in the SRT first.

All ingresses tag all incoming packets with v1. v0 rules do not check the version numbers

of packets. The version number field of v1 rules is set to don’t cares only when v0 rules

are deleted. This is the basic idea of the algorithm CCU, described in the next section.

Moreover, CCU also addresses how concurrent disjoint updates from a controller can be

executed on a network, ensuring an all-or-nothing semantics.

3.3 Concurrent Consistent Updates

This section describes a general per-packet consistent update algorithm that supports

concurrent disjoint updates.

E2PU-SRT (section 3.2) has two properties: 1) it does not make assumptions about

the topological properties of the update or the nature of flows and therefore works for

all situations (only deletion, only insertion, or both, of flows using wildcarded rules) 2) it

preserves PPC. However, it does not allow concurrent disjoint updates. This is because

every update affects every rule in every switch: thus effectively, there are no disjoint

updates, even though, in reality, the updates may be disjoint.
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If all the paths affected by an update are known in advance, using the mechanisms

identified in Veriflow [71] or CCG [140], then concurrent updates preserving PPC are

possible, using E2PU-SRT. Suppose for an update, an internal switch requires this rule

to be inserted: “tcp port=80, forward2 ”. This rule affects a very large number of paths

in a network. Identifying the number of paths that affect a large number of paths is

not possible in a manner that is fast enough for real implementations [71]. Only for the

scenarios where the paths can be identified, disjoint updates can be installed in parallel.

Moreover, every switch in the path needs to be modified, whether that switch is affected

or not.

CCU accomplishes the following: C1) it preserves PPC C2) it allows concurrent

disjoint updates C3) it makes no assumptions on the sequence of updates or the nature

of rules and is therefore general C4) it minimises the number of internal switches to be

updated by restricting the update to only those internal switches that require a genuine

rule change. C5) it provides a trade off between concurrency and packet header overhead.

3.3.1 Switch Model

An internal switch has a rule table implemented in an SRT, “in series” with a rule table

implemented in a TCAM. A packet, on entering an internal switch, is first matched with

the rules in the SRT. If there is no match, it is forwarded to the TCAM. In implementations

that do not have an SRT, a TCAM may be used, without any change to the algorithm.

Every rule has two fields associated with it, a version number, initialised to don’t cares,

and limit, initialised to the maximum value that the field can accommodate. Other than

this, the switch model in section 1.3.1 of Chapter 1 is used.

3.3.2 Concurrency Requirements

We envisage a network model where applications from either the same controller or dif-

ferent controllers issue disjoint updates. In E2PU-SRT (section 3.2), each update gets a

unique tag from the controller (or a central entity in the case of multiple controllers). After

the controller receives “Ready to Commit” from all the switches that process “Commit”

the update is said to be stage1-complete. After the controller receives “Ack Commit OK”

from all the switches that process “Commit OK”, the update is said to be stage2-complete.
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After the controller receives all the “Discard Old Ack” messages, the update is complete.

The controller sends a “Commit” to the switches as soon as a tag is allocated. Let

there be several “Commit” messages sent, belonging to different versions. If an update

n+ 1 is stage1-complete before an update n, it must be possible to proceed with the rest

of the update for n + 1, without waiting for n to be stage1-complete. Ideally, this must

be possible in all situations. Practically, this depends on the level of concurrency.

An RU RU1 that conflicts with an update RU2 may begin as soon as RU1 is complete

and not earlier. An application will issue RU2 only after RU1 is complete.

3.3.3 Rule installation in internal switches

All new rules are first inserted into the SRT, at a higher priority than the old version of

the rules. New rules check packets for a specific version number, which must always be

less than limit. Whenever the old version of rules, if any, is deleted, the version field of

the current version of rules is changed to don’t cares so that they cease checking packets

for a version number. The old rules will typically be in the TCAM (alternately they can

be in the SRT) but always at a lower priority than the new rules.

3.3.4 Version tagging of packets

Each packet has a version tag, followed by 4 (this can be any number) bits, called the

status bits. The status bit denotes the status of the update, with the most significant bit

denoting the status of the update whose tag is 1 less than the value of the version tag, the

next significant bit 2 less than the value of the version tag and so on. When the switch

sees a packet with the status bit set to 1, the update corresponding to that version is

in “Commit OK sent”. This means that rules belonging to that version are effective and

that packets, if any, are getting switched according to those rules. If the version tag of a

packet is n, all updates with versions less than or equal to n−4 are in the state “Commit

OK sent”, or later. For example, 10 : 0110 indicates that update versions 10, 8 and 7,

and 5 and below, are in the state “Commit OK sent” or later. Update versions 9 and 6

are not stage1-complete. The updates for which the status bit is set are called companion

updates. The number of status bits may be increased to improve concurrency or decreased

to reduce the overhead.
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3.3.5 Algorithm at the control plane

Assume that a set of rules with version number n need to be installed. current denotes the

version tag currently sent in packets and status is the half-byte that denotes the status

bits that the packets are tagged with.

The controller queues update requests from all applications in app queue. The con-

troller also maintains a table, update table, which has the state of the update, for each

update. The update states stored are stage1-complete, “Commit OK” sent, stage2-

complete and “Discard Old” sent. The updates that are queued are disjoint.

The messages exchanged are the same as in E2PU-SRT. Alterations are made for

generating and processing packets with version number and status fields, for concurrent

updates, as shown in Figure 3.2.

0. The controller checks if there are messages from the switches, associated with an

ongoing update. If there are messages, it goes to the appropriate step below, de-

pending on the state of the update. If not, it checks whether there are any update

requests in app queue. If there are any requests, it goes to step 1.

1. The controller retrieves the first update request from app queue, gets the next avail-

able tag for this update, say n, and sends “Commit” with the new and old rules to

all the affected switches. All the affected internal switches (this could include the

ingress switches that receive rules by virtue of them acting as internal switches for

the other paths that belong to this update) install the new rules into the SRT. The

new rules are such that they have higher priority than any version lesser than n.

The affected internal switches set limit = n, for every old rule received in Commit.

The ingress switches do not yet install either the rules that tag packets with n or

the policy rules of version n, but store them internally.

2. Each switch that processes “Commit” sends back “Ready to Commit”.

3. After the controller receives “Ready to Commit” from all the switches, it marks

n as stage1-complete in update table. It calls the procedure resume update() in

Algorithm 1 to resume updates, which is described in detail in section 3.3.6. The

procedure sends “Commit OK”, if required, to all the ingress switches. The controller

also sends the value of the status bits to be sent, along with the correct tag, in
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Figure 3.2: CCU: Algorithm at the control plane
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“Commit OK”. As soon as the ingress switches receive “Commit OK”, they install

new rules of version n, if any, stop sending packets tagged with the previous version

and switch over to the new version. They also modify the status bits in the packet

header. Let us assume that a “Commit OK” with n as the version is sent at this

stage. (It is possible that due to previous updates not being stage1-complete, the

update n is stalled, in which case, “Commit OK” is not sent for version n).

4. Each ingress that processes “Commit OK” sends “Ack Commit OK” to the con-

troller. Each ingress sends the current time with this message, called Ti.

5. After receiving “Ack Commit OK” from all the ingresses, the controller notes the

latest value of Ti received and saves it as Tdel. It marks n and its companion updates

that are not yet marked stage2-complete, as stage2-complete, in update table. Now

it sends “Discard Old” to all the switches where rules were either inserted or deleted

or both, for update n and its companion updates, unless already sent, as indicated

in update table. It sends Tdel and the rules to be deleted (old version) as a part of

“Discard Old”.

6. After each internal switch receives “Discard Old”, when the current time of the

switch Ti > Tdel + M , where M is the maximum lifetime of a packet within the

network, it does the following: a) it deletes the list of old rules received in “Discard

Old” 2) it sets the version number field of the version n and its companion updates

to don’t cares 3) it sets limit to its maximum value. These rules may be moved to

the TCAM any time from now. The ingresses delete the old rules as soon as they

receive “Discard Old”.

7. Each switch that processes “Discard Old” sends a “Discard Old Ack”. When the

controller receives all the “Discard Old Ack” messages the update is complete. The

controller deletes the entries belonging to the completed updates from update table.

The procedure continues from step 0.

3.3.6 Resuming an update

Algorithm 1 shows the algorithm to send “Commit OK” for updates that are stage1-

complete and to move the status window, if it is appropriate to do so.
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Algorithm 1 Algorithm to resume updates

1: procedure resume update() . Resumes the next set of pending updates in

update table by sending “Commit OK”.

2: size = Get number of consecutive updates from current− 4, in increasing order,

whose bits are set to 1, by checking update table

3: if size 6= 0 then . The new window position is current+ size

4: temp = Position where the first update less than or equal to current+ size is

stage1-complete

5: if temp > current then

6: current = temp

7: end if . Otherwise no change to current

8: end if

9: Update status by reading update table

10: if “Commit OK” not already sent for at least one of current or companion updates

then

11: Send “Commit OK” with current as the version and status as the status bits

12: State of current and companion updates for which the state is “stage1-

complete” in update table = “Commit OK” sent

13: end if . If “Commit OK” sent, do nothing

14: end procedure
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Figure 3.3: Adjusting the status window

The procedure first checks whether the status window can be moved. For that, it

determines the number of consecutive updates in update table, starting from current− 4,

that are stage1-complete (line 2). Let the number be size. (size can be more than the

size of the status field). The status window cannot be moved size bits because the version

current+size may not be stage1-complete, as illustrated in Fig.3.3. The updates marked

“0” in the figure are not stage1-complete and the updates marked “1” are stage1-complete.

So the algorithm finds the first version less than or equal to current+ size that is stage1-

complete (line 4). Now it sets current to this value, as long as this is greater than current.

If there are no updates later than current that are stage1-complete and size is non-zero,

we just set the correct status bits to 1, with current remaining the same.

When there are no consecutive updates that are stage1-complete, size is 0 and the

window cannot be moved at all, it is possible that some updates currently within the

window become stage1-complete and “Commit OK” needs to be sent for those. The

controller sets bits in status by determining the status from update table. If, for at least

one of the updates in current or its companion updates, a “Commit OK” has not been

sent, it sends “Commit OK” (line 10).

3.3.7 Algorithm at the data plane

The version number of a packet is denoted as n and that of a rule is denoted as v. When

an internal switch receives a packet with version number n, the internal switch attempts
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Algorithm 2 Algorithm at the data plane

1: procedure process packet(packet)

2: . n is the version number of the packet. v is the version number of the rule, if any.

3: if matched rule has a version number then

4: . This rule is new.

5: if (v = n) then

6: . New rules are installed in all the affected switches

7: Execute actions

8: else if (v < n) AND ((status bit in packet = 1) OR (v < n− 4)) then

9: . New rules are installed in all the affected switches. RUs subsequent to v

are in progress.

10: Execute actions

11: else

12: . v > n or status bit in packet = 0 for this v

13: . New rules are installed in this switch but not yet installed in all the

affected switches

14: Skip this rule and apply the next matching rule

15: end if

16: else

17: . This rule is not new. It is old or unaffected.

18: if n ≥ limit then

19: . New rules have been installed in all the affected switches. However, this

switch does not have a new rule. The matching rule is an old rule that needs to be

deleted. Therefore, skip this rule.

20: Skip this rule and apply the next matching rule

21: else

22: . If limit has its maximum value, this is an unaffected rule. Otherwise it is

an old rule. In either case, the rule can be applied to the packet.

23: Execute actions

24: end if

25: end if

26: end procedure
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Figure 3.4: (a): A packet with its labels and (b),(c),(d): how a packet is matched

57



to match the packet with a valid rule present in the SRT that has a version number less

than or equal to n and applies that rule. A rule is valid if the status bit in the packet

associated with the rule version is set to 1 or its version is less than n−4. A packet header

with 10 : 0110 as its version and status, indicates that the rules with versions 10, 8 and

7, and 5 and below are valid for that packet.

When an RU begins, suppose a switch has both new and old rules. Suppose the new

rules have been installed and the old rules have their limit set to k, where k is the version

number of the packet. As the RU for version k begins, an affected packet has a version

n, which is less than k. Now the packet skips matching a new rule (line 14 of Algorithm

2) and matches an old rule (line 23 of Algorithm 2 ), as expected. Suppose n = k. This

implies that new rules have been installed in all the affected switches. The packet now

matches a new rule (line 7 of Algorithm 2, Figure 3.4(b)). As the RU progresses, suppose

n > k for another packet. Since all the new rules have been installed for version k, the

packet matches a new rule again (line 10 of Algorithm 2, Figure 3.4(b)) and continues to

match new rules.

Suppose a switch has only old rules and no new rules (section 1.3.2 of Chapter 1).

When n < k, n is also less than limit. Therefore it matches an old rule, as expected (line

23 of Algorithm 2). A packet whose n = k matches an old rule (line 20 of Algorithm 2,

Figure 3.4(d)), but skips it, as it must either match a new rule or an unaffected rule.

Now it matches an unaffected rule (line 23 of Algorithm 2). As the RU progresses and n

becomes greater than k, this continues to happen until the old rule is deleted. Now the

packet matches an unaffected rule (line 23 of Algorithm 2), Figure 3.4(c).

The ingresses tag all the packets with the same version and set the same status bits,

upon receiving “Commit OK”. For ease of implementation, the instruction for tagging

packets with a version number and status bits may be separated from the rest of the in-

structions for the packet (such as forwarding to a port). A single rule tagging all packets

with the desired version number and status bits may be installed in a flow table, imple-

mented in software - thus only this instruction needs change and can be changed quickly

when a “Commit OK” is received. All packets to an ingress may match the rule in this

table first. The packet may then be forwarded to the next flow table in the ingress, which

performs the rest of the actions as required.
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Figure 3.5: Updating only the affected internal switches

3.3.8 Handling Failures in CCU

The controller must start a timer after sending “Commit”, for each version number n.

If the timer times out without receiving a “Ready to Commit”, the application must be

informed. The application must instruct the controller whether to delete the installed rules

or to proceed with additional updates (that is, modifying the current update) with the

same version tag. This must be done to enable later stage1-complete updates to proceed.

This can be easily accommodated in the algorithm, but for ease of exposition it is not

included.

The error handling for timeouts at the controller while expecting “Ack Commit OK”

and “Discard Old Ack” are the same as for E2PU, described in section 3.2.3, and are not

further described.

3.3.9 Updating only the affected internal switches

As an example, a rule “tcp port=80, forward 2 ” needs to be inserted in an internal switch

s1, to reduce the load on another switch s4, as shown in Fig.3.5. Let two adjacent switches

s2 and s3 also have new rules on account of this. The new path is shown in broken lines

and the old path in solid lines. Let the version associated with this change be n. After

the update is stage1-complete, the switches between the ingresses and s1 (not shown in

the figure) match each packet with a rule whose version field has don’t cares, that is, an

unaffected rule. When a packet with tag n reaches s1, s2 and then s3, it matches a rule

with version n, which is the newly inserted rule. Subsequent switches from s3 to the egress

match this packet with unaffected rules, whose version fields are set to don’t cares. Thus

switches without genuine rule changes are not affected.
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3.3.10 How the data and control plane algorithms work together

Suppose a packet p is stamped with a version number n by an ingress switch. Let the

new path of the packet as prescribed by the update n be Dn and let the old path be Do.

Only the switches that need a genuine rule change are updated with rules that check for

version n. On the rest of the switches unaffected rules (which do not check for version

numbers) are used.

Suppose the controller has decided that an update n, which is stage1-complete, can

proceed to the next stage. Now all the ingresses start tagging packets with version number

n. Suppose the first internal switch that the packet p traverses is A and it has a rule that

matches version n. That rule is applied to the packet. Similarly, all other switches along

Dn that have rules of version n will match that rule with p. If the next switch on Dn is B

and that does not have a rule of version n, p will match a rule on B that does not check

for a version. (A or B cannot have a rule matching p that will check for a version less than

n, as such a rule would indicate a conflicting update in progress, which the algorithm does

not support.)

Now let us examine what happens when the next update n + 1 is stage1-complete.

Let the set of packets affected by update n be S. Packets belonging to S have the same set

of forwarding actions from the ingress to the egress. Let update n+ 1 be such that it does

not affect S. All the ingresses now start stamping all packets with the version number

n+1 and with the status bit for n set to 1. A packet p belonging to S will reach switch A.

Let A have a rule that checks for version n+ 1 installed. Since p will not match the rule

that checks for version n + 1 (since update n + 1 does not affect p) and will match only

the rule that checks for version n, the switch will check if the status bit associated with n

is set to 1 in p. Since it is, the switch A continues to match p with the rule that checks for

n. On switches similar to A, the same behaviour will follow. In switch B, there may be a

rule that checks for version n+1, but again, p will not match that rule. It will continue to

match the rule that does not check for a version number, on B and switches similar to B.

The behaviour is similar when the ingresses start stamping packets with version numbers

greater than n+ 1.

What happens to the packets belonging to S, before the update n is stage1-complete?

Since they have version numbers less than n, even after version n rules are installed, they

will not match those rules. These are the old packets that take the path Do and they get
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switched along Do using the old rules that do not check for a version number and continue

to get switched along that path even after update n is installed, thus preserving PPC.

These old rules get deleted only after Tc > Tdel + M , by which time, all the old packets

would have exited the network - therefore no old packet is dropped.

Thus the new packets belonging to S, regardless of their version numbers, get

switched exclusively along the path Dn and the old packets exclusively along the path

Do, preserving PPC. If the paths overlap, the same rules are used by the switches in the

overlapping region, but that does not violate PPC.

The above explanation holds good if a switch has both new and old rules to be

installed, or only new rules to be installed. Suppose a switch has only old rules to be

deleted and suppose the update n is not stage1-complete. limit of the old rule is set to

n. When this switch receives a packet with version n − 1, it matches the old rule and

since (n − 1) < limit, it applies the old rule, as required. Suppose the update is stage1-

complete and the ingresses start sending packets with version number n. Since all the

affected switches are now ready to switch to new rules, on this particular switch, since

there are no new rules, an unaffected rule must be applied to the packet. When the packet

matches the old rule, since n ≥ limit now, the old rule is skipped, and the next matching

rule is applied to the packet, as required. The next matching rule has n < limit, as limit

is initialised to the maximum value the field can hold.

The status bits indicate to the internal switches the versions of the rules that are not

yet stage1-complete and therefore must not be used. Since only 4 bits are used, there can

be a gap of utmost 4 updates that are not stage1-complete between two stage1-complete

updates n+ 5 and n. If updates n+ 1 through n+ 4 are not stage1-complete and update

n + 5 is, update n + 5 can proceed to the next stage, by setting all the four status bits

to 0. However, if update n + 6 becomes stage1-complete next, then it cannot proceed to

the next stage unless update n is stage1-complete, thus limiting concurrency. If the size

of the status window is set to 5 bits, then update n + 6 can proceed. Thus by changing

the size of the status window, concurrency can be improved.

Subsequent to the publication of this work, we discovered that GU [81] employs

a mechanism similar to the one described in section 3.3.9, to update only the affected

switches, but with a different mechanism for achieving concurrency. In the case of CCU,

with the same overhead bits, more updates can begin in parallel and can proceed simul-
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Table 3.3: Additional Symbols Used in the Analysis of CCU

Symbol Meaning

tz The time taken to update the stateful value limit for all old rules

tmo The time required to modify a set of rules

ka The total number of ingress switches in the network

taneously, if, by the time the controller checks for stage1-completion, all updates reach

stage1-completion simultaneously or in the order of their version numbers. Deletion of old

rules does not require further changes to the installed rules in CCU, whereas in GU [81],

old rules need to be changed at the beginning of the update to have a label of 0, which is

a time consuming activity if the rule is in the TCAM. CCU judiciously uses an SRT to

improve the update time. CCU is also specified in greater detail.

3.3.11 Analysis of CCU

We assume an implementation of CCU where the version number of a rule is a part of

the match part of a rule and limit is a stateful value checked in the action part. Thus

changing the version of a rule involves modifying the TCAM of a switch, which typically

takes more time than modifying a stateful value. We also assume that switches do not

have an SRT. The analysis of CCU uses the same symbols as those of E2PU in Table

3.1 of section 3.2.5. The symbols in Table 3.3 are used, in addition. The time taken by

the controller to calculate the version and status bits (Algorithm 1) is assumed to be

negligible.

In addition to analysing the parameters identified in section 3.2.5 for CCU, we also

compare CCU with E2PU. For a fair comparison of both, we assume that no SRT is used

for both E2PU and CCU. We also make the following assumptions, that are common with

E2PU: 1) at an ingress switch, old rules need to be removed, but new rules do not need

to be added (Figure 3.2), 2) the sum of the propagation times and switch delays between

the controller and the switches is uniform (δ), 3) the time taken for all insertions (tu)

and deletions (td) is uniform and the processing time at each switch is negligible, 4) the

time at which the last switch sends Ready to Commit is Tc1+δ+tu + tz and it denotes
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the longest time taken and 5) the number of rules that need to be deleted and added to

switches is uniform across switches, at each stage of the update, wherever applicable.

The time taken at each stage of an update is indicated in Figure 3.2. An update begins

at Tc1. At an affected internal switch, after receiving Commit, new rules are installed,

taking time tu, and the value of limit for each old rule is changed, taking time tz. When

an ingress receives Commit OK, it installs its rules (the ones that change the version

number and status bits of packets), which takes time tu. The ingress does not have new

rules that need to be installed, with respect to this update. Upon receiving Discard Old,

an ingress deletes its old rules (the old ones affected by the update and the old ones

that change the version number and status bits of packets) immediately, taking time td,

whereas an internal affected switch deletes its old rules after ts units of time (waiting for

the timer to expire), again taking time td for the deletion. It also incurs a time tmo to

modify its new rules.

The major differences from E2PU from the standpoint of a timing analysis are: 1)

In E2PU, all switches require rule changes, as the controller does not compute the paths

affected for an update, whereas in CCU, only the affected switches require rule changes,

along with ingresses. 2) CCU requires modifying a stateful value (limit) associated with

each old rule. 3) CCU requires modifying the version field of a new rule so that it accepts

all packets, at the end of an update.

Parameter 1: Duration of overlap of old and new rules: This is unaffected by

the changes in CCU with respect to E2PU, and is the same as those for E2PU (Section

3.2.5).

Parameter 2: Duration within which new rules become usable: After 3δ+2tu+

tz units from the beginning of an update, all ingress switches instruct packets to use new

version numbers and from that point, new rules are usable.

Parameter 3: Message Complexity: kn+kc messages of type Commit and Ready

to Commit are required. Since Commit OK is sent to all ingresses and Ack Commit OK

is received from all ingresses and only ingresses are involved in this stage, 2 ∗ ka messages

of this type are required. ko+kc messages of type Discard Old and Discard Old Ack are

sent, totalling to 2ko + 4kc + 2kn + 2ka.

