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Abstract

In safety-critical real-time systems, failure to meet task deadlines may lead to

consequences that are deemed to be unacceptable. Reliability of such systems

are typically guaranteed by enforcing all timing and safety-related require-

ments to be honored, even under the assumption of the worst-case request

arrival behavior and service requirements. Hence, static off-line schedulers

are often preferred in safety-critical systems in order to achieve better pre-

dictability. In addition, off-line computation also allow exhaustive solution

space enumeration to pre-compute optimal schedules at design time, thus

ensuring lower design costs through higher resource utilization. To ensure

correctness and completeness of the enumeration process, formal mechanisms

such as automata/model-based approaches are often preferred. In recent

years, researchers have shown that off-line formal approaches such as Su-

pervisory Control of Timed Discrete Event Systems (SCTDES) can be used

to synthesize optimal schedulers for real-time systems. In this dissertation,

we present a few novel real-time scheduler designs for safety-critical systems

consisting of various types of task and execution platform scenarios, using

SCTDES as the underlying formalism.

The entire thesis work is composed of multiple distinct contributions which

are categorized into five phases. In the first phase, both non-preemptive as

well as preemptive scheduling strategies for uniprocessor systems have been

considered. The second phase extends the uniprocessor scheduling mecha-

nisms designed in the first to provide fault-tolerance in homogeneous multi-

processor / multi-core systems, against permanent processor faults. Apart

from guaranteeing timing and resource constraints, safety-critical systems

implemented on multi-core platforms need to satisfy stringent power dissi-

pation constraints such as Thermal Design Power thresholds. Hence, in the



third phase, we have developed a scheduler synthesis framework which guar-

antees adherence to a system level peak power constraint. While the first

three phases dealt with the design of scheduling approaches for independent

tasks, in the fourth phase, we have endeavored towards the development of an

optimal real-time scheduler synthesis scheme for precedence-constrained task

graphs executing on homogeneous multi-cores. Further, this scheme has been

extended to provide robustness against multiple transient processor faults.

In the final phase, we have developed models that are able to accurately

capture the execution of tasks on a heterogeneous platform. Experimental

results have demonstrated the versatility and efficacy of the proposed sched-

uler synthesis approaches.
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Chapter 1
Introduction

Safety-criticality is fast becoming a premier constraint in the design of modern embedded

systems. This is more so as embedded computing capabilities are being deployed in

complex systems including avionics and automotive, spacecrafts, nuclear reactors etc.

where failure to meet stipulated performance specifications may lead to catastrophic

consequences [5, 50, 58, 61, 66]. For example, failure of a critical embedded controller on

a fly-by-wire avionic system may lead to an aircraft crash. The development of these

embedded systems are subjected to precisely stipulated design methodologies so that

all performance and reliability related objectives may be honored even under worst-

case operating conditions and service requirements. The design may need to satisfy

various stringent performance constraints including those related to timeliness, resource

utilization, verifiability, fault-tolerance, power dissipation, cost etc.

Many computation activities in embedded systems are dedicated towards the control

of dynamically evolving physical processes. The control actions/updates produced by

these activities (often called tasks) may need to be generated either periodically (in a

time-triggered fashion), or in response to abrupt changes in system dynamics (even-

triggered). The characteristics of the activities may also vary depending on issues such

as, (i) severity of the consequences of missing deadlines associated with the control ac-

tions, (ii) interrupts thay may happen in their operating environment, (iii) nature of the

underlying hardware processing platform (i.e., single core, homogeneous/heterogeneous

multi-core), (iv) behavior of co-executing computation activities etc. Design method-
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1. INTRODUCTION

ologies dealing with the modeling and synthesis of supervision / control frameworks in

embedded computing systems must be appropriately tailored to take care of the spe-

cific functional and platform requirements associated with the computation activities of a

given system. Formal model based safe design approaches are often employed in the con-

struction of safety-critical embedded systems since such schemes aid in the construction

of sound and complete controllers / supervisors. Given a set of real-time applications

that co-execute on a shared computing platform, design of a supervisor that success-

fully satisfies all timing, resource and performance related constraints, is ultimately a

scheduler synthesis problem.

A system is classified as real-time if it is characterized by a dual notion of correctness:

logical as well as temporal [73, 82]. Applications such as pacemakers in health-care, fly-

by-wire in aircrafts, reactors in nuclear plants, anti-lock braking systems in automobiles

etc. are examples of real-time systems [97]. The applications in real-time systems often

consist of a set of recurrent tasks. Each such task may represent a piece of code (i.e.,

program) which is triggered by external events that may happen in their operating

environment. Each execution instance of the task is referred to as a job. A recurrent

task may be periodic, aperiodic or sporadic, based on its arrival pattern. Aperiodic tasks

have no restriction on the arrival pattern of their jobs. Sporadic tasks are a special case

of aperiodic tasks where consecutive jobs must be separated by a specified minimum

inter-arrival time. Periodic tasks in turn may be considered as a special case of sporadic

tasks whose jobs must be activated at fixed regular intervals [6, 22,23,32,89].

Real-time systems have traditionally been implemented on platforms consisting of

a single processor as they allow enhanced predictability and controllability over on-line

co-execution behavior of tasks. However, over the years, the industry is witnessing a

significant shift in the nature of processing platforms that are used in real-time embed-

ded systems. Homogeneous single cores have slowly given way to multi-core platforms in

order to cater to higher computation demands while adhering to restrictions on temper-

ature and/or energy dissipation. In addition, the need to satisfy stringent performance

requirements, often along with additional constraints on size, weight, power etc., have
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ushered in the era of heterogeneous processing platforms in today’s complex embedded

control systems. For example, a modern System-on-Chip platform can contain multi-

core Central Processing Unit (CPU) with specialized graphics processing cores, digital

signal processing cores, floating-point units, customizable Field Programmable Gate Ar-

ray (FPGA), Application Specific Integrated Product (ASIP), Application Specific Inte-

grated Circuit (ASIC) etc. Platforms with such varying types of computing elements are

called heterogeneous (or unrelated) processing platforms. On a heterogeneous platform,

the same piece of code may require different amounts of time to execute on different

processing cores [10]. For example, a task responsible for rendering images may take far

less time to execute on a graphics processor compared to a general-purpose CPU, while

number-crunching routines would execute more efficiently on CPUs.

Given a set of recurrent tasks and a processing platform, successfully satisfying all

task execution and deadline requirements is a scheduling problem [36]. Real-time tasks

may allow themselves to be scheduled either preemptively or non-preemptively. In pre-

emptive scheduling, execution of a job can be interrupted before completion. On the

contrary, a job’s execution cannot be interrupted until its completion in case of non-

preemptive scheduling. Depending on whether the schedule is generated statically at

design-time or dynamically at run-time, scheduling algorithms are differentiated as off-

line or on-line schedulers.

In safety-critical real-time systems, failure to meet task deadlines may lead to con-

sequences that are determined to be unacceptable [95]. In addition, it is often advisable

that all timing requirements should be guaranteed off-line, before putting the safety-

critical system in operation. Hence, there is a necessity for developing off-line exhaustive

enumeration techniques to pre-compute optimal schedules at design time and use them

during on-line execution. It may also be noted that exhaustive off-line schedule gener-

ators also bring in the ability to generate all possible feasible solutions. This empowers

the designer to select one or more scheduling solutions which best fits the requirements

of a given system scenario under consideration. For example, the designer may select a

schedule which minimizes the number of preemptions, guarantees work-conservation etc.
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In order to ensure the correctness and completeness of an exhaustive off-line schedule

enumeration process, formal approaches are often preferred.

In recent years, many researchers have shown that off-line formal approaches such as

Supervisory Control of Timed Discrete Event Systems (SCTDES) [18] can be used for

the design of hard real-time schedulers [29,53,85,87,105–107]. SCTDES based schedulers

essentially determine only and all the feasible execution sequences corresponding to the

specifications of a given task set and platform, by carefully discarding the prefixes of

all scheduling sequences that may lead to unsafe situations in future. In addition, this

approach allows the leverage of narrowing down further on the subset of the most desired

schedules with respect to a chosen set of softer constraints related power, weight, cost

etc. Chen and Wonham presented an optimal uniprocessor scheduling strategy for non-

preemptive periodic tasks in [29]. Janarthanan et al. extended the SCTDES framework

by introducing the notion of priorities in order to develop a formal and unified procedure

for the scheduling of periodic tasks, both preemptively as well as non-preemptively, on

uniprocessors [53]. Park and Cho [85] attempted to synthesize a preemptive scheduler

for dynamically arriving sporadic tasks on uniprocessor systems. Recently, Wang et

al. [105] extended the models presented in [29, 53] to handle non-preemptive periodic

tasks with multiple periods. The notion of multiple periods allows tasks to dynamically

reconfigure their periods at run-time. They have also proposed a framework for priority-

free, conditionally-preemptive scheduling of real-time tasks in [106,107].

The research presented in this dissertation focuses towards the theoretical and practi-

cal aspects of scheduling mechanisms for safety-critical systems and developing SCTDES-

based optimal scheduler synthesis strategies subject to various constraints (such as fault-

tolerance, precedence-constraints, power minimization etc.).

1.1 Challenges

A scheduling mechanism which efficiently caters to diverse applications and serves the

variety of processing platforms in today’s safety-critical systems, must meet several

challenges. We now enumerate a few such important challenges and discuss them [23].
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1. Timing requirements:

Real-time systems are characterized by computational activities with stringent

timing constraints that must be met in order to achieve the desired behavior.

A typical timing constraint on a task is the deadline, which represents the time

before which a process should complete its execution without causing any damage

to the system. Another timing characteristic that can be specified on a real-time

task concerns the regularity of its activation. In particular, tasks can be defined

as aperiodic, or sporadic, or periodic. Scheduling schemes for safety-critial real-

time systems must be able to guarantee the timing requirements (i.e., deadlines)

associated with various types of tasks that co-exist in the system.

2. Predictability:

Scheduler designs for safety-critical systems must deliver guaranteed co-execution

behavior and performance during on-line operation of the system, under pre-

specified load and failure conditions. To achieve a desired level of performance,

the system must be analyzable to predict the consequences of any scheduling de-

cision. An important mechanism for enhancing predictability is to conduct static

analysis followed by off-line schedule generation so that performance of the sys-

tem is guaranteed a priori even under worst-case task arrival behavior and service

requirements.

3. Resource constraints:

Safety-critical systems are implemented on platforms consisting of limited number

of processing elements (i.e., resources). For example, providing a lot of redun-

dant hardware is not always possible in cost-sensitive safety-critical systems like

cars, where a cost differential of even a hundred dollars can make a commercial

difference [31, 61, 62, 93]. In addition, the nature of processing elements are also

changing over the years. Specifically, homogeneous single cores have slowly given

way to multi-core platforms in order to cater to higher computation demands while

adhering to restrictions on power/energy dissipation. Scheduling schemes designed

for real-time systems must be able to effectively utilize the processing capacity of
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underlying platform consisting of limited number of processing resources, to satisfy

the constraints associated with a given real-time task set.

4. Fault-tolerance:

Apart from guaranteeing the timely execution of tasks in a resource-constrained en-

vironment, ensuring proper functioning of the system even in the presence of faults

(i.e., fault tolerance) has currently become a design constraint of paramount impor-

tance. Specifically, the processors on which the tasks are executed, are subject to a

variety of faults. Such faults are broadly classified to be either permanent or tran-

sient [62]. Permanent processor faults are irrecoverable and do not go away with

time. On the other hand, transient faults are short-lived (momentary) and their

effect goes away after some time. Thus, robustness against permanent/transient

faults is emerging as a very important criterion in the design of safety critical

real-time systems.

5. Power constraints:

Safety-critical systems implemented on multi-core platforms need to satisfy strin-

gent power dissipation constraints such as Thermal Design Power (TDP) thresh-

olds used by chip manufacturers [1]. Power dissipation beyond TDP may trigger

Dynamic Thermal Management (DTM) in order to ensure thermal stability of the

system. However, application of DTM makes the system susceptible to higher un-

predictability and performance degradations for real-time tasks [67, 78, 99]. This

necessitates the development schedulers that can guarantee adherence to a system

level peak power constraint.

6. Energy Minimization:

If all timing and safety related constraints are satisfied, then the system designer

can focus on further optimization, such as minimizing the overall energy consump-

tion to prolong the battery lifetime of systems or to cut the power bills in servers.
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1.2 Objectives

The principle aim of this dissertation has been to investigate the theoretical and practical

aspects of scheduling strategies keeping in view the challenges/hurdles discussed in the

previous section. In particular, the objectives of this work may be summarized as follows:

1. Development of generic execution models for real-time tasks (such as periodic, spo-

radic, aperiodic) executing in preemptive/non-preemptive fashion on uniprocessor

systems.

2. Extending the models developed under uniprocessor resource-constraint to multi-

processor platforms consisting of homogeneous as well as heterogeneous processing

cores.

3. Incorporating fault-tolerance mechanism in the developed models to handle tran-

sient as well as permanent processor faults that may affect the execution of real-

time tasks.

4. Design and implementation of peak power-aware scheduler synthesis framework

which guarantees adherence to a system level peak power constraint while allowing

optimal resource utilization in multi-cores.

5. Empowering the scheduler synthesis scheme with a Binary Decision Diagram (BDD)

based symbolic computation mechanism to control the exponential state-space

complexity of the exhaustive enumeration-oriented synthesis methodology.

1.3 Proposed Framework

This research work conducts optimal off-line scheduler synthesis for safety-critical sys-

tems. The pictorial representation of the proposed framework is presented in Figure 1.1.

The proposed framework receives the information regarding task set, processing plat-

form, constraints and modeling style, as input parameters. Here, task set may consist of

a set of independent / precedence-constrained tasks with aperiodic / periodic / sporadic
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Task 1
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Task n
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Composite Task Execution Model 
(T = T1 || T2 || … || Tn)
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Sequence 
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Figure 1.1: Pictorial representation of the proposed scheduler synthesis framework

arrival pattern. Each task is characterized by its arrival time, execution and deadline

requirements. The processing platform may consist of a single processor or multiple

homogeneous / heterogeneous processing cores. The constraints for scheduler synthesis

can be timing, resource, fault-tolerance, power dissipation etc.

Given the task set, processing platform and a set of constraints, our framework

first constructs the (finite state automata based) models for each task, processor and

constraints. Such a construction process may either start from an (untimed) Activity

Transition Graph (ATG) or Timed Discrete Event Systems (TDES). Suppose ATG is

used to represent the models. Then, their corresponding TDES representation will be

derived from ATG, by following the construction rules prescribed in Brandin-Wonham

framework [18]. Given n individual TDES models T1, T2, ..., Tn, corresponding to tasks

τ1, τ2, ... τn in the system, a synchronous product [18] (denoted by ||) composition

T = ||ni=1Ti on the models gives us the composite model representing the concurrent

execution of all tasks. Similarly, the composite specification model H can be obtained

from individual models that captures the constraints such as timing, resource etc.

In order to find all sequences in the composite system model T that satisfy the

constraints modelled by the composite specification model H, their composite model is

obtained. That is, M0 = T ||H. The model M0 may consist of deadlock states in it

8



1.4 Contributions

(which will block the execution of system) and hence, to obtain a non-blocking sub-part

of M0, we apply supervisor synthesis algorithm [77]. The resulting model M1 contains

all feasible scheduling sequences that satisfy the given constraints. It may happen that

the state set of M1 to be empty, which implies that the given task set is non-schedulable

under the given set of constraints. Since, M1 contains all feasible scheduling sequences,

it allows the leverage of narrowing down further on the subset of the most desired

schedules with respect to a chosen set of softer constraints related power, weight, cost

etc. Finally, scheduling sequences obtained using our framework are then employed to

supervise on-line task execution.

It may be noted that the number of states in the composite models increases exponen-

tially as the number of tasks, processors, execution times increases. So, the proposed

scheme may be highly time consuming and unacceptably memory intensive even for

moderately large systems, thus severely restricting scalability, especially for industrial

applications with many tasks. Over the years, Binary Decision Diagram (BDD) [21] )

based symbolic synthesis mechanisms have proved to be a key technique towards the

efficient computation of large finite state machine models including SCTDES based su-

pervisors [77]. This observation motivated us to derive a symbolic computation based

adaptation of the proposed scheduler synthesis framework. Hence, we have also trans-

formed our proposed framework to compute the supervisor symbolically.

1.4 Contributions

As a part of the research work, multiple scheduler design schemes for safety-critical

systems have been developed based on SCTDES framework.

1. Scheduling of Real-time Tasks on a Uniprocessor Platform

We have developed models that can be used to synthesize schedulers for aperiodic

/ sporadic tasks executing (non-preemptively / preemptively) on uniprocessors,

and they are listed as follows:

(a) Real-time Scheduling of Non-preemptive Sporadic Tasks

This work proposes an optimal scheduler synthesis framework for non-preemptive
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sporadic real-time tasks executing on uniprocessors. Although, in recent

years, there has been a few significant works dealing with real-time scheduling

using SCTDES, this is possibly the first work which addresses the scheduler

synthesis problem for sporadic tasks.

With respect to our proposed framework (ref. Figure 1.1), this work considers

the following input parameters: aperiodic as well as sporadic task set, unipro-

cessor platform, timing and resource constraints, and directly represents mod-

els in TDES form. Here, task execution model captures the execution time,

co-execution of tasks and uniprocessor resource constraint. Deadline con-

straint associated with a real-time task is captured by a specification model.

(b) Work-conserving Scheduler Synthesis of Preemptive Tasks

This work attempts to synthesize a work-conserving preemptive scheduler for

a set of real-time sporadic tasks executing on uniprocessors. Work-conserving

approach allows the synthesis of schedules which avoid processor idling in the

presence of ready to execute tasks.

2. Fault-tolerant Scheduling of Preemptive tasks on Multiprocessors

A methodology for synthesizing an optimal preemptive multiprocessor aperiodic

task scheduler using a formal supervisory control framework, is presented. The

scheduler can tolerate single/multiple permanent processor faults. With respect

to scheduler synthesis schemes developed for uniprocessor systems, the state space

of the final supervisor model increases drastically as the number of processors

in the system increases. Hence, the synthesis framework has been further em-

powered with a novel BDD-based symbolic computation mechanism to control the

exponential state-space complexity of the optimal exhaustive enumeration-oriented

synthesis methodology [21,76,77].

3. Power-aware Real-time Scheduling

This work presents a scheduler synthesis framework which guarantees adherence

to a system level peak power constraint while allowing optimal resource utilization
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in multi-cores. All steps starting from individual models to construction of the

scheduler have been implemented through BDD-based symbolic computation [101].

The synthesis framework has been extended to handle tasks with phased execution

behavior [67].

With respect to our framework summarized in Figure 1.1, this work considers the

following input parameters: periodic task set, homogeneous multi-core platform,

timing, resource and power constraints, and represents models in ATG form. Here,

task execution model captures the execution time and deadline of a task. Unipro-

cessor resource constraint is captured by specification model. From the resulting

set of timing and resource constraint satisfying sequences, we conduct a search

technique to filter our the sequences that violate power constraint and we also find

execution sequences that dissipate minimal power.

4. Scheduling of Non-preemptive Tasks on Heterogeneous Multi-cores

Real-time systems are increasingly being implemented on heterogeneous multi-

core platforms in which the same piece of software may require different amounts

of time to execute on different processing cores. Computation of optimal schedules

for such systems is non-trivial and prohibitively expensive to be conducted on-line.

This work presents a systematic way of designing an optimal off-line scheduler for

systems consisting of a set of independent non-preemptive periodic tasks executing

on heterogeneous multi-cores. Existing SCTDES based scheduler synthesis mech-

anisms do not provide the flexibility to model heterogeneity of the underlying

platform. The models developed in this work are able to accurately capture the

execution of tasks on a heterogeneous platform. The models can then be employed

to synthesize a scheduler to supervise on-line task execution.

5. Static Scheduling of Parallel Real-time Tasks

All our earlier works assume the tasks in a given real-time system to be indepen-

dent. However, many real-time applications such as radar tracking, autonomous

driving, and video surveillance, are highly parallelizable [44]. One of the most
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generic mechanisms for modeling parallel real-time applications is Precedence-

constrained Task Graph (PTG)/Directed Acyclic Graph (DAG) [34]. This work

deals with the synthesis of an optimal real-time scheduler for PTGs executing

on homogeneous multi-cores. We extend our scheme to provide robustness against

multiple transient processor faults. Further, we show that the proposed framework

can be adapted to derive the best set of schedules with respect to one or multiple

performance objectives and demonstrate this idea by devising search strategies to

obtain schedules that, (i) minimize makespan and (ii) maximize fault-tolerance.

Conducted experiments reveal the practical efficacy of our scheme.

1.5 Organization of the Thesis

The thesis is organized into eight chapters. A summary of the contents in each chapter

is as follows:

• Chapter 2: Background on Real-time Systems and Supervisory Control

This chapter presents background on real-time systems and supervisory control

of timed discrete event systems. In particular, we try to present the vocabulary

needed to understand the following chapters.

• Chapter 3: Scheduling of Sporadic Tasks on Uniprocessors

In the third chapter, we present scheduler synthesis mechanisms for real-time

sporadic tasks executing on uniprocessor systems. First, the scheduling of non-

preemptive version of sporadic tasks is presented. Then, a work-conserving sched-

uler synthesis framework for preemptive sporadic tasks is presented.

• Chapter 4: Fault-tolerant Scheduling of Aperiodic Tasks

Research conducted in the fourth chapter deals with the fault-tolerant scheduler

synthesis mechanism. This work considers a set of dynamically arriving aperiodic

tasks executing on a homogeneous multiprocessor platform. By assuming that at

most one processor in the system may undergo a permanent fault at any instant of

time, a single permanent processor fault tolerant scheduler synthesis scheme has

12
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been presented. Then, this scheme has been extend to tolerate multiple permanent

processor faults.

• Chapter 5: Power-aware Scheduling on Homogeneous Multi-cores

This chapter proposes a formal scheduler synthesis framework which guarantees

adherence to a system level peak power constraint while allowing optimal resource

utilization in multi-cores. Further, the method to synthesis supervisor for tasks

with phased execution behavior, is also presented. Practical efficacy of our pro-

posed scheme has been illustrated using simulation based experiments conducted

using real-world benchmark programs.

• Chapter 6: Scheduling on Heterogeneous Multi-cores

This chapter proposes a systematic way of designing a scheduler for systems con-

sisting of a set of independent non-preemptive periodic tasks executing on hetero-

geneous multi-cores. We have also discussed the optimality and working of the

scheduler synthesized using our proposed models.

• Chapter 7: Scheduling of Parallel Real-time Tasks

Chapter 7 primarily delves towards the scheduler synthesis for parallel real-time

tasks modeled by precedence-constrained task graphs, executing on homogeneous

multi-cores. We extend our scheme to provide robustness against multiple tran-

sient processor faults. Further, we show that the proposed framework can be

adapted to derive the best set of schedules with respect to one or multiple perfor-

mance objectives and demonstrate this idea by devising search strategies to obtain

schedules that, (i) minimize makespan and (ii) maximize fault-tolerance.

• Chapter 8: Conclusion and Future Work

The thesis concludes with this chapter. We discuss the possible extensions and

future works that can be done in this area.
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Chapter 2
Background: Real-time Systems,
Supervisory Control

This dissertation is oriented towards the synthesis of schedulers for safety-critical real-

time systems consisting of a set of tasks with stringent timing constraints, executing on

a shared computing platform with limited number of processing elements. The previous

chapter provided a view of the challenges imposed by the diversity in the types of

computation activities, nature of computing platform, performance requirements etc.

towards the synthesis of schedulers for safety-critical real-time systems.

In this background chapter, we present a brief introduction to the definitions related

to real-time systems and supervisory control. In particular, we try to present the vocab-

ulary needed to understand the following chapters and explain how these systems can be

modeled so as to enable researchers to design efficient real-time schedulers using supervi-

sory control. We first provide an overview on the structure of real-time systems. Then,

the evloution of scheduling algorithms for real-time systems implemented on uniproces-

sors to homogeneous and heterogeneous multiprocessors are discussed. Subsequently, we

introduce the formal definitions and synthesis algorithms related to supervisory control.

Also, we illustrate the scheduler synthesis process using the open-source design software

TTCT [2] (developed by Systems Control Group at the University of Toranto). It may

be noted that the synthesis algorithms introduced in this chapter will be appropriately

referred later in this dissertation, during the synthesis of supervisors.
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2. BACKGROUND: REAL-TIME SYSTEMS, SUPERVISORY CONTROL

2.1 Real-time Systems

Typically, real-time systems are composed of three distinct layers [80]:

• An application layer which consists of set of all applications that should be

executed.

• A real-time scheduler which takes the scheduling decisions and provides services

to the application layer.

• A hardware platform which includes the processors (among other things such

as memories, communication networks, etc.).

We will now present each of these layers in detail and introduce the theoretical models

enabling researchers to analyze these systems and design efficient schedulers for real-time

systems to schedule the application tasks on the hardware platform.

2.1.1 The Application Layer

The application layer is composed of all the applications that the system need to execute.

The applications in real-time systems often consist of a set of recurrent tasks. Each such

task may represent a piece of code (i.e., program) which is triggered by external events

that may happen in their operating environment. Each execution instance of the task

is referred to as a job. We now discuss the set of definitions related to a real-time task.

2.1.1.1 A Real-time Task Model

Start of 
Execution

Execution time Ei

Completion
Time

Deadline 
Di

t

Task τi

Arrival 
Time Ai

Figure 2.1: Temporal Characteristics of real-time task τi

Formally, a real-time task (denoted by τi; shown in Figure 2.1) can be characterized

by the following parameters:
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2.1 Real-time Systems

1. Arrival time (Ai) is the time at which a task becomes ready for execution. It is

also referred as release time or request time.

2. Start time is the time at which a task starts its execution.

3. Computation time or Execution time (Ei) is the time necessary to the processor

for executing the task without interruption.

4. Finishing time or Completion time is the time at which a task finishes its exe-

cution.

5. Deadline is the time before which a task should complete its execution require-

ment. If it is measured with respect to system start time (at 0), it will be called

as absolute deadline(di). If it is measured with respect to its arrival time, it will

be called as relative deadline(Di).

6. Response time is the difference between the finishing time and the arrival time.

7. Worst-case execution time is the largest computation time of a task among all

its possible execution.

8. Laxity or Slack time is the maximum time a task can be delayed on its activation

to complete within its deadline: Di − Ei.

9. Priority is the importance given to a task in context of the schedule at hand.

A real-time task τi can be classified as periodic, aperiodic and sporadic based on

regularity of its activation [23].

1. Periodic tasks consist of an infinite sequence of identical activities, called in-

stances or jobs, that are regularly activated at a constant rate. The activation

time of the first periodic instance is called phase (φi). The activation time of the

kth instance is given by φi + (k − 1)Pi, where Pi is the activation period (fixed

inter-arrival time) of the task.
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2. BACKGROUND: REAL-TIME SYSTEMS, SUPERVISORY CONTROL

2. Aperiodic tasks also consist of an infinite sequence of identical jobs. However,

their activations are not regularly interleaved.

3. Sporadic tasks consist of an infinite sequence of identical jobs with consecutive

jobs seperated by a minimum inter-arrival time.

There are three levels of constraint on task deadline:

1. Implicit Deadline: all task deadlines are equal to their periods (Di = Pi).

2. Constrained Deadline: all task deadlines are less than or equal to their periods

(Di ≤ Pi).

3. Arbitrary Deadline: all task deadlines may be less than, equal to, or greater than

their periods.

We now provide few other defintions related to tasks and taskset.

Utilization: The utilization of a (implicit deadline) task τi is given by Ui = Ei/Pi.

In case of constrained deadline, Ui = Ei/Di.

Utilization Factor U : Given a set of (implicit-deadline) tasks, Γ = {τ1, τ2, ..., τn}, U
is the fraction of the processor time spent in the execution of the task set. U =

n∑
i=1

Ei/Pi

Hyperperiod : It is the minimum interval of time after which the schedule repeats

itself. For a set of periodic tasks (with periods P1, P2, . . . , Pn) activated simultaneously

at t = 0, the hyperperiod is given by the least common multiple of the periods.

Static and Dynamic Task System: In a static task system, the set of tasks that is

executed on the platform is completely defined before start running the application. In

a dynamic task system, some tasks may experience a modification of their properties

while other tasks leave or join the executed task set at run-time. In this thesis, we deal

only with the static task system.

2.1.2 A Real-time Scheduler

A real-time scheduler acts as an interface between applications and hardware platform. It

configures and manages the hardware platform (e.g., manage hardware interrupts, hard-

ware timers, etc.). More importantly, it schedules the tasks using a real-time scheduling
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2.1 Real-time Systems

algorithm. The set of rules that, at any time, determines the order in which tasks are

exeucted is called a scheduling algorithm.

Given a set of tasks, Γ = {τ1, τ2, ..., τn}, a schedule is an assignment of tasks to the

processor, so that each task is executed until completion. A schedule is said to be feasible

if all tasks can be completed according to a set of specified constraints. A set of tasks is

said to be schedulable if there exists at least one algorithm that can produce a feasible

schedule. Scheduling algorithms can be classified based on preemption.

1. Preemptive: tasks can be interrupted at any time (so that the processor may be

assigned to another task) and resumed later.

2. Non-preemptive: once activated, a task must be continuously executed until its

completion.

In addition to the above classification, depending on whether the schedule is gen-

erated statically at design-time or dynamically at run-time, scheduling algorithms are

differentiated as off-line or online. The scheduling decisions are based on the tasks

priorities which are either assigned statically or dynamically. Static priority driven al-

gorithms assigned fixed priorities to the tasks before the start of the system. Dynamic

priority driven algorithms assign the priorities to tasks during run-time. A scheduling

algorithm is said to be optimal if it is able to find a feasible schedule, if one exits.

An algorithm is said to be heuristic if it is guided by a heuristic function in taking its

scheduling decisions. A heuristic algorithm tends toward the optimal schdule, but does

not guarantee finding it. In work-conserving scheduling algorithm, processor is never

kept idle while there exist a task waiting for a execution on the processor.

2.1.3 Processing Platform

The term processor refers to a hardware element in the platform which is able to process

the execution of a task.

1. Uniprocessor system can only execute one task at a time and must switch be-

tween tasks.
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2. BACKGROUND: REAL-TIME SYSTEMS, SUPERVISORY CONTROL

2. Multiprocessor system will range from several seperate uniprocessors tightly

coupled using high speed network to multi-core. It can be classified as follows:

(a) Homogeneous: The processors are identical, i.e., they all have the same

functional units, instruction set architecture, cache sizes and hardware ser-

vices. The rate of execution of all tasks is the same on all processors. Hence,

the worst-case execution time of a task is not impacted by the particular

processor on which it is executed.

(b) Uniform: The processors are identical - but they are running at different

frequencies. Hence, all processors can execute all tasks but the speed at which

they are executed and their worst-case execution time vary in function of the

processor on which they are executing.

(c) Heterogeneous: The processors are different, i.e., processors may have dif-

ferent configurations, frequencies, cache sizes or instruction sets. Some tasks

may therefore not be able to execute on some processors in the platform, while

their execution speeds (and their worst-case execution times) may differ on

the other processors.

In this thesis, we consider the scheduler synthesis for real-time systems implemented

on uniprocessor to homogeneous / heterogeneous processing platforms.

2.1.4 A brief survey of scheduling algorithms

Initially, we review the theory of well-known uniprocessor scheduling algorithms. Later,

we proceed towards multiprocessor scheduling algorithms.

2.1.4.1 Uniprocessor Preemptive scheduling algorithms

Cyclic Executive (CE)

1. Assumptions: Set of independent periodic tasks with common arrival time and

implicit-deadline.

2. Clock driven (or time driven) off-line algorithm.
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2.1 Real-time Systems

3. Temporal axis is divieded into slots of equal length, in which one or more tasks

can be allocated for execution, in such a way to respect the frequencies derived

from the application requirements [23].

4. Duration of the time slot is called as Minor cycle, whereas the minimum interval of

time after which the schedule repeats itself (the hyperperiod) is also called Major

cycle. Minor cycle = GCD{P1, P2, ..., Pn}. Major cycle = LCM{P1, P2, ..., Pn}.
(Greatest Common Divisor (GCD): Greatest Common Divisor, Least Common

Multiple (LCM): Least Common Multiple).

5. Most used approach to handle periodic tasks in defense systems due to its pre-

dictability.

6. Sensitive to application changes. If updating a task requires an increase of its

computation time or its activation frequency, the entire scheduling sequence may

need to be reconstructed from scratch.

Rate Monotonic (RM) [73]

1. Assumptions: Set of independent periodic tasks with common arrival time and

implicit-deadline.

2. Tasks with higher request rates (that is, with shorter periods) will have higher

priorities. Let Γ = {τ1, τ2, ..., τn} be the set of periodic tasks ordered by increasing

periods, with τn being the longest period. According to the RM, τn will be the

task with lowest priority.

3. RM is a fixed-priority assignment: a priority Pi is assigned to the task before

execution and does not change over time. RM is not a work-conserving algorithm.

4. Liu and Layland [73] showed that RM is optimal among all fixed-priority assign-

ments in the sense that no other fixed-priority algorithms can schedule a task set

that cannot be scheduled by RM.
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5. Liu and Layland also derived the least upper bound of the processor utilization

factor for a generic set of n periodic tasks: Ulub = n(21/n− 1), which is also known

as LL-Bound. For n→∞, Ulub = ln2 = 0.693.

6. If the given task set satisifes the LL-Bound test, then it is schedulable. However,

LL-bound test is only a sufficiency test, not necessary.

7. Derivation of Ulub is based on critical instant of a task. It is the arrival time that

produces the largest task response time. Worst-case response time of a task occurs

when it is released simultaneously with all higher-priority tasks.

Earliest Deadline First (EDF) [73]

1. Assumptions: Set of independent tasks. Tasks can be aperiodic, periodic, sporadic.

2. Tasks with earlier (absolute) deadlines will be executed at higher priorities.

3. EDF is a dynamic priority assignment. It does not make any specific assumption

on the periodicity of tasks. Unlike RM, EDF is a work-conserving algorithm.

4. A set of periodic tasks is schedulable with EDF if and only if
n∑
i=1

Ci/Pi ≤ 1.

5. EDF doesn’t make any assumption about the periodicity of the tasks. Hence it

can be used for scheduling of periodic as well as aperiodic tasks. In addition to

this, EDF is optimal among dynamic priority scheduling algorithms.

Least Laxity First (LLF) [37]

1. The laxity of a real-time task τi at time t, Xi(t) is defined as follows: Li(t) =

Di(t) − Ei(t), where Di(t) is the (relative) deadline by which the task must be

completed and Ei(t) is the amount of computation remaining to complete. In

other words, the laxity is the time left by its deadline after the task is completed

assuming that the task could be executed immediately without preemption.

2. A task with zero laxity must be scheduled right away and executed with no pre-

emption to meet the deadline.
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3. A task with negative laxity indicates that the task will miss its deadline. Therefore,

the laxity of a task is a measure of its urgency in deadline-driven scheduling.

4. The preemptive LLF scheduling algorithm always executes a task whose laxity is

least. This algorithm has beeen proved to be optimal.

Deadline Monotonic (DM) [68]

1. DM is a constrained deadline version of RM scheduling.

2. Each task is assigned a static priority inversely proportional to its deadline Di.

3. Schedulability of a given task set can be verified by
n∑
i=1

Ei/Di ≤ n(21/n − 1).

