
VLSI Testing of System on Chip
: Incomplete Testing

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy

in

Computer Science and Engineering

Submitted by

Kunwer Mrityunjay Singh

Under the guidance of

Prof. Jatindra Kumar Deka and Prof. Santosh Biswas

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
October 23, 2024

mailto:kunwer@iitg.ac.in
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

Abstract

System on Chip (SoC) consolidates an entire computer or electronic

system onto a single chip by employing reusable embedded cores. An

SoC typically comprises diverse cores, encompassing elements like

memory, which involves both Random Access Memory (RAM) and

Flash Memory, in addition to a Graphics Processing Units (GPU).

It also includes Input/Output (I/O) Interfaces, Peripherals, an Audio

Processing Unit (APU), a Image Signal Processor (ISP), Wireless

Interfaces, Sensor Interfaces, Security Modules, Bus Systems, Clock

and Timing Control, Power Management capabilities, Analog Inter-

faces, a Direct Memory Access (DMA) Controller, and more. SoCs

may exhibit various logical and manufacturing flaws, such as Stuck-

at Faults, Transition Faults, Path Delay Faults, Bridge Faults, and

so forth. These imperfections can impact the performance of devices

employing SoCs, potentially leading to deviations from the intended

output. Therefore, it is imperative to conduct comprehensive testing

of these integrated chips before they are introduced to the market to

ensure the optimal performance of devices incorporating SoCs. Test-

ing SoCs presents an array of challenges, encompassing complexities

in design, intricate interconnections, limited accessibility to internal

components, temperature fluctuations during testing, the imperative

need for hardware and software synchronization, factors such as Test

Power Consumption (TP), Test Access Time (TAT), and generated

Test Data Volume (TDV), as well as testing expenses. Some cores

may be deeply embedded within the SoC, necessitating the utiliza-

tion of a Test Access Mechanism (TAM) for their accessibility and

evaluation. The Joint Test Action Group (JTAG) architecture offers

a standardized approach for testing devices with boundary scan cells,

enabling the examination of input and output pins, as well as their

connecting pathways.

Numerous established and validated standardized methods are at the

disposal of SoC testing for comprehensive assessment. Nevertheless,

the challenge in SoC testing expands when dealing with the exhaustive

testing of individual cores and their intricate interconnections.

As contemporary manufacturing technology advances, SoCs consist

an escalating number of cores, leading to the production of larger

and more complex SoCs. These standard testing methods, while rig-

orous, are often slow and may become unfeasible for testing larger

SoCs. In this thesis, we introduce heuristic-based Incomplete Testing

approaches that, while partial in their scope, offer viable alternatives

for testing SoCs of substantial scale.

The entire thesis work comprises several contributions organized into

eight phases. In the initial phase, an overview of the thesis is provided.

Phase 2 entails an extensive literature survey focusing on comprehen-

sive and incomplete testing of SoCs. In Phase 3, a heuristic-based

incomplete testing method is introduced considering stuck-at faults.

Its primary objective is to minimize the generated TDV. Phase 4 ex-

tends the incomplete testing approach to optimize TAT and perform

an analysis of the impact of incomplete testing on TAT. Phase 5 ex-

tends the incomplete testing approach to optimize TP and perform

an analysis of the impact of incomplete testing on TP. Additionally, a

TAM architecture is proposed to support incomplete testing. Phase 6

explores an alternative incomplete testing method involving approxi-

mate computing and illustrates its impact on TAT and TP. In Phase

7, a boolean satisfiability based method is developed for incomplete

SoC testing, with a particular consideration for bridging faults. In the

final phase, the thesis is concluded, and potential future avenues and

prospects for this body of work are delineated. Our theoretical tech-

niques are substantiated by experimental results and our published

works.

Declaration

I certify that:

a. The work contained in this thesis is original and has been done
by me under the guidance of my supervisors.

b. The work has not been submitted to any other Institute for any
degree or diploma.

c. I have followed the guidelines provided by the Institute in prepar-
ing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical
Code of Conduct of the Institute.

e. Whenever I have used materials (theoretical analysis, figures,
data, and text) from other sources, I have given due credit to
them by citing them in the text of the thesis and giving their
details in the references. Further, I have taken permission from
the copyright owners of the sources, whenever necessary.

Kunwer Mrityunjay Singh

mailto:kunwer@iitg.ac.in

Copyright

Attention is drawn to the fact that copyright of this thesis rests with

its author. This copy of the thesis has been supplied on the condition

that anyone who consults it is understood to recognise that its copy-

right rests with its author and that no quotation from the thesis and

no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the Indian

Institute of Technology Guwahati Library and may be photocopied or

lent to other libraries for the purposes of consultation.

Signature of Author..

Kunwer Mrityunjay Singh

mailto:kunwer@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “VLSI Testing of Sys-
tem on Chip : Incomplete Testing”, being submitted by Kun-
wer Mrityunjay Singh, to the Department of Computer Science
and Engineering, Indian Institute of Technology Guwahati, for par-
tial fulfillment of the award of the degree of Doctor of Philosophy, is a
bonafide work carried out by him under our supervision and guidance.
The thesis, in our opinion, is worthy of consideration for award of the
degree of Doctor of Philosophy in accordance with the regulation of
the institute. To the best of our knowledge, it has not been submitted
elsewhere for the award of the degree.

........................

Dr. Jatindra Kumar Deka
Professor

Department of Computer Science and Engineering
IIT Guwahati

........................

Dr. Santosh Biswas
Professor

Department of Electrical Engineering and Computer Science
IIT Bhilai

mailto:kunwer@iitg.ac.in
mailto:kunwer@iitg.ac.in
http://www.iitg.ac.in
http://www.iitg.ac.in/cse/

Dedicated to

My Mother
who bestowed upon me a second chance at life did so by generously

donating her kidney for my kidney transplant.

My Father
For everything I achieved till now

My Wife
For taking care of my second life after kidney transplant

My Sisters and Family
For being my strength

Acknowledgments

A lot of people have contributed to the production of this dissertation.

I owe my gratitude to all those people who have made this possible.

I wish to express my deepest gratitude to my supervisors, Prof. Jatin-

dra Kumar Deka and Prof. Santosh Biswas for their valuable guid-

ance, inspiration, and advice. I feel very privileged to have had the

opportunity to learn from, and work with them. Their constant guid-

ance and support not only paved the way for my development as a

research scientist but also changed my personality, ability, and nature

in many ways. I have been fortunate to have such advisors who gave

me the freedom to explore on my own and at the same time the guid-

ance to recover when my steps faltered. Besides my advisors, I would

like to thank the rest of my thesis committee members: Prof. Diganta

Goswami, Dr. Aryabartta Sahu, and Dr. Partha Sarathi Mandal, for

their insightful comments and encouragement. Their comments and

suggestions helped me to widen my research from various perspectives.

I would also like to express my heartful gratitude to the director, the

deans and other managements of IIT Guwahati whose collective efforts

has made this institute a place for world-class studies and education.

I am thankful to all faculty specially Dr. Arnab Sarkar and staff

of Department of Computer Science and Engineering for extending

their co-operation in terms of technical and official support for the

successful completion of my research work.

Contents

1 Introduction 1

1.1 Background: SoC and Test Architecture 2

1.2 Challenges . 7

1.3 Motivation . 9

1.4 Objectives . 12

1.5 Contributions . 12

1.6 Organization of the Thesis . 14

2 Literature Survey 17

2.1 Basics of Digital VLSI Testing . 18

2.1.1 Fault Coverage . 18

2.1.2 Test Coverage . 19

2.2 Fault Models . 19

2.2.1 Stuck-at Fault Model . 19

2.2.2 Bridging Fault Model . 20

2.2.3 Delay Fault Model . 21

2.2.4 Fault Collapse Model . 21

2.2.5 Transition Fault Model . 21

2.2.6 Open Fault Model . 21

2.3 Reviews of VLSI Test Technologies 22

2.3.1 ATE . 23

2.3.2 ATPG . 24

2.3.3 Fault Simulation . 24

i

2.3.4 DFT . 24

2.3.5 BIST . 25

2.3.6 Boundary Scan Testing . 25

2.4 SoC . 25

2.5 Core Based SoC Design . 25

2.6 SoC Test Architecture . 27

2.6.1 IEEE 1500 std. for SoC Testing 27

2.6.2 Core Wrapper . 28

2.6.3 WIR . 28

2.6.4 Test Access Mechanism (TAM) 29

2.7 Challenges in SoC Testing . 32

2.8 Strategies to Reduce the TDV . 35

2.8.1 Scan Chain Optimization 35

2.8.2 Test Compression Techniques 36

2.8.3 Test Data Partitioning . 38

2.8.4 Compaction Techniques 39

2.8.5 Combination of Compression and Compaction Techniques 39

2.9 Strategies to Reduce the TAT . 40

2.10 Strategies to Reduce TP . 42

2.11 Confidence Aware Testing Methods 44

2.12 Incomplete Testing . 45

3 Incomplete Testing of SoC : Heuristic Approach 49

3.1 Introduction . 49

3.2 Problem Statement . 50

3.3 Proposed Method . 50

3.3.1 Algorithm 1: Least Significant Test Bits (LSTB) Detector 51

3.3.2 Complexity of Algorithm 1 53

3.4 Example . 53

3.5 Experimental Results . 58

3.5.1 SoC Architecture with Combinational Cores 58

3.5.2 Results for TDV and FC 59

3.5.3 SoC Architecture with Sequential Cores 60

ii

3.5.4 Comparison of our Method with Others Methods 66

3.6 Conclusion and Future Work . 67

4 TAT Aware Incomplete Testing 69

4.1 Introduction . 69

4.2 Incomplete Testing . 70

4.3 Problem Statement . 70

4.4 Proposed Method . 72

4.4.1 Particle Structure . 72

4.4.2 Calculation of TAT . 73

4.4.3 Population Size . 74

4.4.4 Fitness Function . 75

4.5 Incomplete Testing and Reduction in TAT 75

4.5.1 Problem Statement . 75

4.5.2 Proposed Modified TAT Equations for Incomplete Testing 75

4.6 Experimental Results . 78

4.6.1 SoC with Combinational Cores 79

4.6.2 SoC with Sequential Cores and Combinational Cores . . . 81

4.6.3 Comparison with Other Methods 84

4.7 Conclusion and Future Work . 85

5 TP Aware Incomplete Testing 87

5.1 Introduction . 87

5.2 Incomplete Testing . 88

5.3 Calculation of TP . 88

5.3.1 Standard Equations to Compute TP 90

5.4 Problem Statement . 93

5.5 Proposed TAM Architecture . 93

5.5.1 The IEEE 1500 Wrapper Architecture 93

5.5.2 WBY . 95

5.5.3 WS−BY PASS Instruction 96

5.5.4 Proposed TAM for Incomplete Testing 97

5.5.5 Incomplete Testing and Reduction in TP 100

iii

5.6 Experimental Results . 101

5.6.1 Results for TP for SoC with Combinational Cores 102

5.6.2 Results for TP for SoC with Sequential and

Combinational Cores . 108

5.7 Conclusion and Future Work . 112

6 Incomplete Testing Based on Approximation and its Impact on

TP and TAT 115

6.1 Introduction . 115

6.2 Problem Formulation . 116

6.3 Proposed Method . 116

6.3.1 Step 1: . 120

6.3.2 Step 2: . 120

6.3.3 Step 3: . 120

6.4 Impact on Fault Coverage (FC) 123

6.5 Impact on TDV . 126

6.6 Impact on TAT . 128

6.6.1 Computation of TAT . 128

6.6.2 Reduction in TAT . 128

6.7 Impact on TP . 130

6.7.1 Reduction In TP In Incomplete Testing 130

6.8 Experimental Results . 131

6.8.1 Results for FC and TDV 132

6.8.2 Results for TAT . 133

6.8.3 Results For TP . 136

6.9 Conclusion and Future work . 137

7 Automatic Test Pattern Generation (ATPG) for Incomplete

Testing of SoC having Bridge Faults 139

7.1 Problem Formulation . 140

7.2 Proposed Scheme : Boolean Satisfiability Method for Incomplete

Testing of SoC . 140

7.2.1 CNF . 141

iv

7.2.2 CNF Formulation for Original Circuit 142

7.2.3 Introduction of Bridging Faults in Original Circuit 143

7.2.4 Reduction of Boolean Satisfiability Equation for Incomplete

Testing . 145

7.2.5 Satisfying the Formula . 147

7.2.6 Heuristic Approach using Particle Swarm Optimization . . 148

7.3 Experimental Results . 150

7.4 Conclusion and Future Work . 153

8 Conclusions and Future Perspectives 155

8.1 Summarization . 155

8.2 Future Works . 158

References 161

v

vi

List of Figures

1.1 Core Based SoC Design . 3

1.2 Conceptual Architecture of Core Based Testing 5

2.1 Basic Testing Outlook [44] . 22

2.2 Core Based SoC Design [13] . 26

2.3 IEEE 1500 Std. Test Architecture 28

2.4 Test Interface of Core Wrapper [59] 29

2.5 Test Data Compression [64] . 36

3.1 Core with I/O . 53

3.2 Test Vector Set (Tc) for a Core 54

3.3 Test Vector Set Tc for the Core in Example 55

3.4 Test Vector Modifications . 57

3.5 Architecture of SoC S1. 59

3.6 Architecture of SoC S2. 61

3.7 TDV Characteristics . 64

3.8 Characteristics in Trade-off between FC and TDV reduction . . . 65

4.1 Flow Diagram for TAT Aware Incomplete Testing of SoC 71

4.2 Sample SoC . 73

4.3 Particle Structure . 73

4.4 SoC S1 . 79

4.5 SoC S2 . 81

4.6 TAT Characteristics . 83

vii

4.7 SoC S3 . 84

5.1 Flow Diagram for Incomplete Testing of SoC 89

5.2 Computation of transitions in wrapper cells 90

5.3 Transitions while shifting test vectors 91

5.4 IEEE 1500 wrapper core design 94

5.5 WBY internal structure . 95

5.6 WRCK waveform . 96

5.7 IEEE 1500 Design for Incomplete Testing 98

5.8 TAM architecture with WBY Normal Mode 99

5.9 TAM architecture with WBY Bypass Mode 99

5.10 Proposed TAM architecture . 99

5.11 Equations to calculate transitions in wrapper chain after insertion

of two test vector sequentially . 102

5.12 Bus Width and TP saving in % 109

5.13 SoC S2 . 110

5.14 SoC S2 . 111

5.15 TP Characteristics . 112

6.1 Multiplication of two 3 bit numbers 116

6.2 3 bit multiplier . 117

6.3 Example of multiplication of 3 bit numbers 118

6.4 Multiplier circuit . 119

6.5 Benchmark circuit of c17 . 121

6.6 c17 circuit . 121

6.7 Equivalent graph of c17 circuit . 122

6.8 Backtrack path for c17 circuit . 123

6.9 Equivalent graph of c17 circuit for testing 124

6.10 c17 benchmark circuit incomplete testing 124

6.11 c17 benchmark circuit incomplete testing 125

6.12 Test vector set for c17 benchmark circuit 126

6.13 Modified test vector set for c17 benchmark circuit 127

6.14 Test patterns for c17 benchmark circuit in complete testing 128

6.15 Test patterns for c17 benchmark circuit in incomplete testing . . . 128

viii

6.16 Modified TAM architecture for incomplete testing 130

6.17 SOC used for experiments . 132

7.1 . 141

7.2 Various Gates having CNF formula 142

7.3 C17 benchmark circuit . 142

7.4 Bridging Fault between L6 and L7 144

7.5 Testing of Bridging Fault . 144

7.6 Equivalent graph of C17 . 146

7.7 Path from output to input not to be tested 146

7.8 Miter Circuit . 149

7.9 SoC for experiments . 151

ix

x

List of Algorithms

1 PSO Based LSTBs Detector . 52

2 Algorithm for finding GATES not to be tested 121

3 Backtrack (i) . 122

4 Algorithm for incomplete testing considering bridging faults 147

5 backtrack (m) . 147

xi

xii

List of Tables

3.1 TDV and FC comparison for complete and incomplete testing . . 59

3.2 Comparison in Fault coverage with original and modified test vec-

tor set . 61

3.3 Reduction in TDV . 63

3.4 Trade-off between Fault Coverage and TDV 65

3.5 Comparison for reduction in TDV with other compression techniques 66

3.6 Comparison for reduction in TDV with compression techniques . . 67

4.1 TAT for complete testing . 80

4.2 TAT for incomplete testing . 80

4.3 Comparison between complete testing and incomplete testing . . 81

4.4 Optimal Assignment and Reduction in TAT for 5% compromise in

FC . 82

4.5 Comparison between proposed method and other method 85

5.1 TP for Bus Width Distribution of (1,47) 103

5.2 TP for Bus Width Distribution of (4,44) 104

5.3 TP for Bus Width Distribution of (40,8) 104

5.4 TP for Bus Width Distribution of (13,35) 105

5.5 TP for Bus Width Distribution of (16,32) 106

5.6 TP for Bus Width Distribution (18,30) 106

5.7 TP for Bus Width Distribution of (28,20) 107

5.8 Analysis of whole SoC S1 for TP Saving 108

xiii

5.9 TP Analysis for SoC with various Bus Width Distribution 112

6.1 Results for FC and TDV . 133

6.2 Results for TAT . 134

6.3 Results for TP for complete testing 134

6.4 Results for TP for incomplete testing 135

6.5 Results for comparison of TP . 135

7.1 Comparison of our method with the existing methods for wired-

AND bridging faults . 152

7.2 Comparison of our method with the existing methods for wired-OR

bridging faults . 152

xiv

List of Acronyms

SoC System on Chip .

FC Fault Coverage . 59

TAT Test Access Time .

TP Test Power Consumption .

TDV Test Data Volume .

IC Integrated Circuit . 2

IP Intellectual Property . 3

ASIC Application-Specific Integrated Circuits 3

I/O Input/Output .

APU Audio Processing Unit .

DMA Direct Memory Access .

ISP Image Signal Processor .

UDL User-Defined Logic Blocks . 4

DFT Design-for-Testability . 4

CUT Circuit Under Test . 4

ATE Automatic Test Equipment . 5

BIST Built-In Self Test . 5

TAM Test Access Mechanism .

xv

CPU Central Processing Unit . 9

ATPG Automatic Test Pattern Generation iv

PCB Printed Circuit Board . 23

ADC Analog-to-Digital Converters . 27

DAC Digital to Analog Converters . 27

PLL Phase Locked Loop . 27

PSO Particle Swarm Optimization . 12

LSTB Least Significant Test Bits . ii

FDR Frequency Directed Run Length . 38

ILP Integer Linear Programming . 41

LFSR Linear Feedback Shift Register . 43

WBR Wrapper Boundary Registers . 94

CNF Conjunctive Normal Form . 15

VLSI Very Large Scale Integration . 4

LSSD Level-Sensitive Scan Design . 24

TPG Test-Pattern Generator . 25

ORA Output Response Analyzer . 25

JTAG Joint Test Action Group .

GPU Graphics Processing Units .

DSP Digital Signal Processors . 11

RAM Random Access Memory .

IP Intellectual Property . 3

WBR Wrapper Boundary Register . 94

WDR Wrapper Data Register . 96

WIR Wrapper Instruction Register . 28

WBY Wrapper Bypass Register . 95

xvi

WRCK Wrapper Clock Terminal . 100

WSI Wrapper Serial Input . 30

WSO Wrapper Serial Output . 30

WSP Wrapper Serial Port . 30

CTL Core Test Language . 93

TDI Test Data Input . 28

TDO Test Data Output . 28

TMS Test Mode Select . 28

TCK Test Clock . 28

TCR Test Control Register . 28

TMC Test Mode Controller . 29

WSC Wrapper Serial Control . 31

WPP Wrapper Parallel Port . 31

WPI Wrapper Parallel Input . 31

WPO Wrapper Parallel Output . 31

WPC Wrapper Parallel Control . 32

TRC Test Response Compression . 36

TDC Test Data Compression . 36

ILP Integer Linear Programming . 41

MAC Multiply-Accumulate . 45

DPB Decoded Picture Buffer . 46

xvii

xviii

Chapter 1
Introduction

In today’s modern age, we frequently utilize electronic gadgets, smartphones,

and multimedia devices, all of which rely on SoC technology. Prior to launching

any product into the market, there are two crucial phases it must undergo: (1)

Manufacturing and (2) Testing. Both manufacturing and testing domains offer

extensive opportunities for research. Testing plays a pivotal role in ensuring that a

product is free of defects and ready for consumers. To guarantee the performance

of a product, it’s imperative to conduct SoC testing. These SoCs can encompass

a wide range of deeply embedded cores, each responsible for executing various

tasks within these devices. SoC testing essentially revolves around testing each

individual core.

To carry out testing on SoCs, these cores must be accessible via the input and

output pins of the SoC. Core testing is accomplished by applying test vectors

to these cores through these input and output pins. There exist numerous chal-

lenges in the realm of SoC testing [1, 2], such as achieving comprehensive fault

coverage, managing the storage of test vectors, ensuring the smooth transport of

test vectors from testing equipment to the cores, and dealing with limitations in

transportation channel bandwidth, among others.

Traditional testing methods are available to address these challenges. How-

ever, in today’s consumer-driven landscape, customers demand more from their

1

devices. They want to run a multitude of applications on their gadgets, which

in turn necessitates the integration of additional cores into SoCs. The inclusion

of more cores in SoCs has a profound impact on TDV. As the number of test

vectors grows, the testing process becomes increasingly complex. Transporting

these test vectors from testing equipment to the input pins of the cores becomes

a formidable task, especially when contending with the limitations of transporta-

tion channel bandwidth.

Storing a substantial volume of test vectors comes with the drawback of in-

creasing the required storage space. Expanding the size of test vectors leads to

complications in transporting them, storing them, and dealing with the limita-

tions of channel bandwidth. Furthermore, testing a greater number of cores am-

plifies both the TAT and TP. Assessing a higher quantity of cores demands more

time for comprehensive SoC testing, and sometimes this time frame can become

impractical. Consequently, the principal challenges in SoC testing encompass the

escalation of TDV, TAT and TP among others.

Under these conditions, conventional testing methods tend to become slow,

expensive, and on occasion, inviable. In today’s price-competitive market, cost

also becomes a decisive factor. Manufacturers face a challenging task in delivering

a product that meets all customer requirements while maintaining a low price

point. Achieving such a balance often requires compromising on quality. In this

thesis, several methods are proposed that strike a balance between the quality of

testing and the conservation of TDV, TAT, and TP.

1.1 Background: SoC and Test Architecture

SoC is an Integrated Circuit (IC) that consolidates all the elements of a com-

puter or electronic system onto a single chip. Typically, a SoC encompasses

various processing units such as microprocessors, microcontrollers, and digital

signal processors. It also incorporates memory components like RAM, ROM, and

flash memory, along with essential elements like timing sources such as oscilla-

2

Figure 1.1: Core Based SoC Design

[13]

tors and analog-to-digital converters [3, 4]. When employed in communication

devices, SoCs include cellular and other radios to facilitate 4G, Bluetooth, or Wi-

Fi connectivity. An illustrative example of a SoC is the AMD Geode. SoCs have

gained significant popularity in today’s market. They are continually advancing

in terms of performance, with examples like the Apple A15 Bionic (utilized in

the iPhone 13 series) [5], Qualcomm Snapdragon 888 (found in various high-end

Android smartphones [6]), Samsung Exynos 2100 (used in select Samsung Galaxy

devices [7]), AMD Ryzen 5000 Series (deployed in desktop computers [8]), Intel

Core 11th Gen (employed in both laptops and desktops [9]), Nvidia Tegra X1

(utilized in the Nintendo Switch [10]), Tesla Full Self-Driving (FSD) Computer

(employed in Tesla vehicles [11]), and Google Tensor Processing Units (TPUs,

utilized in data centers [12]).

1. Core Based SoC Design [13]

In SoC, Intellectual Property (IP) cores are the main building blocks. Even

cores can be in deep. IP cores or Application-Specific Integrated Circuits

3

(ASIC) can also consist of processors and local memories. A general SoC

design process is shown in Figure 1.1. In SoC, individual cores and their

User-Defined Logic Blocks (UDL) are designed. Then composite manufac-

turing and testing are conducted for the whole SoC. The main objective of

testing Very Large Scale Integration (VLSI) chips is to guarantee that the

circuits are fault free and meet the desired specification. The fabrication

process includes photo lithography, printing, etching, and doping. Due to

the environment and various real-time parameters, the fabricating processes

are not perfect and unwanted imperfections can abort the IC operation. The

advances in VLSI technology lead to an increase in the circuit’s complexity,

making testing more difficult. Various challenges emerge in testing the SoC.

Usually, a rigorous process is required to test the SoC thoroughly. However,

various IP cores are embedded deep inside and not accessible due to limited

test pins. Design-for-Testability (DFT) [14,15] strategies recede the acces-

sibility issues and enhance the efficiency of the testing process. We apply

input test vectors to the Circuit Under Test (CUT) for detecting faults and

compare the collected output responses with the expected output responses.

2. Core Based SoC Testing

Core-based testing emerge when IC design transitions to the SoC model, in

which cores or IPs cores serve as the fundamental components of a design.

The conceptual architecture of core-based testing can be better understood

by Figure 1.2, where core-based test architecture has three main compo-

nents [16].

(a) Test Vectors Source and Sink

A circuit is faulty when the wrong output signal is generated due to

a defect in the circuit. A defect in a circuit can cause a fault in the

core, leading to system failure. To test a core with n inputs and m

outputs, a set of input test vectors that is nothing but a collection of

4

Figure 1.2: Conceptual Architecture of Core Based Testing

[13]

bits, is applied to core inputs, and the output responses are collected.

If the collected output responses differ from the expected output re-

sponses, then there is a fault in the core. In order to thoroughly test

a circuit, many test vectors are required. The primary function of the

source is to generate the test vectors for the core testing. Test vector

generation depends on the circuitry inside the core. The sink’s job is

to collect the core’s output responses while applying the test vectors

to the input pins and compare the output responses with the expected

output responses. Real-time test vector generation is performed in

the test source, while the test sink performs real-time response evalua-

tion. Source and sink can either be actualized off-chip Automatic Test

Equipment (ATE) [17, 18], on-chip Built-In Self Test (BIST) [19, 20],

On line testing [21–23] or a blend of all.

(b) Boundary Scan Test Standard

Boundary scan, which is also referred to as the IEEE 1149.1 or JTAG

standard, is a versatile set of testing methods intended to address a

broad spectrum of testing challenges. These challenges encompass ev-

erything from the chip level to the system level, encompassing logic

cores and the connections between them, and encompassing both dig-

5

ital and analog or mixed-mode circuits. Boundary scan is not limited

to ordinary digital designs; it is equally applicable to very high-speed

designs. It’s worth noting that among the IEEE-approved test stan-

dards, Boundary scan, or IEEE 1149.1/JTAG, stands out as one of

the most successful, with another test standard, IEEE 1500 , being

approved by the IEEE in 2005.

(c) Core Test Wrapper

It works as a bridge between embedded cores and the rest of the en-

vironment around the cores. Wrapper connects the core’s terminal to

the TAM and the rest of the IC. The core test wrapper prepares the

interface between the core and the system’s environment. It avails the

facility to switch between two modes. One is normal operation mode,

while another is core-internal test mode. In normal operation mode,

the core is connected to the system’s environment, and the wrapper is

transparent. In core-internal test mode, the TAM is connected to the

core so that test vectors can be applied to the core’s input and ana-

lyze the responses at the core’s output. Along with these two modes,

the wrapper can have various other modes like detach mode to disjoin

the core from the system’s environment. Similarly, the wrapper has a

bypass mode for TAM. The width of TAM does not necessarily match

the number of core terminals. The number of core terminals depends

on the internal function and core’s applications. Hence the width of

the TAM is typically decided by the bandwidth of source and sink.

If TAM’s width is smaller than the number of core terminals, then

the wrapper adapts the width by converting serial-to-parallel at core’s

inputs and parallel-to-serial at the core’s output.

(d) TAM

TAM transports the test vectors from the source to the embedded cores

and output responses to the sink. TAM is utilized as a test data high-

6

way. It spans the physical distance between source and core, as well

as between core and sink. There may be several TAM architectures.

Even for one SoC, there can be several TAM designs that coexist. The

two essential parameters of any TAM are its width and its length. The

TAM width alludes to its transport capacity. The TAM’s bandwidth

prerequisite is to match the data transfer rate needed by the test re-

quirements. The maximum bandwidth is defined by the bandwidth of

the source or the sink. TAM’s length is defined as the actual phys-

ical distance it needs to cover between source and core or core and

sink. On-chip sources and sinks may abbreviate the length of a TAM.

Sharing a TAM among multiple cores may abbreviate the total TAM

length of SoC. The TAM connects IC pins to the core terminals for

the off-chip source and sink. TAM with flexible bandwidth is called

the test bus. Test buses can be either unidirectional or bidirectional.

Multiple cores can share a single test bus.

1.2 Challenges

Testing is an essential phase while manufacturing the SoCs before launching the

product. Due to the larger size of SoC and an increase in the number of cores,

the SoC testing is itself a vast research area [13], [24], [25]. Inefficient testing can

increase the cost of testing and the consumption of resources. We require efficient

test methods to make testing efficient, feasible, and cheap.

1. Deeply Embedded Cores [26] : TAM is required to efficiently access and

test a deeply embedded core inside SoC. It is preferred that the cores to be

integrated, have a plug-and-play feature under the TAM to make system

integration manageable.

2. Hierarchical Cores [27]: There can be a core inside a core in a hierarchical

manner. TAM, which is made for the core at the top level of the hierarchy,

7

will not test all the cores deep inside. Hence, a hierarchical test structure

is required to test all the cores.

3. Higher Performance Core I/Os than SoC Pins [28] : Cores often

have much higher clock rates than what SOC pins can offer. External

testers can’t typically handle these high speeds, and increasing the test

clock rate would make the design overly complex and costly. Therefore, the

best approach is to use regular functional units to create an efficient and

cost-effective at-speed test environment.

4. Costly and Ineffective External Automated Testing Equipment

(ATE) [29]: Specifications for ATE, which tests digital, analog, and mem-

ory devices, vary greatly. Depending solely on external ATE for SoC testing

requires it to handle all test signals, making it very costly. Shifting some

testing functions onto the chip can reduce the reliance on external ATE and

lower testing expenses.

5. For extensive test data, it is tough to maintain efficient transportation be-

tween ATE and SoC for testing.

6. Few testing methods require software programs to perform testing. Storage

of these software programs is also a challenging task.

7. Large TDV [30]: Nowadays, customers use more applications on their de-

vices so SoC has a large number of cores inside it. Due to this large number

of cores, the size of the test vector set is also increased. Due to large test

data, it is challenging to store the test vectors. To reduce test data, com-

pression techniques are used. The coder-decoder circuits are implemented

for compression and decompression, introducing area overhead.

8. Large TAT [31]: Due to more number of cores and enormous test data,

testing takes a long time. It is difficult to test the SoC thoroughly. Some-

times testing takes an infeasible amount of time. Efficient methods are

8

required to reduce TAT. To test the increased number of cores inside SoC,

it is required to test all the cores thoroughly. We need to apply a large

number of test vectors to all the core’s input pins. The test vectors are

transported to input pins of cores by utilizing test buses inside the SoC.

Various cores share the test buses. Efficient scheduling for the assignment

of cores to these buses is required.

9. Large TP [32]: All the test vectors are applied to the core’s input pins

through the scan chain. Test vectors are applied one after another, which

introduces bit-flipping in the wrapper cells of scan chains. This bit-flipping

is directly responsible for test power consumption. The bit-flipping in scan

chains is enhanced due to increased test vectors, ultimately resulting in

enormous test power consumption. Efficient TAM design and methods are

required to manage this test power consumption.