Parameter 4: Total Update Time: The total update time is 6δ + 2tu + tz + ts +

td + tmo.
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Table 3.4: Analysis of CCU

Parameter CCU Comparison

1, Case 1.1 2δ + td The same as E2PU

1, Case 1.2 4δ + tu + td The same as E2PU

1, Cases 2,3 NA NA

1, Case 4 4δ + tu + ts + td The same as E2PU

2 3δ + 2tu + tz tz units more than E2PU, which is negligible

3 2kn+4kc+2ko+2ka Less than E2PU in the best case and equal to

E2PU in the worst case

4 6δ + 2tu + tz + ts +

td + tmo

tmo + tz units more than E2PU

The time taken for various parameters and a comparison with E2PU are given in

Table 3.4. Parameter 2 is more than that of E2PU by tz units, which is the time to update

limit, associated with each rule. Since these values are stored in SRAM, the update times

are negligible (in nanoseconds), compared to rule update times (in milliseconds), if an

RMT switch is used for implementation. The message complexity for E2PU, if an SRT

is not used is 2kn + 4kc + 2ko + 2ki (section 3.2.5.1). Since the affected paths are not

computed, all the ingresses are affected for E2PU too. In CCU, since the changes are

confined to only the affected switches, the values of kn, kc and ko are lesser than that

of E2PU, as long as all the switches in the network are not affected. Therefore, CCU

has lesser message complexity compared to E2PU, in the best case and equal message

complexity, in the worst case. The update time (Parameter 4) is higher, compared to

E2PU.

For a CCU implementation where all switches have an SRT, the values of tu and tmo

will be lesser, thus reducing the values of parameters 1, 2 and 4.

3.4 Conclusions

This chapter described two algorithms that preserve per-packet consistency. The first

algorithm, E2PU, identified areas where the basic update algorithm for SDNs, that is,

2PU, is under-specified and described enhancements for that, exploiting the availability
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of an SRT. We also analyzed the algorithm quantitatively.

The second algorithm, CCU, performs concurrent disjoint updates that preserve per-

packet consistency and it works for all scenarios - whether only inserting rules, or only

deleting rules, or a combination of both, on all the affected switches. It confines changes

required for an RU to the affected switches and the ingresses of a network. CCU was

quantitatively analyzed and compared with E2PU.

We observe that increasing one or more of these overheads improves concurrency:

overhead bits in the packet, processing in the switch or the number of messages. We note

that the algorithm presented will work well if each concurrent update takes roughly the

same amount of time. Therefore it must be examined whether updates can be sized in that

manner. Also, is there a way to achieve unlimited concurrency and increase FP to 1 at

the same time ? How can the need to change all the ingresses of a network be eliminated?

That is the subject of the next chapter.
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Chapter 4

Proportional Per-Packet Consistent

Updates

4.1 Introduction

This chapter describes the update algorithm Proportional Per-packet Consistent Updates

(PPCU) that preserves PPC, confines changes to only the affected switches (FP=1),

supports wild-carded rules and rules that have longest-prefix matches, provides an all-or-

nothing semantics for a Rule Update and allows any number of concurrent non-conflicting

updates, regardless of the execution speeds of switches and links. The algorithm does not

require flows in the network for the RU to progress and needs no packet buffering at the

controller.

4.2 Our contributions

In addition to describing the algorithm, we analyze its significant parameters and find

them to be better than comparable algorithms. We illustrate that the algorithm can be

implemented at line rate. A prototype of the algorithm is implemented on a simulated

data centre network that uses realistic routing, and flow arrival, inter-packet delay and

controller- switch delay distributions. The simulator also uses a realistic topology, and

switch code that can be used directly in production environments. Our results demonstrate

that using continuous PPCU updates provides better throughput for large flows and

completes a larger number of small flows, compared to using random updates. Moreover,
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PPCU updates do not violate safety requirements, unlike random updates.

Assumptions: 1) All switches use a synchronized real time clock using protocols

such as PTP or ReversePTP [89]. If there is time asynchrony between switches, it has a

known maximum value. 2) It is possible to add a time stamp to a packet header, which

is the case with programmable switches [22].

Summary of the algorithm: Let the latest time at which all the switches in

S install the new rules be Tlast. Each affected switch examines the time stamp, set to

the current time by the ingresses, in each data packet. If its value is less than Tlast, it

is switched according to the old rules while if it is greater than or equal to Tlast, it is

switched according to the new rules, thus preserving PPC.

4.3 PPCU: Algorithm for concurrent PPC updates

4.3.1 Switch Model

The switch model described in chapter 1 section 1.3 is used. For PPCU, optionally, a time

stamp T and a rule type rule type are associated with each rule. These optional values

are not used while matching a packet but actions may read from them. PPCU requires

two match fields, a label and a time stamp, to be added to every packet. Why they are

added is described in the next section.

Applications that wish to control the behavior of the network issue RUs to the

Controller. The Controller exchanges a series of messages with the affected switches to

install new rules and delete old rules. The switches act on data packets using the rules

installed. The sections below describe the changes required for concurrent PPC updates

for the controller and the switches.

4.3.2 Algorithm at the data plane of the ingress and egress

switches

Each packet p entering the network has a time stamp field TSp added to it at the ingress

and removed from it at the egress, as shown in Table 4.1. All ingresses set TSp to the

current time at the switch for all the packets entering it from outside the network. Once

TSp is set on a packet, its value is never altered. Each packet has a label that is set to
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Variable Values Initial value Description

TSp 0 to Tmax Current time at

the ingress

Stored when the packet enters the

network

label NEWp, OLDp,

Up

Up The rule type that must be applied

to the packet

Table 4.1: Fields added by ingress switches

any of the values NEWp, OLDp or Up, indicating if that packet is new, old or unaffected,

respectively. All the ingress switches set the packet label to Up and the egresses remove

the packet label. Throughput the chapter, a suffix of p indicates that the entity being

described belongs to a packet.

4.3.3 Algorithm at the control plane

Figure 4.1 shows the algorithm for PPCU at the control plane. The message exchanges

are the same as in chapter 3; the parameters in them and actions upon receiving them

have been modified to suit PPCU.

Ti denotes the current time at si ∈ S. The value of T associated with each rule is

used by the rule to compare packet time stamp values and is initialised to Tmax, 1 less

than the maximum value that T can hold, for every rule. The value of rule type associated

with each rule is initialised to U , indicating that the rule is unaffected. These values are

listed in Table 4.2.

Variable

[index]

Written

by

Read

by

Values Initial

value

Purpose

T [n] Controller DP 0 to Tmax Tmax To compare with the

packet time stamp to

decide label of a packet

rule type

[n]

Controller DP NEW , OLD or U U Indicates the type of

rule

DP: Switch Data Plane, n: rule number, Tmax: 1 less than the maximum value the item can hold

Table 4.2: Stateful lists used by the affected switches
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Figure 4.1: PPCU: Algorithm at the control plane
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1. The Controller, upon receiving an RU from the application, with S, and Roi and

Rni for every si ∈ S, sends a “Commit” to every si ∈ S with v, Roi and Rni. v is a

unique identifier associated with the RU.

2. A switch si ∈ S upon receiving the “Commit” message, a) marks the Roi rules as old

and the Rni rules as new by setting their rule type to OLD and NEW respectively

b) sets T associated with Roi and Rni rules to Tmax c) changes the installed Roi rules

to check if a packet is labelled OLDp or Up (Rni rules check if an incoming packet

is labelled NEWp or Up) by changing their match fields and d) installs the Rni

rules. All the changes to each rule must be done atomically. Now it sends “Ready

to Commit” with Ti.

3. The controller, after receiving “Ready To Commit” from all si ∈ S sends “Commit

OK” to all si ∈ S with Tlast, where Tlast is the largest value of Ti received in “Ready

To Commit”, from the switches.

4. Upon receiving “Commit OK”, the switch sets T = Tlast in all the rules in Roi and

Rni, atomically per rule, and sends Ti in “Ack Commit OK”.

5. The controller sends “Discard Old” to all the switches S with Tdel, after receiving

“Ack Commit OK” from all S, where Tdel is the largest value of time received in

“Ack Commit OK”.

6. Each si ∈ S starts a timer whose value is Tdel +M − Ti, where M is the maximum

lifetime of a packet within the network and Tdel the time received in “Discard Old”.

When the timer expires, as all the packets that were switched using the rules Roi

are no longer in the network, the switch deletes Roi. It marks every Rni rule as

unaffected by setting its rule type to U and modifies its match fields such that it

ceases to check for packet labels. Now it sends “Discard Old Ack” to the controller.

With this, the RU at the switch is complete.

7. After the controller receives “Discard Old Ack” messages from all si ∈ S, the RU is

complete at the controller.

After M units after the timer expiry at the last affected switch, the last packet tagged

NEWp will no longer be in the network. Now the next RU not disjoint with the current

one may begin.
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4.3.4 Algorithm at the data plane of the affected switches

Algorithms 3 and 4 specify how the data plane of an affected switch processes an incom-

ing packet. Algorithm 3, Match-Packet, specifies the algorithm to match packets and

Algorithm 4, Execute-Actions, specifies the algorithm to process a packet within the

action part of a rule. Execute-Actions provides the template for the action part of

a rule. The primitive actions invoked from the action part will vary depending on the

intention of the action.

New rules are always installed in the switch with a priority higher than the old

and unaffected rules. Match-Packet examines whether an incoming packet is already

labelled NEWp (OLDp) or Up. If labelled NEWp (OLDp) or Up and the remaining match

fields of the packet match a new (old) rule, as shown in line 4 of Algorithm 3 (line 6 of

Algorithm 3) the action corresponding to the new(old) rule is executed.

rule type is initialised to U and set to NEW (OLD) for new(old) rules at the

beginning of the RU, by the controller. T is initialised to Tmax for all the existing rules

and set to Tlast by the controller after the new rules have been installed in all the switches,

in the course of an RU.

In Execute-Actions, when a packet arrives, first rule type associated with that

rule is checked (line 4). If rule type is NEW (OLD) and if the packet is labelled NEWp

(OLDp), the packet is switched using the new (old) rules, as shown in line 9 (line 19).

If rule type is NEW (OLD), the packet is labelled Up and if its time stamp TSp ≥ T

(TSp < T ), it is labelled NEWp (OLDp) and it is also switched using new (old) rules. If

the packet matches a new rule and its TSp < T , the packet is labelled OLDp. Match-

Actions is again called to match the newly labelled packet, in line 13, resulting in the

packet subsequently getting switched out using old rules, as explained above.

An unaffected packet gets switched using the unaffected rules (line 10 of Algorithm 3

and line 26 of Algorithm 4). If and only if either of new or old rules do not exist in a table,

that is, when the rules are asymmetric, an affected packet gets switched using unaffected

rules (line 10 of Algorithm 3). Suppose an affected switch does not have an old (new) rule

for an affected packet and the packet is labelled Up. In that case, it first gets matched by

a new (old) rule as shown in line 4 (6) of Algorithm 3, then if its TSp < T (TSp ≥ T ), it

gets labelled OLDp (NEWp). Subsequently, Match-Packet is called again, as shown in

line 13 (23) of Algorithm 4 and the packet gets switched by an unaffected rule , shown in
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Algorithm 3 Match a packet

1: procedure Match-Packet(packet)

2: . This algorithm is for the match part of the match-action table. New rules are

always installed with a priority higher than the old and unaffected rules. New rules

check if the label of the incoming packet is equal to NEWp or Up and old rules check

if it is equal to OLDp or Up. Unaffected rules do not check for a packet label.

3: . label is the label of packet

4: if (((label = NEWp)OR(label = Up)) AND (packet matches fields of a NEW

rule)) then . This is the match part of a new rule

5: Execute-Actions(packet) . Actions associated with the new rule

6: else if (((label = OLDp)OR(label = Up)) AND (packet matches fields of an

OLD rule)) then . This is the match part of an old rule

7: Execute-Actions(packet) . Actions associated with the old rule

8: else

9: . The packet does not match a new or old rule (unaffected packet) or no new

or old rules exist on that switch to match the affected packet, regardless of the packet

label

10: Execute-Actions(packet) . Actions associated with the unaffected rule

11: end if

12: end procedure
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Algorithm 4 Execute actions of the appropriate rule type

1: procedure Execute-Actions(packet)

2: . This algorithm is for the action part of the match-action table. rule type indicates

if the rule is OLD (old), NEW (new) or U(unaffected). This value is associated

with every rule and is initialised to U (unaffected). It is set to NEW (OLD) by the

controller for the new(old) rules in the beginning of the RU. T , associated with each

rule, is initialised to Tmax and is modified to Tlast when the switch receives Commit

OK. Tlast is the latest time at which all the affected switches have installed the new

rules.

3: Extract the label of packet into label

4: if rule type = NEW then

5: . TSp is the time stamp of the packet

6: if (TSp ≥ T ) OR (label = NEWp) then

7: . If the packet is already labelled NEWp, the value of TSp is immaterial

8: Set label of packet = NEWp

9: Execute primitive actions of NEW rule . Matches rni. Primitive actions

such as forwarding the packet

10: else

11: Set label of packet = OLDp

12: . Needs to be matched with old rules, call Match-Packet again

13: Match-Packet(packet)

14: end if

15: else if rule type = OLD then

16: if (TSp < T ) OR (label = OLDp) then

17: . If the packet is already labelled OLDp, the value of TSp is immaterial

18: Set label of packet = OLDp

19: Execute primitive actions of OLD rule . Matches roi

20: else

21: Set label of packet = NEWp

22: . Needs to be matched with new rules, call Match-Packet again

23: Match-Packet(packet)

24: end if
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25: else . Matches rui

26: Execute primitive actions of unaffected rule

27: end if

28: end procedure

10 of Algorithm 3 and line 26 of Algorithm 4, as there is no old (new) rule that matches

the packet. If a packet is labelled NEWp (OLDp) and no new (old) rule exists on an

affected switch, it will be switched using an unaffected rule.

4.3.5 How the algorithms at the ingresses, the affected switches

and the control plane work together

The first switch si ∈ S that changes the label of a packet from Up to NEWp is called the

first affected switch sf
1 for that packet. An RU can have more than one sf .

This is the chronological sequence of events during an RU: 1) A switch that has

received a Commit message, but not subsequent messages (Figure 4.2 a), changes the

label of an incoming affected packet to OLDp, if it was Up, and uses old rules to process

the packet. This label change ensures that all the switches subsequently visited by the

packet also treat the packet as old irrespective of the current state of the switches. 2) When

sf receives Commit (Figure 4.2 b), it labels the affected packets that are labelled as Up as

OLDp and continues to do so, until it receives the value of Tlast in Commit OK (Figure

4.2 d). At Tlast, all the affected switches have completed installing new rules. Therefore

any affected packet entering the ingress at a time later than Tlast may be switched using

new rules. 3) When sf receives the value of Tlast in Commit OK, it starts labelling the

affected packets whose TSp ≥ Tlast as NEWp and from then on, the affected packets are

switched using new rules (Figure 4.2 d). If sf has not yet received Tlast and a subsequent

switch s1 has received Tlast, since sf has already labelled the packet as OLDp, the packet

gets switched only using old rules (Figure 4.2 c). Thus a packet is either switched using

old rules or using new rules, maintaining PPC. The algorithm is unaffected by the relative

execution speeds of switches as the controller waits for a response to each message sent

to the affected switches.

1Neither the controller nor any si ∈ S knows which switch sf is and that is immaterial to the algorithm.

It is defined for ease of exposition.
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Figure 4.2: How the data and control planes work together

The recursive call (lines 13 and 23 of Algorithm 4) is executed only at sf , only for

two cases: 1) between receiving “Commit OK” and until the timer Tm expires, if sf has no

new rules for an RU 2) between sf receiving“Commit” and “Commit OK”, otherwise. If

a switch supports multiple tables [22, 63, 21, 102] and an RU requires updates to multiple

tables concurrently, the algorithm supports that, as the first affected table in the first

affected switch will decide whether the packet must be switched by the new or old rules.

4.4 Handling Asynchronous time at each switch

Since a single rule update in a TCAM is of the order of ms (milliseconds) [62], a time

stamp granularity of ms is sufficient for RUs. PPCU uses comparisons with time for two

cases: TSp with T and Ti with Tdel +M .

Let us assume that the time stamp value is in ms and that the clock at an ingress sg
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is faster than an affected internal switch . Let γ be the maximum time drift of switches

from each other (at the most 1µsec, if the network supports PTP [90]). Let TSp = t1 of

a packet p in the network that is stamped by sg, even before the RU begins. After the

RU begins, let the (temporally) last affected switch send its current time stamp Tlast in

“Ready To Commit”. Let t1 > Tlast, since the clock at the ingress is faster. Let p1 cross sf

before the RU begins and reach sj ∈ S, where j 6= f . The label of p1 is still set to Up. Let

us assume that all the affected switches have received Commit OK. Now sj will switch p

with new rules, violating PPC. To prevent this, each switch may set T = dTlast + γ + 1e,

instead of T = Tlast. If an ingress clock is slow, there will be no PPC violations. Suppose an

affected switch has a clock faster than the rest of the switches. That switch will conclude

earlier than M units from Tdel that old packets have exited the network. Therefore, each

affected switch, upon receiving Tdel, must set it to dTdel + γ + 1e. Thus PPCU tolerates

known inaccuracies in time synchronisation if the maximum allowed drift is known.

4.5 Concurrent Disjoint RUs

Each disjoint RU requires a unique update identifier v for the duration of the update, to

track the update states at the affected switches and the controller. The number of disjoint

RUs that can be simultaneously executed is limited only by the size of v. v is exchanged

only between the controller and the switches and hence is not dependent on the size of

a field in any data packet. Therefore as many disjoint updates as the size of the update

identifier or the processing power of switches would allow can be executed concurrently.

4.6 Providing an all-or-nothing semantics

If an RU provides an all-or-nothing semantics, either all the new rules are installed or

none of the new rules is. For this, the response to each message sent from the controller

in Figure 4.1 may be guarded by a timer. 1) If the timer waiting for Ready To Commit

expires, the new rules that have been installed, if any, may be deleted. Alternately, the

application may issue a new update taking advantage of the already installed new rules.

In either case, the affected packets get switched only using the old rules, as Commit OK

is not sent to any switch at this point. 2) If Ack Commit OK does not arrive from all
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the affected switches while the timer is alive, then Commit OK is resent to the switch(es)

from where Ack Commit OK has not come. If, after a number of retries, there is still

no acknowledgement, then the controller has to read any of the affected switches with

the new rules, by means external to PPCU, using the monitoring constructs or run-time

systems supported by application level programming languages [124], to know if the new

rules are effective. If it receives Ack Commit OK from sf , it will know that the new rules

are effective (see Figure 4.2 d), but it does know which switch sf is. Hence it needs to

read the network. If the new rules are effective, the algorithm can proceed to the next

step. If they are not, the behaviour is the same as in 1) above. If the controller is unable

to read any of the affected switches where the new rules are installed, the application

must decide what needs to be done when the outcome of the RU is uncertain, from its

perspective. Regardless of whether the controller is able to read the affected switches,

PPCU is preserved because, if sf has received Commit OK, the affected packets are

switched using new rules, whenever TSp ≥ Tlast (Figure 4.2 d) and if it has not, they are

switched using old rules, even after TSp ≥ Tlast (Figure 4.2 c). 3) If the timer waiting for

Discard Old Ack does not arrive, Discard Old must be resent for a specified number of

tries. If there is still no acknowledgement, the application must ensure that the message

reaches the switches from where it was not received, before beginning the next conflicting

RU. PPC is preserved as the new rules are already effective and the affected packets are

switched using the new rules.

4.7 Implementation

We have implemented a proof-of-concept prototype of the algorithm for the data plane

(Algorithm 3) in P4 [30] and the control plane (in Figure 4.1) in our own controller and

the switch simulator available with a P4 switch implementation on Linux [121]. The P4

open source switch implementation available is integrated with Mininet [88].

4.7.1 A Brief Introduction to P4

The abstract forwarding model advocated by protocol independent programmable switches

[30] consists of a parser that parses the packet headers, sends them to a pipeline of ingress

match-action tables (the ingress pipeline) that in turn consist of a set of match-fields and
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associated actions, then a queue or a buffer, followed by a pipeline of egress match-action

tables (the egress pipeline). In this section, we describe only the features of P4 that are

relevant to PPCU.

A P4 program consists of definitions of 1) packet header fields 2) parser functions for

the packet headers 3) a series of match-action tables 4) compound actions, made of a series

of primitive actions and 5) a control flow, which imperatively specifies the order in which

tables must be applied to a packet. Each match-action table specifies the input fields to

match against; the input fields may contain packet headers and metadata. The match-

action table also contains the actions to apply, which may use metadata and registers.

Metadata is memory that is specific to each packet, which may be set by the switch on its

own (example: value of ingress port) or by the actions. Upon entering the switch for the

first time, the metadata associated with a packet is initialised to 0 by default. A register

is a stateful resource and it may be associated with each entry in a table (not with a

packet). A register may be written to and read in actions.

P4 provides a set of primitive actions such as modify field and add header and al-

lows passing parameters to these actions, that may be metadata, packet headers, registers

etc. When the primitive action resubmit (analogously recirculate for the egress pipeline)

is applied to the ingress pipeline, a packet completes its ingress pipeline and then re-

submits the original packet header and the possibly modified metadata associated with

the packet, to the parser. If there are multiple resubmit actions, the metadata associated

with each of them must be made available to the parser when the packet is resubmitted.

Conditional operators and statements are available for use in the control flow to process

expressions.

While this specifies the definition of the programmable regions of the switch, actual

rules (table entries) and the parameters to be passed to actions, called inputs, need to be

populated by an entity external to this model - the controller, through the switch CPU.

This is facilitated by a run-time API available with the P4 switch [121].
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Figure 4.3: Inputs to tables and changes to table definitions. Figure (a) shows the orig-

inal table and (c) its inputs. Figure (b) shows the changes required to table as per the

implementation.

4.7.2 Implementation of the data plane algorithm in P4

Algorithm 3 is implemented in the match part of the P4 table and Algorithm 4 in the

control flow 2 of the table that needs to be updated. To implement the ingress switches

labelling packets as Up, NEWp and OLDp, two bits fp1 and fp2 are used and are set to 0

and 0, 0 and 1, and 1 and 0 respectively (Table 4.3).