However, as we mentioned in RM, it is a pessimistic bound.

2.1.4.2 Multiprocessor scheduling algorithms

In this subsection, we briefly summarize the scheduling algorithms that can be used

to schedule tasks on homogeneous as well as heterogeneous multiprocessor systems.

A comprehensive survey of multiprocessor scheduling algorithms can be found in [36].

Traditionally, schedulers for real-time tasks on multi-cores/multi processing cores make

use of either a partitioned or global approach. In a fully partitioned approach, all jobs of a

task are assigned to a single processor. This approach has the advantage of transforming

the multiprocessor scheduling problem to a set of uniprocessor ones. Hence, well known

optimal uniprocessor scheduling approaches such as Earliest Deadline First (EDF), Rate

Monotonic (RM) [73] etc. may be used. As each task runs only on a single processor,

there is no penalty due to inter-processor task migrations. However, one of the drawbacks

of partitioning is that the general problem is provably NP-hard both for homogeneous

and heterogeneous multi-cores [26]. Recently, Baruah et al. presented an Integer Linear

Program (Integer Linear Programming (ILP)) based optimal solution to the partitioning

problem for heterogeneous platforms [13]. However, solving ILPs for systems with a large

number of tasks and processing cores may incur prohibitively expensive computational

overheads in many real-time systems.
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Unlike partitioning, a global scheduling methodology allows inter-processor migration

of tasks from one processor to another during execution. The proportional fair algorithm

Pfair [14] and it’s work conserving version ERFair [7] are the first known optimal real-

time homogeneous (i.e., identical) multiprocessor schedulers. Given a set of n implicit-

deadline periodic tasks to be executed on m homogeneous processors, ERFair scheduler

ensures that the minimum rate of progress for each task is proportional to a parameter

called the task’s weight wti, which is defined as the ratio of it’s execution requirement Ei

and period Pi. That is, in order to satisfy ERFairness, each task τi should complete at

least (
∑n

i=1(Ei/Pi)× t) part of it’s total execution requirement Ei, at any time instant

t, subsequent to the start of the task at time si. Following the above criterion, ERFair

is able to deliver optimal/full resource utilisation; hence, any task set is guaranteed to

be schedulable provided:
∑n

i=1(Ei/Pi) ≤ m. However, such a strict fairness criterion

imposes heavy overheads including unrestricted preemptions/migrations.

Global Scheduling on Heterogeneous Multiprocessors: Based on a global

approach, the problem of optimally scheduling independent preemptive jobs on hetero-

geneous multiprocessor systems is solved by Lawler et al. in [65]. The paper proposes

an approach that can schedule a set of n aperiodic jobs on m heterogeneous processing

cores requiring no more than O(m2) preemptions. According to [10], this result can

easily be extended to optimally schedule periodic tasks. However, the resulting sched-

ule is likely to contain a huge number of preemptions and interprocessor migrations,

which makes it impractical. Raravi et al. [93] presented a task-to-core assignment algo-

rithm for a heterogeneous platform consisting of two different types of processing cores

(for example, ARM’s big.LITTLE [10]). Subsequent to the partitioning of tasks among

processing cores, the heterogeneous scheduling problem is transformed to homogeneous

multi-core scheduling. Then, they have applied well known optimal homogeneous multi-

core scheduling techniques such as PFfair [14], ERfair [7], DPfair [45] etc. Recently,

Chwa et al. extended the DPfair [45] scheduling strategy and presented a global opti-

mal algorithm called Hetero-Fair for the scheduling of periodic tasks on heterogeneous

multi-cores with two-types of processing cores [33].
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2.2 Supervisory Control of Timed Discrete Event
Systems

Discrete Event Systems (DES) is a discrete state space, event driven system that evolves

with the occurrence of events [25]. In timed model of DES, both logical behavior and

timing information are considered. Supervisory control of a TDES is timely disablement

or enforcement of certain events in the transition structure of the TDES such that it’s

behavior meets certain specifications.

2.2.1 Activity Transition Graph (ATG)

According to supervisory control theory, construction of an ATG is the first step towards

synthesis of the supervisor. ATG can be used to represent the task execution behavior as

well as specifications related to deadline, resource, faul-tolernace, precedence-constraints

etc. Given a set of ATGs, an automated design procedure can be used to synthesize

supervisor. In a real-time system consisting of a set of tasks, this design procedure

allows the determination of all the feasible execution sequences corresponding to the

specifications of a given task set and platform, by carefully discarding the prefixes of all

scheduling sequences that may lead to unsafe situations in future.

According to the Brandin-Wonham framework [18], a TDES may be represented by

an (untimed) Activity Transition Graph (ATG) described as:

Gact = (A,Σact, δact, a0, Am),

where, A is a finite set of activities, Σact is a finite set of events, δact : A × Σact → A is

an activity transition function, a0 ∈ A is the initial activity, and Am ⊆ A is the subset

of marker activities. Let N = {0, 1, 2, ...}. Each σ ∈ Σact is associated with a lower

(lσ ∈ N) and an upper time bound (uσ ∈ N ∪ {∞}). An event σ ∈ Σact may either

be prospective (Σspe) or remote (Σrem), with finite (0 ≤ lσ ≤ uσ < ∞) and infinite

(0 ≤ lσ ≤ uσ = ∞) upper time bounds, respectively. The triple (σ, lσ, uσ) is called a

timed event. The timer interval for σ ∈ Σspe is represented by Tσ and is defined to be

[0, uσ] if σ ∈ Σspe (respectively, [0, lσ] if σ ∈ Σrem).
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To use TDES models for supervisory control, Σact is also categorized as Σcon (con-

trollable), Σunc (uncontrollable), and Σfor (forcible). An event is controllable if it can be

prevented from occurring at a specific point in a logical event sequence or in time, and

is uncontrollable otherwise. SCTDES includes a mechanism for forcing certain events

to occur before a specific time instant. Specifically, forcible events can preempt a tick

of the global clock. In this thesis, we are concerned with tasks having a finite deadline

and hence, we assume all timed controllable events to be forcible.

2.2.2 Timed Discrete Event Systems (TDES)

A TDES G is derived from its corresponding ATG Gact and represented by,

G = (Q,Σ, δ, q0, Qm)

The state set Q = A×
∏
{Tσ|σ ∈ Σact}, where a state q ∈ Q is of the form q = {a, {tσ|σ ∈

Σact}} in which a ∈ A and tσ ∈ Tσ is the timer of event σ. The initial state q0 ∈ Q

is defined as q0 = {a0, {tσ0|σ ∈ Σact}}, where tσ0 is uσ if σ ∈ Σspe (respectively, lσ if

σ ∈ Σrem). The marker state set Qm ⊆ Q is given by Qm ⊆ Am ×
∏
{Tσ|σ ∈ Σact}.

Σ = Σact∪̇{tick}, where tick denotes the passage of one unit time of the global clock.

δ : Q× Σ→ Q is the state transition function which is defined in terms of δact and the

time bounds [18].

In case of σ ∈ Σspe, δ(q, σ) is defined, provided q = (a, ), δact(a, σ) is defined, and

0 ≤ tσ ≤ µσ − lσ. An event σ ∈ Σspe is enabled at q = (a, ) ∈ Q if δact(a, σ) is

defined, and is disabled otherwise. An enabled event σ (either tick or in A) is eligible

if δ(q, σ) is defined. Only eligible events can actually occur. The timer mechanism can

be summarized as: Once an event σ is enabled, the timer tσ of σ is decremented by one

time unit at every subsequent tick of the clock, until either, (i) tσ reaches zero (at which

point σ is forced to occur), or (ii) σ occurs, or (iii) σ is disabled due to the occurrence

of some other transition to a new activity. After all these cases, tσ is reset to its default

value (i.e., tσ = uσ if σ ∈ Σspe). We use q
σ−→ q′ to denote δ(q, σ) = q′.
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2.2.3 Example

Let us consider a single instance of a task τi (i.e., job) with arrival time Ai, execution

time Ei and deadline Di. The ATG model and its corresponding TDES model, for τi

are shown in Figures 2.2 and 2.3, respectively. Here, the set of activities A = {IDLE,

READY, EXECUTING, COMPLETION}, the event set Σact = {ai, si, ci}, where, the

event ai represents the arrival of τi, si represents the start of execution of τi and ci

represents the completion of execution of τi. All events are categorized as prospective

since they are assigned with finite time bounds. We have used the shorthand notation

t to represent the tick event.

IDLE READY EXECUTING COMPLETION
ai si ci

[Ai, Ai] [0, Di - Ei] [Ei, Ei]

Figure 2.2: ATG for a single instance of τi with parameters Ai, Ei and Di

ait t

# t = Ai

si t t t

# t = Di - Ei

si si si

tt t t

ci
ci ci

ci

# t = Ei

t

Figure 2.3: TDES for a single instance of τi with parameters Ai, Ei and Di

2.2.4 Behavior of TDES

Let us denote by Σ+ the set of all finite sequences of events (or strings) of Σ, of the form

σ1σ2...σk where k ≥ 1, k ∈ N and σk ∈ Σ. Let ε /∈ Σ be the empty event and define

Σ∗ = {ε} ∪ Σ+. Function δ can be extended to δ : Q × Σ∗ → Q. The closed behavior

of TDES G is the language L(G) = {s ∈ Σ∗|δ(q0, s) is defined}. The marked behavior

of TDES G is the language Lm(G) = {s ∈ Σ∗|δ(q0, s) ∈ Qm}. The prefix-closure of

a language L ⊆ Σ∗ is denoted by L and consists of all the prefixes of all strings in

L. L = {s ∈ Σ∗ : (∃x ∈ Σ∗) [sx ∈ L]}. L is said to be prefix-closed if L = L. G

is non-blocking if Lm(G) satisfies Lm(G) = L(G). Likewise, G is blocking if L(G) 6=
Lm(G).
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2.2.5 Reachability, Co-reachability, Composition

A state q ∈ Q is reachable, if δ(q0, s) = q, for some s ∈ Σ∗. TDES G is said to be

reachable, if q is reachable for all q ∈ Q. We use the notation Ac(G) to denote the

operation of deleting all the states of G that are not reachable from q0. A state p ∈ Q
is co-reachable, if δ(p, s) ∈ Qm, for some s ∈ Σ∗. A TDES G is said to be co-reachable,

if p is co-reachable for every p ∈ Q. G is said to be non-blocking, if L(G) = Lm(G).

Otherwise, G is said to be blocking.

Suppose we have n languages corresponding to n TDES, Li ⊆ Σ∗i with Σ = ∪ni=1Σi.

The natural projection Pi : Σ∗ → Σ∗i is defined as: (i) Pi(ε) = ε, (ii) Pi(σ) = ε if σ /∈ Σi,

(iii) Pi(σ) = σ if σ ∈ Σi and (iv) Pi(sσ) = Pi(s)Pi(σ), s ∈ Σ∗, σ ∈ Σ. The inverse

projection of Pi is, P−1
i : 2Σ∗i → 2Σ∗ . The synchronous product of L1, L2, . . . , Ln,

denoted by L1||L2|| . . . ||Ln, is defined as P−1
1 L1 ∩ P−1

2 L2 ∩ · · · ∩ P−1
n Ln.

2.2.6 Supervisory Control

Formally, a supervisory control for G is a map S : L(G) → 2Σ. Given G and S, the

resulting closed-loop system, denoted by S/G, is defined inductively according to (i)

an empty event ε ∈ L(S/G) (ii) [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ S(s))] ⇔
[sσ ∈ L(S/G)] (iii) No other strings belong to L(S/G). The marked behavior of S/G

is: Lm(S/G) = L(S/G) ∩ Lm(G). To summarize, a supervisor of G can be considered

as an automaton S that monitors each state of G, and disable certain events in G when

necessary, in order to control its behavior [29].

Given the system G and a desired specification K ⊆ Lm(G), K 6= ∅, the synthesis

process first builds a supervisor candidate using G||K and this must be non-blocking as

well as controllable [104]. A TDES is controllable with respect to G if it always admits

the occurrence of (i) uncontrollable events eligible in G, (ii) tick events, if eligible, and

not preempted by an eligible forcible event. If the controllability condition is satisfied,

then the resulting controlled system ensures Lm(S/G) = K. Otherwise, a largest (i.e.,

supremal) controllable sublanguage of K can always be found (even though it may be

empty). Let C(K) denote the family of controllable sub-languages of K. C(K) is always
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non-empty, since ∅ is controllable. C(K) is closed under arbitrary set unions and has a

unique largest controllable sub-language supC(K) such that supC(K) ⊆ K. Therefore,

it is possible to design a supervisor which restricts the system behavior to supC(K). If

this supervisor is adjoined with G, then Lm(S/G) = supC(K). The supervisor S is said

to be minimally restrictive in the sense that its only action is to disable certain events

when necessary so as to preserve the desired behavior of the system. As a consequence,

the solution generates the largest possible subset of legal sequences.

2.2.7 Supervisor Computation

In order to transform G||K (denoted by M) such that it becomes both controllable

and non-blocking, we apply the standard safe state synthesis mechanism presented in

Algorithm 1 (SAFE STATE SYNTHESIS) [77,104]. The synthesis algorithm iteratively

removes the blocking states, together with all predecessor states that are reachable by

uncontrollable transitions, and afterwards computes the set of nonblocking states. The

algorithm stops either if all remaining states are non-blocking or if the initial state

becomes blocking and has been eliminated, in which case a supervisor does not exist.

This procedure returns a unique maximal least restrictive supervisor, i.e., supC(K) [74,

108]. Next, we present the detailed discussion of each step involved in Algorithm 1.

Algorithm 1 first initializes the set of safe (un-safe) states Qs (Qu) of M to empty.

Then, it invokes Algorithm 2 (CO-REACHABLE) to compute the set of co-reachable

states in M , denoted by Q′. Algorithm 2 first initializes SQi to the set of marked states

Qm and do not include any state in Qu, i.e., Qm \Qu. Then, SQi is iteratively extended

by adding all states that can reach the co-reachable states using PreImage1.

Next, Algorithm 1 invokes Algorithm 3 (NON-CO-REACHABLE) which first com-

putes the initial set of non-co-reachable states in M through Q \ Q′, denoted by SQi.

Then, SQi is iteratively extended by adding: (i) Quc: The set of states in M that

can reach the non-co-reachable states in SQi through only uncontrollable events using

PreImage UC2. (ii) Qt: The set of states in M that contain outgoing transition on t to a

1The operator PreImage(V , δ) computes the set of states that, by one transition, can reach a state
in V (⊆ Q), formally defined as: PreImage(V , δ) = {q ∈ Q|∃q′ ∈ V : δ(q, σ) = q′, σ ∈ Σ}.

2PreImage UC(V, δ) = {q ∈ Q|∃q′ ∈ V : δ(q, σ) = q′, σ ∈ Σuc}.
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state in SQi (using PreImage t1). In addition, these states should not contain outgoing

transition on any forcible event (obtained using Undef for2). The extended set of non-

co-reachable states is denoted by Q′′. In Algorithm 1, Q′′ is added to the set of un-safe

states Qi
u and is iteratively extended until fix-point is reached.

ALGORITHM 1: SAFE STATE SYNTHESIS
Input: M(= Q,Σ, δ, q0, Qm)
Output: The set of reachable safe states Qs of M

1 Set of safe states, Qs ← ∅;
2 Set of un-safe states, Qu ← ∅;
3 i← 0; Qi

u ← Qu;
4 repeat
5 i← i+ 1;
6 Q′ ← CO-REACHABLE (M,Qi−1

u );
7 Q′′ ← NON-CO-REACHABLE (M,Q′);
8 Qi

u ← Qi−1
u ∪Q′′;

9 until Qi
u = Qi−1

u ;
10 Qu ← Qi

u;
11 i← 0; SQi ← q0; {FORWARD-REACHABILITY}
12 repeat
13 i← i+ 1;
14 SQi ← (SQi−1 ∪ Image(SQi−1, δ)) \Qu;
15 until SQi = SQi−1;
16 return Qs = SQi ;

ALGORITHM 2: CO-REACHABLE
Input: M , Qu
Output: The set of co-reachable states of M

1 i← 0; SQi ← Qm \Qu;
2 repeat
3 i← i+ 1;
4 SQi ← (SQi−1 ∪ PreImage(SQi−1, δ)) \Qu;
5 until SQi = SQi−1;
6 return SQi;

Finally, Algorithm 1 performs the reachability computation to obtain the set of safe

states (denoted by Qs) that only consists of reachable states and does not contain any of

the un-safe states (Qu). It first initializes SQi to the initial state q0 of M and then, SQi

1PreImage t(V, δ) = {q ∈ Q|∃q′ ∈ V : δ(q, t) = q′}.
2Undef for(V, δ) = {q ∈ V |∀σ ∈ Σfor : δ(q, σ)is undefined}.
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ALGORITHM 3: NON-CO-REACHABLE
Input: M , The set of co-reachable states Q′

Output: The set of non-co-reachable states
1 i← 0; SQi ← Q \Q′;
2 repeat
3 i← i+ 1;
4 Quc ← PreImage UC(SQi−1, δ);
5 Qt ← Undef for(PreImage t(SQi−1, δ), δ);
6 SQi ← (SQi−1 ∪Quc ∪Qt);
7 until SQi = SQi−1;
8 return SQi;

is iteratively extended by adding all states that can be reached using Image1. During

such expansion, it may reach un-safe states also. However, such states (Qu) are discarded

at each iteration. Finally, Algorithm 1 results in Qs containing all possible safe which

guarantee the timely execution of tasks.

The set of safe states Qs resulting from Algorithm 1 contains all possible safe exe-

cution sequences which guarantee the timely execution of tasks. It may be noted that

the above synthesis procedure generates the exhaustive set of all feasible scheduling se-

quences. The supervisor (i.e., scheduler) can make use of anyone of these sequences

depending on the specific system requirements in a given scenario and use it for the

scheduling of tasks on-line.

Complexity Analysis: It can be observed that the number of fix-point iterations

corresponding to Algorithms 2 (CO-REACHABLE) and 3 (NON-CO-REACHABLE) is

bounded by the number of states in the composite model M , and each such iteration has

a complexity that is linear in the size of M . It follows that the complexity of Algorithm 1

(SAFE STATE SYNTHESIS) is polynomial in the size of M .

2.2.8 Tools

A software package called TTCT [2] supports the creation of a new ATG (using the

procedure ACreate), construction of TDES from ATG (using Timed Graph), direct con-

struction of a new TDES (using Create), combining two or more TDES (using Sync) and

1The operator Image(V , δ) computes the set of states that can be reached by executing one
transition: Image(V , δ) = {q′ ∈ Q|∃q ∈ V : δ(q, σ) = q′, σ ∈ Σ}.
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computing the supremal controllable sublanguage of a given language (using Supcon).

For a given TDES representing G and K, supcon internally first computes Sync(G, K)

and then, applies fixpoint iteration algorithm developed in [108] to compute the supre-

mal controllable sublanguage of G||K. In the TTCT tool, this can be computed using

Supcon procedure. We now explain the steps that can be used to obtain a supervisor /

scheduler for a given system using the TTCT tool.

An Illustrative Example: Let us consider a uniprocessor system consisting of two

aperiodic tasks (with single instance) τ1 and τ2. The parameters associated with task

τ1 are as follows: τ1 arrival time A1 = 0, execution time E1 = 2, deadline D1 = 3.

Similarly, for task τ2: A2 = 1, E2 = 1, D2 = 2. We follow the ATG model presented in

the example of Section 2.2.3 to construct ATGs EX AT1 and EX AT2 for task τ1 and

τ2, respectively. As mentioned earlier, we use the procedure ACreate to construct the

ATG model EX AT1, as follows:

EX AT1 = ACreate(EX AT1,[mark 3],[time bounds [1,0,1],[2,0,0],[4,2,2]],[forcible

1],[tran [0,2,1],[1,1,2],[2,4,3]]) (4,3)

In the above command, EX AT1 represents the name of the ATG model. [mark 3]

represents that the activity 3 is marked. [time bounds [1,0,1],[2,0,0],[4,2,2]] represents

the time bounds associated with the events representing the arrival (a1 is mapped to

2), start of execution (s1 is mapped to 1), and completion (c1 is mapped to 4). For

example, the time bounds associated with the start of execution event s1 (mapped to 1)

is represented by [1,0,1]. [forcible 1] represents the list of events that are considered to be

forcible. [tran [0,2,1],[1,1,2],[2,4,3]] represents the transition structure of ATG. Finally,

the tuple (4,3) represents the total number of activities and transitions present in the

ATG, which is generated automatically by TTCT. The ATG model EX AT1 constructed

using ACreate is shown in Figure 2.4.

For a given ATG model, we can obtain its corresponding TDES version using the

procedure Timed Graph. Now, we apply EX AT1 to construct its corresponding TDES

version as follows:

EX AT1 TIMED = Timed Graph(EX AT1) (7,8)
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Figure 2.4: ATG model EX AT1 for task τ1

In the above command, the tuple (7,8) represents the total number of states and

the transitions present in the TDES model obtained from its ATG representation. This

tuple is generated automatically by the tool TTCT. The TDES version of EX AT1, i.e.,

EX AT1 TIMED, is shown in Figure 2.5.

Figure 2.5: TDES model EX AT1 TIMED for task τ1

Similar to the construction of models related to task τ1, we can construct the ATG

and TDES models corresponding to the task τ2. The ATG model EX AT2 is shown in

Figure 2.6 and its corresponding TDES model EX AT2 TIMED is shown in Figure 2.7.

EX AT2 = ACreate(EX AT2,[mark 3],[time bounds [3,0,1],[6,1,1],[8,1,1]],[forcible

3],[tran [0,6,1],[1,3,2],[2,8,3]]) (4,3)

Figure 2.6: ATG model EX AT2 for task τ2

EX AT2 TIMED = Timed Graph(EX AT2) (7,8)
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Figure 2.7: TDES model EX AT2 TIMED for task τ2

Given two individual TDES models EX AT1 TIMED and EX AT2 TIMED, we can

obtain their synchronous product using the procedure Sync, as follows:

EX AT12 TIMED = Sync(EX AT1 TIMED,EX AT2 TIMED) (23,30)

In the above command, EX AT12 TIMED represents the name of the resulting

composite model. The tuple (23,30) represents the total number of states and tran-

sitions present in the composite model. The transition structure of the composite model

EX AT12 TIMED is shown in Figure 2.8.

Figure 2.8: TDES model EX AT12 TIMED representing the synchronous product of
EX AT1 TIMED and EX AT2 TIMED

Next, we create a specificaiton model to enfore the resource constraint (i.e., only one

task is allowed to execute on the processor at any instant of time). The TDES model

EX RC is constructed using the command given below and its transition structure is

shown in Figure 2.9.

EX RC = Create(EX RC,[mark 0],[tran [0,0,0],[0,1,1],[0,2,0],[0,3,2],[0,6,0],

[1,0,1],[1,4,0],[1,6,1],[2,0,2],[2,2,2],[2,8,0]],[forcible 1,3]) (3,11)
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Figure 2.9: TDES model EX RC representing the resource constraint

Given a system model EX AT12 TIMED and a specification EX RC, we can obtain

their corresponding supremal controllable sublanguage using the following command:

EX SUPCON = Supcon(EX AT12 TIMED,EX RC) (10,10)

Figure 2.10: A supervisor / scheduler for a given uniprocessor system

Figure 2.10 shows the supremal controllable sublanguage, which can be used as a

supervisor / scheduler to control the execution of tasks in a given uniprocessor system

with two aperiodic tasks τ1 and τ2.

2.3 Summary

This chapter started with a brief overview of the evolution of real-time systems followed

by scheduling algorithms related uniprocessors to homogeneous/heterogeneous multi-

processors. Then, we have presented the fundamental definitions related to supervisory

control of timed discrete event systems. These concepts and definitions will be either

referred or reproduced appropriately later in this thesis, to enhance the readability. In

the next chapter, we present the two scheduler synthesis schemes for a set of independent
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real-time tasks executing (non-preemptively/preemptively) on a uniprocessor platform.
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Chapter 3
Scheduling of Sporadic Tasks on
Uniprocessors

In the last chapter, we discussed various scheduling algorithms related to real-time

systems implemented on uniprocessor and multiprocessor systems. Also, the sched-

uler synthesis using Supervisory Control of Timed Discrete Event Systems (SCTDES)

was presented. As mentioned earlier, this dissertation is oriented towards the design

of SCTDES based optimal scheduling strategies for safety-critical real-time systems

implemented on uni/multi-processor platforms. With this objective, we present two

scheduler synthesis frameworks for the scheduling of sporadic tasks executing (non-

preemptively/preemptively) on uniprocessor platforms, and they are listed as follows:

• Non-preemptive Scheduler Synthesis Framework: First, we develop models

which can be used to synthesize a non-preemptive scheduler for a set of aperi-

odic tasks with known arrival times, executing on a uniprocessor platform. Then,

we relax the restrction on task arrival times, and extend our initial models ap-

propriately to synthesize schedulers for dynamically arriving sporadic tasks. We

illustrate the practical applicability of our framework using a motor network exam-

ple. Although, in recent years, there has been a few significant works dealing with

real-time scheduling using SCTDES, this is possibly the first work which addresses

the scheduler synthesis problem for sporadic tasks.
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• Preemptive Scheduler Synthesis Framework: In this work, we develop a

preemptive scheduler synthesis framework for the optimal scheduling of dynami-

cally arriving, sporadic tasks. In case of preemptive execution, the scheduler has

the ability to interrupt the execution of a task at each time instant. Due to this,

there is a possibility of delaying the execution of tasks by keeping the processor

idle in the presence of ready to execute tasks, as compared to its non-preemptive

counter-part. Hence, we synthesize a work-conserving scheduler which avoid pro-

cessor idling in the presence of ready to execute tasks. The synthesized scheduler

is able to support concurrent execution of multiple accepted tasks and correctly

model the inter-arrival time requirement of a sporadic task. Finally, applicability

of the proposed scheme on realistic scenarios has been exhibited by presenting a

case study on an Instrument Control System.

3.1 Related Works

In recent years, researchers have shown that off-line formal approaches such as SCT-

DES [18] can be used to synthesize the optimal, correct-by-construction, schedulers for

real-time systems [29, 53, 85, 87, 105, 106]. Chen and Wonham presented the scheduler

design for non-preemptive, periodic tasks executing on uniprocessors [29]. Later, the

SCTDES framework has been extended by Janarthanan et al. for the scheduling of

both non-preemtive and preemptive periodic tasks [53]. Recently, Wang et al. enhanced

the models presented in [29,53] to schedule non-preemptive, periodic tasks with multiple

periods [105]. The notion of multiple periods allows the tasks to dynamically reconfig-

ure their periods at run-time. They have also proposed an approach for conditionally-

preemptive, real-time scheduling of periodic tasks [106]. Park and Cho developed the

preemptive scheduler for dynamically arriving sporadic tasks on uniprocessor systems

in [85]. Later, Park and Yang presented the preemptive scheduling scheme to allow the

co-execution of periodic and sporadic tasks on uniprocessors with mutually exclusive ac-

cessibility of shared resources [87]. However, the scheduler synthesized in [85,87] does not

model minimum inter-arrival times, which is necessary for the precise characterization
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of sporadic tasks.

Table 3.1 provides the summary of qualitative comparison between the state-of-the-

art SCTDES based uniprocessor scheduling schemes. Although the scheduler synthesis

approaches presented in [85,87] attempt to handle sporadic tasks, they fail to correctly

model minimum inter-arrival time constraint. In this chapter, we present scheduler

synthesis framework which has the ability to correctly model sporadic tasks.

Table 3.1: Comparison between SCTDES based uniprocessor scheduling schemes

Method Tasks Preemptive /
Non-preemptive Remarks

[29] Periodic Non-preemptive It considers non-preemptive periodic tasks.
[53] Periodic Both It considers both preemptive & non-preemptive tasks.
[105] Periodic Preemptive It considers tasks with multiple periods.

[106] Periodic Conditionally
preemptive It considers conditionally preemptive tasks.

[85] Sporadic Preemptive It does not capture minimum inter-arrival time constraint of sporadic tasks.

[87] Periodic,
Sporadic Preemptive It does not correctly model periodic as well as sporadic tasks.

Section 3.2 Aperiodic,
Sporadic Non-preemptive It correctly captures minimum inter-arrival time constraint of sporadic tasks.

Section 3.3 Sporadic Preemptive It correctly captures minimum inter-arrival time constraint of sporadic tasks.

3.2 Non-preemptive Scheduler Synthesis Framework

In this section, we present the synthesis framework for the design of an optimal non-

preemptive scheduler for a set of: (i) aperiodic tasks with known arrival times, (ii)

dynamically arriving aperiodic tasks, and (iii) dynamically arriving sporadic tasks.

3.2.1 Aperiodic Tasks with Known Arrival Times

System Model: We consider a real-time system consisting of a set I (= {τ1, τ2, ...,

τn}) of n (≥ 1) non-preemptive, aperiodic tasks to be scheduled on a uniprocessor [31,

47,54,54]. Formally, the task τi to be scheduled is represented by a 3-tuple 〈Ai, Ei, Di〉,
where Ai is the arrival time, Ei is the execution time and Di is the relative deadline of

τi.

Assumptions: (1) Tasks are independent with no precedence constraints [30]. (2)

Execution time for each task is constant and equal to its worst-case execution time

WCET [73]. (3) Ei ≤ Di for all tasks in I. (4) All tasks are reported to the scheduler
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which then controls their execution on the uniprocessor according to the pre-computed

off-line scheduling policy.

3.2.2 Task execution model

0
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ai si 4 5 6t ci
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Figure 3.1: Task execution model Ti for task τi 〈Ai, Ei, Di〉.

The TDES model Ti for executing a non-preemptive, aperiodic task τi 〈Ai, Ei, Di〉 is

(shown in Figure 3.1) defined as,

Ti = (Qi, Σ, δi, q0, Qm),

where, Qi = {0, 1, ..., 7}1, q0 = 0, Qm = {7}, Σ = ∪i∈{1,2,...,n}Σi ∪ {t}, where Σi =

{ai, si, ci}. The events are described in Table 3.2 and they are categorized as follows: (i)

Σuc = ∪i∈{1,2,...,n}{ai}, (ii) Σc = Σ\(Σuc∪{t}), (iii) Σfor = Σc. Since the arrival events of

tasks are induced by the environment, they are modeled as uncontrollable events. Apart

from Σuc and tick event (t), remaining events in the system are modeled as controllable

events. These controllable events are also modeled as forcible events which can preempt

the tick event (t). All events in Σ are considered to be observable.

Table 3.2: Description of events (for non-preemptive execution)

Event Description
ai Arrival of a task τi
si Start of execution of τi
ci Completion of execution of τi

State 0 is the initial state of Ti and represents the state in which task τi resides prior

to the start of the system. Events in the self-loop Σ \ (Σi ∪ {t}) may be characterized

1The states are numbered sequentially starting from 0, for illustration purpose. However, the total
number of states in Ti for a given task τi will vary depending on its execution time.
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as follows: Since τi has not yet arrived, the events that are associated with τi (Σi) are

excluded from Σ. To elaborate, the self-loop contains the events such as arrival, start of

execution, and completion with respect to any other task (τj ∈ I, j 6= i) in the system.

Thus, Σ \ (Σi ∪ {t}) does not impose any restriction on the execution of other tasks.

State 0 is replicated Ai times in order to measure the occurrence of Ai ticks subsequent

to system start.

After the occurrence of ai at Ai
th tick, Ti reaches State 3 from State 2. Here, the

scheduler takes a decision whether to immediately allocate the task τi for execution on

a processor or make it wait on the ready queue. The latter is indicated by the self-

loop transition Σ \ Σi at State 3. If the scheduler decides to start the execution of τi,

then it will enable the event si to assign τi for execution on the processor. According

to Figure 3.1, if event si occurs at State 3, then Ti reaches State 4. At State 4, the

self-loop transition Σuc \ {ai} ensures that only arrivals (barring that of τi) but not the

execution of tasks other than τi are allowed. This is because τi has already started its

non-preemptive execution on the processor. After the elapse of Ei ticks from State 4,

Ti reaches State 6. Finally, the event ci which is used to mark the completion of τi’s

execution, takes Ti to the marked state State 7. Now, Ti continues to stay at State 7

without imposing any constraint on other tasks currently executing on the processor.

It may be noted that τi consumes exactly Ei ticks from the start of its execution at

State 4. However, τi may miss its deadline based on the amount of time spent in the

ready-queue at State 3. Suppose τi stays at State 3 for x ticks before si, then (i) τi is

deadline-meeting if (x + Ei) ≤ Di, (ii) τi is deadline-missing if (x + Ei) > Di. Hence,

Lm(Ti) contains both deadline-meeting as well as deadline-missing execution sequences

for task τi. Now, let us formally introduce the notion of a deadline-meeting sequence as

it is relevant for our discussion.

Definition: Deadline-meeting sequence (with respect to non-preemptive execution):

A sequence s = s1ais2cis3 ∈ Lm(Ti), where s1, s3 ∈ Σ∗, s2 ∈ (Σ \ {ci})∗ is deadline-

meeting, if tickcount(s2) ≤ Di. Otherwise, s is a deadline-missing sequence. �

Example: Now, we illustrate the generalized task execution model discussed above
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using an example. Let us consider an example (adopted from [23]) uniprocessor system

consisting of two tasks τ1〈0, 4, 7〉, τ2〈1, 2, 4〉. The task execution models T1 for τ1, T2

for τ2 are shown in Figures 3.2(a) and 3.2(b), respectively. It can be observed that the

arrival of τ1 (i.e., a1) takes place at system start. Once τ1 has started execution (i.e., s1),

it consumes exactly 4 ticks to complete its execution (i.e., c1). During τ1’s execution,

only the arrival of τ2 is allowed until its completion which is modeled by the self-loops a2

at states 2 through 6. Similarly, it can be observed from Figure 3.2(b) that the arrival of

τ2 takes place at the first tick subsequent to system start and it takes 2 ticks to complete

its execution after the start of its execution. �
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Figure 3.2: TDES Models: (a) T1 for τ1, (b) T2 for τ2, (c) T = T1||T2

Based on the above approach, we construct the TDES models for all the n aperiodic

tasks in the system. Given these n individual TDES task models T1, T2, ..., Tn, a product

composition T = T1||T2||...||Tn on the models gives us the composite model for all the

tasks executing concurrently.

Remark 3.2.1. (i) The marked behavior Lm(T ) represented by the composite task

execution model includes both deadline-meeting as well as deadline-missing execution

sequences for all tasks in I. (ii) It may be observed that Ti allows only one task for

execution on the processor at any instant (which satisfies resource constraint). Specifi-

cally, when τi has started its execution (i.e., si) at State 3, only the arrival of other tasks
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(Σuc \ {ai}) in the system (and not their execution) are allowed until the completion

of τi. Since Lm(T ) = ∩ni=1Lm(Ti), the composite model T also does not contain any

sequence that violates resource constraint. �

Example (continued): Figure 3.2(c) shows the composite model T (= T1||T2). Here,

State XY (X = 0 to 7, Y = 0 to 6) represents state X of T1 and state Y of T2. Let us con-

sider the sequence seq1 = a1s1ta2tttc1s2ttc2 from the initial state of T . In this sequence,

τ1 arrives and starts execution before τ2. Once τ1 completes its execution, then τ2 starts

and completes its execution. Here, τ1 meets its deadline, i.e., tickcount(a1s1ta2tttc1) =

4 ≤ 7. However, τ2 misses its deadline since tickcount(a2tttc1s2ttc2) = 5 which is greater

than its deadline 4. Hence, seq1 is a deadline-missing sequence. Now, let us consider an-

other sequence seq2 = a1ta2s2ttc2s1ttttc1. Here, both τ1 (tickcount(a1ta2s2ttc2s1ttttc1) =
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3. SCHEDULING OF SPORADIC TASKS ON UNIPROCESSORS

7 ≤ 7) and τ2 (tickcount(a2s2ttc2) = 2 ≤ 4) meet their deadlines. Hence, seq2 is a

deadline-meeting sequence. The gantt chart representation of the schedule is shown in

Figure 3.3.