10. Any product goes through two phases before launching in the market. One

is manufacturing, and another is testing. The cost of the product is decided

by manufacturing cost and testing cost. Due to a large number of cores

and enormous test data, testing becomes costly. Sometimes the cost of

testing exceeds the cost of manufacturing the product. Enhanced testing

cost makes the product expensive.

1.3 Motivation

In the present scenario, SoC has become a vital part of our lives. SoC typically

combines a central Central Processing Unit (CPU), I/O ports, memory, on a sin-

gle chip. Depending on the applications it can have digital, analog, mixed-signal

processing units. As different components are integrated on a single chip, SoCs

takes less area. Hence, SoCs are very common in the mobile computing and edge

computing markets. SoCs are extensively used in embedded systems and the

Internet of Things. The SoC is being used in many products like smartphones,

9

tablets, digital cameras, etc. Before launching a product in the market it goes

through the testing phase. Customer’s expectations from the product are more.

They want to use a large number of applications but on the cheap price of the

product. For example, people are using smartphones widely where SoC is the

backbone. In the modern era every year new models are being launched and cus-

tomers change the products frequently. Nowadays when everything like paying

bills, booking tickets, taking photos, videos can be performed on digital equip-

ment based on SoCs. Several customers are financially weak and can’t afford

costly equipment, but want to use various applications on the product. They are

forced to compromise with the quality of the product. For example, while pur-

chasing smartphones they can compromise with the resolution of the screen, few

multimedia applications where quality can be a little bit compromised. Which

allows manufacturers to avail product on cheap price in this price-competitive

market. Testing plays an important role in the cost factor. An increase in the

number of applications in the product leads to an increase in the number of cores

in SoC which affect other factors like TDV, TAT and test power consumption.

The augmentation leads to hike TAT as well. Testing more number of cores also

consumes more testing power.

In this dissertation, a novel method for Incomplete Testing of SoCs is pro-

posed, inspired by approximation computing approaches used in various digital

circuits [154], [132]. An approximate circuit is a type of electronic circuit that

is designed to operate with some tolerance or imprecision in its components, sig-

nals, or calculations. Unlike traditional circuits that aim for precise and accurate

computations, approximate circuits intentionally allow for a certain level of error

or inaccuracy in order to achieve benefits such as reduced power consumption,

faster processing speed, or lower hardware complexity.

These circuits are particularly relevant in applications where absolute preci-

sion is not critical, and a certain degree of error can be tolerated without signifi-

cant impact on overall performance. Approximate circuits are commonly explored

in the field of low-power design, where energy efficiency is a primary concern, as

10

well as in applications such as machine learning and signal processing, where

some level of imprecision may be acceptable.

Approximate computing leverages the fact that in most Digital Signal Proces-

sors (DSP) applications like image, audio, and video processing, the final output

is perceived by human senses, which are insensitive to small deviations [131].

Researchers have devised approximate arithmetic units, including approximate

adders [132, 155–157], and multipliers [158–160]. For example, in an image pro-

cessing application, an image represented by a two-dimensional array with various

pixel values is affected by multiplier and adder circuits. Replacing these circuits

with approximate versions introduces slight deviations in the array values, often

imperceptible to human eyes.

Several techniques have been proposed to alleviate challenges related to TDV,

TAT, and TP. Predominantly, compression and compaction-based methods are

popular for reducing TDV, with the storage requirements of ATE contingent

upon TDV. Both TAT and the transmission bandwidth for applying test data

are influenced by TDV, consequently impacting the overall cost of testing SoCs

and, in turn, the cost of the final product. While traditional methods are accurate,

they often exhaust resources, consume excessive power, and demand considerable

time, making them rigorous, sluggish, costly, and sometimes infeasible for larger

SoCs.

This dissertation introduces various testing techniques that intentionally in-

troduce a controlled level of inaccuracy, offering advantages in terms of power

efficiency, speed, hardware simplicity, and reduced testing costs for SoCs, where

absolute precision is not deemed essential. The proposed methodologies to test

SoC involve a trade-off between testing quality and parameters such as TDV,

TAT, and TP.

11

1.4 Objectives

This dissertation’s primary concern is to develop efficient methods to test the SoC

considering various constraints of fault coverage, TAT, and TP. In particular, the

objectives of our work is summarized as follows:

1. Development of effective theoretical and practical techniques for incomplete

testing of the SoC.

2. To introduce incomplete testing methods that are TAT and TP aware.

3. Development of an alternative efficient model and the implementation of an

incomplete testing method based on approximate computing.

4. Extend approximate incomplete testing methods to enhance TAT and TP

optimization.

5. To expand incomplete testing for SoC units with bridging faults while taking

into account TAT constraints.

1.5 Contributions

As a part of this work, various methods for incomplete testing of SoC are pro-

posed, and an analysis is performed to evaluate the impact of incomplete testing

on numerous parameters like TDV, TAT, and TP.

1. Incomplete Testing of SoC : Heuristic Approach : Due to more

cores and large TDV, it is not feasible to thoroughly test the SoC. Test

vectors are applied to the cores by using scan chains having wrapper cells.

We proposed a method that searches the least important bits among the

test vectors. The least important bits are those bits that affect the fault

coverage by the least margin. A Particle Swarm Optimization (PSO) based

heuristic approach is introduced to make searching efficient and feasible in

12

a reasonable time. Our method shows a significant reduction in TDV but

with a little compromise with the fault coverage.

2. TAT Aware Incomplete Testing : In order to minimize TAT, it is nec-

essary to efficiently allocate cores to the test buses. This study introduces

a heuristic method for arranging the assignment of cores to the test buses.

Additionally, an assessment is conducted to gauge how incomplete testing

affects TAT.

3. TP Aware Incomplete Testing : For testing purposes, it’s essential to

employ test vectors on the input pins of the core and observe the resulting

output responses. These test vectors are introduced into the cores via vari-

ous scan chains, which essentially comprise wrapper boundary cells. As the

test vectors are successively applied to the core’s inputs, each new vector

replaces the previous one, causing a change in every bit within the wrap-

per boundary cell. This alteration, where bits shift from 1 to 0 or 0 to

1, is referred to as“bit flipping,” and it has a direct relationship with the

power consumption during testing. In the context of incomplete testing,

an abbreviated set of test vectors is generated using ATPG. To apply this

reduced set of test vectors to the input pins, a modified TAM architecture

is proposed in this study, thereby influencing test power consumption.

4. Incomplete Testing Based on Approximation and its Impact on

TP and TAT : In this work, approximate testing based on approximation-

computing is proposed. An ATPG method is proposed for the approximate

testing. Further, an analysis is shown to evaluate the impact of approximate

testing on TDV, TAT, and TP.

5. ATPG for Incomplete Testing of SoC having Bridge Faults : In-

dividual wires and pins are supposed to be stuck at logical ‘1’, ‘0’, and

‘X’ (don’t care bit). These faults are called stuck-at 0 or stuck-at 1 faults.

All the above methods were considering these stuck-at faults. The circuits

13

may consist of faults other than stuck-at faults. One such kind of fault is

known as bridging fault. A bridging fault consists of two wires that are

connected when they should not be. Depending on the logic circuitry em-

ployed, this may result in a wired-OR or wired-AND logic function. If two

wires are shorted accidentally, then these bridging faults occur. If there are

n number of wires, then n(n-1) bridging faults are possible. In this work, an

incomplete testing method is proposed for detecting these bridging faults.

Finally, the analysis alludes the reduction in TAT while testing the SoC

having bridging faults.

1.6 Organization of the Thesis

The thesis is organized into eight chapters. Chapter 3 through Chapter 7 pertain

to the five contributions mentioned above. The summary of the chapters are as

following:

• Chapter 1: Introduction

This chapter concludes with challenges of SoC testing and our contributions.

• Chapter 2: Literature Survey

In this chapter a detailed discussion is carried out. Conventional methods

for the optimization of TDV, TP and TAT are discussed.

• Chapter 3: Incomplete Testing of SoC : Heuristic Approach

In this chapter, an ATPG method is proposed to perform incomplete

testing. A “PSO based LSTB detector” is proposed to detect the least

important bits among the test vectors and generate the test vectors for

incomplete testing by removing these least important bits from the test

vector set. Finally, the experimental results compare TDV for traditional

complete testing with TDV for incomplete testing.

14

• Chapter 4: TAT Aware Incomplete Testing

Moreover, revised mathematical formulas have been developed for TAT

computation. In order to reduce TAT to a minimum, an ideal allocation

of cores to test buses becomes imperative. An approach based on PSO is

suggested for the assignment of cores to test buses. In conclusion, empirical

findings indicate a substantial decrease in TAT during incomplete testing.

• Chapter 5: TP Aware Incomplete Testing

In this chapter, we elaborate on a transition metric designed to assess the

bit-flipping phenomenon within scan chains. By employing this transition

metric, we compute the TP during incomplete testing. A modified TAM

architecture is proposed for implementing test vectors on the core’s input

pins. To conclude, our experimental results indicate a substantial reduction

in both TAT during the execution of incomplete testing.

• Chapter 6: Incomplete Testing Based on Approximation and its

Impact on TP and TAT

In this chapter, an incomplete testing method is proposed. This method

is based on approximate-computing. An algorithm is proposed to generate

the test vectors. Further, TAT and test power consumption is calculated

and compared with the traditional complete testing approach. Finally, ex-

perimental results are shown for TDV, TAT, and TP.

• Chapter 7: ATPG for Incomplete Testing of SoC having Bridge

Faults

Each digital circuit’s output can be formulated and translated into con-

junctive normal form, or Conjunctive Normal Form (CNF) (also known as

Product of Sums). This CNF formula evaluates to 1 if and only if the values

of variables are consistent with the circuit’s truth table. For a fault-free cir-

cuit, the CNF formula of the circuit needs to be satisfiable. In this chapter,

the application of Boolean Satisfiability to circuit modeling is described.

15

A method is proposed to introduce a bridging fault in the circuit. After

introducing a bridging fault in the circuit, a faulty circuit is obtained. A

differential circuit is prepared by using the faulty circuit and fault-free cir-

cuit. The CNF formula of this differential circuit needs to be satisfiable. A

Boolean Satisfiability based ATPG algorithm is proposed, and test vectors

are generated for SoC having bridging faults.

• Chapter 8: Conclusions and Future Perspectives

The thesis concludes with this chapter. This chapter deciphers the work in

progress, possible extensions, and future work.

16

Chapter 2
Literature Survey

The evaluation of SoC designs holds a pivotal role in assuring the dependabil-

ity and functionality of contemporary integrated circuits. With the constant

evolution and growing complexity of SoC architectures, the demand for all-

encompassing testing techniques becomes increasingly vital. In this section, we

present an extensive examination of existing research, methodologies, and ad-

vancements in the realm of SoC testing. By scrutinizing the current state of SoC

testing, we intend to offer a comprehensive view of the obstacles, strategies, and

solutions that researchers have devised to meet the distinct testing demands of

SoC designs. This section forms the basis for subsequent sections, allowing us to

pinpoint gaps in the current body of knowledge and propose fresh approaches to

enhance the efficiency and effectiveness of SoC testing.

The amalgamation of SoC, which encompasses the integration of various cores

onto a single chip, has become commonplace in SoC. Recent progress in manu-

facturing technology has facilitated the creation of devices featuring hundreds of

millions of transistors, posing a plethora of novel testing hurdles. Current elec-

tronic devices and VLSI gadgets now incorporate millions of transistors and gates,

with contemporary processors boasting over a million transistors [13,33,34]. This

feat has been attainable due to the continual reduction in feature size, denoting

the dimensions of the components. In present deep sub-micron technologies, the

17

feature size has diminished to less than several nanometers [35,36]. This downsiz-

ing of the feature size allows devices to operate at elevated frequencies and clock

speeds, rendering them sleek and compatible. Nonetheless, it also heightens the

likelihood of defects arising in integrated circuits, resulting in defective chips.

Consequently, meticulous testing is a critical phase in guaranteeing the integrity

and dependability of a system [13,33,34].

2.1 Basics of Digital VLSI Testing

Digital VLSI testing refers to the process of verifying and validating the function-

ality and reliability of digital integrated circuits. With the increasing complexity

and miniaturization of VLSI chips, it has become essential to employ effective

testing techniques to ensure their proper operation. The main objective of dig-

ital VLSI testing is to detect and diagnose manufacturing defects or faults that

may be present in the integrated circuits. These defects can occur during the

fabrication process and may result in malfunctions or failures of the chips. By

identifying and isolating these faults, manufacturers can improve the yield and

reliability of their VLSI chips.

VLSI testing involves several fundamental terms and quantitative measures

for evaluating the effectiveness of the testing process. These basic terms include:

2.1.1 Fault Coverage

Fault coverage is a measure of the percentage of detected faults or defects in a

circuit or system during testing. It indicates how well the testing process is able

to identify and capture potential faults [37]:

Fault coverage =
Number of detected faults

Total number of faults
(2.1)

whereas a Defect refers to a flaw or physical flaw that has the potential to result

in a fault. A Fault represents a defect and mirrors a physical condition that leads

to the failure of a circuit to operate as intended. A Failure denotes a deviation

18

from the anticipated behavior and performance of a circuit or system, signifying

an irreversible state of a component that requires repair to fulfill its intended

design objective.

2.1.2 Test Coverage

Test coverage refers to the extent to which the circuit or system is exercised by

the test cases. It measures the percentage of specific elements or features of the

circuit that have been tested, such as statements, branches, or paths.

2.2 Fault Models

Due to the wide range of defects found in VLSI systems, creating effective tests

for actual defects can be challenging. To address this issue, the use of fault models

becomes essential for the creation and assessment of test vectors. A reliable fault

model typically needs to meet two key criteria: (1) It must faithfully represent

the behavior of defects, and (2) it should be computationally efficient when it

comes to tasks like fault simulation and test pattern generation. Over the years,

numerous fault models have been suggested [38].

2.2.1 Stuck-at Fault Model

The Stuck-at Fault Model is one of the most widely used fault models in digital

circuit testing. In this model, it is assumed that a signal within the circuit can

become stuck at a specific logic value (either 0 or 1) due to a fault. The fault is

typically represented by specifying a specific net or wire within the circuit where

the stuck-at fault occurs. The Stuck-at Fault Model assumes that a fault causes

a permanent and consistent change in the signal value, regardless of the circuit’s

inputs or subsequent operations. It is a simple yet effective model for identifying

and detecting faults that can result in permanent logic errors or failures in a

circuit. To test for stuck-at faults, test patterns are generated that specifically

target the detection of these faults. The patterns are designed to activate the nets

19

or wires in the circuit and observe the output responses to identify any discrep-

ancies or deviations from the expected behavior. By applying a comprehensive

set of test patterns and observing the responses, the presence of stuck-at faults

can be detected and isolated. The Stuck-at Fault Model provides a practical

and systematic approach to identify and address potential faults within a digital

circuit. It helps ensure the reliability and correctness of the circuit’s logic and is

widely utilized in the design and testing of digital integrated circuits.

2.2.2 Bridging Fault Model

A short between two elements is commonly termed a bridging fault. These ele-

ments can be transistor terminals or connections between transistors and gates.

When an element is shorted to power (VDD) or ground (VSS), it is equivalent to

the stuck-at fault model. However, in the case where two signal wires are inad-

vertently shorted, bridging fault models become necessary. In the initial bridging

fault model proposal, the logic value of the shorted nets was represented as a log-

ical AND or OR operation of the logic values on the shorted wires. This model

is known as the wired-AND/wired-OR bridging fault model. The wired-AND

bridging fault implies that the signal net formed by the two shorted lines will as-

sume a logic 0 if either of the shorted lines is transmitting a logic 0, whereas the

wired-OR bridging fault implies that the signal net will assume a logic 1 if either

of the two lines is transmitting a logic 1. The wired-AND/wired-OR bridging

fault model was initially created for bipolar VLSI and does not precisely depict

the characteristics of bridging faults commonly encountered in CMOS devices.

Consequently, a primary bridging fault model was introduced for CMOS VLSI,

where it is assumed that one driver primarily influences the logic value on the two

connected nets. A new bridging fault model has been suggested, drawing from

the characteristics of resistive shorts observed in certain CMOS VLSI devices [39].

This fault model, known as the dominant-AND/dominant-OR bridging fault, in-

volves a single driver predominantly influencing the logic state of the connected

20

nets, but this influence is limited to a specific logic value.

2.2.3 Delay Fault Model

For a logic circuit to operate without faults, it’s essential not only to execute the

logic function accurately but also to transmit the correct logic signals within a

defined time constraint. A delay fault arises when there is an excessive delay along

a path, causing the overall propagation time to exceed the specified limit. The

prevalence of delay faults has increased as feature sizes have decreased [40,41].

Various delay fault models exist. In the gate-delay fault and transition fault

models, a delay fault occurs when the duration it takes for a signal transition from

the gate input to its output surpasses the designated. The alternative model is

the path-delay fault model, which takes into account the total propagation delay

along a signal pathway within the CUT, which is essentially the sum of all the

gate delays along that path. Consequently, the path-delay fault model proves

to be a more pragmatic choice for testing compared to the gate-delay fault (or

transition fault) model [42].

2.2.4 Fault Collapse Model

This model represents faults that may propagate and cause multiple errors or

failures in the circuit, often due to fault interactions or complex fault effects.

2.2.5 Transition Fault Model

This model focuses on faults that affect the timing and transition behavior of

signals. It considers faults that cause a delay or change in the transition of a

signal.

2.2.6 Open Fault Model

Open faults occur when a circuit connection is broken or interrupted, resulting

in the loss of signal propagation.

21

2.3 Reviews of VLSI Test Technologies

Figure 2.1 provides a comprehensive depiction of circuit testing procedures [43].

To evaluate a circuit with m inputs and n outputs, a series of test patterns,

referred to as test vectors, is employed to assess the CUT, and the resulting

output responses are gathered. Each test vector consists of m bits, corresponding

to the inputs applied to the circuit. The collected output responses are then

compared to the output responses of an error-free circuit, known as the Golden

Response. If the output responses align with the Golden Response, the circuit is

deemed faultless. Conversely, if any discrepancies arise, it indicates the presence

of faults within the circuit.

Figure 2.1: Basic Testing Outlook [44]

This testing approach is commonly referred to as exhaustive testing, where all

possible combinations of test patterns are considered. In this context, the num-

ber of test patterns possible is maximized at 2n for n outputs. Ideally, all 2n test

vectors should be applied to the CUT to thoroughly assess its functionality. How-

ever, implementing exhaustive testing by applying all 2n potential input patterns

to an n-input circuit becomes impractical, particularly when n is sizable. Despite

22

the comprehensive nature of this testing method, it does not guarantee that all

feasible states have been traversed and evaluated [43]. The example discussed,

which entails applying all conceivable input test patterns to an n-input combi-

national logic circuit, highlights the concept of functional testing. Functional

testing involves testing each entry in the circuit’s truth table to ensure that it

produces the anticipated responses. However, a more practical and efficient test-

ing approach is structural testing. In structural testing, specific test patterns are

chosen based on the circuit’s structural information and a set of fault models.

This approach focuses on targeting particular faults, thereby reducing the total

number of required test patterns. Structural testing saves time and enhances test

efficiency by eliminating the necessity of testing all potential input combinations.

Instead, test vectors are designed to identify specific faults within the circuit. By

concentrating on these targeted faults, structural testing streamlines the testing

process and enhances the probability of identifying potential issues or defects.

By combining circuit structural information with fault models, structural test-

ing provides a more precise and effective approach to validate the accuracy and

reliability of a circuit. It enables an efficient allocation of testing resources and

enables the identification and rectification of specific faults, thereby improving

the overall quality of the circuit.

VLSI testing comprises two procedures: test generation and test application. The

objective of test generation is to create test patterns for effective testing, while

test application involves implementing these test patterns on the CUT and as-

sessing the resulting output responses. Test application can be carried out using

either ATE or on-chip test facilities. A concise overview of the advancement in

VLSI test technology is given below.

2.3.1 ATE

ATE are computer-controlled machines used to ICs and Printed Circuit Board

(PCB) during production. They apply test patterns to components and compare

23

the output to known good responses. ATE in the early 1980s had much higher

resolution capabilities than what components needed. For instance, in 1985,

when testing an 8-MHz 286 microprocessor, ATE could achieve 1-ns precision

in controlling input signal transitions, known as edge placement, with minimal

yield loss due to tester tolerances. However, when testing 700-MHz Pentium

III microprocessors later on, ATE could only achieve a 100-ps edge placement

accuracy. This means that despite a hundredfold increase in the speed of the

CUT, the tester’s accuracy only increased tenfold.

2.3.2 ATPG

In the 1960s, the stuck-at fault model revolutionized structural testing. The D-

algorithm, an early ATPG method [45], and later the PODEM algorithm [46],

enhanced ATPG efficiency. ATPG evolved with research and commercial tools

like FAN [47]. ISCAS introduced benchmark circuits in 1985 [48], aiding ATPG

research globally, followed by sequential benchmarks in 1989 [49].

2.3.3 Fault Simulation

Fault simulators emulate circuit faults to assess test vector effectiveness. Parallel

fault simulation utilizes computer bit-parallelism, while concurrent fault simula-

tion operates efficiently with event-driven emulation, commonly used for analog

and mixed-signal circuits at the transistor level with tools like HSPICE [50].

2.3.4 DFT

DFT emerged in the 1970s as a way to streamline the construction of test vectors

and improve test integration during the design phase. DFT encompasses various

techniques, including ad hoc DFT, Level-Sensitive Scan Design (LSSD) known

as scan design, and BIST [51]. Scan design, proposed in 1977, stands out as a

crucial DFT approach [52].

24

2.3.5 BIST

Around 1980, the concept of BIST was introduced as a way to incorporate a Test-

Pattern Generator (TPG) and an Output Response Analyzer (ORA) directly

within VLSI devices, enabling internal testing within the IC itself. Since the

test circuitry is embedded within the IC, BIST can be applied at various testing

stages, spanning from wafer-level to system-level testing [53], [54].

2.3.6 Boundary Scan Testing

The boundary scan standard for core-based testing was initially proposed by

the JTAG and later approved as IEEE Standard 1149.1 [55]. Originally used

for testing ICs on a system board, the shift towards SoC. This shift created an

analogy between the relationship of chips to the board and cores to the SoC. To

facilitate efficient testing of embedded cores and corresponding circuitry in SoCs,

a similar testing approach to the boundary scan standard 1149.1 was adopted

and named IEEE 1500 [56], [57].

2.4 SoC

SoC refers to an IC that incorporates multiple components and functionalities of

an electronic system onto a single chip. It is a complete system that integrates the

core processing unit, memory, peripherals, and other necessary components onto

a single chip. SoC devices are designed to provide a high level of integration and

performance while minimizing power consumption and physical footprint. They

are commonly used in various electronic devices, such as smartphones, tablets,

smart appliances, automotive systems, and IoT devices.

2.5 Core Based SoC Design

The internal structure of a SoC can vary depending on the specific design and

requirements. However, there are common components and structures that are

25

typically found in an SoC.

Figure 2.2: Core Based SoC Design [13]

Here are some key elements of the internal structure of an example of SoC

shown in Figure 2.2:

1. Processor Cores: SoCs often include one or more processor cores, such

as CPU or specialized cores like GPUs or DSPs. These cores execute in-

structions and perform computations for various tasks.

2. Memory Subsystem: The memory subsystem consists of different types

of memory components, including caches, RAM, and non-volatile memory

(such as Flash memory). It stores instructions, data, and temporary storage

for efficient processing.

3. Intellectual Property Cores: IP cores refer to pre-designed and pre-

verified components or functional blocks that are licensed for integration

into SoC designs. These IP cores are developed by third-party IP vendors

26

or in-house design teams and provide specific functionalities or subsystems

that can be integrated into an SoC. IP cores offer several advantages in

SoC design, including faster time-to-market, reduced development costs,

and increased design reuse. Instead of designing complex components from

scratch, designers can leverage existing IP cores to accelerate the develop-

ment process and focus on the unique aspects of their SoC design.

4. Analog and Mixed-Signal Cores: Analog and mixed-signal IP cores

include components like Analog-to-Digital Converters (ADC), Digital to

Analog Converters (DAC),Phase Locked Loop (PLL), voltage regulators,

and analog front-ends. These cores enable analog and mixed-signal pro-

cessing and interface with the external world.

5. DSP Cores: DSP cores are specialized processors optimized for digital sig-

nal processing tasks, such as audio and video processing, image recognition,

and telecommunications.

6. ASICs: ASICs are integrated circuits that are custom-designed for a spe-

cific application or a specific set of functions. Unlike general-purpose micro-

processors or programmable logic devices, ASICs are tailored to meet the

specific requirements of a particular application, offering optimized perfor-

mance, power efficiency, and cost-effectiveness.

2.6 SoC Test Architecture

2.6.1 IEEE 1500 std. for SoC Testing

The key aspect of the 1500 standard is its inclusion of a wrapper surrounding

the boundary I/O terminals of individual cores. This wrapper ensures standard-

ization of the core’s test interface and enables the execution of test commands.

Figure 2.3 provides an overview of the IEEE 1500 architecture, illustrating a

system with N cores, each enclosed by an IEEE 1500 wrapper. [58]

27

Figure 2.3: IEEE 1500 Std. Test Architecture

The IEEE 1500 architecture shown in Figure 2.3 consists of three main com-

ponents:

2.6.2 Core Wrapper

The core wrapper is an interface between the core and the TAM. It encapsulates

the core and provides standardized test and control signals to enable testing and

diagnosis. The core wrapper contains several test logic modules, such as Test

Data Input (TDI), Test Data Output (TDO), Test Mode Select (TMS), and Test

Clock (TCK). It also includes a Test Control Register (TCR) to manage the test

operations [59].

2.6.3 WIR

The Wrapper Instruction Register (WIR) is a register within the core wrapper of

an embedded core that stores and controls instructions for testing and configura-

tion purposes. It serves as a communication channel between the external TAM

and the core’s internal logic. The WIR allows the TAM to send instructions to the

core wrapper, which are then interpreted and executed to control various aspects

28

Figure 2.4: Test Interface of Core Wrapper [59]

of the testing process, such as setting the test mode, configuring the core, initiat-

ing test patterns, and managing test resources. By utilizing the WIR, designers

can implement standardized test control and configuration mechanisms, promot-

ing interoperability and enabling efficient testing and configuration of embedded

cores within integrated circuits [60].

2.6.4 Test Access Mechanism (TAM)

IEEE 1500 incorporates both serial and parallel TAM, which offer flexible options

for accessing and controlling the internal circuitry of the SoC during testing.

These TAMs provide standardized interfaces that facilitate efficient testing and

seamless integration of various test components. The TAM infrastructure includes

a scan path that allows for the transfer of test patterns into and out of the core

wrapper, enabling effective test and diagnosis operations. Additionally, the TAM

incorporates a Test Mode Controller (TMC) responsible for coordinating the test

operations and controlling the behavior of the core during the testing process [61].

29

Test interface of a core wrapper

The test interface of a core wrapper as shown in Figure 2.4 refers to the standard-

ized interface that allows for testing and communication with the core within an

IEEE 1500 architecture. The core wrapper acts as a boundary around the core,

providing a well-defined interface for accessing and controlling the core during

testing operations. The test interface typically includes elements such as test

access ports, scan chains, and control signals, which enable the transfer of test

patterns, test data, and control commands into and out of the core. By utilizing

the test interface of the core wrapper, test engineers can effectively apply test

stimuli, collect test responses, and diagnose the behavior and performance of the

core during the testing process.

Serial Test Mode

1. Wrapper Serial Port (WSP): It serves as a communication channel

between the external test equipment and the core wrapper, facilitating the

transfer of test patterns, commands, and data. The WSP typically consists

of Wrapper Serial Input (WSI) and Wrapper Serial Output (WSO) lines,

which allow for the serial shifting of test patterns into and out of the core

wrapper.

(a) WSI: It is a dedicated input line within the WSP that allows for the

serial reception of test patterns, commands, and data into the core

wrapper during the testing process. The WSI serves as an interface

through which the external test equipment can send serial data to the

core wrapper, enabling the execution of various test operations and

configurations.

(b) WSO: It provides a dedicated output line within the WSP for the

serial transmission of test results, responses, and other data from the

core wrapper to the external test equipment during the testing pro-

cess. The WSO serves as an interface through which the core wrapper

30

communicates the test outcomes and other relevant information to the

test equipment in a serial format

(c) Wrapper Serial Control (WSC): The WSC consists of control

signals or commands that allow the test equipment to instruct the

core wrapper. These signals initiate test modes, configure tests, con-

trol power modes, enable/disable test features, and perform other op-

erations relevant to SoC testing. The WSC ensures a standardized

interface for communication between the test equipment and the core

wrapper, facilitating consistent and efficient control of the testing pro-

cess.

Parallel Test Mode

1. Wrapper Parallel Port (WPP): The WPP is a standardized parallel

interface that facilitates communication between the test equipment and

the core wrapper during SoC testing. It enables high-speed transfer of

control signals, test patterns, and data, enhancing the efficiency of testing

and configuration processes. The WPP plays a vital role in optimizing the

overall testing process for the SoC.

(a) Wrapper Parallel Input (WPI): It functions as an input interface,

enabling the core wrapper to receive control signals, test patterns, and

data in parallel from the external test equipment during testing. The

WPI ensures efficient transfer of parallel data, allowing for simultane-

ous and high-speed input of multiple signals or patterns into the core

wrapper.

(b) Wrapper Parallel Output (WPO): It functions as an output in-

terface that enables the core wrapper to transmit control signals, test

patterns, and data in parallel to the external test equipment during

testing. The WPO ensures efficient parallel data transfer, enabling si-

multaneous and high-speed output of multiple signals or patterns from

31

the core wrapper.

(c) Wrapper Parallel Control (WPC): It is tasked with overseeing

and coordinating the control signals that regulate the behavior of the

core wrapper throughout the testing phase. Acting as a standard-

ized interface, the WPC enables the parallel transmission of control

commands from the external test equipment to the core wrapper.

2.7 Challenges in SoC Testing

In SoC testing, cores from different vendors, such as soft cores, hard cores, or firm

cores, may be integrated. To effectively test these cores after integration, it is

crucial to have a design and test standard in place. There are various challenges

in SoC testing.

1. Mixing Technologies: SoCs comprise various cores (e.g., logic, proces-

sor, memory, analog) that require post-manufacturing testing. Developing

tests for all cores individually is nearly impossible for system integrators.

To address this, core providers must offer assistance, and a standardized

communication channel between providers and integrators is necessary for

effective collaboration and comprehensive testing.

2. Deeply Embedded Cores: Deeply embedded cores in a chip necessitate

a TAM for efficient access and testing. To facilitate manageable system

integration, it is desirable for the integrated cores to have a plug-and-play

feature under the TAM, enabling smooth testing and integration processes.

3. Hierarchical Cores: Hierarchical cores within a core may require a hi-

erarchical test structure to ensure comprehensive testing. A TAM solely

for the top-level cores is insufficient. It is necessary to have an efficient

hierarchical test structure that can test cores at lower levels. Additionally,

having a plug-and-play feature for cores at any hierarchical level simplifies

integration work and enhances flexibility [62].

32

4. Different Core Providers: In SoC integration, cores from different ven-

dors (soft, hard, or firm cores) are utilized. It is crucial for the system

integrator to understand how to test these integrated cores. To facilitate

seamless integration, the establishment of a design and test standard is

essential. This standard ensures consistency and provides guidelines for

effectively testing the cores after integration.

5. IP Protection/Test Reuse: To address IP protection concerns, core

developers often restrict access to detailed internal structural information of

a core. Therefore, reusing tests provided by the core developer with minimal

or no modifications is desirable. This necessitates the establishment of a

standard core test interface and protocol, enabling efficient test reuse and

addressing the issue of limited access to internal core information.