4.7.2.1 Algorithm at the data plane of the affected switches - changing the

table definitions and control flow

Let us assume that a table called table in an affected switch needs to undergo an update,

with match field m and action a, as shown in Figure 4.3(a). The inputs for this table are

shown in Figure 4.3(b), where IP0, IP0 and ∗ indicate the match parts and fwd(1), fwd(0)

and drop the action parts of new, old and unaffected rules, in that sequence. First, table

2This is because, the version of P4 [30] at the time of this implementation does not support expressions

and conditionals in actions. In the latest version of P4, P416 [31], Algorithm 4 may be implemented in

actions, simplifying the implementation.
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Figure 4.4: An example of changes to the inputs in Figure 4.3 (c) and the trace of an

affected packet.

must be split into two tables, table match and table action, with the former containing

only the match-fields of table and the latter containing only the actions of table, as shown

in Figure 4.3(c). The following match fields must be added to table match: fp1, fp2, mfp1

and mfp2 (mfp1 and mfp2 are needed due to the limitations of P4, as explained later).

table match will have an action r, that accepts a unique key key from the input and sets

it to a metadata field associated with the packet, called meta.p, as shown in the action

part of table match. table action will match a packet coming from table match with the

key set in meta.p; if it matches, the action specified in the input is executed, with the

parameters, if any. These are the changes to the definition of tables. Splitting table in this

manner is required only because P4 [30] does not support conditionals in actions. If the

new version of P4 [31] is used, this will not be required.

The input to table match must also be accordingly changed, as shown in Figure

4.3(c). The match fields in table match are created such that packets are forwarded as per
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Table 4.3: Packet labels

fp1,mfp1 fp2,mfp2 label value

0 0 Up

0 1 NEWp

1 0 OLDp

Algorithm 3. The match fields of new (old) rules for fp1 and mfp1 (fp2 and mfp2) are set

to 0 and fp2 and mfp2 (fp1 and mfp1) set to ∗, enabling the rule to check if the packet

label is NEWp (OLDp) or Up respectively, as may be inferred from Table 4.3.

If a packet matches an entry in table match and the action r is executed, the subse-

quent control flow is as per Algorithm 5, P4-Mark-Old-New, which is an implementa-

tion of Algorithm 4. P4-Mark-Old-New marks the packet as OLDp or NEWp, unless

it is already marked so. table action is applied next, as shown in Figure 4.3(c).

To give an example of an input, in Figure 4.3(b), if the incoming packet has the

destination address IP0, it is forwarded to port 0 (the rule marked OLD). Now this rule

needs to be changed to send such packets to port 1 (the rule marked NEW). In Figure

4.4, for a PPCU compliant RU, the new rule is installed with the match fields for fp1 and

mfp1 set to 0 and fp2 and mfp2 set to ∗, indicating that it checks whether the packet label

is NEWp or Up. The associated action is r and the value of key is 10. Due to the control

flow, a packet (marked 1), whose TSp ≥ Tlast entering table match, has its meta.p set to

10 (marked 2). In the control flow, P4-Mark-Old-New is applied next, which sets is

fp2 to 1 (marked 3). Next, in the table table action, it matches the entry with a key value

10 and the associated action to forward the packet to port 1 (marked 4) is executed, as

desired.

4.7.2.2 Implementation of Algorithm 4 - P4-Mark-Old-New

Algorithm 5 specifies the template for a control flow associated with a switch table and is

an implementation of Algorithm 4, in P4. The recursive calls of Algorithm 4 - Match-

Packets in lines 13 and 23 - are implemented by resubmitting packets (lines 11 and 20

of Algorithm 5). If the fields of a packet (fp1 and fp2) are modified, the modifications

are not retained when the packet is resubmitted, while modifications to metadata are.
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Algorithm 5 P4 implementation: Mark as old or new

1: procedure P4-Mark-Old-New

2: . rule type indicates if a rule is new, old or unaffected. For a given value of

rule type, the match-field values for the rule are shown against it.

3: . fp1,mfp1, fp2 and mfp2 refer to the values in the matched packet (labels).

4: if rule type = NEW then . After matching mfp1 = fp1 = 0

5: . The rule is new. TSp is the time stamp of the incoming packet and T is the

time stored with the rule. fp2 = 1 indicates that the packet is labelled NEWp

6: if TSp ≥ T OR fp2 = 1 then

7: Set fp2 = 1

8: Execute primitive actions . New rule

9: else

10: Set mfp1 = 1 . Do not match this rule again

11: resubmit . Use recirculate for egress tables

12: end if

13: else if rule type = OLD then . After matching mfp2 = fp2 = 0

14: . An update is in progress and the rule is old. TSp is the time stamp of the

incoming packet and T is the time stored with the rule. fp1 = 1 indicates that the

packet is labelled OLDp

15: if TSp < T OR fp1 = 1 OR mfp1 = 1 then

16: Set fp1 = 1

17: Execute primitive actions . Old rule

18: else

19: Set mfp2 = 1 . Do not match this rule again

20: resubmit

21: end if

22: else . After matching mfp1 = mfp2 = fp1 = fp2 = ∗

23: if mfp1 = 1 then

24: Set fp1 = 1 . Only new rules exist

25: else if mfp2 = 1 then

26: Set fp2 = 1 . Only old rules exist

27: end if
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28: Execute primitive actions . Unaffected rule

29: end if

30: end procedure

Therefore, two metadata bits, mfp1 and mfp2 are modified instead, as shown in lines 10

and 19 of Algorithm 5, before resubmitting a packet. Checking for the label of NEWp

(OLDp) is implemented by checking for fp2 (fp1) in line 6 (15). If the new and old rules are

asymmetric, a resubmitted packet will match an unaffected rule, in which case also, the

packet needs to be labelled OLDp or NEWp, as is done in lines 24 and 26 of Algorithm 5.

T and rule type are implemented as direct registers, with one entry associated with each

rule. 3 The P4 code for the tables that are anticipated to be updated must be written in

the above way. The inputs to the tables may be generated by any of the high level SDN

programming languages [124].

4.7.2.3 Algorithm at the control plane

Commit is implemented as the union of two messages: one to the old switches to modify

the old rules and another to the new switches to install new rules. If a switch has both

old and new rules, the old rules are installed first, that is, the existing unaffected rules are

modified to be old first, before installing the new rules. Similarly, to implement Discard

Old, a message is sent to the old switches to delete the old rules and to the new switches

to modify the new rules to unaffected.

4.7.2.4 Handling concurrency issues

In the version of P4 used [30] at the time of this implementation, it is not possible to

atomically set the entries (one entry per rule) of a direct register, with respect to a packet.

This is an issue if more than one rule needs to be changed for an RU, in which case, more

than one entry may not be changed atomically. In light of this, as shown in Figure 4.5 (a),

suppose the first affected switch sf of an RU has both new and old rules that match a

3As the P4 compiler does not support multiple invocations of the same table, the code is structured

differently. The actions in the control flow, such as setting packet fields or metadata or resubmitting

packets, are invoked from further tables, as actions cannot be directly invoked from the control flow.

Registers such as rule type and T are not directly read in the control flow, but read from packet metadata,

where they are copied into by the action r of table match. We omit these details to improve readability.
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Figure 4.5: Value of rule type changing after a resubmit

packet p and they are rnf and rof respectively. Let TSp be greater than Tlast. Assume the

controller has not yet set the value of T for rnf to Tlast but has set the value of T for rof to

Tlast. When a packet p traverses sf , it matches the new rule first, and since TSp < Tmax,

sets mfp1 = 1 and resubmits the packet, expecting it to match rof and execute the actions

of rof . The resubmitted packet matches rof . Suppose “mfp1 = 1” is not checked in line 15

of Algorithm 5. Since TSp > Tlast and T of rnf is set to Tlast, rof will resubmit the packet

once more, in line 20, which is incorrect. Hence mfp1 = 1 must be checked in line 15.

Another issue is that of the change of state of a switch after a packet is resubmitted,

but before the next match takes place. Consider a packet p that is resubmitted, assuming

that it will match a rule r with a certain rule type, after the resubmission. Suppose

rule type of r changes after p is resubmitted. Alternately, r may be superseded by another

rule rasync, due to rule type of rasync changing, or due to rasync getting installed during

the RU, both after p is resubmitted.

The only valid type changes for a rule are from U to OLD, at the beginning of the RU
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or from NEW to U , at the end of the RU. Figure 4.5 shows all the possible resubmission

scenarios, with the numbers 1, 2 and 3 indicating the sequence of occurrence of events.

As shown in Figure 4.5 (b), rule type may change after a packet p is resubmitted by a

new rule, to match an old rule after resubmission. If rule type of the new rule is modified

to U , it will supersede the old rule. However, this cannot occur at this stage of the RU. If

the intended destination of the resubmitted packet from a new rule is an unaffected rule,

as shown in Figure 4.5 (c), that means TSp < Tlast and the switch does not have an old

rule. The unaffected rule cannot be changed to an old rule, as it would imply a conflicting

update (In a switch with old and new rules, since the old rules are always installed first,

the possibility of an unaffected rule being changed to an old rule legitimately is ruled

out). If the new rule is changed to an unaffected rule, it will supersede the unaffected

rule. But this cannot happen at this stage of the RU. In Figure 4.5 (d), TSp > Tlast and p

is resubmitted by an old rule. The destination of p cannot be a new rule as new rules are

always inserted with a higher priority and p would have matched the new rule to begin

with. So the destination is an unaffected rule, which cannot be modified to be an old rule

nor can a new rule be inserted, as both would imply a conflicting update. Thus rule type

changing its value asynchronously or rules getting asynchronously installed will not cause

problems.

The value of TSp will not change after a resubmission even if the resubmission occurs

at an ingress, as the ingress inserts its time stamp only once on a packet.

In summary, once a table in sf labels a packet as old or new, Algorithm 5 ensures

that that label is never changed.

4.7.2.5 Supporting concurrent updates to multiple tables:

To support updates to more than one ingress or egress table in a switch, instead of defining

mfp1 and mfp2 specific to a table, they must be defined as global to a switch, by declaring

mfp1 and mfp2 as intrinsic metadata, a construct supported by P4. Thus, even if updates

to one table in a switch are not atomic with respect to those in another table in the same

switch, the value of mfp1 or mfp2 will be set to indicate if the packet is old or new by the

first table tf in that switch that is undergoing an update and subsequent tables will act

according to this decision, if the packet is decided to be resubmitted by the first table.

If the packet is just forwarded by tf by setting fp1 or fp2, subsequent affected tables will
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use fp1 or fp2 to switch the packet.

4.7.3 Practical considerations

4.7.3.1 Feasibility of implementation at line rate:

Adding and removing headers such as TSp, fp1 and fp2 are feasible at line rate; so are

setting and checking metadata, such as mfp1 and mfp2 and header fields fp1 and fp2

in actions, as per table 1 in RMT [22]. While compiling the action part, Domino [117],

another data plane programming language, checks if operations on stateful variables in

actions can run at line rate by mapping those operations to its instruction set - PPCU

requires only reading the state variables rule type and T and this can be achieved using the

“Read/Write atom” (name of instruction) in Domino. This demonstrates the feasibility

of PPCU running at line rate.

4.7.3.2 Feasibility of adding TSp at the ingress

We assume that all switches have their clocks synchronized and the maximum time drift

γ of switches from each other is known. If the network supports Precision Time Protocol,

γ = 1µsec [90]. Intel FM6000, a programmable SDN capable switch, supports PTP, its

γ < 1µsec and the time stamp is accessible in software [58]. The size of the register used

to store a packet time stamp in FM6000 is 31 bits. The feature of “intrinsic metadata”

has target specific semantics and may be used to access the packet time stamp. Using

the add header and remove header actions and intrinsic metadata, the TSp field may be

added at the ingress and removed at the egress for every packet, for targets that support

protocols such as PTP.

4.7.3.3 Modifying rules in hardware switches:

PPCU requires modifying the match fields of unaffected rules to that of old rules at the

beginning of an RU and modifying the match fields of new rules to that of unaffected rules

at the end of an RU. Modification of rules in TCAM without changing their priorities is

faster than rule insertion or deletion [28], with Tango [74] stating that “that modifying

5000 entries could be six times faster” than for inserting a rule, for a hardware switch.
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4.7.3.4 Size of TSp:

To improve throughput the size of TSp may be reduced, for instance, by using the time

relative to a recent date instead of POSIX time, thus reducing the granularity, in which

case sf will need to wait longer to receive packets whose TSp ≥ Tlast, thereby lengthening

the RU time. Since the size of TSp is programmable in the field, the operator may be

choose it according to the nature of the network.

4.7.4 Analysis of the Algorithm

The symbols used in the analysis are: δ: the propagation time between the controller

and a switch, ti: the time taken to insert each rule in a switch TCAM, tdT : the time

taken to delete each rule from a TCAM, tm: the time taken to modify each rule in the

TCAM, tv: the time taken to modify each register associated with a rule, ts: the time for

which a switch waits after it receives “Discard Old” and before it deletes rules, no: the

number of old rules that need to be removed, nn: the number of new rules that need to be

added, n: the maximum number of rules in a switch, ka: the number of affected switches,

ki: the number of ingresses, kt: the total number of switches, T1: The time between the

switch receiving “Commit” and sending “Ready To Commit”, T2: The time between the

switch receiving “Commit OK” and sending “Ack Commit OK”, T3: The time between

the switch receiving “Discard Old” and the switch performing its functions after timer

expiry and T4: Time taken to modify the new rules (for GU). It is assumed that the value

of δ is uniform for all switches and all rounds, the values of time are the worst for that

round, the number of rules, the highest for that round and that the processing time at

the controller is negligible. Since unaffected rules have ternary matches for fp1 and fp2,

we assume that all the match fields are stored in TCAM and the corresponding actions in

SRAM [22] [63], for PPCU, and for other algorithms that it is compared with. The values

of T1, T2 and T3 for PPCU are shown in Figure 4.1.

We add to and evaluate using the parameters of interest identified for a PPC in chap-

ter 3, called control plane parameters : 1) Overlap: Duration for which the old and new

rules exist at each type of switch 2) Transition time: Duration within which new rules

become usable from the beginning of the update at the controller 3) Message complex-

ity: the number of messages required to complete the protocol 4) Time complexity:
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Table 4.4: Comparison with E2PU and CCU

Parameter PPCU E2PU (chapter

3)

GU [81]

Message complexity 6ka 4kt 4ka + 4ki

FP 1 ka/kt ka/(ka + ki)

Round 1 (T1) no(tm + 2 ∗ tv) +

nn(ti + 2 ∗ tv)

(n− no + nn)ti (no ∗ tm) + (nn ∗ ti)

Round 2 (T2) (no + nn) ∗ tv (n− no)tm + nn ∗ ti n ∗ tm
Round 3 (T3) ts +nn ∗ (tm + tv) +

no ∗ tdT

ts + n ∗ tdT ts+nn∗tm+no∗tdT

Round 4 (T4) Not applicable Not applicable n ∗ tm
Propagation Time P 6δ 6δ 8δ

Time Complexity P + T1 + T2 + T3 P + T1 + T2 + T3 P+T1+T2+T3+T4

Concurrency Unlimited 0 Number of bits in

version field

the total update time4. 5) Footprint Proportionality: the ratio of the number of af-

fected switches of an RU to the number of switches actually modified for the update. 6)

Concurrency: Number of disjoint concurrent updates.

To quantify the effectiveness of PPCU on the data plane, we identify the following

data plane parameters : 1) Safety of the update: For a given flow, this is the ratio of

the number of packets that violate a policy/ the total number of packets sent.

In a data center network, there is always a mix of small flows (of size 128KB) and

large flows, of size varying from 1MB to 20MB [6]. In such a network, since the time

to complete a small flow is small compared to the update time, what is of significance

is whether small flows complete or not and whether large flows complete at the required

throughput. For a given flow arrival rate and mean of inter-packet interval, we define the

usable duration of the network (similar to ProjecToR [46]) as the the time for which the

ratio of the total number of failed flows to the total number of flows completed is less

4Excludes the time for current packets to be removed from the network at the end of the update,

where applicable
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than R, where R is defined by network administrator in a network where there are no

load balancing and flow scheduling mechanisms [2] [4] [17] used. We include the following

additional data plane parameter: 2) the number of small flows that successfully

complete during the usable duration of the network.

In a network with a large number of affected switches, it is possible that a small

number of large flows complete with high throughput or a large number of large flows

complete with a small throughput or it may be a mix of both. To account for this variation,

we include 3) the sum of the throughputs of the large flows that complete during

the usable duration of the network as another data plane parameter.

4.7.4.1 Analysis of control plane parameters:

The purpose of the analysis is to understand what the control plane parameters depend

upon and to compare with a single update in E2PU (chapter 3) (which updates switches

using 2PU with 3 rounds of message exchanges while taking into account when to delete

the old rules and where the updates are to TCAMs), and with the algorithm GU in [81].

We show the evaluation results of the data plane parameters in the next section. We

assume that GU [81] uses acknowledgements for each message sent. We also assume that

only one rule is being modified/installed per affected switch during the update. Since all

three have similar rounds, it is meaningful to compare the time taken by each round as

given in table 4.4. The Overlap is 4δ + T1 + T2 + T3 and Transition time is 3δ + T1 + T2

for all the algorithms under consideration.

no old rules are modified for PPCU, with each modification taking tm units, nn new

rules are inserted, with each insertion taking ti units and two variables, T and rule type,

are changed, taking time tv each, for each affected rule, for Round 1. In Round 2, since

only T is modified for the affected rules, it takes (no + nn) ∗ tv units of time. In Round

3, after waiting for ts units, no rules are deleted and nn rules are modified. rule type of

each new rule is also modified.

Since the values associated with the action part of a rule (T and rule type) are

stored in SRAM, we assume that update times of these values (in nanoseconds) will be

negligible compared to TCAM update times and ignore the terms that involve tv. We

find in table 4.4 that 1) PPCU has lower message complexity, assuming ki > ka/2 (as is

likely: the number of ingress switches is more than half the number of affected switches)
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and better FP 2) PPCU and GU [81] have comparable times for Rounds 1 and 3. For

Round 2, PPCU fares better. Therefore, PPCU fares better for Overlap, Transition time

and Time complexity. 3) PPCU has better concurrency. Packets need to be resubmitted

either between sf receiving Commit and Commit OK or between Commit OK and expiry

of Tm, that is, for a duration of T1 + 2δ + T2 or T2 + 2δ + T3, respectively, only at sf (as

explained in section 4.3.5). Since resubmit is an action supported by line rate switches,

we assume that the delay due to a resubmission at sf for this time frame during an update

is tolerable, which is borne out by the evaluation in the next section.

4.8 Evaluation

4.8.1 Goals

The algorithms that meet most of the objectives of PPCU are 2PU [111] and E2PU

(chapter 3). Since implementing 2PU or E2PU requires changes to all the rules in all the

tables in all the switches of the network for every update, it is inefficient, as illustrated

in 4.7.4. Therefore we do not compare PPCU with 2PU, and instead, compare it with a

random update, which does not preserve PPC, for all the data plane parameters identified

in 4.7.4. In a random update, commands to install the new rules are issued from the

controller and without waiting for them to complete, commands are issued for the old

rules to be deleted, to all the affected switches.

4.8.2 Implementation

The algorithm as described may be used for updating switches for any SDN. We have im-

plemented a proof-of-concept prototype for a FatTree [1] network, common in data centres

and enterprise networks. We implemented the data plane of the algorithm (Algorithm 5)

in P4 (version 1.0.2 [30]), the changes to the control plane (Figure 4.1) of switches, and, a

minimal controller. The P4 software switch is available integrated with Mininet [88] and

Docker [34], to enable creation of a network of nodes, with each node running the data

plane described by P4, on a Linux platform [121]. The controller creates and initialises the

network using the Mininet and the target-independent Switch Abstraction Interface (SAI)

APIs [121], starts the flows on the network and performs updates. The P4 code compiler
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also generates low level Switch APIs [121] which, similar to SAI, controls the behaviour

of the switches. Updates use the (suitably enhanced) Switch APIs to alter table entries,

values of registers, metadata and action parameters and to insert, modify and delete rules,

all at run-time. Updates to individual switches are performed in as concurrent a manner

as possible, using threads. The controller and the P4 switch code, modified for PPCU,

can be used as they exist, in a real environment.

4.8.2.1 Configuration:

We simulated a FatTree network [1], with realistic flowsizes [6] approximating a web-

search workload, and flow arrival [6] (Poisson), inter-packet arrival 5 [16] (lognormal)

and controller-switch delay [140] (normal) distributions. Table entries for routing in the

network are implemented as per the routing scheme by Al-Fares et al. [1], but with one

rule per flow, to enable the controller to perform a variety of updates, such as updates

that affect only one flow or disjoint updates that affect more than one flow. The network

is initially configured using rules installed from the controller on all the switches, using

the SAI APIs. The maximum queue size within each switch, the switch and link delays

and the percentage of CPU accorded to a host in the network are configurable in Mininet.

Our simulation allows configuring the number of ports k of the FatTree, the mean of

all the required distributions, and by providing the source-destination host-pairs and

the maximum number of flows between them, the traffic flow within the network, in a

configuration file.

The value of M (in Figure 4.1) can be configured by the administrator before com-

piling the P4 code; in our simulation, we account for the time asynchrony between Docker

switches (section 4.4), in addition to the maximum time it takes for a packet to traverse

the network. The implementation was tested on a Linux server using a 16-core Intel(R)

Xeon(R) E5-2630 v3 CPU running at 2.40 GHz, and Ubuntu 16.04, with Mininet version

2.2.1 and Docker version 17.04.0-ce. All the experiments below are conducted on a FatTree

network with k = 4, where k is the number of ports per switch.

Routing: The switches in the network are numbered from s0 to s<5k2/4>, with

the edge switches numbered first, followed by the aggregate switches and then the core

5Only inter-arrival time between packets in the ON period is simulated, it is assumed that there are

no OFF periods in the flow
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switches, as shown in Figure 4.6. For k=4, the edge switches are s0 to s7, the aggre-

gate switches are s8 to s15 and the core switches are s16 to s19. The hosts are numbered

h<sn>0, h<sn>1, ..., h<sn>k/2, where sn is the switch suffix number, for every edge switch

in the network. The addressing and routing scheme implemented by Al-Fares et al. [1]

is briefly explained below. The IP address of each host has an address of the scheme

10.<pod − number>.<edge − switch − number>.<suffix>, where the suffix is unique

to each host attached to that edge switch. For a k=4 network, in our implementation, all

host IPs have either their addresses ending with .3 or with .67. The edge switches exam-

ine the suffix of the destination host IP and route a packet to the appropriate aggregate.