3.2.3 Deadline Specification for an Aperiodic Task
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Figure 3.4: Specification model Hi for an aperiodic task τi

The TDES model Hi shown in Figure 3.4 captures the deadline specification of an

aperiodic task τi. At the Ai
th tick subsequent to system start (State 0 ), the arrival of τi

is allowed at State 2 (i.e., ai). After the occurrence of ai, Hi reaches State 3. The self-

loop transition Σ\{ai, ci, t} in State 3 is used to model the fact that task τi is allowed to

only execute event si associated with it, however, without imposing any restriction with

respect to other tasks in the system. State 3 is replicated Di − Ei times (from states 3

to 7). Since, τi may complete its execution at any time after Ei ticks from its arrival,

outgoing transitions on ci are defined from states 6, 7, 8 to State 10. It may be noted

that if τi does not start its execution at least Di−Ei ticks before its deadline, then τi is

guaranteed to miss its deadline. Hence, si is disallowed in the self-loops Σ\ (Σi∪{t}) at

states 8 to 9. After the elapse of Di ticks from ai, Hi moves to State 10. It may be noted

that Lm(Hi) contains only and all deadline-meeting sequences for task τi. Based on this

approach, Hi is constructed for all other tasks in the system. Then we perform product

composition to obtain the composite deadline specification model H = H1||H2||...||Hn.

Remark 3.2.2. (i) The marked behavior Lm(H) represented by the composite dead-

line specification model includes all deadline-meeting execution sequences for all tasks in

I. (ii) It may be observed that Hi does not restrict the simultaneous execution of mul-

tiple tasks on the processor. Specifically, the self-loops at any state in Hi do not restrict
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3.2 Non-preemptive Scheduler Synthesis Framework

the execution of multiple tasks and they can be executed multiple times at each state

to allow simultaneous execution. So, Lm(H) contains the sequences that may violate

resource-constraint. �
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Figure 3.5: TDES Models: (a) H1 for τ1, (b) H2 for τ2, (c) H = H1||H2

Example (continued): The specification models H1 for τ1 and H2 for τ2 are shown

in Figures 3.5(a) and 3.5(b), respectively. Since, τ1 can start its execution any time

within up to 4 ticks subsequent to its arrival, the event s1 is allowed in the self-loops

at states 1 through 4. However, s1 is disallowed from State 5 since τ1’s execution time

(E1 = 4) is greater than the remaining time available to complete its execution at these

states. Similar discussion holds for H2 of τ2. Figure 3.5(c) shows the composite model

H (= H1||H2). As mentioned earlier, this model represents all possible deadline-meeting

sequences for τ1 and τ2. In order to illustrate this fact, let us try to find the deadline-

missing sequence seq1 in the composite model H shown Figure 3.5(c). After proceeding

through the states 00
a1−→ 10

s1−→ 10
t−→ 11

a2−→ 22
t−→ 33

t−→ 44
t−→ 55

c1−→ 95
s2−→ 95, the

composite model H gets blocked due to the absence of a transition on s2 at State 95.

More specifically, after processing the sub-string a1s1ta2tttc1 of seq1, the next event in

seq1 is s2. However, s2 is not present at State 95. Thus, Lm(H) does not contain the

deadline-missing sequence seq1. However, the deadline-meeting sequence seq2 can be

retrieved by tracing the states 00
a1−→ 10

t−→ 11
a2−→ 22

s2−→ 22
t−→ 33

t−→ 44
c2−→ 47

s1−→ 47
t−→
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57
t−→ 67

t−→ 77
t−→ 87

c1−→ 97.

3.2.4 Supervisor Synthesis

In order to find all deadline-meeting sequences from Lm(T ), we construct the finite state

automaton M = T ||H.

Theorem 3.2.1. Lm(M) contains only and all the deadline-meeting sequences of Lm(T ).

Proof. We know that Lm(T ) contains both deadline-meeting as well as deadline-missing
sequences of all tasks in I (Remark 3.2.1(i)). On the other hand, Lm(H) contains all
possible deadline-meeting sequences (Remark 3.2.2(i)). Since Lm(M) = Lm(T )∩Lm(H),
Lm(M) contains only and all the deadline-meeting sequences of Lm(T ).

Apart from the removal of deadline-missing sequences in Lm(T ), the synchronous
product composition also eliminates the sequences in Lm(H) that violate resource con-
straint. This is because, Lm(T ) does not contain any sequence that violates resource
constraint (Remark 3.2.1(ii)) and Lm(M) = Lm(T ) ∩ Lm(H). Hence, we can conclude
that Lm(M) contains only and all the deadline-meeting sequences of Lm(T ) that satisfies
resource constraint.

Although Lm(M) is deadline-meeting, the deadline-missing sequences in T lead to

deadlock states in M , i.e., M is blocking. Hence, we apply safe state synthesis mechanism

presented in Algorithm 1 to remove the minimal number of states from M until it

becomes both controllable and non-blocking.

Remark 3.2.3. It may happen that Qs is an empty set implying that the given task

set is non-schedulable. In such cases, no other scheduling scheme can find a schedulable

execution sequence for the given task set since the scheduler synthesized using our scheme

is optimal. In order to make the task set schedulable, modifications must be carried-out

on individual task parameters (Ei or Di). �
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Figure 3.6: M = T ||H, Supervisor S (in thick lines)

Example (continued): Figure 3.6 shows the initial supervisor candidate M . Here,

State WXY Z represents State W of T1, State X of T2, State Y of H1 and State Z of
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H2. For example, State 7697 represents State 7 of T1, State 6 of T2, State 9 of H1 and

State 7 of H2. Now, let us apply Algorithm 1 to obtain Qs which is used for constructing

the supervisor.

Algorithm 1 invokes Algorithm 2 which initializes SQ0 = Qm = {7697}. Now,

PreImage (SQ0, δ) returns 6687 which makes SQ1 = {7697, 6687}. In a similar

manner, Algorithm 2 continues to iterate until i = 14, where a fix-point is reached.

This returns the set of co-reachable states, Q′ = {7697, 6687, 5677, 4667, 3657, 2647,

1647, 1544, 1433, 1322, 1222, 1111, 1010, 0000}.
Next, Algorithm 1 invokes Algorithm 3 which first computes the initial set of non-

co-reachable states, SQ0 = Q \ Q′ = {7295, 7296, 6255, 6266, 5244, 5255, 4233, 4244,

3222, 3233, 3111, 2222, 2010, 2111}. It can be seen that there exists a transition on

event s1 from states {1010, 1111} ∈ Q′ to {2010, 2111} ∈ SQ0, respectively. However,

s1 is a controllable event whose occurrence can be disabled by the supervisor. Thus, no

state in Q′ can reach a state in SQ0 through an uncontrollable event. Hence, Algorithm 3

reaches fix-point at i = 1 which implies SQ1 = SQ0 and Q′′ = SQ1.

Finally, Algorithm 1 invokes forward reachability operation which starts with the

initial state SQ0 = 0000 of M and adds all reachable states excluding Q′′. Now, Image

(SQ0, δ) returns 1010 which makes SQ1 = {0000, 1010}. Similarly, Algorithm 1 (Line

11 to 15) continues to iterate until i = 14, where fix-point is reached. Finally, it returns

the set of safe states Qs = {0000, 1010, 1111, 1222, 1322, 1433, 1544, 1647, 2647, 3657,

4667, 5677, 6687, 7697}. Since Qs is non-empty, the given task set is schedulable. Next,

the scheduler S is constructed using Qs which ensures that both τ1 and τ2 meet their

deadlines. The scheduler S is shown using thick lines in Figure 3.6.

3.2.5 Handling Arbitrary Aperiodic Task Arrivals

The approach discussed above considers aperiodic tasks with known arrival times. Here,

we assume task arrivals to be arbitrary, i.e., dynamic. In order to design a scheduler

under this changed scenario, the task execution model Ti presented in Figure 3.1 has

been modified. In particular, the set of states ({0, 1, 2}) that are used to measure the

arrival time of an aperiodic task τi (with known arrival time Ai) have been replaced by
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Figure 3.7: (a) Task execution model, (b) Deadline specification model, for dynamic arrival

a single state (State 0 ) in Ti shown in Figure 3.7(a). Here, Ti stays at State 0 until the

arrival of τi (i.e., ai) by executing the events in the self-loop Σ \ Σi. Specifically, Σ \ Σi

contains t in it which is used to model the arbitrary arrival of τi, i.e., ai (arrival at system

start), tai (arrival after a tick), ttai (arrival after two ticks), and so on. The remaining

part of Ti (i.e., from arrival ai to completion ci) is same as Figure 3.1. Similar changes

have been made to the deadline specification model Hi in Figure 3.4. The modified Hi

for dynamically arriving aperiodic tasks is shown in Figure 3.7(b).

3.2.6 Handling Dynamically Arriving Sporadic Tasks

Let us consider a dynamically arriving sporadic task τi 〈Ei, Di, Pi〉, where Ei is the

execution time, Di is the deadline and Pi is the minimum inter-arrival time. Here,

we assume Di = Pi, i.e., deadlines are implicit. The sporadic task τi consists of an

infinite sequence of identical instances that are separated by a minimum inter-arrival

time Pi [23,51]. Before presenting the execution and specification models for the sporadic

task τi, let us introduce the formal definition of a sporadic sequence.

Definition: Sporadic Sequence: “Suppose Ti is a TDES corresponding to a sporadic
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Figure 3.8: (a) Task execution model, (b) Deadline specification model, for sporadic task

task τi. A sequence s ∈ Lm(Ti) is a prefix of a sporadic sequence if for all s1, s2, ..., sk ∈
((Σi ∪ {t}) \ {ai})∗, and s = s1ais2ai...skai... implies that ∀k(k > 1) tickcount(sk) ≥ Pi.

Otherwise, the sequence s is non-sporadic.” Since Ti represents the sporadic task τi, this

definition must be satisfied ∀s ∈ Lm(Ti).

Task execution model Ti: In case of aperiodic tasks, we have considered the

scheduling of a single instance. However, sporadic tasks consist of an infinite sequence

of identical instances. Presently, the model Ti shown in Figure 3.7(a) moves to State 5

from State 4 after the completion of a single instance of τi and stays their indefinitely.

This must be modified to support the execution of sporadic tasks. Figure 3.8(a) shows

the modified task execution model Ti corresponding to the dynamically arriving sporadic

task τi. Here, we have introduced a loop-back to the initial state (State 0 ) from State 4

on completion event ci such that the execution of infinite sequences can be supported.

In addition to this, we set State 0 as initial as well as marked state which implies that Ti

stays at State 0 prior to the arrival of next instance of τi as well as after the completion

of its current instance.
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Remark 3.2.4. The marked behavior Lm(Ti) represented by the task execution model

includes (i) deadline-meeting, (ii) deadline-missing, (iii) sporadic and (iv) non-sporadic

execution sequences for all tasks in I. The sporadicity of τi is decided by the amount of

time spent at the initial state of Ti between any two of its consecutive instances. Suppose

τi completes the execution of its current instance x ticks subsequent to its arrival and

stays at State 0 for y ticks before its next arrival. Then, τi satisfies the minimum inter-

arrival time constraint, if (x+y) ≥ Pi. Otherwise, τi is non-sporadic. It can be observed

that a deadline-missing sequence may also be sporadic if all instances of each task in

the sequence satisfy their minimum inter-arrival time constraints. All these sequences

satisfy resource constraint (similar to Remark-3.2.1(ii)). �

The different types of sequences in Lm(Ti) (as specified in Remark 3.2.4) are also carry

forwarded to Lm(T ). In order to remove the sequences that violate the deadlines and /

or sporadicity from Lm(T ), we construct the timing specification model which captures

the following aspects of a sporadic task, (i) infinite sequence of identical instances, (ii)

minimum inter-arrival time and (iii) deadline satisfaction.

Timing specification model Hi: Figure 3.8(b) shows the timing specification of

a dynamically arriving, implicit deadline meeting sporadic task τi. This model includes

the set of states {8, 9, ..., 10} in addition to the states that are already present in Hi

(shown in Figure 3.7(b)) to capture the minimum inter-arrival time constraint. In order

to model the infinite sequence of identical instances, a loop-back on completion event ci

(from states {4, 5, ..., 6}) to the initial state (State 0 ) of Hi have been added via states

{8, 9, ..., 10}. Now, we explain how these newly added states take care of minimum

inter-arrival time. Suppose, τi executes ci, the completion event, Pi − j ticks (j =

{1, 2, ..., (Ei − 1)}) subsequent to its arrival. Then, it will reach anyone (say, State x)

among the states 8, 9, ..., 10, such that all substrings between State x and State 0

contain j ticks. The self-loop Σ \ (Σi ∪ {t}) at these states ({8, 9, ..., 10}) disallows the

arrival of sporadic task τi’s next instance before the elapse of Pi ticks from the arrival of

its current instance. Apart from this, the remaining states ({0, 1, ..., 7}) are same as Hi

(shown in Figure 3.7(b)), and hence Lm(Hi) contains the deadline-meeting sequences.
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So Lm(Hi) satisfies the three aspects of a sporadic task mentioned above.

Remark 3.2.5. The marked behavior Lm(Hi) represented by the timing specification

model includes all and only the deadline-meeting as well as sporadic execution sequences

for all tasks in I. However, these sequences may violate resource constraint. �

According to the scheduler synthesis framework, next we compute M = T ||H. Since

Lm(M) = Lm(T )∩Lm(H) and Lm(T ) satisfies resource constraint, Lm(M) contains only

and all the deadline-meeting, sporadic sequences satisfying resource constraint. Using M

as an input to Algorithm 1, we can compute the set of safe states Qs. From Qs, the

supervisor S will be constructed for the scheduling of real-time tasks at on-line. It may

be noted that S contains all feasible sequences considering arbitrary task arrivals on-line.

3.2.7 Application Example

In this section, we illustrate our proposed scheduler synthesis framework using an ex-

ample. In case of aperiodic tasks, we have already presented a running example in

Section 3.2.1. Here, we consider a simple motor network example (adopted from [29])

to illustrate the scheduler synthesis mechanism for a set of dynamically arriving spo-

radic tasks. Consider two electric motors whose speed stabilization is controlled by a

real-time controller implemented on a uniprocessor as illustrated in Figure 3.9(a). The

controller consists of two independent sporadic tasks τ1 and τ2 to control Motor 1 and

Motor 2, respectively. While τ1 requires 1 ms to stabilize Motor 1, τ2 requires 2 ms

for the same corresponding to Motor 2. Once stabilized, Motor 1 remains within its

maximum destabilization threshold for at least 6 ms, while Motor 2 may destabilize

after 3 ms subsequent to control action by τ2. τ1 and τ2 are invoked whenever motors 1

and 2 destabilize beyond their threshold limits. Thus τ1 and τ2 may be represented as

τ1 〈1, 6, 6〉 and τ2 〈2, 3, 3〉.
The task execution model T1 for τ1 and T2 for τ2 are shown in Figures 3.9(b) and

3.9(c), respectively. Apart from deadline-meeting and deadline-missing sequences, these

task execution models contain both sporadic as well as non-sporadic sequences in it. For

example, let us consider the sequences seq1 = a1s1tc1ttttta1 and seq2 = a1s1tc1a1. Two

consecutive arrivals of τ1 are separated by 6 ticks in seq1 (satisfies sporadicity) and 1
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Figure 3.9: A simple motor network adopted from [29].

tick in seq2 (violates sporadicity). The non-sporadic sequences are also carry forwarded

to the composite task execution model T (= T1||T2) shown in Figure 3.9(d). It may be

observed that T allows the dynamic arrivals of τ1 and τ2.
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Figure 3.10: Deadline specification models H1 for τ1, H2 for τ2.

The timing specification model H1 for τ1 and H2 for τ2 are shown in Figures 3.10(a)

and 3.10(b), respectively. These models enforce sporadicity as well as deadline speci-

fications. For example, the deadline-meeting sequence seq2 which violates sporadicity
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Figure 3.11: The supervisor S for motor network.

of τ1 is not part of H1. If we attempt to trace seq2, H1 gets blocked at State 8 after

processing the sub-string a1s1tc1 from the initial state due to the absence of a1. On the

other hand, seq1 is part of H1 since it satisfies the minimum inter-arrival time constraint

of τ1.

After obtaining T and H, they are product composed to obtain M whose marked

behavior contains the set of sporadic as well as deadline-meeting sequences satisfying

resource constraint. Then, we apply Algorithm 1 to obtain the final non-blocking super-

visor S (shown in Figure 3.11) which contains all feasible schedules of the dynamically

arriving sporadic tasks τ1 and τ2.

Now, let us consider a scenario in which the computation and minimum inter-arrival

time constraint of τ1 are 3 and 6, while that for τ2 are 1 and 2, respectively. It may be

observed that in this scenario, M is blocking and the set of safe states Qs returned by

Algorithm 1 is empty. Thus, the given task set is non-schedulable. Since, the scheduler

synthesized using our scheme is optimal, there cannot exist a mechanism that can feasibly

schedule τ1 and τ2.
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3.3 Preemptive Scheduler Synthesis Framework

In the previous section, we have considered the non-preemptive execution of sporadic

tasks. In this section, we proceed towards the design of an optimal scheduler synthesis

mechanism for preemptive sporadic tasks. It may be noted that our non-preemptive

framework started with the scheduler synthesis for aperiodic tasks and was extended

towards sporadic tasks. Here, we directly proceed from sporadic tasks. However, the

procedure presented in this section can also be easily adopted for aperiodic tasks. In

addition, we ensure that the synthesized scheduler is work-conserving, to avoid the pos-

sibility of keeping the processor idle in the presence of ready to execute tasks.

System Model: We consider a real-time system consisting of a set I (= {τ1, τ2, ..., τn})
of n (≥ 1) preemptive real-time sporadic tasks with arbitrary arrival times, to be sched-

uled on a uniprocessor system. Formally, a sporadic task τi is represented by a 3-tuple

〈Ei, Di, Pi〉, where Ei is the execution time, Di is the relative deadline and Pi is the

minimum inter-arrival time [15, 23,47,89].

Problem Statement: Given a set of n preemptive real-time sporadic tasks with

arbitrary arrival times and a single processor, design an optimal work-conserving sched-

uler which guarantees that all tasks meet their timing constraints (such as execution

time, deadline and minimum inter-arrival time) and resource constraints (i.e., single

processor).

3.3.1 Task execution model

The TDES model Ti for executing a preemptive, sporadic task τi 〈Ei, Di, Pi〉 is defined

as, Ti = (Qi, Σ, δi, q0, Qm), where, Qi = {#1,#2, ...,#8}, q0 = #1, Qm = {#1}, Σ =

∪i∈{1,2,...,n}Σi ∪ {t}, where Σi = {ai, pi, ri, ei, ci}.

The events are described in Table 3.3 and they are categorized as follows: (i) Σuc =

∪i∈{1,2,...,n}{ai}, (ii) Σc = Σ\ (Σuc∪{t}), (iii) Σfor = Σc. Since the arrival events of tasks

are induced by the environment, they are modeled as uncontrollable events. Apart from

Σuc and tick event (t), remaining events in the system are modeled as controllable events.

These controllable events are also modeled as forcible events which can preempt the tick
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Table 3.3: Description of events (for preemptive execution)

Event Description
ai Arrival of a task τi
pi Acceptance of a task τi
ri Rejection of a task τi
ei Execution of a segment of τi on the processor
ci Execution of the last segment of τi on the processor

event (t). All events in Σ are considered to be observable. Suppose Ei is equal to 1, i.e.,

each instance of τi requires only a single segment of execution; then Σi = {ai, pi, ri, ci}.
In this work, the notion of acceptance captures the following fact: Once a real-time

task is accepted by the scheduler, then it will not be rejected in the middle of its execution.

Similarly, rejection captures the scenario in which a real-time task is not accepted by

the scheduler in order to guarantee timely execution of the already accepted tasks in

the system. We have modeled the notion of acceptance and rejection using (mutually

exclusive) transitions on events pi and ri, respectively. The transition structure of Ti

(shown in Figure 3.12) is explained as follows:

T\Ti

ai pi

ri

T\Ti T\Ti

ei t ci

t

T\Ti

# of ei = Ei - 1

ei

#1 #2 #3

#4 #6

#7

#8

#5

Figure 3.12: Task execution model Ti for task τi 〈Ei, Di, Pi〉.

• #1
Σ\Σi−−−→ #1: Ti stays at State #1 until the occurrence of arrival event ai by

executing the events in Σ \ Σi. Here, Σ \ Σi contains the events such as arrival,

rejection, acceptance, execution and completion of a task, that may occur with

respect to other tasks in the system. In addition, Σ \ Σi contains t which is used

to model the arbitrary arrival of τi, i.e., ai (no delay), tai (after a tick from the

system start), ttai (after two ticks) etc.

• #1
ai−→ #2: On the occurrence of ai, Ti moves to State #2. Here, the scheduler

takes the decision whether to accept (pi) or reject (ri).
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• #2
ri−→ #1: Suppose, the scheduler rejects τi, then Ti transits back to State #1.

• #2
pi−→ #3: Suppose, the scheduler accepts τi, then Ti transits to State #3. The

self-loop transition Σ \ Σi is similar to the one present in State #1.

• #3
ei−→ #4: Ti moves from State #3 to State #4 through τi’s execution event ei.

• #4
t−→ #5: After the occurrence of tick (t), T reaches State #5 which is similar to

State #3. It may be noted that eit represents execution of τi for one time unit.

• #5
ei−→ #6 . . .#7

ci−→ #8: By continuing in this way, Ti reaches State #7 and moves

to State #8 through the completion event ci. Note that the number of ei events

executed between the acceptance (pi) event and the completion (ci) event is Ei−1.

• #8
t−→ #1: After the occurrence of a tick event, Ti moves back to the initial (as

well as marked) state #1 to represent task τi’s completion.

Remark 3.3.1. Generated and Marked Behavior of Ti: The generated behavior L(Ti)

is the set of all strings that Ti (shown in Figure 3.12) can generate. The marked be-

havior Lm(Ti) is the subset of all strings in L(Ti) for which the terminal state belongs

to Qm(= {#1}). The marked language may be described as: Lm(Ti) = (si0(ai(ri +

pisi1eitsi2eit...siEicit))
∗)∗, where sij ∈ (Σ \ Σi)

∗ and j = {0, 1, . . . , Ei}. �

Definition: Deadline-meeting sequence (with respect to preemptive execution): A se-

quence x = x1aix2cix3 ∈ Lm(Ti), where x1, x3 ∈ Σ∗, x2 ∈ (Σ\{ci})∗ is deadline-meeting,

if tickcount(x2) ≤ Di − 1. Otherwise, x is a deadline-missing sequence. �

Theorem 3.3.1. Lm(Ti) contains both deadline-meeting and deadline-missing sequences
of task τi.

Proof. Let us consider the execution of task τi on the processor. According to Re-
mark 3.3.1, such execution may be represented by a sequence, x = aipixijci, where xij
= xi1eitxi2xit...xiEi and xij ∈ (Σ \ Σi)

∗ and j = {1, 2, . . . , Ei}. It may be noted that
xij represents the self-loop Σ \ Σi in Ti and contains t in it. This models the waiting
time of task τi in the ready queue before it is being assigned onto the processor for
execution. Suppose, the task τi is not preempted at anytime after its acceptance to
completion, then tickcount(xij) = Ei − 1 (≤ Di, Assumption 3). However, τi may be
preempted by the scheduler during its execution. Let y be the total amount of time
that task τi is kept in the ready queue between its acceptance to completion. If this
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preemption time (captured by y) is greater than (Di − Ei) ticks from the arrival of τi,
then τi is guaranteed to miss its deadline. Hence, the sequence x is deadline-meeting
if (y + Ei − 1) ≤ Di. Otherwise, x is deadline-missing. Thus, Lm(Ti) contains both
deadline-meeting and deadline-missing sequences of τi.

As discussed earlier, deadline-misses cannot be tolerated in hard real-time systems.

In later section, we develop a model that can be used to eliminate deadline-missing

sequences from Lm(Ti).

From the perspective of real-time task execution, a sporadic sequence may be con-

sidered as the most generic one and subsumes within it the definitions periodic and

aperiodic sequences. Therefore, models specifying the behavior of periodic and aperi-

odic sequences may be easily derived from the model representing a sporadic sequence.

The synthesis approach presented here attempts to derive scheduling sequences that

satisfy sporadic task execution behavior.

Definition: Work-conserving execution sequence [23]: An execution sequence is work-

conserving if and only if it never idles the processor when there exists at least one

accepted task awaiting execution in the system. Otherwise, it is non-work-conserving.

Work-conserving execution has certain inherent advantages. Specifically, task re-

sponse times under work-conserving execution may be lower than non-work-conserving

execution since no processor time is wasted. Additionally, the processor time saved due

to such early response may be utilized to execute other useful applications. Hence, our

finally synthesized scheduler is intended to be work-conserving.

By extending the arguments presented in Theorem 3.3.1, it may be proved that

Lm(Ti) represented by the task execution model Ti includes (i) deadline-meeting, (ii)

deadline-missing, (iii) sporadic, (iv) non-sporadic (v) work-conserving and (vi) non-

work-conserving execution sequences for task τi.

Example: Let us consider a simple two task system τ1〈3, 6, 6〉 and τ2〈2, 4, 4〉. The

task execution models T1 for τ1 and T2 for τ2 are shown in Figures 3.13(a) and 3.13(b),

respectively. Let us consider T1 corresponding to task τ1 shown in Figure 3.13(a). Using

T1, we illustrate the different types of execution sequences present in Lm(T1).

• The sequence seq1 = a1p1 e1te1tc1t ∈ Lm(T1) is deadline-meeting since tickcount(a1
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Figure 3.13: TDES Models: (a) T1 for τ1〈3, 6, 6〉, (b) T2 for τ2〈2, 4, 4〉.

p1e1te1tc1) = 2 ≤ D1 − 1(= 5). In addition, this sequence is also work-conserving

since the processor is never kept idle when the task τ1 is waiting for execution.

• The sequence seq2 = a1p1tttte1te1tc1t ∈ Lm(T1) is deadline-missing since tickcount(a1

p1tttte1te1tc1) = 6 � D1 − 1(= 5). In addition, this sequence is also non-work-

conserving since the processor is kept idle even when the task τ1 is waiting for

execution.

• The sequence seq3 = a1p1e1te1tc1tttta1p1e1te1tc1t ∈ Lm(T1) is sporadic since tickcount

(a1p1e1te1tc1tttta1) = 6 ≥ P1(= 6).

• The sequence seq4 = a1p1e1te1tc1ta1p1e1te1tc1t ∈ Lm(T1) is non-sporadic since

tickcount (a1p1e1te1tc1ta1) = 3 � P1(= 6).

A similar discussion holds for T2. �

3.3.2 Composite Task Execution Model

Given n individual TDES task models T1, T2, ..., Tn corresponding to tasks τ1, τ2, ...

τn, a synchronous product composition T = T1||T2|| . . . ||Tn on the models gives us the

composite model for all the tasks executing concurrently.

Theorem 3.3.2. The marked behavior Lm(T ) contains (i) deadline-meeting, (ii) deadline-
missing, (iii) sporadic, (iv) non-sporadic (v) work-conserving and (vi) non-work-conserving
sequences for all tasks in I.
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Proof. We know that Lm(Ti) contains (i) deadline-meeting, (ii) deadline-missing, (iii)
sporadic, (iv) non-sporadic, (v) work-conserving and (vi) non-work-conserving sequences
for task τi. Since Lm(T ) = ∩ni=1Lm(Ti), Lm(T ) also includes all the six types of sequences
mentioned above. In addition, Lm(T ) does not contain any sequence that violate resource
constraint since Lm(Ti) satisfies them.
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Figure 3.14: The composite task execution model T = T1||T2.

Example (continued): Figure 3.14 shows the composite task execution model T

(= T1||T2). Here, State 12 represents State 1 of T1 and State 2 of T2. It may be observed

that Lm(T ) contains the different types of execution sequences in it. However, presently

we limit our discussion only with work-conserving and non-work-conserving sequences.

• The sequence seq5 = a1p1a2p2tte1te1tc1te2tc2t ∈ Lm(T ) is non-work-conserving

since the processor is kept idle even both tasks are waiting for execution.

• The sequence seq6 = a1p1a2p2e2tc2te1te1tc1t ∈ Lm(T ) is work-conserving since the

processor is never kept idle when a task is waiting for execution.

3.3.3 Removal of Non-work-conserving Sequences

An important design objective of this work is to synthesize a work-conserving scheduler.

However, during the construction of T using a synchronous product of T1, T2, . . . , Tn,

the presence of the self-loop Σ \ Σi in the individual models results in a self-loop {t} in

59



3. SCHEDULING OF SPORADIC TASKS ON UNIPROCESSORS

the composite model T . That is, (Σ\Σ1)∩ (Σ\Σ2)∩ . . . ∩(Σ\Σn) = t. The presence of

self-loops {t} (except at the initial state) in T introduces non-work-conserving sequences

in Lm(T ) by possibly allowing the progression of time without actual task execution on

the processor. We now present a methodology to construct a work-conserving composite

task execution model T ′ from T in Algorithm 4.

ALGORITHM 4: T ′ CONSTRUCTION
Input: T = (Q, Σ, δ, q0, Qm)
Output: T ′

1 begin
2 foreach state q ∈ T and q 6= q0 do
3 if (δ(q, t) == q) then
4 // Delete the self-loop transition t from state q;
5 δ(q, t) = ∅;;

6 Let the resultant automata obtained after carrying out the above transformations
on T be denoted by T ′;

The above construction procedure removes the self-loop transitions on t from all

states in T except from the initial state. The reason for excluding the initial state is to

support the arbitrary arrival of tasks during concurrent execution.

Theorem 3.3.3. Lm(T ′) contains all the work-conserving sequences of Lm(T ).

Proof. As the construction procedure of T ′ from T removes only the self-loop transitions
on t, T ′ eliminates the sequences in T that may possibly lead to non-work-conserving
execution. Therefore, Lm(T ′) contains all the work-conserving sequences of Lm(T ).

Remark 3.3.2. It may be noted that Lm(T ′) includes (i) deadline-meeting, (ii) deadline-

missing, (iii) sporadic and (iv) non-sporadic execution sequences for task τi. However,

all these sequences are work-conserving.

Example (continued): Figure 3.15 shows the transition structure of T ′ obtained from

T using Algorithm 4. Let us verify whether Lm(T ′) contains the non-work-conserving

sequence seq5 = a1p1a2p2tte1te1tc1te2tc2t ∈ Lm(T ) in it. After proceeding through the

states 〈00〉 a1−→ 〈10〉 p1−→ 〈20〉 a2−→ 〈21〉 p2−→ 〈22〉, T ′ gets blocked due to the absence of a

transition on t at State 〈22〉. Hence, seq5 /∈ Lm(T ′).

Let us consider the work-conserving sequence seq6 = a1p1a2p2e2tc2te1te1tc1t ∈ Lm(T ).

It can be retrieved in T ′ by tracing the states 〈00〉 a1−→ 〈10〉 p1−→ 〈20〉 a2−→ 〈21〉 p2−→ 〈22〉 e2−→
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Figure 3.15: Work-conserving composite task execution model T ′.

〈23〉 t−→ 〈24〉 c2−→ 〈25〉 t−→ 〈20〉 e1−→ 〈30〉 t−→ 〈40〉 e1−→ 〈50〉 t−→ 〈60〉 c1−→ 〈70〉 t−→ 〈00〉. Hence,

seq6 ∈ Lm(T ) is present in Lm(T ′). That is, Lm(T ′) contains the work-conserving se-

quences of Lm(T ). We discuss the presence of sequences apart from work-conserving in

Lm(T ′).

• seq7 = a1p1a2p2e1te1tc1te2tc2t ∈ Lm(T ′) is deadline-missing since tickcount(a2p2e1t

e1tc1te2tc2) = 4 � D2 − 1(= 3).

• seq8 = a1p1a2p2e2tc2te1ta2p2e1tc1te2tc2t ∈ Lm(T ′) is deadline-meeting execution

sequence. This is because, tickcount(a1p1a2p2e2tc2te1ta2p2e1tc1) = 4 ≤ D1−1(= 5)

(task τ1 meets its deadline) and tickcount(a2p2e2tc2) = 1 ≤ D2 − 1(= 3) (the

first instance of task τ2 meets its deadline) and tickcount(a2p2e1tc1te2tc2) = 3

≤ D2 − 1(= 3) (the second instance of task τ2 meets its deadline). In addition,

seq8 is a non-sporadic sequence, i.e., tickcount(a2p2e2tc2te1ta2) = 3 � P2(= 4)

(task τ2 violates its sporadicity). Hence, the sequence seq8 is a deadline-meeting,

non-sporadic sequence.

• seq9 = a1p1a2p2e2tc2te1te1t a2p2c1te2tc2tt ∈ Lm(T ′) is deadline-meeting, sporadic

sequence. This is because, (i) tickcount(a1p1a2p2e2tc2te1te1ta2p2c1) = 4 ≤ D1 −
1(= 5) (task τ1 meets its deadline), (ii) tickcount(a2p2e2tc2) = 1 ≤ D2 − 1(= 3)
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(the first instance of task τ2 meets its deadline), (iii) tickcount(a2p2c1te2tc2) =

2 ≤ D2 − 1(= 3) (the second instance of task τ2 meets its deadline) and (iv)

tickcount(a2p2e2tc2te1te1ta2) = 4 ≥ P2(= 4) (task τ2 meets its sporadicity).

To summarize, the marked behavior Lm(T ′) contains deadline-meeting and deadline-

missing execution sequences with arbitrary inter-arrival times. In order to restrict the

marked behavior to correctly capture only those sequences which satisfy all task dead-

lines and inter-arrival time constraints, the timing specification models corresponding to

each sporadic task τi are developed.

3.3.4 Timing Specification Model

The timing specification model SHi (shown in Figure 3.16) for sporadic task τi〈Ei, Di, Pi〉
is defined as follows:

SHi = (SQi,Σ, Sδi, Sq0, SQm),

where, SQi = {0, 1, ..., 13}, Sq0 = 0, SQm = {0, 13}, Σ = ∪i={1,2,...,n}Σi ∪ {t}, where Σi

= {ai, pi, ri, ei, ci}.
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Figure 3.16: Timing specification SHi for a sporadic task τi.