6. Higher Performance Core I/Os than SoC Pins: When the clock

rate inside a core exceeds the capability of the SoC pins, conducting at-

speed testing becomes challenging. External testers often cannot provide

test clocks that support high-speed testing, even with isolated core access

through a TAM. Increasing the test clock rate using a dedicated phase-lock

loop would complicate the design and incur high test costs. In such cases,

employing normal functional units within the chip to create an at-speed test

environment appears to be the most viable approach for achieving efficient,

effective, and cost-effective testing.

7. Expensive and Inefficient ATE: Testing digital, analog, and memory

devices require different specifications from ATE. Relying solely on external

ATE for SoC testing would require expensive equipment capable of gener-

ating and examining diverse test signals. However, integrating test control

and test data generation mechanisms within the chip can reduce reliance

on external ATE and potentially lower test costs. This approach allows

for more efficient utilization of resources and reduces the overall expenses

33

associated with SOC testing.

8. Large Test Data Volume (TDV): The high demand for test vectors in

SoC testing is driven by modern SoCs incorporating numerous components,

complex interconnections, advanced designs with multiple power domains

and interfaces, and the need to test for different fault models. Testing under

real-world scenarios, adhering to strict reliability standards, and account-

ing for manufacturing variations further increase the number of required

test vectors. In summary, the combination of increased integration density,

complex designs, diverse fault models, real-world scenarios, high reliability

standards, and manufacturing variability all contribute to the need for a

substantial number of test vectors in SoC testing.

9. Long Test Application Time (TAT): Sequential testing of cores in an

SoC results in long test application times, exacerbating the high cost of

ATE and potentially causing significant delays in time-to-market, leading

to market loss. To mitigate these issues, parallel testing or test scheduling

techniques are essential. By conducting tests in parallel or implementing

efficient test scheduling, test time can be reduced, minimizing the adverse

effects on cost and time-to-market, and ensuring timely product releases

with minimal market impact.

10. Large Test Power Consumption (TP): While low power design has

received significant attention, test power issues have gained recent recog-

nition. Parallel testing is desired to minimize test time, but excessive test

power can lead to incorrect results or device damage. Careful planning of

the test schedule is necessary to avoid violating power constraints and lim-

its, ensuring accurate testing without compromising the integrity or safety

of the devices under test.

34

2.8 Strategies to Reduce the TDV

Testing SoC designs can be a complex and challenging task due to the increasing

complexity and integration of components on a single chip. Reducing TDV in

SoC testing is essential to improve efficiency, reduce costs, and enhance the overall

testing process. Here are the main strategies to achieve these objectives:

2.8.1 Scan Chain Optimization

Optimize the scan chain architecture to reduce test data volume. Techniques like

test data compression within scan chains can lead to significant TDV reduction.

Scan chains are a key part of SoC testing. They allow the values of registers in

a design to be scanned in and out, which can be used to test the connections

between the registers, and can also be used to load test data into the registers.

However, scan chains can also increase the TDV. This is because each register

in the scan chain must be scanned in and out, even if it is not being tested. [63]

There are a number of scan chain optimization techniques that can be used to

reduce the test data volume. These techniques include:

1. Scan Chain Compression: This technique uses a technique called run-

length encoding to compress the scan data. This can significantly reduce

the TDV, while still maintaining the ability to test all of the registers in

the scan chain.

2. Scan Chain Reordering: This technique reorders the registers in the

scan chain so that the registers that are not being tested are scanned in

and out less often. This can also significantly reduce the test data volume.

3. Scan Chain Merging: This technique merges multiple scan chains into

a single scan chain. This can reduce the number of scan cycles required to

test the design, which can also reduce the test data volume.

These are just a few of the scan chain optimization techniques that can be used

to reduce the test data volume in SoC testing. By using these techniques, it is

35

possible to significantly reduce the test data volume, while still maintaining the

ability to test the design thoroughly.

2.8.2 Test Compression Techniques

The test data compression method is explained in Figure 2.5. The implemen-

Figure 2.5: Test Data Compression [64]

tation of test data compression enables the tester to apply a precise and deter-

ministic test set to the CUT while substantially reducing the overall amount of

test data needed for the entire testing process. Test Data Compression (TDC)

and Test Response Compression (TRC) techniques are instrumental in minimiz-

ing the volume of test data required for testing. By compressing and storing the

test data in the tester, these compression methods significantly reduce the TDV.

The compressed test data is then transmitted from the tester to the circuit for

testing. To achieve this compression, additional on-chip hardware is utilized to

decompress the test stimulus, which is subsequently applied to the scan chains on

the circuit. Furthermore, this hardware also compresses the collected response at

the output, ensuring efficient data transmission. It is essential for the test data

compressor to achieve compression without any loss, ensuring that all test bits,

36

including 0s, 1s, and don’t care bits, are accurately reproduced after decompres-

sion. This requirement ensures that the compression process does not compromise

the fault coverage during testing. Statistical coding is an alternative approach

used in test data compression that involves categorizing test vectors into n-bit

symbols and assigning variable-length codes based on the frequency of occur-

rence of each symbol. In [65], a coding-based compression method using selective

Huffman coding is proposed to achieve efficient data compression. However, it is

important to highlight that one drawback of using Huffman coding is that the

decoder size grows exponentially with the size of the symbols, which may impact

the overall compression efficiency. Besides statistical coding, various other com-

pression strategies have been explored to reduce the size of test vectors in SoC

testing. Constructive coding methods have been introduced in the research of

Wang [66] and Reda [67], which aim to optimize the coding process and reduce

test data volume. Additionally, compression of test vectors can be accomplished

through linear decompression techniques. In this approach, the test vector Y is

generated if a solution to a system represented by linear equations AX=Y ex-

ists. Several methods involving combinational linear decompressors have been

defined in different research studies conducted by Bayraktaroglu [68], Mitra [69],

and Krishna [70], providing effective ways to decompress test vectors on-chip.

Furthermore, several other methods have been proposed to address the challenge

of reducing the size of test vectors. In the works of Wohl [71], Volkerink [72],

Krishna [73], Krishna [74], and Lee [75], various innovative techniques are intro-

duced to optimize test vector size while maintaining the required test coverage.

These methods have demonstrated to be optimal and effective for achieving sig-

nificant reductions in the size of test vectors, thereby enhancing the efficiency

and performance of SoC testing processes.

37

2.8.3 Test Data Partitioning

One strategy to decrease the overall TDV in SoC testing involves segmenting the

test data into smaller parts and efficiently distributing them. This reduces the

amount of test data that needs to be stored, transmitted, and applied during

testing. Code-based methods are used to encode the test vectors using compres-

sion codes. In these methods, the original data is divided into symbols, which are

then replaced with corresponding codes. In a run-length based encoding proposed

in [76], 0s are encoded using fixed-length codes, and a cylindrical scan architecture

is employed to prioritize runs of 0s, enhancing the efficiency of run-length coding.

The authors of [77] discuss a test resource partitioning approach that utilizes

run-length encoding-based compression to reduce the TDV. Various methods

based on Golomb codes are proposed to encode runs of 0s with variable-length

code words [78], [79], [80], [81]. Authors in [78], [79], and [80] present test vector

compression techniques and decompression mechanisms based on Golomb codes.

In [81], Chandra and Chakrabarty propose a method based on Golomb codes

that perform encoding of runs of 0s with variable-length codes. Though these

variable-length codes are helpful for encoding longer runs of 0s or 1s, it necessi-

tates an efficient synchronizing system between ATE and CUT. In addition, [82]

and [83] discuss selective Huffman coding and complementary Huffman coding-

based compression methods. Another compression method, variable prefix dual

run-length code, is discussed in [84]. In [85], a test vector reordering method is

presented, which effectively increases fault coverage while minimizing the number

of test vectors required to cover all faults, thus reducing the test data volume.

Further improvements in compression can be achieved by utilizing Frequency Di-

rected Run Length (FDR) encoding [86] and Huffman encoding [87], [82], [83].

Another form of compression, dictionary coding, involves partitioning test vec-

tors into n-bit symbols and storing them using a dictionary. While [88] uses n

scan chains and modifies test vectors to minimize dictionary size, the drawback of

using dictionary coding lies in increased dictionary size, leading to decompressor

38

overhead. To address this drawback, [89] proposes a method for partial dictionary

coding, where frequently used test vectors are placed in the dictionary, while the

remaining ones remain uncoded. Another method employing partial dictionary

coding is discussed in [90].

2.8.4 Compaction Techniques

In addition to compression, compaction is another common technique used to

reduce the TDV in SoC testing. Compaction methods utilize the values and

positions of bits in test vectors, with test vector reordering and filling of don’t

care bits being the main features of such methods. An example of test vector

reordering can be seen in the work of [85], where test vectors are reordered in a way

that increases fault coverage while minimizing the number of required test vectors.

This reordering effectively reduces the size of the TDV. Further advancements

include the use of X-compactors proposed in [91] and [92]. X-compactors achieve

an exponential reduction in output responses, thereby reducing the number of

pins needed to collect test responses from the SoC.

2.8.5 Combination of Compression and Compaction Tech-
niques

Some techniques in SoC testing employ a combination of compression and com-

paction simultaneously on the same test vectors to achieve a reduction in TDV.

For example, in the work presented in [93], a run-length coding-based compression

is applied after test vector reordering. Additionally, bit-stuffing is performed in a

column-wise manner to generate test vectors with a maximum number of zeros.

This integrated approach of reordering, bit-stuffing, and run-length coding-based

compression results in a substantial reduction in TDV, optimizing the testing pro-

cess. Various compaction and compression methods are discussed in several re-

search works, including [94], [95], [96], and [97]. In the novel approach introduced

in [97], a block matching algorithm is initially executed to segregate low-frequency

39

and high-frequency clusters of test vectors. Low-frequency test vectors represent

clusters that repeat less frequently, while high-frequency test vectors represent

clusters that appear more frequently. The block matching algorithm effectively

reorders the test vector blocks to place related blocks subsequently, enhancing

the compaction process. All these compression and compaction methods are

well-known and proven to be effective in reducing the TDV. While compressed

test data facilitates efficient transportation, it requires the implementation of

compression and decompression circuits on the ATE and SoC, respectively. This

introduces some area overhead. Nevertheless, the advantages of reduced TDV,

such as improved test time and optimized data storage, typically outweigh the

overhead introduced by the compression and decompression circuits, making it a

worthwhile trade-off for efficient SoC testing.

2.9 Strategies to Reduce the TAT

The test application time is the time it takes to apply a set of test patterns to a

SoC. It is a critical factor in the overall SoC testing time. There are a number

of strategies that can be used to reduce the TAT.

1. Hierarchical Scan: This involves partitioning the SoC into smaller sub-

blocks, each of which can be tested independently. This can significantly

reduce the overall test application time.

2. Test Compression: This involves encoding the test patterns in a more

efficient way, which can reduce the amount of data that needs to be trans-

ferred to the SoC during testing.

3. Dynamic Voltage and Frequency Scaling (DVFS): This involves ad-

justing the voltage and frequency of the SoC during testing, which can help

to reduce the power consumption and, in turn, the test application time.

4. Parallel Testing: The process of testing each core individually can be

time-consuming and sluggish since it involves handling a large number of

40

test vectors for the cores. This can lead to testing resources being engaged

with the cores more than expected, resulting in significant testing delays.

In some cases, these delays can be so substantial that they make testing

impractical, making test application time a significant concern. To address

this issue, parallel testing mechanisms for cores within the SoC are essential

to reduce TAT. This involves testing multiple sub-blocks of the SoC at the

same time. This can significantly reduce the overall test application time,

but it requires careful planning to ensure that the different sub-blocks do

not interfere with each other. Implementing parallel testing requires appro-

priately distributing the test bus width and employing efficient scheduling

to achieve an optimal TAT. Various methods have been proposed, such as

the ones discussed in [98], [99], [100], and [101].

5. ATPG: This can help to generate test patterns that are more efficient,

which can reduce the test application time.

6. TAM Optimization: In [100], a technique for optimizing the wrapper

and TAM is proposed, considering power constraints during test scheduling.

This approach finds a trade-off between TAT and TDV by determining an

appropriate TAM width. Although an Integer Linear Programming (ILP)

model is suggested in [100] for an optimal assignment of cores to test buses

to minimize TAT, it may not be efficient enough as it considers test data se-

rialization for each core [102]. To overcome this constraint, [102] proposes a

genetic algorithm-based approach for achieving optimal TAM scheduling in

SoCs, effectively reducing TAT and TDV. These methods ensure efficiency

and fault coverage for SoC testing. Similarly, other methods to reduce TAT

and improve testing efficiency have been proposed in [103] and [104].

41

2.10 Strategies to Reduce TP

Parallel testing of cores can reduce the TAT, but it comes at the cost of increased

test power consumption. Hence, there exists a trade-off between TAT and TP. If

the test power consumption exceeds a certain threshold, it can lead to incorrect

test results and potential damage to the SoC. With modern SoCs being large in

size, the TDV has also increased. The larger number of test vectors increases the

probability of bit-flipping, which is directly related to test power consumption.

Consequently, reducing test power consumption poses a challenging task. It is

well-known that a system consumes more power in test mode [105], [106], mak-

ing test power consumption a critical concern in SoC testing and development.

Various terms are used to define TP:

1. Energy: During SoC testing, test vectors are applied to the core’s input

pins through the test architecture, resulting in changes from 0 to 1 or 1

to 0 in the values on core input pins or wrapper cells. The total switch-

ing activity generated during test application is proportional to the energy

consumed in testing.

2. Average Power: Average power refers to the total power distribution

over a given period. The average power is obtained by dividing the energy

consumed during testing by the test time.

3. Peak Power: Peak power represents the maximum power value observed

at any instant during testing. It indicates the thermal and electric threshold

values of the SoC. If the peak power exceeds this threshold limit, there is

no assurance that the SoC will function correctly.

There are several methods available to decrease test power consumption in

SoC testing. One such technique is test vector reordering [107], [108], where

test vectors are rearranged to minimize the Hamming distance between them. A

heuristic approach to address this issue is presented in [109]. Another approach

42

involves reordering the scan cells in the scan chain to reduce switching activities

[110], [111]. These scan cell reordering methods offer full fault coverage without

requiring external hardware, but they may lead to routing congestion during scan

routing. To tackle peak power during test cycles, a scan chain reordering method

is proposed in [112].

Some methods focus on reducing test power consumption by filling don’t-care

bits (X) in test vectors [113]. In [114], the don’t-care bits are assigned values of 0

or 1 to minimize bit flipping in scan cells during test vector insertion. The vector

filtering technique [115] involves excluding test vectors that do not detect new

faults from being applied to the core’s input pins. Test power consumption can

also be decreased using test vector compaction methods like the one proposed

in [116], which merges test vectors to reduce their size without compromising

fault coverage.

Modifying the scan architecture is another approach to decrease test power

consumption [117], [118]. Power-aware compression techniques, such as the

Golomb code based approach in [119] or alternating run-length encoding in [120],

are effective in reducing test power consumption. Other methods, like Linear

Feedback Shift Register (LFSR) reseeding [121], [122], use logical gates to mask

certain bits of the test vectors, thus reducing transition probability and power

consumption.

Despite the efficiency and fault coverage of traditional methods, they may

introduce area overhead, hardware overhead, and increase testing costs. With

the growing complexity of modern SoCs, applying these traditional methods

may become impractical and costly. To address this, researchers have proposed

confidence-aware testing methods.

In summary, to efficiently reduce TDV, TAT, and test power consumption,

innovative methods are necessary. The traditional approaches are effective and

do not compromise fault coverage, but they can be costly and challenging to

implement for large SoCs. Researchers have been exploring confidence-aware

testing methods as potential solutions to address these challenges.

43

2.11 Confidence Aware Testing Methods

Confidence-aware testing revolves around two crucial parameters: Essential

Faults and Confidence Level (Fault Coverage). Essential faults are critical and

indispensable for the proper functioning of the SoC. To maintain testing cost

within an acceptable range, the SoC is tested for essential faults using a minimal

number of required test patterns. This approach is referred to as confidence-aware

testing. While confidence-aware testing does not cover all faults, the percentage

of total faults covered during testing is known as the confidence level. Striking a

balance between testing cost and the quality of testing involves testing the SoC

with fewer test patterns while ensuring coverage of all essential faults.

In [123], a method is proposed for confidence testing in two ways: one considers

faults preferred by the manufacturer, and the other considers faults based on

customer requirements. [124] defines the defect level in testing as the percentage

of circuits that are defective and launched for customer use after testing, which

is concluded to have a probability distribution rather than a single value when

testing a circuit using random patterns.

In [125] and [126], the confidence degree of a specified defect level using ran-

dom test patterns is proposed, and the quality of confidence-aware testing is

quantified. Furthermore, confidence-aware testing has been extended to consider

other parameters such as test power consumption. In [127], a confidence-based

power-aware testing method is introduced, which considers desired fault coverage,

detects all essential faults, and adheres to power constraints.

Other incomplete testing methods have employed heuristic approaches like

particle swarm optimization and genetic algorithms [128], [129], [130]. These

techniques aim to optimize the testing process while still achieving acceptable

fault coverage and meeting the required constraints.

44

2.12 Incomplete Testing

To enhance TDV, TAT, and TP, designers have explored various approaches,

including approximate computing techniques. These methods relax the need for

precise computation and instead aim for acceptable levels of accuracy, leading to

notable improvements in TAT and TP performance without a substantial cost

increase. For instance, the approximate Multiply-Accumulate (MAC) unit, pro-

posed in [131], is an approximate circuit that utilizes the concept of approximate

computing. It employs an approximate hybrid redundant adder for internal mul-

tiplication and addition operations, resulting in reduced hardware size and TP

with a minor trade off in computation error. Another method, introduced in [132],

is the MAC arithmetic architecture, which decreases the number of intermediate

partial components generated during arithmetic operations by a factor of 2, lead-

ing to enhanced speed and reduced hardware cost. As discussed in [131] and [132],

these techniques leverage the idea that certain systems can tolerate output errors

to some extent, offering significant benefits in terms of reduced hardware area

and TP.

An approximate aware testing method for approximate circuits is proposed

in [133] and [134]. It employs a fault classification algorithm that categorizes

faults into two groups: approximation-redundant faults and non-approximation

faults. However, this method has limitations as ATPG tools prioritize the shortest

propagation paths of faults to the primary outputs, leading to incorrect classifi-

cation of non-approximation faults that propagate to multiple primary outputs

as approximation-redundant faults. To address this limitation, another ATPG

methodology for approximate circuits is introduced in [135]. This methodology

is based on boolean satisfiability and takes into account the quality of the output

as well as the difference between non-approximation faults and approximation-

redundant faults.

The adoption of approximate testing proves beneficial in various fault-tolerant

applications, such as audio, video, graphics, and wireless communications, as

45

mentioned in [136]. For instance, in [137], a mobile device receives streaming

H.264 video over a WCDMA wireless channel, and the video compression algo-

rithms take advantage of the temporal correlation of image sequences, allowing

parts of the current frame to be borrowed from previously decoded frames stored

in the Decoded Picture Buffer (DPB). To reduce TP, H.264 uses spatial re-

dundancy and allows some errors to occur at the chip level. Similarly, in [138], a

wireless communication application processes data through channel decoders, cor-

recting errors and generating an error-free stream depending on the application.

Redundancy is inherent in data stream communication in wireless communica-

tion, and error-tolerant data buffering memories within an SoC are crucial for

the majority of memory in wireless applications. Various applications, including

Multi-Level Cells, STT-RAM [139], neural networks [140], and convolutional neu-

ral networks [141], are also suitable for approximate testing at both the circuit

and system levels. Utilizing approximate circuits can expedite computation and

enhance testing metrics. However, designing such circuits is a demanding and

intricate task that requires a comprehensive understanding of the circuit. Addi-

tionally, testing these circuits is complex, as specialized techniques are needed to

verify that the outcomes meet the requirements of the intended application.

In this thesis, we present a novel testing method designed specifically for SoC

architectures. Our approach aims to test the SoC incompletely while still allowing

for error tolerance in the output, all without necessitating any modifications to

the circuit’s behavior. Unlike traditional approximate circuits, which may com-

promise the accuracy of results, our proposed method maintains the integrity of

the circuit’s functionality. As the complexity of SoC designs continues to esca-

late, traditional testing methods have struggled to keep up with the increasing

demands for improved testing efficiency. Full testing coverage for such intricate

systems is often impractical due to excessive time and resource requirements.

Additionally, approximate circuit designs have emerged as a potential solution to

reduce test time, but they come at the cost of accuracy, limiting their applicability

in safety-critical applications. Our research focuses on developing an innovative

46

incomplete testing method that addresses the limitations of conventional testing

approaches and avoids the inherent compromises introduced by approximate cir-

cuits. The key characteristics of our method include selectively targeting critical

components of the SoC to significantly reduce testing time and resource over-

head, incorporating error tolerance into the testing process to allow for minor

discrepancies in the output while maintaining overall functionality, and ensuring

the method does not require any alterations to the SoC’s behavior, preserving

the original design’s integrity and ensuring the system’s robustness. To assess

the effectiveness of our proposed testing method, we conducted extensive simula-

tions on various SoC designs with diverse complexities, evaluating metrics such

as TDV, TAT, and TP. Furthermore, we analyzed the quality of testing achieved

using our method and compared it to traditional full testing approaches and ap-

proximate circuit techniques. Our research demonstrates that the incomplete

testing method, coupled with error tolerance, offers a compelling alternative to

conventional testing techniques and approximate circuits. It significantly reduces

TDV, TAT, and TP while still providing satisfactory testing quality, making it

an attractive choice for SoC testing, especially in scenarios where comprehensive

testing is infeasible or excessively resource-intensive.

47

48

Chapter 3
Incomplete Testing of SoC : Heuristic
Approach

3.1 Introduction

In the current landscape, SoC designs are under increasing pressure to accommo-

date a broad spectrum of applications in order to meet the diverse demands of

customers. As the number and complexity of applications continue to grow, SoCs

are incorporating an expanding array of cores to effectively handle these function-

alities. Recent advancements in manufacturing technology have facilitated the

integration of a large number of cores into SoCs, presenting both opportunities

and challenges.

The incorporation of a substantial number of cores in modern SoCs requires

comprehensive testing to ensure their proper functionality. However, the testing

process becomes intricate when dealing with a large number of cores, necessitating

a significant test vector set with an increased number of test bits. Moreover, the

transportation of extensive test data to and from the SoC pins to ATE becomes

a critical consideration.

Traditional methods employed for testing these large-scale SoCs with exten-

sive TDV tend to be slow and economically burdensome. Therefore, this chapter

introduces an innovative approach to testing large SoCs, utilizing an incomplete

49

testing method. Instead of conducting exhaustive testing on the entire SoC, this

approach involves partial testing without compromising the examination of sig-

nificant faults.

By adopting this approach, the testing process is optimized in terms of TDV.

Simultaneously, it ensures that there is no compromise fault coverage for signif-

icant faults. The methodology makes a minor trade-off in fault coverage while

optimizing the TDV.

3.2 Problem Statement

Given a SoC with K number of cores, wherein each core possesses various inputs

and outputs, a Test Vector Set Tc is provided for each core. Consequently, K sets

of test vectors are available, with each set comprehensively addressing all faults

within the corresponding core during testing. For every core, a list of essential

faults is specified as E1, E2, E3, . . . , En, and the maximum permissible compromise

in fault coverage is given as Fc%. Derive an optimized set of test vectors that

facilitates incomplete testing of cores while ensuring coverage of all the essential

faults within the respective core.

3.3 Proposed Method

Suppose a given Core comprises n input pins, signifying that each test vector

consists of n bits, a test vector set (Tc) is provided for this core. The Tc contains

nt test vectors, and each vector is composed of n bits. Therefore, a test vector

set is represented as a table of nt rows and n columns, where nt is the number

of test vectors required to test the core, and n is the number of input pins of the

core. Each column position in Tc is corresponding to one of the input pins of the

core. The total number of test bits, referred to as Test Data Volume (TDV), is

determined by the product of the number of test vectors and the number of bits

per vector. This TDV is expressed as nt × n.

50

Given test vector set (Tc) provides comprehensive coverage of all faults, with

Full Fault Coverage (Ff%) and a specified maximum allowable compromise in

fault coverage as Fc. To achieve this compromise, specific input pins of cores

are intentionally left untested, resulting in the removal of corresponding test

bits from each test vector in Tc, while ensuring the testing of essential faults

E1, E2, E3, . . . , En. The primary objective is to determine the maximum number

of input pins to be left untested and the corresponding test bits for these pins.

This omission, applied to every test vector in the set, aims to achieve a reduction

of fault coverage to (Ff −Fc)%. These omitted bits in each test vector are termed

Least Significant Test Bits (LSTBs), because after removal of these bits from each

test vectors, fault coverage will be affected by least amount. If nlstb LSTBs are

omitted from each test vector, then nt × nlstb bits are reduced at the cost of a

Fc% loss in fault coverage. The total number of possible combinations of LSTB

positions, where k columns are chosen out of n columns, is given by nPk =
n!

(n−k)!
.

In most practical cases of SoC cores, n is of the orders of tens, which implies a huge

number of combinations and so, determining the optimal set is computationally

prohibitive. Due to the computational complexity of determining the optimal set,

an efficient method is required.

3.3.1 Algorithm 1: LSTB Detector

Here a heuristic approach based on Binary Particle Swarm Optimization (PSO)

is proposed in Algorithm 1 titled as “PSO based LSTB Detector” in this chapter.

This method identifies the optimal LSTB positions in a core’s test vector set,

where LSTBs are bits associated with positions that, when removed, lead to a

reduced fault coverage of (Ff − Fc)%. If there are nt test vectors, each having n

bits, the total number of bits in the test set will be nt×n. Removing nlstb LSTBs

from each test vector results in a reduction of nt × nlstb bits at the cost of a Fc%

loss in fault coverage. This Algorithm can is explained by Example 3.1.

51

ALGORITHM 1: PSO Based LSTBs Detector
Input: Set of Completely Specified Test Vectors Tc for a core, Desirable

fault coverage Ft

Output: Set of Completely Specified Test Vectors Tlsb having less bit
length after removal of LSTBs from each test vector

1 Calculate number of bits (N) in each test vector .
2 Take population size (NP)= 50
3 Take maximum iterations (Tmax)=50
4 Pid = 0. Pgd = 0. Vid = 0 count = 0
5 for Each of NP particle do
6 for i:=1 to N do
7 xi= Rand(0,1);; /* Rand(0,1)generate random number

between 0 and 1 */

8 if xi< 0.1 then
9 xi=0;

10 else
11 xi=1

12 for j:= 1 to Tmax do
13 Run PSO
14 for Each of NP particles do
15 for i:=i to N do
16 Vi(t) = Vi(t− 1) + ϕ(Pi − xi) + ϕ(Pg − xi) ; /* Calculating

velocity of each particle */

17 if (rand() < S(Vi)) then
18 xi=1; /* Update every bit in each particle */

19 else
20 xi=0;

21 Calculate fitness function of particle;
22 Find best particle;

23 if Best particle[j]= Best particle[j-1] then
24 count=count+1;
25 else
26 count=0;

; /* if Best particle of current iteration is same as best

particle of previous iteration then increase the count by

1 */

27 if count=Xterminate then
28 Modify Tc; ; /* Modify each test vector of Tc according

to best particle structure. */

29 Exit;

; /* Xterminate = 10 i.e If Best particle repeated

continuously 10 times then terminate the program */

30 Modify Tc;
31 Exit;

52

3.3.2 Complexity of Algorithm 1

The complexity of our algorithm is determined by O(Tmax × NP), where Tmax

represents the maximum number of iterations, and NP denotes the population

size of particles. Both Tmax and NP are dependent on the specific case, which

corresponds to the specifications of the SoC core and LSTBs used.

3.4 Example

Example 3.1. Suppose in Figure 3.1, consider a core with 12 Input Pins and 4

Output Pins. The associated test vector set, illustrated in Figure 3.2, comprises

5 rows and 12 columns. The bits in columns b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0

are applied to the core inputs I11, I10, I9, I8, I7, I6, I5, I4, I3, I2, I1, I0. Each column

in the test vector set corresponds to the input pins of the SoC.

Figure 3.1: Core with I/O

53

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 0 1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1
1 0 1 0 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1

Figure 3.2: Test Vector Set (Tc) for a Core

The test vector set Tc is covering all faults, achieving full fault coverage at

100%. Suppose the maximum allowable compromise in fault coverage Fc is given

as 1%, essential faults are specified as E1, E2, n = 12, nt = 5, and Ff = 100%,

now the primary objective is to determine the maximum number of columns

in Tc to be removed while maintaining fault coverage at (100 - 1)% = 99%, and

concurrently testing for essential faults. To address this, Algorithm 1 “PSO-based

LSTB Detector” is utilized as follows.

1. Binary PSO

Binary PSO is a method used for optimizing continuous non-linear func-

tions, initially proposed by James Kennedy and Russell Eberhart in

1995 [142]. It is a variant of PSO designed to operate on binary vari-

ables, providing a specialized approach for solving problems with binary

representations [143].

2. Particle Structure

Let’s consider the test vector set Tc given in Example above.

54

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 0 1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1
1 0 1 0 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1

Figure 3.3: Test Vector Set Tc for the Core in Example

In proposed PSO model, a particle is represented as an N-bit array named

P containing binary values, where N is the bit length of a test vector.

Each index in the array P [11], . . . , P [0] corresponds to a columns b11 . . . b0

respectively in the Tc. The Particle Structure will be as follows.

P[11] P[10] P[9] P[8] P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

This particle will be initially filled with randomly assigned bits, either 0 or

1 as shown below.

P[11] P[10] P[9] P[8] P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]
0 1 0 0 0 1 0 1 1 0 1 0

If the value at the i-th index of particle P [i] is ‘1’, it indicates that the bits

at the i-th column bi of Tc will remain unchanged. Conversely, if the i-th

index of particle P [i] is ‘0’, it signifies that the bits at the i-th column bi of

Tc will be removed from each row of Tc. For example, if there is a ‘0’ at the

5-th index P [5] in the particle, it means that the bits present at column b5

will be omitted from all the test vectors. Conversely, if there is a ‘1’ at the

1-st index P [1] in our particle, it means that the bits at column b1 in all

the test vectors will remain unchanged.

55

3. Initial Population and Position

The population size comprises 50 particles. Since we can only tolerate a

reduction in fault coverage from 1 to Fc% (where Fc is typically less than

10), it is more efficient to initialize the search space with a greater number

of ‘1’s and ‘0’s. Having more ‘1’s will prevent a significant reduction in fault

coverage. In Algorithm 1, lines 5 to 11 handle the initialization of particles.

As the process advances, the bit xi of each particle is updated using the

equations of Binary PSO [143].

Vi(t) = Vi(t− 1) + ϕ(Pi − xi) + ϕ(Pg − xi) (3.1)

xi =

{
1, if(rand() < S(Vi))

0, else
(3.2)

where Vi is the rate of change of the i-th particle. Each particle i maintains

a record of the position of its previous best performance in a vector called

Pi. Variable g is assigned the value of the index of the particle with the

best performance so far in the neighborhood. ϕ is a random positive number

generated for each i. Function S(Vi) is a sigmoid limiting transformation

and rand() is a quasi-random number selected from a uniform distribution

in [0,1].

4. Fitness Function of a Particle

Our objective is to attain a particular confidence level. For a given Exam-

ple, the maximum allowable reduction in fault coverage is set at 1%. This

implies that the fault coverage must not fall below 99%. Consequently, the

fitness function of the particle is established as the nearest real number

greater than the desired fault coverage, which is 99% in the provided exam-

ple. Therefore, the fitness function ensures a fault coverage of 99% while

guaranteeing the testing of essential faults E1 and E2.