For example, in a k=4 network, all packets with the destination IP addresses ∗. ∗ . ∗ .3

arriving at s0 get routed to s8 and from s8, they get routed to s16, while packets with

the destination IP addresses ∗. ∗ . ∗ .67 get routed to s9 and subsequently to s18. For

diversity, it is packets with a different destination suffix that get routed to s8 from s1;

in the above example, it would be the packets with the destination suffix .67. A similar

strategy is followed to allow for diversity from the aggregate to the core layer. The core

switches examine the pod number of the packet from the IP address and route the packet

to the appropriate aggregate switch; the aggregate switch examines the switch number

and routes to the appropriate edge switch. When the network comes up and the switches

are initialized, the routing tables have one forwarding rule per destination IP address

(which is different from the one described by Al-Fares et al. [1]) and all the hosts are

reachable from all the other hosts.

Default configuration values: The value of M as mentioned in Algorithm Figure

4.1 is 100ms, which is configured in the P4 switch simulator. In Mininet, the maximum

bandwidth of a link is configured to be 200 Mbps and the switch does not artificially

introduce a delay and causes no losses. The maximum switch queue size is 2000 packets

and it uses a Hierarchical Token Bucket scheme. Each host gets 50% of the CPU time.

No delay is artificially introduced between the controller and the switches.

The values of large flows vary from 1 to 19MB and the the values of small flows is

fixed to be 128KB. About 1/3rd of the flows are large and the remaining are small, to

simulate a web-search workload [6]. The network has flows configured between the 10 host

pairs h00−h20, h31−h50, h40−h60, h40−h21, h60−h01,h20−h51,h60−h31,h21−h71,h30−h61
and h61 − h11, with a maximum of 2 flows between each host pair, running a web-search
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Figure 4.6: Experiment 1: FatTree with k=4

workload. The maximum length of a message sent from the clients running on hosts is

1400 bytes. The application timeout at each client is 60s wherever there is a client-server

communication over TCP.

4.8.2.2 Data plane implementation:

The registers rule type and T are assumed to have the well known names table name register

and table name T register respectively where table name is the name of the table. They

are initialised to U and Tmax respectively when the switches come up and when each rule

is installed. We use a 32-bit field for TSp, with a time relative to a recent date, in millisec-

onds. The implementation in the data plane is only for two tables in a switch: the Access

Control List (ACL) table and the routing table, which is sufficient for the experiments

conducted. It may easily be extended to any other table in the switch.

The experiments conducted are described below. In each of them, the switch logs

and port logs are examined to ensure correctness of the algorithm. Also, updates occur

continuously unless otherwise stated, as we expect to be the case in real networks.

4.8.3 Experiment 1

The goal of this experiment is to compare the safety (section 4.7.4) of PPCU and random

updates. The network has a flow from h00 to h20, using the route shown in Figure 4.6,

as “old path”. Let us assume that the packets on this flow need special processing - for
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Figure 4.7: Safety violations with varying controller-switch and switch delays

example, all packets destined to h20 must be dropped. This policy is implemented in the

ACL table at s10 and not at the ingress, to simulate the condition of the switches in the

path having exceeded their table limits [97]. When the route of this flow is changed to

the one shown in Figure 4.6 as “new path”, the policy also must be installed at s11 and

removed from s10. We alter the path by updating the exact match routing table of s0 and

install the policy by updating the ACL tables of s10 and s11, all within the same update.

If the update is safe, no packet from h00 must reach h20, during and after the update,

thus adhering to the policy.

Before the update begins, no packet from h00 reaches h20. We start a ping flood

from h00 to h20, begin a PPCU update, stop the ping flood after the update ends and

examine the number of packets that reach h20. We repeat the experiment with a random
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Figure 4.8: Bandwidth using iperf over one link

update, instead of a PPCU update. We run these experiments for different values of

controller-switch delays (Figure 4.7a) and switch delays (Figure 4.7b) at the data plane.

Each message sent from the controller to a switch is assumed to be delayed with the

given mean and standard deviation ((4ms ,3ms) and (400ms,300ms)), for both random

and PPCU updates. The results show that if the update is PPCU, there are no policy

violations, regardless of switch-controller delays or switch delays, whereas with a random

update, policy violations increase with switch-controller and switch delays. In a random

update, if the update to s0 happens to occur first and the update to s11 is delayed,

packets routed through the new path reach h20, violating the policy. Similarly, if some

of the switches happen to be slow and packets are delayed, the old rule in s10 may get

deleted before all the packets that matched the (old) rules in the s0 to s10 path have been

removed from the network, leading to a policy violation.

4.8.4 Experiment 2

The goal of this experiment is to compare the throughput of a link that undergoes PPCU

updates with those of a random update, using iperf [99]. An iperf client running on h00

sends the maximum possible amount of data, with a message size of 1400 bytes, over a

TCP connection to an iperf server running on h20. We start a series of PPCU updates

to change the h00 to h20 path from old to new and back to old, as shown in Figure 4.6,

without any delay between updates, for more than 5 minutes. Then we start an iperf client

on h00 and an iperf server on h20 and send data between them for 5 minutes, measuring
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Figure 4.9: Experiment 3: Changing edge to aggregate links

the average throughput every 30s. The results in Figure 4.8 show that the throughput

while using PPCU updates is better than while using random updates. In a random

update, since rules are deleted from affected switches arbitrarily, there may not be a rule

to forward a packet matching old rules, arriving at an affected switch with deleted old

rules. Also, since rules are installed at affected switches in an arbitrary order, there may

not be a rule to forward a packet already matched with a new rule arriving at an affected

switch, as new rules are not yet installed there. In PPCU, both these situations do not

arise, leading to a better throughput, compared to a random update.

4.8.5 Experiment 3

In real networks, a large number of updates take place simultaneously, affecting multiple

flows. A switch may undergo more than one update simultaneously and a single update

may result in modifying multiple flows on the same set of switches. The delay between

updates for a single flow may be more than that in Experiment 2. Realistic flow arrival,

inter-packet arrival and controller-switch delay distributions also need to be simulated.

The goal of this experiment is to find out how PPCU affects the throughput for large

flows and the number of small flows and total flows completed, compared to random

updates, during the usable duration (defined in Section 4.7.4) of the network. To increase
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Figure 4.10: Experiment 3: Changing core to aggregate links

predictability of results, all the flows in the network are affected by an update. 75% of

the switches are affected by at least 1 update and 25% of the switches are affected by 2

disjoint updates, with the latter causing updates of different entries in the same P4 table

for two different RUs. The updates performed are : 1) edge to aggregate link changes:

The flows from h00 to h20, h31 to h50 and h40 to h60 are switched from the old path to the

new path, as shown in Figure 4.9. Paths are switched from the old to the new and back,

in the given sequence, in a loop, with the sequence repeating forever. 2) aggregate to core

link changes: In this, all traffic destined to *.*.*.67 on the set of red links is moved to

the set of green links in a single update and then back, forever, as shown in Figure 4.10.

The affected destination hosts are shown. The affected traffic from edges to aggregates is

shown in black. All the four updates are disjoint, but occur simultaneously, within one

PPCU.

After the network is initialised by the controller, a flow generator starts multi-

threaded servers on the destination hosts, as per the configuration file described in section

4.8.2.1. Next, it starts flows one by one, as per the configured flow rate, by starting clients

on the desired hosts until the maximum number of flows of each host pair is reached,

after which flows begin on the next host pair. To increase predictability of results, we

include only affected flows and the maximum number of flows is kept the same, across

host pairs. The clients start connections to the multi-threaded servers started on the des-

tination hosts. The flow generator sends a token to each client according to the packet

inter-arrival time and distribution. Upon receiving the token, the client sends a message
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Figure 4.11: Throughput, small and total flows completed for flow rate=0.033 flows/s
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Figure 4.12: Throughput, small and total successful flows for flow rate=0.33 flows/s,

maximum flows per host pair=2
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Figure 4.13: Throughput, small and total successful flows for flow rate=0.33 flows/s,

maximum flows per host pair=4
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Figure 4.14: Throughput, small and total successful flows for flow rate=0.33 flows/s,

maximum flows per host pair=2, controller-switch delay: mean=400ms, s.d=300ms
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Figure 4.15: Experimental setup

of fixed size to the destination server. The server running on the destination host creates

one log per flow. An online post-processor operates on the logs to identify failed flows,

checks if the usable duration R has exceeded its upper limit, and generates test results.

If R has exceeded the upper limit, the simulation is stopped. This is illustrated in Figure

4.15.

Before the experiment begins, we adjust the values of flow arrival rate and inter-

packet delay and find the values at which at least one large flow completes, during the

usable duration of the network, in the presence of continuous PPCU updates. The values

are 0.033 flows per second, and 15 ms with a standard deviation of 0.1ms, respectively.

We initialise the network and start all the updates simultaneously, using PPCUs for all

the updates, at the flow and packet arrival rates discovered above. We stop simulation

when R≥20% and measure the number of small flows completed, the number of large flows

completed, their source-destination pairs and individual throughputs. The experiment is

repeated for random updates.

For a low flow arrival rate, since more number of large flows or larger flows are

expected to complete successfully, the collected data is sorted on the sum of throughputs
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of successful large flows and is shown in Figure 4.11. For PPCU updates, the sum of

throughputs, the number of successful small flows and the total number of successful

flows is higher than that of random updates.

The experiment is repeated with a controller-switch delay and the results are shown

in Figure 4.14. Since no large flow completes for most of the cases, the output is sorted

with the number of small flows completed. We find that PPCU updates result in a higher

number of small flows getting completed, in all the trials. The total number of flows and

the throughput are higher too.

It is not sufficient for the network to operate in the usable duration because “a

reasonable number” of large flows must also complete at a “reasonably high” throughput.

If we increase the flow arrival rate with the network still operating in the usable duration,

there are two issues: no large flow completes and/or the simulation cannot maintain the

flow rate as enough flows do not finish. (Even though flows must be scheduled [2] [4] [17] to

avoid this situation, we conduct two experiments to check the behaviour of the network

in this situation also.) In the first case, instead of comparing the throughputs of large

flows, we compare the number of small flows completed. In the second case, we discard

the reading. Besides, the throughputs of large flows that manage to complete, if any, are

much smaller than the throughputs of large flows when a lower flow rate is used. We first

conduct the experiment with a flow rate of 0.33/s and the number of maximum flows per

host-destination pair set to 2. The results in Figure 4.12 demonstrate that with PPCU

updates, the number of small flows and total flows successfully completed is higher. The

same is the case when the maximum number of flows per host-destination pair is increased

to 4, as shown in Figure 4.13. For both random and PPCU updates, the throughputs of

the large flows that complete are comparable.

4.8.6 Summary of experiments

In the experiments conducted above, we demonstrated that PPCU does not cause safety

violations, regardless of the execution speeds of switches and controller-switch link delay

variations. We also illustrated that the throughput of the network using iperf in a realistic

network setting is superior if PPCU updates are used, compared to similar use of random

updates. PPCU updates result in a higher number of small flows completing successfully

and a higher total throughput for large flows, during normal operation of the network,
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that is, when small flows complete and large flows have a reasonably high throughput.

Even during higher loads, using PPCU updates ensures completion of more flows compared

to random updates. The total throughput and the number of flows completed during the

usable duration is more significant than the duration for which the network remains

usable. Experiment 3 also illustrates that more than one non-conflicting update can be

performed on the network in the same RU, affecting the same set of switches. As seen

in all the experiments, realistic variations in switch speeds and controller-switch delays

cause PPCU updates to have better throughput and higher number of flows completed,

compared to random updates. We expect that flow rates are maintained using tools such

as MicroTE [17], Hedera [2], and CONGA [4] such that the network completes large flows

at a high enough throughput, as shown in Figure 4.11.

4.9 Discussion

Among application level languages for SDN programming, only Frenetic [42] addresses

consistency of updates. Mechanisms to generate flow table rules in the manner required

for PPCU may be incorporated into application level programming languages [124] as

per the specifications of the target switch. The target switch need not necessarily use P4,

but may use any data plane programming language that is sufficiently expressive, such as

Domino [117]. Integration of PPCU into an application level programming language will

also enable experimentation with a wider variety of scenarios.

PPCU describes an algorithm that can be implemented in software for PPC updates.

There may be changes required in hardware in switches to implement consistency within

the switch. Blueswitch [53] is research in that direction.

To reduce the number of rules in the affected switches during an update, techniques

explored in E2PU (chapter 3) to install and move flow table rules to software may be

integrated with PPCU. E2PU (chapter 3) uses the same set of message exchanges as

PPCU; when a Commit is received, new rules may be installed in a Software Rules Table,

instead of the TCAM, thus not affecting the TCAM space.

To improve the update time, it is recommended that register names for T and

rule type are associated by default with every P4 table and have well known names,

as explained in Section 4.7.4, with these registers initialised to the correct values by the
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P4 implementation. Initialising T to Tmax can be done while a rule is installed in the

switch, without an explicit instruction from the controller, to reduce update time. The

new version of P4 [31] supports modifying registers atomically from the point of view of

incoming packets, using the “@atomic” annotation. Hence the extra checks introduced in

section 4.7.1 to handle concurrency issues with respect to registers may be removed for

targets that support newer versions of P4.

4.10 Conclusions

This chapter has described for the first time a per-packet consistent update algorithm

which is efficient, applicable for any kind of update, which is not affected by timing issues

such as switch and network delays and time asynchrony in the network, and works at line

rate. Efficiency is achieved by restricting the interaction to the switches where updates

are to take place and to the rules that are being changed. The implementation in P4 and

evaluation in Mininet demonstrate that under realistic network conditions, continuous

PPCU updates provide better throughput and complete more flows compared to random

updates, without violating safety.

4.11 Proof of the Algorithm

We need to prove that the algorithms in section 4.3 together provide PPC updates.

p is an affected packet with a label label, that can take the values Up, NEWp or

OLDp, indicating if the packet is unaffected, new or old respectively.

Let us assume that the individual algorithms at the data and control planes are

correct. Let us assume that switches are synchronized, to make descriptions easier and

that no conflicting RUs occur. However, the controller-switch links may have variable

delays and the switches may have varying execution speeds.

Case 1: sf has not received Commit and so it is unaware of an update. At time Tf ,

packet p arrives with time stamp TSp. TSp≤Tf by definition (TSp was the time at the

ingress switch when the packet left it and sf may be an ingress). It will match with some

existing (old) rule, and the packet will be forwarded. label will remain Up. So p has been

handled by old rules. Now, is it possible that some switch downstream of sf uses new
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rules on p? This is not possible.

Suppose a new rule has been installed in a downstream switch, say sp, and either

Commit has been received (T=Tmax for all affected rules), or both Commit and Commit

OK have been received (T=Tlast for all affected rules). Now when p matches a new rule,

the check in line 4 of Algorithm 4 will find that TSp<T of the new rule. If only Commit

has been received, T=Tmax, and TSp<Tmax by definition, for any TSp. At time Tf , since

sf has not received Commit, it has not received Commit OK. Tlast is the largest of the

values of time received in Ready To Commit sent by all the affected switches, including

sf . Hence Tlast>Tf . Since Tf≥TSp, it follows that TSp<Tlast. So label of packet p will

be made OLDp (line 11 of Algorithm 4) and a match with an old or unaffected rule will

take place. Once a packet is labelled OLDp, it is always handled by old rules (line 16 of

Algorithm 4) as long as old rules exist, and so all subsequent switches will also handle p

with old rules.

Case 2: sf has received Commit but not Commit OK. sf will have new rules, but

in all of them T=Tmax. So, as discussed above, sf will find that TSp<T in any new rule,

and old rules will apply. label of p will be made OLDp (line 11 of Algorithm 4). Once so

labelled, all subsequent switches will use old rules on p.

Case 3: sf has received both Commit and Commit OK. sf will match p with a new

rule, and if TSp≥T , it will apply the new rule and set the label to NEWp (line 21 of

Algorithm 4). Once a packet is labelled NEWp, all subsequent switches will use new rules

irrespective of the value of T and TSp (line 21). All subsequent switches will have new

rules already installed since Commit OK has been received by sf , and this can happen

only if all affected switches have received Commit and have sent Ready to Commit (steps

2 and 3 of Figure 4.1) to the Controller.

If sf finds that TSp<T , it will use old rules, and change the label to OLDp. Similar

to earlier cases, all subsequent switches will now use old rules.

The above cases will hold as long as both old rules and new rules co-exist in the

affected switches. Old rules are discarded and checking for rule type ceases once a timer

with time Tm expires at a switch. Once sf receives Commit OK, it sends Ack Commit

OK with the current time to the controller (step 4 of Figure 4.1). Once the controller

receives Ack Commit OK from all switches, it sends a Discard Old message with Tdel set

to the time of the last Ack Commit OK sent (step 5 of Figure 4.1). The timer value Tm
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is then set by each switch as Tdel + M − Ti, to account for the elapsed time from Tdel to

Ti. After time Tdel, no packet with time stamp greater than Tdel will be switched with

old rules. So the last packet to be using old rules will have TSp≤Tdel. By definition the

maximum lifetime of a packet in the network is M . So after time Tdel +M , no old packet

will be there in the network and so the old rules can be deleted. This ensures that old

rules are not discarded prematurely. Packets with label NEWp will still be there in the

network, but since switches will have converted the new rules to type U , the new rules

will continue to apply.

It has to be ensured though, that the next conflicting update does not start too

soon so that a packet with label NEWp (but of the previous update) is not erroneously

handled. To take care of this, the next update is not started until after another time

period of M has elapsed. No packet will have its label set to NEWp if its time stamp

TSp>Tdel + M , since new rules will no longer exist at any switch. Waiting for time M

will ensure that all such new packets leave the network before the next update begins.
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Part II

Per-Flow Consistent Updates
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Chapter 5

EPCU-SRT: Enhanced Per-Flow

Consistent Updates

5.1 Introduction

We have examined in detail in chapter 2 the need to preserve per-flow consistency (PFC).

In this chapter, an algorithm, EPCU-SRT, to preserve PFC to address the concerns during

Server Load Balancing (section 2.8.4 chapter 2) and to prevent packet re-ordering (section

2.8.5 in chapter 2) is presented. This algorithm assumes that when the path of a flow in a

network is changed, the sequence of stateful switches and the NF instances (middleboxes)

through which the flow is being routed, and the instances themselves, are not changed

(waypoint invariance is maintained).

5.2 Algorithm for Per-Flow Consistent Updates

5.2.1 Switch model

The same switch model used in chapter 1 in section 1.3 is used. There is a Software Rules

Table (SRT) associated with the TCAM such that the switch checks if a matching rule

exists in the TCAM first and if it does not, it checks the SRT. For moving rules into and

out of the TCAM algorithms such as CacheFlow [67] may be used.
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5.2.2 Enhanced Per-Flow Consistent Update with SRT (EPCU-

SRT)

EPCU-SRT relies on generating microrules, in which the match for the rule is based on

the header fields that uniquely identify a flow. We restrict microrule generation between

the switch receiving a “Commit” and “Commit OK”. We also specify a method to delete

the microrules. The solutions by Wang et al. [128] explained in section 2.8.4 of chapter 2,

either require buffering packets at the controller or fractional processing of rules, leading

to installation of additional rules, and the likelihood of the RU not completing and not

being immediately effective. The solution by Reitblatt et al. [111] requires generating a

microrule for every flow. Our solution does not require buffering packets at the controller.

We generate exact rules and take advantage of the SRT to reduce concerns on rule space.

In switches with an SRT, the algorithm is as given below, assuming one flow table

(Figure 5.1). The figure illustrates the case where an ingress is not an internal switch.

1. The controller sends “Commit” with the new rules to all the affected switches.

All the affected internal switches install the new rules into the SRT. The ingress

switches do not yet install the rules that tag packets with v1 or policy rules but

store the rules internally. An ingress switch also allows microrule creation.

When an ingress receives a “Commit”, the ingress demotes the set of v0 rules to

the SRT, if the rules currently exist in TCAM. Next, if a packet matches an old v0

rule, it installs a microrule for that flow in the SRT, if one does not already exist,

and associates a timer with it that will time out and delete the rule after Tg units of

inactivity. These microrules have higher priority than the old v0 rules. This process

continues until v1 rules are installed later.

If flows are assumed to be implemented by TCP, then the following is added to

each microrule. Along with a match for the header fields associated with a flow,

FIN, ACK and RST are also matched. Two variables are kept for each microrule:

FINreceived, and FINACKreceived. When there is a FIN match, FINreceived is set

to true and if FINACKreceived is found to be set, the microrule is removed as the

flow has ended. If a FIN and ACK both match, then FINACKreceived is set and

if FINreceived is already set, the microrule is removed. Finally, if there is an RST

match, the microrule is deleted. If a microrule is not removed by the above matches,
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Figure 5.1: EPCU-SRT: Algorithm at the control plane
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then it is removed when the timeout associated with it is triggered. This is discussed

further in 5.2.3.

2. All the ingress switches and the switches that have acted upon “Commit” send back

“Ready to Commit”.

3. The controller receives “Ready to Commit” from all the switches and then and

only then sends “Commit OK” to all the switches. As soon as the ingress switches

receive “Commit OK”, they stop generating further microrules. They insert v1 rules

in between the v0 microrules (which have the highest priority) and the old v0 rules

(which have the lowest priority). The above actions are atomic. After receiving

“Commit OK”, an internal switch may move the v1 rules to TCAM at any time.

All new flows now use v1 rules.

4. Each ingress switch sends “Ack Commit OK” only after all its v0 microrules are

removed. The internal switches send “Ack Commit OK” soon after receiving “Com-

mit OK”. Each ingress switch sends “Ack Commit OK” to the controller with the

current time, called Ti. After all the v0 microrules are deleted, an ingress switch

may move the v1 rules to TCAM at any time; however, it is not necessary to do so.

5. After receiving “Ack Commit OK” from all the affected ingresses, the controller

notes the latest value of Ti received and saves it as Tdel. Now it sends “Discard Old”

to all the switches where rules need to be deleted. It sends Tdel and the v0 rules to

be deleted as a part of “Discard Old”.

6. When each internal switch receives “Discard Old”, it deletes the list of rules received

in “Discard Old”, whenever its current time Ti>Tdel+M , where M is the maximum

lifetime of a packet within the network. The ingresses may delete immediately.

7. Each switch that processes “Discard Old” sends a “Discard Old Ack”. When the

controller receives all the “Discard Old Ack” messages the update is complete.