The self-loop Σ \ Σi at State 0 excludes the events (Σi) that are associated with τi

since it has not yet arrived. However, it does not restrict the events that may happen

with respect to other tasks in the system. Since Σ \Σi includes the tick event, SHi can

correctly model the arbitrary arrival time of a task τi. After the occurrence of arrival

event ai, SHi reaches State 1. The self-loop transition ∗ (= Σ \ {ai, ri, ci, t}) in State 1
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is used to model the fact that task τi is allowed to take only the events from the set

{pi, ei} associated with it and without imposing any restriction with respect to other

tasks in the system. After the elapse of one tick event, SHi reaches State 2 in which the

self-loop is similar to that in State 1. Since τi is not allowed to execute event ci before

the elapse of Ei − 1 tick events (because at least Ei − 1 time ticks must be incurred

before signaling the completion of τi), states that are similar to State 1 and State 2

are instantiated Ei − 1 times starting from State 1. Following that, at State 4, task τi

is allowed to execute ci in addition to {pi, ei} because τi is allowed to complete after

executing for Ei − 1 ticks subsequent to arrival.

It may be noted that if τi does not start its execution at least Ei ticks before its

deadline, then τi is guaranteed to miss its deadline. Hence, {pi, ei} is allowed only up to

Di−Ei ticks from the arrival of τi which is captured in the self-loop transitions present

at states 1 to 5. When the time remaining before deadline is less than Ei − 1 ticks,

{pi, ei} is disallowed which is captured by the self-loop transition Σ \ {Σi ∪ {t}} present

at states 6 to 7.

Suppose, the sporadic task τi executes ci, the completion event, Ei + j ticks (j =

{0, 1, 2, ..., (Di − Ei)}) subsequent to its arrival. Then, SHi will reach anyone (say,

State x) among the states 8, 9, ..., 11, such that all substrings between State 1 and

State x contain Ei + j ticks. Specifically, SHi reaches State 11 after Di − 1 ticks from

the arrival of τi’s current instance. From State 11 onwards, SHi does not contain any

transition on ci to disallow the possibility of deadline violation. After the elapse of Pi−Di

ticks, SHi reaches State 12 from State 11. The self-loop Σ \ {Σi ∪ {t}} at these states

({8, 9, ..., 12}) does not allow any events related to τi to guarantee the minimum inter-

arrival time. Finally, SHi reaches State 13 after the elapse of Pi ticks from the arrival of

its current instance. At State 13, the self-loop Σ \ Σi allows the possibility of arbitrary

arrival of task τi’s next instance. On the occurrence of ai (i.e., τi’s next instance), SHi

transits back to State 1. Hence, it may be concluded that SHi models both deadline

and minimum inter-arrival time constraints of the sporadic task τi. Therefore, Lm(SHi)

contains all the deadline-meeting, sporadic execution sequences for τi.
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Figure 3.17: (a) SH1 for τ1, (b) SH2 for τ2.

Example (continued): The timing specification SH1 for τ1〈3, 6, 6〉 and SH2 for

τ2〈2, 4, 4〉 are shown in Figures 3.17(a) and 3.17(b), respectively. �

3.3.5 Composite Timing Specification Model

Given n individual TDES timing specification models, a synchronous product composi-

tion on the models gives us the composite model for all the tasks executing concurrently.

That is, the composite timing specification model of sporadic tasks (denoted by SH)

can be obtained as: SH = SH1||SH2|| . . . ||SHn.

Theorem 3.3.4. Lm(SH) contains all and only the sequences that satisfy the timing
specification (i.e., deadline and sporadicity) of all sporadic tasks in I.

Proof. We know that Lm(SHi) contains all the sequences that satisfy the timing spec-
ification of a sporadic task τi. Since Lm(SH) = ∩ni=1Lm(SHi), the marked behavior
Lm(SH) represented by the composite timing specification model includes all and only
the sequences that satisfy the timing specification of all sporadic tasks in I.

It may be observed that the timing specification model SHi does not restrict the

simultaneous execution of multiple tasks on the processor. Specifically, the self-loops

at any state in SHi do not restrict the execution of multiple tasks and they can be
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executed multiple times at each state to allow simultaneous execution. Hence, the

deadline-meeting sequences in Lm(SHi) may violate resource constraints. Consequently,

the deadline-meeting sequences in Lm(SH) may violate resource constraints.
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Figure 3.18: SH = SH1||SH2 (partial diagram).

Example (continued): Figure 3.18 shows the composite model SH (= SH1||SH2).

Here, State 1, 2 represents State 1 of SH1 and State 2 of SH2. As mentioned earlier,

this model represents all possible deadline-meeting, sporadic execution sequences for τ1

and τ2. In order to illustrate this fact, let us try to find the deadline-missing sequence

seq7 = a1p1a2p2e1te1tc1te2tc2t ∈ Lm(T ′) in the composite model SH shown Figure 3.18.

After proceeding through the states, 〈0, 0〉 a1−→ 〈1, 0〉 p1−→ 〈1, 0〉 a2−→ 〈1, 1〉 p2−→ 〈1, 1〉 e1−→
〈1, 1〉 t−→ 〈2, 2〉 e1−→ 〈2, 2〉 t−→ 〈3, 3〉 c1−→ 〈7, 3〉 t−→ 〈8, 4〉, the composite model SH gets
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blocked due to the absence of a transition on e2 at State 〈8, 4〉. More specifically, after

processing the sub-string a1p1a2p2e1te1tc1t of seq7, the next event in seq7 is e2. However,

e2 is not present at State 〈8, 4〉. Thus, Lm(SH) does not contain the deadline-missing

sequence seq7.

Let us consider the deadline-meeting, non-sporadic sequence seq8 = a1p1a2p2e2t

c2te1ta2p2e1tc1te2tc2t ∈ Lm(T ′). After proceeding through the states 〈0, 0〉 a1−→ 〈1, 0〉 p1−→
〈0, 1〉 a2−→ 〈1, 1〉 p2−→ 〈1, 1〉 e2−→ 〈1, 1〉 t−→ 〈2, 2〉 c2−→ 〈2, 5〉 t−→ 〈3, 6〉 e1−→ 〈3, 6〉 t−→ 〈4, 7〉 c1−→
〈8, 7〉 t−→ 〈9, 8〉, the composite model SH gets blocked due to the absence of a transition on

e2 at State 〈9, 8〉. More specifically, after processing the sub-string a1p1a2p2e2tc2te1ta2p2e1tc1t

of seq8, the next event in seq8 is e2. However, e2 is not present at State 〈9, 8〉. Thus,

Lm(SH) does not contain the deadline-meeting, non-sporadic sequence seq8.

Now, consider the deadline-meeting, sporadic sequence seq9 = a1p1a2p2e2tc2te1 te1ta2p2

c1te2tc2tt ∈ Lm(T ′). It can be retrieved by tracing the states 〈0, 0〉 a1−→ 〈1, 0〉 p1−→ 〈0, 1〉 a2−→
〈1, 1〉 p2−→ 〈1, 1〉 e2−→ 〈1, 1〉 t−→ 〈2, 2〉 c2−→ 〈2, 5〉 t−→ 〈3, 6〉 e1−→ 〈3, 6〉 t−→ 〈4, 7〉 e1−→ 〈4, 7〉 t−→
〈5, 8〉 a2−→ 〈5, 1〉 p2−→ 〈5, 1〉 c1−→ 〈9, 1〉 t−→ 〈10, 2〉 e2−→ 〈10, 2〉 t−→ 〈11, 3〉 c2−→ 〈11, 6〉 t−→ 〈11, 7〉 t−→
〈11, 8〉. Hence, seq9 ∈ Lm(SH). �

3.3.6 Scheduler Synthesis

In order to find all deadline-meeting sequences from Lm(T ′), we construct the finite state

automaton M = T ′||H.

Theorem 3.3.5. Lm(M) contains only and all the (i) work-conserving, (ii) deadline-
meeting and (iii) sporadic execution sequences of Lm(T ′).

Proof. We know that Lm(T ′) includes (i) deadline-meeting, (ii) deadline-missing, (iii)
sporadic and (iv) non-sporadic execution sequences (Remark 3.3.2). On the other hand,
Lm(SH) contains all possible deadline-meeting, sporadic sequences (Theorem 3.3.4).
Since Lm(M) = Lm(T ′)∩Lm(SH), Lm(M) contains only and all the (i) work-conserving,
(ii) deadline-meeting and (iii) sporadic sequences of Lm(T ′).

Remark 3.3.3. Apart from the removal of deadline-missing sequences in Lm(T ′), the

synchronous product also eliminates the sequences in Lm(SH) that violate resource

constraint. This is because, Lm(T ′) does not contain any sequence that violates resource

constraint. �
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Although Lm(M) is deadline-meeting, the deadline-missing sequences in T ′ and

resource-constraint violating sequences in SH, lead to deadlock states in M , i.e., M

is blocking. To ensure that all the accepted tasks meet their individual deadlines, a

scheduler should be designed to achieve Lm(M), i.e., the scheduler must be able to

avoid reaching any non-co-reachable state of M which may lead to deadlock states. This

requires that M must be controllable with respect to T ′. Specifically, M must be control-

lable by disabling certain controllable events (ri, pi, ei and ci) present at corresponding

states, such that none of the deadlock states in M are reached. This guarantees that the

closed-loop system behavior L(M/T ′) stays always within the desired behavior Lm(M).

However, in general, Lm(M) may not always be controllable with respect to Lm(T ′).

That is, all instances of all sporadic tasks in the given real-time cannot be scheduled to

meet the timing and resource constraints. Under such a scenario, rather than accepting

and scheduling all task instances, we may reject a newly arrived task to guarantee the

feasible scheduling of already accepted tasks. In order to handle this scenario, we present

a methodology to construct M ′ from M in Algorithm 5.

ALGORITHM 5: M ′ CONSTRUCTION
Input: M = (Q, Σ, δ, q0, Qm), n (number of tasks)
Output: M ′

1 begin
2 foreach co-reachable state q of M do
3 for i = 1 to n do
4 if (δ(q, ai) 6= ∅) then
5 Determine the sequence s ∈ Lm(M) such that δ(q0, s) = q;

6 if (sai /∈ Lm(M)) then
7 Find q′ = δ(q, ai); // q′ is a non-co-reachable state of M ;
8 δ(q′, ri) = q; // Add ri from q′ to q;
9 δM (q′, pi) = ∅; // Delete pi from M ;

10 M = trim(M); // Non-blocking M ;

11 Let the resultant automata obtained be denoted by M ′;

The above construction procedure removes the non-co-reachable (deadlock) states

from M created by the acceptance of a task. Specifically, M ′ rejects (ri) any newly

arrived task that may lead the system to a deadlock state.

Theorem 3.3.6. Lm(M ′) contains only and all the deadline-meeting sequences of Lm(M).
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3. SCHEDULING OF SPORADIC TASKS ON UNIPROCESSORS

Proof. Let us consider a sequence uv ∈ Lm(M) such that u ∈ Lm(M), δM(q0, u) = q,
δM(q, ai) is defined, i ∈ {1, 2, ..., n} and v ∈ Σ∗. If δM(q, ai) = q′ and q′ is a non-

co-accessible state, then uai /∈ Lm(M). Algorithm 5 transforms M to M ′ by adding
the rejection transition from q′ to q, i.e., δM(q′, ri) = q which makes q′ co-accessible.

Therefore uairi ∈ Lm(M ′) and uai ∈ Lm(M ′). Since, airi do not contain any tick
event in it, the incorporation of sequence uairiv do not introduce any deadline-missing
sequence in Lm(M ′). In general, the sequences of the form usmv ∈ Lm(M ′) \ Lm(M),

where sm ∈ {a1r1, a2r2, ..., anrn} makes q′ to be co-accessible; hence, uairi ∈ Lm(M ′).
Therefore, Lm(M ′) contains only and all the deadline-meeting sequences of Lm(M).

Apart from deadline-meeting sequences, it may also be proved that Lm(M ′) contains

work-conserving and sporadic sequences of Lm(M). Hence, it may be inferred that

Lm(M ′) is the largest schedulable language that contains all feasible scheduling sequences

for the given real-time system. Therefore, an optimal supervisor (or scheduler) S which

follows Lm(M ′) can be designed, as follows: for any s ∈ Lm(M ′), S(s) := {σ ∈ Σc|sσ ∈
Lm(M ′)} ∪ {σ ∈ Σuc|δ(q0, sσ) is defined}, which denotes the set of events that are

enabled after observation of the string s (without restricting the possibility of any eligible

uncontrollable event at q). As a result of supervision, we obtain L(S/T ′) = Lm(M ′), i.e.,

the task executions controlled by the optimal scheduler remains within the schedulable

language. The sequence of steps involved in the scheduler synthesis framework has been

summarized in Figure 3.19.

Task 1

T1

Task 2

T2

Task n

Tn

Composite Task Execution Model 

(T = T1 || T2 || Y�|| Tn)

Spec 1

SH1

Spec 2

SH2

Spec n

SHn

Composite Specification Model 

(SH = SH1 || SH2 || Y�|| SHn)
M = d[�|| SH

Safe Execution 

Sequences

Off-line

Timer Task Execution Scheduler
On-line

�}v���µ���D[�

Using 

Algorithm 2

�}v���µ���d[�

Using 

Algorithm 1

Figure 3.19: Proposed Scheduler Synthesis Framework.

68



3.3 Preemptive Scheduler Synthesis Framework

a10,0,

0,0

1,0,

1,0

0,1,

0,1

a2

2,1,

1,1

a2

a1

p1 2,0,

1,0

0,2,

0,1

p2

1,2,

1,1

p1 2,2,

1,1

p2

e1 3,0,

1,0

t 4,0,

2,0

e1 5,0,

2,0

t 6,0,

3,0

7,0,

7,0

c1

5,0,

10,0

t 0,0,

9,0

0,0,

8,0

t

0,0,

11,0
t t

0,3,

0,1

0,4,

0,2

t

e2

0,5,

0,5

c2
0,0,

0,6

t

0,0,

0,7

t

0,0,

0,8

a2

t

t

t

t

e1 3,2,

1,1

t 4,2,

2,2

e1 5,2,

2,2

t 6,2,

3,3

7,2,

7,3

c1 0,2,

8,4

2,3,

1,1

2,4,

2,2

t

e2

2,5,

2,5

c2

4,3,

2,2

4,4,

3,3

t

e2

4,5,

3,6

c2

e1 3,0,

3,6

t 4,0,

4,7

2,0,

3,6

t

t

5,0,

4,7

e1

6,0,

5,8

t

6,1,

5,1

a2

6,2,

5,1

p2

7,2,

9,1

c1

0,2,

10,2

t 0,3,

10,2

0,4,

11,3

t

e2

1,4,

1,3

a1

2,4,

1,3

p1

2,0,

2,7

t

3,0,

2,7

e1

4,0,

3,8

t

2,5,

1,6

c2

4,1,

3,1

a24,2,

3,1

p25,2,

3,1

e16,2,

4,2

t7,2,

8,2

c10,2,

9,3

t0,3,

9,3

e20,4,

10,4

t

0,5,

10,7
c2

0,0,

11,8

0,1,

11,1

1,0,

1,8

a1a2

0,2,

11,1

2,0,

1,8

p2 p1

a1 a2

t

t

t

6,3,

3,3

6,4,

4,4

t

e2

6,5,

4,7

c2

t

0,5,

11,6

c2

0,0,

11,7

t

t

a1

Figure 3.20: Partial diagram of M = T ′||SH and M ′ (except states 〈7, 2, 7, 3〉 and 〈0, 2, 8, 4〉)

Example (continued): Figure 3.20 shows the (partial) transition structure of M

(= T ′||SH). Here, State 〈1, 2, 3, 4〉 represents State 1 of T1, State 2 of T2, State 3 of

SH1 and State 4 of SH2. As mentioned earlier, deadline-missing sequences in Lm(T ′)

lead to deadlock states in M . For example, let us consider the deadline-missing sequence

a1p1a2p2e1te1tc1te2tc2t ∈ Lm(T ′). After processing the sub-string a1p1a2p2e1te1tc1t, M

reaches the deadlock state 〈0, 2, 8, 4〉. We apply Algorithm 5 to construct M ′ from M .

As discussed earlier, M ′ represents all possible deadline-meeting, sporadic execution

sequences for τ1 and τ2. In order to illustrate this fact, let us try to find the sequence

seq9 = a1p1a2p2e2tc2te1te1ta2p2c1te2tc2tt ∈ Lm(T ′). It can be retrieved by tracing the

states 〈0, 0, 0, 0〉 a1−→ 〈1, 0, 1, 0〉 p1−→ 〈2, 0, 1, 0〉 a2−→ 〈2, 1, 1, 1〉 p2−→ 〈2, 2, 1, 1〉 e2−→ 〈2, 3, 1, 1〉 t−→
〈2, 4, 2, 2〉 c2−→ 〈2, 5, 2, 5〉 t−→ 〈2, 0, 3, 6〉 e1−→ 〈3, 0, 3, 6〉 t−→ 〈4, 0, 4, 7〉 e1−→ 〈5, 0, 4, 7〉 t−→
〈6, 0, 5, 8〉 a2−→ 〈6, 1, 5, 1〉 p2−→ 〈6, 2, 5, 1〉 c1−→ 〈7, 2, 9, 1〉 t−→ 〈0, 2, 10, 2〉 e2−→ 〈0, 3, 10, 2〉 t−→
〈0, 4, 11, 3〉 c2−→ 〈0, 5, 11, 6〉 t−→ 〈0, 0, 11, 7〉 t−→ 〈0, 0, 11, 8〉. Hence, seq9 ∈ Lm(M ′). We may
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observe that seq9 ∈ Lm(M ′) represents the concurrent execution of τ1 and τ2.

Using Lm(M ′), the final scheduler S is constructed. Let us discuss how S controls the

execution of tasks on the processor by considering the sequence seq9 (=a1p1a2p2e2tc2te1t

e1ta2p2c1te2tc2tt). Firstly, the task τ1 arrives and accepted by the scheduler for execution

(i.e., a1p1). Similarly, the task τ2 arrives and is accepted (i.e., a2p2). Among these two

accepted tasks, the scheduler S allows the execution of τ2 until its completion (e2tc2t).

Then, S allows the task τ1 to execute for two ticks (e1te1t). Meanwhile, the next instance

of τ2 arrives and is accepted for execution by the scheduler (a2p2). After accepting τ2, the

scheduler S still allows τ1 to execute for one more tick so that it completes its execution

(c1t). Then, S allows τ2 to execute until its completion (e2tc2t). Since, there are no

tasks to execute further, S keeps the processor idle by allowing the occurrence of the

tick event. Hence, S correctly schedules τ1 and τ2 such that both of them meet their

timing constraints.

Discussion: EDF (Earliest Deadline First) is an optimal, work-conserving algo-

rithm for the scheduling of real-time preemptive tasks on uniprocessors [23,73,89]. EDF

produces a single schedule for a given taskset. On the other hand, the SCTDES based

scheduler synthesis procedure finds out all possible feasible schedules corresponding to

a given taskset [29]. This empowers the designer to select one or more scheduling solu-

tions which best fits the requirements of a given system scenario under consideration.

For example, the designer may select one among a subset of schedules which results in

the minimum number of preemptions while simultaneously being work-conserving.

In case of non-preemptive real-time tasksets on uniprocessors, EDF is not guaranteed

to find a feasible schedule. On the contrary, the SCTDES based scheduler synthesis

approach ensures determination of a feasible schedule, if one actually exists. This can

also be observed from an example discussed in Section 3.2.2. Specifically, the deadline-

missing sequence seq1 in Figure 3.3 corresponds to an EDF schedule.

3.3.7 Case Study: Instrument Control System

In this section, we illustrate the work-conserving nature of the scheduler synthesized

using our proposed scheme through a real-world case study. For this purpose, let us
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3.4 Summary

Table 3.4: Task parameters over different task sets

Task set Task τ1 Task τ2 Task τ3 Task τ4 Task τ5 #Idle slotsE1 D1 E2 D2 E3 D3 E4 D4 E5 D5
I1 2 10 3 20 1 20 1 25 2 25 171
I2 3 25 5 50 2 50 2 60 3 60 197
I3 6 60 8 120 5 120 5 140 8 140 210
I4 10 125 12 250 10 250 12 300 15 300 227

consider an Instrument Control System (Instrument Control System (ICS)) which is

used for collecting and analyzing diagnostic information of the electrical and electronic

components in a modern automotive system [88]. This system is modeled as a collec-

tion of five real-time tasks, τ1: Mode management, τ2: Mission data management, τ3:

Instrument monitoring, τ4: Instrument configuration, and τ5: Instrument processing.

We consider four different task sets (I1, I2, I3 and I4), all of which contain the five

tasks τ1 to τ5. However, for each task, the execution times and deadlines are assumed

to monotonically increase from I1 to I4. The deadlines (Di) and minimum inter-arrival

times (Pi) have been considered to be same for all tasks. The task parameters under

each task set are listed in Table 3.4.

By following our proposed scheduler synthesis framework, we can synthesize an op-

timal work-conserving scheduler for each task set Ii (i = 1, 2, 3, 4). The maximum

amount of idle time slots (denoted by IPT ) saved through our work-conserving schedul-

ing scheme, over the time duration of 300 time slots from the system start, is listed in

the last column of Table 3.4. It may be observed that IPT obtained over the task set

increases monotonically (from I1 to I4). This is because the amount of increase in the

execution times (Ei) is less than the increase in deadlines (Di), over task sets I1 to I4. In

general, the total amount of idle processor time slots obtained using the our scheduler,

will vary depending on the individual task set parameters. The obtained processor times

may be useful in executing lower criticality best-effort tasks in the system.

3.4 Summary

In this chapter, we have presented scheduler synthesis frameworks for real-time spo-

radic tasks executing (non-preemptively / preemptively) on uniprocessors. The first

framework considered the scheduling of a set of known / dynamically arriving aperiodic
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tasks. Then, proposed models have been extended towards sporadic tasks. We have

illustrated the scheduler synthesis process using a motor network example. The sec-

ond framework proposed the synthesis of preemptive scheduler for sporadic tasks. The

synthesized scheduler is guaranteed to be work-conserving, i.e., it will never keep the

processor idle in the presence of ready to execute tasks. The scheduler is also able to

support concurrent execution of multiple accepted tasks and correctly model the inter-

arrival time requirement of a sporadic task. The practical applicability of our proposed

framework has been illustrated using a Industrial control system example. Although, in

recent years, there has been a few significant works dealing with real-time scheduling

using SCTDES, this is possibly the first work which addresses the scheduler synthesis

problem for sporadic tasks. In the next chapter, we consider the fault-tolerant sched-

uler synthesis for a set of real-time tasks executing on a homogeneous multiprocessor

platform.
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Chapter 4
Fault-tolerant Scheduling of Aperiodic Tasks

In the previous chapter, we have assumed the underlying hardware processing platform

to be fault-free. However, the computing platforms are subjected to permanent and

transient faults [62]. Permanent faults are irreparable and affect the functionality of

the processor for its entire life-time. On the other hand, transient faults are momentary

and the processor resumes its normal operation after sometime. Thus, tolerating faults

plays a crucial role in order to ensure guaranteed performance of a real-time system. In

this chapter, we develop task execution and specification models which can be used to

synthesize a multiple permanent processor fault-tolerant scheduler for a multiprocessor

system executing a set of dynamically arriving aperiodic tasks. For this purpose, we

extend the models developed in the previous chapter from uniprocessor to multiprocessor

platform, and empower them with the ability to tolerate single permanent processor

fault. As the number of processors in the system increases, the state space of the final

supervisor also increases exponentially as compared to its uniprocessor counter-part.

Hence, the synthesis framework has been empowered with a novel BDD based symbolic

computation mechanism to control the exponential state-space complexity. We illustrate

the scheduler synthesis process using an illustrative example starting from the inidividual

models to the final supervior, under both TDES and BDD-based symbolic computation

schemes. Later, we extend our proposed models to handle multiple permanent processor

faults. Finally, we present a comparative study of our proposed scheme along with the

SCTDES based state-of-the-art fault-tolerant scheduling scheme [86].
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4.1 Related Works

Many researchers have proposed techniques for on-line fault-tolerant scheduling of aperi-

odic tasks. Ghosh et al. [48] proposed a Primary-Backup based multiprocessor algorithm

for the on-line scheduling of dynamically arriving aperiodic, non-preemptive tasks. The

algorithm attempts to achieve high resource utilization by maintaining on a processor

the overlapped backups of those tasks whose primaries are mapped on mutually distinct

processors. Then, it deallocates the backup corresponding to the primary which has

executed without any faults to reclaim the resource allocated to the backup. However,

their approach can tolerate more than one processor failure only if successive permanent

faults are separated by large time intervals. In [3], authors proposed a slack distri-

bution technique to incorporate both fault-tolerance as well as energy minimization in

heterogeneous distributed Real-Time (RT) dynamic task systems consisting of periodic,

sporadic and aperiodic tasks. The model consists of a checkpoint based fault-tolerance

mechanism combined with Dynamic Voltage Scaling during busy periods and Dynamic

Power Management during idle intervals for energy management. Aperiodic tasks are

assumed to be non-critical and accepted only in the absence of periodic and sporadic

tasks.

Apart from on-line approaches, many researchers have proposed off-line techniques

for the fault-tolerant scheduling of aperiodic tasks. Given a set of preemptive aperi-

odic tasks scheduled using Earliest Deadline First (EDF) on a uniprocessor system,

Liberato et al. [72] developed a necessary and sufficient feasibility checking algorithm

for fault-tolerant scheduling with the ability to tolerate multiple transient faults. Their

feasibility-check uses an off-line dynamic programming technique to explore all possible

fault patterns in the system. This approach is only applicable when all task release

times are known a priori. In [71], the authors have addressed the problem of multipro-

cessor global scheduling for preemptive RT tasks so that the timeliness of the system

can be guaranteed even in the presence of faults. They presented a frame-based model

to schedule aperiodic task sets such that at most one transient fault may be tolerated

in each frame. They provided an optimal fault-tolerant on-line scheduling strategy for
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aperiodic task sets with identical recovery times. However, for optimal fault tolerant

scheduling with generic task sets, they recommended off-line exhaustive generation of

all feasible schedules with dynamic switching between the schedules as needed. Further,

they presented a heuristic approach for the general case. Ripoll et al. [94] presented

an EDF based slack stealing algorithm which provides a solution to the problem of co-

scheduling periodic and aperiodic tasks in dynamic-priority preemptive (uniprocessor)

systems. During its off-line phase, the algorithm computes a slack table and uses it on-

line to allow the execution of accepted aperiodic tasks. The algorithm has been proved

to be optimal in terms of providing minimal response times to the accepted aperiodic

tasks. However, this procedure does not provide any mechanism for tolerating faults.

Most of the above discussed scheduling approaches often lack the required predictability

in guaranteeing the reliability as demanded by many safety-critical applications. So,

formal off-line scheduling is often the preferred option for ensuring both predictability

of the worst-case behavior as well as high resource utilization. We have qualitatively

compared our scheme with other methods that can provide fault-tolerance to aperiodic

tasks and the summary is presented in Table 4.1.

Table 4.1: Comparison with other scheduling approaches

Method Pre
emptive

Dynamic
task arrivals

Multi
processor

Multiple
Faults

Optimal /
Heuristic

Scalability

[86] No Yes Yes No Optimal Exponential
[48] No Yes Yes Yes Heuristic Polynomial
[72] Yes No No Yes Optimal Polynomial
[71] Yes No Yes No Heuristic Polynomial

Proposed
Scheme Yes Yes Yes Yes Optimal Exponential.

Handled by BDDs

4.2 Proposed Scheme

This section presents the proposed Supervisory Control of Timed Discrete Event Systems

(SCTDES) based scheduler synthesis scheme. The principal steps are as follows: (i) De-

velopment of the task execution as well as deadline specification models for each task

in the system. (ii) Computation of the composite task execution model using product

composition of individual task execution models. (iii) Computation of the composite

75



4. FAULT-TOLERANT SCHEDULING OF APERIODIC TASKS

deadline specification model using product composition of individual deadline specifi-

cation models. (iv) Computation of the supervisor using product composition of the

composite task execution and deadline specification models. (v) Checking the control-

lability of the resulting supervisor with respect to system behavior and uncontrollable

events.

4.2.1 Assumptions on System Model

We consider a RT multiprocessor system consisting of a set I (= {τ1, τ2, ..., τn}) of n

aperiodic tasks to be scheduled on a set V (= {V1, V2, ..., Vm}) of m identical processors.

In addition, there is also a separate processor to execute the scheduler/supervisor. Each

task τi is characterized by a 3-tuple 〈Ai, Ei, Di〉, where Ai is the arrival time, Ei is the

execution time and Di is the relative deadline.

Assumptions about the system: (1) All tasks are independent with no precedence

constraints. (2) All instances of an aperiodic task have the same execution time (Ei)

and deadline (Di) requirements (such that Ei ≤ Di) which are known a priori. (3) All

dynamically arrived tasks are reported to the scheduler which then controls the admission

and execution of the tasks on the available processors according to the pre-computed off-

line scheduling policy. (4) At most one processor may fail and the scheduling processor

monitors (observes) processor faults. Task which was executing on a processor just

before its fault will be restarted from the beginning in another non-faulty processor. (5)

The scheduling processor never fails. (6) The scheduler takes negligible time to take

the mutually exclusive decision of acceptance / rejection of a newly arrived task. These

acceptance and rejection events are exclusively schedule enabled. (7) Tasks are allowed

to migrate from one processor to another and the migration overhead is also negligible.

(8) A task assigned to a particular processor must execute for at least one tick event on

it before being preempted.

4.2.2 A TDES model of task execution under single fault

The TDES model for executing an aperiodic task τi is as follows:

Ti = (Qi, Σ, δi, qi0, {qi0, qi1, ..., qim})
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Figure 4.1: The execution model Ti of a task τi under single fault.

77



4. FAULT-TOLERANT SCHEDULING OF APERIODIC TASKS

Here, Σ = ∪i∈{1,2,...,n}Σi ∪Σfau∪ {t}, where Σfau = {f1, ..., fm}, and Σi = {ai, pi, ri, ei,1,
..., ei,m, ci,1, ..., ci,m}. The events are described in Table 4.2 and they are categorized

as follows: (i) Σuc = ∪i∈{1,2,...,n}{ai} ∪ Σfau (since the arrival events of tasks and the

fault of a processor are induced by the environment, they are modeled as uncontrollable

events), (ii) Σc = Σ \ (Σuc ∪ {t}) (apart from Σuc and tick event (t), remaining events

in the system are modeled as controllable events), (iii) Σfor = Σc (controllable events

are also modeled as forcible events which can preempt the tick event (t)). Suppose Ei is

equal to 1, that is each instance of τi requires only a single segment of execution, then

Σi = {ai, pi, ri, ci,1, ..., ci,m}. All events in Σ are considered to be observable.

Table 4.2: Description of events (for fault-tolerant preemptive execution)

Event Description
ai Arrival of a task τi
pi Acceptance of a task τi
ri Rejection of a task τi
ei,j Execution of a segment of τi on a processor Vj
ci,j Execution of the last segment of τi on a processor Vj
fj Fault of a processor Vj

The execution model Ti for the task τi is shown in Figure 4.1. Labels have not been

specified for all the states shown in the figure in order to reduce its size. However,

states are numbered sequentially starting from #1 and these numbers will be used as

references while explaining the execution model. In addition to this, a few states have

been duplicated to avoid cluttering. A duplicated state, say #A, is denoted by #Ad in

the figure. For example, transition fm from State #8 actually goes to State #33, but it

is directed to its duplicated State #33d to avoid overlapping with other transitions in

the figure. qi0 (State #1) is the initial state of Ti and represents the state in which task

τi resides prior to its arrival under a non-faulty system scenario. qi0 is also a marked

state that represents the completion of the execution of task τi. The set of events related

to self-loop transition ∗f (= Σ \ [Σi ∪ Σfau]) at qi0 are described as follows:

1. Since task τi has not yet arrived, the events associated with τi (Σi) are excluded

from ∗f .
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2. Since qi0 represents the non-faulty scenario, the processor fault events (Σfau) are

also excluded from ∗f .

3. After excluding Σi and Σfau from Σ, ∗f contains the events such as arrival, rejec-

tion, acceptance, execution, and completion of any other task (τj ∈ I, j 6= i) in the

system. Thus, ∗f does not impose any restriction on the execution of other tasks.

4. In addition, ∗f also contains the tick event in it which is used to model the arbitrary

arrival time of the task τi, e.g., ai (τi arrives at system start time), tai (after one

tick event), ttai (after two tick events), ... ∈ L(Ti).

After the occurrence of an arrival event ai, Ti reaches State #4 from the initial state

qi0 (State #1). Now, the scheduler takes the mutually exclusive decision of whether

to accept (pi) or reject (ri) the task τi. If the scheduler enables the rejection event ri

(and disables pi), then Ti goes back to the initial state from State #4 and continues

to stay in that state until either the occurrence of the next release (or arrival) event

(ai) or fault of anyone of the processors. If the scheduler enables the acceptance event

pi (and disables ri) at State #4, then Ti reaches State #5. Here, the scheduler takes

a decision whether to immediately allocate the task τi for execution on a processor or

make it wait on the ready queue. The latter is indicated by the self-loop transition ∗f

at State #5. If the scheduler decides to execute the task τi, then it will enable the event

ei,k to assign τi to anyone of the available processors Vk (Vk ∈ V, k ∈ {1, 2, ...,m}) for

execution. According to Figure 4.1, if event ei,1 occurs at State #5, then Ti reaches

State #6, i.e., task τi is assigned to processor V1. At State #6, self-loop transition ∗1

(= Σ \ [Σi ∪ {t} ∪ (∪j=1,...,nej,1) ∪ (∪j=1,...,ncj,1)]) models the following three scenarios:

1. After assigning τi on V1 (ei,1), τi will not be allowed to execute any event associated

with it. This is modeled by excluding the events Σi from ∗1.

2. τi is allowed to stay at State #6 by executing events in ∗1 until the occurrence of

the next tick event. This is modeled by excluding the tick event from ∗1.
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3. After assigning τi on V1, no other task (τj ∈ I, j 6= i) will be allowed to execute on

processor V1. This is modeled by excluding the events [(∪j=1,...,nej,1)∪(∪j=1,...,ncj,1)]

from ∗1. It ensures that task τi cannot be preempted by another task τj (τi 6= τj)

for at least one tick event, thus enforcing Assumption 8. As ei,j ∈ Σi, the task τi

is also restricted from re-executing the event ei,1 until the next tick event.

After τi completes its execution (ei,1) on processor V1 for one time unit t, i.e., Ti

reaches State #8 from State #6, the scheduler takes one of the three decisions:

1. τi is allowed to continue execution on the same processor V1 for one more time

unit, indicated by the path ai pi ei,1 t ei,1 t from qi0. This takes Ti to State #11.

2. τi is migrated from processor V1 to another processor Vm (1 6= m) for execution.

This is indicated by the path ai pi ei,1 t ei,m t from the initial state which takes Ti

to State #12. This obviously necessitates a preemption of τi on V1.

3. τi is moved to the ready queue being preempted by another task τj (τj 6= τi). This

implies that τj is allocated to processor V1 (captured by the execution model Tj

corresponding to the task τj). In this case, Ti remains in State #8 by executing

the event ej,1 in self-loop ∗ft(= Σ \ [Σi ∪Σfau ∪ {t}]) that captures all events that

are part of ∗f except the tick event.

In case of Decision 3, a tick event takes Ti from State #8 to State #9. Now, τi is

again eligible for execution on any of the available processors in future time ticks (using

Decision 2). This is depicted by the outgoing transitions {ei,1, ..., ei,m} at State #9.

Note: For a non-preemptive scheduling system [86], the scheduler always takes Deci-

sion 1, unless there is a processor fault. In this paper, Decision 2 and Decision 3 are

included to allow task migrations (Assumption 7) and preemptions (Assumption 8), thus

providing a more flexible scheduling system with higher resource utilization compared

to non-preemptive systems.