5. Modified Test Vector Set (TIncomplete) for Incomplete Testing

In Figure 3.4, the modification of the test vector set Tc is evident in both

56

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 0 1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1
1 0 1 0 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1

LSTB Positions

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 0 1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 1 1
1 0 1 0 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1

LSTB Positions

Due to non-essential faults

Figure 3.4: Test Vector Modifications

vertical and horizontal dimensions. Specifically, for column-wise adjust-

ments, as delineated in line 30 of Algorithm 1, subsequent to obtaining the

best particle structure, modifications in Tc are executed. If a ‘0’ is located

in the i-th position of the best particle, the bits at the corresponding i-th

column in each test vector of Tc is omitted. Conversely, if a ‘1’ is found in

the i-th position of the best particle, the bits at the i-th column in each

test vector of Tc remains unchanged.

In contrast, for row-wise adjustments, compromises in fault coverage result

in some faults remaining untested, leading to the omission of certain test

vectors intended for testing those faults.

Utilizing the mentioned “PSO-Based LSTBs Detector” a compact set of test

57

vectors has been derived for each core. Additional information on these modified

test vector set will be elaborated upon in the experimental results.

3.5 Experimental Results

Test patterns for the ISCAS 85 [144] [145] and ISCAS 89 [146] benchmark circuits

were produced using the Atalanta-M [147] tool. The computation of fault cover-

age was executed employing the HOPE [148] simulator. Our proposed technique

for minimizing test vectors, which is rooted in the concept of PSO, was instanti-

ated through coding in the C++ programming language. Experiments have been

conducted for both combinational cores and sequential cores. Two distinct SoCs

S1 and S2 configurations are introduced: one exclusively comprises combinational

cores, while the other incorporates a mix of sequential and combinational cores.

This setup allows us to assess the effectiveness of incomplete testing specifically

for sequential cores.

3.5.1 SoC Architecture with Combinational Cores

Figure 3.5 provides a schematic depiction of the SoC architecture, featuring six

distinct combinational cores c17, c432, c880, c1355, c2670, and c6288 and incor-

porating a pair of test buses. In the context of our experimental procedures, we

employ benchmark circuits tailored for each individual core. These benchmark

circuits are utilized to evaluate the performance of the cores under specific test

conditions. Modified Test Vector Set for Incomplete Testing (TIncomplete), derived

from the LSTB Detector, are extracted and subsequently transmitted to these

cores via the two designated test buses. These test buses serve as the essen-

tial conduits for transferring test data to the input pins of the respective cores,

enabling comprehensive testing and evaluation.

The ISCAS benchmark circuits for each individual core are utilized as inputs

for the ATPG tool, specifically Atalanta-M. This tool is employed to generate

test vectors, which are then utilized for both complete and incomplete testing

58

Figure 3.5: Architecture of SoC S1.

scenarios. These generated test vectors are subsequently applied to the HOPE

simulator to estimate the Fault Coverage (FC). In the forthcoming section, Table

3.1 presents a comprehensive analysis of how these procedures impact the TDV

and FC for both Complete and Incomplete Testing.

3.5.2 Results for TDV and FC

Table 3.1: TDV and FC comparison for complete and incomplete testing

Core
FC % for
Complete
Testing

TDV for
Complete
Testing

FC % for
Incomplete
Testing

TDV for
Incomplete
Testing

Reduction
in FC%

% Saving
in TDV

C17 100 30 98 25 2 16.67
C432 98.35 1872 96.37 1542 1.98 17.63
C880 95.05 2820 93.06 2312 1.99 18.01
C1355 99.45 3526 97.49 2970 1.96 15.77
C2670 100 23999 98 20436 2 14.85
C6288 97.87 1024 95.89 860 1.98 16.02

59

In Table 3.1, there are several columns providing key metrics for different pro-

cessor cores. The column named “Core” lists the core names being analyzed,

including C17, C432, C880, C1355, C2670, and C6288. The column named “FC

% for Complete Testing” indicates the percentage of fault coverage achieved when

employing complete testing strategies for each respective core. It measures how

effectively complete testing identifies potential faults within the core. The “TDV

for Complete Testing” column shows the test data volume required for compre-

hensive testing of each core, reflecting the amount of test data needed under

complete testing conditions. The “FC % for Incomplete Testing” column dis-

plays the fault coverage percentage when using incomplete testing approaches

for each core, assessing the effectiveness of these methods. The “TDV for In-

complete Testing” column reveals the Test Data Volume needed for incomplete

testing of each core. Additionally, the “Reduction in FC%” column calculates

the percentage difference between Fault Coverage achieved with complete and in-

complete testing, while the “% Saving in TDV” column calculates the percentage

reduction in TDV when using Incomplete Testing compared to Complete Testing.

Each row corresponds to a specific core, presenting these metrics for both testing

approaches, enabling comparisons between the two methods. For example, core

C17 achieves 100% FC with Complete Testing but experiences a 2% reduction

when using Incomplete Testing, resulting in a 16.67% saving in TDV. Similar

interpretations can be applied to the other rows and columns within the table.

3.5.3 SoC Architecture with Sequential Cores

The architecture illustrated in Figure 3.6, referred to as the SoC S2 design, is em-

ployed in all of our experiments. This SoC comprises a total of 8 cores, consisting

of 3 combinational cores and 5 sequential cores.

60

Figure 3.6: Architecture of SoC S2.

Table 3.2: Comparison in Fault coverage with original and modified test vector set

Cores Bits FC % Bits - LSBs FC ↓ % FC ↓ (%) Bits ↓(%)

c880 60 100.00 53 95.01 4.98 11.67

c2670 233 95.74 206 90.97 4.98 11.59

c7552 207 98.25 188 93.35 4.99 9.18

s953 45 100.00 31 95.09 4.91 31.11

s1196 32 100.00 27 95.01 4.99 15.62

s1238 32 94.91 26 90.19 4.98 18.75

s5378 214 99.12 192 94.18 4.98 10.28

s9234 247 93.48 235 88.81 4.98 4.85

SoC 1070 97.69 958 92.83 4.97 14.13

61

In Table 3.2, rows 2 through 9 provide the experimental outcomes for the

individual cores of the SoC, specifically c880, c2670, c7552, s953, s1196, s1238,

s5378, and s9234. Row 10, on the other hand, displays the average experimental

results for the entire SoC S2. The first column denotes the names of the respective

cores, while columns 2 and 3 detail the number of input bits encompassed by the

test vectors for the core c880, in addition to the fault coverage observed prior

to the implementation of the proposed testing algorithm. Column 4 reveals the

reduction in the number of bits within each test vector for core c880, following the

application of Algorithm 1. Concurrently, column 5 exhibits the corresponding

fault coverage pertaining to these modified test vectors. It is important to note

that a deliberate compromise of approximately 5% in fault coverage is introduced,

as depicted in column 6. Lastly, column 7 visually elucidates the reduction in

the test bit count for each core as a direct result of our proposed methodology

for optimizing test vectors. This comprehensive table encapsulates similar results

for various cores of the SoC throughout its entirety. In Row 10, Column 6, we

present the average compromise in fault coverage for the entire SoC. This value

represents the collective impact of our proposed methodology on fault coverage

across all cores of the SoC. Meanwhile, in Row 10, Column 7, we provide the

average reduction in the number of bits within the test vectors for the whole

SoC. This value signifies the average reduction achieved in test vector size across

all cores due to the application of our optimization approach.

62

Table 3.3: Reduction in TDV

Core No.of Bits TDV Bits- LSBs ↓ TDV ∆TDV
Patterns

c880 54 60 3240 53 2862 378
c2670 103 233 23999 206 21218 2781
c7552 207 207 42849 188 38916 3933
s953 87 45 3915 31 2697 1218
s1196 142 32 4544 27 3834 710
s1238 150 32 4800 26 3900 900
s5378 254 214 54356 192 48768 5588
s9234 357 247 88179 235 83895 4284

In Table 3.3, we have computed the TDV for each core, calculated as the

product of the number of patterns and the number of input bits. Columns 3

and 4 show the count of input bits and the corresponding TDV for each core.

Similarly, Columns 5 and 6 reveal the reduced input bits and the resulting TDV

for each core after applying the proposed test vector minimization technique.

The difference between Column 6 and Column 4, labeled as ∆TDV, signifies

the total bit savings achieved for each core. For example, in the case of s5378,

the total bit savings amount to 5588. This substantial reduction in total bits

translates to reduced memory requirements for storing test patterns in ATE and

a diminished quantity of bits transferred to the core via the TAM bus. For

more clear comparison we have shown variation in TDV in Figure 3.7. where

light shaded bar is representing TDV for core without reducing LSTBs, while

dark shaded bar is representing TDV when LSTBs has been removed from each

pattern.

Table 3.4 presents an analysis of the percentage reduction in fault coverage

and the savings in test vector bits achieved at the expense of fault coverage.

In row 2, column 3, there is a compromise in fault coverage of 1.99%, accom-

panied by a 7.28% reduction in test vector bits. Likewise, the remaining rows

and columns provide a similar analysis, illustrating the trade-offs between fault

coverage compromise and TDV savings.

63

Figure 3.7: TDV Characteristics

64

Table 3.4: Trade-off between Fault Coverage and TDV

SNo. Testing FC ↓ (%) Bits ↓(%)

1 SoC 1.99 7.28

2 SoC 3.98 12.15

3 SoC 5.99 18.12

4 SoC 7.96 24.47

5 SoC 9.98 30.12

6 SoC 11.99 36.59

7 SoC 13.99 42.24

8 SoC 15.97 45.33

Figure 3.8: Characteristics in Trade-off between FC and TDV reduction

65

Figure 3.8 illustrates the trend in the trade-off relationship between fault cov-

erage and test data volume bits. On the X-axis, we have the degree of compromise

in fault coverage, while the Y-axis represents the savings in TDV resulting from

this compromise in fault coverage.

3.5.4 Comparison of our Method with Others Methods

To the best of our knowledge, there has not been prior research specifically ad-

dressing incomplete testing, which is the central focus of our study. Previous

investigations have predominantly relied on compression and compaction tech-

niques to reduce TDV. However, in Table 3.5 and Table 3.6, we have compared

our approach with results from compression techniques documented in [149]. It

is important to note that while these compression techniques may excel in lower-

ing TDV, they come with significant trade-offs. Implementing compression and

decompression circuits or software introduces complexity and additional resource

demands into the testing process. Furthermore, the compression and decom-

pression procedures introduce extra time overhead due to encoding and decoding

operations, which may not be suitable for time-sensitive applications. In con-

trast, our proposed method offers a cost-efficient and streamlined solution for

TDV reduction without requiring any hardware or software overhead.

Table 3.5: Comparison for reduction in TDV with other compression techniques

(Huffman) (LZW) (ACB) Hybrid test
Reduction
in TDV%
(Our schme)

c880 63.96 62.63 56.85 69.78 11.67
c2670 62.73 62.29 58.21 66.03 11.59
c7552 56.71 55.83 51.74 59.53 9.18

66

Table 3.6: Comparison for reduction in TDV with compression techniques

Overhead Cost Effective Time
Compression Techniques Yes High More High
Incomplete
testing
(our method)

No Low Less Low

3.6 Conclusion and Future Work

In conclusion, this chapter presented an Incomplete Testing technique to minimize

TDV and the number of input bits for cores while accepting a certain compromise

in FC. The results demonstrate that, with a 5% compromise in FC, the input bits

for each core are reduced by an average of approximately 14%. This approach is

particularly beneficial for testing larger SoC designs that consist of a significant

number of cores, where exhaustive testing becomes impractical. The proposed

method offers a cost-effective and efficient solution for incomplete testing of SoCs

without requiring any hardware overhead.

In the future, this work can be extended to address the reduction of TAT

and the optimization of TP. By incorporating further optimization techniques, it

may be possible to achieve not only reduced TDV but also shorter TAT and TP.

These advancements would contribute to enhancing the overall testing process

and further optimize the testing parameters of complex SoCs.

67

68

Chapter 4
TAT Aware Incomplete Testing

4.1 Introduction

In the preceding chapter, a Heuristic Incomplete Testing Methodology for SoC

is proposed. Our primary objective remains achieving high-quality SoCs while

concurrently minimizing testing parameter TDV.

It’s worth noting that in addition to TDV, TAT plays a crucial role. When

it comes to testing larger SoCs using traditional methods, accuracy is assured,

but sometimes the time required exceeds expectations, making it impractical.

The test duration for larger SoCs is influenced by several factors, including the

growing number of cores in modern SoCs and the transmission of test vectors

from external pins to these cores. This transfer of test data occurs either from

external pins to the cores or vice versa through test buses. To optimize the

speed of test data access, it is essential to efficiently allocate cores to test buses,

considering the various possible combinations. Selecting the optimal core and

test bus allocation is pivotal for achieving swift test data access.

Conventional methods that take TAT into account have shown accuracy, but

they often come with downsides such as excessive stringency, sluggishness, and

high costs, particularly when applied to larger SoCs. In this study, we propose an

efficient method for core-to-bus allocations, with a specific focus on optimizing

TAT. Furthermore, for incomplete testing of SoCs, a set of equations is required

69

to compute TAT, and some adjustments are necessary to adapt these equations

to the context of incomplete testing. In summary, this study proposes an efficient

method for core-to-bus allocation. Additionally, it presents modified equations

to compute TAT for incomplete testing. This approach addresses the challenges

of testing advanced SoC designs, particularly in deep sub-micron technology.

4.2 Incomplete Testing

Chapter 3 introduces a method for incomplete testing, presenting a “PSO-based

LSTB Detector” designed to identify and sustain the required fault coverage.

After detecting these LSTBs, they are excluded from the full test vector set to

create a specific test vector set for further incomplete testing.

Within the context of a “PSO-based LSTB Detector”, it is possible to incor-

porate a fitness function pertaining to TAT as shown in Figure 4.1. After the

elimination of LSTBs, a modified set of test vectors is obtained, which is intended

for incomplete testing. However, it is crucial to note that before TAT can be cal-

culated and applied as the fitness function for incomplete testing, an optimal

assignment of the SoC core to the test bus must be established in order to min-

imize TAT. The subsequent section outlines a method designed to achieve this

optimal assignment, followed by subsequent sections that delve into the concept

of TAT-aware incomplete testing and proposed modifications in TAT equations

resulting savings in TAT.

4.3 Problem Statement

Consider a SoC provided with NC cores and NB test buses, each featuring distinct

widths denoted as w1, w2, ..., wNB
. Propose a method for the assignment of cores

to test buses in order to optimize the TAT.

70

Figure 4.1: Flow Diagram for TAT Aware Incomplete Testing of SoC

71

4.4 Proposed Method

The assignment of cores to test buses plays a crucial role in the TAT calculation.

If cores are allocated in such a way that minimizes TAT, then the overall TAT

for the entire SoC will also be minimized. Consequently, there is a need for a

method that can optimize the distribution of cores to test buses to minimize TAT

for each core and the entire SoC.

Various combinations of core-to-test-bus assignments are possible, especially

in larger SoCs. Using a brute force approach to search for the ideal core-to-test-

bus assignments for all cores and the entire SoC would be time-consuming and

impractical some times. So a heuristic-driven technique is proposed here to ef-

ficiently allocate the available test buses to the cores. The primary objective is

to attain a well-balanced distribution that reduces the TAT while making sure

that resources are utilized effectively. This heuristic method factors in the width

of each test bus and the computational workload of individual cores, resulting

in a practical and efficient strategy for assigning test buses. To assess the effec-

tiveness of this proposed method, an integer PSO algorithm has been developed

to compute the TAT for the designated test bus assignment. The integer PSO

method systematically explores potential solutions to identify the optimal test bus

assignment that minimizes the TAT, taking into consideration test constraints.

The proposed PSO model is given as following.

4.4.1 Particle Structure

In the integer PSO model, a particle is represented as an NC-bit array, where NC

is the number of cores embedded in the SoC. Each element in the array is filled

with an integer value ranging from 1 to NB, where NB represents the number of

test buses available. It can be understood by example given below.

72

Figure 4.2: Sample SoC

Figure 4.3: Particle Structure

4.4.2 Calculation of TAT

Assume that an SoC is depicted in Figure 4.2. Within this SoC, there are eight

cores, specifically labeled as core 1, core 2, core 3, core 4, core 5, core 6, core 7,

and core 8, along with two test buses given as Test Bus 1 and Test Bus 2.

In this particular example, the particle arrangement signifies how test buses

are distributed among the cores within the SoC. Each rectangular section in the

array represents a core, and the number enclosed within each block corresponds

to the assigned test buses. In Figure 4.3, the presence of a ’2’ in the first block p1

of the array signifies that test bus 2 has been assigned to core 1. Likewise, test

bus 2 is designated for cores 1, 5, and 6, while test bus 1 is distributed among

cores 2, 3, 4, 7, and 8.

73

4.4.3 Population Size

In the proposed integer PSO approach, the initial population size is set to 50 for

the experiments. The particles in the population are initialized randomly, with

each element of the particle having a value between 1 and NB, where NB is the

number of test buses.

As the PSO process proceeds, the bits xi of each particle are updated using

the following equations based on Kennedy and Eberhart’s discrete PSO [143]:

Vid = Vid + ϕ(Pid − xi) + ϕ(Pgd − xi){
xi = 1, if (rand() < S(Vid))

0, otherwise

(4.1)

where

Vid represents the velocity of the i-th bit of the d-th particle in the popula-

tion.

ϕ is a random parameter used to control the velocity update.

Pid represents the best position (bit value) of the i-th bit for the d-th par-

ticle, which is its personal best.

Pgd represents the best position (bit value) of the i-th bit among all particles

in the population, which is the global best.

xi denotes the current value of the i-th bit for the particle.

rand() generates a random value between 0 and 1.

S(Vid) is a sigmoid function that maps the velocity to a probability of

updating the bit to 1. If the sigmoid result is greater than a random value

between 0 and 1, the bit is set to 1; otherwise, it is set to 0.

74

These equations control how each particle’s bits are updated during the opti-

mization process, aiming to find an optimal allocation of test buses to cores that

minimizes the TAT.

4.4.4 Fitness Function

The fitness function assesses the TAT for every core’s assignment to a test bus,

taking into account the most unfavorable situation of linking test bus lines to core

pins. It subsequently totals these TAT values for all the cores. The objective is to

reduce the overall TAT by optimizing the allocation of cores to test buses through

the PSO optimization procedure.

4.5 Incomplete Testing and Reduction in TAT

TAT is the total time taken to test an SoC. To calculate the TAT for the entire

SoC, we first determine the TAT for each individual core based on its assigned

test bus. These individual cores TAT values are then aggregated.

4.5.1 Problem Statement

Consider a SoC provided with NC cores and NB test buses, each featuring distinct

widths denoted as w1, w2, ..., wNB
. Propose modified equations to compute TAT

for incomplete testing and analyze the impact of incomplete testing on minimizing

TAT.

4.5.2 Proposed Modified TAT Equations for Incomplete
Testing

Considering, the most pessimistic scenario outlined in [100], wherein all the wj−1

lines within a test bus (j) are linked in parallel to wj−1 core pins, while the final

line in the test bus connects serially to ψi − wj + 1 core pins. In this context, ψi

signifies the greater value between the number of inputs (mi) and outputs (ni)

for core i.

75

Standard Equations to Compute TAT

For the computation of TAT (Tij) associated with a core (i) assigned to a test

bus (j), the following formulas from references [150] and [102] are employed:

Tij =

{
ti, if (ψi ≤ wj)

ti ∗ (ψi − wj + 1), if (ψi > wj)
(4.2)

where

ti is the test time for core i.

For Combinational Cores:

ti = pi (4.3)

For Sequential Cores :

ti = (pi + 1) ∗ fi/Ni + pi (4.4)

where

pi is the number of test patterns

fi is the number of clock cycles required for testing core i

Ni is the number of clock cycles between two consecutive patterns for ith

core.

Proposed Modified Equations to Compute TAT

It is already defined that ψi denotes the greater value between the number of

inputs (mi) and outputs (ni) for core i.

ψi =

{
mi, if(mi > ni)

ni, if(mi < ni)
(4.5)

In the context of incomplete testing, if we remove “L” number of LSTBs from

the input bits of test vectors, the number of input bits will change to mi − L,

76

while the output remains unchanged. The value of ψi depends on the values of

mi and ni If mi is greater than ni, then ψi is equal to mi−L and if mi is less than

ni, then ψi is equal to ni. Formally it can be represented by following equations.

ψi =

{
mi − L, if(mi > ni)

ni, if(mi < ni)
(4.6)

This equation of ψi is included in standard TAT Equation 4.2. Hence the final

modified equation to compute the TAT will be

Tij
incomplete

=


ti, if(ψi ≤ wj)

ti ∗ ((mi − L)− wj + 1), if(ψi > wj)and(mi > ni)

ti ∗ (ni − wj + 1), if(ψi > wj)and(mi < ni)

(4.7)

where

Tij
incomplete

signifies the TAT associated with a collection of test patterns

used for partial SoC testing, and this TAT is contingent upon the values of

ti, ψi, and wj.

If ψi ≤ wj, then Tij
incomplete

is equal to ti.

If ψi > wj and mi > ni, then Tij
incomplete

is given by ti ∗ ((mi−L)−wj +1).

If ψi > wj and mi < ni, then Tij
incomplete

is given by ti ∗ (ni − wj + 1).

Projected Reduction in TAT for Incomplete Testing

The exact savings in TAT can be determined by calculating the difference between

the proposed modified TAT Tij
incomplete

as illustrated in equation 4.7 and the

standard TAT as depicted in equation 4.2. This savings is denoted as (Sij) and

can be formally expressed in the following equation 4.8.

Sij =


Zero, if(ψi ≤ wj)

ti ∗ ((L)− wj + 1), if(ψi > wj)and(mi > ni)

Zero, if(ψi > wj)and(mi < ni)

(4.8)

77

where

Sij depends on the values of ti, L, and wj.

If ψi ≤ wj, the net reduction is “Zero,” meaning there is no reduction in

TAT.

If ψi > wj and mi > ni, the net reduction is given by ti ∗ ((L)− wj + 1).

If ψi > wj and mi < ni, the net reduction is “Zero,” meaning there is no

reduction in TAT.

4.6 Experimental Results

In experimental study involved the generation of test patterns for benchmark

circuits from ISCAS 85 and ISCAS 89 using the Atalanta-M tool. The assessment

of fault coverage was carried out through the utilization of the HOPE simulator.

Our proposed test vector minimization technique, which is based on PSO, was

implemented using the C++ programming language.

The experiments were conducted on three distinct SoCs denoted as S1, S2,

and S3. SoC S1 primarily consists of combinational cores, while SoC S2 combines

both combinational and sequential cores. SoC S3, on the other hand, serves as

a reference for comparing the results with conventional testing methods. This

comprehensive approach allowed for the evaluation of the effectiveness of the

PSO-based test vector minimization technique across different SoC architectures,

providing valuable insights into its performance and potential benefits in com-

parison to traditional testing methodologies.

78

4.6.1 SoC with Combinational Cores

Figure 4.4: SoC S1

Table 4.1 presents our findings regarding the scheduling of cores within SoC S1

shown in Figure 4.4, along with the calculated TAT for various combinations of

test bus width distributions. During this analysis, a modified test vector set was

employed for incomplete testing.

In the second row and first column of Table 4.1, we observe a total bus width

of 48. Moving on to the second column (row 2), it illustrates the distribution of

bus width between the two cores, denoted as “1,47,” signifying that test bus 1

possesses a bus width of 1, while test bus 2 holds a width of 47.

Furthermore, in the third column (row 2), we encounter the optimal assign-

ment of test buses to the cores, represented as “111121.” This allocation indicates

that test bus 1 is assigned to cores 1, 2, 3, 4, and 6, while test bus 2 is exclusively

assigned to core 5.

Lastly, in column 5 of the same row, we find the TAT value for complete

testing without the removal of LSTBs. These insights collectively contribute to

79

our comprehensive understanding of the test bus allocation and its impact on the

overall testing process for SoC S1.

Table 4.1: TAT for complete testing

Bus width
Bus width

distribution
Optimal assignment

TAT for
complete testing

(cycles)
48 1,47 111121 19261
48 4,44 111121 19570
48 8,40 111121 19982
48 13,35 111121 20497
48 16,32 111121 20806
48 20,28 222212 21218
48 24,24 111121 21630

Similarly Table 4.2 represent experimental results for the incomplete testing

on SoC S1.

Table 4.2: TAT for incomplete testing

Bus width
Bus width

distribution
Optimal assignment

TAT for incomplete
testing
(cycles)

48 1,47 222122 7310
48 4,44 222122 7055
48 8,40 122121 7669
48 13,35 221122 8215
48 16,32 112122 8326
48 20,28 222212 8652
48 24,24 211121 8366

Table 4.3 presents a comparison of results for TAT between complete and

incomplete testing, revealing a noteworthy reduction in TAT. In the case of a

bus width distribution of (4,44), the savings reach as high as 63.94%. Similarly,

for various other distributions, the savings remain substantial, averaging around

60%, which is a significant outcome.

80

Table 4.3: Comparison between complete testing and incomplete testing

Bus width Bus width

TAT for
complete
testing
(cycles)

TAT for
incomplete
testing
(cycles)

Saving %

48 1,47 19261 7310 62.04766
48 4,44 19570 7055 63.94992
48 8,40 19982 7669 61.62046
48 13,35 20497 8215 59.92096
48 16,32 20806 8326 59.9827
48 20,28 21218 8652 59.2233
48 24,24 21630 8366 61.32224

4.6.2 SoC with Sequential Cores and Combinational Cores

Figure 4.5: SoC S2

The experiments are carried out using the SoC denoted as S2, which is depicted

in Figure 4.5. SoC S2 is comprised of 3 combinational cores, namely c880, c2670,

and c7552, as well as 5 sequential cores, which are s953, s1196, s1238, s5378, and

s9234, in addition to two test buses. The number of inputs for the cores c880,

c2670, and c7552 are 60, 233, and 207, respectively, while the inputs for the cores

s953, s1196, s1238, s5378, and s9234 are 45, 32, 32, 214, and 247, respectively.

81

Table 4.4: Optimal Assignment and Reduction in TAT for 5% compromise in FC

Compromise in Fault Coverage 5 %

SoC
Bus

Width
Dist.

Opt Assignment
Complete
Testing

TAT
Complete

Testing (Cycles)

Opt Assignment
Incomplete
Testing

TAT
Incomplete

Testing (Cycles)
TAT↓(%)

S1 48 1,47 1 2 2 2 2 2 2 1 96074 2 2 2 2 2 2 2 1 89250 7.1
S1 48 4,44 1 2 2 1 2 2 2 1 97244 2 2 2 2 2 2 2 1 88179 9.32
S1 48 8,40 1 2 2 1 1 2 2 1 99358 2 2 2 2 2 2 2 1 89085 10.34
S1 48 13,35 1 2 1 1 2 2 1 2 97901 1 2 2 1 2 2 2 1 90660 7.4
S1 48 16,32 1 2 1 1 2 1 1 2 99131 1 2 2 1 1 2 2 1 91568 7.63
S1 48 18,30 1 2 1 1 1 1 1 2 99909 1 2 2 1 1 2 2 1 92696 7.22
S1 48 20,28 1 2 1 1 1 1 1 2 100829 1 2 2 1 1 2 2 1 93824 6.95
S1 48 22,26 1 2 1 1 1 1 1 2 101749 1 2 2 1 1 2 2 1 94952 6.68

The allocation of cores to test buses plays a pivotal role in the calculation of

TAT. Therefore, the method proposed in Section 4.4 is employed to optimize the

distribution of cores across test buses, aiming to minimize the TAT for each core

and the entire SoC. Both test buses are allocated to 8 cores in order to minimize

the overall TAT for the entire SoC. The primary goal is to achieve a well-balanced

distribution that reduces TAT while ensuring efficient resource utilization. The

integer Particle Swarm Optimization method systematically explores potential

solutions to identify the optimal assignment of test buses that minimizes TAT.

These experiments encompass various compromise in FC and test bus widths.

Table 4.4 comprises 8 columns and 10 rows. Row 1 shows the compromise

in fault coverage for incomplete testing which is 5% for the first table. Row 2

describes the parameters. In column 2, the total bus width is specified as 48.

Column 3 displays the distribution of the total bus width to both test buses. For

instance, row 2, column 3 shows that the total bus width of 48 is distributed

between the two test buses, with the first test bus having a width of 1 and the

second test bus having a width of 47.

Row 3, column 4 delineates the core-to-test bus assignment, denoted as “1 2

2 2 2 2 1” indicating that test bus 1 is assigned to core 1 and core 8, while test

bus 2 is assigned to core 2, core 3, core 4, core 5, core 6, and core 7. Column

5 indicates the TAT in cycles, and for row 3, column 5, the TAT is recorded as

96074 cycles.

82

Figure 4.6: TAT Characteristics

Similarly, row 3, column 6 displays the optimal assignment for incomplete test-

ing, where LSTBs are removed from the test vectors. Row 3, column 7 reveals the

TAT cycles for incomplete testing, which amounts to 89250 cycles, representing

a 7.1% reduction compared to the TAT for complete testing of the SoC.

Column 8 shows the percentage savings achieved through our optimal as-

signment in incomplete testing. When the test bus distribution is set at 8, the

maximum saving in TAT is observed at 40, amounting to 10.34%. As depicted in

Figure 4.6, it is evident that the TAT has been consistently reduced across various

distributions and optimal assignments, leading to a remarkable enhancement in

performance. In Figure 4.6, the dotted line represents the TAT curve for SoC S2,

where each core is equipped with all the input bits. Conversely, the continuous

curve illustrates the TAT curve for SoC S2 when utilizing modified test patterns

specifically designed for incomplete testing. Graph in this figure clearly shows

the reduction in TAT. The results clearly demonstrate the effectiveness of our

approach in achieving reduced TAT values and optimizing the performance of

SoC S2.

83

Figure 4.7: SoC S3

4.6.3 Comparison with Other Methods

To make a comparison with the conventional methods, experiments are conducted

on the SoC S3 as described in [102], as illustrated in Figure 4.7. This comparison

involved utilizing all the bits found in the test vectors. The detailed comparative

analysis can be found in Table 4.5.

SoC S3 consists of 2 combinational cores, namely c6288 and c7552, along with

6 sequential cores, namely s838, s9234, s38584, s13207, s15850, s5378, s35932, and

s38417, in addition to two test buses. Table 4.5 consists of 8 columns and 10 rows.

The first row provides information on the fault coverage compromise, which is

5% in the initial table. Row 1 serves as an introduction to the parameters being

discussed. In column 2, the total bus width is explicitly stated as 48. Column 3

demonstrates how this total bus width is divided between the two test buses. For

example, in row 3, column 3, it is shown that the total bus width of 48 is divided

between the two test buses, with the first test bus having a width of 4 and the

84

Table 4.5: Comparison between proposed method and other method

SoC Width Distribution
Other Method Proposed Incomplete Method Redcution

in TAT %Op. Assignments TAT (Cycles) Op. Assignment TAT (Cycles)
S2 48 1,47 2,2,2,2,1,2,2,2,1,2 1966608 2,2,2,2,1,1,2,2,1,2 1780617 9.46
S2 48 4,44 1,1,2,2,1,2,2,2,1,2 2018027 1,1,1,2,1,2,2,2,1,2 1755330 13.02
S2 48 8,40 1,1,1,2,1,2,2,2,1,2 2117313 1,2,1,2,1,2,2,2,1,1 1789716 15.47
S2 48 13,35 1,2,2,2,1,2,2,2,2,1 2116179 2,1,1,1,1,2,2,1,1,1 1795752 15.14
S2 48 16,32 1,1,1,2,1,2,2,2,2,1 2170347 1,2,1,2,1,2,1,2,1,2 1699795 21.68
S2 48 18,30 1,1,2,2,1,2,1,2,2,2 2174091 2,1,1,2,1,2,1,1,1,1 1889754 13.08
S2 48 20,28 2,1,2,1,1,2,2,2,2,1 2204425 1,2,1,1,1,2,1,2,2,2 1876761 14.86
S2 48 22,26 2,1,1,1,1,2,2,2,2,1 2212916 1,1,1,1,1,2,2,1,2,1 1980979 10.48
S2 48 24,24 1,1,1,1,2,1,2,2,1,1 2213412 2,1,1,2,1,1,1,1,1,2 1879809 15.07

second test bus having a width of 44.