5.2.2.1 Updates to a load balancing switch

Suppose, in section 2.8.4, Figure 2.2 of Chapter 2, all flows originating from both IP1 and

IP2 are given a destination IP address of IPda by the load balancing switch sb. All switches
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have v0 rules. All flows originating from IP2 must be now diverted to IPdb, instead of

IPda, as explained in section 2.8.4 of Chapter 2, to reduce the load on IPda. Upon receiving

Commit, the ingress of IP2, sg, (not shown), starts generating microrules for those flows

for which it receives packets and tags them as v0. Upon receiving Commit OK, it installs

the v1 rules that tag packets with the version number v1, at a lower priority than the

microrules. Similarly, sb, which is the egress for the flow, upon receiving Commit, starts

generating v0 microrules and upon receiving Commit OK, installs v1 rules with a lower

priority than those microrules. Let us assume that a flow is in existence from IP2 when the

RU began. The microrules of sb tag packets as v0 and sb therefore sends even those with

their source address as IP2 to IPda. The packets originating from IPda to IP2 traverse sb

and are switched, again, using v0 microrules. When sg (sb) receives Commit OK, it stops

microrule generation, waits until the existing IP2−IPda (IPda−IP2) flows cease and then

sends Ack Commit OK. If a new flow arrives from IP2 after sg receives Commit OK, sg

sends it to sb, with a v1 tag. sb applies the new rule to it, which sends the packets of the

flow to IPdb. The packets from IPdb to IP2 reach sb and are sent through sg to IP2, as

the destination IP address of the reverse flow does not change. Thus flows existing at the

time of the update with their source address as IP2 continue to be terminated at IPda,

while flows after sg receives Commit OK are terminated at IPdb. In this description, sb

may also be an internal switch and the algorithm would still apply.

5.2.3 Value of the Microrule Expiry Timer Tg

This value will be protocol dependent. However, if we assume TCP, as per the TCP

protocol definition ( [106] and [23]), a connection can remain alive without any upper

limit on idle time. However, in practice, most implementations have time-outs, which if

triggered, results in the connection being dropped. So the microrule timer should expire

when there are no packets on the connections for this amount of time. Since such time-

outs are large compared to network time to live (Linux implementations have a maximum

keep-alive duration of 75 seconds, implying that a connection will get closed if there is

no activity for 75 seconds), problems of re-ordering of packets and of broken connections

due to load balancing will be taken care of.
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Table 5.1: Symbols Used in the Analysis of EPCU

tuµ The time required after receiving a “Commit OK” to install (and delete) the

microrules pending installation (and deletion), if any

tµ The time that the ingress waits until all its remaining microrules get deleted,

after installing v1 rules

Table 5.2: Analysis of EPCU

Parameter EPCU-SRT EPCU-SRT′

1, Case 1.1 2δ + tµ + td 2δ + tµ + td

1, Case 1.2 4δ + tu + tuµ + tµ + td 4δ + tu + tuµ + tµ + td + tdt

1, Cases 2,3 NA NA

1, Case 4 4δ + tu + tuµ + tµ + ts + td 4δ + tu + tuµ + tµ + ts + td + tdt

2 3δ + 2tu + tuµ 3δ + 2tu + tuµ + tdt

3 2ko + 6kc + 4kn 2ko + 6kc + 4kn

4 6δ + 2tu + ts + td + tuµ + tµ 6δ + 2tu + ts + td + tuµ + tµ + tdt

5 2δ + 2tu + tuµ + tµ 2δ + 2tu + tuµ + tµ + tdt

5.3 Switches without an SRT

If the switches in a network do not have an SRT, when an internal switch receives a

“Commit” with the new rules, it installs the rules in the TCAM and sends back “Ready

to Commit”. The controller, on receiving “Ready to Commit”, needs to send “Commit

OK” to only the ingresses. The ingresses install the new v1 rules in the TCAM. This

behaviour is the same as in section 3.2.4. The rest of the algorithm remains the same.

Since the microrules also get installed in the TCAM, the usage of TCAM becomes very

high and the update becomes slow. Also, if the controller wishes to abort the update, the

switches that have already installed the rules need to incur the overhead of deleting them

from the TCAM. Section 5.4 mentions further comparisons.
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5.4 Analysis of the Algorithm

We use and add to the parameters of interest identified in chapter 3, section 3.2.5, for

a PFC update: 1) Parameter 1: Duration for which the old and new rules exist at

each type of switch 2) Parameter 2: Duration within which new rules become usable 3)

Parameter 3: Message complexity - the number of messages required to complete the

protocol 4) Parameter 4: Time complexity - the total update time and 5) Parameter

5: Duration for which microrules are present at the ingress.

The purpose of the analysis is to understand what the above depend upon.

The symbols used in the analysis is as per Table 5.1 of this chapter and Table 3.2

of chapter 3. It is assumed that the time taken for the sum of the propagation times

and switch delays between the controller and the switches is uniform (δ). Let the time

taken for all insertions (tu) and deletions (td) be uniform and let the processing time at

each switch be negligible. The time at which the last switch sends “Ready to Commit”

is Tc1+δ+tu, assuming the sum denotes the longest time taken. Let the number of rules

that need to be removed (no), added to switches in general (nn) and added to the ingress

to meet its ingress functions (ni) be uniform across switches.

We need to consider different kinds of switches while evaluating various parameters:

Case 1) ingress switches, with Case 1.1 where the ingress switch is not an internal switch

and Case 1.2 where the ingress switch is also an internal switch for update affecting a flow

for which this is not the ingress, Case 2) internal switches where new rules do not need

to be installed but old rules need to be removed, Case 3) internal switches where only

new rules need to be installed and Case 4) internal switches where old rules need to be

removed and new rules need to be added. For Case 1.2, to simplify the presentation, it is

assumed that there are no old internal rules to be deleted. For all ingresses, it is assumed

that old ingress rules need to be removed and new ingress rules added.

For PFC, the ingress starts generating and updating the SRT with microrules from

when it receives a “Commit” until it installs v1 rules. During this interval, it is possible

that some microrules get deleted too. Let us assume that it takes tuµ more units of time

after receiving “Commit OK” to install (and delete) the microrules pending installation

(and deletion), if any, in the SRT, before it starts installing v1 rules. tu is the time that

the ingress takes to install v1 rules. Let tµ be the time that the ingress waits until all
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its remaining microrules get deleted, after installing v1 rules. So there is an additional

amount of time tuµ + tµ that the ingress incurs between it receiving “Commit OK” and

before it sends “Ack Commit OK”, compared to E2PU-SRT. Let there be nµ microrules

in the switch, just before the v1 rules are installed.

The time elapsed at each stage of the RU is shown in Figure 5.1. Let us assume that

the v0 rules of an ingress are in the SRT and the ingress has no new rules to install. Then

at step 2, when an ingress sends Ready To Commit, the time is Tc1 + δ. Since an internal

switch has installed the v1 rules, it sends Ready To Commit at Tc1 + δ + tu. Before the

ingress sends Ack Commit OK, it takes tu units of time to install the v1 rules and tuµ

units to install pending microrules, if any. It takes an additional tµ units of time until all

microrules get deleted, either due to a TCP connection closing our due to a rule timeout.

Thus the time when an ingress sends Ack Commit OK is Tc1 + 3δ + 2tu + tuµ + tµ. An

internal switch sends Ack Commit OK at Tc1 + 3δ+ tu. An ingress sends Discard Old Ack

after it deletes the v0 rules, at Tc1 + 5δ + 2tu + tuµ + tµ + td, whereas an internal switch

waits for an additional amount of time, ts. An internal switch therefore sends the Discard

Old Ack at Tc1 + 5δ + 2tu + tuµ + tµ + td + ts.

Parameter 1: Duration of overlap

Case 1.1, the ingress switch is not an internal switch: When the ingress switch receives

a Commit, there are no rules in the switch. At Tc1 + 3δ+ 2tu + tuµ, there are no + nµ + ni

rules (tµ is not included as the ingress microrules are not yet deleted). At Tc1 + 5δ+ 2tu +

tuµ+tµ+td, there are nn+ni rules. Therefore the time for which the old and the new rules

coexist in the switch is Tc1 + 5δ+ 2tu + tuµ + tµ + td− (Tc1 + 3δ+ 2tu + tuµ)=2δ+ tµ + td.

Case 1.2, the ingress switch is also an internal switch: When the ingress switch

receives a Commit, there are no rules in the switch. At Tc1 +δ+ tu, there are no+nn rules.

At Tc1 + 3δ+ 2tu + tuµ, there are no + nn + ni + nµ rules. At Tc1 + 5δ+ 2tu + tuµ + tµ + td,

there are nn + ni rules. Therefore the time for which the old and the new rules coexist in

the switch is Tc1 + 5δ + 2tu + tuµ + tµ + td − (Tc1 + δ + tu) = 4δ + tu + tuµ + tµ + td.

For cases 2 and 3, where either only new rules need to be installed or only old rules

to be removed, there is no overlap of rules.

Case 4, switches where old rules need to be removed and new rules need to be added:

At Tc1 + δ + tu, there are no + nn rules and at Tc1 + 5δ + 2tu + tuµ + tµ + ts + td there are

nn rules. The duration of overlap is 4δ + tu + tuµ + tµ + ts + td.
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Parameter 2: Duration within which new rules become usable

At Tc1 +3δ+2tu+tuµ, the ingress switches to the new rules and they are immediately

usable. From the beginning of the update at Tc1, after 3δ + 2tu + tuµ units, the new rules

are usable.

Parameter 3: Message Complexity A total of 2ko+4kc+2kn+2ki messages are

sent, just as in E2PU-SRT in chapter 3, if no SRT is present.

For EPCU-SRT, a total of 2ko+6kc+4kn messages are sent, which is more than the

case when an SRT is not used, just as in per-packet consistent updates.

Parameter 4: Total Update Time The total update time is 6δ + 2tu + ts + td +

tuµ + tµ.

When an SRT is used, parameters 1, 2 and 4 improve because the values of tu, tuµ

and td reduce significantly.

If, at the ingress, the deletion time of rules is lesser than the insertion time, then rules

can be installed at the ingress when “Commit” is received, at a lower priority. The old

rules can be deleted when “Commit OK” is received. Thus new rules can be used faster,

within a time of 3δ+tu+td+tuµ. The total update time reduces to 6δ+tu+ts+2td+tuµ+tµ.

Parameter 4: Duration for which Microrules are Present at the Ingress

Microrules are present from Tc1 + δ to Tc1 + 3δ + 2tu + tuµ + tµ, for a duration of 2δ +

2tu + tuµ + tµ.

Table 5.2 captures all the parameters for a PFC update. The new rules are considered

usable even when microrules are present (parameter 2).

If v0 rules of an ingress are in the TCAM, all the timing related parameters worsen

and are shown under EPCU-SRT′. In this case, before sending Ready To Commit, an

ingress must delete the v0 rules from TCAM and install it in the SRT, taking an additional

time of tu + tdt, before sending Ready To Commit.

Observations: The observations are the same as in chapter 3 section 3.2.5. Addi-

tionally, if there are long-lived connections, tµ (this is the time-out for a flow to be closed

if there is no traffic) will dominate all parameters - either they must be excluded from

updates (further discussed in section 6.3.5.8) or applications must use EPCU only short

connections. For switches with SRT, the new rules get installed fairly quickly and the old

rules are removed as soon as is feasible.
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5.5 Conclusions

This chapter described an update algorithm for PFC, exploiting the availability of an

SRT, suitable for PFC updates for Load Balancing switches and cases where waypoint

invariance is preserved and stateless switches are not used. We also analyzed the algorithm

quantitatively.

EPCU, like the solution by Reitblatt et al. [111], requires the creation of rules that

exactly match the old flows, dynamically, on the affected switches, which is not supported

on real switches. Besides, all the paths affected by the RU must be found and rules

with the new version installed only in all the tables in all the switches in those paths,

which is computation intensive and inefficient, especially so if wildcarded rules are used in

switches. Moreover, these solutions do not consider synchronizing the forward and reverse

flows, as the time at which the ingress for a forward connection receives Commit OK is not

synchronized with the time at which the ingress of the reverse connection receives Commit

OK. Synchronising forward and reverse flows is required if stateful switches or NFs exist

on the packet path. For real implementations, it is desirable that rules in every switch in

the network or every switch in the affected path are not modified for every update. Our

algorithm ProFlow, discussed in the next chapter, solves all the above problems.
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Chapter 6

Proportional Per-Flow Consistent

Updates

6.1 Introduction

The algorithm ProFlow presented in this chapter provides per-flow consistency for any

kind of update, be it to a Service Chain, to a Server Load Balancing switch or to switches

in a virtualised network, as explained in Chapter 2. The network may contain stateful

NFs or switches.

6.2 Our contributions

ProFlow has the following characteristics in addition to the ones mentioned in section

1.5 of chapter 1: 1) Efficiency: The algorithm confines changes to the affected switches

and the affected rules. Thus the number of switches actually modified for the RU is

proportional to the number of affected switches. It does not require forwarding packets to

temporary storage or does not require the affected paths to be computed. 2) Immediate

effectiveness: A long duration old flow will not prevent a new version of a rule r from

being installed and used by new flows, while it will continue to use the old version of

rule r. 3) Causal synchrony: We use a mechanism to causally synchronize the reverse

flow with the forward flow to preserve PFC. 4) Tolerates asynchrony: The algorithm

requires data plane time stamps, but tolerates practical asynchrony of time across the

network. 5) Requires no changes to NFs.
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Due to the general nature of the algorithm, it solves a number of problems for some

of which specific solutions have been proposed in the literature. In particular, it solves the

following problems: 1) providing connection affinity when a) flows are re-routed from one

SC with switches that may maintain states, to another, in a non-virtualized [61] 1 and

virtualized network and b) an NF is added to or removed from an SC in a non-virtualized

and virtualized network 2) providing consistent flows in a load balancing switch update

[128]. 3) preventing packet-re-ordering during updates [111].

Assumptions: 1) All the switches use a synchronized real time clock using protocols

such as PTP or ReversePTP [89]. If there is time asynchrony between switches, it has a

known maximum value. 2) It is possible to add a time stamp to a packet header, which is

the case with programmable switches [22]. 3) Flows use TCP. 4) Flows are assumed to be

completed when they are quiescent for a configurable amount of time (denoted as Tp).
2

5) The network does not run applications that require a peer to peer connection, which,

in turn, requires a simultaneous TCP open, a reasonable assumption in data centres. 6)

The egress of a forward flow must be the same as the ingress of a reverse flow.

Summary of the algorithm: Let the latest time at which all the switches in S

install new rules be Tlast. Each affected switch examines the time stamp TSp, set to the

current time by the ingresses, in each data packet. If its value is less than Tlast, the flow and

the packet are marked old and the packet is switched according to old rules. If it is greater

than or equal to Tlast, 1) if it is a SYN (with ACK not set) the flow and the packet are

labelled new and 2) if it belongs to a flow that started before Tlast, the flow and the packet

itself are labelled old. The packets marked old are subsequently switched according to old

rules, on all the affected switches and the packets marked new are switched according to

new rules. Once a flow is marked new (old), all its packets are subsequently switched only

according to new (old) rules, regardless of the value of its time stamp. Upon receiving

a SYN labelled new, the egress through which the flow exits stores the state of the flow

as new and uses a different label to label the SYN+ACK of its reverse flow as new. The

first affected switch that receives the reverse flow labels such a packet as new, regardless

of the state of that switch, thus causally synchronizing the reverse flow with the forward

1 Softcell [61] is supported only for a specific wireless network architecture
2If there are long running flows with inter-packet delays larger than the configured value, during an

RU (or a series of RUs) that affects them, packets belonging to them will get switched preserving PPC.
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flow.

6.3 Algorithm for concurrent consistent per-flow up-

dates

6.3.1 The switch model

The switch model used is the same as in section 1.3 of Chapter 1. Optionally, a time stamp

T , a rule type rule type and a version V are associated with each rule. These optional

values are not used while matching a packet but actions may read from them. A rule is

represented as a=[Q,M,A, T, rule type, V ]. T , rule type and V are mentioned henceforth

only if they are relevant to the context of the discussion.

6.3.2 Challenges in achieving PFC

It is not sufficient to check the value of TSp in the packet header, as explained in chapter

4 for PPCU, and additionally the state of a flow (stored as old, new or unaffected) for

every packet, as presented in the simplified summary in section 6.2, to maintain PFC.

The challenges are listed below.

6.3.2.1 Detecting the end of a flow

It is not possible for an affected switch si∈S to keep track of when a flow has ended: 1) An

application may time out and consider the connection closed without sending any packets

to close the connection. 2) If an ACK in response to a FIN is lost by the time it reaches

si, the sender of the FIN will timeout and consider the connection closed. 3) If si is on the

path of only the forward flow and the host generates an RST, it may not traverse si, in

which case, si may consider the flow to be merely quiescent. Therefore, switch si assumes

that a forward (or reverse) flow has ended if it does not receive any packet in the flow

for time Tp since the receipt of the last packet in that flow, instead of trying to infer the

state of the flow from the canonical signalling headers that end the flow [128]. 3

3In EPCU-SRT (chapter 5), it was sufficient for ingresses to detect the end of a flow and delete the

corresponding microrule based on a timeout if no packet matched the microrule for Tg units of time. Here,

a rule detects the end of a flow and no changes are made to ingresses unless they are affected. However,
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6.3.2.2 Synchronising forward and reverse flows

If and only if a forward flow is marked new, its corresponding reverse flow must be marked

new. To begin a flow, both ends of the connection must send a SYN. Even if the SYN is

lost, it will be resent. Therefore, to detect the beginning of a flow and to synchronize the

forward and reverse flows of a connection, we make use of the fact that a SYN must cross

the egress of the forward flow and its response must cross the same switch that its SYN

traversed on the way out of the network.

6.3.2.3 Flows not completing before an RU ends or multiple instances of the

same flow during an RU

All old flows must complete before an RU ends, but new flows will continue to exist.

Both old and new flows can be shorter than the RU that affects them and new flows can

be longer than the RU that affects them. Examples of some situations that need to be

handled on account of this are given below:

E1: Forward flow and reverse flow belonging to different RUs: An RU, RU1, affecting

a forward flow that is deemed new may complete before the first packet pr of its reverse

flow originates from the host. A conflicting RU, RU2, may start next and pr may reach

the network during this RU. Now pr must not be considered to belong to a new flow by

RU2.

E2: Flow spanning RUs: An RU, RU1, affecting a forward flow f that is deemed new,

may complete before the flow is complete. The state of f is stored as new at an affected

switch. If a conflicting RU, RU2, begins after RU1 is complete, f must be considered old,

as it is already in existence when RU2 began.

E3: Multiple instances of the same flow in an RU: A forward flow f that is deemed

old by an RU RU1 completes much earlier than RU1. There are other old flows that are

ongoing. If another instance of the same flow f (that is, matching the same 5-tuple) starts

before RU1 ends, f may be required to be considered new, depending on what stage of

RU1 it began.

the rule itself can be deleted only when it is certain that there are no packets matching that rule in the

network.
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Variable Values Initial value Description

TSp 0 to Tmax Current time at

the ingress

Stored when the packet enters the

network

label NEWp, OLDp,

Up

Up The rule type that must be applied

to the packet

t label NEWp, Up Up The rule type that must be applied

to the packet of the reverse flow

Table 6.1: Fields added by ingress switches

6.3.3 Addition of headers at the ingress:

As shown in Table 6.1, each packet p entering the network has a time stamp field TSp and

two labels, label and t label, added to it at the ingress and removed from it at the egress,

programmatically. label can take the values NEWp, OLDp or Up depending on whether

the new, old or unaffected rules need to be applied to the packet and t label can take the

values NEWp or Up. All ingresses set TSp to the current time at the switch and label

and t label to Up, for all packets entering it from outside the network, unless mentioned

otherwise. In addition to the above, the ingress and egress further process packets, and

this is explained later in Algorithm 6.

6.3.4 Algorithm at the control plane

The control plane (CP) of the switch exchanges messages with the controller and config-

ures the data plane (DP) of the switch, as shown in Figure 6.1. The stateful lists that

are used by the CP and the DP to realize Proflow, the indices used for those lists, the

values each item may take and their purpose, are shown in Table 6.2. In the description

of algorithms, these lists are not always shown with their indices. The table also shows

which entity writes values into each item and which entity reads the values. The value of

T associated with each rule is used by the rule to compare packet time stamp values. It

is initialized to Tmax, for every rule. The value of rule type associated with each rule is

initialized to U , indicating that the rule is unaffected. This section specifies the algorithm

for the control plane, at the controller and at each si∈S in Figure 6.1. The message ex-

changes below are the same as in the algorithms in previous chapters ; the parameters in
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Table 6.2: Stateful lists used by the affected and ingress switches

Variable

[index]

Used

by

Written

by

Read

by

Values Initial

value

Purpose

T [n] si Controller DP 0 to Tmax Tmax To compare with the packet time stamp to

decide label of a packet

rule type

[n]

si Controller DP NEW , OLD

or U

U Indicates the type of rule

state

[d hash]

si DP DP NEW FL,

OLD FL

OLD FL Indicates the type of flow

prev t

[d hash]

si DP DP 0 to Tmax 0 Stores the time stamp of a packet as it exits

a switch

live fl

[V ]

si DP CP 0 to Tmax 0 Indicates if there are any old flows alive, us-

ing a packet time stamp.

ev [V ] si CP DP START ,

STOP

STOP Indicates if DP must update live fl

Tp [V ] si Controller CP 0 to Tmax Tmax If the inter-packet delay is less than this

value, an old flow is considered alive

TRC [V ] si Controller CP 0 to Tmax Ti Time at which Ready To Commit was sent.

Used to distinguish new and old flows

V [n] si Controller CP 0 to K 0 Version number of an RU
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istate

[hash]

ingress DP DP NEW FL,

U FL

U FL Indicates type of flow

itstamp

[hash]

ingress DP DP 0 to Tmax 0 The time stamp of SYN

DP: Switch Data Plane, CP: Switch Control Plane, n: rule number, v: RU identifier, Tmax: 1 less than

the maximum value the item can hold, Ti: Current time at switch i, hash : Hash of the 5-tuple (with the

same value for forward and reverse flows), d hash: Hash of the 5-tuple (with a different value for forward

and reverse flows), si: an affected switch, K: Maximum number of simultaneous RUs
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them and the actions upon receiving them have been modified for a PFC update.

1. The Controller, upon receiving an RU from the application, with S, and Roi and

Rni for every si∈S, sends a “Commit” to every si∈S with v, Roi and Rni. v is a

unique RU identifier, used only between the controller and the switches.

2. The CP of every switch si∈S receives “Commit”, a) installs the Rni rules with a

higher priority than Roi rules, b) changes the installed Roi rules to check if a packet

is labelled OLDp or Up by changing their match fields (Rni rules check if an incoming

packet is labelled NEWp or Up), c) sets rule type of the Roi rules as OLD and Rni

rules as NEW , d) sets V of each affected rule to v, denoted by V [n]=v. V [n] is

henceforth referred to as V . e) sets T of each affected rule to Tmax, f) sends “Ready

to Commit” with Ti and g) sets TRC [V ]=Ti. The above actions, per changed rule,

must be atomic.

3. The controller, upon receiving “Ready to Commit” from all si∈S, updates Tlast to

reflect the largest Ti received and sends “Commit OK” to all si∈S, with Tlast and tp.