Now, we move our discussion from the No Fault part to the Single Fault part of the

TDES model Ti. Since there are m processors in V , we have m different Single Fault
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transition structures corresponding to the fault of each processor as shown in Figure 4.1.

Ti stays within the No Fault structure as long as no processor in the system is affected

by a fault. On the occurrence of a processor fault event ({f1, ..., fm}), Ti moves and

continues to stay in the Single Fault structure corresponding to the faulty processor.

For example, if Ti is at State #1, then a fault of the processor V1 will take Ti to State

#2 through the transition f1. However, there are no fault events defined at State #4

of Ti. Since the scheduler takes negligible time (according to Assumption 6) to decide

on the acceptance / rejection of τi, no time has elapsed between State #1 and State

#5. Because fault events for the current time tick have already been handled at State

#1, they have not been defined at State #4. However, the active event set of State #5

includes the tick event (in ∗f). Therefore, fault events are defined at State #5 and those

fault events are similar to State #1. The argument for the absence of fault transitions

at State #4 holds at State #6 also.

To explain the Single Fault structure, we consider the fault of processor V1 by as-

suming that Ti is at State #2 (i.e., τi has not yet arrived and V1 is affected by a

fault). At State #2, the self-loop labeled ∗f1 has the following semantics: Σ \ [Σi ∪
Σfau ∪ (∪j=1,...,nej,1) ∪ (∪j=1,...,ncj,1)]. In addition to capturing the scenarios mentioned

for ∗f , ∗f1 imposes the additional restriction that the no task will be allowed to exe-

cute on the faulty processor V1 (by excluding the events [(∪j=1,...,nej,1) ∪ (∪j=1,...,ncj,1)]).

After the arrival of τi, Ti will move from State #2 to State #18 through the transi-

tion ai. If τi is accepted by the scheduler, then Ti will move to State #19 through

the transition pi. Since, V1 is already affected by the fault, State #19 considers only

m − 1 processors from V2 to Vm which can be observed from the outgoing transitions

on {ei,2, ..., ei,m}. If τi is assigned on to processor V2, then Ti will move to State #20

through the transition ei,2. At State #20, the self-loop labeled ∗2f1 has the following

semantics: Σ\ [Σi∪Σfau∪(∪j=1,...,nej,1)∪(∪j=1,...,ncj,1)∪(∪j=1,...,nej,2)∪(∪j=1,...,ncj,2)]. In

addition to capturing the scenarios mentioned for ∗f1 above, ∗2f1 imposes the additional

restriction that the task τi allocated to V2 cannot be preempted by any other task as

well as τi is restricted to re-execute the event ei,2 until the next tick event by excluding
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the events [(∪j=1,...,nej,2)∪ (∪j=1,...,ncj,2)] which is similar to the self-loop ∗1 at State #8.

After the elapse of one tick event, Ti reaches State #22 where the scheduler will take

anyone of the three possible decisions mentioned above and continue with the execution

until it completes by reaching the marked State #2d. Similarly, we can analyze the

Single Fault structure for other processor faults.

Now, we consider three different situations in which Ti will transit from the No Fault

to Single Fault structure:

1. Let us assume that Ti is at State #8. If processor V1 fails during the execution of

task τi, then τi must be restarted from the beginning on any of the other non-faulty

processors {V2, V3, ..., Vm}. Hence, Ti moves to State #19d (actually to State #19)

from State #8 through the transition f1.

2. It may happen that when τi is executing on V1, some other processor Vk(k 6= 1)

may be affected by the fault (fk, k 6= 1). For example, when Ti is in State #8 after

τi is being executed on V1 during the last tick event, if processor Vm (m 6= 1) is

affected by the fault (event fm occurs), then Ti must transit to State #33d.

3. In addition to the tasks which are executed on non-faulty processors, tasks which

are in the ready queue must also transit to an appropriate state depending on which

processor was affected by the fault at the last tick event. For example, when Ti is

in State #9, if processor V1 fails (event f1 occurs), then Ti must transit to State

#22d to capture this information. Otherwise, τi may be wrongly assigned to the

faulty processor V1 since at State #9 all processors are assumed to be non-faulty.

[Note:] Ti contains five different types of self-loops(∗f , ∗ft,
∗k (k = 1, ...,m), ∗fk

(k = 1, ...,m), ∗xfk (k, x = 1, ...,m)). As the number of task arrivals, task-to-processor

assignments and the number of uncontrollable events between any two time ticks are

always finite, a tick transition cannot ever be indefinitely preempted by the repeated

execution of non-tick events in any of these self-loops. So, Ti is activity-loop-free.

Based on the above approach, we construct the TDES models T1, T2, ..., Tn for all

the n tasks in the system. A product composition T = T1||T2||...||Tn generates the
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composite model for all the tasks executing concurrently. As discussed earlier, T includes

both deadline-meeting as well as deadline-missing execution sequences.

4.2.3 Problem formulation for scheduler design

Before presenting the scheduler design problem, we define three related notions, viz.

Instantaneous load, Deadline-meeting sequences and Fault-tolerant specification.

Definition: Instantaneous Load (ρ(t)) [23]: It estimates the maximum load within a

pre-specified time interval in a RT task system where dynamic task arrivals are allowed.

Let the system contain n active tasks I = {τ1, τ2, ..., τn} with each task having currently

remaining execution requirement REi(t) and relative deadline Di at time t. Without

loss of generality, let D1 ≤ D2 ≤ ... ≤ Dn. Now, the partial load ρi(t) within any

interval [t,Di] is given by: ρi(t) =
∑i
k=1REk(t)

(Di−t) . Given the partial load values ρi(t) for

all the intervals [t,D1], [t,D2], ..., [t,Dn], the instantaneous load ρ(t) is defined as the

maximum over all the partial loads ρi(t): ρ(t) = max
i
{ρi(t)}. �

Definition: Deadline-meeting sequence for a task τi: Let s = s1aipis2ci,js3, such that

s1, s3 ∈ Σ∗ and s2 ∈ (Σ \ {ci,j})∗. Then, a task τi is said to be deadline-meeting with

respect to the sequence s ∈ Lm(T ) if the number of tick events in s2 is less than or equal

to Di − 1 for any ai, pi, ci,j in s. Otherwise, s is deadline-missing for task τi. �

Given a sequence s ∈ Lm(T ) containing a set of tasks I, if the sequence is deadline-

meeting for all the tasks, s is called as deadline-meeting sequence for the task set I.

It is obvious that for a given deadline-meeting sequence, the condition ρ(t) ≤ m (for

normal mode of operation) / ρ(t) ≤ (m− 1) (subsequent to a processor fault) must hold

at all instants in the schedule corresponding to the sequence. Hence, the task set I is

schedulable if there exists a deadline-meeting sequence for I.

Definition: Fault-tolerant Specification: A language K ⊆ Lm(T ) is fault-tolerant and

schedulable if K includes only deadline-meeting sequences for a task set I and it is

controllable with respect to L(T ) and Σuc. �

The scheduler design problem may therefore be formulated as follows:

Find the largest fault-tolerant and schedulable language that contains all possible deadline-

meeting sequences in T . If we find such a language K, then we can design a non-blocking
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scheduler (or supervisor) S such that L(S/T ) = K.

4.2.4 A TDES model of deadline specification

Once activated, a task τi has to finish its execution within its relative deadline. Such a

specification can be modeled using TDES by allowing τi to execute the events from the

following sets: (1) {ei,1, ..., ei,m} for Ei − 1 ticks after its acceptance (subsequent to its

arrival) (2) {ei,1, ..., ei,m, ci,1, ..., ci,m} from the Ei
th tick to the (Di−1)th tick. The TDES

model Hi shown in Figure 4.2 models the deadline specification of τi.

The self-loop transition Σ\Σi at State #1 excludes the events (Σi) that are associated

with τi since it has not yet arrived. However, it does not restrict the events that are

happening with respect to other tasks in the system. Since Σ \ Σi also contains the

tick event, it models the arbitrary arrival time of a task τi. After the occurrence of an

arrival event ai, Hi reaches State #2. If the execution time Ei of a task τi is greater

than 1, only then will Σi contain {ei,1, ..., ei,m}. Suppose Ei > 1, self-loop transition ∗

(= Σ \ {t, ai, ri, ci,1, ci,2, ..., ci,m}) in State #2 is used to model the fact that the task τi

is allowed to take only the events from the set {pi, ei,1, ei,2, ..., ei,m} associated with it

and without imposing any restriction with respect to other tasks in the system. After

the elapse of one tick event, Hi reaches State #3 in which the self-loop is similar to

that in State #2. Since the task τi is not allowed to execute events from the set ∗c

(= {ci,1, ci,2, ..., ci,m}) before the elapse of Ei − 1 tick events (because at least Ei − 1

time ticks must be incurred before executing the last segment of τi even if it executes

uninterruptedly after its acceptance), states that are similar to State #2 and State

#3 are instantiated Ei − 1 times starting from State #2. Following that, at State

#5, task τi is allowed to execute events from the set {ci,1, ci,2, ..., ci,m} in addition to

{pi, ei,1, ei,2, ..., ei,m} because τi is allowed to complete its execution after executing for

Ei−1 ticks from its acceptance. Since τi may postpone the execution of its last segment

at most up to Di − 1 tick events, states that are similar to State #5 are instantiated

from Ei to Di − 1 tick events measured from State #2. After the execution of an event

from the set {ci,1, ci,2, ..., ci,m} at anyone of the states from State #5 to State #8, Hi

reaches State #9 in which there are no events associated with τi and this is modeled by
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the self-loop transition Σ \ (Σi ∪ {t}). After the elapse of a tick event, Hi reaches State

#1. From Figure 4.2, it can be observed that, L(Hi) contains all possible execution

sequences of τi that meets the deadline Di. Based on this approach, Hi is constructed

∑ \ ∑i

ai t t

t *c *c

∑ \ (∑i U {t})

*
t

*

*c

**
t

*c

* = ∑ \ {t, ai, ri, ci,1, …, ci,m}
*c = {ci,1, …, ci,m}

# of t = Ei - 1
# of t = Di - 1

*

#1 #2 #3 #4 #5 #6 #7 #8

#9

* *

Figure 4.2: A deadline specification model Hi for a task τi [86].

for all other tasks in the system. Then we perform the product composition to obtain the

composite model H = H1||H2||...||Hn. This composite specification model H includes all

sequences that meet the deadlines of concurrently executing aperiodic tasks. However,

H neither restricts multiple tasks from being assigned to a particular processor at the

same instant, nor does it disallow the execution of tasks on a faulty processor.

In order to find all sequences that meet the deadlines of accepted tasks from the

sequences of Lm(T ), we construct the following finite state automaton M = T ||H.

Proposition 4.2.1. Lm(M) contains only and all the deadline-meeting sequences of
Lm(T ).

Proof. We know that Lm(T ) contains both deadline-meeting and deadline-missing se-
quences of all tasks accepted by the scheduler. On the other hand, Lm(H) contains all
possible deadline-meeting sequences. Since Lm(M) = Lm(T )∩Lm(H), we can conclude
that Lm(M) contains only and all the deadline-meeting sequences of Lm(T ).

Here we illustrate the concepts discussed till now using an example. Let us con-

sider a RT multiprocessor system composed of two identical processors V = {V1, V2}
executing two aperiodic tasks I = {τ1, τ2} with arbitrary arrival times having execution

requirements E1 = 2, E2 = 1 and deadlines D1 = 3, D2 = 2. Task execution models T1

for τ1 and T2 for τ2 are shown in Figure 4.3a1 and Figure 4.3b2, respectively. Since the

execution time of task τ2 is 1, Σ2 does not contain the events {e2,1, e2,2} in it. Deadline

1States in T1 are assigned with the labels of the form Aj instead of q1j to reduce the figure size,
i.e., q1j is represented by Aj .

2q2j is represented by Bj to reduce the figure size.
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specification models H1 for τ1 and H2 for τ2 have been presented in Figure 4.41 and Fig-

ure 4.5, respectively. Then, we perform the product composition of T1 and T2 to obtain

the composed model T (= T1||T2). Due to space limitation, only a partial diagram of

this composed model has been shown in Figure 4.7. However, this figure contains both

deadline-meeting as well as deadline-missing sequences for I.

In Figure 4.7, consider the following sequence from the initial state (A0B0) of T :

s1 = a1p1f1a2p2e1,2tc1,2tc2,2t. After the arrival (a1) and acceptance (p1) of the task τ1,

processor V1 fails (f1). At the same time, task τ2 arrives (a2) and is accepted (p2) by

the scheduler. Then, the scheduler decides to execute task τ1 on V2 (e1,2) and continues

to execute the task τ1 to completion (c1,2) non-preemptively before allowing task τ2 to

execute. As a consequence, task τ2 misses its deadline. This is because, the number of

tick events in the substring a2p2e1,2tc1,2tc2,2 of s1 is 2 which is greater than D2 − 1 (=

2− 1 = 1). Hence, s1 is a deadline-missing sequence of I. On the other hand, consider

another sequence from the initial state (A0B0): s2 = a1p1f1a2p2e1,2tc2,2tc1,2t. Here, the

scheduler has taken the decision to preempt the task τ1 after executing it for one unit of

time and schedules task τ2 on V2 (c2,2) before completing the task τ1. So, both the tasks

will meet their deadlines. With reference to Definition 2, the number of tick events in

the substring a1p1f1a2p2e1,2tc2,2tc1,2 of s2 is 2 which is equal to D1 − 1 (= 3 − 1 = 2).

Similarly, the number of tick events in the substring a2p2e1,2tc2,2 of s2 is 1 which is equal

to D2− 1 (= 2− 1 = 1). Hence, s2 becomes a deadline-meeting sequence of I. However,

Lm(T ) contains both the sequences (s1 and s2) in it.

Figure 4.6 shows the product composed model (H) of the deadline specifications

H1 and H2. As mentioned earlier, this model represents all possible deadline meeting

sequences of the task set I. From Figure 4.6, it may be observed that sequence s2 may

be retrieved by tracing the states F1G1, (F2G1)3, (F2G2)3, F3G3, F3G4, F4G1, F5G1,

F1G1. Following a similar approach for s1, we see that after proceeding through the

states F1G1, (F2G1)3, (F2G2)3, F3G3, F5G3, the composite model H gets blocked due

to the absence of a transition on a tick event (t) at State F5G3. More specifically, after

1 Short notations f , e1, c1, c2 have been used in Figure 4.4, Figure 4.5, and Figure 4.6 to reduce
the figure size.
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Figure 4.8: M = T ||H (partial diagram)

processing the sub-string a2p2e1,2tc1,2 of s1, the next event in s1 is t. However, t is not

present at State F5G3. Hence, Lm(H) contains the deadline-meeting sequence s2 and

does not contain the deadline-missing sequence s1.

Figure 4.8 depicts the model M resulting from the product composition of T and H.

Here, M does not contain rejection events (ri) that are present in T . This is due to the

fact that H is devoid of ri, and hence, ri gets eliminated from M during the production

composition of T and H. Therefore, M always accepts all tasks irrespective of the

instantaneous load condition. From Figure 4.8, it can be observed that the deadline-

missing sequence s1 is not part ofM (s1 /∈ Lm(M)) as the suffix tc2,2t in s1 gets eliminated
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from M during the composition T ||H, i.e., there are no outgoing transitions from State

A16B8F5G3 which represents a deadlock. Considering sequences s1 and s2 on M (Figure

4.8), it may be seen that the automaton reaches State A15B8F3G3 after executing the

common prefix a1p1f1a2p2e1,2t of s1 and s2. At this state, the scheduler will disable the

controllable event c1,2 and enable c2,2 from the active event set using its control action

which in turn ensures that the system T reaches State A15B9 (in Figure 4.7) and not

into State A16B8. Subsequently, by following the set of events enabled by the scheduler,

the system T will reach State A1B1 which represents the successful completion (meeting

the deadline) of both the accepted tasks. Hence, Lm(M) does not contain the deadline-

missing sequence s1.

4.2.5 Controllability of Lm(M) w.r.t. L(T ) and Σuc

To ensure that all the accepted tasks meet their individual deadlines, a scheduler should

be designed to achieve Lm(M), i.e., the scheduler must be able to avoid reaching any

non-co-accessible state of M which may lead to deadlock states (deadline-miss). For

this, it is necessary that Lm(M) must be controllable with respect to L(T ) and Σuc.

That is, after executing any arbitrary prefix s in Lm(M), the next event σ must always

be allowed (sσ ∈ Lm(M)) if (i) σ ∈ Σuc or, (ii) σ = t and no forcible events are eligible.

According to Proposition 4.2.1, Lm(M) contains only and all the deadline-meeting se-

quences of Lm(T ). However, if s ∈ Lm(M) is extended by σ ∈ Σuc, there are possibilities

for sσ to become deadline-missing. This has been proved in the following proposition by

discussing one scenario for each type of uncontrollable event. Later, we have presented

a methodology to modify M such that the modified model will be able to control the

execution of accepted tasks to meet their deadlines even in the presence of uncontrollable

events.

Proposition 4.2.2. Lm(M) is not controllable w.r.t. L(T ) and Σuc.

Proof. Let us consider any arbitrary sequence s = s1aipis2ci,js3 ∈ Lm(M), where s1, s3 ∈
Σ∗ and s2 ∈ (Σ \ {ci,j})∗. Since, s ∈ Lm(M), the number of ticks in s2 must be less
than Di. Given the two types of uncontrollable events, there are two different cases: (1)
σ ∈ {a1, ..., an}, (2) σ ∈ {f1, ..., fm}.
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Case 1 : Let us assume that x be the instant at which task τi is accepted (pi) by the
scheduler (in sequence s) and the instantaneous load in the interval [x, x+Di] is exactly
equal to the available processing capacity, i.e., the system operates in full load condition
after the acceptance of task τi. The sequence s ∈ Lm(M) still remains deadline-meeting
as the system does not transit into overload. Now, let us consider another sequence sy
such that it is a prefix of s, i.e., sy = s1aipi. s ∈ Lm(M) implies sy ∈ Lm(M). Let sy
be extended by the arrival (aj ∈ Σuc) and acceptance (pj) of another task τj (τi 6= τj).
Let y be the instant at which task τj is accepted (pj) by the scheduler. If Di ≥ Dj,
then the instantaneous load in the interval [y, y+Dj] becomes greater than the available
processing capacity. This will lead to a situation where at least one of the accepted
tasks is guaranteed to miss its deadline. Consequently, syajpj /∈ Lm(M) (in accordance
with Proposition 4.2.1). From Assumption 6 and the transition structure of M which
does not contain any rejection event, it can be inferred that aj will always be extended

by pj. This implies that syaj is the only possible prefix for syajpj. So, syaj /∈ Lm(M).
However, syaj ∈ L(T ). Hence, we conclude that Lm(M) is not controllable with respect

to uncontrollable arrival events, i.e., sy ∈ Lm(M) and aj ∈ Σuc and syaj ∈ L(T ) does

not imply syaj ∈ Lm(M).
Case 2 : Let us assume that s = s1aipis2ci,js3 does not contain any processor fault

event in it. Now, consider another sequence sy such that sy = s1aipis2, a prefix of s.

Here, s ∈ Lm(M) implies sy ∈ Lm(M). If sy is extended by a fault event (fj ∈ Σuc)
of a processor Vj, then the extended sequence becomes syfj. If the instantaneous load
at the instant le(s2) (i.e., last event of s2) is greater than (m − 1), then the processor
fault event fj immediately following it will lead to an overload situation and a deadline
miss of at least one of the already accepted tasks cannot be avoided. Consequently,
from Proposition 4.2.1, syfj /∈ Lm(M). However, syfj ∈ L(T ). Hence, we conclude
that Lm(M) is not controllable with respect to uncontrollable processor fault event, i.e.,

sy ∈ Lm(M) and fj ∈ Σuc and syfj ∈ L(T ) does not imply syfj ∈ Lm(M).

Therefore, mechanisms must be designed in order to modify M such that the trans-

formed model does not reach any state which may lead to a violation of controllability

in the presence of uncontrollable events. Towards this objective, first we proceed with

Case 1 (σ ∈ {a1, ..., an}; refer proof of Proposition 4.2.2).

With reference to the TDES of M shown in Figure 4.8, it may be observed that

M is not controllable because after following the sequence s = a1p1e1,1tf1a2 (le(s) =

a2 ∈ Σuc) the system reaches A13B7F3G2, a state where the instantaneous load ρ(t)

becomes greater than 1 (ρ(t) = (2/2) + (1/2) = (3/2) > 1) leading to a system overload.

Therefore, a feasible schedule is impossible to obtain by continuing further from s. It

is clear that the only way to circumvent this problem is to reject a task whenever its
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acceptance may lead to a subsequent overload. Hence, a new automaton M ′ must

be designed that modifies the active event set and transition function of M such that

appropriate rejections may be incorporated to handle overloads caused by arbitrary task

arrivals. We now present a methodology to construct M ′ from M in Algorithm 6. The

ALGORITHM 6: M ′ CONSTRUCTION
Input: M , n (number of tasks)
Output: M ′

1 begin
2 foreach co-accessible state q of M do
3 for i = 1 to n do
4 if (δM (q, ai) 6= ∅) then
5 Determine the sequence s ∈ Lm(M) such that δM (q0, s) = q;

6 if (sai /∈ Lm(M)) then
7 Find q′ = δM (q, ai); // q′ is a non-co-accessible state of M ;
8 δM (q′, ri) = q; // Add ri from q′ to q;
9 δM (q′, pi) = ∅; // Delete pi from M ;

10 M = Ac(M); // Take the accessible part of M ;

11 Let the resultant automata obtained be denoted by M ′;

above construction procedure removes the non-co-accessible (deadlock) states from M

created by the acceptance of a task which increased the instantaneous load beyond the

available system capacity. Therefore, M ′ will remain same as M , if the instantaneous

load never crosses the available system capacity.

Figure 4.9 shows the modified automaton M ′ constructed from M (depicted in Fig-

ure 4.8) using Algorithm 6. It can be observed that the acceptance transition (p2)

coming out from State A13B7F3G2 (Figure 4.8) has been removed and a rejection tran-

sition (r2) has been added from State A13B7F3G2 to State A13B1F3G1 in Figure 4.9.

Also, the corresponding non-co-accessible part of M has been removed. If the sys-

tem reaches State A13B7F3G2, then the task τ2 will be rejected and the system goes

back to State A13B1F3G1 which is co-accessible. Now, we need to check (i) Whether

M ′ preserves all the deadline-meeting sequences of M , i.e., if s ∈ Lm(M) implies

s ∈ Lm(M ′) (Proposition 4.2.3), (ii) Whether the new sequences in M ′ (not part of

M), i.e., s ∈ Lm(M ′) \ Lm(M), are deadline-meeting (Proposition 4.2.4).

Proposition 4.2.3. Lm(M ′) contains all the deadline-meeting sequences of Lm(M).

91



4. FAULT-TOLERANT SCHEDULING OF APERIODIC TASKS

a1 p1

e1,1

e1,2

t

t
t

t
c1,1

c1,1

f1

e1,2tc1,2t

t

tt

t

c1,2

c1,2

e1,2

e1,2
c2,2

a2

p2

t c1,2

e1,2

f1

t
a2

a2

p2

t

t
t

t
tc2,2

t

c1,1

c1,2

c1,1

c1,2

c2,2

c2,1

f1

A0B0

F1G1

A3B0

F2G1

A4B0

F2G1

A5B0

F2G1

A6B0

F2G1

A7B0

F3G1

A10B0

F5G1

A11B0

F5G1

A0B0

F1G1

A13B1

F2G1

A14B1

F2G1

A15B1

F3G1

A16B1

F5G1

A1B1

F1G1

A13B7

F2G2

A13B8

F2G2

A13B9

F2G4

A14B8

F2G2

A13B1

F3G1

A14B1

F3G1

A15B1

F4G1

A15B8

F3G3

A16B8

F5G3

A16B1

F5G1

t

A13B1

F3G1

A14B1

F3G1

A15B1

F4G1

A16B1

F5G1

A1B1

F1G1

A13B7

F3G2A5B3

F2G2

A5B4

F2G2

A5B6

F2G4

A7B0

F3G1

A10B0

F5G1

A11B0

F5G1

A0B0

F1G1

A7B4

F3G3

A10B4

F5G3

A11B4

F5G3

A10B6

F5G4

A11B5

F5G4

A13B8

F3G3

A14B8

F3G3

A13B9

F3G4

A13B1

F4G1

A14B1

F4G1

e1,2

c2,2te1,2

f1A15B9

F3G4

c2,2

t

A9B0

F3G1 c1,2

c1,2

A8B0

F4G1

t

t
c1,2
c1,1

r2

Figure 4.9: TDES of M ′ (partial diagram)

Proof. As the construction procedure of M ′ from M removes only the non-co-accessible
part of M induced by uncontrollable arrival events, M ′ eliminates the sequences in M
that may possibly terminate in a deadlock. Therefore, Lm(M ′) contains all the deadline-
meeting sequences of Lm(M).

Proposition 4.2.4. Lm(M ′) contains only and all the deadline-meeting sequences of
Lm(M).

Proof. Let us consider a sequence uv ∈ Lm(M) such that u ∈ Lm(M), δM(q0, u) = q,
δ(q, ai) is defined, i ∈ {1, 2, ..., n} and v ∈ Σ∗. If δM(q, ai) = q′ and q′ is a non-

co-accessible state, then uai /∈ Lm(M). Algorithm 6 transforms M to M ′ by adding
the rejection transition from q′ to q, i.e., δM(q′, ri) = q which makes q′ co-accessible.

Therefore uairi ∈ Lm(M ′) and uai ∈ Lm(M ′). Since, airi do not contain any tick
event in it, the incorporation of sequence uairiv do not introduce any deadline-missing
sequence in Lm(M ′). In general, the sequences of the form usmv ∈ Lm(M ′) \ Lm(M),

where sm ∈ {a1r1, a2r2, ..., anrn} makes q′ to be co-accessible; hence, uairi ∈ Lm(M ′).
Therefore, Lm(M ′) contains only and all the deadline-meeting sequences of Lm(M).

From Proposition 4.2.1 and Proposition 4.2.3, it may be concluded that Lm(M ′)

contains all deadline-meeting sequences of Lm(T ). Consequently, from Proposition 4.2.4,

it is implied that Lm(M ′) contains only and all deadline-meeting sequences of Lm(T ).

Remark 4.2. Condition for no task rejection: The schedulability condition imposed

through the construction of M ′ on all sequences is that the instantaneous load (ρ(t)) at
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each time instant is at most m (for normal mode of operation) / (m− 1) (subsequent to

a processor fault). This implicitly guarantees that a sequence containing a task arrival

whose acceptance may lead to a possible system overload at a subsequent time instant

will not be part of Lm(M ′). �

Although arrival events that may lead to deadlock states in M has been removed

from M ′, it may still contain deadlock states due to the presence of processor fault

events. Now, we discuss about the controllability of Lm(M ′) with respect to the processor

fault events (Case 2: σ ∈ {f1, ..., fm}; refer proof of Proposition 4.2.2). Referring

M ′ (Figure 4.9), it may be observed that if the system reaches State A7B4F3G3, then

there is a possibility of missing the deadline of at least one of the accepted tasks due

to the occurrence of an uncontrollable processor fault event (f1) which leads to the

situation ρ(t) = (2/2) + (1/2) = (3/2) > 1. So, in order to avoid the system from

reaching a deadlock state due to the presence of a processor fault event, we need to

compute a maximally permissive supervisor that restricts the system behavior within

the supremal controllable sub-language of Lm(M ′), denoted by supC(Lm(M ′)). From M ′

(Figure 4.9), let us consider the sequence s = a1p1e1,1a2p2tf1e1,2, where s ∈ L(T ) and

s /∈ Lm(M ′), which implies that s ∈ (L(T ) − Lm(M ′)). The uncontrollable tail in s is

tf1e1,2 which leads to a deadlock in M ′. The prefix of the uncontrollable tail in s is given

by Duc(s) = a1p1e1,1a2p2t. Hence, supC(Lm(M ′)) does not include the sequences that

have the prefix a1p1e1,1a2p2t in it. In a similar way, if we remove all the prefixes leading

to an uncontrollable tail from Lm(M ′), we can obtain supC(Lm(M ′)). The portion of

M ′ (Figure 4.9) shown in thick lines represents the supC(Lm(M ′)). Now, if the system

reaches the State A5B4F2G2, then the scheduler will enable the event set Σuc ∪ {c2,2}.
In this situation, the forcible event c2,2 will preempt the tick event to reach the State

A5B6F2G4, which is co-accessible.

Theorem 4.2.1. The language supC(Lm(M ′)) is the largest fault-tolerant and schedu-
lable language.

Proof. We know that Lm(M ′) contains only and all the deadline-meeting (schedulable)
sequences of Lm(T ). However, Lm(M ′) is not always controllable in the presence of
uncontrollable processor fault events. Therefore, if C(Lm(M ′)) denotes the set of the
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controllable sub-languages of Lm(M ′), the language supC(Lm(M ′)) (∈ C(Lm(M ′))) de-
noting the unique largest controllable sub-language in C(Lm(M ′)), may be computed
from it.

Proposition 4.2.5. Lm(M ′) and supC(Lm(M ′)) are always non-empty.

Proof. As the systems we consider in this work are composed of at least two processors
(m ≥ 2) and the computation demand of a single task cannot exceed the capacity of a
single processor, at least one task will always be accepted by the scheduler even in the
presence of a single permanent processor fault. Hence, Lm(M ′) as well as supC(Lm(M ′))
are always non-empty.

An Optimal (admissible) scheduler S can be designed as follows: For any s ∈
supC(Lm(M ′)), S(s) denotes the set of events that are legitimate after observation of

the sequence s (without restricting the occurrence of uncontrollable events). As a result

of the supervision, we obtain L(S/T ) = supC(Lm(M ′)). If S accepts a newly arrived

task, a safe execution sequence will always be present (in supC(Lm(M ′))) to meet its

deadline even in the presence of a possible processor fault event.

4.3 Complexity Analysis & Symbolic Computation
using BDD

This section first discusses the complexity analysis of the proposed scheme. The state-

space complexity of Ti (Figure 4.1) is computed as follows: The initial state of Ti has

(m+ 1) branches emanating from it based on the events {f1, f2, ..., fm} representing the

fault of anyone of the m processors, along with the fault-free branch (No Fault). Among

them, the No Fault branch further contains m sub-branches on events {ei,1, ..., ei,m}
(emanating from State #5) depicting the possible execution of the first segment of task

τi on anyone of the m available processors. With execution time Ei, each of these sub-

branches (in the No Fault branch) will contain Ei states due to transitions on execution

events and another Ei states due to transitions on tick events. Hence, the No Fault

branch contains O(mEi) states. On the other hand, a Single Fault branch contains

O((m − 1)Ei) states. This is because one of the m processors is affected by a fault

and only (m− 1) processors are available for execution. Therefore, with m Single Fault

branches, the overall state-space complexity of Ti becomes O(m2Ei). The state-space
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complexity of Hi is O(Di) because distinct states are used to count the occurrence of

each tick starting from the arrival to the deadline of task τi. Given n TDESs T1, T2, ...,

Tn, an upper bound for the number of states in the composite task execution model T is∏n
i=1 |QTi |, where |QTi | is the total number of states in Ti. Similarly, the total number of

states in the composite specification model H is
∏n

i=1 |QHi |. The state-space complexity

of M , M ′ and supC(Lm(M ′)) are O(|T | × |H|). The time-complexity for computing T ,

H and M are exponential. However, the computation of M ′ and supC(Lm(M ′)) are

polynomial time as they involve simple graph traversal [19].

It may be observed that the number of states in the composite models T and H

grows exponentially as the number of tasks increases. To address this issue, we present

the steps for Binary Decision Diagram (BDD) [21] based symbolic computation of the

supervisor in the following sub-section.

4.3.1 Symbolic representation of TDESs using BDDs

Before presenting the mechansim for transforming a TDESs into its symbolic BDD

representation, we first introduce the notion of a characteristic function which is required

to represent TDESs using BDDs.

Definition: Characteristic Function: Given a finite set U , each u ∈ U is represented

by an unique Boolean vector 〈sn, sn−1..., s1〉, si ∈ {0, 1}, 1 ≤ i ≤ n. A subset W (⊆ U)

is represented by the Boolean function χW which maps u onto 1(0) if u ∈ W (u /∈ W ).

χW is the characteristic function (interchangeably used as BDD) of W .

The various components of TDES G = (Q,Σ, δ, q0, Qm) are represented symbolically

in terms of BDDs as follows.

• BDDs for Q, q0, Qm,Σ are χQ, χqi , χQm , χΣ, respectively:

Each qi ∈ Q is represented as a binary m-tuple in Bm (m = dlog2ne and |Q| =

n). The tuple is 〈sim, si(m−1), ..., si1〉 which is mapped to the Boolean function

〈sm.sm−1...s1〉 where sij(∈ {0, 1}) is sj (sj) if sij is 1 (if sij is 0); this is denoted

by χqi and finally, χQ = ∨ni=1χqi . In a similar manner, BDDs for q0, Qm,Σ can be

represented.
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• δ : Q × Σ 7→ Q. Three different sets of Binary tuples represent the source states,

events and target states of δ. So, qi
′ = δ(qi, σ) can be expressed using BDD

χi 7→ ≡ (qi = 〈smsm−1...s1〉) ∧ (σ = 〈ekek−1...e1〉) ∧ (qi
′ = 〈s′ms′m−1...s

′
1〉). Finally,

χ7→ = ∨Ni=1χi 7→, where |δ| = N .

Steps for the Symbolic Computation of the Supervisor:

1. The task execution model and deadline specification model for each task τi is

represented by its corresponding BDD (χTi 7→) and (χHi 7→), respectively.

2. Symbolic representation for the product composition T (= T1||T2||...||Tn) and H(=

H1||H2||...||Hn) are obtained by applying the AND operation on the BDDs of in-

dividual task and specification models. Such a direct application of the AND op-

eration suffices in our case because the event sets corresponding to the finite au-

tomata representing Ti’s and Hi’s are same [77]. So, BDD for T is denoted by:

χT 7→ = ∧ni=1χTi 7→. Similarly, χH 7→ can be obtained.

3. BDD for M(= T ||H) is then computed as χM 7→ = χT 7→ ∧ χH 7→. Similarly, χQ,

χQm , χq0M , and χΣ of M can be determined.

4. M ′ from M :

(a) Computation of co-reachable states in M (represented by BDD χQ′) using

PreImage(χQm , χM 7→)
1.

(b) Computation of blocking states in M (BDD as χblock) := χQ∧qχQ′ . qχQ′ is

BDD for all non-co-reachable states, χQ represents all states in M and their

conjunction gives only the blocking states in M .

(c) Computation of states which are blocking and have transition(s) with accept-

ing event pi emanating from them (BDD as χQpi ): First we obtain, χpi 7→ :=

(χM 7→ ∧ χblock) ∧χpi . Here, (χM 7→ ∧ χblock) is the set of transitions emanating

from the blocking states and conjunction with χpi filters transition(s) having

1PreImage(χQm , χM 7→) uses the standard BDD operation pre∃ to compute the set of states in M
that in one transition can reach a (marked) state in χQm

. It is repeated until fix-point.
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pi. χQpi (i.e., source states of χpi) can be obtained from χpi 7→ by extracting

out only source states (from the transition relations of the form 〈smsm−1...s1

ekek−1...e1 s
′
ms
′
(m−1)...s

′
1〉) using exists 1, i.e., ∃ekek−1...e1 s

′
ms
′
m−1...s

′
1 χpi 7→.