Row 3, column 4 outlines the assignment of cores to test buses, represented

as “1 1 2 2 1 2 2 2 1 2” indicating that test bus 1 is assigned to cores 1, 2, 5,

and 9, while test bus 2 is assigned to cores 3, 4, 6, 7, and 8. Column 5 provides

the TAT in cycles, and in row 3, column 5, the TAT is documented as 2018027

cycles.

Likewise, row 3, column 6 illustrates the optimal assignment for incomplete

testing, where LSTBs are excluded from the test vectors. Row 3, column 7

displays the TAT cycles for incomplete testing, amounting to 1755330 cycles,

representing a 13.02% reduction compared to the TAT for complete testing of

the SoC.

Column 8 presents the percentage savings achieved through our optimal as-

signment in incomplete testing. When the test bus distribution is set to 4, the

maximum savings in TAT are observed at 44, constituting a 21.68% reduction.

4.7 Conclusion and Future Work

In this chapter, we carried out an examination of the TAT in the context of

incomplete testing. Our research findings revealed that by accepting a 5% com-

promise on fault coverage, we were able to achieve a reduction of 10% in TAT.

Subsequently, we compared these results with the outcomes of existing methods

for large SoC designs, where we also observed a significant reduction in TAT.

85

The balance between maintaining fault coverage and realizing resource savings

proves to be advantageous, particularly in the realm of testing larger and more

complex SoCs.

86

Chapter 5
TP Aware Incomplete Testing

5.1 Introduction

Chapter 3 introduces a Heuristic Incomplete Testing Methodology for optimizing

TDV, followed by Chapter 4 where Incomplete Testing is extended to optimize

TAT and assign cores to test buses, aiming to minimize TAT. Further modifi-

cations to TAT equations are made for Incomplete Testing of SoCs. Traditional

methods that consider TP and TAT constraints are known for their accuracy

but often suffer from excessive stringency, sluggishness, and high costs, especially

when applied to larger SoCs.

This chapter extends the Incomplete Testing technique to minimize Test

Power Consumption (TP). Additionally, a customized TAM architecture is in-

troduced to support the incomplete testing approach, playing a crucial role in

facilitating access to various SoC components for testing purposes. Optimizing

the TAM design is crucial for enabling efficient and effective Incomplete Testing

while concurrently reducing TP.

In summary, this chapter offers a fresh perspective on SoC testing, with a

specific focus on TP. By combining incomplete testing with a well-optimized

TAM architecture, it presents a practical and efficient solution for testing mod-

ern, densely integrated SoCs. This proposed approach holds significant potential

in addressing the challenges associated with testing advanced SoC designs, par-

87

ticularly in deep sub-micron technology.

5.2 Incomplete Testing

Chapter 3 introduces a method for incomplete testing, presenting a “PSO-based

LSTB Detector” aimed at identifying and preserving the necessary fault coverage.

These detected LSTBs are then removed from the complete Test Vector Set,

resulting in a specific test vector set tailored for subsequent Incomplete Testing.

The utilization of a “PSO-based LSTB Detector” allows for the incorporation of

a fitness function related to TP, as illustrated in Figure 5.1. Once the LSTBs are

excluded, a modified set of test vectors is obtained for the purpose of incomplete

testing. It’s important to note that the calculation and application of TP as

the fitness function for incomplete testing require certain equations, which are

detailed in the subsequent section.

Furthermore, the chapter proposes a TAM architecture to support incomplete

testing and achieve savings in terms of TP. This integrated approach offers a

systematic and efficient way to identify and address test vectors with limited

fault coverage, ultimately contributing to more streamlined testing procedures in

the context of the PSO-based LSTB detector and TAM architecture.

5.3 Calculation of TP

The concept of assessing TP can be more clearly illustrated through the example

presented in Figure 5.2. In this example, the procedure involves the sequential

application of test vectors (0, 1, 0) and (1, 1, 0), resulting in a total of 5 tran-

sitions, which are represented as circles. These transitions occur when there are

changes in signal values between consecutive elements in the test vectors. Fol-

lowing the insertion of the test vector (1, 1, 0), the wrapper cells w1, w2, and

w3 assume the values 1, 1, and 0, respectively. These wrapper cells act as an

interface between the core terminals and the test input/output. Subsequently,

88

Figure 5.1: Flow Diagram for Incomplete Testing of SoC

89

Figure 5.2: Computation of transitions in wrapper cells

[151]

when the next test vector (0, 1, 1) is shifted into the wrapper chain, it leads to 2

additional transitions. This entire process demonstrates how transitions and the

values of wrapper cells are computed based on the specific test vectors employed.

5.3.1 Standard Equations to Compute TP

This study primarily emphasizes the input wrapper chain, with a specific exclu-

sion of the internal scan flip-flops and output wrapper cells. The test vectors

are applied to the input wrapper chain using various modes, including parallel,

sequential, or a combination of both parallel and serial modes.

Parallel Transition:

For the bits that are applied in parallel to the wrapper chain, the bit flips

are directly calculated by comparing the change in previously stored values

in flip-flops after shifting the next test vector. This means that the new

values (y1, y2, y3, ..., yn) of the test vector are applied to the existing values

(x1, x2, x3, ..., xn) of the wrapper chain in parallel. The bit flips are simply

the result of the EX-OR operation between the old and new values of each

corresponding bit.

90

Figure 5.3: Transitions while shifting test vectors

[151]

Serial Transition:

To calculate transitions for the bits that are shifted serially into the wrapper chain,

the transition matrix equations, as detailed in the reference [151], are employed.

These equations consider the changes in bit values between test vectors during

the serial shifting process. The transition matrix equations offer a systematic

method for determining the number of bit flips that occur when test vectors are

serially shifted.

The equations required for computing TP are derived in the work referenced

in [151]. Let’s consider an SoC with a wrapper chain containing initial values

filled by the input test vector X1, X2, . . . , Xn, and the next vector to be shifted in

serially is represented as Y1, Y2, . . . , Yn, as illustrated in Figure 5.3. It is assumed

that the number of wrapper cells (flip-flops) in the wrapper chain is the same as

the number of bits to be shifted. To determine the number of transitions, an n×n

91

transition matrix, denoted as T(X, Y), is defined according to the reference [151].

T (X, Y) =

 t11 ... t1n
: :
tn1 ... tnn

 (5.1)

where

tij= 1 if transition occurs in jth wrapper cell in ith clock cycle.

tij = 0 Otherwise.

.

Finally total number of transitions (trtotal) can be calculated by summing all

the components of transition matrix and is shown in equation 4.10 as follows.

trtotal =
n∑

i=1

n∑
j=1

tij (5.2)

where

t11 = X1⊕Yn which shows that diagonal elements in Figure 4.5 are identical.

t1j = Xj−1 ⊕Xj if(1 < j ≤ n)

ti1 = Yn−i+2 ⊕ Yn−i+1 if(1 < i ≤ n)

tij = t(i−1)(j−1) if(1 < i, j ≤ n) This shows that

Symbol ⊕ represents the EX-OR operation, which is applied to elements in

the test vectors when calculating transitions.

In summary, when applying test vectors in parallel, bit flips are directly calcu-

lated based on the EX-OR between old and new values. For test vectors shifted

serially, the transitions are calculated using the transition matrix equation 4.10

to account for the changes in signal values during the shifting process.

92

5.4 Problem Statement

Considering an SoC equipped with NC cores and NB test buses, each having dif-

ferent widths represented by w1, w2, ..., wNB
. Propose a TAM and assess how

incomplete testing affects TP coverage.

5.5 Proposed TAM Architecture

The 1500 standard addresses Design for Testability (DFT) and communication

challenges in core-based testing. It enables reuse of DFT and patterns, integrating

DFT logic, and improving communication between core providers and users. It

uses TAMs for data transfer and adapts bandwidth with core wrappers. The

standard employs IEEE Std. 1450.6 for communication, accommodating various

DFT strategies. The IEEE 1500 group aims to optimize core-based testing at

the SoC level, supporting diverse testing needs with standardized core wrapper

components and Core Test Language (CTL) requirements.

5.5.1 The IEEE 1500 Wrapper Architecture

A wrapper is DFT logic added to a core for interfacing with the SoC-level TAM af-

ter core integration. It adapts bandwidth between TAM and core, isolates the core

and surrounding logic, and supports various test data and control mechanisms for

different core testing needs.There are 1500 wrapper hardware components sup-

porting various functions for embedded core testing. Figure 5.4 illustrates these

components.

The WIR plays a crucial role in initiating various test operations within the

1500 wrapper. It accomplishes this by configuring the wrapped core into the spe-

cific mode required for each test. The type of test to be performed is determined

by an instruction loaded into the WIR, which is then decoded by pre-designed

circuitry. This decoding process generates various control signals that set up the

wrapper components for the intended test.

93

Figure 5.4: IEEE 1500 wrapper core design

[152]

The Wrapper Boundary Register (WBR), on the other hand, serves as a data

register within the wrapper, facilitating access to the core’s input and output

terminals. The WBR is essentially a collection of 1500 compliant wrapper cells,

with each cell corresponding to a unidirectional core terminal.

It’s important to note that the 1500 architecture allows for the creation of

user-defined wrapper data registers in addition to the WBR, without replacing

it.

The plug-and-play nature of the 1500 wrapper simplifies the process of con-

necting multiple 1500 wrapped cores at the SoC level, making it a convenient and

efficient solution.

As a result of these features and capabilities, the 1500 wrapper provides a

robust and versatile framework for testing and integrating multiple cores within

an SoC.

94

Figure 5.5: WBY internal structure

[152]

5.5.2 WBY

WBY is a critical element of the 1500 wrapper, designed specifically for bypassing

other WDRs. It plays a vital role within the 1500 wrapper architecture. When

connecting multiple 1500 wrapped cores in a serial manner, it is possible that the

test data intended for a particular core may have to pass through one or more

other cores before reaching its destination. If we did not have theWrapper Bypass

Register (WBY), this would mean that the data would have to be sequentially

shifted through every WBR chain that lies along the path from the SoC inputs to

the target wrapper. In such a situation, the WBR would be the only mandatory

data register within the wrapper. This could result in a bottleneck and longer

test times directly proportional to the number of WBR chains that need to be

traversed. The purpose of the WBY is to offer a shorter path through each 1500

wrapper, thus avoiding the need to unnecessarily navigate through lengthy data

registers.

The WSI is connected to the D port of the example WBY, while WRCK is

connected to the CLK port. The output of this connection must feed into WSO.

These three WSP signal connections are depicted in Figure 5.5.

The 1500 wrapper clock (WRCK) serves as a specialized terminal within the

WSP, offering clock functionality to all 1500 wrapper elements. This dedicated

wrapper clock enables the simultaneous execution of test wrapper tasks, like the

preload operation, alongside the core’s functional operations.

95

Figure 5.6: WRCK waveform

[152]

The 1500 Wrapper Clock (WRCK) operates as a specialized terminal within

the WSP, providing clock functionality to all components within the 1500 wrap-

per. This dedicated clock allows for the concurrent execution of test wrapper

operations, such as the preload operation, alongside the core’s functional oper-

ations. Figure 5.6 illustrates the timing parameters related to the WRCK sig-

nal, including tckwh (high pulse width of WRCK) and tckwl (low pulse width of

WRCK).

5.5.3 WS−BY PASS Instruction

The 1500 standard comprises three mandatory instructions, one of which is

WS−BY PASS. This instruction is essential and serves two distinct purposes.

Firstly, it allows the core to function in its normal or functional mode by by-

passing the WBR. During this instruction, the path from WSI to WSO through

WBY is typically not used. Secondly, WS−BY PASS is employed to bypass the

WBR, reducing the length of the Wrapper Data Register (WDR) during a test

mode.

WS−BY PASS is considered the default instruction and is automatically set

in the WIR during the core’s reset using WRSTN. When WRSTN is disabled, all

signals transmitted from the WIR to the core, WBR, and WBY must transition

the core and WBR into functional mode while routing the WBY into the path

from WSI to WSO.

96

5.5.4 Proposed TAM for Incomplete Testing

Based on the preceding discussion, it can be inferred that the WBY operates in

two distinct modes:

1. Bypass Mode: In this mode, the WBY allows theWS−BY PASS instruc-

tion to pass through the WIR, permitting input data to flow transparently

without any alterations. Essentially, it acts as a direct conduit for data

transfer within the chain.

2. Storage Mode: Conversely, the WBYs have the capability to store input

data and facilitate its movement within the chain. This mode enables serial

data shifting, enabling controlled data movement throughout the chain.

During the process of incomplete testing for the SoC, specific bits are in-

tentionally excluded, and particular input pins of the cores are left untested, in

accordance with the customized testing requirements established by application-

specific users. Each core may undergo varying degrees of incomplete testing, re-

sulting in the inability to remove the WBR attached to untested pins. To address

this requirement, we propose the implementation of a TAM architecture that en-

ables programming instructions to either disable a WBR for the corresponding

pin or allow data to bypass that input pin. To realize this functionality, we pro-

pose a modification in IEEE 1500 TAM where the WBRs associated with the

input pins within the core’s wrapper will be replaced with WBYs, as illustrated

in Figure 5.7. The operation and control of these WBY elements are facilitated

through the utilization of the WS−BY PASS instruction specified in IEEE 1500,

in conjunction with the WRCK clock signal. A specific program within the con-

text of the Test CTL can be formulated to cater to distinct test prerequisites,

enabling the precise manipulation and control of the WBYs in accordance with

the specified requirements. This concept can be elucidated further through the

following illustrative example in Figure 5.10.

In Figure 5.10 there is one core with 14 input pins and a test bus with 4 bus

97

Figure 5.7: IEEE 1500 Design for Incomplete Testing

lines. Consider a pessimistic scenario, all but one of the bus lines are connected

in parallel to the input terminals of the core. so out of four lines 3 bus lines are

connected in parallel to input pins P1, P2 and P3 and one bus line is connected

serially to all the other input pins P4 to P14. However, the last bus line is con-

nected serially to the remaining input terminals of the core. This configuration for

the proposed TAM can be visually represented in Figure 5.6. In this illustration,

a core features 14 input pins, which are connected to WBYs W0,W1, . . . ,W14.

Additionally, a test bus is depicted, and this wrapper chain allows the test bus

access to the input pins of the SoC.

Consider the scenario where a test vector denoted as b1, b2, b3, b4, b5, b6, b7, b8, b9,

b10, b11, b12, b13, b14 is being applied to the input pins of cores P1, P2, P3, P4, P5,

P6, P7, P8, P9, P10, P11, P12, P13, and P14 through the use of WBRs W1, W2,

W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, and W14, as depicted

in Figure 5.8.

In the proposed TAM model tailored for incomplete testing, all the WBRs

98

Figure 5.8: TAM architecture with WBY Normal Mode

Figure 5.9: TAM architecture with WBY Bypass Mode

Figure 5.10: Proposed TAM architecture

99

have been replaced with WBYs, as clearly depicted in Figure 5.9. In the context of

incomplete testing, consider a test vector b1,−, b3, b4, b5,−, b7, b8, b9, b10, b11, b12, b13,
b14, which is derived by omitting the LSTBs. This test vector is then applied to

the input pins of the cores, as shown in Figure 5.9. When test bits are applied

to the core’s input pins, these WBYs operate in storage mode. However, in

case of incomplete testing where certain bits in corresponding columns in all test

vectors within the test set will be removed, the corresponding WBY for that spe-

cific pin switches to Bypass mode using Wrapper Clock Terminal (WRCK) and

WS−BY PASS instruction in CTL. As the test vector is inserted sequentially,

these transparent WBYs actively redirect the test bit to bypass the affected

test pins, ensuring that the test bit proceeds to the next WBY in the sequence,

thereby effectively maintaining the integrity of the testing process.

To be more specific, in the illustrated example of incomplete testing in Figure

5.9, no test bit will be applied to the input pins of P2 and P6 in the core.

Consequently, WBYs W2 and W6 will operate in Bypass mode, allowing them

to remain transparent to input bits. All other WBYs, except W2 and W6, will

continue operating in storage mode.

5.5.5 Incomplete Testing and Reduction in TP

TP, which measures the number of transitions between 1 and 0 and vice versa,

plays a pivotal role in evaluating power consumption during the testing phase of

SoC devices. It relies on counting transitions occurring in different aspects of the

testing process, encompassing scan chains, wrapper cells, and the manipulation

of test vectors at input and output pins. The significance of TP lies in its direct

correlation with power consumption during testing, making it a crucial metric

for power-constrained devices and environments. Reducing TP is essential to

minimize power consumption, emphasizing the need to optimize test vectors and

testing methodologies for both efficient testing and reduced power consumption.

This reduction in TP is achieved through two primary mechanisms in incomplete

100

testing.

1. Reduced TP in Parallel Shifting of Test Vector Incomplete testing

involves the application of modified test vectors to the input pins of cores

through WBRs, which contain fewer test bits. During the parallel shifting

of test vectors, each bit travels through one WBR and is applied to a single

input pin. In the context of modified test vectors for incomplete testing, if

a particular bit is excluded as a LSTB, it results in the reduction of one

transition associated with that bit. This reduction in transitions contributes

to an overall decrease in transitions, subsequently leading to a reduction in

TP.

2. Reduced TP in Sequential Shifting of Test Vector Incomplete testing

entails the use of modified test vectors on core input pins through WBRs,

which contain a reduced number of test bits. During the sequential shifting

of test vectors, individual bits traverse through multiple WBRs and are

applied to any of input pins. In the context of modified test vectors for

incomplete testing, if a particular bit is omitted as a LSTB, it leads to

the reduction of transitions across multiple WBRs through which that bit

travels. These reductions in transitions collectively contribute to an overall

decrease in transitions, subsequently resulting in a reduction in TP.

Therefore, it can be inferred that this approach emphasizes the importance of

incomplete testing methods to reduce power consumption during testing by omit-

ting test bits as per TP constraints.

5.6 Experimental Results

All the experiments are performed on SoC using the ISCAS’85 and ISCAS’89

benchmark circuits as the foundation [153]. The programming framework for

these experiments was established through the utilization of the C++ language.

Test patterns were meticulously generated using the ATALANTA-M tool [147],

101

and the ensuing fault simulations were executed with precision employing the

HOPE simulator [148]. The experiments described herein are performed exclu-

sively within the defined SoC framework, as depicted in Figure 5.11. This specific

SoC configuration comprised six discrete cores, designated as c17, c432, c880,

c2670, c6288, and c1355, with two test buses. The cumulative bus width was

partitioned, resulting in a combined allocation of 48.

Figure 5.11: Equations to calculate transitions in wrapper chain after insertion of
two test vector sequentially

5.6.1 Results for TP for SoC with Combinational Cores

The TP was computed through the utilization of the test pattern generated via

our proposed method. Within SoC, as depicted in Figure 5.11, there exist two

test buses. Various random distributions of bus width were applied to both of

these test buses, alongside an optimal core-to-bus scheduling to optimize TP.

In Table 5.1, the bus width distribution is illustrated as (1,47), signifying

that test bus 1 possesses a bus width of 1, whereas test bus 2 has a bus width

of 47, thereby yielding a combined bus width of 48. The core schedule chosen

102

Table 5.1: TP for Bus Width Distribution of (1,47)

Core scheduling (2,1,2,2,2,2)

Core
TP for

Complete Testing
TP for

Incomplete Testing
TP Saving in %

c17.test 14 13 7.14
c432.test 32246 30163 6.45
c880.test 6445 5797 10.05
c1355.test 1768 1648 6.78
c2670.test 1741799 1313664 24.58
c6288.test 483 480 0.62

TP for SoC S1 1782107 13,51,765 24.14

was (2,1,2,2,2,2), designating test bus 1 to core 2 (C880), while the remaining

cores were assigned to bus 2. Notably, a 24% reduction in TP for the SoC was

observed when employing the bus width distribution of (1,47) as shown in Table

5.1. Similarly, TP was assessed for varying bus width distributions and core

scheduling configurations.

Table 5.2 offers a comprehensive comparison of TP results for various test con-

figurations within a SoC testing scenario, including core scheduling (2,1,1,2,2,1),

individual core performance under complete and incomplete testing, and the

corresponding TP savings expressed as percentages. Specifically, it outlines

TP outcomes for cores c17.test, c432.test, c880.test, c1355.test, c2670.test, and

c6288.test, revealing the TP savings percentages for each. Additionally, it sum-

marizes the overall SoC performance, indicating that incomplete testing results

in a TP savings of approximately 20.23% compared to complete testing. In

essence, the table provides a comprehensive view of TP results, aiding in the

evaluation of testing strategies for SoC cores. This Table 5.3 presents a compar-

ison of TP results for different test configurations within a SoC testing scenario,

employing a specific core scheduling strategy (2,2,1,1,2,1). It provides data for

individual cores, including c17.test, c432.test, c880.test, c1355.test, c2670.test,

and c6288.test, showcasing the TP achieved under both complete and incom-

103

Table 5.2: TP for Bus Width Distribution of (4,44)

Core scheduling (2,1,1,2,2,1)

Core
TP for

Complete Testing
TP for

Incomplete Testing
TP saving in %

c17.test 14 13 7.14
c432.test 27372 25407 7.17
c880.test 86969 74607 14.21
c1355.test 1768 1648 6.78
c2670.test 1793095 1409731 21.38
c6288.test 13915 12634 9.20

TP for SoC S1 1910771 1524040 20.23

Table 5.3: TP for Bus Width Distribution of (40,8)

Core scheduling (2,2,1,1,2,1)

Core
TP for

Ccomplete Testing
TP for

Incomplete Testing
TP saving in %

c17.test 14 13 7.14
c432.test 914 851 6.89
c880.test 75569 64263 14.96
c1355.test 50000 47160 5.68
c2670.test 1874035 1434198 23.47
c6288.test 10311 9500 7.86

TP for SoC S1 1999537 15,55,985 22.18

plete testing methods, along with the corresponding TP savings expressed in

percentages. Notably, it highlights that for the entire SOC, complete testing

yields a TP of 1,999,537, whereas incomplete testing results in a TP of 1,555,985,

indicating a TP savings of approximately 22.18%. This table serves as a compre-

hensive reference for evaluating the effectiveness of different testing strategies for

SoC cores. This Table 5.4 provides a comparison of TP results for various test

configurations in a SoC testing context, specifically utilizing the core schedul-

ing strategy (1,1,2,1,2,1). The table includes data for individual cores, such as

c17.test, c432.test, c880.test, c1355.test, c2670.test, and c6288.test, indicating the

104

Table 5.4: TP for Bus Width Distribution of (13,35)

Core scheduling (1,1,2,1,2,1)

Core
Tp for

Complete Testing
TP for

Incomplete Testing
TP saving %

c17.test 14 13 7.14
c432.test 14294 13721 4.00
c880.test 19635 17025 13.29
c1355.test 37158 34956 5.92
c2670.test 1976907 1588444 19.65
c6288.test 6621 6182 6.63

TP for SoC S1 2052019 1660341 19.08

TP achieved under both complete and incomplete testing scenarios, along with

the corresponding TP savings percentages. Notably, it demonstrates that for

the entire SoC, complete testing results in a TP of 2,052,019, while incomplete

testing yields a TP of 1,660,341, representing a TP savings of approximately

19.08%. This table serves as a valuable reference for assessing the effectiveness

of different testing strategies for SoC cores.

This Table 5.5 presents a comparison of TP results for different test configura-

tions in a SoC testing context with a specific core scheduling strategy (1,2,2,1,1,1).

The table includes data for individual cores, such as c17.test, c432.test, c880.test,

c1355.test, c2670.test, and c6288.test, indicating the TP achieved under both

complete and incomplete testing scenarios, along with the corresponding TP sav-

ings percentages. Notably, it shows that for the entire SoC, complete testing

results in a TP of 2,394,559, whereas incomplete testing yields a TP of 1,717,514,

representing a substantial TP savings of approximately 28.27%. This table pro-

vides valuable insights into the performance differences between complete and

incomplete testing strategies for SoC cores.

This Table 5.6 provides a comparison of TP results for different test con-

figurations within a SoC testing scenario, utilizing the core scheduling strategy

(2,1,2,1,2,1). It includes data for individual cores, such as c17.test, c432.test,

105

Table 5.5: TP for Bus Width Distribution of (16,32)

Core scheduling (1,2,2,1,1,1)

Core
TP for

Complete Testing
TP for

Incomplete Testing
TP Saving %

c17.test 14 13 7.14
c432.test 1426 1331 6.66
c880.test 24269 20573 15.22
c1355.test 29614 28248 4.61
c2670.test 2338079 1662841 28.88
c6288.test 4853 4508 7.10

TP for SoC S1 2394559 1717514 28.27

Table 5.6: TP for Bus Width Distribution (18,30)

Core scheduling (2,1,2,1,2,1)

Core
TP for

Complete Testing
TP for

Incomplete Testing
TP saving in %

c17.test 14 13 7.14
c432.test 7558 7429 1.70
c880.test 31225 26655 14.63
c1355.test 21818 20542 5.84
c2670.test 2115589 1655448 21.75
c6288.test 3069 2808 8.50

TP for SoC S1 2174703 1712895 21.23

c880.test, c1355.test, c2670.test, and c6288.test, showing the TP achieved under

both complete and incomplete testing conditions, along with the corresponding

TP savings percentages. Notably, it indicates that for the entire SoC, complete

testing results in a TP of 2,174,703, while incomplete testing yields a TP of

1,712,895, resulting in a TP savings of approximately 21.23%. This table pro-

vides valuable insights into the performance differences between complete and

incomplete testing strategies for SoC cores.

This Table 5.7 presents data on bus width distribution (28,20) and TP for a

specific core scheduling strategy (1,1,1,2,2,2) in a SoC testing scenario. It pro-

106

Table 5.7: TP for Bus Width Distribution of (28,20)

Core scheduling (1,1,1,2,2,2)

Core
TP for

Complete Testing
TP for

Incomplete Testing
TP saving %

c17.test 14 13 7.14
c432.test 6118 5759 5.86
c880.test 42549 36179 14.97
c1355.test 12006 11270 6.13
c2670.test 2153497 1706000 20.78
c6288.test 1215 1160 4.52

TP for SoC S1 2209029 1760381 20.30

vides information for individual cores, including c17.test, c432.test, c880.test,

c1355.test, c2670.test, and c6288.test, indicating their test power consumption

under both complete and incomplete testing conditions, as well as the corre-

sponding test power savings expressed in percentages. Notably, it highlights

that for the entire SoC, complete testing results in a test power consumption of

2,209,029, while incomplete testing yields a consumption of 1,760,381, resulting

in a test power savings of approximately 20.30%. This table offers insights into

the test power efficiency of different cores within the SoC and the overall impact

of incomplete testing on power consumption.

Tables 5.1 to 5.7 provide an assessment of TP savings for each of the six

individual cores, ranging from c17 to c6288. Table 5.8 consolidates the findings

from Tables 5.1 to 5.7 and conducts a comprehensive analysis for the entire SoC.

TP values are computed across different bus width distributions, spanning from

(1,47) to (28,20) for SoC S1. In Table 5.8, the second row and second column

represent a bus width configuration of (1,47). In this configuration, the TP for

complete testing is recorded as 1,782,107, while for incomplete testing, it stands

at 1,351,765. The fifth column in the second row concludes that the TP savings

amount to 24.15%. Throughout the table, similar columns and rows provide

information on TP savings for various bus width distributions, with the highest

107

Table 5.8: Analysis of whole SoC S1 for TP Saving

SoC
Bus Width
Distributions

TP for
Complete Testing

TP for
Incomplete Testing

TP Saving %

S1 1,47 1782107 1351765 24.15
S1 4,44 1910771 1524040 20.24
S1 40,8 1999537 1555985 22.18
S1 13,35 2052019 1660341 19.09
S1 16,32 2394559 1717514 28.27
S1 18,30 2174703 1712895 21.24
S1 20,28 2209029 1760381 20.31

observed TP savings being 28.27% for the (16,32) bus width distribution.

In Figure 5.12, a visual representation illustrates the connection between TP

savings and the distribution of bus width. This graph clearly demonstrates that

the TP value is influenced by the choice of bus width distribution within the

same SoC. Notably, the graph highlights that the highest TP savings are achieved

when utilizing a bus width distribution of (16,32). In Figure 5.13, a comparison

is presented between complete testing and incomplete testing. It is clear from

the data that incomplete testing consistently results in TP savings across various

bus width distributions and core-to-bus scheduling configurations. The trend

observed indicates a continual increase in TP for all the specified scenarios.

5.6.2 Results for TP for SoC with Sequential and
Combinational Cores

In the SoC S1, all six cores are combinational cores. To evaluate the effectiveness

of our approach, we will analyze sequential cores in the following section. The ex-

periments performed in this research are solely conducted within the designated

SoC framework, as depicted in Figure 5.14. This specific SoC configuration com-

prises a total of eight individual cores, including three combinational cores (c880,

c2670, and c7552) and five sequential cores (s953, s1238, s1196, s5378, and s9234).

Additionally, it features two test buses, and the total bus width is partitioned,

leading to a combined allocation of 48.

108

0
.0
0

5
.0
0

1
0
.0
0

1
5
.0
0

2
0
.0
0

2
5
.0
0

3
0
.0
0

1,
47

4,
44

40
,8

13
,3
5

16
,3
2

18
,3
0

20
,2
8

TP Saving %

B
u

s
W

id
th

 D
is

tr
ib

u
ti

o
n

TP
 S

av
in

g
%

Figure 5.12: Bus Width and TP saving in %

109

1
7

8
2

1
0

7
1

9
1

0
7

7
1

1
9

9
9

5
3

7
2

0
5

2
0

1
9

2
3

9
4

5
5

9

2
1

7
4

7
0

3
2

2
0

9
0

2
9

1
3

5
1

7
6

5

1
5

2
4

0
4

0
1

5
5

5
9

8
5

1
6

6
0

3
4

1
1

7
1

7
5

1
4

1
7

1
2

8
9

5
1

7
6

0
3

8
1

0

5
0

0
0

0
0

1
0

0
0

0
0

0

1
5

0
0

0
0

0

2
0

0
0

0
0

0

2
5

0
0

0
0

0

3
0

0
0

0
0

0

1,
47

4,
44

40
,8

13
,3
5

16
,3
2

18
,3
0

20
,2
8

No. of Transistions for TP

B
u

s
W

id
th

 D
is

tr
ib

u
ti

o
n

s

C
o

m
p

ar
is

io
n

 o
f

TP

TP
 f

o
r

C
o

m
p

le
te

 T
e

st
in

g
TP

 f
o

r
In

co
m

p
le

te
 T

e
st

in
g

Figure 5.13: SoC S2

110

Figure 5.14: SoC S2

This Table 5.9 provides a detailed analysis of TP performance for a SoC la-

beled as “S2” under various Bus Width Distribution configurations, all maintain-

ing a constant bus width of 48 bits. The “Distribution” column specifies the ratio

of bits allocated to the primary bus versus the secondary bus. For each configu-

ration, it presents the TP achieved under both Complete Testing and Incomplete

Testing conditions. The “TP Saving %” column calculates the percentage dif-

ference between the TP achieved under complete testing and incomplete testing,

representing the TP savings obtained by using an incomplete testing strategy.

For instance, when the bus distribution is (1,47) (1 bit allocated to the test

bus 1 and 47 bits to test bus 2), the TP for complete testing is 9,461,414, while

for incomplete testing, it is 7,978,533, resulting in a TP savings of approximately

15.67%. As the bus distribution ratio changes, the TP savings percentage also

varies, ranging from 15.67% to 16.65% for different configurations. This table

helps in understanding how altering the bus width distribution affects the trade-

off between TP and testing efficiency in the SoC, where incomplete testing can

lead to significant TP savings while maintaining acceptable testing quality.