As long as the inter-packet delay of an old flow is less than tp, the flow is considered

alive.

4. Upon receiving “Commit OK”, the switch CP a) sets Tp[V ]=tp b) sets T=Tlast in

Roi and Rni c) sets ev to START , to inform the DP that it has to begin updating

live fl[V ] (explained subsequently) to indicate that there are live old flows and d)

starts a timer of value 2 ∗ Tp. All the above actions after receiving Commit OK

are atomic, per rule. Upon expiry of the timer, if live fl[V ] has increased from the

previous time it was checked, there are live old flows, in which case the timer is

restarted. Otherwise, it considers all the old flows complete, sets ev to STOP and

sends “Ack Commit OK” to the controller, with Ti.

5. Upon receiving “Ack Commit OK” from all si∈S, the controller sets the largest of

Ti received in “Ack Commit OK” to Tdel. It sends “Discard Old” to all si∈S with

Tdel.

6. Upon receiving “Discard Old”, the switch CP starts a timer Tdel+M−Ti, where M

is the maximum lifetime of a packet within the network. When the timer expires, as
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all the packets that were switched using Roi are no longer in the network, the switch

deletes Roi. It marks all the rules in Rni as unaffected by setting their rule type to

U and modifies their match fields such that they cease to check for the packet label

NEWp. T need not be initialised to Tmax as packets matching unaffected rules do

not check for T . Next, it sends “Discard Old Ack” to the controller. the update at

the switch is complete.

7. After the controller receives “Discard Old Ack” from all si∈S, the RU is complete at

the controller. After M units after timer expiry at the last si∈S, the last of packets

that have label set to NEWp are no longer in the network. Now the next update

not disjoint with the current one may begin.

6.3.5 Algorithm at the data plane

6.3.5.1 Introduction to the data plane algorithms

As defined in chapter 4 section 4.3.5, the first switch si∈S that changes the label of a

packet from Up to NEWp is called the first affected switch, sf , of that packet. An RU can

have more than one sf . sf of the forward flow is called sff and that of the reverse flow is

called sfr.
4

When sff (sfr) receives Commit OK, it becomes aware that all the affected switches

have installed new rules. Therefore, the packets belonging to flows whose SYN cross sff

from now on may be switched using new rules without violating PFC. However, all the

packets of all the flows that cross sff (sfr) currently, other than those of new flows, that

is, the old flows, must continue to get switched using old rules, to preserve PFC. If a

packet matches an affected rule, sff (sfr) must set label of the packet as NEWp, for the

packet to be switched by new rules, and OLDp, for the packet to be switched by old

rules, by the rest of the affected switches. In addition, it is possible that sfr receives the

first packet of the reverse flow before it receives Commit OK, while the corresponding

forward flow is switched using new rules. In this case, sfr needs to be informed that it

must switch the reverse flow using new rules, in spite of not receiving Commit OK. The

4The algorithms are the same for all the affected switches. The controller and the affected switches

do not know which switch sff or sfr is. This is defined only for ease of exposition.
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Figure 6.1: ProFlow: Algorithm at the switch and the controller
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data plane algorithms are all about how to label every affected packet in light of the above

observations so that PFC is preserved.

6.3.5.2 Synchronizing forward and reverse flows

For the forward and reverse flows to use the same version of rules, the packets that exit

the egress of the forward flow are processed according to Algorithm 6. Every egress (or

ingress) 5 maintains a table istate, indexed by hash (hash of the 5-tuple calculated such

that it is the same value for both forward and reverse flows), that stores the state of the

required flows, as shown in Table 6.2.

If a packet is exiting the network and the packet has label set to NEWp, the reverse

flow corresponding to this forward flow must also use new rules, that is, rules designated

as new by the current RU. Therefore, if the packet is a SYN and its label=NEWp, istate

for that flow is set to NEW FL (line 7) and itstamp to the value of TSp in the packet

(line 9), whereas if the packet is exiting the network and has label set to Up or OLDp,

istate is reset to U FL (line 12).

If a SYN+ACK is entering the network and istate of that flow is set to NEW FL,

t label of that packet is set to NEWp (line 16), and TSp of that packet is set to the value

in itstamp[hash] (line 19). If sfr sees that t label of a packet is set to NEWp, it applies

new rules to the packet and sets label of the packet to NEWp, whether it has received

Commit OK or not, as long as the value of TSp in the packet is greater than or equal

to TRC [V ] of sfr, thus synchronizing the reverse flow with the forward flow. TRC [V ] is

the time at which all the new rules are installed at sfr and Ready To Commit is sent. If

TSp≥TRC [V ], it means that the forward flow of this SYN+ACK was designated as new

in the current RU. This is explained in detail later.

6.3.5.3 Deciding if a packet is new or old

Table 6.3 lists the conditions used at sff or sfr to decide if a new label or an old label

must be applied to an affected packet that has label set to Up. label of a packet must be

set to NEWp if and only if sff has received Commit OK (now TSp≥(T=Tlast)) and: 1)

the packet is a SYN, or 2) the data plane no longer wants to check the status of any flow,

indicated by setting ev=STOP . Additionally, whether sff has received Commit OK or

5The egress and ingress switches are the same. They are distinguished for clarity.
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Algorithm 6 Algorithm at the ingress/egress data plane

1: procedure Ingress Data Plane

2: . Sets t label of reverse flow to NEWp only if the forward flow uses new rules.

Store the state of the forward flow as NEW FL in istate[hash].

3: hash = hash of packet header

4: if (packet is exiting network) then

5: if (label=NEWp) then

6: if (Control bit for SYN is set but not for ACK) then

7: istate[hash]=NEW FL

8: . Store the time stamp of SYN exiting the network

9: itstamp[hash]=TSp

10: end if

11: else . Reset istate

12: istate[hash]=U FL

13: end if

14: end if

15: if (packet is entering network) then

16: if (istate[hash]=NEW FL) AND (Control bits for both SYN and ACK are

set) then

17: . Label SYN+ACK as NEWp and set its time stamp to the time stamp

value received in the corresponding SYN of the forward flow

18: Set t label=NEWp of incoming packet

19: Set TSp=itstamp[hash]

20: end if

21: end if

22: end procedure
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Case Value

Cold1 (TSp<T [n]) AND (label=Up) AND ((t label 6=NEWp)OR (TSp<TRC [V ]))

AND ((prev t[d hash]<TRC [V ]) OR (state[d hash]=OLD FL))

Cold2 (TSp≥T [n]) AND (label=Up) AND (t label 6=NEWp) AND

((prev t[d hash]<TRC [V ]) OR (state[d hash]=OLD FL)) AND

(flags6=SY N) AND (ev[V ]6=STOP )

Cnew1 (TSp≥T [n]) AND (label=Up) AND [ (flags=SY N) OR (ev[V ]=STOP ) ]

Cnew2 ((t label=NEWp) AND (TSp≥TRC [V ])) OR ((prev t[d hash]≥TRC [V ])

AND (state[d hash]=NEW FL))

Table 6.3: Conditions checked in Algorithm 7

not, if 3) the previous packet of the flow traversed sff after TRC (when Ready to Commit

was sent) and if the state associated with the flow indexed by the direction-sensitive hash

of the 5-tuple (d hash) is set to NEW FL (which means this is a packet of a flow already

deemed new), or, 4) t label of a packet is set to NEWp and TSp≥TRC [V ] (which means

this is SYN+ACK of a reverse flow belonging to the current RU), label is set to NEWp.

1) and 2) are covered by Cnew1 and 3) and 4) by Cnew2 of Table 6.3. The affected packets

that do not meet these conditions are labelled OLDp (Cold1 and Cold2). How the conditions

in Table 6.3 are used to determine the label to be applied to a packet are explained below

in cases 1, 2, 3 and 4.

6.3.5.4 Algorithms at the affected switches

We explain ProFlow in the chronological order of arrival of packets in the data plane.

To begin with, let us assume that sf has both NEW and OLD rules (is symmetric, as

explained in section 1.3.2 of chapter 1).

Algorithm 3 of chapter 4 specifies how to match a packet with a set of rules (that

is, using match fields as explained in section 6.3.1) and Algorithm 7, the template for

executing the action associated with the rule that matches the packet. Algorithm 3 is

reproduced one page 134 again, for easy reference. Let us consider three cases, to illustrate

how the algorithms work: 1) a packet belonging to a flow f1 reaches sff before it receives

Commit OK (Figure 6.2(b)), 2) The first packet belonging to a flow f2 (SYN) reaches
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Algorithm 3 Match a packet

1: procedure Match-Packet(packet)

2: . This algorithm is for the match part of the match-action table. New rules are

always installed with a priority higher than the old and unaffected rules. New (old)

rules check if the label label of the incoming packet is equal to NEWp (OLDp) or Up.

Unaffected rules do not check for a packet label.

3: . label is the label of packet

4: if ((label=NEWp)OR(label=Up) ) AND (packet matches fields of a NEW rule)

then . This is the match part of a new rule

5: Execute-Actions(packet) . Actions associated with the new rule

6: else if (((label=OLDp)OR(label=Up) ) AND (packet matches fields of an OLD

rule)) then . This is the match part of an old rule

7: Execute-Actions(packet) . Actions associated with the old rule

8: else

9: . The packet does not match a new or old rule (unaffected packet) or no new

or old rules exist on that switch to match the affected packet, regardless of the packet

label

10: Execute-Actions(packet) . Actions associated with the unaffected rule

11: end if

12: end procedure

sff after sff receives Commit OK (Figure 6.2(d)) 3) The first packet belonging to a

reverse flow (SYN+ACK), whose forward flow uses new rules, reaches sfr before it receives

Commit OK (Figure 6.2(d)). 4) SYN of flow f3 reaches sff after it receives Commit OK

for an RU RU1 (f3 is deemed new). RU1 ends and an RU RU2, that conflicts with RU1,

begins. Now SYN+ACK of f3 (must be deemed old) reaches sfr of RU2 before sfr receives

Commit OK. This is the same as example E1 in section 6.3.2.

Case 1: Let p1 be the first packet of f1 (Figure 6.2(b)) for this case that arrives at

sff after sff receives Commit and sends Ready To Commit. Since label of p1 is Up and it

is an affected packet, it matches the rest of the fields of a new rule, as shown in line 4 of

Algorithm 3 and the corresponding action is executed (line 5 of Algorithm 3), which calls
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Figure 6.2: PFC for forward and reverse flows

Algorithm 7.

When p1 arrives at sff , since sff has not received Commit OK yet, all the affected
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switches may not have completed installing new rules. Therefore T , associated with each

rule, is still Tmax. sff can ascertain this by checking if TSp<T . But, in general, checking

this is insufficient to know if the packet belongs to an old flow, as t label may have been

set to NEWp, for a packet belonging to a reverse flow. Therefore the value of t label is

checked. Every switch sets the value of prev t[d hash] (Table 6.2) to the time stamp TSp

of a packet when the packet exits the switch (line 32 of Algorithm 7), unless otherwise

stated. prev t[d hash] is either 0 or the time at which the previous packet of this flow or

the last packet belonging to the previous instance of this flow matching the same 5-tuple

traversed sff . In either case, it is less than TRC . If the packet is already labelled NEWp or

OLDp, these conditions need not be checked - therefore whether its label is Up is checked.

Thus p1 meets Cold1 and therefore it belongs to an old flow and line 3 of Algorithm 7 is

executed. This sets state to OLD FL and label of the packet to OLDp. Since the rule

that must be matched is the corresponding old rule and the current rule is new, Match-

Packet is called recursively (line 7). Updating live fl to indicate the existence of old

flows is explained later.

p1 now matches an OLD rule (line 6, Algorithm 3) and executes the corresponding

action in line 7. This action is different from the action associated with line 5 in Algorithm

3. However, since Execute-Actions is only to show the template of actions, we use the

same function name as in line 5 of Algorithm 3. Since the packet is labelled OLDp, it

matches line 17 of Algorithm 7, and the primitive actions (such as forwarding a packet

to a port) associated with the matched OLD rule are executed (line 21 of Algorithm 7).

When subsequent switches observe a packet labelled OLDp, they directly apply old rules

to the packet (lines 6, Algorithm 3 and 21 of Algorithm 7). Suppose a switch other than

sff receives Commit before sff receives Commit (Figure 6.2 (a)). The behaviour at that

switch is the same as described above and a packet labelled Up entering the switch exits

the switch with the label OLDp.

Next, let us assume that any switch si∈S, other than sff receives Commit OK. Since

an incoming affected packet is already labelled OLDp by sff , the other affected switches

directly apply old rules to it, as before.

Suppose sff receives Commit OK and it receives packet p2, belonging to f1 (Figure

6.2(c)). This packet is labelled Up and its TSp≥T as T=Tlast. state[d hash] is already set

to OLD FL. p2 matches a new rule (line 4, Algorithm 3) and executes the corresponding
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action in line 3, Algorithm 7, meeting the condition Cold2. When Match-Packet is called

again, it executes line 17 of Algorithm 7 as Cold2 is satisfied. Now it gets switched using

the old rules (line 21 of Algorithm 7).

Thus all the packets of a flow that begins before sff receives Commit OK are switched

according to the old rules.

Case 2: Suppose sff receives Commit OK and it receives a packet p1 of f2 (a SYN)

labelled Up. This matches a new rule (line 4 of Algorithm 3) and subsequently executes

line 12 of Algorithm 7, as it satisfies Cnew1. This sets state to NEW FL and label to

NEWp and executes the actions associated with the new rule. All subsequent affected

switches switch p1 with new rules. The next packet p2 of f2 gets switched using new rules

at sff because state associated with this flow is already set to NEW FL and the previous

packet arrived after TRC , satisfying Cnew2.

Case 3: This case refers to the reverse flow of Case 2. The ingress of the reverse

flow sets t label to NEWp of pr1, that is, SYN+ACK of the reverse flow. TSp of pr1 is

the TSp of the corresponding SYN, which is always greater than Tlast, as otherwise SYN

cannot have its label set to NEWp. However, Tlast≥TRC [V ], by definition. Therefore, at

sfr, pr1 matches a new rule (line 4 of Algorithm 3) and subsequently executes line 12

of Algorithm 7, since it satisfies Cnew2. It sets state to NEW FL and label to NEWp.

Subsequent packets use new rules as state is set to NEW FL.

Case 4: When SYN of f3 crosses sff of RU1, it is labelled NEWp (line 4 of Algorithm

3 and line 12 of Algorithm 7). When it reaches its egress, the istate of f3 is set toNEW FL

and itstamp is set to TSp of the received packet (lines 7 and 9 of Algorithm 6). Suppose

SYN+ACK arrives at the ingress after RU2 has begun. Its t label is set to NEWp and

TSp to the time stamp of the SYN of f3 (lines 18 and 19 of Algorithm 6). Even though f3

was considered a new flow for RU1, it must be identified as an old flow for RU2. Suppose

sfr of RU2 has not received Commit OK. When sfr of RU2 processes this SYN+ACK,

its TSp<TRC [V2], where V2 is the update identifier of RU2. Unless TSp is compared with

TRC [V2], it will assume that this packet belongs to a new flow of RU2, which is incorrect.

If TSp<TRC [V2], it means that the SYN corresponding to this SYN+ACK crossed sff of

some RU before new rules were installed for RU2 and therefore it cannot belong to RU2.

The SYN+ACK satisfies Cold1, is labelled OLDp and state[d hash] is set to OLD FL.

When the next packet of the reverse flow arrives, again before sfr receives Commit OK,
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Algorithm 7 Execute actions of the appropriate rule type

1: procedure Execute-Actions(packet)

2: . Executes actions of rule n with which packet has matched.

3: if [ (rule type[n]=NEW ) AND (Cold1 OR Cold2) ] then . Packet matches a

new rule, but belongs to an old flow

4: Update live fl(packet)

5: state[d hash]=OLD FL

6: label=OLDp

7: Match-Packet(packet) . Packet is old, match it again

8: else if [(rule type[n]=OLD) AND (Cnew1 OR Cnew2)] then . Packet matches

an old rule, but belongs to a new flow

9: state[d hash]=NEW FL

10: label=NEWp

11: Match-Packet(packet) Packet is new, match it again

12: else if [(rule type[n]=NEW ) AND ((label=NEWp) OR Cnew1)] OR

[(rule type[n]=NEW ) AND Cnew2] OR [(rule type[n]=U) AND (label=NEWp)]

then . Packet matches a new/unaffected rule and belongs to a new flow

13: state[d hash]=NEW FL

14: label=NEWp

15: t label=Up

16: Execute primitive actions

17: else if [(rule type[n]=OLD) AND ( (label=OLDp) OR Cold1 ) ] OR [

(rule type[n]=OLD) AND Cold2] OR [(rule type[n]=U) AND (label=OLDp)] then

. Packet matches an old/unaffected rule and belongs to an old flow

18: Update live fl(packet)

19: state[d hash]=OLD FL

20: label=OLDp

21: Execute primitive actions

22: end if
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23: if [(rule type[n]=U) AND (label=Up)] then . Packet is unaffected. Reset state

24: state[d hash]=OLD FL

25: Execute primitive actions

26: end if

27: . Executed right before the packet exits

28: if (Control bits for SYN+ACK are set) AND (t label=NEWp) then

29: prev t[d hash]=current time of switch

30: t label=Up

31: else

32: prev t[d hash]=TSp

33: end if

34: end procedure

its t label is not NEWp. However, since state[d hash] is set to OLD FL, it satisfies Cold1

again and the packet is labelled OLDp.

In the example E3 in section 6.3.2, let us assume that the first packet of the second

instance of flow f arrives at sff after it receives Commit OK. TSp>T , label=Up and

flags=SY N . Therefore this packet satisfies Cnew1 and is labelled new, even though state

is OLD FL.

6.3.5.5 Need to check prev t

When an affected packet exits an affected switch, the switch sets prev t to the TSp of the

packet (line 32 of Algorithm 7), unless the packet is a SYN+ACK (line 29 of Algorithm

7). Suppose a flow f begins after an RU RU1 begins and ends before RU1 ends and

suppose it sets state of f to NEW FL at sfr. Now RU2 begins. f begins again. SYN

of f traverses sff of RU2, but this time before sff receives Commit OK, designating the

flow as OLD FL and the packet as OLDp. When SYN+ACK of f traverses sfr of RU2,

t label is not NEWp, but state is set to NEW FL by the previous instance of the flow.

Checking if prev t[d hash] is less than TRC ensures that the packet is correctly identified

as belonging to an old flow.

Suppose a new flow fn begins after an RU RU1 begins and does not end before RU1

ends. state[d hash] is set to NEW FL of this flow, at sff . Now another RU, RU2, that
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affects fn, begins after RU1 ends. Suppose only after sff of RU2 receives Commit OK does

the next packet p of fn arrive at sff , and that packet is not a SYN. If prev t[d hash] is not

checked in Cold2, fn will be incorrectly classified as a new flow by RU2. Since prev t[d hash]

of fn is less than TRC , checking it will correctly classify fn during RU2 as old.

In the example E2 in section 6.3.2, let us assume that the first packet of flow f in RU2

arrives at sff , after sff receives Commit OK. TSp>T , label=Up, t label 6=NEWp. Even

though state of f is NEW FL, since prev t<TRC [V 2] where V 2 is the version number of

RU2, Cold2 is satisfied and the packet is labelled old.

In summary, to ascertain if a flow is old from the first packet of that flow (which may

not be a SYN) that traverses sff after an RU has begun, checking only the value of state

is insufficient, as state may not be initialised to the right value whereas for subsequent

packets, checking only the value of prev t is insufficient to know the state of the flow.

Hence both need to be checked.

6.3.5.6 Dealing with asymmetry of rules

Let us assume that sff has only OLD rules. When an affected packet, a SYN, whose

time stamp TSp≥Tlast arrives, it matches an OLD rule (line 6 of Algorithm 3). In the

corresponding action, since TSp≥Tlast and the packet is a SYN, it is labelled NEWp and

Algorithm 3 is recursively called (line 11 of Algorithm 7). This packet next matches an

unaffected rule as intended (line 10 of Algorithm 3). (If there are no unaffected rules, the

RU is malformed, as after deleting the old rule, the flow will have no rules to match at

sff .) Subsequently, it matches line 12 of Algorithm 7, as rule type=U and label=NEWp.

If sff has only NEW rules, an old packet is handled in a similar manner. Any affected

switch other than sff applies an unaffected rule on a packet labelled NEWp (OLDp) if a

NEW (OLD) rule is not present on the switch. If there are only new rules to be inserted

at every affected switch and there are no unaffected or old rules that match all the packets

that match the new rules (that is, flows matching these rules never existed in the network

before), starting flows matching such rules will be meaningful only after all the rules are

installed, as otherwise, switches will drop packets which do not match any rule.
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Algorithm 8 Indicate that old flows exist

1: procedure Update live fl(packet)

2: . If the inter-packet delay is less than Tp or the packet is a SYN or SYN+ACK,

the flow is alive. If the flow is alive and live fl was updated Tp units before, update

it now. label is checked as only sf needs to update live fl.

3: if (label=Up) AND ((TSp − prev t[d hash]≤Tp[V ]) OR (flags=SY N) OR

(flags=SY N + ACK)) AND ((TSp − live fl[V ])≥Tp[V ]) then

4: live fl[V ]=TSp of current packet

5: end if

6: end procedure

6.3.5.7 Checking if an old flow is live

If the inter-packet delay of an old flow is less than Tp or if the packet is a SYN or

SYN+ACK (in which case the inter-packet delay is not meaningful), it is deemed live.

Every old flow updates live fl[V ] if label of a given packet is Up, the flow is live and if

there is a delay greater than or equal to Tp from when it previously updated live fl, as

shown in Algorithm 8. If the inter-packet delay is greater than Tp, the old flow is deemed

new and live fl is no longer updated.

Since TSp of a SYN+ACK whose t label is NEWp is the TSp of its SYN, for sfr to

calculate a meaningful inter-packet delay for a packet arriving after SYN+ACK, prev t

is set to the current time of sfr, as an approximation (line 29 of Algorithm 7). t label is

reset to Up. The rest of the affected switches will not update live fl as label of the packet

is set to NEWp. Therefore they will not require the correct value of TSp.

Suppose (Figure 6.5a(c)), the switch CP polls live fl immediately after live fl was

updated (t1). Next, the last packet of the last old flow (denoted as pf ) arrives a little

before Tp units of time from t1. The switch CP must wait for Tp units of time from t2

before it reads live fl again. live fl will not be updated for pf , as Tp units have not

elapsed from t1. Therefore the switch CP considers all the old flows completed at t3, Tp

units from pf , in the best case. In the worst case (Figure 6.5a(d)), after the switch CP

polls live fl, it is immediately updated by pf , at t1. Therefore the switch CP must poll

twice more before it finds that the value of live fl has not changed, thus taking 2 ∗ 2 ∗ Tp
units after pf . Alternately, live fl may be updated for every packet and the switch CP
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can poll this every Tp, to reduce the RU duration. If so, after pf , the switch CP must wait

for Tp in the best case (Figure 6.5a(a)) and 2Tp in the worst case (Figure 6.5a(b)), from

pf , before the RU can be considered completed.