(d) Computation of states with outgoing transition(s) on arrival event ai and

leading to states in χQpi (BDD as χQai ): First we compute χai 7→ := (χM7→ ∧
χQpi [X

Qpi → XQ′pi ]) ∧χai . Here, χQpi [X
Qpi → XQ′pi ] represents re-naming of

the source state label XQpi with the target state label XQ′pi . Its conjunction

with χM7→ generates transitions leading to states in χQpi . Among those, tran-

sitions having arrival event ai can be filtered through the conjunction with

χai . Finally, (source states of χai) χQai can be obtained from χai 7→ using

exists.

(e) Addition of ri from a state in χQpi (from which pi emanates) to the state in

χQai (from which the corresponding ai emanates). This can be obtained as

χM ′7→ := χM 7→ ∨ 〈χQpi ∨ χri ∨ χQai 〉.

The steps 4c to 4e are repeated for all n tasks in the system. The BDD χM ′7→

represents the transition structure of M ′. If any ri is added to M , then re-compute

χQ′ and χblock.

5. Computation of states in χM ′7→ (represented by BDD χQ′′) that are co-reachable to

deadlock states in χblock through uncontrollable event using PreImage-uc (χblock, χM ′7→)

2. Here, χQ′′ represents the uncontrollable tails in M ′ which result in a deadlock,

i.e., Duc(L(T )− Lm(M ′))Σ∗.

The steps 4 and 5 are repeated until the fix-point is reached.

6. Computation of safe states in M ′ (represented by BDD χQs) using a forward reach-

ability search Image Restricted (χQ′′ , χq0M′ , χM ′7→)
3 to remove the safe states in

1exists is a standard BDD operation applied on the boolean variable x and boolean function f ,
∃x.f = f |x=0 ∨ f |x=1; it makes f independent of x.

2PreImage-uc(χblock, χM ′
7→
) is similar to PreImage which computes the set of states in M ′ that in

one transition can reach a state in χblock through uncontrollable event. It is repeated until fix-point.
3Image Restricted(χQ′′ , χq0M′ , χM ′

7→
) computes the set of states in M ′ that can be reached in one

transition from χq0M′ except the states in χQ′′ . It is repeated until fix-point.
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Table 4.3: Comparison of number of states in supC(Lm(M ′)): TDES vs BDD nodes

#Tasks [Range for Ei: 10 to 25, Range for Di: 75 to 100]
2 10 15 20

#Processors TDES BDD TDES BDD TDES BDD TDES BDD
2 709 443 7,276 783 11,845 947 16,049 1,123
5 2,895 505 24,253 1,983 39,843 2,789 53,496 3,209
10 5,478 612 46,852 2,848 76,247 4,837 95,720 5,543

M ′ that are not reached from the initial state q0. The resulting BDD χQs is same

as supC(Lm(M ′)) = Lm(M ′)−Duc(L(T )−Lm(M ′))Σ∗ followed by trim operation.

Table 4.3 presents the total number of TDES and BDD (implemented using CUDD [101])

states in the final supervisor. It can be observed that in general, the number of BDD

nodes are much lower compared to the number of TDES states. Further, their differences

widen with increase in tasks and/or processors.

4.3.2 Example for Symbolic Computation of Supervisor
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Figure 4.10: Symbolic representation of M .

In this section, the symbolic computation of the supervisor has been explained using

the same example presented for TDES based representation. The first three steps of the

symbolic computation involves: 1. Representation of TDESs corresponding to individual

task execution (Ti) and specification (Hi) models using BDDs, 2. Computation of the
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BDD for the composite task execution model T using AND (∧) over individual task

execution models and similarly, the computation of the BDD for the specification model

H, 3. Computation of the BDD for M = T ||H using AND of the BDDs corresponding to

T and H.

As these steps are straight forward [Miremadi et al. 2012], we start the demonstra-

tion from Step 4. The BDD representation of M is shown in Figure 4.10. Here, each

state is assigned with a unique 6-bit boolean vector and the corresponding decimal rep-

resentation is shown within each state. For example, State 0 is encoded as 〈000000〉.
Similarly, each event is assigned with a unique 4-bit boolean vector. For example, events

a1, p1, t are assigned with boolean vectors 〈0000〉, 〈0001〉 and 〈1011〉, respectively. Each

transition is represented by 〈s6s5s4s3s2s1 e4e3e2e1 s
′
6s
′
5s
′
4s
′
3s
′
2s
′
1〉 where, 〈s6s5s4s3s2s1〉

represents the source state, 〈s′6s′5s′4s′3s′2s′1〉 represents the target state and 〈e4e3e2e1〉 rep-

resents the event. For example, the transition from State 0 to State 1 on event a1 is

represented by 〈000000 0000 000001〉. To limit the figure size, only a few transitions

have been shown explicitly using their boolean representations. Let the BDDs χQm and

χM7→ represent the set of marked states Qm(= {0, 14}) and the transition relation of M ,

respectively. Let us continue from Step 4 of the symbolic supervisor computation.

4a. Computation of BDD χQ′ representing all the states in χM 7→ that are co-reachable

to χQm : It uses PreImage(χQm , χM 7→) to compute the set of states in M that

in one transition can reach a state in χQm and it is repeated until the fix-point

is reached. The Steps (i) to (v) given below explains the process of computing

PreImage(χQm , χM 7→).

i. Initialization: χQ′ := χQm , where χQm contains the set of marked states

{0, 14}.

ii. Swapping source and target state of a transition in χQ′ : PreImage takes the

set of marked states {0, 14} and starts with State 0 which is represented as

〈000000 .... ......〉 (a . (dot) represents don’t care). The operation PreImage

first assigns the value 000000 to the boolean variables 〈s′6s′5s′4s′3s′2s′1〉 that are
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used for encoding the target states, while the values of 〈s6s5s4s3s2s1〉 that

are used for encoding the source states become don’t cares. So, the encoding

of the marked state 0 becomes 〈...... .... 000000〉 representing that the target

state is 0.

iii. Conjunction of χQ′ and χM7→ : The source and target states swapped version

of BDD χQ′ , is conjuncted with the BDD χM7→ . This operation returns the

set of transitions which contain the marked state 0 as a target state, i.e.,

{〈001000 1011 000000〉, 〈001001 1011 000000〉, 〈100100 1011 000000〉, 〈100101

1011 000000〉, 〈100110 1011 000000〉, 〈100111 1011 000000〉, 〈101001 1011

000000〉}.

iv. Extracting source states from the result of χQ′ ∧ χM 7→ : Let us consider the

transition 〈001000 1011 000000〉 representing 〈8, t, 0〉. From this transition,

the source state is extracted using exists, i.e., ∃Ê. Ŝ ′.〈001000 1011 000000〉,
where Ê = 〈e4, e3, e2, e1〉 and Ŝ ′ = 〈s′6, s′5, s′4, s′3, s′2, s′1〉 returns 〈001000 ....

......〉 which corresponds to State 8. In a similar manner, all the remaining

source states will be obtained from the transition relation using ∃Ê.Ŝ ′.(χQ′ ∧
χM 7→). This operation returns the following set of states: {〈001000〉, 〈001001〉,
〈100100〉, 〈100101〉, 〈100110〉, 〈100111〉, 〈101001〉}; the states are: {8, 9, 36, 37,

38, 39, 41}.

Similarly, when the Steps (ii) to (iv) are applied for the marked state 14, the

set of states {13, 21, 45} which can reach the marked state 14 through a single

transition is obtained.

v. Continue until fix-point is reached : PreImage continues to iterate over the

co-reachable states, until no more co-reachable states are found.

Finally, PreImage(χQm , χM 7→) returns the BDD χQ′ representing the following set

of states: {0, 1, 2, 3, ..., 22, 23, 25, 26, 27, 28, 34, 35, ..., 45}.

4b. Computation of BDD χblock representing blocking states in M : This can be done

by computing the complement of χQ′ against the universal set consisting of states
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encoded from 0 to 63 (because 26 = 64). However, the numbers 0 to 53 only

represent the valid states in M . Hence, the result of the complement will include

invalid states from 54 to 63. Therefore, ¬χQ′ is conjuncted with the BDD χQ rep-

resenting the states in M to discard the invalid states in ¬χQ′ . The resulting BDD

χblock contains {29, 30, 31, 32, 33, 46, 47, ..., 53} that represents the states leading to

deadlock.

4c. Computation of BDD χQpi representing the subset of states in χblock having tran-

sition with pi:

i. Compute the set of all transitions leading from states in χblock using (χM 7→ ∧
χblock). This will return the following set of transitions: {〈29, e1,2, 33〉, 〈29, c2,2,

30〉, 〈30, t, 31〉, 〈31, e1,2, 32〉, 〈46, p2, 47〉, 〈47, c2,2, 48〉, 〈47, e1,2, 51〉, 〈51, t, 52〉,
〈52, c1,2, 53〉, 〈48, t, 49〉, 〈49, e1,2, 50〉}.

ii. Then, compute the BDD χpi 7→ := (χM 7→ ∧ χblock) ∧χpi to filter out only the

transitions on acceptance event pi. It may be observed that there is only one

transition emanating from the blocking states that contain acceptance event

p2, i.e., 〈46, p2, 47〉. The resulting BDD χpi 7→ represents the transition from

State 46 to 47 on event p2, i.e., 〈101110 0111 101111〉.

iii. From this transition, the BDD χQpi representing the source state is ex-

tracted using exists, i.e., ∃Ê.Ŝ ′.χpi 7→, where Ê = 〈e4, e3, e2, e1〉 and Ŝ ′

= 〈s′6, s′5, s′4, s′3, s′2, s′1〉 returns 〈101110〉 which corresponds to the state {46}.

4d. Computation of BDD χQai representing the subset of states in χM 7→ having tran-

sition with ai leading to χQpi :

i. Swap the source state in χQpi to target state: In χQp2 , the source state 46 has

been changed to target state, i.e., 〈...... .... 101110〉.

ii. Then, it is conjuncted with χM 7→ and it results in the transition 〈101010 0110

101110〉 which represents 〈42, a2, 46〉.
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iii. Again, the resulting transition is conjuncted with χa2 . Since, χa2 represents

〈...... 0110 ......〉, the conjunction results in 〈101010 0110 101110〉 which is de-

noted by the BDD χai 7→. Here, 〈101010 0110 101110〉 represents the transition

from State 42 to 46 on event a2.

iv. From this transition, the BDD χQa2
representing the source state is extracted

using exists, i.e., ∃Ê.Ŝ ′.χa2 7→, i.e., 〈101010〉 which corresponds to the state

{42}.

4e. The rejection transition r2 is added from state 46 to 42 (i.e., 〈101110 1001 101010〉)
and finally, it is added to the transition structure of M by disjuncting it with the

BDD χM 7→. The resulting BDD is named as χM ′ 7→.

Re-computation of BDDs χQ′, χblock:

i. Re-compute the set of co-reachable states by invoking PreImage with χQm and

χM ′7→ . It returns the BDD χQ′ representing the following set of states: {0, 1, 2, 3, ...,
22, 23, 25, 26, 27, 28, 34, 35, ..., 45, 46}. It may be noted that state 46 has been in-

cluded into the set of co-reachable states χQ′ . This is because the addition of the

rejection transition from State 46 to 42 makes state 46 to become co-reachable.

ii. Using this updated χQ′ , the BDD χblock is recomputed {29, 30, 31, 32, 33, 47, ..., 53}.
Since, state 46 has become co-reachable, it is not added to χblock.

5 Computation of BDD χQ′′ representing uncontrollable tails in χM ′7→ : It uses PreImage-uc

(χblock, χM ′7→) to compute the states in M ′ which can potentially lead to a dead-

lock state via uncontrollable events and it is repeated until fix-point is reached.

i. Initialization: χQ′′ := χblock, where χblock contains {29, 30, 31, 32, 33, 47, ..., 53}.

ii. Swapping source and target state in χQ′′ : PreImage-uc takes the set of block-

ing states {29, 30, 31, 32, 33, 47, ..., 53} and starts with State 29 where it is

represented as 〈011101 .... ......〉 (a . (dot) represents don’t care). The opera-

tion PreImage-uc first assigns the value 011101 to the target state, while the
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source state becomes don’t care. So the encoding of state 29 becomes 〈......
.... 011101〉, thus transforming it into a target state.

ii. Conjunction of χQ′′ and χM ′7→ : The source and target state swapped version

of BDD χQ′′ , is conjuncted with the BDD χM ′7→ . This operation returns the

set of transitions which contain the state 29 as a target state, i.e., {〈011100

1100 011101〉} which represents the transition 〈28, f1, 29〉.

iii. Conjunction of (χQ′′ ∧ χM ′7→) and χΣuc : The result of (χQ′′ ∧ χM ′7→) is con-

juncted with the BDD χΣuc to filter out the set of transitions containing the

uncontrollable events. This operation retains the transition {〈011100 1100

011101〉}. This is because it contains the uncontrollable event f1 (encoded as

〈1100〉).

iv. Extracting source states from the result of (χQ′′∧χM ′7→)∧χΣuc : From transition

{〈011100 1100 011101〉}, the source state is extracted using exists, i.e.,

∃Ê.Ŝ ′.χp2 7→, where Ê = 〈e4, e3, e2, e1〉 and Ŝ ′ = 〈s′6, s′5, s′4, s′3, s′2, s′1〉 returns

〈011100 .... ......〉 which corresponds to State 28. Similarly, the set of states

which can reach the remaining states in χQ′′ in one uncontrollable transition

will be obtained.

v. Continue until fix-point is reached : PreImage-uc continues to iterate over

the co-reachable states, until no more co-reachable states are found through

uncontrollable transition.

Finally, PreImage-uc(χblock, χM ′7→) returns the BDD χQ′′ which contains {28, 29, 30,

31, 32, 33, 47, ..., 53}. It can be observed that χQ′′ contains State 28 in addition to

the states that are present in χQ′ .

6 Compute the set of safe states Qs in M ′: This can be obtained by removing the

states that are present in χQ′′ from M ′. However, this will result in a scenario

where some of the states in M ′ are co-reachable to Qm, but not reachable from

the initial state q0. Therefore, we use Image Restricted (χQ′′ , χq0M′ , χM ′7→) to

perform the restricted forward reachability search starting from the initial state q0
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of M ′ which is represented by BDD χq0M′ . Here, the term restricted emphasizes

that no state in χQ′′ will be considered during the forward reachability search.

i. Initialization: Let χQs be the BDD representation of set of safe states Qs.

Initialize χQs := χq0M′ , where χq0M′ contains {0}.

ii. Conjunction of χQs and χM ′7→ : χQs contains 〈000000 .... ......〉 representing the

initial state 0 of M ′ and it is conjuncted with the BDD χM ′7→ . This operation

returns the set of transitions which contain the state 0 as a source state, i.e.,

{〈000000 0000 000001〉} which represents the transition 〈0, a1, 1〉.

iii. Extracting target states from the result of (χQs ∧ χM ′7→): From transition

〈000000 0000 000001〉, the target state is extracted using exists, i.e., ∃Ê.
Ŝ.(χQs ∧χM ′7→), where Ê = 〈e4, e3, e2, e1〉 and Ŝ = 〈s6, s5, s4, s3, s2, s1〉 returns

〈...... .... 000001〉 which corresponds to State 1.

iv. Conjunction of (χQs∧χM ′7→) and ¬χQ′′ : This conjunction with the complement

of χQ′′ is performed to remove any state that is part of χQ′′ . Since, State 1

is not part of χQ′′ , it will be retained and added to the set of safe states

χQs = {0, 1}.

v. Continue until fix-point is reached : Image Restricted continues to iterate

over the reachable states in χQs , until no more reachable states are found.

Finally, Image Restricted (χQ′′ , χq0M′ , χM ′7→) returns the BDD χQs representing

the safe states in M ′ that are reachable from the initial state, i.e., Qs = {0, 1, ..., 27,

34, ..., 37, 42, ..., 46}. This matches with the supC(Lm(M ′)) shown using thick lines

in Figure 4.10.

4.4 Handling multiple faults

In this section, we discuss a methodology for extending the TDES based task execution

model Ti (presented in Section 4.2.2) to handle multiple faults. Two fundamental re-

strictions in the task execution model Ti (presented earlier in Figure 4.1) which makes it
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4.4 Handling multiple faults

Figure 4.11: The execution model Ti for a task τi (multiple faults).

ineligible to be applied in a multi fault scenario are as follows: (1) There are no outgo-

ing transitions defined based on processor fault events from the Single Fault structure.

(2) When Ti is within the No Fault structure, it preserves the information about the

processor on which task τi was executing before the occurrence of a tick. However,

once Ti moves to the Single Fault structure from the No Fault structure, it does not

preserve this information. This makes it difficult to decide whether the task needs to be

restarted from the beginning or it can continue with the normal execution after a fault.

For example, let us assume that Ti is at State #20. Here, Ti forgets the information

that τi was executing on processor V2 after it reaches State #22 through the tick event.

Hence, we present a revised task execution model for Ti in Figure 4.11 so that it can

handle multiple faults. The No Fault sub-structure is not shown in Figure 4.11 since it is

same as Figure 4.1. The part associated with the handling of single faults in Figure 4.1

have been modified and appropriately replicated in Figure 4.11 to address the additional

requirements mentioned above for tolerating up to a maximum of w faults (w < m).

The Single Fault structure shown in Figure 4.11 now contains outgoing transitions on

fault events to allow another fault. For example, the states #16, #18, ..., #26 contain

transition on fault events {f2, ..., fm}. Also, the Single Fault structure captures the pro-
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cessor on which τi was executing during the last tick event. For example, if it is at State

#21, then it can be easily traced that τi was executed on V2 during the last tick event.

We now present an overview of the working principle of this model by first considering

a two fault scenario under two distinct cases: (1) two interleaved faults (2) a burst of

two consecutive faults. Let us assume that Ti is initially at State #5 of the No Fault

structure (shown in Figure 4.1) for both cases. Case 1: If processor V1 fails, then Ti

will move to State #18 through the transition f1. Now, the scheduler may assign τi on

anyone of the available processors (V2, ..., Vm) for execution. Suppose, τi is assigned and

executed on V2 for one tick unit, thus moving Ti to State #21. Here, the second fault

is encountered on processor V2. This drives Ti to move from State #21 to State #33d

through transition f2 and causes τi to restart its execution. In this case, the two faults

are separated by a single tick. The case where the faults are separated by multiple

ticks is also handled in a similar fashion. Case 2: If both processors V1 and V2 fail

simultaneously at State #3 (say, f1 followed by f2), then Ti will first move to State #18

through transition f1 and then to State #33 through transition f2. Hence, in both cases,

Ti is able to dynamically reconfigure itself to the appropriate state irrespective of the

fault scenario.

Though the formal steps to synthesize the scheduler for the multiple fault scenario

is not discussed here, it will be similar to the synthesis procedure employed for the

single fault scenario (Section III). However, the condition under which no task will be

rejected in M ′ gets slightly modified as follows: the instantaneous load (ρ(t)) at each

time instant is at most m (for normal mode of operation), m − 1 (subsequent to single

processor fault), ..., m− w (subsequent to w processor faults).

4.5 Comparative Study

In this sub-section, we present a comparative study on the acceptance ratio (i.e., ratio of

the total number of accepted tasks to the total number of tasks arrived) of our proposed

scheme with that of [86]. We consider a task set I of size 30 executing on a multiprocessor

platform consisting of 11 processors. I is: {(2, 8), (1, 4), (4, 16), (3, 12), (1, 4), (1, 4),
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(b) 24 tasks arrive together
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(c) 10 tasks arrive together

Figure 4.12: Acceptance ratio for proposed scheme and [86]

(5, 20), (8, 32), (4, 16), (1, 4), (2, 3), (3, 5), (10, 30), (1, 4), (1, 3), (1, 4), (5, 15), (6, 10),

(6, 10), (3, 5), (3, 5), (2, 3), (2, 3), (2, 8), (1, 4), (8, 15), (1, 4), (4, 15), (2, 8), (3, 15)}. We

have measured the acceptance ratio under different arrival patterns of tasks in I and fault

patterns on processors. Since, [86] deals with single faults, we restrict the comparison of

our scheme with them under no fault and single fault scenarios only. However, we have

shown the results for our scheme under multiple faults (up to 3). A brief summary on

the comparative study is as follows:

• Figure 4.12c: When only first 10 tasks in I arrive simultaneously, both the

proposed scheme and [86] accept all the arrived tasks under no fault and single

fault cases, since the system is under-loaded. Even for the cases of faults in 2 and

3 processors, the proposed scheme still maintains 100% acceptance ratio. This

is because even with 3 processor faults, there are 8 remaining processors and

the instantaneous load of the first 10 tasks when they arrive simultaneously is

ρ(t) = 2.5 (< 8); the system remains under-loaded even in the presence of 3 faults.

• Figure 4.12b: When only the first 24 tasks in I arrive simultaneously, our scheme

is still able to archive 100% acceptance ratio as compared to [86] which achieves

91.6% and 87.5%, under no fault and single fault cases, respectively. It may be

noted that our proposed scheme can accept more tasks due to its preemptive

nature. However, as the number of faults increases, the decrease in acceptance

ratio becomes inevitable for our scheme as well due to system overload (i.e., ρ(t) =

9.25 > 8). For example under 2 faults, the acceptance ratio is 87.5%.
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4. FAULT-TOLERANT SCHEDULING OF APERIODIC TASKS

• Figure 4.12a: When all tasks in I (with ρ(t) = 11) arrive simultaneously, decrease

in acceptance ratio (with respect to number of faults) for both the schemes are

higher compared to the cases for 10 and 24 tasks; this is obvious as higher number

of tasks implies higher system load. However, it may be noted that the decrease

in acceptance ratio is higher in [86] compared to the proposed scheme in all cases.

For example, comparing the drops in acceptance ratios under single fault, as the

number of arrived tasks is raised from 10 to 24 (24 to 30), it may be observed that

the proposed scheme suffers a drop of 0% (10%). However, for [86] the drop is

12.5% (17.5%), for the same scenarios.

To summarize, the study shows that as system load increases (due to rise in number

of tasks, rise in number of processor faults etc.), the difference in acceptance ratio of

the proposed scheme with that of [86] widens. The results obtained above may vary

depending upon the task set under consideration, the arrival pattern of the tasks, number

of processors, time of occurrence and number faults etc.

4.6 Summary

In this chapter, we have presented a systematic way of synthesizing an optimal fault-

tolerant scheduler for RT multiprocessor systems which process a set of dynamically

arriving aperiodic tasks. The fundamental strategy which has the ability to handle at-

most one permanent processor fault has been extended to incorporate multiple fault

tolerance. A mechanism to obtain a non-blocking supervisor using BDD based symbolic

computation has been proposed to control the exponential state space complexity of the

exhaustive enumeration oriented synthesis methodology.

It may be noted that the proposed scheduler synthesis procedure considers aperiodic

tasks only. However, the procedure can be extended for sporadic tasks by replacing the

deadline specification model of aperiodic tasks presented in Section 4.2.4 with the timing

specification model for sporadic tasks presented in Section 3.3.4. The next chapter

presents the power-aware scheduler synthesis framework for a set of real-time tasks

executing on a multi-core platform.
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Chapter 5
Power-aware Scheduling on Homogeneous
Multi-cores

In the previous chapter, we have considered the fault-tolerant scheduling of dynamically

arriving real-time tasks executing on a homogeneous multiprocessor platform. Apart

from providing tolerance against processor faults, safety-critical systems implemented

on modern multi-core chips with high gate densities, must adhere to a strict power

budget called Thermal Design Power (TDP) constraint, in order to control functional

unreliability due to temperature hot-spots [78]. Performance throttling mechanisms such

as Dynamic Thermal Management (DTM) are triggered whenever power dissipation in

the system crosses the stipulated TDP constraint [1]. Activation of DTM involves

steps such as powering-down cores, clock gating, dynamic supply voltage and frequency,

etc. These steps introduce unpredictability in timing behavior of the systems. An

important objective of safety-critical scheduler designs implemented on these platforms

is therefore, to ensure DTM-free operation over the entire schedule length. This can

be achieved by always ensuring the cumulative peak power consumption of the cores

to be within a specified TDP limit [78]. Hence in this chapter, we propose an optimal

off-line non-preemptive scheduler synthesis mechanism that guarantees chip-level peak

power consumption to be capped within a stipulated TDP. In addition, to accurately

model system level power dissipation at any instant of time during the co-execution

of multiple tasks, we also extend our scheduler synthesis scheme to accurately capture

phased power dissipation behavior of a task.
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5.1 Related Works

Recent research works [57, 79, 92] applied Proportional-Integral-Derivative (PID) con-

trol based techniques to minimize peak power consumption in multi-core systems. A

hierarchical control framework to obtain optimal power versus performance trade-offs in

asymmetric multi-core systems under a specified TDP has been presented in [79]. Amir

et al. [92] developed a reliability-aware run time power management scheme. In [57],

Anil et al. designed a power management scheme that can switch between accurate and

approximate modes of execution, subject to system throughput requirements. However,

these works [57,79,92] do not provide any guarantee on the timely execution of real-time

tasks.

An adaptive micro-architecture based approach to meet power constraints is pre-

sented in [59]. This approach dynamically reconfigures micro-block sizes of a processor

at run time. Similarly, Meng et al. explored power management through the adaptive

reconfiguration of processor speeds and/or cache sizes at run time [75]. As dynamic

reconfigurability introduces unpredictability in task execution times, these approaches

become inapplicable in hard real-time systems.

In [67], Lee et al. developed a static scheduling method that attempts to minimize

peak power consumption while satisfying all timing constraints of real-time tasks in

a multi-core system. Later, Munawar et al. presented a scheme to minimize peak

power usage for frame-based and periodic real-time tasks [78]. However, both these

works [67, 78] are heuristic in nature and hence, they do not provide any guarantee

towards finding a solution, if and whenever there exists a solution.

On the other hand, SCTDES based scheduling strategies result in optimal scheduler

with respect to a given set of constraints. Recently, many researchers have developed

a variety of real-time and fault-tolerant schedulers based on the SCTDES approach

[41,105,106]. However, there do not currently exist any real-time power-aware SCTDES

based scheduler synthesis mechanism. In this work, we utilize SCTDES to compute a

correct-by-construction optimal power-aware real-time scheduler for multi-core systems.

Table 5.1 synopsizes a qualitative comparison among the power-aware and SCTDES
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Table 5.1: A qualitative comparison among related works

Method Real-time
guarantee

Peak
power
aware

Approach Optimal /
Heuristic

Computational
Complexity

[57, 79,92] No Yes PID control Optimal Exponential

[59,75] No Yes Dynamic re-
configuration Heuristic Polynomial

[41,105,106] Yes No SCTDES Optimal Exponential

[67] Yes Yes Static
priority Heuristic Polynomial

[78] Yes Yes Bin
Packing Heuristic Polynomial

Proposed
scheme Yes Yes SCTDES Optimal

Exponential.
Handled by

BDDs

based scheduling approaches discussed above.

5.2 Proposed Framework

System Model: We consider a real-time multi-core system consisting of a set I (=

{τ1, τ2, ..., τn}) of n independent non-preemptive periodic tasks to be scheduled on m

homogeneous cores (= {V1, V2, ..., Vm}). Formally, we represent a periodic task τi as a

5-tuple 〈Ai, Ei, Di, Pi,Bi〉, where, Ai(∈ N) is the arrival time of the first instance of τi

(relative to system start), Ei(∈ N) represents its execution time, Di(∈ N; Ei ≤ Di) is

the relative deadline, Pi(∈ N) denotes the fixed inter-arrival time between consecutive

instances of τi and Bi (∈ N) denotes its worst-case instantaneous power consumption

(peak power ; measured in watts).

Problem Statement: Given a set of n tasks and m processing cores, design an optimal

supervisor which contains scheduling sequences that guarantee (i) no deadline miss for

any task instance and (ii) chip-level peak power consumption to be upper bounded by a

stipulated power-cap B.

5.2.1 Task Execution Model

The ATG model Ti,act for executing a non-preemptive periodic task τi on a homogeneous

multi-core system is shown in Figure 5.1. The ATG model Ti,act is formally defined as

follows:

Ti,act = (ATi ,Σi,act, δ
T
i,act, a

T
i,0, A

T
i,m)
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Figure 5.1: Task execution model Ti,act for periodic task τi

where, ATi = {IDLE, READY, EXECUTING-ON-V1, EXECUTING-ON-V2, ..., EXECUTING-

ON-Vm, COMPLETION} denotes a finite set of activities, Σi,act = {fai, ai, si,1, si,2, ...,

si,m, ci} is a finite set of events (the events are described in Table 5.2), aTi,0 = IDLE

denotes the initial activity, and ATi,m = {COMPLETION} is the marked activity. Given

n individual ATG models T1,act, T2,act, ..., Tn,act, corresponding to the tasks τ1, τ2, ...

τn, the finite set of all events becomes Σact = ∪ni=1Σi,act. The events in Σact is catego-

rized as: (i) the set of prospective events Σspe = Σact (since all events have finite time

bounds), (ii) the set of remote events Σrem = ∅, (iii) the set of uncontrollable events

Σuc = ∪ni=1{fai, ai} ∪ ∪ni=1{ci}, (iv) the set of controllable events Σc = ∪ni=1 ∪mj=1 {si,j},
and (v) the set of forcible events Σfor = Σc. The event set associated with the TDES

representation becomes Σ = Σact ∪ {t}, where, t denotes the passage of one unit time of

the clock.

Table 5.2: Description of events

Event Description
fai Arrival of task τi’s first instance
ai Arrival of task τi’s next instance
si,j Start of execution of τi on core Vj
ci Completion of τi’s execution
t Passage of one unit time of the global clock

Initially, Ti,act stays at activity IDLE until the arrival of τi’s first instance. On the

occurrence of event fai, Ti,act transits to activity READY. At this activity, there are m

outgoing transitions on events si,j (j = 1, 2, ...,m) to model the possibility of starting τi’s

execution on the processing core Vj. On si,j, Ti,act moves to activity EXECUTING-ON-

Vj to capture the execution of τi on processing core Vj. After the completion of execution,
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Ti,act transits to the marked activity COMPLETION on ci. Next, Ti,act moves back to

activity READY on the arrival of τi’s next instance (ai) and τi continues its execution

in a similar manner. The self-loops on event ai at all activities of Ti,act except IDLE and

COMPLETION, are used to model the fixed inter-arrival time of periodic task τi.

In order to obtain a TDES model Ti from the ATG model Ti,act, we assign suitable

lower and upper time bounds for each event in Σi,act, as follows:

• (fai, Ai, Ai): fai must occur exactly at the Athi tick from system start, to model

the arrival of τi’s first instance.

• (ai, Pi, Pi): ai must occur exactly at the P th
i tick from the arrival of τi’s previous

instance, to model the periodic arrival pattern of τi.

• (si,j, 0, Di − Ei): si,j must occur between 0 and Di − Ei ticks from the arrival of

τi’s current instance to ensure that there is sufficient time for the execution of task

τi so that its deadline can be met.

• (ci, Ei, Ei): ci must occur exactly Ei ticks from the occurrence of si,j. This is to

enforce the execution requirement Ei of task τi.

The detailed diagram of the TDES model Ti obtained using Ti,act and the above time

bounds, is shown in Figure 5.2.

fai

t t

# t = Ai

si,1

ai

si,m

t

t

t

t

ci ci

si,1 si,m

t

t

t

t

ci ci

# t = Di - Ei

t

#
t =

 E
i#

t 
=

 E
i

t t

#t = Pi - Di

si,1 si,m

t

t

t

t

ci ci

t

t

#
t 

=
 E

i

Figure 5.2: TDES model Ti for periodic task τi〈Ai, Ei, Di, Pi,Bi〉
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Figure 5.3: (a) ATG T1,act for τ1, (b) TDES model T1 for τ1.

Example: Let us consider a simple two core system ({V1, V2}) consisting of two

periodic tasks τ1〈0, 2, 4, 5, 2〉 and τ2〈0, 2, 4, 5, 3〉 with the power cap B = 4W . Here, both

τ1 and τ2 arrive together at system start (i.e., at 0). When executing, τ1 (τ2) dissipates

2W (3W ) of power per unit time. The ATG model T1,act and TDES model T1 for the

execution of task τ1 are shown in Figures 5.3(a) and (b), respectively. Similarly, the

models T2,act and T2 for task τ2 can be constructed. �

Composite Task Execution Model: It may be observed that the marked behavior

Lm(Ti) satisfies the following constraints corresponding to task τi: (i) arrival of the

first instance at the exactly stipulated time instant, (ii) correct allocation of execution

time, (iii) deadline satisfaction and (iv) ensuring fixed inter-arrival time between task

instances. Given n individual TDES models T1, T2, ..., Tn, corresponding to tasks τ1,

τ2, ... τn, a synchronous product composition T = ||ni=1Ti on the models gives us the

composite model representing the concurrent execution of all tasks. Here, individual

models do not share any common event (i.e., ∩ni=1Σi,act = ∅) except tick. Thus, all

models synchronize only on the tick event. Since, the individual models satisfy deadline

and fixed-inter arrival time constraints, Lm(T ) also satisfies them. However, sequences

in Lm(T ) may violate resource constraint.

Example (continued): Figure 5.4 shows the composite task execution model T (=

T1||T2). Here, the composition procedure identifies states 37, 44, 40, 47, 43, 50 and 51 as

marked. These states represent the situation when both tasks τ1 and τ2 have completed

their execution. Let us consider the sequence seq1 = fa1fa2s1,2s2,2ttc1c2 ∈ Lm(T ), which
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Figure 5.4: T = T1||T2 (partial diagram).

can be traced in T as follows: 0
fa1−−→ 1

fa2−−→ 3
s1,2−−→ 4

s2,2−−→ 8
t−→ 15

t−→ 22
c1−→ 29

c2−→ 37.

The sequence seq1 depicts a co-execution scenario consisting of the two tasks which

arrive simultaneously. Subsequent to their arrival, both tasks are assigned on core V2

for execution (i.e., s1,2s2,2). Such an assignment violates resource constraint due to the

simultaneous execution of both tasks τ1 and τ2 on core V2 at the same time. Now, let

us consider the sequence seq2 = fa1fa2s1,1s2,2ttc1c2 ∈ Lm(T ) which can be traced in T

as: 0
fa1−−→ 1

fa2−−→ 3
s1,1−−→ 5

s2,2−−→ 11
t−→ 18

t−→ 25
c1−→ 32

c2−→ 40. Here, τ1 and τ2 are assigned

on cores V1 and V2, respectively. This assignment satisfies the resource-constraint. �

It may be observed that Lm(T ) does not restrict the erroneous possibility of allowing

multiple tasks to execute simultaneously on the same processing core. Hence, we develop

the resource-constraint model to capture the following specification: Once a task τi

is allocated onto a processing core Vk, it remains allocated on Vk until its completion.

Meanwhile, no other task τk (6= τi) is allowed to execute on Vk. Such a specification is

captured by the TDES model RCk, as we discuss next in subsection.
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Figure 5.5: TDES model RCk for processing core Vk

5.2.2 Resource-constraint Model

The TDES model RCk for a processing core Vk in a homogeneous multi-core system

is shown in Figure 5.5. RCk is formally defined as, (Q,Σ, δ, q0, Qm), where Q = {Vk-
AVAILABLE, EXECUTING-τ1, EXECUTING-τ2, ..., EXECUTING-τn}, Σ = Σact∪{t},
q0 = Qm = Vk-AVAILABLE. This model contains n + 1 states to capture scenarios in

which anyone of the n tasks is executing on Vk or the processing core Vk is idle.