The results clearly indicate that for SoC S2, an average power saving of 16%

111

Table 5.9: TP Analysis for SoC with various Bus Width Distribution

SoC Bus Distribution
TP for

Complete Testing
TP for

Incomplete Testing
TP Saving %

S2 48 1,47 9461414 7978533 15.67
S2 48 4,44 9503124 7988551 15.94
S2 48 8,40 9530114 7995703 16.1
S2 48 13,35 9577224 7983027 16.65
S2 48 16,32 9591798 7996651 16.63
S2 48 18,30 9602162 8007201 16.61
S2 48 20,28 9605616 8015709 16.55
S2 48 22,26 9611600 8026815 16.49

has been achieved for each distribution and optimal assignment. Figure 5.15

illustrates the characteristic curve, where the dotted curve represents the TP

for complete testing of the SoC, and the continuous curve represents the TP for

testing the SoC with modified test patterns after the removal of LSTBs.

Figure 5.15: TP Characteristics

5.7 Conclusion and Future Work

In this chapter, a novel approach to incomplete testing that incorporates TP is

presented. A modified test vector set, specifically tailored for incomplete testing,

112

is introduced. Additionally, a design for a TAM that utilizes the IEEE 1500

test architecture to support this approach in general incomplete testing scenarios

is proposed. The TP-aware incomplete testing method, characterized by the

optimal assignment of cores to test buses, attains significant power savings, with

only a slight compromise in fault coverage, as evidenced by experimental results

showcasing a remarkable reduction in TP utilization. Looking forward, there is

potential to develop alternative incomplete testing methods for application to a

wider range of electronic devices, such as microfluidic chips and 3D hierarchical

chips. It’s important to note that the method primarily addresses Stuck-at Faults,

and future research may extend its applicability to other fault types, including

bridge faults and delay faults.

113

114

Chapter 6
Incomplete Testing Based on
Approximation and its Impact on TP
and TAT

6.1 Introduction

In the preceding chapters, diverse methodologies were investigated to enable the

practice of Incomplete Testing of SoCs, acknowledging a certain compromise in

testing quality. Chapter 3 introduces a heuristic approach specifically designed

for Incomplete Testing of SoCs.

Expanding upon the insights gained in Chapter 3, Chapter 4 not only presents

a heuristic approach for Incomplete Testing but also further refines this approach

to optimize the TAT. The refinements involve modifications to the TAT equa-

tions, with the overarching goal of streamlining and enhancing the testing process

while ensuring an acceptable level of test quality.

Advancing the thesis, Chapter 5 extends the heuristic approach established in

Chapter 4 to optimize TP. This chapter introduces a modified TAM architecture

specifically tailored for Incomplete Testing.

In summary, the thesis unfolds from the exploration of heuristic testing tech-

niques for Incomplete Testing in Chapter 3 to the development and refinement

of this approach for TAT optimization in Chapter 4. Chapter 5 then takes this

115

optimized approach to further optimize TP, presenting a modified TAM archi-

tecture. This sequential progression illustrates a systematic and comprehensive

exploration of testing strategies for SoCs, carefully considering trade-offs between

testing quality and parameters such as TDV, TAT and TP.

In this chapter, a different approach to conduct Incomplete Testing of SoCs

is introduced, drawing inspiration from approximate circuits. The chapter also

analyses of its impact on testing metrics such as TDV, TAT, and TP.

6.2 Problem Formulation

Given a SoC, generate reduced test vectors set for incomplete testing of SoC to

reduce TDV, TAT, TP and maximize the fault coverage.

6.3 Proposed Method

To understand the proposed method, focus shifts to Figure 6.1, which illustrates

the multiplication of two 3-bit binary numbers.

Figure 6.1: Multiplication of two 3 bit numbers

Figure 6.1 displays two 3-bit binary numbers denoted as A2, A1, A0 and

B2, B1, B0, where A0 and B0 represent the Least Significant Bits (LSBs). The

multiplication of these numbers yields a six-bit output, namely P5 to P0, with

P0 signifying the LSB and P4 the Most Significant Bits (MSBs). Each bit in

116

Figure 6.2: 3 bit multiplier

the output holds a specific weight. The diagram demonstrates the use of adders

in implementing a multiplier circuit. When the two 3-bit numbers, A2, A1, A0

and B2, B1, B0, are multiplied, individual products are generated and summed

to obtain the final result. For instance, P0 represents the product of B0 and A0.

Similarly, P1 is the sum of B1·A0 and B0·A1, P2 is the sum of B2·A0, B1·A1, and
B0·A2. P3 is the sum of B1·A2 and B2·A1, and finally, the MSB P4 represents

B2·A2.
Figure 6.2 illustrates the implementation of a 3-bit multiplier circuit. The

binary numbers B2, B1, and B0, along with A2, A1, and A0, are fed into the

input pins of the circuit. The multiplication result is then presented at the output

pins as P4, P3, P2, P1, and P0.

In Figure 6.3, there is an example provided where two 3-bit binary numbers,

110 and 101, are multiplied, leading to an output of 11110.

Suppose we allow for a tolerance or error in the LSB P0 since it carries the

smallest weight, and any error in this bit would have the least impact on the

overall output value.

Let’s consider the scenario where errors are allowed in output bits P0, P1, and

P2, resulting in the reversal of these bits and producing a value of 001 instead of

110. Consequently, the final output of the multiplier becomes 11001 instead of

117

Figure 6.3: Example of multiplication of 3 bit numbers

11110, with a value of 25 instead of 30. The percentage error can be calculated

as ((30− 25)÷ 30)× 100 = 16.66%.

The multiplier circuit depicted in Figure 6.4(a) consists of multiple blocks,

each containing an internal circuit shown in Figure 6.4(b) comprising an AND

gate and a full adder. The output pins of the multiplier are labeled as P5, P4,

P3, P2, P1, and P0.

To ensure complete testing, all nine blocks related to the output bits must

be tested after implementation, which would require nine units of power if each

block takes one unit of power to test.

However, if errors in output bits P2, P1, and P0 can be tolerated, the corre-

sponding blocks or circuit elements can be left untested, thereby reducing TDV,

TAT, and TP. Figure 6.4(c) illustrates that components in block 2, responsible

for output P0, can be left untested if errors on this output pin are tolerable.

Consequently, the EX-OR gate inside block 2 shown in Figure 6.4(d) will not be

tested.

For output P1, blocks 3 and 6 need to be tested, but the EX-OR gate inside

block 6 can remain untested since it only affects output P1 and not the other

outputs.

Similarly, for output P2, blocks 4 and 7 are fully tested, but the EX-OR gate

in block 10, responsible for the value on output P1, will not be tested.

118

(a) Multiplication circuit having blocks

(b) Internal circuit of one block of fig 3a.

(c) Multiplication circuit having blocks incompletely
tested

(d) Internal circuit of block incompletely
tested

Figure 6.4: Multiplier circuit
119

By adopting this approach, SoC can be incompletely tested for the least sig-

nificant outputs while still achieving acceptable accuracy for the intended appli-

cation.

The proposed method, which can be easily understood using the example of

circuit c17, is outlined below.

6.3.1 Step 1:

Construct the circuit shown in Figure 6.6 based on the provided benchmark circuit

description in Figure 6.5 This circuit comprises five input lines, two output lines,

and six NAND gates.

6.3.2 Step 2:

Create a graphical representation of the circuit in Figure 6.6 using input pins,

output pins, and gates. Establish five input nodes: I2, I3, I6, I7, and I1, which are

connected to input lines INPUT(G2gat), INPUT(G3gat), INPUT(G6gat), IN-

PUT(G7gat), and INPUT(G1gat), respectively. Additionally, create two output

nodes: O23 and O22, connected to output lines OUTPUT(G23gat) and OUT-

PUT(G22gat). Furthermore, include six nodes: G23, G22, G10, G19, G16, and G11,

representing the six NAND gates.

6.3.3 Step 3:

We now have an equivalent graph of the c17 circuit, displayed in Figure 6.7. Our

objective is to trace a backtrack path from the fault tolerable output back to the

input while ensuring that the gates and connections on this path do not affect

other components of the circuit. By doing so, we can ensure the accuracy of all

other outputs except for the output pin O23. Assuming O23 can tolerate errors,

there is no need to test it. To obtain this backtrack path, we follow Algorithm 2

and Algorithm 3.

Algorithm 2 takes the equivalent graph of the circuit as its input and generates

120

Figure 6.5: Benchmark circuit of c17

Figure 6.6: c17 circuit

ALGORITHM 2: Algorithm for finding GATES not to be tested

Input : Circuit graph with N number of nodes, M number of output
pins not to be tested

Output: GATES not to be tested
1 for node = 1 to N do
2 outdegree(node);

3 for out pin = 1 to M do
4 backtrack(out pin);

121

Figure 6.7: Equivalent graph of c17 circuit

ALGORITHM 3: Backtrack (i)

Input : output pin i
Output: To find GATES on the path from output pin i to one of the

input pins
1 if outdegree(parents(i)) > 1 || parents(i) = input pin then
2 add i to the result;
3 break;

4 else
5 Backtrack (parents(i));

122

Figure 6.8: Backtrack path for c17 circuit

a pathway from the output pin to the input pin. O23 represents the output pin of

least significance, allowing it to tolerate errors. For all the circuit components that

depend on O23 and do not require precision on this particular output pin, testing

is unnecessary. The value of O23 is determined by the gate G23, which, in turn,

relies on gates G16 and G19. Since G19 does not impact any other component,

it remains untested, but G16 must be tested, as errors in it would affect O22.

Additionally, G11 cannot be left untested either, as any errors in it would impact

G16, and consequently, O22. However, input pin I7 can be left untested since it

has no effect on any other component apart from G19. The pathway obtained

through Algorithm 2, shown as O23 → G23 → G19 → I7 in Figure 6.8, identifies

the hardware components that will not undergo testing. This partial testing

approach will influence testing parameters such as FC, TDV, TAT, and TP.

6.4 Impact on Fault Coverage (FC)

After acquiring the path, we eliminate the components along it and conduct a

fault simulation.

As seen in Figure 6.9, the NAND gates G23 and G19, as well as the output

pin O23 and input pin I7, all located on the path O23 → G23 → G19 → I7, will

123

Figure 6.9: Equivalent graph of c17 circuit for testing

Figure 6.10: c17 benchmark circuit incomplete testing

not undergo testing.

Figure 6.10, shows the the circuit description of modified circuit for incomplete

testing after removing components located on the backtrack path.

In Figure 6.11, a list of multiple stuck-at-faults is provided. The total number

of faults for complete testing amounts to 22 and 6 of them related to the excluded

components, such as G16gat → G23gat/1, G23gat/1, G23gat/0, G11gat →
G19gat/1, G19gat/1, and G7gat/1, will remain untested. Therefore, after ex-

cluding these faults, the incomplete testing will account for a total of 16 faults,

124

Figure 6.11: c17 benchmark circuit incomplete testing

125

Figure 6.12: Test vector set for c17 benchmark circuit

resulting in a fault coverage reduction of 27.27 %. Similarly, for all the cores, a

slight compromise with the fault coverage will occur.

6.5 Impact on TDV

TDV will be reduced in two ways. There are two possible cases.

Case 1: When Backtrack Path Does Not Terminate On
Any Input Node.

Skipping the testing of circuit elements found on the identified path leads to a

reduction in the number of necessary test vectors. For instance, when testing the

c17 circuit initially, we required seven test patterns to address all potential faults,

as illustrated in Figure 6.12. However, employing our incomplete testing method

allows us to bring down the number of test vectors to five, as depicted in Figure

6.13.

126

Figure 6.13: Modified test vector set for c17 benchmark circuit

Case 2: When Backtrack Path Terminates on Any Input
Node.

The algorithm identifies a path from an output pin to an input pin, indicating

that this input pin only affects that specific output pin and not others. Therefore,

we can skip testing that output pin by not applying a test bit to its corresponding

input pin. This method reduces the number of test vectors and number of bits in

each test vector. For instance, let’s consider the c17 circuit with five input pins,

which originally required seven test vectors, each consisting of five bits. However,

by applying our incomplete testing method, we have managed to reduce the

number of test vectors to five, with four bits per vector. In Figure 6.12, you

can see the set of test vectors we generated for testing the input pins (I1, I2,

I3, I6, and I7) of the c17 circuit. This reduction in test vectors was achieved

by excluding the test bit corresponding to input pin I7 from all the test vectors

found on the backtrack path obtained from Algorithm 2. The reason behind

this exclusion is that input pin I7 is omitted from the circuit during incomplete

testing, as demonstrated in Figure 6.13.

To elaborate further, there are two approaches to measure the TDV. For

complete testing (as shown in Figure 6.14), the c17 circuit requires 7 test vectors,

127

Figure 6.14: Test patterns for c17 benchmark circuit in complete testing

Figure 6.15: Test patterns for c17 benchmark circuit in incomplete testing

each comprising 5 bits, resulting in a TDV of 7× 5 = 35 bits.

In contrast, for incomplete testing (as depicted in Figure 6.15), the c17 circuit

needs only 5 test vectors, each with 4 bits, leading to a TDV of 5×4 = 20 bits. By

adopting the incomplete test strategy, substantial TDV savings can be achieved,

which can be calculated as ((35-20) ÷ 35) x 100 = 42.85%.

6.6 Impact on TAT

6.6.1 Computation of TAT

To determine the TAT, optimal assignment of test buses to cores is done by the

method proposed in Chapter 4 section 4.4.

6.6.2 Reduction in TAT

TAT will be reduced in two ways in incomplete testing.

128

When Backtrack Path Does Not Terminate On Any Input Node.

Suppose pr number of test pattern removed from test vector set in incomplete

testing then reduced TAT will calculated as follows:

Tij =

{
ti, if(ψi ≤ wj)

ti × (ψi − wj + 1), if(ψi > wj)
(6.1)

where ψi =MAX(mi, ni)

mi=number of inputs of core i, 0 < i ≤ Nc

ni=number of outputs of core i, 0 < i ≤ Nc

ti =

{
pi − pr, for combinational core

((pi − pr) + 1)× fi/Ni + (pi − pr), for cores with internal scan chain

(6.2)

where core i contains fi flip-flops and Ni internal scan chains.

pi is the number of test patterns.

When Backtrack Path Terminates On Any Input Node.

The Algorithm 1 identifies a path from an output pin to an input pin, indicating

that this input pin only affects that specific output pin and not others. Therefore,

we can skip testing that output pin by not applying a test bit to its corresponding

input pin. Suppose there are L number of bit positions where test bits will be

removed from all the test vector then

ψi =

{
mi − L, if(mi > ni)

ni, if(mi < ni)
(6.3)

After removing bits from the L designated bit positions in all test vectors, re-

duced TAT will be calculated as follows :

Tij =


ti, if(ψi ≤ wj)

ti × ((mi − L)− wj + 1), if(ψi > wj)and(mi > ni)

ti × (ni − wj + 1), if(ψi > wj)and(mi < ni)

(6.4)

129

Net reduction in TAT after incomplete testing will be calculated as follows:

Sij =


Zero, if(ψi ≤ wj)

ti × ((L)− wj + 1), if(ψi > wj)and(mi > ni)

Zero, if(ψi > wj)and(mi < ni)

(6.5)

6.7 Impact on TP

6.7.1 Reduction In TP In Incomplete Testing

Figure 6.16: Modified TAM architecture for incomplete testing

Consider the example depicted in Figure 6.16, where input pins I2, I3, I6, I7,

and I1 of core c17 are fed with test vectors b4, b3, b2, b1, and b0 respectively. Test

vector bits b4 and b3 are transported through test bus wires 1 and 2 and applied to

input pins I2 and I3 via WBRsW4 andW3 in parallel, while test vector bits b2, b1,

and b0 are transported on test bus wire 3 and applied to input pins I6, I1, and I7

through WBRs W2,W1, and W0 sequentially. As a result, when test vectors are

applied one after another, the transitions in test bit values will be calculated in

two ways: the transition in W4 and W3 will be calculated by hamming distance

130

due to parallel insertion, and the transition in WBRs W2,W1, and W0 will be

calculated by equation 6.9 due to serial insertion.

trtotal =
n∑

i=1

n∑
j=1

tij (6.6)

This will result in a reduction of TP consumption in two ways. Firstly, in in-

complete testing, a smaller number of test vectors will lead to fewer bit flips, ul-

timately reducing TP. Secondly, in incomplete testing, pin I7 will not be tested,

and test WBR W1 will become transparent to input bits. Consequently, all the

bit flips in WBR W1 corresponding to input pin I7 will be eliminated straightfor-

wardly. Fewer transitions will reduce the TP.

6.8 Experimental Results

To perform the experiments, the SoC was employed, and the ISCAS’85 and IS-

CAS’89 benchmark circuits were used for testing purposes [153]. The experiment

program was implemented in C++, while the test patterns were generated us-

ing ATALANTA [147]. Furthermore, we made use of the HOPE simulator for

conducting fault simulations [148]. All the experiments were executed on the

SoC illustrated in Figure 6.17, which incorporates eight cores (c432, c880, c2670,

c6288, s27, s298, s444, s520) and two test buses. The total bus width of 48 is

distributed between both buses.

131

Figure 6.17: SOC used for experiments

6.8.1 Results for FC and TDV

The results for FC and TDV are detailed in Table 6.1. We generated test patterns

and fault lists for all cores and employed a backtracking approach for comprehen-

sive testing. This approach involved excluding hardware components associated

with the backtrack path, as explained in section 6.4, and removing faults corre-

sponding to the excluded hardware. The total number of faults for both complete

and incomplete testing is displayed in columns 2 and 4 of Table 6.1, respectively,

while the fault reduction is depicted in column 6. TDV can be calculated as the

product of the number of test vectors and the number of bits in a test vector.

The total TDV for complete and incomplete testing is presented in columns 3

and 5, respectively, with the reduction in TDV displayed in column 7. The TDV

comparison between complete and incomplete testing is summarized in Table 6.1.

For cores c880, c2670, c432, c6288, s27, s298, s444, and s520, the TDV reduc-

tion amounts to 27.78%, 45.87%, 52.17%, 40.96%, 33.33%, 39.29%, 43.33%, and

48.77%, respectively, while the fault coverage is compromised by up to 0.76%,

132

Table 6.1: Results for FC and TDV

Cores
No of faults

in
complete testing

TDV for
complete testing

No. of faults
in

incomplete testing

TDV for
incomplete testing

Fault
reduction (%)

TDV
reduction (%)

c432 524 2592 520 1872 0.76 27.78
c880 942 6000 909 3248 3.50 45.87
c2670 2747 45435 2695 21733 1.89 52.17
c7552 7550 74313 7484 43878 0.87 40.96
s27 32 63 26 42 18.75 33.33
s298 308 952 271 578 12.01 39.29
s444 474 1320 470 748 0.84 43.33
s520 555 2688 471 1377 15.14 48.77

3.50%, 1.89%, 0.87%, 18.75%, 12.01%, 0.84%, and 15.14%, respectively.

6.8.2 Results for TAT

Table 6.2 showcases the TAT for the ideal allocation of cores to the test buses

within the SoC. We applied a PSO-based scheduling algorithm, as detailed in

Chapter 4, to achieve this optimal allocation. The test bus maintains a width of

48, and we conducted experiments with various bus width distributions: (1,47),

(4,44), (28,20), (24,24), (32,16), and (40,8), as presented in the first column of

Table 6.2. Columns 2 and 4 illustrate the optimal core-to-bus assignments, while

columns 3 and 5 depict the TAT for complete and incomplete testing, respectively.

The reduction in TAT is displayed in column 6.

For instance, in the first row of Table 6.2, the bus width distribution between

two test buses is (1,47). The optimal core-to-test bus allocation is represented as

11122121, signifying that test bus 1 serves cores 1, 2, 3, 6, and 8, while test bus

2 serves cores 4, 5, and 7. This optimal allocation results in a minimized TAT

for the SoC, amounting to 57863 cycles for complete testing and 30074 cycles for

incomplete testing. The TAT can be calculated in real-time based on the system’s

frequency. The corresponding reduction in TAT for this optimal allocation is

shown in row 1, column 6, at 48.03% for the SoC. Similarly, TAT is computed

for other combinations of test bus width distributions, and for each distribution,

the savings average around 48%, which is a substantial improvement.

133

Table 6.2: Results for TAT

Buswidth
distribution

Optimal
allocation

TAT for SOC
(complete test)

Optimal
allocation

TAT for SOC
(incomplete test)

Reduction
in TAT (%)

(1, 47) 11122121 57863 11122121 30074 48.03
(4, 44) 11122111 58885 11122111 30679 47.90
(28, 20) 22212222 64620 22212222 34080 47.26
(24, 24) 22212222 66056 22212222 34932 47.12
(32, 16) 22212222 63184 22212222 33228 47.41
(40, 8) 22212222 60312 22212222 31524 47.73

Table 6.3: Results for TP for complete testing

Bus width
distribution

(1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)

Optimal
allocation

11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432 44779 37605 50050 50050 1945 50050
c880 187377 187377 55698 69008 187377 138426
c2670 5090603 3417327 5178381 5178381 4464549 5178381
c7552 7475138 7475138 6068577 5809305 7475138 6831883
s27 223 73 341 341 33 341
s298 10303 10303 463 463 10303 3019
s444 651 12605 18881 18881 2699 18881
s526 38519 38519 1257 1257 38519 1257
SOC 12847593 11178947 11373648 11127686 12180563 12222238

134

Table 6.4: Results for TP for incomplete testing

Bus width
distribution

(1, 47) (4, 44) (28, 20) (24, 24) (32, 16) (40, 8)

Optimal
allocation

11122121 11122111 22212222 22212222 22212222 22212222

Cores TP TP TP TP TP TP
c432.pat 31978 27402 36088 36088 1456 36088
c880.pat 97835 97835 28209 35299 97835 71851
c2670.pat 2154776 1395630 2196792 2196792 1884964 2196792
c7552.pat 4302353 4302353 3474765 3322563 4302353 3923667
s27.pat 112 30 199 199 16 199
s298.pat 6549 6549 277 277 6549 2037
s444.pat 346 6286 9949 9949 1160 9949
s526.pat 22443 22443 663 963 22443 663
SOC 6616392 5858528 5746942 5602130 6316776 6241246

Table 6.5: Results for comparison of TP

Bus width
Distribution

Optimal
allocation

TP for SOC
(complete test)

Optimal
allocation

TP for SOC
(incomplete test)

Reduction
in TP (%)

(1, 47) 11122121 12847593 11122121 6616392 48.50
(4, 44) 11122111 11178947 11122111 5858528 47.59
(28, 20) 22212222 11373648 22212222 5746942 49.47
(24, 24) 22212222 11127686 22212222 5602130 49.66
(32, 16) 22212222 12180563 22212222 6316776 48.14
(40, 8) 22212222 12222238 22212222 6241246 48.94

135

6.8.3 Results For TP

TP For Complete Testing

Table 6.3 displays TP outcomes derived from experiments executed to determine

TP for full testing using distinct random bus width distributions and optimal

core-to-bus scheduling, as expounded in section 6.7. In the second column, TP is

computed for all eight cores and the SOC, with a bus width distribution of (1,47)

and core-to-bus allocation of 11122121. The TP figures for cores c880, c2670,

c432, c6288, s27, s298, s444, and s520 stand at 44779, 187377, 5090603, 7475138,

223, 10303, 651, and 38519, correspondingly. For complete SOC testing, the TP

results are 12847593, 11178947, 11373648, 11127686, 12180563, and 12222238 for

bus width distributions of (1,47), (4,44), (28,20), (24,24), (32,16), and (40,8), in

that order.

TP for Incomplete Testing

The outcomes of experiments aimed at computing TP for partial testing using

diverse bus width distributions and optimal core-to-bus scheduling are displayed

in Table 6.4. The calculations were executed following the procedure outlined in

section 6.7.1. In the second column of the table, TP is exhibited for all eight cores

and the SoC, with a bus width distribution of (1, 47) and core-to-bus allocation

of 11122121. The TP values for individual cores, such as c880, c2670, c432,

c6288, s27, s298, s444, and s520, stand at 31978, 97835, 2154776, 4302353, 112,

6549, 346, and 22443, correspondingly. For partial SoC testing, the TP results

are 6616392, 5858528, 5746942, 5602130, 6316776, and 6241246 for various bus

width distributions, specifically, (1, 47), (4, 44), (28, 20), (24, 24), (32, 16), and

(40, 8), in that order.

Comparison of TP for Complete and Incomplete Testing

The TP results for both full and partial testing are showcased in Table 6.5. Col-

umn 1 and 2 exhibit the bus width distribution and optimal core-to-bus allocation,

136

respectively. Column 3 and 5 depict the TP of the SoC for complete and partial

testing, respectively. Finally, column 6 demonstrates the reduction in TP. For in-

stance, the first row of Table 6.5 demonstrates a bus width distribution of (1,47),

with the optimal core-to-bus allocation being 11122121. The TP for this optimal

distribution is 12847593 for full testing and 6616392 for partial testing. In the

first row, column 6 of Table 6.5, it signifies a TP reduction of 48.50% for the

SoC. Correspondingly, TP is computed for other combinations of test bus width

distributions. For the bus width distribution of (24,24), the savings amount to

49.66%. On average, the savings for other distributions are also approximately

49%, which is exceedingly substantial.

6.9 Conclusion and Future work

In conclusion, the proposed method represents a novel and advantageous ap-

proach for fault-tolerant applications spanning audio, video, graphics, wireless

communications, multi-level cell STT-RAM, and neural networks. Particularly

valuable in the context of large SoC devices where comprehensive testing faces

limitations, incomplete testing emerges as a practical means to optimize test-

ing parameters while only slightly compromising fault coverage. This approach

not only accelerates testing processes but also proves cost-effective, potentially

expanding customer accessibility to these devices. Our research demonstrates

significant reductions of up to 52% in TDV, 48% in TAT, and 50% in TP with a

trade-off of 1% to 10% in FC. Future avenues for exploration encompass extend-

ing the method to various fault types, including bridge and delay faults, as well

as adapting it for 3D hierarchical SoCs. Moreover, tailored incomplete testing

approaches for specific applications like image and digital signal processing, wire-

less communication, and other error-tolerant scenarios hold promise for further

research and development.

137

138

Chapter 7
ATPG for Incomplete Testing of SoC
having Bridge Faults

In the preceding chapters, the focus has been on incomplete testing of SoC de-

vices, particularly with regard to Stuck-at Faults. However, SoC testing involves a

range of fault types, including Stuck-at Faults, Bridging Faults, transition faults,

and path delay faults. Stuck-at Faults manifest when a signal or circuit element

remains at a constant value, while Bridging Faults occur due to unintentional con-

nections between different nets or nodes, potentially causing signal interference

and malfunctions.

Detecting and addressing these faults is vital for ensuring the dependable and

optimal performance of SoC devices. Bridging Faults, also referred to as short

circuits or cross-talk faults, pose a specific challenge. They can arise from man-

ufacturing defects, material impurities, or environmental factors, making them

challenging to identify and replicate during testing.

In this chapter, the Incomplete Testing approach is expanded to tackle Bridg-

ing Faults. By broadening the testing strategies to encompass these intricate

defects, the goal is to improve the overall quality and dependability of SoC de-

vices. Effective testing methods for Bridging Faults are essential for delivering

robust and high-performance SoCs for diverse applications.

139

7.1 Problem Formulation

Given a SoC, generate reduced test vectors for Incomplete Testing of SoC for

Bridging Faults.

7.2 Proposed Scheme : Boolean Satisfiability

Method for Incomplete Testing of SoC

To generate a test pattern for a specific fault in a circuit, the first step is to

create a logical formula that represents the circuit’s behavior and includes the

fault condition. This logical formula defines how the circuit components are

connected and how the fault affects its operation. Once the formula is established,

the Boolean Satisfiability Algorithm is applied to find variable assignments that

satisfy the formula.

In the circuit, every gate aligns with an individual logical formula delineating

its operation. This formula encapsulates the manner in which the inputs to

the gate are combined to generate the output. Formulating expressions for each

component in the circuit and taking the fault condition into account allows for the

systematic determination of the test pattern that triggers the fault and discerns

its impact on the circuit’s behavior.

For instance, consider the circuit illustrated in Figure 7.1. To generate a test

pattern for a particular fault associated with this circuit, we would construct

logical formulas for each gate and then incorporate the fault condition into the

overall formula. The Boolean Satisfiability algorithm would then be utilized to

find suitable variable assignments that satisfy the formula and reveal the desired

test pattern for the specific fault. This process helps ensure the proper functioning

and reliability of the circuit under various conditions and potential faults.

140

Figure 7.1

7.2.1 CNF

The Conjunctive Normal Form (CNF) is a specific representation used in propo-

sitional logic. It expresses a logical formula as a Conjunction (AND) of clauses,

where each clause is a Disjunction (OR) of literals. In other words, it is a product

of sums form. A logical formula is said to be in CNF if it is written in the form:

(L11 ∨ L12 ∨ . . . ∨ L1n) ∧ (L21 ∨ L22 ∨ . . . ∨ L2m) ∧ . . . ∧ (Lk1 ∨ Lk2 ∨ . . . ∨ Lkp)

where each Lij is a literal, which can be either a variable or its negation. For

example, the logical expression (a ∧ ¬b) ∨ (c ∧ d ∧ ¬e) can be written in CNF as

(a ∨ ¬b) ∧ (c ∨ d ∨ ¬e).

For a NAND gate with inputs a and b, and output c, the logical function is

c = a · b. In terms of logical equivalences, a logical sentence P = Q is equivalent

to saying P =⇒ Q andQ =⇒ P . Thus, the output of the NAND gate, c = a · b,
is equivalent to the expressions c =⇒ a · b and a · b =⇒ c. By applying the

propositional logic rule P =⇒ Q is equivalent to P +Q, we can write the CNF

or the product of sums for the logical function as (c+ a · b) · (a · b+ c), which can

be further simplified as (c+ a+ b) · (c+ a) · (c+ b). So in conclusion the logical

function c = a · b is (c+ a+ b) · (c+ a) · (c+ b). This expression is a Conjunction

of clauses, where each clause represents a combination of literals that make the

logical formula true.

141

Figure 7.2: Various Gates having CNF formula

7.2.2 CNF Formulation for Original Circuit

In Figure 7.2, it is demonstrated that a CNF formula can be created for each

logic gate, with variables representing the inputs and outputs of these gates. In

this section, we have specifically examined a benchmark circuit called C17 from

ISCAS 89, as depicted in Figure 7.3.

Figure 7.3: C17 benchmark circuit

CNF formula for C17 will be (L23 + L16 + L19).(L23 + L16).(L23 + L19) .

(L16+L11+L2).(L16+L11).(L16+L2) . (L19+L11+L7).(L19+L11).(L19+L7) .

142

(L11+L6+L3).(L11+L6).(L11+L3). (L22+L16+L10).(L22+L10).(L22+L16)

. (L10 + L1 + L3).(L10 + L1).(L10 + L3)

The construction of a CNF formula for each logic gate involves backtracking

from the output to the input. For every node, a CNF formula is derived, and

each CNF formula must be satisfied independently for all its input and output

variables. To obtain the CNF formula for the entire circuit, we take the AND of

each node visited during backtracking. As each node’s CNF formula is individ-

ually satisfiable, the conjunction of CNF formulas for all nodes must be boolean

satisfiable, meaning it is possible to find variable assignments that satisfy the

entire CNF formula of the circuit.

7.2.3 Introduction of Bridging Faults in Original Circuit

In modern circuits, the complexity and packing density have significantly in-

creased, allowing a higher number of components to be integrated onto a single

chip. Consequently, bridging faults have become a major concern in such circuit

designs. A bridging fault refers to an unintended short circuit between two wires.

The type of bridging fault depends on the specific technology employed in the

circuit.

In circuits using Transistor-Transistor Logic (TTL) technology, the bridging

fault is known as wired-AND, where both wires connected by the short circuit will

have a logical value of 0. On the other hand, in circuits using Emitter-Coupled

Logic(ECL) technology, the bridging fault is referred to as wired-OR, and both

connected wires will have a logical value of 1. For our research, we focused solely

on non-feedback bridging faults in combinational circuits.