6.3.5.8 Handling long flows

In a PFC compliant RU, if there are long running old flows, though new rules become

effective immediately for new flows, old rules cannot be deleted and an RU cannot be

completed until the old long running flows cease, also preventing a conflicting RU from

occurring. Therefore, it is desirable that an RU with a long old flow is not combined

with any other RU. Servers discourage persistent connections with large HTTP keep-

alive timers to prevent idle clients from consuming server resources [10], putting an upper

limit on Tp. But flows could be long-lived and continuous. However, the median number

of concurrent continuous large flows (>1MB) is only 1 and the 75th percentile is 2 [5] in

a real data centre. There are means to identify such flows [118, 2] and to enable dynamic

routing at small enough time scales [17, 108] by isolating them. If such flows are isolated

and RUs performed separately on them, ProFlow will not cause an RU to be delayed by

such flows. Installing separate rules for such flows to isolate them does not require a PFC

RU, as the rule actions are not changed, and will not cause PFC violations.

6.3.6 ProFlow as a general solution

In a virtualized network, since the ingress switch that the reverse flow traverses to enter

the network may be different from the egress switch that the forward flow traverses to

exit the network, Algorithm 6 must be executed in a module that intercepts the traffic

between the ingress/egress and the host and not the ingress/egress. This module can be a

part of the network hypervisor and need not use the same clock as the rest of the network.

This solves the problem discussed in section 2.8.3.
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6.4 Discussion

6.4.1 Overheads

Let the maximum number of flows expected at a switch be 10, 000/s [16], with a maximum

number of 100 concurrent RUs, 10000 rules per switch and with the sizes of stateful

variables in bits as: T (32), rule type(2), ev(1), Tp(32), state(1), istate(1), prev t(32),

live fl(32), TRC(32) and itstamp(32), V (7). In a 32 staged RMT switch [22], there are

106 blocks, with each block having 1000 ∗ 80 bits of memory available per stage, in the

SRAM, to store both actions and overhead bits [63]. Roughly, less than 13% of the SRAM

memory of a stage is sufficient to store the stateful memory. prev t[d hash] may be reused

across applications unchanged [68].

6.4.2 Concurrent RUs and other claims

As v is used only in the control plane and is not a part of the packet header, the number of

disjoint concurrent RUs is limited only by the processing power and memory of switches,

similar to PPCU, section 4.5. The RU will progress to completion even if there are no

flows in the system, as flows carry no information regarding the progress. If multiple tables

require changes for the same flow, it can be done as described in section 4.7.2.5 for PPCU.

6.4.3 Handling Asynchronous time at each switch

The DP algorithm relies on synchronous time for three comparisons: 1) TSp with TRC [V ]

2) TSp with T [n] and 3) prev t[d hash] with TRC [V ].

Case 1: Suppose the SYN of a flow f deemed new by an RU RU1, traverses sff

and RU1 completes. A conflicting RU RU2 begins. Now SYN+ACK of f reaches sfr. Let

us assume that the clock of the ingress that stamped the SYN of f is faster than that

of sfr. When TSp of SYN+ACK is compared with TRC by sfr, it may so happen that

TSp>TRC , causing sfr to incorrectly conclude that SYN+ACK belongs to a new flow of

RU2. Therefore, when every switch sends its current time in Ready to Commit, instead

of Ti, it must send dTi + γ + 1e, and store the latter value in TRC , to solve this problem,

where γ is the maximum time drift of switches from each other. If the network supports

PTP, γ=1µsec [90].
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One of the conditions for Cnew2 to be satisfied is that TSp≥TRC [V ]. Is there a situ-

ation where this comparison can fail when it must not? Suppose the clock at the ingress

that stamped the SYN of f is slower than that of sfr. Only a SYN with its TSp≥Tlast
will be given a label of NEWp, causing t label of SYN+ACK to be set to NEWp. This is

the only case of t label being set to NEWp. Since Tlast≥TRC , TSp will be greater than or

equal to TRC , when the packet is labelled NEWp. Therefore if the ingress clock is slower

than that of sfr, it does not matter.

Case 2: Suppose a packet p with label Up enters the network and crosses sff before

an RU RU1 begins. Let TSp>Tlast (Tlast of RU1) as the ingress clock that stamped p is

faster than the rest of the affected switches. After sff receives Commit OK, it is possible

that p is labelled incorrectly as NEWp by an affected switch other than sff , violating

PFC. However, since Tlast is the largest of all values of TRC , which is already offset to

account for time asynchrony, this issue will not arise. Also, if the ingress clock is slower

than rest of the affected switches, again, this issue will not arise.

Case 3: Cold1 and Cold2 check if prev t[d hash]<TRC . If the ingress clock is faster

than the clock at sff , it is possible that prev t≥TRC due to time asynchrony, which will

not occur if dTi + γ + 1e is stored in TRC .

Cnew2 checks if prev t≥TRC . Can this condition be violated for a new flow due to

time asynchrony ? Let us assume that the ingress clock is slower than the clock at sff

making prev t less than TRC . Let the first packet of a new flow be a SYN that arrives

after Commit OK is received, satisfying Cnew1, or with t label=NEWp and TSp≥TRC .

The second packet must satisfy Cnew2. Since this is a new flow, TSp of the first packet

is greater than or equal to Tlast. Therefore TSp≥TRC and prev t≥TRC . Therefore this

condition will not be violated due to time asynchrony. At sfr, for the second packet of a

new flow, prev t is derived from the time at sfr itself, as per Algorithm 7, due to which

this condition will not be violated.

As for the control plane, since the switch CP examines live fl only to check if there

is a change in its value, variation in ingress clock speeds will not affect it. Similar to

PPCU, in section 4.4 of chapter 4, each affected switch, upon receiving Discard Old, must

set it to dTdel + γ + 1e.

In summary, if the values of TRC and Tdel are offset as described above, time asyn-

chrony between switches will be taken care of.
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6.4.4 Simultaneous TCP Open

If two hosts simultaneously open a TCP connection it may require SYN messages from

both the hosts to traverse the same NF instance [49], which cannot be guaranteed by

ProFlow. TCP simultaneous-open with NAT traversal is a problem still being researched

[49] [113] [112]. A strong case for simultaneous-open TCP connections is only for peer-

to-peer applications (such as VoIP).Therefore the algorithm is suitable for data centers

where these are not used.

6.4.5 Execution time of ProFlow

The symbols used in the analysis are: δ: the propagation time between the controller and

a switch, ti: the time taken to insert each rule in a switch TCAM, tdT : the time taken to

delete each rule from a TCAM, tm: the time taken to modify each rule in a TCAM, tv:

the time taken to modify a stateful list entry, ts: the time for which a switch waits after it

receives “Discard Old” and before it deletes rules, no: the number of old rules that need

to be removed, nn: the number of new rules that need to be added, T1: The time between

the switch receiving “Commit” and sending “Ready To Commit”, T2: The time between

the switch receiving “Commit OK” and sending “Ack Commit OK” and T3: The time

between the switch receiving “Discard Old” and the switch performing its functions after

timer expiry. It is assumed that the value of δ is uniform for all switches and all rounds,

the values of time are the worst for that round, the number of rules, the highest for that

round and that the processing time at the controller is negligible. The values of T1, T2

and T3 are shown in Figure 6.1.

T1=no(tm+2tv)+nn(ti+2tv)+(n0 +nn+1)∗ tv. T , rule type and V of each affected

rule will get updated in time tv. TRC [V ] is updated in time tv. T2=(2+no+nn)∗tv+Tvar. T

is updated for every affected rule, with each update taking time tv. ev and Tp are updated

in time tv. Tvar depends on the type of flows in existence at the time of the RU. Tvar is the

poll time, 2 ∗ Tp, if there are only new flows. If there is at least 1 old flow, let told be the

remaining length of the longest such flow, after T1 + (2 + no + nn) ∗ tv units have elapsed

after the RU begins. Reading live fl occurs in parallel with told and setting ev to STOP

occurs in parallel with Tvar and are therefore ignored. T3=ts + no ∗ tdT + nn(tm + tv).

Tvar will vary from told + Tp to told + 4Tp, as described in section 6.3.5.7. The total
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propagation time is 6 ∗ δ. Thus the total RU time from the perspective of the controller is

T1 + T2 + T3 + 6 ∗ δ (M units must elapse from this time before a conflicting RU begins).

Since Tp will dominate this value if there are no old flows or only short old flows, it must

be chosen judiciously.

Updating live fl for every packet and the switch CP polling it every Tp units will

reduce the range of Tvar. It will now vary between told + Tp and told + 2 ∗ Tp, as described

in section 6.3.5.7.

6.4.6 Anomalous flows

If there are long old flows with inter-packet delays larger than a given value of Tp (anoma-

lous flows), an RU with a suitably larger value of Tp may be used, specifically for such

flows. Alternately, if a PPC update is sufficient only for the anomalous flows while the

rest of the flows in the RU are updated preserving PFC, Proflow will update them in a

per-packet consistent manner, without any change. They may be isolated and separately

managed, as described for long old flows (section 6.3.5.8). New flows may be long or may

be anomalous or both and they do not affect an RU in any way.

Suppose f is a flow in an RU RU1 and it is anomalous. Suppose its SYN traverses sff

when RU1 affecting it is in progress and it is labelled NEWp. state is set to NEW FL and

prev t to TSp of SYN, as the packet exits sff . Suppose this RU completes and another RU

RU2, conflicting with RU1, begins. Let p be the next packet of f1 after SYN, that arrives

after Tp + 1 units of time, which traverses sff of RU2. p is now labelled OLDp and state

set to OLD FL, as prev t for f is set to a value of time before RU2 began. This packet

and subsequent packets until ev is set to STOP will be switched using old rules. Suppose

further packets arrive with an inter-packet delay less than Tp. RU1 and RU2 preserve

PFC. Suppose f1 is an old anomalous flow, that is deemed completed before its RU, RU3,

completes. Let Ack Commit OK be sent from all the affected switches. Any subsequent

packet of f1 has ev=STOP , its TSp≥T and label=Up, and therefore it satisfies Cnew1. It

is marked NEWp until this RU ends. RU3 will not preserve PFC, but will preserve PPC.

Thus RUs will be at least PPC compliant, and no packets will be dropped, for anomalous

flows. There may be old flows in the network with inter-packet delays larger than Tp. But

if there are packets arriving due to any old flow at a rate sufficient to update live fl for

the control plane to conclude that there are live old flows, all old flows will continue to
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get switched using old rules. Thus an anomalous flow will be switched preserving PFC in

the best case and PPC in the worst case.

6.4.7 Header modification by NFs

Certain NFs such as NATs dynamically modify packet headers. A solution such as Flow-

Tags [38] can be employed, without affecting the functioning of the algorithm. The con-

troller allocates a unique tag to a flow as it enters a middlebox, a subsequent middlebox

consumes this tag and possibly gets another tag generated by the controller and so on.

Since this set of tags is uniquely associated with a flow and is valid as long as the flow

is, in addition to the direction sensitive 5-tuple (d hash), the tag available at an affected

switch may be used to uniquely and consistently identify a flow. ProFlow does not require

all the affected switches of a forward or reverse flow to use the same hash - the hash

only needs to identify that flow uniquely and consistently on that switch. Ingresses and

egresses can continue to use the direction insensitive hashes of 5-tuples (hash), as no NFs

or middleboxes will alter the 5-tuple after a packet exits an egress and before it enters an

ingress.

6.4.8 Data Plane Algorithms run at line rate

To examine if the data plane algorithms can run at line rate, the statements in the

algorithms may be expressed in three-address codes, as is done in Domino [117] and other

prior work [68]. Such an instruction is of the form f1=f2 op f3, where f1, f2 and f3 are

stateful variables or packet headers or both, and op is an operation. Complex expressions

are converted to such instructions using temporary variables. After conversion, the most

complex instruction supported is “Pairs”, which allows updates to two stateful variables,

with predicates that can use the same two stateful variables. In the worst case, the data

plane algorithms of ProFlow update state and live fl, while using both in predicates.

Hence it may be concluded that they can run at line rate.

6.4.9 Concurrent access

live fl needs to be incremented at an interval greater than or equal to Tp units by every

live old flow. If there is contention between flows while accessing this counter, it is sufficient
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that a packet belonging to one of the old flows succeeds in incrementing it - that is, an

atomic write is not expected. This is because the switch CPU that polls this list only

requires the list value to increment by at least 1 to conclude that there are old flows still

alive.

6.5 Implementation and evaluation

A network of switches using a FatTree [1] topology, with the routing scheme by Al-

Fares et al. [1] was implemented, using Mininet [88] (version 2.2.1), with one rule per

destination host. The data plane algorithms were implemented in P4 (version 1.0.2 [30]).

The algorithm for the control plane was implemented in our own elementary controller

and the P4 switch simulation available on Linux [121]. Algorithm 3 is implemented in the

match part of a table and Algorithm 7 is implemented in the control flow of a table, as

the version of P4 used does not support conditional statements in actions 6. The Proflow

implementation in the controller uses threads to send messages to the affected switches

in parallel, using the Switch API provided with the P4 implementation.

The implementation in P4 enhances the code for PPCU in section 4.7.2 of chapter

4 and is not further described.

Experiments were carried out on a Linux server (16-core Intel(R) Xeon(R) E5-2630

v3 CPU running at 2.40 GHz, and Ubuntu 16.04), with Mininet version 2.2.1. For all

experiments, the individual link speeds have their upper limit set to 200Mbps, the switch

queue size to 6000 packets and the delay and loss parameters to 0. A Hierarchical Token

Bucket scheme is used for queueing. Tp is set as 15s. Logs are examined to to ensure that

PFC is preserved.

6.5.1 Experiment 1

The purpose of this experiment is to measure the impact of a PFC RU upon the through-

put of a mix of old and new flows. A flow OldF low is started from h00 to h20 in Figure

6.4, using iperf [99], which sends as many packets as possible into the network (MSS =

1350 bytes), for a duration of 60s, followed by a PFC RU, where both the forward flows

6 Implementation in a newer version of P4, P416 [31], will be simpler, since it supports conditional

statements in actions.
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Figure 6.4: A PFC RU on a FatTree network

from h00 to h20 and the reverse flows from h20 to h00 are required to change from the old

path to the new path (Figure 6.4). Next, a new flow NewFlow is started between the

same host pairs, for a duration of 120s. From Figure 6.3a, it can be observed that there is

an instantaneous drop in throughput at the beginning (“StartRU”) and at the end of the

RU (“EndRU”), because rules are inserted and deleted, while during the RU itself, there

is no change in the throughput of the new flow in spite of the additional processing. This

is clear when the throughput of the new flow after the old flow ceases at 60s is compared

with the throughput of the new flow after the RU ends. During the course of the RU,

the switch CP polls the switch DP every 2∗Tp=30s to decide if the old flow is complete,

and at the fourth poll, it finds that live fl has not incremented. It concludes that the old

flow no longer exists and completes the RU. This also illustrates immediate effectiveness

of the RU (section 6.2) - OldF low and NewFlow coexist, using different versions of the

same rule.

6.5.2 Experiment 2

This experiment is to check the impact of ProFlow on the throughput of flows where each

packet needs to be resubmitted at sf . Here, two old flows, OldF low1 of duration 60s and

OldF low2, of duration 120s, are started one after the other, using iperf, from h00 to h20
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and subsequently, an RU is started to change the path from old to new ( Figure 6.4). The

throughput of each flow is observed every 1s. As shown in Figure 6.3b, there is a drop

in the throughput of OldF low2 during the RU, compared to OldF low1 before the RU

started, as sff and sfr (and no other affected switch) need to resubmit each packet, as

each packet first matches a new rule.

6.5.3 Experiment 3

Here, sending Commit OK to s2 (sfr of NewFlow from h00 to h20) in Figure 6.4 is

delayed by 20s to ensure that in spite of this, if the forward flow follows the new path,

the reverse flow from h20 to h00 also follows the new path, and to measure the impact

on throughput. At the end of the RU, there is an instantaneous drop in throughput;

otherwise, the throughput during and after the RU appears similar, in Figure 6.3c.

In summary, if a flow does not undergo resubmission, in a simulated setup, there is

no observable drop in throughput during the RU, in spite of the additional processing.

Otherwise, there is a drop in throughput during the RU, compared to the throughput when

there is no update affecting the flow.

6.5.4 Experiment 4

The goal of this experiment is to check if updating live fl for every packet is feasible, as

discussed in section 6.4. 25 flows are started simultaneously from h00 to h20, of duration

60s, using iperf. If the number of flows is further increased, due to high load on the

switches, flows start getting slower and the inter-packet delay increases beyond Tp, causing

some flows to start using new rules. An RU begins next, to change the path of the flows.

The throughput and the difference between the time of arrival of the last packet and

completion of the RU are plotted in Figure 6.5b. The experiment is repeated after live fl

is set to be updated for every packet and DP is polled every Tp s. The throughput when

live fl is updated for every packet (denoted as “Throughput:every”) is comparable with

that when updated with a minimum delay of Tp ( denoted as “Throughput:Tp”), as

shown in Figure 6.5b. Also, the difference in time from when the RU ends (denoted as

“RU time:every”) to when the last packet of any flow arrives (denoted as “Difference

from last packet:every”) lies between Tp and 2 ∗ Tp. (It may also be observed that the
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Figure 6.5: Frequency of updating live fl

same quantity varies between Tp and 4Tp when live fl is updated with a minimum delay
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of Tps.) Thus updating live fl for every packet is a practical solution, as explained in

section 6.4. While the version of P4 used in the implementation automatically assumes

that a register operation is atomic, P416 [31] supports explicitly specifying this. This may

be left unspecified for live fl, as explained in section 6.4, to further improve throughput,

when P416 is used.

6.6 Conclusions

This chapter has described a general algorithm for a per-flow consistent update, to solve

problems in Service Chaining, Network Virtualization and Load Balancing, for updates

that involve stateful network elements. Updates are confined to the affected switches and

the affected rules and are immediately effective for new flows. The algorithm tolerates

switch timing asynchronies and varying execution speeds of switches and links. It pro-

gresses even in the absence of flows and maintains line rate. The prototype implemented

in P4 and evaluated on Mininet demonstrates that the algorithm is feasible and causes no

impact on throughput for new flows, if the first affected switch in the course of the flow

has both new and old rules, compared to a situation with no updates.

6.7 Proof

p is an affected packet with a label label, that can take the values Up, NEWp or OLDp,

indicating if the packet is unaffected, new or old respectively. We consider an RU RU1,

with its version number denoted as V1.

Let us assume that the individual algorithms at the data and control planes are

correct. Let us assume that switches are synchronized, to make descriptions easier and

that no conflicting RUs occur. However, the controller-switch links may have variable

delays and the switches may have varying execution speeds. We assume that no packets

arrive for an old flow if Tp units of time elapse since the last packet of the flow.

Property 1: All forward flows preserve PFC.

Case 1 - sff has not received Commit and so it is unaware of an update:

At time Tf , packet p arrives with time stamp TSp. TSp≤Tf by definition (TSp was the

time at the ingress switch when the packet left it and sff may be an ingress). It will match
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some existing (soon to be declared old) rule, and the packet will be forwarded. label will

remain Up. p and packets subsequent to p will also be handled by old rules.

Suppose a new rule has been installed in a downstream switch, say sp, and either

(1.1) Commit has been received and Ready To Commit has been sent (T=Tmax for all

affected rules), or (1.2) both Commit and Commit OK have been received (T=Tlast for

all affected rules).

(1.1) From Table 6.3, Cold1 = (TSp<T [n]) AND (label=Up) AND ((t label 6=NEWp)

OR (TSp<TRC [V ])) AND ((prev t[d hash]<TRC [V ]) OR (state[d hash]=OLD FL)).

Cold1 will be true because:

(a) If only Commit has been received, T=Tmax, and TSp<Tmax by definition, for any

TSp.

(b) label=Up because this is the first affected switch which has received Commit and

therefore earlier switches will behave like sff .

(c) t label 6=NEWp as t label is set to Up at the ingress and no subsequent switch has

installed affected rules yet.

(d) ((prev t[d hash]<TRC [V ]) OR (state[d hash]=OLD FL)). Let p be the first

packet that arrives after Ready To Commit is sent from this switch for RU1. So

prev t[d hash] < TRC [V1] by this assumption. As a consequence of Cold1 being true due

to this, (a), (b) and (c), p matches a new rule, sets label to OLDp and state[d hash] to

OLD FL (line 5 of Algorithm 7) and is resubmitted. Then it matches an old rule (line 17 of

Algorithm 7) and state remains unchanged. When the next packet arrives, prev t[d hash]

may be greater than or equal to TRC [V1], but state[d hash] is already set to OLD FL,

thus satisfying Cold1. If p is not the first packet after Ready To Commit is sent, then

an earlier packet, say py, will have prev t[d hash]<TRC [V1], and (a), (b) and (c) above

will be applicable to py too, satisfying Cold1, regardless of the value of state[d hash] then,

which may be NEW FL. (Packets earlier than py may belong to the current RU RU1 or

a previous conflicting RU, RU0, and it may have set state[d hash] to NEW FL.) py will

set state[d hash] to OLD FL. In that case, p will satisfy (state[d hash]=OLD FL), and

Cold1 will be true. Thus p and subsequent packets of this flow continue to get switched

using old rules.

(1.2) (a) If sp has received both Commit and Commit OK, T=Tlast for all affected

rules. At time Tf , since sff has not received Commit, it has not sent Ready To Commit.
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Tlast is the largest of the values of time received in Ready To Commit sent by all the

affected switches, including sff . Hence Tlast>Tf . Since Tf≥TSp, it follows that TSp<Tlast.

(b) label=Up, as in case (1.1)

(c) t label 6=NEWp, as in case (1.1).

(d) Suppose px is the last packet of this flow (or a previous flow with the same value

of d hash) that crossed sp before it sent Ready To Commit. Suppose p is the next packet.

p will find prev t[d hash]<TRC [V1]. Because of this and (a), (b) and (c), it satisfies Cold1.

It matches line 3 of Algorithm 7 and sets state[d hash] to OLD FL. p is resubmitted and

matches an old rule. state and label are unchanged. If p is not the first packet after px, as

discussed for case (1.1), it will still get switched using old rules, as an earlier packet would

have set state[d hash] to OLD FL. Packets subsequent to p also get switched using old

rules.