The self-loop Σ \ ∪ni=1{si,k} at the initial state allows the possibility executing all

events in Σ except ∪ni=1{si,k}, i.e., it disallows the start of any task on core Vk. The

start of execution of any task, say τx, on Vk is modeled by an outgoing transition on

the event sx,k to the state EXECUTING-τx from Vk-AVAILABLE. At this state, the

self-loop Σ \ {∪ni=1{si,k} ∪ ∪mj=1{sx,j}} allows all but the events related to, (i) starts

of any task on Vk (∪ni=1{si,k}) and (ii) start of task τx on any processor (∪mj=1{sx,j}).
On completion of execution, RCk transits back to the initial state on event cx from the

state EXECUTING-τx. Hence, it may be observed that Lm(RCk) ensures the exclusive

execution of a single task on core Vk at any time instant. Given m TDES models

RC1, RC2, ..., RCm corresponding to m cores, we can compute the composite resource-

constraint satisfying model, RC = ||mi=1RCi.

Example (continued): The models RC1 for core V1 and RC2 for V2 are shown in

Figures 5.6(a) and 5.6(b), respectively.
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Figure 5.6: (a) RC1 for core V1, (b) RC2 for core V2.

5.2.3 Finding Resource-constraint Satisfying Sequences

Given the composite models T and RC, we can compute the initial supervisor candidate

M0 as: T ||RC. In order to transform M0 such that it becomes both controllable and

non-blocking, we apply the safe state synthesis mechanism presented in [104]. This

synthesis algorithm takes model M0 and a set of forbidden states (which is an empty

set, in our case) as inputs and computes M1 which contains the set of safe states (both

controllable and non-blocking) that are reachable from the initial state of M0.

Theorem 5.2.1. Lm(M1) contains only and all sequences in Lm(T ) that satisfy the
resource-constraint.

Proof. Lm(T ) contains both resource-constraint satisfying and violating sequences for all
tasks in I. On the other hand, Lm(RC) contains the sequences that satisfy the resource-
constraint of all tasks in I. Since Lm(M0) = Lm(T ) ∩ Lm(RC), the marked behavior
Lm(M1) contains only and all sequences in Lm(T ) that satisfy resource-constraint.
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Figure 5.7: Partial diagram of M1.
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Example (continued): Figure 5.7 shows the partial digram of M1. It may be ob-

served that Lm(M1) does not contain the resource-constraint violating sequence seq1 (=

fa1fa2s1,2s2,2ttc1c2tt ∈ Lm(T )). After proceeding through the states 0
fa1−−→ 1

fa2−−→ 3
s1,2−−→

4, M1 gets blocked due to the absence of a transition on s2,2 at State 4 (where s2,2 is

present at State 4 of T in Figure 5.4). More specifically, after processing the sub-string

fa1fa2s1,2 of seq1, the next event in seq1 is s2,2. However, s2,2 is not present at State 4

since it has been removed during the composition of T ||RC. Thus, seq1 /∈ Lm(M1). Now,

let us consider the resource-constraint satisfying sequence seq2 (= fa1fa2s1,1s2,2ttc1c2 ∈
Lm(T )) which can be traced in M1: 0

fa1−−→ 1
fa2−−→ 3

s1,1−−→ 5
s2,2−−→ 10

t−→ 15
t−→ 20

c1−→ 25
c2−→

31. Hence, seq2 ∈ Lm(M1).
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Figure 5.8: Power dissipation: seq2 vs seq3.

Although the sequence seq2 (= fa1fa2s1,1s2,2ttc1c2 ∈ Lm(M1)) is resource-constraint

satisfying, it violates the power-constraint B. Specifically, the power dissipated during

the concurrent execution of τ1 and τ2 is 2W + 3W = 5W � B (= 4W ) (shown in

Figure 5.8). Now, consider another sequence seq3 = fa1fa2s1,1ttc1s2,2ttc2 ∈ Lm(M1).

Here, tasks τ1 and τ2 are executing in an interleaved fashion and dissipates a maximum

power of 3W which is less than B (Figure 5.8). Hence, seq3 is a resource and power-

constraint satisfying. �

5.2.4 Finding Power-Constraint Satisfying Sequences

In order to remove the sequences that violate power cap B from Lm(M1), we develop

a state-space search and refinement procedure called PEAK POWER-AWARE SYN-
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THESIS (PAS). This procedure takes M1 and B as inputs and produces the model M2

that contains all and only the deadline-meeting as well as resource and power-constraint

satisfying sequences. This algorithm is essentially based on the idea of Breadth-First

Search (BFS) and proceeds as described in Algorithm 7.

ALGORITHM 7: PEAK POWER-AWARE SYNTHESIS
Input: M1 = (Q, Σ, δ, q0, Qm), Power cap B
Output: M2

1 Initialize each state q (∈ Q) of M1 with dissipated power (denoted by q.DP ) to
be 0. Start the search operation from the initial state q0 of M1.

2 Find the set of states that can be reached in one transition from the states that
have been visited.

3 For each newly reached state qx from qy (i.e., δ(qy, σ) = qx), compute dissipated
power at qx based on whether qx is reached on si,j (the start of execution of τi), ci
(the completion of τi), or any other events.

qx.DP =

{
qy.DP + Bi if σ is start of τi
qy.DP −Bi if σ is completion of τi
qy.DP Otherwise

(5.1)

4 If qx.DP > B, then remove power cap violating transition δ(qy, σ) leading to qx in
M1, i.e., δ(qy, σ) = ∅. Restore the previous value of qx.DP .

5 Repeat steps (2) to (4) until all states in M1 are visited.
6 Perform reachability operation starting from the initial state q0 of M1

(transformed) to obtain the set of states that are reachable from q0.

Finally, we denote the resulting model consisting of the set of safe reachable states in

M1 as M2. If the reachability operation does not lead to anyone of the marked states in

M1, then Lm(M2) becomes empty. This implies that the given task set is not schedulable

under the given power-cap B. It may be noted that Lm(M2) contains the sequences that

satisfy deadlines, resource and power constraints.

Example (continued): First, let us compute the power-dissipation value at each

state of M1 shown in Figure 5.7 using PAS algorithm. Initialize each state by setting

DP to 0 and then progressively update the DP values starting from state 0. Application

of BFS from state 0 results in states 1 and 2. The power dissipations at both these states

remain as 0, since no task has started execution. Similarly, DP of state 3 remains 0.

Now, states 4, 5, 6 and 7 are reached through BFS. For state 4, DP is updated to 2.
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Figure 5.9: Partial diagram of M1. Each state is associated with its power dissipation value
(shown in green & red colours).

This is because, the transition s1,2 from state 3 to 4 (i.e., 3
s1,2−−→ 4) represents the start

of execution of τ1 which dissipates at most 2W of power. Similarly, states 5, 6 and 7,

which are reached through transitions s1,1, s2,1 and s2,2, assume DP values of 2, 3 and

3, respectively. During the next iteration, BFS adds states 8, 9, 10, 11 and 12. Here,

state 10 is reached either from state 5 or 6 and represents the concurrent execution of τ1

and τ2. Hence, step 3 of the PAS algorithm updates the DP value of state 10 to 5. Now,

both the transitions 5
s2,2−−→ 10 and 6

s1,2−−→ 10, are deleted by step 4 of PAS, as state 10

violates the power cap of 4W . However, this deletion has not been actually carried-out

to clearly illustrate the cumulative power dissipation values at each state of M1. We

continue to find the DP values corresponding to the remaining states and obtain the

final M1 as shown in Figure 5.9.

Figure 5.10 shows M2 obtained from M1 (Figure 5.7) using PAS algorithm. Ac-

cording to this, the transitions leading to State 10 will be deleted since they lead to

the violation of the power cap. Finally, during the reachability operation, State 10

becomes unreachable and discarded from M2. Hence, the power-constraint violating

sequence, seq2 = fa1fa2s1,1s2,2ttc1c2 is eliminated from Lm(M2). On the contrary, the

power-constraint satisfying sequence seq3 = fa1fa2s1,1ttc1s2,2ttc2 is retained in Lm(M2).

120



5.2 Proposed Framework

fa1

fa2

0

1

2

3

fa2

fa1

5

6

7

4

10

12

13

9
t

t

t

t

17

19

20

16
t

t

t

t

s1,1

s1,2

s2,1

s2,2

24

26

27

23

c1

c1

c2

c2

31

34

35

30

s2,1

s2,2

s1,1

s1,2

39

41

42

38
t

t

t

t

46

48

49

45
t

t

t

t

c2

c2

c1

c1

51

52

53 54

a1 a2

a2 a1

t

0

0

0
0 0

0

0

2 2 2 0 3 3 3

0

2 2 2 0 3 3 3

3 3 3 0 2 2 2

3 3 3 0 2 2 2

Figure 5.10: M2 (partial diagram).

5.2.5 Peak Power Minimization

Given the set of all feasible sequences (i.e., Lm(M2)), we endeavor to achieve the next

obvious design goal: To determine the subset of scheduling sequences for which peak

power dissipation is minimal. The minimization procedure presented in Algorithm 8

starts by initializing the upper (Bmax) and lower (Bmin) bounds on the range of feasible

values for the minimal peak power dissipating sequences. While Bmax is initialized to

the power cap B itself, the lower bound is set to Bmin = max
i

Bi.

ALGORITHM 8: MINIMIZE PEAK-POWER DISSIPATION
Input: M2, Bmax, Bmin

Output: M3

1 while Bmin ≤ Bmax do
2 Bopt = b(Bmin + Bmax)/2c ;
3 M3 = PEAK POWER-AWARE SYNTHESIS (M2,Bopt);
4 if Q of M3 is non-empty then
5 Bmax = Bopt − 1;

6 else
7 Bmin = Bopt + 1;

In order to find the final set of sequences Lm(M3), that dissipate minimal peak power

(denoted by Bopt; Bmin ≤ Bopt ≤ Bmax), we apply the interval bisection based iterative

sequence filtering technique as depicted in Algorithm 8. Anyone of the sequences in

Lm(M3) can be used to schedule tasks on-line. Further, the set of feasible scheduling
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sequences in Lm(M3) may be filtered to obtain the best schedule with respect to one

or a combination of chosen performance parameters such as schedule length, degree of

fault-tolerance, resource consumption etc.

Example (continued): For M2 (in Figure 5.10), Bopt is 3W and hence, M3 remains

same as M2. �

Remark 5.2.1. It may be noted that Lm(M3) is optimal containing only and all

sequences in Lm(T ) that satisfy the resource-constraint and dissipate minimal peak power.

Thus, if Lm(M3) is empty, implying that the given task set is non-schedulable for the

specified constraints, no other scheme can find a schedulable sequence for the task set.

Remark 5.2.2. Let us consider a task set with a stipulated priority relationship

(among all tasks), known a priori. By following our framework, compute M3 for the

given task set. Suppose the state set of the resulting supervisor M3 is empty. Then,

remove the subset of the lowest priority tasks from the give task set and compute M3

again. Repeat this process until M3 becomes non-empty. The resulting non-empty

supervisor M3 contains all feasible scheduling sequences for the maximal number of the

highest priority tasks in the given task set.

5.2.6 Complexity Analysis

1. The state-space complexity of the task execution model Ti (in Figure 5.2) may

be analyzed as: There are Ai states to measure the arrival time of τi. From each

state starting with the occurrence of the arrival event ai and continuing up to the

passage of Di−Ei ticks, m branches emanate based on the events si,1, si,2, ..., si,m.

Each of these m branches contain Ei states due to the transitions on tick events.

Hence, the state-space complexity of Ti is O(Ai + ((Di − Ei)×m× Ei)).

2. The state-space complexity of the resource-constraint model RCi (in Figure 5.5) is

O(n) because it contains distinct states connected to the initial state to represent

the execution of each task on the processing core Vi.

3. Given n TDESs T1, T2, ..., Tn, an upper bound on the number of states in the

composite task execution model T is given by:
∏n

i=1 |QTi|, where |QTi | is the total
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number of states in Ti. Similarly, the total number of states in the composite

resource constraint model RC is:
∏n

i=1 |QRCi |, where |QRCi | is the total number

of states in RCi. Thus, the total number of states in M0 becomes:
∏n

i=1 |QTi| ×∏n
i=1 |QRCi |.

4. The time-complexity of the safe state synthesis algorithm [104] (for M1) is poly-

nomial in the size of M0.

5. The computation of M2 makes use of the Breadth First Search approach and hence,

time complexity of Algorithm 7 (PAS) is linear in the size of M1.

6. The computation of M3 makes use of the bisection approach (binary search) to

compute the minimum peak power Bopt and hence, time complexity of Algorithm 8

is log2(B−Bmin) times the size of M2.

It may be noted that the number of states in the composite models T and RC

increases exponentially as the number of tasks and cores increases. Over the years,

BDD (Binary Decision Diagram) based symbolic synthesis mechanisms have proved

to be a key technique towards the efficient computation of large finite state machine

models including SCTDES based supervisors. This observation motivated us to derive

a symbolic computation based adaptation of the proposed framework.

5.3 Symbolic Computation using BDD

First, we introduce the notion of a characteristic function. Given a finite set U, each

u ∈ U is represented by an unique Boolean vector 〈zk, zk−1..., z2, z1〉, zi ∈ {0, 1}, 1 ≤
i ≤ k. A subset W (⊆ U) is represented by Boolean function χW which maps u onto 1

(respectively, 0) if u ∈W (respectively, u /∈W). Here, χW is the characteristic function

(interchangeably referred to as BDD) of W.

Symbolic representation of TDESs using BDDs: The various components of

TDES G = (Q,Σ, δ, q0, Qm) are represented symbolically in terms of BDDs as follows.
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• BDDs for Q, q0, Qm,Σ of G are χGQ , χGq0 , χGQm , χGΣ
, respectively: Each state

qi ∈ Q is represented as a unique minterm in a k-variable characteristic function,

where k = dlog2|Q|e. This is denoted by χGqi and finally, χGQ = ∨|Q|i=1χGqi . In a

similar manner, BDDs for q0, Qm,Σ of G can be represented.

• δ : Q× Σ 7→ Q. Three different characteristic functions are used to represent the

source states, events and target states of δ. The BDD representing the transition

relation qi
′ = δ(qi, σ) is then expressed as χGδi ≡ (qi = 〈zkzk−1...z1〉) ∧ (σ =

〈elel−1...e1〉) ∧ (qi
′ = 〈z′kz′k−1...z

′
1〉) where k = dlog2|Q|e and l = dlog2|Σ|e. Finally,

χGδ = ∨|δ|i=1χGδi .

Steps for the Symbolic Computation of the Supervisor: Step-1: TDES models

Ti for task execution and RCi for resource constraint are represented by their corre-

sponding BDDs χTi and χRCi , respectively.

Step-2: Next, BDD for the composite task execution model is computed using syn-

chronous product over individual models. In terms of the languages represented by

individual models, this synchronous product is defined as: ∩ni=1P
−1
i L(Ti) The TDES

(say, T ′i ) that generates P−1
i L(Ti) can be obtained by adding self-loops for all the events

in Σ\Σi at all states of Ti. BDD corresponding to the synchronous product representing

the composite task execution model T can be computed as: χT = ∧ni=1χT ′i , where χT ′i

denotes the BDD of TDES model T ′i . A similar transformation is applicable to RCi and

then, χRC can be computed as: χRC = ∧ni=1χRC′i .

Step-3: Now, we symbolically compute M0 = T ||RC. In this case, as the event sets of

T and RC are same, direct application of the AND operation is sufficient to obtain the

BDD for M0, i.e., χM0 = χT ∧ χRC . The next step is to compute the controllable and

non-blocking sub-part of χM0 .

Step-4: BDD χM1 consisting of the resource and deadline constraint satisfying sub-part

of χM0 is computed by applying the symbolic safe state synthesis algorithm, presented

in [43].

Step-5: Next, we compute BDD χM2 consisting of that sub-part of χM1 in which power

dissipation is upper bounded by the power cap B in all states. For this purpose we use
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Algorithm 9, PEAK POWER-AWARE SYMBOLIC SYNTHESIS (PASS), the symbolic

version of PAS algorithm (Algorithm 7). A step-by-step description of this algorithm is

as follows:

Lines 1 to 4 (Step 1 of PAS): Create a look-up table to track dissipated power DP

at each state in χM1
Q

and initialize the table entries to 0. BDDs χV isited (the set of

already visited states in χM1
Q

) and χNew (the set of newly visited states in χM1
Q

) are

initialized to χq0 and ∅. BDDs χq0 , χsi,j and χci represent the initial state of χM1
δ
, the

set of start events ∪ni=1 ∪mj=1 si,j and the set of completion events ∪ni=1ci, respectively.

Then, Algorithm 9 conducts BFS over χM1
δ

(Lines 5 to 21).

Lines 6 to 9 (Step 2 of PAS): The Image(χSource, χM1
δ
) function returns the set of

states in χM1
δ

that can be reached from a state in χSource through a single transition,

by applying two BDD operations: AND followed by exists (∃). Line 7 : χNew stores

only the set of states that have been visited during current iteration and it is obtained

through the conjunction over χDest and ¬χV isited. Line 8 : χNew is copied to χSource so

that the newly visited states can act as source states in the next iteration. Line 9 : It

appends χNew to χV isited.

Lines 10 to 21 (Steps 3 and 4 of PAS): These lines compute the power dissipated at

each state in χNew and compares it against the power cap B. In case of a power cap vio-

lation, the transition due to which this violation occurred, is deleted. The corresponding

symbolic computation steps are as follows: For each state in χNew (denoted by χqx), the

set of transitions leading to State x (denoted by χδx) is computed by χqx [Z → Z ′]∧χM1
δ
.

Here, χqx [Z → Z ′] represents change in source and target state variables. Each of these

transitions (denoted by χδx) are conjuncted with BDD χsi,j (Line 12). If the transition

BDD χδx contains any event of type si,j, then the conjunction results in a non-empty

output. Consequently, the look-up table entry for χqx .DP is updated as: χqy .DP + Bi

(Line 13). If χqx .DP > B (Line 14), then the transition χδx is removed from χM1
δ

(Line

15) and χqx .DP is restored to its previous value (Line 16). Supposing that the transi-

tion from qy to qx is due to the event ci, χqx .DP becomes χqy .DP − Bi (Line 18). In

case of other events (i.e., ai, t), χqx .DP remains same (Line 20). The above state search
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ALGORITHM 9: PEAK POWER-AWARE SYMBOLIC SYNTHESIS
Input: BDD χM1(= χM1

Q
, χM1

Σ
, χM1

δ
, χM1

q0
, χM1

Qm
), B

Output: BDD χM2

1 Create a look-up table to track DP value of each state χq ∈ χM1
Q

and initialize DP to 0
;

2 Initialize χV isited = χq0 ; χNew = ∅;
3 Let χsi,j be the BDD corresponding to ∪ni=1 ∪mj=1 si,j ;
4 Let χci be the BDD corresponding to ∪ni=1ci;
5 repeat
6 χDest ← Image(χSource, χM1

δ
);

7 χNew ← χDest ∧ ¬χV isited;
8 χSource ← χNew;
9 χV isited ← χV isited ∨ χNew;

10 foreach χqx ∈ χNew do
11 foreach χδx ∈ (χqx [Z → Z ′] ∧ χM1

δ
) do

12 if χδx ∧ χsi,j 6= ∅ then
13 χqx .DP = χqy .DP + Bi;
14 if χqx .DP > B then
15 χM1

δ
← χM1

δ
∧ ¬χδx ;

16 Restore previous value of χqx .DP ;

17 else if χδx ∧ χci 6= ∅ then
18 χqx .DP = χqy .DP −Bi;

19 else
20 χqx .DP = χqy .DP ;

21 until χNew 6= ∅;
22 i← 0; χMQi

← χM1
q0

;

23 repeat
24 i← i+ 1;
25 χMQi

← χMQi−1
∨ Image(χMQi−1

, χM1
δ
);

26 until χMQi
= χMQi−1

;

27 Let resultant BDD consisting of χMQi
be denoted by χM2 ;

28 if χMQi
∧ χM1

Qm
6= ∅ then

29 Task set is scheduleable under the power cap B;

30 else
31 Task set is not scheduleable under the power cap B;
32 return χM2 ;
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operation continues up to the iteration in which χNew becomes empty. This situation

implies that all states in χM1
δ

have been visited.

Lines 22 to 31 (Step 5 of PAS): Forward reachability operation over χM1
δ

starting

from its initial state is performed (Lines 22 to 26). The resultant BDD χMQi
consists

of the set of reachable states in χM1
δ

and is used for the construction of χM2 (Line 27).

It may be noted that BDD χMQi
can be potentially devoid of any marked state in it.

To validate this, we check the non-emptiness of the conjunction operation of χMQi
and

χM1
Qm

(Line 28). Here, non-emptiness ensures that the presence of a marked state in

χMQi
. Thus, implying the existence of at least single feasible schedule. Otherwise, the

task set is non-schedulable under power cap B.

Step-6: Finally using the symbolic representation of Algorithm 8, we obtain BDD

χM3 by extracting that sub-part of χM2 which contains scheduling sequences dissipating

minimal power. This symbolic representation of this procedure remains almost identical

to its non-symbolic version (Algorithm 8) with the exception that it now takes χM2 and

produces χM3 (the BDD versions of M2 and M3, respectively).

5.4 Modeling Window Based Power Consumption

The scheduler synthesis framework discussed in the previous sections assumes a sin-

gle instantaneous peak power bound Bi, for the entire execution span of each task

τi. This assumption however is not sometimes accurate, in cases where tasks exhibit

phased execution behavior, so that power consumption characteristics within a phase re-

mains approximately same and distinct from its preceding and succeeding phases [8,67].

For example, let us consider the sampled power dissipation of the qsort application

from the MiBench benchmark, shown in Figure 5.11. A glance at the power profile in

this figure reveals the existence of at least three prominent execution phases with dis-

tinct power dissipation characteristics, i.e., phases, (0, 3150ms], (3150ms, 4050ms] and

(4050ms, 5000ms] with power caps, 27W , 34W and 23W , respectively.

Further, the worst-case instantaneous power cap of 34W in phase (3150ms, 4050ms]

is significantly higher than the power caps, 27W and 23W , for the other two phases.
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Figure 5.11: Instantaneous power dissipation of qsort [67]

However, the scheduler synthesis framework presented in the previous sections would

assume a single peak power bound of Bi = 34W , for the entire execution span of qsort.

This assumption would lead to pessimistic system-level power dissipation estimates (at

all time instants when qsort executes in phases (0, 3150ms] or (4050ms, 5000ms]) dur-

ing the computation of power-constraint satisfying execution sequences from M2. Due

to such pessimistic estimation, execution sequences which are actually power-constraint

satisfying may be deemed to be infeasible and consequently, removed from Lm(M2).

In order to address the problem discussed above, the scheduler synthesis framework

discussed in Sections 5.2 and 5.3 has been extended to capture phased execution be-

havior of tasks in: (i) the individual task execution (Figure 5.1) and resource constraint

(Figure 5.5) models, (ii) the state-space refinement algorithms PAS and MINIMIZE-

PEAK-POWER-DISSIPATION, and (iii) the symbolic computation mechanism.

5.4.1 Window Based Task Execution Model

The execution time Ei of a task τi having phased execution behavior, is represented as an

ordered sequence of Li disjoint execution windows 〈Wi,1,Wi,2, . . . ,Wi,Li〉. Each window

Wi,j of τi is characterized by an execution duration Ei,j and worst-case instantaneous

peak power dissipation Bi,j, such that, ΣLi
j=1Ei,j = Ei.

A modified version of the task execution model Ti,act that appropriately captures the

window based execution of task τi, is shown in Figure 5.12. According to this model,
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Figure 5.12: Task execution model Ti,act for τi with Li windows

τi starts the execution of its 1st window on anyone of the processing cores, subsequent

to its arrival. Suppose core V1 is chosen for execution. This is captured by the event

si,1,1, where, the three subscripts denote the task id, window id and processing core id,

respectively. The completion of execution of τi’s first window is denoted by the event

ci,1. Start of execution of the second window (denoted by si,2,1) happens immediately

after the occurrence of ci,1 on the same core V1 to capture the non-preemptive execution

of τi. After the completion of execution of all Li windows associated with τi, model Ti,act

reaches the marked activity (denoted by a double circle) and waits for the arrival of the

next instance of τi. A discussion on the lower (lσ) and upper (uσ) time bounds for the

newly added events (σ) represented as (σ, lσ, uσ), is as follows:

• (si,1,k, 0, Di − Ei): si,1,k must occur between 0 and Di − Ei ticks from the arrival

of τi’s current instance, to ensure sufficient time that is necessary to complete τi’s

execution before deadline.

• (ci,j, Ei,j, Ei,j): ci,j must occur exactly Ei,j ticks from the occurrence of si,j,k. This

enforces non-preemptive execution and completion of the execution requirement

Ei,j of τi’s j
th window.

• (si,j,k, 0, 0) where, 2 ≤ j ≤ Li: si,j,k must occur immediately after the completion

of τi’s previous window Wi,j−1, to model the non-preemptive execution of τi.
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5.4.2 Window Based Resource-constraint Model
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Figure 5.13: TDES model RCk for processing core Vk

The modified TDES model RCk for processing core Vk is shown in Figure 5.13. It

may be noted that the execution of any task (say, τx) is non-preemptive and hence,

all its windows execute continuously in sequence without any interruption on the same

processor until completion. Therefore, RCk captures only the start of execution of the

1st window (sx,1,k) and the completion of execution of the last window (cx,Lx) associated

with τx. The self-loops at each state (except Vk-AVAILABLE) ensures the following: (1)

∪ni=1{si,1,k}: No task is allowed to start the execution of its 1st window on core Vk since

τx is currently executing on Vk, and (2) ∪mj=1{sx,1,j}: task τx is not allowed to start the

execution of its 1st window on any processing core as it has already started its execution

on Vk.

5.4.3 Window Based Scheduler Synthesis

Given the individual TDES models for task execution and resource constraint, we can

follow the scheduler synthesis framework presented in Section 5.2 to obtain all resource

constraint satisfying scheduling sequences, i.e., Lm(M1). The next step is to filter-out all

power-constraint violating sequences from M1 to obtain M2 using PAS (Algorithm 7).

However, to conduct the search and refinement over the modified version of M1 using

PAS, it must now be appropriately adapted to recognize the phased execution behavior

of tasks. Specifically, Eqn. 5.1 in Step 3 of the PAS algorithm should be modified as

130



5.4 Modeling Window Based Power Consumption

follows:

qx.DP =


qy.DP + Bi,j if σ is start of Wi,j of τi

qy.DP −Bi,j if σ is completion of Wi,j of τi

qy.DP Otherwise

(5.2)

That is, the chip level power dissipated at a given state qx, now depends on the power

caps Bi,j corresponding to the instantaneously active execution windows Wi,j associated

with each running task τi, at state qx. It may be noted that during this updation process,

the phase oblivious version of the PAS algorithm only considered the worst-case power

dissipation bound Bi, instead of Bi,j.

The algorithm MINIMIZE PEAK-POWER DISSIPATION (Algorithm 8) remains al-

most identical for window based scheduler synthesis with one slight modification. Specif-

ically, the initial lower bound on peak power is now given by the maximum power cap

over all windows of all tasks, i.e., Bmin = max
i

max
j

Bi,j, instead of, max
i

Bi, as used ear-

lier. With these modifications, the final resource and power-constraint aware supervisor

M3 for tasks exhibiting phased execution behavior can be obtained.

5.4.4 Complexity Analysis

The state-space complexity of the task execution model Ti (constructed from Ti,act in

Figure 5.12) is: O(Ai+((Di−Ei)×m×Ei×Li)). With respect to Ti in subsection 5.2.1,

the size of the window based task execution model (refer subsection 7.5) has increased

by O(Li), since the start and completion of each window associated with τi has been

captured using dedicated states. Given n TDESs T1, T2, ..., Tn, an upper bound on

the number of states in the composite task execution model T is given by:
∏n

i=1 |QTi|,
where |QTi | is the total number of states in Ti. However, it may be noted that the

state-space of the composite model T for the window based approach will be exponentially

larger than its non-window based counter-part, presented in Section 5.2. Specifically, if

each task has L windows, then the size of T may be up to O(Ln) times larger than the

non-window based approach. Similarly, the computational complexities associated with

the other models (RC, M0, M1 and M2) also increase with respect to the size of the
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models presented in Section 5.2.

In order to handle the exponential state-space complexity associated with the syn-

thesis process, we may use the symbolic synthesis scheme presented in Section 5.3.

However, it requires the following modifications: (i) (Line No. 3) Compute BDD χsi,j,k

corresponding to ∪ni=1 ∪
Li
j=1 ∪mk=1si,j,k, (ii) (Line No. 4) Compute BDD χci,j correspond-

ing to ∪ni=1 ∪
Li
j=1 ci,j, (iii) (Line No. 12) Replace BDD χsi,j by χsi,j,k , (iv) (Line No. 17)

Replace BDD χci by χci,j and (v) (Line Nos. 13 and 18) Replace Bi by Bi,j. These

changes ensure that window based execution of a task is correctly captured during the

computation of peak power dissipation in the system.

5.5 Experimental Results

The proposed scheduler synthesis schemes presented in Sections 5.2, 5.3 and 5.4 have

been evaluated through simulation based experiments using standard real-world bench-

mark programs (listed in Table 5.3) from MiBench [49]. First, we have measured memory

and timing overheads by varying (1) number of tasks and processing cores (Experi-

ment 1), and (2) power cap B (Experiment 2). Next, the performance of our proposed

framework has been compared against two state-of-the-art peak power-aware scheduling

schemes [67, 78], in terms of (1) peak power dissipation (Experiment 3), and (2) accep-

tance ratio (Experiment 4). Finally, a comparative evaluation of the scalability of our

non window (Section 5.3) and window based (Section 5.4) symbolic scheduler synthesis

schemes, has been performed (Experiment 5). Before discussing the results in detail, we

first present a description of our task set gneration and simulation setups.

Table 5.3: Bi (in watts) for programs in MiBench [67]

Application Bi Application Bi Application Bi
bitcnts 24 qsort 34 adpcm 21

basicmath 23 rijndael 29 patricia 24
dijkstra 23 sha 31 jpeg 30
fft 24 susan 33 gsm 28

Task set generation: A detailed discussion on the procedure for measuring the

peak power (Bi) of each program is presented in [67] and the results have been listed

132



5.5 Experimental Results

Table 5.4: #Transitions in M3: TDES vs BDD nodes (varying #processors)

Model M3 #Tasks
2 4 6 8 10 12

#Processors TDES BDD TDES BDD TDES BDD TDES BDD TDES BDD TDES BDD
2 360 332 842 591 1824 1292 4146 2461 0 0 0 0
4 796 544 2161 1381 3612 3075 8674 3815 0 0 0 0
6 1645 1109 4803 2693 8593 3239 18421 6139 0 0 0 0
8 3889 2313 10804 4371 17103 5311 34914 13915 0 0 0 0

Table 5.5: #Transitions in M3: TDES vs BDD nodes (varying power cap)

Model M3 #Tasks
2 4 6 8 10 12

Power cap B TDES BDD TDES BDD TDES BDD TDES BDD TDES BDD TDES BDD
85W 3889 2313 10804 4371 17103 5311 34914 13915 0 0 0 0
135W 3889 2313 10804 4371 17103 5311 34914 13915 50351 19105 65673 23163
165W 3889 2313 10804 4371 17103 5311 34914 13915 50351 19105 65673 23163

in Table 5.3. These values have been obtained with the help of a combination of the

Wattch simulator [20] and McPAT power simulator [70] for an Intel Xeon processor, 65

nm CMOS technology, operating at 3.4 GHz. With reference to Intel Xeon processor

data sheet [1], we have considered the following values for chip level power cap B: 85W ,

135W and 165W .

The program/task arrival times Ai are obtained from an uniform distribution varying

within the range 0 to 50. Task execution times (Ei) are randomly generated from normal

distributions with mean (µ) and standard deviations (λ) of 25 and 10, respectively. Using

the obtained Ei values, we computed deadlines Di of tasks by varying the ratio Ei/Di

uniformly between 0.1 and 0.5. We assume deadlines to be implicit, i.e., Di = Pi.

Different workloads/task set utilizations (i.e., U =
Σni=1(Ei/Pi)

m
) have been considered.

Simulation setup: The TDES and BDD based scheduler synthesis steps have been

implemented using TTCT [2] and CUDD [101], respectively. The computations were per-

formed using a 24 Core Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.2 GHz with 64 GB RAM

running linux kernel 2.6.32-042stab113.11. The maximum heap memory used by CUDD

was set to 8 GB. Measurement of peak power dissipation for the different approaches has

been performed on a simulated system platform based on Intel x86 architecture built

using gem5 [17] system level cycle-accurate simulator. The final power profiles have

been generated by feeding the execution traces produced by gem5 to McPAT [70] power

simulator.
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Figure 5.14: Time taken for the computation of M3.

Experiment 1: Varying number of tasks and processing cores : This ex-

periment measures the number of transitions present in both the TDES and BDD based

representations of the model M3 (obtained using the phase oblivious synthesis schemes

presented in Sections 5.2 and 5.3), with the objective of evaluating and comparing their

relative memory overheads. The power cap B and task set utilization U have been set

to 85W and 40%, respectively. We have varied both the number of tasks (from 2 to 12)

and cores (from 2 to 8). The results are reported in Table 5.4. The observations are as

follows:

• As is obvious, sizes of the models increase as the number of tasks and/or the

number of processors grow.

• Comparing sizes of the TDES and BDD based representations, we observe that the

BDD models are far more efficient than their corresponding TDES counter-parts.

• The synthesis of M3 results in an empty set for systems with 10 or 12 tasks. This

implies that the given task set is non-schedulable under the given power constraint.

Time taken to synthesize the final model M3 under the TDES and BDD oriented

schemes are reported in Figures 5.14a and 5.14b, respectively. It may be seen that BDD

based symbolic computation (Section 5.3) is much faster than its TDES counter-part.

For example, considering a system composed of 10 tasks to be scheduled on a 8 core
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system, our BDD based symbolic synthesis scheme takes ∼2 hours to produce a solution.

In case of TDES based synthesis, the corresponding value for run time is ∼8 hours.

Experiment 2: Varying power cap B: The number of processing cores and

task set utilization U are set to 8 and 40%, respectively. Then, we varied the power

cap B from 85W to 165W and the number of tasks from 2 to 12. The sizes of the

resulting model M3 (obtained using the phase oblivious synthesis schemes presented in

Sections 5.2 and 5.3), is captured in Table 5.5 and the observations are as follows:

• When B is relaxed to 135W or 165W , system configurations with 10 and 12 tasks

which were deemed to be non-schedulable under B = 85W , become schedulable.

• Although, the constraint on peak power dissipation is relaxed, the size of M3

remains same for schedulable scenarios. This is because M3 contains only the

sequences that satisfy the minimum peak power in it.

Comparison with state-of-the-art schemes: The framework presented in this

work has been compared with two other state-of-the-art schemes [67,78]. In [67], Lee et

al. developed a scheduling algorithm called LowestPP that attempts to minimize peak

power dissipation while satisfying all timing constraints of a given set of real-time tasks.