A bridging fault can be denoted as Li/ai/Lj, where Li and Lj represent the

dominated and dominating lines, respectively. bi signifies the logical value of 0 or

1 by which line Lj dominates line Li. In a circuit with n lines, there can be
(
n
2

)
possible shorts between two lines.

To detect these faults, we assign a value bi
′ to the dominated line Li and bi

143

Figure 7.4: Bridging Fault between L6 and L7

Figure 7.5: Testing of Bridging Fault

to the dominating line Lj. Then, we propagate the faulty and non-faulty values

from Li to the output. As a result, the test vector assigns the value ai to line Lj

and detects that line Li is stuck at ai.

As an example, in our circuit C17, we consider ECL technology. Thus, short-

ing between lines L6 and L7 results in a wired-OR fault. We introduce a bridging

fault by adding OR gate A1 between lines L6 and L7, and its output will be

inputted to gates G1 and G3.

The CNF formulation will be updated to account for the short between lines

L6 and L7, as illustrated in Figure 7.4. The CNF for the modified circuit, shown

in Figure 7.5, is as follows: (L23+L16+L19).(L23+L16).(L23+L19) . (L16+

L11 +L2).(L16 +L11).(L16 +L2) . (L19 +L11 +L8).(L19 +L11).(L19 +L8) .

(L11+L8+L3).(L11+L8).(L11+L3). (L22+L16+L10).(L22+L10).(L22+L16)

. (L10+L1+L3).(L10+L1).(L10+L3) . (L8+L1+L3).(L8+L6).(L8+L3). By

144

using boolean satisfiability algorithms we shall assign the values to the variables

of the CNF equation.

7.2.4 Reduction of Boolean Satisfiability Equation for In-
complete Testing

Now Algorithm 1 in Chapter 6 supports an incomplete method, where the test

engineer determines the least significant output based on the applications required

by users. To apply the algorithm, the circuit is first converted into an equivalent

graph, where each gate represents a node, and the wires are represented as edges

in the graph. The algorithm takes this graph and the least significant outputs

as input. It then performs backtracking from the least significant output to the

input.

During the backtracking process, nodes with out-degree 1 are identified, mean-

ing these nodes do not affect other nodes. The algorithm selects a path in which

each node has an out-degree less than 2. The path may not necessarily terminate

at the input node; even a short path not reaching the input is considered. The

bridging faults associated with these paths are left untested.

For the remaining bridging faults, the algorithm tests the ones between the

lines associated with nodes having higher out-degrees, as nodes with higher out-

degrees affect more nodes in the graph. For example, in Figure 7.6, the equivalent

graph of circuit C17 is shown. Output 22 is considered the least significant. After

applying the algorithm, a path I1 → G4 → G6 → O22 is obtained, where each

node has an out-degree less than 2. Bridging Faults associated with lines on this

path are ignored, and faults like L1/a’/E-1, L10/a’/E, and L22/a’/E, where a’ is

the logical binary value and E is any other line in the circuit, are not tested.

For the remaining circuit, bridging faults among the lines associated with

nodes I3, G1, and G2 having the highest out-degree of 2 are tested first. In the

case of circuit C17, bridging faults like L6/a’/L, L3/a’/L, L11/a’/L, L2/a’/L,

L16/a’/L, L23/a’/L will be tested first, where L represents any other lines in

the circuit. These faults are more significant and have a larger impact on the

145

circuit than others. Finally, other bridging faults on the lines associated with

nodes are tested in decreasing order of out-degree according to the required fault

coverage. After eliminating the path found from our algorithm the graph is

shown in Figure 7.7 and the CNF of our circuit will be reduced to (L23 + L16 +

L19).(L23 + L16).(L23 + L19) . (L16 + L11 + L2).(L16 + L11).(L16 + L2) .

(L19+L11+L7).(L19+L11).(L19+L7) . (L11+L6+L3).(L11+L6).(L11+L3)

which will have less number of variables in it. Hence assigning values to these

variables will take less testing time.

Figure 7.6: Equivalent graph of C17

Figure 7.7: Path from output to input not to be tested

146

ALGORITHM 4: Algorithm for incomplete testing considering bridg-
ing faults

Input: Equivalent graph of the circuit with N nodes, L edges, M output
left untested

Output: Bridging faults not to be tested
1 for nodes i = 1 to N do
2 outdegree (i);

3 for Output i = 1 to M do
4 backtrack (i); // Algorithm 2

5 don’t test the bridging faults associated to path obtained from backtrack
algorithm.

6 sort the nodes in order of decreasing out degree.
7 Test the bridging faults associated with components having higher out

degree to the lower out degree.

ALGORITHM 5: backtrack (m)

Input: Output m
Output: Gates on the path from output pin i to one of the input pins

1 if outdegree (parent(i)) > 1 || parent(i) = input then
2 add m to the result;
3 break;

4 else
5 backtrack(parent(m));

7.2.5 Satisfying the Formula

To identify bridging faults in a circuit and generate corresponding test patterns, a

miter circuit is employed as illustrated in Figure 7.8. This circuit introduces faults

and compares the outputs of the faulty and fault-free circuits using an EX-OR

gate. To assess bridging faults, only input values that result in output discrep-

ancies between the two circuits are necessary. The process involves constructing

a CNF formula that includes XOR operations.

The final CNF formula for fault detection combines the CNF formulas for the

faulty and non-faulty circuits, along with those for additional XOR gates. While

147

several clauses in the CNF formula are shared between these circuits, these com-

mon clauses are not duplicated in the ultimate CNF equation. If the miter cir-

cuit’s output is 1 for specific input assignments, it signifies discordance between

the outputs of the faulty and non-faulty circuits, indicating fault detection. The

corresponding assignment becomes the test vector for that specific bridging fault.

If the final CNF equation is satisfiable for particular input assignments, the bridg-

ing fault is deemed detectable; otherwise, it is considered undetectable.

It’s worth noting that solving Boolean Satisfiability problems, such as this, is

challenging and falls under the NP-hard problem category. While various SAT

solver tools are available, tackling larger circuits with numerous variables can lead

to exponential problem-solving times, rendering solutions infeasible. To address

this, the following section introduces a particle swarm-based heuristic approach

for solving the satisfiability equation.

After eliminating the path found from our algorithm the CNF of our circuit

will be reduced to (L23 + L16 + L19).(L23 + L16).(L23 + L19) . (L16 + L11 +

L2).(L16+L11).(L16+L2) . (L19+L11+L7).(L19+L11).(L19+L7) . (L11+

L6 + L3).(L11 + L6).(L11 + L3).

which will have less number of variables in it. Hence assigning values to these

variables will take less time.

7.2.6 Heuristic Approach using Particle Swarm Optimiza-
tion

A PSO based optimization technique is proposed for assigning values to variables.

Particle Structure

If we have n input variables in our circuit named as I1, I2, I3, I4,, In then our

particle will be n bit array where each bit can have binary value a which is either

0 or 1.

I1 I2 I3 I4 In
a a a a a

148

Figure 7.8: Miter Circuit

Suppose we have a circuit c17 where the number of inputs are 5 then our

particle structure will be like

1 1 0 1 1

Initial Population and Position

For the larger circuits having more inputs, the population size has been taken

as 60. Initialization of particles are random as we don’t know about the circuit

behavior. Initially array will have assignment of 0 and 1 randomly. Further

assignment to each bit In will be modified as per the following equation [143] .

Vid = Vid + ϕ(Pid − xi) + ϕ(Pgd − xi) (7.1)

where (7.2)

(7.3)

149

{
xi = 1, if(rand() < S(Vid))

xi = 0, Otherwise

Fitness Function of a Particle

To identify a bridging fault, we must allocate binary values of 0 or 1 to variables in

such a way that the Boolean Equation of the Miter Circuit, represented in CNF,

evaluates to 1. Our PSO algorithm’s objective is to achieve a CNF equation

for the miter circuit that equals 1. In cases where PSO fails to discover a suit-

able assignment resulting in CNF = 1, a traditional satisfiability solver becomes

necessary. If a valid assignment is found, it implies the fault is not detectable.

To streamline testing with incomplete information, a simplified CNF formulation

will be employed, effectively minimizing the time and size associated with each

test vector.

7.3 Experimental Results

The experiments were carried out using ISCAS 85 combinational circuits. A C++

program was employed to modify the benchmark files of these circuits. These

modified benchmark files, representing both faulty and non-faulty circuit versions,

were used as input for the ABC system. The ABC system then generated the CNF

representation of the miter circuit, which required a SAT solver for satisfiability

checking. In this study, we adopted a heuristic approach utilizing PSO. The

PSO-based technique was implemented using C++. The program takes the CNF

equation and input lines as inputs and provides variable assignments for the

equation.

Due to the size of the circuits, testing all possible bridging faults is impractical.

Therefore, random faults were chosen for experimentation. The results were

compared against the findings of a previously published paper [161] in the same

domain. Specifically, our experiments were confined to wired-AND and wired-OR

bridging faults. The entire set of experiments focused on the SoC illustrated in

150

Figure 7.9: SoC for experiments

Figure 7.9.

For our experimental investigation, we chose a SoC comprising 6 cores from

the ISCAS 85 dataset: C499, C880, C2670, C432, C6288, and C1355, along with

2 test buses. The individual characteristics of these cores are as follows: C499

with 41 input and 32 output pins, C880 with 60 input and 26 output pins, C2670

with 233 input and 140 output pins, C432 with 36 inputs and 7 output pins,

C6288 with 82 input and 32 output pins, and C1355 with 81 input and 32 output

pins. To apply test patterns to these cores, designated test buses were employed.

The scheduling of these two buses to the cores within the SoC was optimized to

ensure efficient test application, a process that can be enhanced using various

scheduling algorithms.

Our experimentation concentrated exclusively on non-feedback wire-AND and

wire-OR bridging faults. The findings from these tests are presented in Table

7.1, which outlines the outcomes for wire-AND bridging faults. The first column

displays the core names, while the second column shows the injected faults in

151

Table 7.1: Comparison of our method with the existing methods for wired-AND bridg-
ing faults

Cores
Number
of
injected
faults

Complete Testing Incomplete testing
Fault
coverage
percentage

Test
Vectors

Fault
coverage
percentage

Test
Vectors

C499 499 98.39 489 92.23 446
C880 880 100 719 95.45 669
C2670 2670 99.73 2394 91.29 2134
C432 432 98.61 221 94.54 167
C6288 6288 100 6087 93.11 5986
C1355 1355 99.55 703 90.80 630

Table 7.2: Comparison of our method with the existing methods for wired-OR bridging
faults

Cores
Number
of
injected
faults

Complete Testing Incomplete testing
Fault
coverage
percentage

Test
Vectors

Fault
coverage
percentage

Test
Vectors

C499 499 98.39 488 92.65 402
C880 880 100 776 96.46 745
C2670 2670 99.51 2424 93.21 2263
C432 432 100 227 94.26 198
C6288 6288 99.96 6080 94.87 5743
C1355 1355 99.77 688 93.27 607

152

the circuits. A comparison of fault coverage percentage and test data volume

was conducted between existing methods and our newly proposed approach. The

results indicate that for core C499, fault coverage reached 98.3%, accompanied

by 489 test vectors. In the context of incomplete testing, fault coverage reduced

to 92.23%, but the number of test patterns was also diminished to 446. Similarly,

for C880, traditional methods achieved full fault coverage of 100%, utilizing 719

test vectors. In contrast, our method saw fault coverage drop to 95.45%, along

with a reduction in test vectors to 669.

While there was a slight compromise in fault coverage across other cores, a

substantial decrease in TDV was observed. This comes with a trade-off in product

quality, as test vector numbers are significantly reduced. This reduction in test

vectors not only curtails testing time and complexity but also holds potential to

reduce overall testing costs.

In addition, Table 7.2 portrays our experiments concerning wire-OR bridg-

ing faults, using the same SoC. The injected fault quantities remain consistent

with those in Table 7.1. Here, fault coverage percentage for C4994 achieved

98.3% through traditional methods, while our approach saw coverage decrease

to 92.65%. For C499, the test vectors decreased from 488 to 402. Similarly, for

C880, the traditional method led to fault coverage of 100%, while our incomplete

testing yielded 96.46% FC and a reduction in test vectors from 776 to 745.

Collectively, these two tables highlight that our incomplete testing strategy

results in some compromise to product quality, but this is offset by a substantial

reduction in test vectors and TDV.

7.4 Conclusion and Future Work

The conclusions drawn from the wire-AND Bridging Fault tests highlight the

trade-offs observed between fault coverage and TDV. Our methodology demon-

strated an impressive fault coverage of 98.3% for core C499, utilizing 489 test

vectors, whereas incomplete testing resulted in a slightly reduced coverage of

153

92.23% with 446 test patterns. Similarly, in the case of core C880, traditional

methods achieved full fault coverage of 100% employing 719 test vectors, whereas

our approach maintained a commendable 95.45% coverage with only 669 vectors.

While there was a compromise in fault coverage for certain cores, this was coun-

terbalanced by a significant reduction in TDV, leading to more streamlined test-

ing, reduced complexity, and potential cost savings. Furthermore, experiments

involving wire-OR bridging faults underscored the effectiveness of our approach,

maintaining satisfactory fault coverage while substantially decreasing the number

of required test vectors.

154

Chapter 8
Conclusions and Future Perspectives

8.1 Summarization

VLSI testing constitutes a crucial phase in product development, encompassing

a broad realm of research. Products based on SoCs are ubiquitously employed

in our daily routines. SoCs encompass diverse cores, I/O pins, test buses, and

scan chains. The examination of these SoCs involves the application of assorted

test patterns to their pins. Nonetheless, this process is accompanied by various

challenges.

The primary challenge pertains to the size of test patterns, referred to as

TDV. If these patterns are substantial in size, managing the associated test data

becomes intricate, necessitating supplementary circuitry for storage. Another

testing challenge involves an elongated TAT. The process of applying extensive

test data to SoC pins consumes more time, consequently elongating the overall

TAT. Another significant obstacle is the imperative to curtail TP. This power

usage during testing is directly correlated to the frequency of transitions in test

bits between 0 and 1, or vice versa.

Various strategies exist to address these testing predicaments. Progress in

manufacturing technology has led to escalated integration density of SoCs, in-

volving a higher component count per unit area. Consequently, traditional tech-

niques have become prohibitively expensive, sluggish, and financially demanding.

155

To counteract these limitations, the notion of Incomplete Testing has emerged.

The principal aim of this dissertation is to implement incomplete testing for SoC.

This approach optimizes TDV, diminishes TAT, and mitigates TP while compro-

mising with the FC to the certain acceptable level.

Chapter 1 introduces the fundamentals of SoC test architecture, outlines the

challenges encountered in VLSI testing of SoCs, and elucidates the thesis objec-

tives.

Chapter 2 presents an in-depth literature survey. The survey reveals that pre-

vailing conventional methods predominantly rely on compression and compaction

techniques. Various compression and compaction methods are elaborated upon.

Additionally, power models aimed at reducing TP are discussed, alongside a dis-

cussion on a crucial parameter, TAT. Prominent TAT reduction strategies are

also covered. As the complexity of SoC designs continues to evolve, their testing

importance. The chapter surveys the domain of SoC testing to explore existing

research, methodologies, and advancements. It offers insights into the challenges

and solutions researchers have devised to cater to SoC testing requirements. This

chapter provides a comprehensive foundation, enabling identification of gaps in

existing literature and proposing innovative approaches to enhance SoC testing

efficiency.

Chapter 3 concludes by introducing a heuristic technique to minimize TDV

and input bits for cores, accepting a certain fault coverage compromise. Results

exhibit that, with a 2% to 5% compromise in fault coverage, input bits for each

core are reduced by an average of around 18%. This technique proves particularly

beneficial for testing extensive SoC designs contains numerous cores, where ex-

haustive testing is impractical. The method provides a cost-effective and efficient

approach for Incomplete Testing of SoCs reduces TDV on the cost of the quality

of testing.

Chapter 4 proposed the incomplete testing and analyzed the impact of Incom-

plete Testing on TAT reduction. A method is proposed for optimal assignments

of cores to test buses for incomplete testing. TAT equations are modified for

156

incomplete testing. Research findings demonstrate that a 5% fault coverage com-

promise can reduce Input Bits per core by a substantial 14%. Additionally, TAT

sees an 8% reduction.

Chapter 5 introduces a novel approach to incomplete testing that incorporates

TP is presented. A modified test vector set, specifically tailored for incomplete

testing, is introduced. Additionally, a design for a TAM that utilizes the IEEE

1500 test architecture to support this approach in general incomplete testing

scenarios is proposed. The TP-aware incomplete testing method, characterized

by the optimal assignment of cores to test buses, attains significant power savings,

with only a slight compromise in fault coverage, as evidenced by experimental

results showcasing a remarkable reduction in TP utilization.

Chapter 6 Proposed another novel method for Incomplete Testing of SoC.

The strategy is particularly advantageous for large SoC devices where extensive

testing may be impractical due to TAT and TP. Incomplete Testing optimizes

parameters like TDV, TAT, and TP with minimal fault coverage compromise,

leading to enhanced efficiency, cost-effectiveness, and broader customer accessi-

bility to devices. Research indicates that incomplete testing can reduce TDV,

TAT, and TP by up to 52%, 48%, and 50%, respectively, with a trade-off of 1%

to 10% in fault coverage.

Chapter 7 concludes the findings from the wire-AND Bridging Fault tests

revealed trade-offs between fault coverage and TDV. Our approach achieved a

high fault coverage of 98.3% for core C499 with 489 test vectors, while Incomplete

Testing lowered coverage to 92.23% with 446 test patterns. Similarly, for core

C880, conventional methods yielded full fault coverage of 100% using 719 test

vectors, whereas our approach achieved 95.45% coverage with 669 vectors. This

compromise in fault coverage across some cores was offset by a notable reduc-

tion in test data volume, offering streamlined testing, decreased complexity, and

potential cost savings. Experiments involving wire-OR bridging faults further

demonstrated the effectiveness of our approach, maintaining satisfactory fault

coverage while significantly reducing the number of test vectors.

157

8.2 Future Works

In the future, there are several avenues for extending our work to enhance test-

ing efficiency. Our proposed Incomplete Testing approach has demonstrated its

efficiency and speed, particularly in scenarios involving larger TDV, where the

application of test vectors to the core consumes substantial time. Traditional

testing methods for extensive SoC designs can often lead to unexpectedly long

testing duration. Our proposed Incomplete Testing method offers significant re-

ductions in TAT, with up to 63% time savings observed in certain cases, and an

average TAT reduction of around 60%. This approach also contributes to reduced

TP, with potential savings of up to 24% in specific instances. It is important to

note that the methods discussed in the preceding chapters are tailored for Stuck-

at Faults only. However, other fault types such as Bridging Faults and Delay

Faults are also critical in the testing domain. An Incomplete Testing technique

targeting Bridging Faults, which not only improves TDV but also provides valu-

able insights for further exploration. Looking ahead, there are several promising

directions for future research:

1. Integration of thermal-aware techniques with Incomplete Testing ap-

proaches to address potential thermal challenges during testing.

2. Focus on test scheduling strategies specifically designed for cores in a 3D

SoC environment.

3. Development of commercial software for Incomplete Testing, extending the

benefits of our method to real-world applications.

4. Broadening the scope of fault coverage to include other fault types such as

Delay Faults, enhancing the comprehensiveness of the testing approach.

5. Incorporation of power estimation techniques that consider the impact of

recent manufacturing technologies on both leakage and dynamic power con-

sumption.

158

6. Exploration of the application of Incomplete Testing concepts in other test-

ing domains, such as digital bio-fluidic chip testing.

By venturing into these areas, this dissertation can further refine and expand

the capabilities of Incomplete Testing methodologies, leading to more efficient

and effective testing practices across a broader spectrum of fault scenarios and

testing environments.

159

160

References

[1] M. Abramovichi, M. A. Breuer, and A. D. Friedman, “Digital testing and

testable design,” Computer Science Press, New York, vol. 10, pp. 379–388,

1990. [Pg.1]

[2] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,

memory and mixed-signal VLSI circuits. Springer Science & Business

Media, 2004, vol. 17. [Pg.1]

[3] G. Martin and H. Chang, “System-on-chip design,” in ASICON 2001. 2001

4th International Conference on ASIC Proceedings (Cat. No. 01TH8549).

IEEE, 2001, pp. 12–17. [Pg.3]

[4] system on chip. [Online]. Available: https://en.wikipedia.org/wiki/

System-on-a-chip [Pg.3]

[5] [Online]. Available: https://www.apple.com/in/newsroom/2020/10/

all-new-ipad-air-with-advanced-a14-bionic-chip-available-to-order-starting-today/

[Pg.3]

[6] [Online]. Available: https://www.qualcomm.com/products/

mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/

snapdragon-888-5g-mobile-platform [Pg.3]

161

https://en.wikipedia.org/wiki/System-on-a-chip
https://en.wikipedia.org/wiki/System-on-a-chip
https://www.apple.com/in/newsroom/2020/10/all-new-ipad-air-with-advanced-a14-bionic-chip-available-to-order-starting-today/
https://www.apple.com/in/newsroom/2020/10/all-new-ipad-air-with-advanced-a14-bionic-chip-available-to-order-starting-today/
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-888-5g-mobile-platform

[7] [Online]. Available: https://semiconductor.samsung.com/processor/

mobile-processor/exynos-2100/ [Pg.3]

[8] [Online]. Available: https://www.amd.com/en/processors/

ryzen-5000-series [Pg.3]

[9] [Online]. Available: https://ark.intel.com/content/www/us/en/ark/

products/series/202986/11th-generation-intel-core-i7-processors.html

[Pg.3]

[10] [Online]. Available: https://developer.nvidia.com/content/tegra-x1 [Pg.3]

[11] [Online]. Available: https://www.tesla.com/support/autopilot [Pg.3]

[12] [Online]. Available: https://cloud.google.com/tpu/docs/intro-to-tpu [Pg.3]

[13] C.-W. Wu and X. Wen, VLSI Test Principles and Architectures. Morgan

Kaufmann, 2006. [Pg.vii], [Pg.3], [Pg.5], [Pg.7], [Pg.17], [Pg.18], [Pg.26]

[14] T. W. Williams and K. P. Parker, “Design for testability—a survey,” Pro-

ceedings of the IEEE, vol. 71, no. 1, pp. 98–112, 1983. [Pg.4]

[15] T. Willians and K. Parker, “Design for testability-a survey,” IEEE Trans-

actions on Computers, vol. 31, no. 1, pp. 98–112, 1982. [Pg.4]

[16] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based sys-

tem chips,” in Test Conference, 1998. Proceedings., International. IEEE,

1998, pp. 130–143. [Pg.4]

[17] L. Mostardini, L. Bacciarelli, L. Fanucci, L. Bertini, M. Tonarelli, and

M. De Marinis, “Fpga-based low-cost automatic test equipment for digi-

tal integrated circuits,” in 2009 IEEE International Workshop on Intelli-

gent Data Acquisition and Advanced Computing Systems: Technology and

Applications. IEEE, 2009, pp. 32–37. [Pg.5]

162

https://semiconductor.samsung.com/processor/mobile-processor/exynos-2100/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-2100/
https://www.amd.com/en/processors/ryzen-5000-series
https://www.amd.com/en/processors/ryzen-5000-series
https://ark.intel.com/content/www/us/en/ark/products/series/202986/11th-generation-intel-core-i7-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/202986/11th-generation-intel-core-i7-processors.html
https://developer.nvidia.com/content/tegra-x1
https://www.tesla.com/support/autopilot
https://cloud.google.com/tpu/docs/intro-to-tpu

[18] M. Radu, “Testing digital circuits using a mixed-signal automatic test

equipment,” in 2014 IEEE International Conference on Automation, Qual-

ity and Testing, Robotics. IEEE, 2014, pp. 1–4. [Pg.5]

[19] A. Balasubramanian, B. Bhuva, L. Massengill, B. Narasimham, R. Shuler,

T. Loveless, and W. T. Holman, “A built-in self-test (bist) technique for

single-event testing in digital circuits,” IEEE Transactions on Nuclear Sci-

ence, vol. 55, no. 6, pp. 3130–3135, 2008. [Pg.5]

[20] N. Das, P. Roy, and H. Rahaman, “Built-in-self-test technique for diagno-

sis of delay faults in cluster-based field programmable gate arrays,” IET

Computers & Digital Techniques, vol. 7, no. 5, pp. 210–220, 2013. [Pg.5]

[21] M. Nicolaidis and L. Anghel, “Concurrent checking for vlsi,”Microelectronic

Engineering, vol. 49, no. 1-2, pp. 139–156, 1999. [Pg.5]

[22] M. Nicolaidis and Y. Zorian, “On-line testing for vlsi—a compendium of

approaches,” Journal of Electronic Testing, vol. 12, pp. 7–20, 1998. [Pg.5]

[23] B. Sen, J. Das, and B. K. Sikdar, “A dft methodology targeting online

testing of reversible circuit,” in 2012 international conference on devices,

circuits and systems (ICDCS). IEEE, 2012, pp. 689–693. [Pg.5]

[24] Y. Zorian, “Test requirements for embedded core-based systems and ieee

p1500,” in Test Conference, 1997. Proceedings., International. IEEE, 1997,

pp. 191–199. [Pg.7]

[25] E. J. Marinissen and Y. Zorian, “Challenges in testing core-based system

ics,” Communications Magazine, IEEE, vol. 37, no. 6, pp. 104–109, 1999.

[Pg.7]

[26] Y. Zorian, “Today’s soc test challenges,” in IEEE International Conference

on Test, 2005. IEEE, 2005, pp. 2–pp. [Pg.7]

163

[27] S. Goel, E. J. Marinissen, A. Sehgal, and K. Chakrabarty, “Testing of socs

with hierarchical cores: common fallacies, test access optimization, and test

scheduling,” IEEE Transactions on Computers, vol. 58, no. 3, pp. 409–423,

2008. [Pg.7]

[28] M. Goetz, “System on chip design methodology applied to system in pack-

age architecture,” in 52nd Electronic Components and Technology Confer-

ence 2002.(Cat. No. 02CH37345). IEEE, 2002, pp. 254–258. [Pg.8]

[29] K. Chakrabarty, “Low-cost modular testing and test resource partition-

ing for socs,” IEE Proceedings-Computers and Digital Techniques, vol. 152,

no. 3, pp. 427–441, 2005. [Pg.8]

[30] V. Iyengar, A. Chandra, S. Schweizer, and K. Chakrabarty, “A unified

approach for soc testing using test data compression and tam optimization,”

in 2003 Design, Automation and Test in Europe Conference and Exhibition.

IEEE, 2003, pp. 1188–1189. [Pg.8]

[31] E. J. Marinissen and Y. Zorian, “Challenges in testing core-based system

ics,” IEEE Communications Magazine, vol. 37, no. 6, pp. 104–109, 1999.

[Pg.8]

[32] P. Girard, N. Nicolici, and X. Wen, Power-aware testing and test strategies

for low power devices. Springer Science & Business Media, 2010. [Pg.9]

[33] M. Renovell and H.-J. Wunderlich, “In praise of vlsi test principles and

architectures: Design for testability.” [Pg.17], [Pg.18]

[34] G. Huertas, J. L. Huertas, and E. Lora-Tamayo, “Very-large-scale integra-

tion of electronic circuits.” [Pg.17], [Pg.18]

[35] D. F. Barbe, Very large scale integration (VLSI): fundamentals and appli-

cations. Springer Science & Business Media, 2013, vol. 5. [Pg.18]

164

[36] Very large scale integration. [Online]. Available: https://en.wikipedia.org/

wiki/Very-large-scale-integration/ [Pg.18]

[37] T. W. Williams and N. Brown, “Defect level as a function of fault coverage,”

IEEE Transactions on Computers, vol. 100, no. 12, pp. 987–988, 1981.

[Pg.18]

[38] A. D. Friedman, M. Abramovici, and M. A. Breuer, Digital Systems Testing

and Testable Design. Jaico, 2007. [Pg.19]

[39] J. M. Emmert, C. E. Stroud, and J. R. Bailey, “A new bridging fault model

for more accurate fault behavior,” in 2000 IEEE Autotestcon Proceedings.

IEEE Systems Readiness Technology Conference. Future Sustainment for

Military Aerospace (Cat. No. 00CH37057). IEEE, 2000, pp. 481–485.

[Pg.20]

[40] A. K. Majhi and V. D. Agrawal, “Delay fault models and coverage,” in

Proceedings Eleventh International Conference on VLSI Design. IEEE,

1998, pp. 364–369. [Pg.21]

[41] G. L. Smith, “Model for delay faults based upon paths.” in ITC, vol. 85.

Citeseer, 1985, pp. 342–349. [Pg.21]

[42] I. Pomeranz and S. M. Reddy, “Transition path delay faults: A new path

delay fault model for small and large delay defects,” IEEE transactions on

very large scale integration (VLSI) systems, vol. 16, no. 1, pp. 98–107, 2007.

[Pg.21]

[43] P. C. Maxwell, R. C. Aitken, and L. M. Huisman, “The effect on qual-

ity of non-uniform fault coverage and fault probability,” in Proceedings.,

international test conference. IEEE, 1994, pp. 739–746. [Pg.22], [Pg.23]

165

https://en.wikipedia.org/wiki/Very-large-scale-integration/
https://en.wikipedia.org/wiki/Very-large-scale-integration/

[44] R. Rinitha and R. Ponni, “Testing in vlsi: A survey,” in 2016 International

Conference on Emerging Trends in Engineering, Technology and Science

(ICETETS). IEEE, 2016, pp. 1–6. [Pg.vii], [Pg.22]

[45] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”

IBM journal of Research and Development, vol. 10, no. 4, pp. 278–291,

1966. [Pg.24]

[46] Goel, “An implicit enumeration algorithm to generate tests for combina-

tional logic circuits,” IEEE transactions on Computers, vol. 100, no. 3, pp.

215–222, 1981. [Pg.24]

[47] Fujiwara and Shimono, “On the acceleration of test generation algorithms,”

IEEE Transactions on Computers, vol. 100, no. 12, pp. 1137–1144, 1983.

[Pg.24]

[48] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-

quential benchmark circuits,” in 1989 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE, 1989, pp. 1929–1934. [Pg.24]

[49] F. Brglez, D. Bryan, and K. Koiminski, “Combinational profiles of sequen-

tial benchmark circuits zyxwvutsrqponm.” [Pg.24]

[50] [Online]. Available: https://www.synopsys.com/

implementation-and-signoff/ams-simulation/primesim-hspice.html [Pg.24]

[51] E. J. McCluskey, Logic design principles with emphasis on testable semi-

custom circuits. Prentice-Hall, Inc., 1986. [Pg.24]

[52] T. W. Williams and K. P. Parker, “Design for testability-a survey,” IEEE

Transactions on computers, vol. 31, no. 01, pp. 2–15, 1982. [Pg.24]

[53] P. Bardel, “Self-testing of multichip logic modules,” in Proc. International

Test Conference, 1982, pp. 200–204. [Pg.25]

166

https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html

[54] C. E. Stroud, A designer’s guide to built-in self-test. Springer Science &

Business Media, 2005, vol. 19. [Pg.25]

[55] I. S. Committee et al., “Ieee std. 1149.1-2001 ieee standard test access port

and boundary scan architecture.” [Pg.25]

[56] “Ieee standard testability method for embedded core-based integrated cir-

cuits,” IEEE Std 1500-2005, pp. 1–136, 2005. [Pg.25]

[57] “Ieee standard for boundary-scan testing of advanced digital networks,”

IEEE Std 1149.6-2003, pp. 1–140, 2003. [Pg.25]

[58] [Online]. Available: https://grouper.ieee.org/groups/1500/publicationmy.

htm [Pg.27]

[59] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper design for embed-

ded core test,” in Proceedings International Test Conference 2000 (IEEE

Cat. No. 00CH37159). IEEE, 2000, pp. 911–920. [Pg.vii], [Pg.28], [Pg.29]

[60] W. Chao, W. Hong, and Y. Shiyuan, “A p1500-compliant wrapper and

tam controller co-design scheme,” in 2005 6th International Conference on

ASIC, vol. 2. IEEE, 2005, pp. 709–713. [Pg.29]

[61] J. Pouget, E. Larsson, Z. Peng, M.-L. Flottes, and B. Rouzeyre, “An effi-

cient approach to soc wrapper design, tam configuration and test schedul-

ing,” in The Eighth IEEE European Test Workshop, 2003. Proceedings.