A packet labelled OLDp gets switched using old rules, in the rest of the affected

switches, wherever old rules exist (line 17 of Algorithm 7).

Case 2 - sff has received Commit and sent Ready To Commit. It has not

received Commit OK:

(a) sff will have new rules, but in all of them T=Tmax. So p will find that TSp<T

in any new rule, as T=Tmax.

(b) label=Up as this is the first affected switch in the path of p

(c) t label 6=NEWp and

(d) prev t[d hash]<TRC [V1] or state[d hash]=OLD FL, using the same arguments

in Case 1, (1.1), since the behaviour of sff will be the same as sp, for this case.

Since p satisfies Cold1, label of p will be made OLDp (line 20 of Algorithm 7). Once

so labelled, all subsequent switches will use old rules on p.

Case 3 - sff has received both Commit and Commit OK: sff will match p

with a new rule, and if TSp≥T , it will apply the new rule, if Cnew1 is satisfied.

(3.1) Suppose TSp<Tlast for p.

(a) TSp<T due to the above assumption.

(b) label=Up as this is the first affected switch in the path of p

(c) t label 6=NEWp.

(d) An earlier packet of the flow to which p belongs or to a previous instance of the

flow with the same value of d hash has set prev t[d hash] to a value less than TRC [V1] or
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state[d hash] to OLD FL, as explained for Case 1, (1.1). Therefore, due to this condition

and (a) through (c), Cold1 is satisfied, the label of p is set to OLDp and p gets switched

by old rules.

(3.2) Suppose TSp≥Tlast and p is not a SYN. Cold2 = (TSp≥T [n]) AND (label=Up)

AND (t label 6=NEWp) AND ((prev t[d hash]<TRC [V ]) OR (state[d hash]=OLD FL))

AND (flags6=SY N) AND (ev[V ] 6=STOP ), from Table 6.3.

(a) TSp≥T due to the above assumption.

(b) label=Up as this is the first affected switch in the path of p.

(c) t label 6=NEWp.

(d) flags6=SY N as p is not a SYN

(e) ev[V ] 6=STOP , as when Commit OK is received, ev[V ] is set to START , by step

3 of Figure 6.1.

Suppose p1 was the first packet of the flow (a SYN).

(3.2.1) If p1 reached sff before sff received Commit OK, TSp<Tlast. An earlier

packet, of the flow to which p belongs or a previous instance of the flow to which p

belongs, has set (f) prev t[d hash] to a value less than TRC [V1] or state[d hash]=OLD FL,

as explained for Case 1, (1.1). Therefore, for p, due to (a) through (f), Cold2 is satisfied

and its label is set to OLDp.

(3.2.2) (a′) If p1 reached sff after sff received Commit OK, TSp of p1 is greater than

or equal to Tlast.

(b′) Its label=Up as this is the first affected switch in the path of p.

(c′) Due to p1 being a SYN, flags=SY N .

Cnew1 = (TSp≥T [n]) AND (label=Up) AND [ (flags=SY N) OR (ev[V ]=STOP )

] as per Table 6.3. Therefore, due to (a′), (b′) and (c′), p1 satisfies Cnew1.

Therefore (a′′) state[d hash]=NEW FL (line 12 Algorithm 7). This also sets

prev t[d hash] to the current time stamp TSp of the packet.

Since TSp≥Tlast and Tlast≥TRC [V1] by definition, for all subsequent packets of this

flow, including p, (b′′) prev t[d hash]≥TRC [V1]. Cnew2 = ((t label=NEWp) AND (TSp≥

TRC [V ])) OR ((prev t[d hash]≥TRC [V ]) AND (state[d hash]=NEW FL)) as per Table

6.3. Therefore due to (a′′) and (b′′), those packets satisfy Cnew2 and get switched using

new rules (line 12 of Algorithm 7).

(3.3) Suppose (a) TSp≥Tlast
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(b) p is a SYN.

(c) label=Up as sff is the first affected switch.

Due to (a), (b) and (c), p satisfies Cnew1. Therefore, label of p is set to NEWp (line

12 of Algorithm 7) and that packet gets switched subsequently by new rules. This also

sets state[d hash] to NEW FL. Subsequent packets of this flow use new rules, due to

Cnew2 being satisfied, as explained for (3.2.2).

In all the above cases except (3.2.2) and (3.3), any packet p gets switched using old

rules, thus preserving PFC in the forward direction. In (3.2.2) and (3.3), all the packets

belonging to the flow to which p belongs get switched using new rules, due to the reason

explained for (3.2.2), thus preserving PFC in the forward direction. This proves Property

1.

Property 2: If all the packets of a forward flow are switched using new (old) rules,

all the packets of its reverse flow are also switched using new (old) rules.

Case R1 - sfr has not received Commit and so it is unaware of an update:

Let pr be a packet of a reverse flow. When pr arrives at sfr, it switches pr using

unaffected (soon to be declared old ) rules.

(R1.1) A subsequent switch spr has received Commit and sent Ready To Commit.

(a) t label of pr is not NEWp, for forward flows belonging to this RU, as every packet

of the forward flow is switched using old rules, due to cases 1 and 2 above, for forward

flows, and Algorithm 6. Algorithm 6 sets t label to NEWp for a SYN+ACK if and only if

the SYN of the forward flow has its label set to NEWp. Case 3 cannot be true, as Commit

OK can be sent from the controller only after all the affected switches have sent Ready To

Commit (as per Figure 6.1, step 3). t label is not set to NEWp for any packet other than

SYN+ACK, as per Algorithm 6. Therefore, whether pr is SYN+ACK or a subsequent

packet, its t label 6=NEWp.

Now all the arguments for case 1 above hold good - at spr, TSp<T as T=Tmax,

t label 6=NEWp. pr is switched using old rules, using the same arguments in case (1.1) and

switched using old rules in all the affected switches of the reverse flow.

(R1.2) Suppose spr has received Commit OK. Now all the arguments of case (1.2)

hold good and the packet exits spr labelled OLDp.

(R1.3) Suppose a flow belonging to a previous RU, RU0, has left istate as NEW FL

and itstamp set to the TSp of its SYN, at the egress for that flow. Now suppose SYN+ACK
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arrives at sfr only during RU1. Suppose spr has received Commit but not Commit OK.

(a) TSp<T as T=Tmax

(b) label=Up as this is the first affected switch for p.

(c) t label=NEWp. However, at spr, TSp<TRC [V1], as TSp is the time stamp of a

SYN before RU1 began. The packet previous to this SYN+ACK, say px, with a matching

value of d hash, has crossed spr before TRC [V1], as SYN+ACK is the first packet of this

flow during RU1.

(d) Due to px, p finds prev t[d hash]<TRC [V1]. Subsequent packets, including

SYN+ACK and later, satisfy Cold1 due to (a) through (d) and get switched using old

rules.

(R1.4) In (R1.3), suppose spr has received Commit OK.

(a) Now for SYN+ACK, TSp<T as the TSp of this packet belongs to the SYN of

RU0, which completed before RU1 began.

(b) label=Up as this is the first affected switch that pr crosses.

(c) t label=NEWp. However, at spr, TSp<TRC [V1], because TSp was assigned its

value even before RU1 began.

(d) Suppose px is the last packet of this flow (or a previous flow) that crossed spr

before it sent Ready To Commit, with the same value of d hash. Suppose pr is the next

packet. pr will find prev t[d hash]<TRC [V1]. Therefore, it satisfies Cold1. It matches line

3 of Algorithm 7 and sets state[d hash] to OLD FL. pr is resubmitted and matches an

old rule. state and label are unchanged. If pr is not the first packet after px, as discussed

for case (1.1), it will still get switched using old rules. Packets subsequent to pr also get

switched using old rules.

Case R2 - sfr has received Commit and sent Ready To Commit. It has

not received Commit OK:

(R2.1) In the forward path, if sff has not received Commit OK, due to cases 1 and

2 above and Algorithm 6, t label of no affected packet, for which sff was the first affected

switch for the forward direction of its flow, will be set to NEWp. pr and subsequent

packets of the flow to which pr belongs will be labelled OLDp and get switched using old

rules, as they satisfy Cold1, as explained for Case 2.

(R2.2) In the forward path, suppose sff has received Commit OK.

(R2.2.1) For cases other than (3.2.2) and (3.3), for all forward flows, all packets get
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switched using old rules. Therefore t label 6=NEWp and as described in cases 1 and 2

above, pr and subsequent packets belonging to its flow get switched using old rules.

(R2.2.2) (a) In cases (3.2.2) and (3.3), p of the forward flow gets switched using

new rules. Therefore, the SYN of such a flow causes istate[hash] to be set to NEW FL

and itstamp to TSp of that SYN (lines 7 and 9 of Algorithm 6). The SYN+ACK of

the corresponding reverse flow has t label set to NEWp and its TSp to the value of

itstamp[hash] (lines 18 and 19 of Algorithm 6). This SYN+ACK is the first packet of the

flow to which pr belongs, and is called pr1. For pr1, TSp≥Tlast, as the SYN from which

TSp was taken, was labelled as NEWp by sff .

(b) But Tlast is the largest of all TRC [V1]. Therefore, TSp≥TRC [V1] at sfr.

Thus due to (a) and (b), pr1 satisfies Cnew2, matches a new rule (line 12 of Algorithm

7), sets label to NEWp, state[d hash] to NEW FL and gets switched using a new rule.

Subsequent switches apply new rules to this packet. Subsequent packets such as pr do not

have t label set to NEWp. However, for the first packet after pr1, (a′) prev t[d hash]≥

TRC [V1] as prev t has the time of the switch stored when pr1 exited sfr (line 29 of Algorithm

7), which is greater than or equal to TRC [V1] because sfr has already sent Ready To

Commit. For packets after that, prev t will have TSp of the previous packet, which is

greater than or equal to TRC [V1] (line 32 of Algorithm 7) (A SYN+ACK can arrive at

sfr only after a SYN exits an egress, at a time greater than Tlast, as TSp≥Tlast for that

SYN. A response to this from a host can enter the network through the same egress

only after time Tlast. Tlast≥TRC [V1], by definition of Tlast. Therefore, for packets after pr1,

prev t[d hash]≥TRC [V1]).

(b′) SYN+ACK has already set state[d hash] to NEW FL.

Therefore, every packet , due to (a′) and (b′), pr satisfies Cnew2 and gets switched

using new rules (line 12 Algorithm 7).

(R2.3) Suppose a flow belonging to a previous RU, RU0, has left istate as NEW FL

and itstamp set to the TSp of its SYN, at the egress for that flow. Now suppose SYN+ACK

arrives at sfr only during RU1, but with t label=NEWp. sfr has received Commit but

not Commit OK. Using the arguments in (R1.3), this SYN+ACK and subsequent packets

of this flow get switched using old rules.

Case R3 - sfr has received both Commit and Commit OK :

(R3.1) sff of the forward flow has not received Commit OK.
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(a) In this case, all packets are labelled OLDp and pr1 (a SYN+ACK) has its t label 6=

NEWp.

(b) label=Up as this is the first affected switch.

(c) If its TSp<T , it is the same as case (R 2.1) above.

(c′) If its TSp≥T , suppose the last packet of a previous flow with the same d hash as

pr1 that crossed sfr after it sent Ready To Commit, is py. For py, prev t[d hash]<TRC [V1]

and it sets state[d hash] to OLD FL.

(d′) flags6=SY N as p and subsequent packets belong to a reverse flow.

(e′) ev[V ]=START , as is set in step (3) of Figure 6.1.

Packets subsequent to py, including pr1, satisfy Cold1 if their TSp<Tlast, due to (a),(b)

and (c). They satisfy Cold2 if their TSp≥Tlast, due to (a), (b), (c′) , (d′) and (e′). All packets

subsequent to pr1 get switched using old rules.

(R3.2) sff of the forward flow has received Commit OK. If SYN of a forward flow has

its TSp<Tlast, all packets of the forward flow get switched using old rules. t label 6=NEWp

of the SYN+ACK (pr1) of its reverse flow. This is the same as case (R3.1) above.

(R3.3) If the SYN of a forward flow has its TSp≥Tlast, it gets switched using new

rules and sets t label=NEWp for pr1. This is the same as (R2.2.2) above.

In the above discussion, it is assumed that rules at sff , sfr , sp and spr are symmetric.

Suppose new (old) rules do not exist at one switch. The label of the packet will be decided

by an old (a new) rule, as shown in line 8 (line 3) of Algorithm 7. If it is NEWp (OLDp),

it will be re-matched, as shown in line 11 (line 7) of Algorithm 7.

The above cases will hold as long as both old rules and new rules co-exist in the

affected switches. Old rules are discarded and checking for rule type ceases once a timer

with time Tm expires at an affected switch. After an affected switch receives Commit OK,

it polls live fl every 2 ∗ Tp units of time. When each affected packet of an old flow is

received, an affected switch checks if the time at which it received the previous packet of

the same flow is less than or equal to Tp, or whether the packet is a SYN or a SYN+ACK.

If either of these conditions is satisfied, it checks if it updated live fl more than Tp units

ago. If so, it stores TSp of that packet in live fl (Algorithm 8). If the control plane of

the affected switch finds that live fl has increased from its previous value, it restarts

its poll timer. If not, all the old flows have ceased and it stops the timer, sets ev[V ] to

STOP and sends sends Ack Commit OK with the current time to the controller (step
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4 of Figure 6.1). The objective is to ensure that no old rule gets deleted while old flows

with an inter-packet delay less than or equal to Tp are in the network.

Suppose at time t1, live fl was updated. In the worst case, packets arrive belonging

to various old flows, up to t1+Tp−ε, where ε is a small value of time. live fl is not updated

by the last packet at t1 + Tp − ε, as Tp units have not elapsed since it was updated at t1

before. Suppose no packet arrives for any old flow from t1+Tp−ε to t1+2Tp. Then live fl

will show no increase when polled at t1 + 2Tp and it can be correctly concluded that there

are no old flows, as at least one packet belonging to an old flow must have arrived, in the

worst case, at t1 + Tp − ε+ Tp=t1 + 2Tp − ε. However, if, for at least one old flow another

packet arrives with an inter-packet delay less than or equal to Tp, it will arrive before or

at t1 + 2 ∗ Tp − ε, thus leading to an update of live fl. In that case, when live fl is read

at t1 + 2 ∗ Tp, the control plane of the affected switch correctly concludes that old flows

exist.

Once the controller receives Ack Commit OK from all affected switches, it sends a

Discard Old message with Tdel set to the time of the last Ack Commit OK sent (step 5 of

Figure 6.1). The timer value Tm is then set by each switch as Tdel + M − Ti, to account

for the elapsed time from Tdel to Ti. After time Tdel, no packet with time stamp greater

than Tdel will be switched with old rules. So the last packet to be using old rules will

have TSp≤Tdel. By definition the maximum lifetime of a packet in the network is M . So

after time Tdel + M , no old packet will be there in the network and so the old rules can

be deleted. This ensures that old rules are not discarded prematurely. Packets with label

NEWp will still be there in the network, but since switches will have converted the new

rules to type U , the new rules will continue to apply.

It has to be ensured though, that the next conflicting update does not start too

soon so that a packet with label NEWp (but of the previous update) is not erroneously

handled. To take care of this, the next update is not started until after another time

period of M has elapsed. No packet will have its label set to NEWp if its time stamp

TSp>Tdel + M , since new rules will no longer exist at any switch. Waiting for time M

will ensure that all such new packets leave the network before the next update begins.

This proves Property 2. Therefore PFC is preserved for all flows during an RU.
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Chapter 7

Conclusions

Software Defined Networks can be managed better than traditional networks using ap-

plications that are written using the abstractions provided by the control plane of the

network. These applications update the switches of the network to achieve the desired

functions. For reasons of safety and efficiency, updates need to be performed meeting the

properties of per-packet and per-flow consistency.

7.1 Summary of Contributions

This thesis has presented general algorithms that preserve per-packet and per-flow con-

sistency to update SDNs.

The algorithms progressively improve efficiency and concurrency of non-conflicting

updates. The algorithms are applicable for any kind of updates, not affected by switch

and network delays, do not rely on flows to exist for the update to progress, support wild

carded rules and provide an all-or-nothing semantics. Efficiency is progressively achieved

by restricting the interaction to the switches where updates are to take place and to

the rules that are being changed. Unlimited concurrency of disjoint updates is eventually

achieved by not using labels in the data plane to distinguish updates. While the first

PPC-preserving algorithm E2PU affects all the switches and does not support concur-

rency, CCU requires changes to only the affected switches and the ingresses and supports

concurrent disjoint updates, limited by the size of a packet header field. PPCU further

improves upon CCU and requires changes to only the affected switches and rules and sup-

ports an unlimited number of disjoint updates. Similarly, ProFlow improves upon EPCU
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and requires changes to only the affected switches and rules and achieves practically un-

limited concurrency of disjoint updates that are per-flow consistent.

Our algorithm PPCU, for per-packet consistent updates, and ProFlow, for per-flow

consistent updates, use data plane time stamps to decide when new rules must be applied

to a packet. They assume that network switches have access to a synchronous clock, while

tolerating time drifts bounded by a limit. In a theoretical analysis of control plane pa-

rameters, PPCU fares better than comparable algorithms. The implementation of PPCU

in P4 and evaluation in Mininet demonstrate that under realistic network conditions,

continuous PPCU updates provide better throughput and complete more flows compared

to random updates, without violating safety. The prototype of ProFlow implemented in

P4 and evaluated on Mininet demonstrates that the algorithm is feasible and causes no

impact on the throughput of new flows, compared to a situation with no updates, if the

first affected switch in the course of the flow has both new and old rules. Additionally,

since ProFlow is immediately effective for new flows, supports connection affinity and

requires no changes to NFs, it is a viable alternative for disparate update problems in

SDNs. Moreover, since both the algorithms work at line rate and tolerate time drifts, they

are practical. In order to use these algorithms, the high level languages that program an

SDN must generate the rules to be installed on switches, as per the expectations of these

algorithms.

PPCU and ProFlow also take advantage of the increased processing power and pro-

grammability of programmable data plane switches. The ability of these switches to pro-

cess packet headers in the data plane, to maintain states and to resubmit packets enable

updates to be confined to the affected switches and rules, to manage any kind of update,

be it only insertion or only deletion or both, of wild carded rules, and to manage rule

asymmetry, that is, an affected switch not having an old and a new rule to match every

affected packet. Restricting resubmission to only the first affected switch in the path of

the flow and the resubmission duration to the duration of overlap of the old and new rules

reduce the impact on throughput. Since programmable switches manage resources includ-

ing switch tables better, both the new and old rules co-existing on an affected switch for

some time during the RU, the duration of which we have quantified, becomes tolerable.

Later improvements in P4 such as atomic constructs and support of expressions in actions

will improve throughput and make implementation of the algorithms easier.
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To conclude, PPCU and ProFlow form the first set of general, efficient and practical

update algorithms that implements the strict consistency requirements of per-packet and

per-flow consistency. The algorithms are general as no assumptions are made about the

nature of updates (supporting insertion of rules, deletion of rules or both) or rules (may be

wild carded and asymmetric) or network topology, efficient because updates are confined

to the affected switches and rules and practical because they operate at line rate and

tolerate time drifts.

7.2 Future Work

7.2.1 Update Algorithms

It is possible to include other consistency requirements such as event-driven consistency

[84] and general requirements such as concurrent conflicting updates into the ambit of the

algorithm, and is being done. At the same time, since per-packet and per-flow consistency

are strict consistency requirements, the reaction time to network events is high. How can

this be reduced?

An affected switch needs to know two things for the update to progress: 1) whether

all the affected switches have completed some event (such as completion of installation

of new rules or started application of new rules) and 2) the latest time at which that

event occurred (the latest rule installation occurred or the latest time at which it started

applying new rules). It uses this information a) to instruct a packet to use a certain rule

version, by reading, for instance, the time at which the packet crossed the ingress and the

state of the packet or b) to instruct itself, for instance, to delete rules at some time, by

reading its own time. The above require messages to be sent to the controller, increasing

the update time. Using specially constructed packets in the data plane to inform the

affected switches, in addition to involving the controller, may speed up the update, at

the cost of increased processing of the switches and network bandwidth and is worthy of

exploration. Special probes in a data centre network used by HULA [68] for load balancing

purposes can perhaps be used for this purpose.
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7.2.2 Deriving abstractions

“Informally, a fact is common knowledge if it is true, everyone knows it, everyone knows

that everyone knows it, and so on ad infinitum” [96, 51]. The algorithms PPCU and

ProFlow fundamentally use an algorithm for affected switches to attain a level of knowl-

edge weaker than common knowledge. The knowledge that other affected switches have

installed a new version of rules (or they have not) and the value of the time stamp of an

affected packet are sufficient for a first affected switch to decide which version of rules

to apply. The fact that affected switches other than the first affected switch may or may

not know that other affected switches have installed new rules (or not) is immaterial.

Providing the packet with the correct label (new or old) is sufficient for the packet to

traverse the network in a per-packet consistent manner. We believe that formalising the

notion of weak common knowledge, and the problems solved by PPCU and ProFlow and

their solutions for synchronous systems with reliable communication and time drifts with

an upper limit, will be of interest to the distributed systems community.

7.2.3 Distributed systems theory

In general, the tradeoff between strictness of consistency, processing power and memory

availability at switches, processing power at the controller, network bandwidth and update

time, is an interesting and useful area for further exploration. What are the impossibility

results in this area ? What are the parameters that can be tuned for the algorithms to be of

use ? Is it possible to construct general algorithms with tunable parameters? Additionally,

the interaction of the above parameters with network availability and partition tolerance

[104] may be explored.
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Appendix A

Publications

A.1 Publications in Conferences

• Radhika Sukapuram and Gautam Barua, “Enhanced Algorithms for Consistent

Network Updates,” IEEE Network Function Virtualization and Software Defined

Networks (IEEE NFV-SDN 2015), San Francisco

• Radhika Sukapuram and Gautam Barua, “CCU: Algorithm for Concurrent

Consistent Updates for a Software Defined Network,” Twenty Second Na-

tional Conference on Communications (NCC 2016), Guwahati

• Radhika Sukapuram and Gautam Barua, “PPCU: Proportional Per-Packet

Consistent Updates for Software Defined Networks,” Poster, IEEE 24th

International Conference on Network Protocols (ICNP 2016), Singapore

A.2 Manuscripts Submitted

• Radhika Sukapuram and Gautam Barua, “PPCU: Proportional Per-Packet

Consistent Updates for SDNs using Data Plane Time Stamps,” August

2017

• Radhika Sukapuram and Gautam Barua, “ProFlow: Proportional Per-Flow

Consistent Updates”, December 2017
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