IEEE, 2003, pp. 51–56. [Pg.29]

[62] E. J. Marinissen, R. Kapur, and Y. Zorian, “On using ieee p1500 sect for

test plug-n-play,” in Proceedings International Test Conference 2000 (IEEE

Cat. No. 00CH37159). IEEE, 2000, pp. 770–777. [Pg.32]

[63] H. Chen, Z. Qi, L. Wang, and C. Xu, “A scan chain optimization method

for diagnosis,” in 2015 33rd IEEE International Conference on Computer

Design (ICCD), 2015, pp. 613–620. [Pg.35]

167

https://grouper.ieee.org/groups/1500/publicationmy.htm
https://grouper.ieee.org/groups/1500/publicationmy.htm

[64] N. A. Touba, “Survey of test vector compression techniques,” IEEE Design

& test of computers, vol. 23, no. 4, pp. 294–303, 2006. [Pg.vii], [Pg.36]

[65] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient test

vector compression scheme using selective huffman coding,” IEEE transac-

tions on computer-aided design of integrated circuits and systems, vol. 22,

no. 6, pp. 797–806, 2003. [Pg.37]

[66] Z. Wang and K. Chakrabarty, “Test data compression for ip embedded cores

using selective encoding of scan slices,” in IEEE International Conference

on Test, 2005. IEEE, 2005, pp. 10–pp. [Pg.37]

[67] S. Reda and A. Orailoglu, “Reducing test application time through test data

mutation encoding,” in Proceedings 2002 Design, Automation and Test in

Europe Conference and Exhibition. IEEE, 2002, pp. 387–393. [Pg.37]

[68] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction

and compression for test time and data volume reduction in scan designs,”

IEEE Transactions on Computers, vol. 52, no. 11, pp. 1480–1489, 2003.

[Pg.37]

[69] S. Mitra and K. S. Kim, “Xpand: An efficient test stimulus compression

technique,” IEEE Transactions on Computers, vol. 55, no. 2, pp. 163–173,

2006. [Pg.37]

[70] C. Krishna and N. A. Touba, “Adjustable width linear combinational scan

vector decompression,” in ICCAD-2003. International Conference on Com-

puter Aided Design (IEEE Cat. No. 03CH37486). IEEE, 2003, pp. 863–

866. [Pg.37]

[71] P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin, “Efficient com-

pression and application of deterministic patterns in a logic bist architec-

ture,” in Proceedings 2003. Design Automation Conference (IEEE Cat. No.

03CH37451). IEEE, 2003, pp. 566–569. [Pg.37]

168

[72] E. H. Volkerink and S. Mitra, “Efficient seed utilization for reseeding based

compression [logic testing],” in Proceedings. 21st VLSI Test Symposium,

2003. IEEE, 2003, pp. 232–237. [Pg.37]

[73] C. Krishna and N. A. Touba, “Reducing test data volume using lfsr reseed-

ing with seed compression,” in Proceedings. International Test Conference.

IEEE, 2002, pp. 321–330. [Pg.37]

[74] C. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using partial

lfsr reseeding,” in Proceedings International Test Conference 2001 (Cat. No.

01CH37260). IEEE, 2001, pp. 885–893. [Pg.37]

[75] J. Lee and N. A. Touba, “Combining linear and nonlinear test vector com-

pression using correlation-based rectangular encoding,” in 24th IEEE VLSI

Test Symposium. IEEE, 2006, pp. 6–pp. [Pg.37]

[76] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan chains

and its application to testing core-based designs,” in Test Conference, 1998.

Proceedings., International. IEEE, 1998, pp. 458–464. [Pg.38]

[77] A.Chandra and K. Chakrabarty, “Reduction of soc test data volume, scan

power and testing time using alternating run-length codes,” in Proceedings

2002 Design Automation Conference (IEEE Cat. No.02CH37324), June

2002, pp. 673–678. [Pg.38]

[78] A. Chandra and K. Chakrabarty, “Test data compression for system-on-a-

chip using golomb codes,” in Proceedings 18th IEEE VLSI Test Symposium,

April 2000, pp. 113–120. [Pg.38]

[79] A.Chandra and K. Chakrabarty, “Test data compression and decompres-

sion based on internal scan chains and golomb coding,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21,

no. 6, pp. 715–722, June 2002. [Pg.38]

169

[80] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression

and decompression architectures based on golomb codes,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,

no. 3, pp. 355–368, March 2001. [Pg.38]

[81] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression

and decompression architectures based on golomb codes,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,

no. 3, pp. 355–368, 2001. [Pg.38]

[82] A. Jas, J. Ghosh-Dastidar, Mom-Eng Ng, and N. A. Touba, “An efficient

test vector compression scheme using selective huffman coding,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 22, no. 6, pp. 797–806, June 2003. [Pg.38]

[83] S. Lu, H. Chuang, G. Lai, B. Lai, and Y. Huang, “Efficient test pattern

compression techniques based on complementary huffman coding,” in 2009

IEEE Circuits and Systems International Conference on Testing and Diag-

nosis, April 2009, pp. 1–4. [Pg.38]

[84] Y. Yu, Z. Yang, and X. Peng, “Test data compression based on variable

prefix dual-run-length code,” in 2012 IEEE International Instrumentation

and Measurement Technology Conference Proceedings, May 2012, pp. 2537–

2542. [Pg.38]

[85] Xijiang Lin, J. Rajski, I. Pomeranz, and S. M. Reddy, “On static test

compaction and test pattern ordering for scan designs,” in Proceedings In-

ternational Test Conference 2001 (Cat. No.01CH37260), Nov 2001, pp.

1088–1097. [Pg.38], [Pg.39]

[86] A. Chandra and K. Chakrabarty, “Test data compression and test resource

partitioning for system-on-a-chip using frequency-directed run-length (fdr)

170

codes,” IEEE transactions on computers, vol. 52, no. 8, pp. 1076–1088,

2003. [Pg.38]

[87] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Variable-length in-

put huffman coding for system-on-a-chip test,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 6,

pp. 783–796, 2003. [Pg.38]

[88] S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data

volume reduction for multiple scan chain designs,” ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 8, no. 4, pp.

460–469, 2003. [Pg.38]

[89] L. Li, K. Chakrabarty, and N. A. Touba, “Test data compression using dic-

tionaries with selective entries and fixed-length indices,” ACM Transactions

on Design Automation of Electronic Systems (TODAES), vol. 8, no. 4, pp.

470–490, 2003. [Pg.39]

[90] A. Wurtenberger, C. S. Tautermann, and S. Hellebrand, “Data compres-

sion for multiple scan chains using dictionaries with corrections,” in 2004

International Conferce on Test. IEEE, 2004, pp. 926–935. [Pg.39]

[91] S. Mitra and Kee Sup Kim, “X-compact: an efficient response compaction

technique,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 23, no. 3, pp. 421–432, March 2004. [Pg.39]

[92] S.Mitra and Kee Sup Kim, “X-compact: an efficient response compaction

technique for test cost reduction,” in Proceedings. International Test Con-

ference, Oct 2002, pp. 311–320. [Pg.39]

[93] U. S. Mehla, K. S. Dasgupta, and N. M. Devashrayee, “Hamming distance

based reordering and columnwise bit stuffing with difference vector: A bet-

ter scheme for test data compression with run length based codes,” in 2010

23rd International Conference on VLSI Design, Jan 2010, pp. 33–38. [Pg.39]

171

[94] L. Li, K. Chakrabarty, and N. Touba, “Test data compression using dictio-

naries with selective entries and fixed-length indices,” ACM Trans. Design

Autom. Electr. Syst., vol. 8, pp. 470–490, 10 2003. [Pg.39]

[95] T.-B. Wu, H.-Z. Liu, and P.-X. Liu, “Efficient test compression

technique for soc based on block merging and eight coding,” J. Electron.

Test., vol. 29, no. 6, pp. 849–859, Dec. 2013. [Online]. Available:

http://dx.doi.org/10.1007/s10836-013-5415-7 [Pg.39]

[96] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji,

and V. D. Agrawal, “An efficient test data reduction technique through

dynamic pattern mixing across multiple fault models,” in 29th VLSI Test

Symposium, May 2011, pp. 285–290. [Pg.39]

[97] S. N. Biswas, S. R. Das, and E. M. Petriu, “On system-on-chip testing using

hybrid test vector compression,” IEEE Transactions on Instrumentation

and Measurement, vol. 63, no. 11, pp. 2611–2619, Nov 2014. [Pg.39]

[98] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test

access mechanism co-optimization for system-on-chip,” Journal of Elec-

tronic Testing, vol. 18, no. 2, pp. 213–230, 2002. [Pg.41]

[99] K. Chakrabarty, “Optimal test access architectures for system-on-a-chip,”

ACM Transactions on Design Automation of Electronic Systems (TO-

DAES), vol. 6, no. 1, pp. 26–49, 2001. [Pg.41]

[100] K.Chakrabarty, “Design of system-on-a-chip test access architectures using

integer linear programming,” in VLSI Test Symposium, 2000. Proceedings.

18th IEEE. IEEE, 2000, pp. 127–134. [Pg.41], [Pg.75]

[101] K. chakrabarty, “Test scheduling for core-based systems using mixed-integer

linear programming,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 19, no. 10, pp. 1163–1174, 2000.

[Pg.41]

172

http://dx.doi.org/10.1007/s10836-013-5415-7

[102] Z. S. Ebadi and A. Ivanov, “Design of an optimal test access architecture

using a genetic algorithm,” in Test Symposium, 2001. Proceedings. 10th

Asian. IEEE, 2001, pp. 205–210. [Pg.41], [Pg.76], [Pg.84]

[103] K. Chakrabarty, “Low-cost modular testing and test resource partitioning

for socs,” IEE Proceedings - Computers and Digital Techniques, vol. 152,

no. 3, pp. 427–441, May 2005. [Pg.41]

[104] S. Samii, M. Selkala, E. Larsson, K. Chakrabarty, and Z. Peng, “Cycle-

accurate test power modeling and its application to soc test architecture

design and scheduling,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 5, pp. 973–977, 2008. [Pg.41]

[105] P. Girard, “Survey of low-power testing of vlsi circuits,” IEEE Design &

test of computers, vol. 19, no. 3, pp. 82–92, 2002. [Pg.42]

[106] P. Basker and A. Arulmurugan, “Survey of low power testing of vlsi cir-

cuits,” in 2012 International Conference on Computer Communication and

Informatics. IEEE, 2012, pp. 1–7. [Pg.42]

[107] S. Chakravarty and V. P. Dabholkar, “Two techniques for minimizing power

dissipation in scan circuits during test application,” in Proceedings of IEEE

3rd Asian Test Symposium (ATS). IEEE, 1994, pp. 324–329. [Pg.42]

[108] G. Vellingiri and R. Jayabalan, “An improved low transition test pattern

generator for low power applications,” Design Automation for Embedded

Systems, vol. 21, no. 3-4, pp. 247–263, 2017. [Pg.42]

[109] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Techniques for

minimizing power dissipation in scan and combinational circuits during test

application,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 17, no. 12, pp. 1325–1333, 1998. [Pg.42]

173

[110] S. Ghosh, S. Basu, and N. A. Touba, “Joint minimization of power and area

in scan testing by scan cell reordering,” in IEEE Computer Society Annual

Symposium on VLSI, 2003. Proceedings. IEEE, 2003, pp. 246–249. [Pg.43]

[111] ——, “Joint minimization of power and area in scan testing by scan cell

reordering technical report: Ut-cerc-tr-nat02-1.” [Pg.43]

[112] N. Badereddine, P. Girard, S. Pravossoudovitch, A. Virazel, and C. Lan-

drault, “Scan cell reordering for peak power reduction during scan test cy-

cles,” in Vlsi-Soc: From Systems To Silicon. Springer, 2007, pp. 267–281.

[Pg.43]

[113] T. Hiraide, K. O. Boateng, H. Konishi, K. Itaya, M. Emori, H. Yamanaka,

and T. Mochiyama, “Bist-aided scan test-a new method for test cost reduc-

tion,” in Proceedings. 21st VLSI Test Symposium, 2003. IEEE, 2003, pp.

359–364. [Pg.43]

[114] S. Wang and W. Wei, “A technique to reduce peak current and average

power dissipation in scan designs by limited capture,” in 2007 Asia and

South Pacific Design Automation Conference. IEEE, 2007, pp. 810–816.

[Pg.43]

[115] S. Manich, A. Gabarro, M. e. Lopez, J. Figueras, P. Girard, L. Guiller,

C. Landrault, S. Pravossoudovitch, P. Teixeira, and M. Santos, “Low

power bist by filtering non-detecting vectors,” Journal of Electronic Testing,

vol. 16, no. 3, pp. 193–202, 2000. [Pg.43]

[116] P.-H. Wu, T.-T. Chen, W.-L. Li, and J.-C. Rau, “An efficient test-data com-

paction for low power vlsi testing,” in 2008 IEEE International Conference

on Electro/Information Technology. IEEE, 2008, pp. 237–241. [Pg.43]

[117] L. Whetsel, “Adapting scan architectures for low power operation,” in Pro-

ceedings International Test Conference 2000 (IEEE Cat. No. 00CH37159).

IEEE, 2000, pp. 863–872. [Pg.43]

174

[118] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan architecture with

mutually exclusive scan segment activation for shift-and capture-power re-

duction,” IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 23, no. 7, pp. 1142–1153, 2004. [Pg.43]

[119] A. Chandra and K. Chakrabarty, “Combining low-power scan testing and

test data compression for system-on-a-chip,” in Design Automation Con-

ference, 2001. Proceedings. IEEE, 2001, pp. 166–169. [Pg.43]

[120] ——, “Reduction of soc test data volume, scan power and testing time using

alternating run-length codes,” in Proceedings of the 39th annual Design

Automation Conference. ACM, 2002, pp. 673–678. [Pg.43]

[121] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Low power mixed-

mode bist based on mask pattern generation using dual lfsr re-seeding,” in

Proceedings. IEEE International Conference on Computer Design: VLSI in

Computers and Processors. IEEE, 2002, pp. 474–479. [Pg.43]

[122] J. Lee and N. A. Touba, “Low power test data compression based on lfsr

reseeding,” in IEEE International Conference on Computer Design: VLSI

in Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE, 2004,

pp. 180–185. [Pg.43]

[123] W.-B. Jone, P. Gondalia, and A. Gutjahr, “Realizing a high measure of

confidence for defect level analysis of random testing [vlsi],” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 3, no. 3, pp.

446–450, 1995. [Pg.44]

[124] P. Gondalia, A. Gutjahr, and W.-B. Jone, “Realizing a high measure of

confidence for defect level analysis of random testing,” in Proceedings of

IEEE International Test Conference-(ITC). IEEE, 1993, pp. 478–487.

[Pg.44]

175

[125] W.-B. Jone and K. Tsai, “Confidence analysis for defect-level estimation

of vlsi random testing,” ACM Transactions on Design Automation of Elec-

tronic Systems (TODAES), vol. 3, no. 3, pp. 389–407, 1998. [Pg.44]

[126] L. Cheng, P. Gupta, and L. He, “On confidence in characterization and ap-

plication of variation models,” in 2010 15th Asia and South Pacific Design

Automation Conference (ASP-DAC). IEEE, 2010, pp. 751–756. [Pg.44]

[127] T. K. Maiti, S. Kundu, A. Dutta, and S. Chattopadhyay, “Confidence based

power aware testing,” in 2012 International Symposium on Electronic Sys-

tem Design (ISED). IEEE, 2012, pp. 62–66. [Pg.44]

[128] C. Giri, S. Sarkar, and S. Chattopadhyay, “A genetic algorithm based

heuristic technique for power constrained test scheduling in core-based

socs,” in 2007 IFIP International Conference on Very Large Scale Inte-

gration, Oct 2007, pp. 320–323. [Pg.44]

[129] C. Giri, D. K. R. Tipparthi, and S. Chattopadhyay, “Genetic algorithm

based approach for hierarchical soc test scheduling,” in 2007 International

Conference on Computing: Theory and Applications (ICCTA’07), March

2007, pp. 141–145. [Pg.44]

[130] S. Chattopadhyay and K. S. Reddy, “Genetic algorithm based test schedul-

ing and test access mechanism design for system-on-chips,” in 16th Inter-

national Conference on VLSI Design, 2003. Proceedings., Jan 2003, pp.

341–346. [Pg.44]

[131] S. Dutt, A. Chauhan, R. Bhadoriya, S. Nandi, and G. Trivedi, “A high-

performance energy-efficient hybrid redundant mac for error-resilient appli-

cations,” in 2015 28th International Conference on VLSI Design. IEEE,

2015, pp. 351–356. [Pg.11], [Pg.45]

[132] V. Rao and B. Nowrouxian, “A novel high-speed parallel multiply-

accumulate arithmetic architecture employing modified radix-4 signed-

176

binary recoding,” in Circuits and Systems, 1996., IEEE 39th Midwest sym-

posium on, vol. 1. IEEE, 1996, pp. 57–60. [Pg.10], [Pg.11], [Pg.45]

[133] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler,

“Approximation-aware testing for approximate circuits,” in 2018 23rd Asia

and South Pacific design automation conference (ASP-DAC). IEEE, 2018,

pp. 239–244. [Pg.45]

[134] A. Chandrasekharan, D. Große, and R. Drechsler, Design automation tech-

niques for approximation circuits. Springer, 2018. [Pg.45]

[135] A. Gebregiorgis and M. B. Tahoori, “Test pattern generation for approxi-

mate circuits based on boolean satisfiability,” in 2019 Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.

1028–1033. [Pg.45]

[136] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant

applications,” in 2010 Design, Automation & Test in Europe Conference &

Exhibition (DATE 2010). IEEE, 2010, pp. 957–960. [Pg.46]

[137] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of

the h. 264/avc video coding standard,” IEEE Transactions on circuits and

systems for video technology, vol. 13, no. 7, pp. 560–576, 2003. [Pg.46]

[138] A. M. Eltawil and F. J. Kurdahi, “Improving effective yield through error

tolerant system design,” in 2005 12th IEEE International Conference on

Electronics, Circuits and Systems. IEEE, 2005, pp. 1–4. [Pg.46]

[139] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel,

“Approximation-aware multi-level cells stt-ram cache architecture,” in 2015

International Conference on Compilers, Architecture and Synthesis for Em-

bedded Systems (CASES). IEEE, 2015, pp. 79–88. [Pg.46]

177

[140] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural net-

works: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017. [Pg.46]

[141] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,

G. Wang, J. Cai et al., “Recent advances in convolutional neural networks,”

Pattern recognition, vol. 77, pp. 354–377, 2018. [Pg.46]

[142] J. Kenndy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of IEEE International Conference on Neural Networks, vol. 4, 1995, pp.

1942–1948. [Pg.54]

[143] J. Kennedy and R. C. Eberhart, “A discrete binary version of the parti-

cle swarm algorithm,” in Systems, Man, and Cybernetics, 1997. Compu-

tational Cybernetics and Simulation., 1997 IEEE International Conference

on, vol. 5. IEEE, 1997, pp. 4104–4108. [Pg.54], [Pg.56], [Pg.74], [Pg.149]

[144] [Online]. Available: http://ddd.fit.cvut.cz/prj/Benchmarks/ [Pg.58]

[145] [Online]. Available: http://www.pld.ttu.ee/∼maksim/benchmarks/

iscas85/verilog/ [Pg.58]

[146] [Online]. Available: http://www.pld.ttu.ee/∼maksim/benchmarks/

iscas89/verilog/ [Pg.58]

[147] [Online]. Available: http://ddd.fit.cvut.cz/prj/Atalanta-M/ [Pg.58],

[Pg.101], [Pg.131]

[148] [Online]. Available: http://ddd.fit.cvut.cz/index.php?page=download

[Pg.58], [Pg.102], [Pg.131]

[149] S. N. Biswas, S. R. Das, and E. M. Petriu, “On system-on-chip testing

using hybrid test vector compression.” IEEE Trans. Instrumentation and

Measurement, vol. 63, no. 11, pp. 2611–2619, 2014. [Pg.66]

178

http://ddd.fit.cvut.cz/prj/Benchmarks/
http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/
http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/
http://ddd.fit.cvut.cz/prj/Atalanta-M/
http://ddd.fit.cvut.cz/index.php?page=download

[150] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction

in core-based ics,” in Test Conference, 1998. Proceedings., International.

IEEE, 1998, pp. 448–457. [Pg.76]

[151] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng, “Cycle-accurate test

power modeling and its application to soc test scheduling,” in Test Confer-

ence, 2006. ITC’06. IEEE International. IEEE, 2006, pp. 1–10. [Pg.90],

[Pg.91], [Pg.92]

[152] F. Da Silva, T. McLaurin, and T. Waayers, The Core Test Wrapper Hand-

book: Rationale and Application of IEEE Std. 1500TM. Springer Science

& Business Media, 2006, vol. 35. [Pg.94], [Pg.95], [Pg.96]

[153] [Online]. Available: http://ddd.fit.cvut.cz/prj/Benchmarks/ [Pg.101],

[Pg.131]

[154] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis

and characterization of inherent application resilience for approximate com-

puting,” in Proceedings of the 50th Annual Design Automation Conference,

2013, pp. 1–9. [Pg.10]

[155] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power dig-

ital signal processing using approximate adders,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1,

pp. 124–137, 2012. [Pg.11]

[156] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addi-

tion: A new paradigm for arithmetic circuit design,” in Proceedings of the

conference on Design, automation and test in Europe, 2008, pp. 1250–1255.

[Pg.11]

[157] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate

arithmetic designs,” in Proceedings of the 49th Annual Design Automation

Conference, 2012, pp. 820–825. [Pg.11]

179

http://ddd.fit.cvut.cz/prj/Benchmarks/

[158] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power

with an underdesigned multiplier architecture,” in 2011 24th Internatioal

Conference on VLSI Design. IEEE, 2011, pp. 346–351. [Pg.11]

[159] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed multiplier

for error-tolerant application,” in 2010 IEEE international conference of

electron devices and solid-state circuits (EDSSC). IEEE, 2010, pp. 1–4.

[Pg.11]

[160] M. B. Sullivan and E. E. Swartzlander, “Truncated error correction for flex-

ible approximate multiplication,” in 2012 Conference Record of the Forty

Sixth Asilomar Conference on Signals, Systems and Computers (ASILO-

MAR). IEEE, 2012, pp. 355–359. [Pg.11]

[161] H. Mokhtarnia, S. E. Borujeni, and M. S. Ehsani, “Automatic test pattern

generation through boolean satisfiability for testing bridging faults,” Jour-

nal of Circuits, Systems and Computers, vol. 28, no. 14, p. 1950240, 2019.

[Pg.150]

[162] K. M. Singh, J. Deka, and S. Biswas, “Incomplete testing of soc,” Journal

of Electronic Testing, pp. 1–16, 2023. [Pg.182]

[163] K. Mrityunjay, S. Biswas, and J. K. Deka, “Atpg for incomplete testing of

soc and power aware tam architecture,” in 2018 15th IEEE India Council

International Conference (INDICON). IEEE, 2018, pp. 1–6. [Pg.182]

[164] K. M. Singh, S. Biswas, and J. K. Deka, “Atpg for incomplete testing of

soc considering bridging faults,” in TENCON 2021-2021 IEEE Region 10

Conference (TENCON). IEEE, 2021, pp. 323–328. [Pg.182]

[165] A. K. Yadav, K. M. Singh, and S. Biswas, “Adaptive bfs based fault tol-

erant routing algorithm for network on chip,” in 2020 IEEE REGION 10

CONFERENCE (TENCON). IEEE, 2020, pp. 170–175. [Pg.182]

180

Biography of the Author

Personal Details

Name : Kunwer Mrityunjay Singh

Institute : Indian Institute of Technology, Guwahati
Assam, India Pincode 781039

Mail : mrityunjay.jkit@gmail.com,
kunwer@iitg.ac.in

Contact : 8876223463

Websites : https://iitg.ac.in/stud/kunwer/

https://www.kunwermrityunjaysingh.com/

Professional Experience

Lecturer Electronics Engineering [Year 2016 - Present]

Department of Technical Education

Government of Uttar Pradesh, India

Academic Details

(M.Tech + Ph.D.) Dual Degree

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati, Assam, India

B.Tech

(Electronics and Communication Engineering)

University of Allahabad, U.P., India

B.Sc.

(Physics, Chemistry, Maths)

Ewing Christian College,

University of Allahabad, U.P., India

mrityunjay.jkit@gmail.com
kunwer@iitg.ac.in
https://iitg.ac.in/stud/kunwer/
https://www.kunwermrityunjaysingh.com/

Publication

Journal

1. K. M. Singh, J. Deka, and S. Biswas, Incomplete testing of soc,”

Journal of Electronic Testing, pp. 116, 2023. [Pg.182] [162]

Conference

1. K. Mrityunjay, S. Biswas, and J. K. Deka, Atpg for incom-

plete testing of soc and power aware tam architecture,” in 2018

15th IEEE India Council International Conference (INDICON).

IEEE, 2018, pp. 16. [Pg.182] [163]

2. K. M. Singh, S. Biswas, and J. K. Deka, Atpg for incomplete

testing of soc considering bridging faults,” in TENCON 2021-

2021 IEEE Region 10 Conference (TENCON). IEEE, 2021, pp.

323328. [Pg.182] [164]

3. A. K. Yadav, K. M. Singh, and S. Biswas, Adaptive bfs based

fault tolerant routing algorithm for network on chip,” in 2020

IEEE REGION 10 CONFERENCE (TENCON). IEEE, 2020,

pp. 170175. [Pg.182] [165]

https://link.springer.com/article/10.1007/s10836-023-06067-6
https://link.springer.com/article/10.1007/s10836-023-06067-6
https://ieeexplore.ieee.org/abstract/document/8987138
https://ieeexplore.ieee.org/abstract/document/8987138
https://ieeexplore.ieee.org/abstract/document/8987138
https://ieeexplore.ieee.org/abstract/document/8987138
https://ieeexplore.ieee.org/abstract/document/9707383
https://ieeexplore.ieee.org/abstract/document/9707383
https://ieeexplore.ieee.org/abstract/document/9707383
https://ieeexplore.ieee.org/abstract/document/9707383
https://ieeexplore.ieee.org/abstract/document/9293760
https://ieeexplore.ieee.org/abstract/document/9293760
https://ieeexplore.ieee.org/abstract/document/9293760
https://ieeexplore.ieee.org/abstract/document/9293760

	1 Introduction
	1.1 Background: SoC and Test Architecture
	1.2 Challenges
	1.3 Motivation
	1.4 Objectives
	1.5 Contributions
	1.6 Organization of the Thesis

	2 Literature Survey
	2.1 Basics of Digital VLSI Testing
	2.1.1 Fault Coverage
	2.1.2 Test Coverage

	2.2 Fault Models
	2.2.1 Stuck-at Fault Model
	2.2.2 Bridging Fault Model
	2.2.3 Delay Fault Model
	2.2.4 Fault Collapse Model
	2.2.5 Transition Fault Model
	2.2.6 Open Fault Model

	2.3 Reviews of VLSI Test Technologies
	2.3.1 ATE
	2.3.2 ATPG
	2.3.3 Fault Simulation
	2.3.4 DFT
	2.3.5 BIST
	2.3.6 Boundary Scan Testing

	2.4 SoC
	2.5 Core Based SoC Design
	2.6 SoC Test Architecture
	2.6.1 IEEE 1500 std. for SoC Testing
	2.6.2 Core Wrapper
	2.6.3 WIR
	2.6.4 Test Access Mechanism (TAM)

	2.7 Challenges in SoC Testing
	2.8 Strategies to Reduce the TDV
	2.8.1 Scan Chain Optimization
	2.8.2 Test Compression Techniques
	2.8.3 Test Data Partitioning
	2.8.4 Compaction Techniques
	2.8.5 Combination of Compression and Compaction Techniques

	2.9 Strategies to Reduce the TAT
	2.10 Strategies to Reduce TP
	2.11 Confidence Aware Testing Methods
	2.12 Incomplete Testing

	3 Incomplete Testing of SoC : Heuristic Approach
	3.1 Introduction
	3.2 Problem Statement
	3.3 Proposed Method
	3.3.1 Algorithm 1: LSTB Detector
	3.3.2 Complexity of Algorithm 1

	3.4 Example
	3.5 Experimental Results
	3.5.1 SoC Architecture with Combinational Cores
	3.5.2 Results for TDV and FC
	3.5.3 SoC Architecture with Sequential Cores
	3.5.4 Comparison of our Method with Others Methods

	3.6 Conclusion and Future Work

	4 TAT Aware Incomplete Testing
	4.1 Introduction
	4.2 Incomplete Testing
	4.3 Problem Statement
	4.4 Proposed Method
	4.4.1 Particle Structure
	4.4.2 Calculation of TAT
	4.4.3 Population Size
	4.4.4 Fitness Function

	4.5 Incomplete Testing and Reduction in TAT
	4.5.1 Problem Statement
	4.5.2 Proposed Modified TAT Equations for Incomplete Testing

	4.6 Experimental Results
	4.6.1 SoC with Combinational Cores
	4.6.2 SoC with Sequential Cores and Combinational Cores
	4.6.3 Comparison with Other Methods

	4.7 Conclusion and Future Work

	5 TP Aware Incomplete Testing
	5.1 Introduction
	5.2 Incomplete Testing
	5.3 Calculation of TP
	5.3.1 Standard Equations to Compute TP

	5.4 Problem Statement
	5.5 Proposed TAM Architecture
	5.5.1 The IEEE 1500 Wrapper Architecture
	5.5.2 WBY
	5.5.3 WS-BYPASS Instruction
	5.5.4 Proposed TAM for Incomplete Testing
	5.5.5 Incomplete Testing and Reduction in TP

	5.6 Experimental Results
	5.6.1 Results for TP for SoC with Combinational Cores
	5.6.2 Results for TP for SoC with Sequential and Combinational Cores

	5.7 Conclusion and Future Work

	6 Incomplete Testing Based on Approximation and its Impact on TP and TAT
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Proposed Method
	6.3.1 Step 1:
	6.3.2 Step 2:
	6.3.3 Step 3:

	6.4 Impact on Fault Coverage (FC)
	6.5 Impact on TDV
	6.6 Impact on TAT
	6.6.1 Computation of TAT
	6.6.2 Reduction in TAT

	6.7 Impact on TP
	6.7.1 Reduction In TP In Incomplete Testing

	6.8 Experimental Results
	6.8.1 Results for FC and TDV
	6.8.2 Results for TAT
	6.8.3 Results For TP

	6.9 Conclusion and Future work

	7 ATPG for Incomplete Testing of SoC having Bridge Faults
	7.1 Problem Formulation
	7.2 Proposed Scheme : Boolean Satisfiability Method for Incomplete Testing of SoC
	7.2.1 CNF
	7.2.2 CNF Formulation for Original Circuit
	7.2.3 Introduction of Bridging Faults in Original Circuit
	7.2.4 Reduction of Boolean Satisfiability Equation for Incomplete Testing
	7.2.5 Satisfying the Formula
	7.2.6 Heuristic Approach using Particle Swarm Optimization

	7.3 Experimental Results
	7.4 Conclusion and Future Work

	8 Conclusions and Future Perspectives
	8.1 Summarization
	8.2 Future Works

	References