This scheme logically divides the cores in a chip into groups of two cores. Then for each

group, it attempts to schedule tasks using a fixed priority scheduling scheme such that

peak power dissipation is minimized. Munawar et al. [78] presented a scheme called

Least Density First (LDF) to minimize peak power usage for frame-based and periodic

real-time tasks. Here, all tasks in a frame have the same deadline. This scheme starts by

scheduling the highest power consuming task at the time slot in which power dissipation

is minimal, and this process is repeated for all tasks. Now, we compare the performance

of our scheme with LowestPP [67] and LDF [78].

Experiment 3: Comparing peak power dissipation : In this experiment, the

number of processing cores, tasks, task set utilization and power cap, have been fixed

at 4, 12, 40% and 165W , respectively. For fair comparison with other schemes, we have

considered a frame-based periodic task set with the frame duration being 120ms. Also,

135



5. POWER-AWARE SCHEDULING ON HOMOGENEOUS MULTI-CORES

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  200  400  600  800  1000  1200

P
e

a
k
 P

o
w

e
r 

(i
n

 W
)

Time (in ms)

LowsetPP LDF Proposed

(a) Peak power dissipation

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
e

p
ta

n
c
e

 R
a
ti
o

 (
in

%
)

Task set utilization (in %)

LowsetPP
LDF

Non-Window
Window

(b) Acceptance ratio

Figure 5.15: Comparing with state-of-the-art schemes.

we consider only the phase oblivious synthesis scheme presented in Section 5.3, since none

of the two approaches in [67, 78] consider phased execution behavior of tasks. We have

measured the peak power dissipation under each scheduling scheme and reported it in

Figure 5.15a. The maximum peak power dissipated under LowestPP [67], LDF [78] and

the proposed scheme are 102W , 96W and 87W , respectively. Being optimal in nature,

our scheme is more efficient towards minimizing peak power compared to the other two

state-of-the-art approaches. Specifically, our scheme is able to carefully distribute the

execution of tasks over time such that chip-level peak power is minimized.

Table 5.6: Phased execution of programs in MiBench

Application
|Wi|,

〈Bi,1, . . . ,Bi,|Wi|〉
Application

|Wi|,
〈Bi,1, . . . ,Bi,|Wi|〉

bitcnts 2, 〈17, 24〉 qsort 3, 〈27, 34, 23〉
basicmath 2, 〈15, 23〉 rijndael 4, 〈29, 20, 24, 27〉
dijkstra 3, 〈20, 15, 23〉 sha 3, 〈31, 28, 20〉
fft 4, 〈15, 21, 24, 12〉 susan 4, 〈25, 28, 33, 20〉
adpcm 2, 〈21, 12〉 patricia 3, 〈21, 18, 24〉
jpeg 3, 〈25, 30, 22〉 gsm 2, 〈22, 28〉

Experiment 4: Measuring Acceptance Ratio: The number of cores, tasks and

power cap have been fixed at 8, 25 and 165W , respectively. Then, we have varied

the task set utilization from 10% to 90%. For each system configuration, we have

measured the acceptance ratio, i.e., the ratio of the number of task sets that have been

deemed to be schedulable against the number of task sets that have been presented to
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the system, under pre-specified resource and power constraints. It may be observed

from Figure 5.15b that the proposed schemes (both phase oblivious (non-window based)

and phase-aware (window based) task execution) are able to achieve significantly better

acceptance ratios compared to the two other existing schemes. This is because, our

scheme is able to explore all possible task-to-core assignment alternatives while satisfying

resource, timing and power constraints.

In order to evaluate the performance of the window based synthesis scheme (Sec-

tion 5.4), we have divided the execution durations of the benchmark programs listed

in Table 5.3 into multiple windows (according to their power profiles) such that each

window Wi,j is associated with the distinct power cap Bi,j. The number of windows

(|Wi|) along with their corresponding power values (Bi,1,Bi,2, . . . ,Bi,|Wi,j |) associated

with each program, is listed in Table 5.6. From Figure 5.15b, it can be seen that the

acceptance ratios of the tasks under window based approach is much better than their

non-window counter-parts (Section 5.3). Specifically, the non-window based approach

assumes a single conservative peak power estimate for the entire execution duration of

tasks which consequently leads to lower acceptance ratios. On the contrary, the window

based approach with its ability to model phased power dissipation behavior of tasks, is

far more accurate in estimating system level power consumption at any time and hence,

deliver better acceptance ratios.
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Figure 5.16: Comparing non-window and window based synthesis.

Experiment 5: Scalability : In this experiment, we evaluate the scalability of
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the proposed symbolic computation approach by increasing the number of tasks in the

system. For this purpose, we have included 8 additional benchmark programs namely,

blowfish, pgp, lame, mad, ispell, stringsearch, ghostscript and rsynth, also from MiBench.

Using this updated taskset and a multi-core platform consisting of 8 cores with the

power cap B of 165W, we have computed the total number of states and the time taken

to compute M3 using non-window based (Section 5.3) and window (Section 5.4) based

approaches. The experimental results are presented in Figures 5.16a and 5.16b. It may

be observed that the proposed symbolic computation schemes are able to compute the

final model M3 in reasonable amounts of time with moderate state space overheads. For

example, considering a system composed of 10-tasks with mean execution times around

20 time units (where the exact duration of a time unit is a tunable design parameter), to

be scheduled on a 8 core system, our non-window based scheme takes around ∼2 hours

to produce a solution. The final supervisor consisting of all feasible solutions consume

upto ∼19000 BDD nodes (assuming each node to be about 3 bytes in size, the total space

required becomes ∼56KB). In case of window based synthesis, the corresponding values

for run time is around ∼3 hours while the space required by the final supervisor is about

∼77KB. Thus, it may be seen that the window based approach consumes significantly

higher overheads compared to the non-window based scheme.

5.6 Summary

In this chapter, we have presented a systematic way of synthesizing an optimal sched-

uler for non-preemptive real-time tasks on multi-core systems with pre-specified chip

level peak power constraints. The synthesis process started with the development of the

execution models for tasks and resource-constraint models for processing cores. Com-

position over these models ultimately provided the deadline and resource constraint

satisfying supervisor. Further, the power-constraint violating sequences are filtered-out

from the initial supervisor through a search and refinement mechanism. Subsequently,

the targeted supervisor containing only scheduling sequences that dissipate minimal

power is retained. To control state-space complexity involved in the synthesis process,
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a BDD based computation flow has been designed corresponding to the TDES oriented

construction steps. Finally, we presented the experimental evaluation of our proposed

framework using real-world benchmark programs. This framework can be extended to

consider the execution of sporadic tasks. Specifically, the time bound associated with

the event ai can be set as (ai, Pi,∞) to model the minimum inter-arrival time constraint

Pi associated with the sporadic task τi. In the next chapter, we consider the scheduler

synthesis for a set of real-time task executing on a heterogeneous multi-core platform.
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Chapter 6
Scheduling on Heterogeneous Multi-cores

In the earlier chapters, we have assumed the processing cores in a multi-core platform

to be identical (i.e., homogeneous). However, the nature of processors in embedded

systems is changing over the years. To handle specific tasks, specialized processing

cores are now integrated on to a single hardware platform. For example, today we have

heterogeneous multi-core platforms with specialized Graphical Processing Unit (GPU),

Single Instruction-stream Multiple Data-stream (SIMD) accelerators, Digital Signal Pro-

cessor (DSP), specialized floating-point units, integrated on a single die. On a heteroge-

neous platform, the same piece of code (i.e., task) may require different amounts of time

to execute on different processors [10]. For example, a task responsible for rendering

images may take far less time to execute on a GPU compared to a General Purpose

Processor (GPP), while a number-crunching routine would execute more efficiently on

a GPP.

In this chapter, we consider the optimal scheduling of a set of real-time non-preemptive

tasks executing on a heterogeneous multi-core. The general problem of the optimal

scheduling of non-preemptive tasks is intractable and requires exhaustive enumeration

of the entire solution space [12, 12, 23, 27, 27, 28, 28, 54, 93, 110]. Such exhaustive enu-

meration methodologies incur exponential overheads, and therefore are prohibitively

expensive to be applied on-line. Therefore on-line approaches, which often do not allow

the liberty of exhaustive enumeration of the solution space, tend to be sub-optimal and

heuristic in nature. So, off-line techniques are often preferred over on-line techniques
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for solving such problems. Hence, there is a necessity for developing off-line exhaustive

enumeration techniques to pre-compute schedules at design time and use them during

on-line execution. As mentioned earlier in this dissertation, we apply supervisory con-

trol approach for scheduler synthesis. Although in recent years, there has been a few

significant works dealing with real-time scheduling using supervisory control, this is pos-

sibly the first work which addresses the scheduler synthesis problem for non-preemptive

periodic tasks.

6.1 Related Works

In recent years, researchers have shown that off-line formal approaches such as Supervi-

sory Control of Timed Discrete Event Systems (SCTDES) [18] can be used to synthesize

optimal schedulers for real-time systems [29] [53] [87] [106] [105] . Chen and Wonham

presented a scheduler design scheme for non-preemptive, periodic tasks on uniproces-

sors [29]. Later, Janarthanan et al. extended the supervisory control framework for

the priority-based scheduling of preemptive periodic tasks [53]. Recently, Wang et al.

enhanced the models presented in [29] [53] to schedule non-preemptive, periodic tasks

with multiple periods [105]. Further, Wang et al. proposed an approach for priority-free,

conditionally-preemptive, real-time scheduling of periodic tasks [106]. It may be noted

that none of these SCTDES based scheduler synthesis schemes can model the variation

in execution times of a particular task on different processors, in a heterogeneous plat-

form. To address this, we develop in this work task execution and resource-constraint

models which can be used to synthesize optimal off-line schedulers applicable to het-

erogeneous multi-core platforms. Further, we present a working example to illustrate

the scheduler synthesis mechanism designed here. Table 6.1 synopsizes a qualitative

comparison among the SCTDES based scheduling approaches.

6.2 Proposed Scheduler Synthesis Scheme

System Model: Consider a real-time system consisting of a set ({τ1, τ2, ..., τn}) of n non-

preemptive periodic tasks to be scheduled onm heterogeneous multi-cores ({V1, V2, . . . , Vm}).
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Table 6.1: Comparison between SCTDES based scheduling schemes

Method Tasks Preemptive /
Non-preemptive

Uniprocessor /
Multi-core

Remarks

[29] Periodic Non-preemptive Uniprocessor It does not consider task priorities
[53] Periodic Both Uniprocessor It considers task priorities

[87] Periodic &
Sporadic Preemptive Uniprocessor It does not consider

inter-arrival time constraint

[39] Aperiodic &
Sporadic Non-preemptive Uniprocessor It correctly captures

inter-arrival time constraint

[105] Periodic Preemptive Uniprocessor It supports tasks with multiple
periods to allow reconfiguration

[106] Periodic Conditionally
preemptive Uniprocessor It can be extended to

homogeneous multi-cores

[107] Periodic &
Sporadic

Conditionally
preemptive Uniprocessor It can be extended to

homogeneous multi-cores
Present

work Periodic Non-preemptive Heterogeneous
multi-core

Correctly models execution of
tasks on heterogeneous multi-cores

A periodic task τi consists of an infinite sequence of instances and is represented by a

4-tuple 〈Ai, 〈Ei,1, Ei,2, . . . , Ei,m〉, Di, Pi〉, where Ai(∈ N) is the arrival time of the first

instance of τi (relative to system start), Ei,j(∈ N and j = 1, 2, ...,m) is the execution

time of τi on the V th
j processing core, Di(∈ N) is the relative deadline and Pi(∈ N)

denotes the fixed inter-arrival time between consecutive instances of τi [10].

Assumptions: (1) Tasks are independent. (2) Execution time for each task is constant

and equal to its Worst Case Execution Time (WCET) [73]. (3) The tasks are periodic

and have fixed interval arrival times. (4) Ei,j, Di and Pi are discrete and finite.

6.2.1 Task Execution Model (ATG)

The ATG model PTi,act for executing a non-preemptive periodic task τi on a heteroge-

neous multi-core system is shown in Figure 6.1. PTi,act = (APTi ,Σi,act, δ
PT
i,act, a

PT
i,0 , A

PT
i,m),

where, APTi = {IDLE, READY, READYQ1, ..., READYQm, EXECUTING-ON-V1, . . . ,

EXECUTING-ON-Vm, COMPLETION}, Σi,act = {fai, ai, ri,1, . . . , ri,m, si,1, . . . , si,m,

ci,1, . . . , ci,m} (the description of events is presented in Table 6.2), aPTi,0 = IDLE and

APTi,m = {COMPLETION}. Here, Σact = ∪ni=1Σi,act, which is categorized as: Σspe =

Σact (since all events have finite time bounds), Σrem = ∅, Σunc = {∪ni=1{fai, ai}} ∪
{∪ni=1 ∪mj=1 {ci,j}} (task arrival and completion events cannot be prevented by supervi-

sor), Σcon = ∪ni=1 ∪mj=1 {ri,j, si,j} (assignment on the ready queue and start of execution

can be controlled by supervisor), Σfor = Σcon (all controllable events can preempt the
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occurrence of tick), Σ = Σact ∪ {tick}.

Table 6.2: Description of events

Event Description
fai Arrival of task τi’s first instance
ai Arrival of task τi’s next instance
ri,j Assignment of task τi on the ready queue associated with Vj
si,j Start of the execution of task τi on Vj
ci,j Completion of the execution of task τi on Vj

IDLE READY

EXECUTING-ON-V1

fai

ri,1
ci,1

ai
EXECUTING-ON-Vm

ri,m
ci,m

ai READYQ1

ai

READYQm

ai

si,1

si,m

ai

C
O
M
P
L
E
T
I
O
Nai

Figure 6.1: Task execution model PTi,act for periodic task τi

Initially, PTi,act stays at activity IDLE until the arrival of τi’s first instance. On

the occurrence of fai, PTi,act transits to activity READY. At this activity, there are m

outgoing transitions on events ri,j (j = 1, 2, ...,m) to model the possibility of assigning

of τi on the ready queue associated with core Vj. Once event ri,j is executed, PTi,act

moves to activity READYQj and stays at the ready queue of Vj until the start of τi’s

execution on Vj. On si,j, PTi,act moves to activity EXECUTING-ON-Vj to capture the

execution of τi on Vj. After the completion of execution, PTi,act transits to the marker

activity COMPLETION on ci,j. Next, PTi,act moves back to activity READY on the

arrival of τi’s next instance (ai) and τi continues its execution in a similar manner. The

self-loops on ai are used to model the periodicity of τi. An elaboration on the modeling

of τi’s periodicity is presented separately later in this section.

To obtain a TDES model, we assign time bounds for events in Σi,act, as follows: 1.

(fai, Ai, Ai): fai must occur exactly at the Athi tick from the system start, to correctly

model the arrival of τi’s first instance. 2. (ai, Pi, Pi): ai must occur exactly at the

P th
i tick from the arrival of τi’s previous instance, to model the periodic arrival of τi.

3. (ri,j, 0, 0): ri,j must occur immediately after the arrival of τi’s current instance. 4.
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(si,j, 0, Di − Ei,j): si,j must occur between 0 and Di − Ei,j ticks from the arrival of τi’s

current instance to ensure that there is sufficient time for the execution of τi on Vj so

that its deadline can be met. 5. (ci,j, Ei,j, Ei,j): ci,j must occur exactly Ei,j ticks from

the occurrence of si,j. This is to enforce the execution requirement Ei,j of τi on Vj.

fait t

# t = Ai

ri,1

tsi,1
t ci,1

tsi,1 ci,1
t

tsi,1 ci,1

#t = Ei,1

#t = Di t Ei,1

tsi,m
t ci,m

tsi,m ci,m
t

t

si,m ci,m

#t = Di t Ei,m

#t = Ei,mri,m

ai

#t = P
i t Ei,1

#t = Pi t Ei,m

#t = P
i  t D

i

#t =
 P

i t
 D

it

t

t

t

t

t

Figure 6.2: TDES model PGi for periodic task τi〈Ai, Ei, Di, Pi〉

6.2.2 Task Execution Model (TDES)

The TDES model PGi obtained using PTi,act and the above time bounds, is shown in

Figure 6.2. Here, t represents the tick event. In the TTCT software [2], construction of

TDES from ATG is implemented by the procedure timed graph. It may be observed

(from Figure 6.2) that the arrival of τi’s first instance (i.e., fai) occurs at Athi tick from

system start. Then, τi is immediately assigned to the ready queue associated with any

one of the processing cores. Let us assume that τi is assigned to the ready queue of V1

through ri,1. At this instant, τi may either be allowed to immediately start its execution

through si,1 or τi’s execution may be delayed by at most Di −Ei,1 ticks. Subsequent to

start of execution, τi consumes exactly Ei,1 ticks to complete on V1 and this is marked

by the event ci,1. Suppose, τi started its execution without any delay. In this case, PGi

contains exactly Pi − Ei,1 ticks between the completion event ci,1 and the arrival of τi’s

next instance. In case of a delay of Di−Ei,1 ticks, this interval reduces to exactly Pi−Di
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ticks.

Modeling Periodicity of τi: Periodicity of τi requires the arrival events (ai’s) of

any two consecutive instances of τi to be separated by exactly Pi ticks. This is achieved

by setting Pi as both the lower and upper time bounds of ai. Additionally, the TDES

model PGi must accurately account for the time elapsed from the arrival of the current

instance of τi, at all subsequent states of the model, so that the next arrival can be

enforced to occur exactly after Pi ticks. However, for the TDES model to correctly

implement this behavior, the arrival event ai must remain enabled (and hence, should

be defined) at all activities subsequent to the occurrence of τi’s first instance, in the

ATG PTi,act from which PGi is constructed. For this purpose, self-loops on ai has been

added at all activities in PTi,act except IDLE (where the first instance of τi has not yet

arrived) and COMPLETION (where ai is already defined). On the occurrence of fai,

PTi,act transits from IDLE to the activity READY at which events ai, ri,1, . . . , ri,m

become enabled with associated timer values tai = Pi, and tri,j = 0 (j = 1, . . . ,m).

On all activities reachable from READY to COMPLETION, timer tai is continuously

decremented at each clock tick (and not reset to Pi, as ai is enabled at these activities).

After PTi,act reaches COMPLETION, say x ticks (tai = Pi − x) from the arrival of

τi’s current instance, tai is continued to be decremented until it reduces to 0. Here, x

captures the delay in the start of execution (i.e., (si,j, 0, Di −Ei,j)) along with the time

taken for the execution of τi (i.e., (ci,j, Ei,j, Ei,j)). Hence, the value of x is lower and

upper bounded by Ei,j and Di, respectively. When tai reaches zero, occurrence of ai

becomes eligible and consequently, PTi,act transits from COMPLETION to READY on

ai with tai being reset to Pi. Thus, the periodicity of τi is correctly captured by PTi,act.

6.2.3 Composite Task Execution Model

It may be inferred that Lm(PGi) satisfies (i) distinct execution times of τi on different

processing cores, (ii) deadline requirement and (iii) fixed inter-arrival time constraints

of τi. Given n individual TDES models PG1, ..., PGn corresponding to τ1, . . . τn,

a synchronous product PG = PG1||...||PGn on the models gives us the composite

model for all the tasks executing concurrently. In the TTCT software [2], synchronous
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product is computed using the procedure sync. As individual models (PGi’s) do not

share any common event (i.e., ∩ni=1Σi,act = ∅) except tick, all models synchronize only on

the tick event. Since, the individual models satisfy deadline and fixed-inter arrival time

constraints, Lm(PG) also satisfies them. However, the sequences in Lm(PG) may violate

resource constraints. That is, PG does not restrict the concurrent execution of multiple

tasks on the same processing core. Hence, we develop a resource-constraint model to

capture the following specification: Once a task τi is allocated onto a processing core Vj,

it remains allocated on Vj until its completion. Meanwhile, no other task τj (6= τi) is

allowed to execute on Vj. This is captured by the TDES model RCk, as we discuss next.

Vk-AVAILABLE

EXECUTING-�1 

EXECUTING-�n 

s1,k

c1,k

cn,k
sn,k

i=1

n

T�\ U {si,k, ci,k}
i=1

n

T�\ {U {si,k, ci,k} U U{s1,j, c1,j}}
j=1

m

EXECUTING-�x 
sx,k

cx,k
i=1

n

T�\ {U {si,k, ci,k} U U{sx,j, cx,j}}
j=1

m

i=1

n

T�\ {U {si,k, ci,k} U U{sn,j, cn,j}}
j=1

m

Figure 6.3: TDES model RCk for processing core Vk

6.2.4 Resource-constraint Model

The TDES model RCk for a core Vk is shown in Figure 6.3. RCk = (Q,Σ, δ, q0, Qm),

where, Q = {Vk-AVAILABLE, EXECUTING-τ1, . . . , EXECUTING-τn}, Σ = Σact∪{t},
q0 = Qm = Vk-AVAILABLE. RCk contains n + 1 states to capture the idle state of Vk

as well as execution of anyone of the n tasks on Vk. The self-loop Σ \ ∪ni=1{si,k, ci,k} at

the initial state, allows the possibility of executing all events in Σ except ∪ni=1{si,k, ci,k},
i.e., it disallows the start and completion of any task on Vk. The start of execution

of any task, say τx, on Vk is modeled by an outgoing transition on sx,k to the state

EXECUTING-τx from Vk-AVAILABLE. At this state, the self-loop Σ \ {∪ni=1{si,k, ci,k}
∪ ∪mj=1{sx,j, cx,j}} allows all but the events related to, (i) starts or completions of any task

on Vk (∪ni=1{si,k, ci,k}) and (ii) start or completion of task τx on any core (∪mj=1{sx,j, cx,j}).
On completion, RCk transits back to the initial state on cx,k from EXECUTING-τx.
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Hence, Lm(RCk) ensures the exclusive execution of a single task on core Vk at any time

instant. To summarize, Lm(RCk) contains all sequences over Σ∗ excluding those which

allow the concurrent execution of multiple tasks on Vk. Thus, Lm(RCk) is the minimally

restrictive language which satisfies the resource-constraint with respect to Vk.

Composite Resource-constraint Model: Given m TDES models RC1, . . . , RCm

corresponding to the m cores, we can compute the composite resource-constraint model

RC as: RC1|| . . . ||RCm. Hence, Lm(RC) represents the minimally restrictive language

that disallows the concurrent execution of multiple tasks on the same processing core.

Although, all sequences in Lm(RC) satisfy the resource-constraints, however, sequences

in Lm(RC) may not correctly capture timing properties such as execution times, dead-

lines and periods associated with the tasks (which is captured by PG).

6.2.5 Supervisor Synthesis

In order to find only and all sequences in Lm(PG) that satisfy resource-constraints,

the initial supervisor S0 = PG||RC, is computed. We first show that Lm(S0) contains

resource-constraint satisfying sequences of Lm(PG) and then, we show that Lm(S0)

contains timing-constraint satisfying sequences of Lm(PG).

Theorem 6.2.1. Lm(S0) contains only and all resource-constraint satisfying sequences
of Lm(PG).

Proof. (⇒): Lm(S0) = Lm(PG)∩Lm(RC), since S0 = PG||RC and Σ is same for both
PG and RC. So, the following inference may be drawn: a string s ∈ Lm(S0) implies
that s ∈ Lm(PG) and s ∈ Lm(RC). Since Lm(RC) satisfies resource-constraints, Lm(S0)
(⊆ Lm(RC)) contains only resource-constraint satisfying sequences of Lm(PG).

(⇐): By contradiction: Let s ∈ Lm(PG) is resource-constraint satisfying, but
s /∈ Lm(S0). As s is resource-constraint satisfying, it must be part of Lm(RC), the
minimally restrictive language that disallows the concurrent execution of multiple tasks
on the same processing core. Hence, s ∈ Lm(S0) since S0 = PG||RC. This contradicts
the assumption. Thus, Lm(S0) contains all resource-constraint satisfying sequences of
Lm(PG).

Corollary 6.2.1. Lm(S0) contains only and all resource as well as timing constraints
satisfying sequences of Lm(PG).

Proof. We know that all sequences in Lm(PG) satisfy timing constraints and Lm(S0) =
Lm(PG)∩Lm(RC). By following of the proof structure of Theorem 1, we can show that
Lm(S0) contains only and all resource as well as timing constraints satisfying sequences
of Lm(PG).
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It may be noted that sequences in L(S0) which violate resource and/or timing con-

straints are not part of Lm(S0) and hence, such sequences lead to deadlock states in

S0. This implies L(S0) 6= Lm(S0), i.e., S0 is blocking. However, to ensure that all

instances of all periodic tasks meet their resource and timing constraints, S0 must be

made controllable with respect to PG. This is achieved by determining supC(Lm(S0)),

the controllable and non-blocking sub-part of S0. Here, supC(Lm(S0)) is essentially ob-

tained by disabling certain controllable events (ri,j, si,j) at appropriate states in S0, such

that none of the deadlock states are reached. In TTCT, this can be computed using the

supcon procedure. This guarantees that the closed-loop system behavior always stays

within the desired behavior supC(Lm(S0)).

Theorem 6.2.2. The language supC(Lm(S0)) is the largest schedulable language.

Proof. Let us consider the set of all sublanguages of Lm(S0) that are controllable with
respect to Lm(PG), i.e., C(Lm(S0)) := {Lm(S ′0) ⊆ Lm(S0) | Lm(S ′0) is controllable with
respect to Lm(PG)}. Among all sublanguages in C(Lm(S0)), consider the largest con-
trollable sublanguage. The existence of such a unique supremal element supC(Lm(S0))
in C(Lm(S0)) is already shown in [18]. The language supC(Lm(S0)) contains all feasible
scheduling sequences (i.e., the largest schedulable language) for the given task set.

From Theorem 6.2.2, it may be inferred that supC(Lm(S0)) contains the exhaustive

set of only and all the feasible scheduling sequences that satisfy the set of specifications

related to (i) execution times, (ii) deadlines, and (iii) resource-constraints of the given

real-time system. It may be noted that supC(Lm(S0)) can be empty which implies

that there cannot exist any feasible scheduling sequence corresponding to the given

specifications, irrespective of the employed scheduling strategy. Hence, the scheduler

synthesis mechanism described in this work is optimal. Therefore, using supC(Lm(S0)),

we can design an optimal scheduler S. As a result of supervision, the task executions

controlled by S remain within the largest schedulable language supC(Lm(S0)).

Summary: Given n individual TDES models PG1, PG2, ..., PGn corresponding to

periodic tasks τ1, τ2, ... τn and m TDES models RC1, RC2, ..., RCm corresponding to m

processing cores, we can compute the supervisor as follows: (1) PG = sync(PG1, PG2,

. . . , PGn), (2) RC = sync(RC1, RC2, . . . , RCm) and (3) S = supcon(PG, RC).
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Figure 6.4: (a) PT1, (b) PT2, and (c) PT3.
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Figure 6.5: (a) RC1 and (b) RC2.

6.2.6 Example

Consider a system consisting of two unrelated processing cores ({V1, V2}) and three tasks

(τ1〈0, 〈2, 1〉, 3, 4〉, τ2〈0, 〈2, 2〉, 3, 4〉 and τ3〈0, 〈1, 2〉, 3, 4〉). The ATG models PT1 for τ1,

PT2 for τ2 and PT3 for τ3 are shown in Figures 6.4(a), (b) and (c), respectively. Using

these ATG models, we can obtain their corresponding TDES models PG1, PG2 and

PG3 (not shown in figure). The TDES models RC1 for V1 and RC2 for V2 are shown

in Figures 6.5(a) and (b), respectively. The composite task and resource-constraint

models PG and RC are shown in Figure 6.6(a) and Figure 6.7, respectively. The initial

supervisor candidate S0 and supC(Lm(S0)) are shown in Figure 6.8.

To illustrate that Lm(PG) contains both resource-constraint satisfying and violating
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sequences, let us consider the sequences: seq1 (= fa1fa2fa3r1,1r2,2r3,2s1,1 s2,2ts3,2tc1,1c2,2

tc3,2) and seq2 (= fa1fa2fa3r1,1r2,2r3,1 s1,1s2,2ttc1,1c2,2s3,1tc3,1). The gantt chart repre-

sentation of seq1 and seq2 are shown in Figure 6.6(b) and (c), respectively. seq1 is

resource-constraint violating due to the simultaneous execution of both τ2 and τ3 on V2.

On the other hand, seq2 is resource-constraint satisfying. Let us consider RC and try to

find seq1. After processing the substring fa1fa2fa3r1,1r2,2r3,2s1,1s2,2t of seq1, RC reaches

state 2 where there is no outgoing transition on s3,2 and hence, seq1 /∈ Lm(RC). Subse-

quently, seq1 leads to deadlock in S0 implying seq1 /∈ supC(Lm(S0)). Meanwhile, we can

find seq2 in Lm(RC) as: δ(0, fa1fa2fa3r1,1r2,2r3,1s1,1) = 1, δ(1, s2,2) = 2, δ(2, ttr1,1c1,1) =

3, δ(3, c2,2) = 0, δ(0, s3,1) = 4, δ(4, tc3,1) = 0. Further from Figure 6.8 (within the dotted

box), we can find seq2, implying seq2 ∈ Lm(S0) and seq2 ∈ supC(Lm(S0)). Similarly, we
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Figure 6.8: S0 (partial diagram); supC(Lm(S0)) (in dotted box).

can find that all resource-constraint satisfying sequences in Lm(PG) are also present in

supC(Lm(S0)). Hence, we can design an optimal scheduler S using supC(Lm(S0)).

Working of scheduler S: When all three tasks arrive simultaneously, S allocates τ1

on V1 (r1,1), τ2 on V2 (r2,2) and τ3 on V1 (r3,1). The system behavior L(PG) allows

the possibility of assigning τ3 on either V1 or V2. However, assigning τ3 on V2 leads to

a deadlock state. Hence, S assigns τ3 on V2 by disabling r3,2 (and enabling r3,1) and

ensures that no deadlock state is reached.

6.3 Summary

In this chapter, we have presented task execution and resource-constraint models that

can be used to synthesize scheduler for a set of independent, non-preemptive periodic

tasks executing on heterogeneous multi-cores. The synthesis process begins by developing

the task execution models for each periodic task which effectively captures a task’s, (i)

distinct execution requirements on different processing cores, (ii) deadline requirement

and (iii) fixed inter-arrival time constraint between any two consecutive instances. Then,

we developed for each processor the specification models in order to enforce resource-

constraints. Through a synchronous product on the individual models, we obtained the

composite task execution model and specification model. Finally, the scheduler which

contains the set of valid execution sequences, that can be used during on-line execution,

is synthesized. We have also discussed the optimality and working of the scheduler

synthesized using our proposed models.

The presented models can be adapted to consider the execution of sporadic tasks.

Specifically, the time bound associated with ai can be set as (ai, Pi,∞) to model the
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minimum inter-arrival time constraint Pi associated with the sporadic task τi. Further,

a BDD based symbolic computation presented in Section 5.3 can be utilized to control

state-space complexity involved in the synthesis process. In the next chapter, we develop

the models which can be used to synthesize a scheduler for a multiprocessor system

executing a real-time application modelled as precedence-constrained task graphs.
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Chapter 7
Scheduling of Parallel Real-Time Tasks

In the earlier chapters of this dissertation, we have considered the scheduling of inde-

pendent real-time tasks on a multiprocessor / multi-core platform. To effectively utilize

multi-cores, real-time software APIs are expected to take the advantage of parallel pro-

cessing/programming [90]. For example, many real-time applications such as radar track-

ing, autonomous driving, and video surveillance, are highly parallelizable [44]. One of

the most generic mechanisms for modeling parallel real-time applications is Precedence-

constrained Task Graphs(PTG)/Directed Acyclic Graphs(DAG) [30,34,89]. In the PTG

model of an application, each node corresponds to a task and edges denote inter-task

dependencies. In this chapter, we present a scheduler synthesis framework for a parallel

real-time application represented by a PTG, executing on a multi-core platform.

Apart from guaranteeing the timely execution of tasks in a resource-constrained

environment, ensuring proper functioning of the system even in the presence of faults

(i.e., fault tolerance) has currently become a design constraint of paramount importance.

Specifically, the processors on which the tasks are executed, are subject to a variety

of faults. Such faults are broadly classified to be either permanent or transient [62].

Permanent processor faults are irrecoverable and do not go away with time. On the

other hand, transient faults are short-lived (momentary) and their effect goes away after

some time. According to studies [60, 100], the ratio of transient-to-permanent faults

can be 100:1 or even higher. Thus, robustness against transient faults is emerging

as a very important criterion in the design of safety critical real-time systems [56].
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Hence, we extend our scheduler synthesis scheme to consider the incorporation of efficient

mechanisms for handling transient processor faults that may occur during the execution

of PTGs.

7.1 Related Works

The classical multiprocessor scheduling theory is focused on the sequential programming

model, where the problem is to schedule many independent real-time tasks on multiple

processing cores [10, 24]. Parallel programming models introduce a new dimension to

this problem, where some sub-tasks (threads) in a program (task) can run in parallel

to produce partial results individually. Certain threads should synchronize to integrate

the partial results. Several task models have been proposed in the literature to analyze

the timing behavior of parallel real-time applications, a few important ones being the

fork-join model, the synchronous-parallel model and the PTG model [46, 64,102].

Fork-Join Task Model : It consists of an alternate sequence of interleaved sequential

and parallel regions, called segments, and all the threads within each segment should

synchronize in order to proceed to the next segment. Lakshmanan et al. [63] developed

a stretching algorithm which attempts to judiciously stretch the durations of the parallel

segments such that the overall deadline is not violated. The objective of this stretching

process is to minimize the number of processors required during the execution of parallel

segments. The processors which become partially free in this process may be allocated

to other applications so that overall resource utilization of the system may be enhanced.

Later, Fauberteau et al. [42] improved the stretching algorithm with the objective of

minimizing thread migrations and preemptions within parallel segments.

Synchronous-Parallel Task Model : Relaxing the restriction that sequential and par-

allel segments alternate (that was considered in the Fork-Join model), this model allows

each segment to have any arbitrary number of threads. Safifullah et al. [96] devised a de-

composition algorithm which divides a parallel task into a set of independent sequential

segments, each with its own release and deadline. Later, Nellison et al. [81] presented

an improved technique which requires only m′ processors to schedule a parallel task as

156



7.1 Related Works

compared to m(≥ m′) processors required by [96].

PTG Task Model : It generalizes the synchronous-parallel model by relaxing the

restriction of segment-level synchronization by all threads. Here, each task node may

spawn multiple parallel threads and any arbitrary number of threads may synchronize

at designated task nodes, as required. Baruah et al. [9] presented a polynomial time

algorithm which can provide suitable abstractions to conditional constructs (such as

-if-then-else-) in a program so that modeling using PTGs become possible. Most of

the existing scheduling schemes for PTG models have applied Global Earliest Deadline

First (GEDF) and its related schedulability analysis [11,34,69]. However, schedulability

of parallel real-time tasks can be improved significantly if thread-level parallelism is

directly reflected into scheduling algorithms as well. Hence, there is a need to develop

new real-time scheduling techniques for PTGs.

SCTDES based scheduling works : Table 7.1 synopsizes a qualitative comparison

among the SCTDES based scheduling approaches. It may be observed that SCTDES

based existing scheduler synthesis works deal with a variety of real-time and fault-

tolerant scheduling schemes. However, these works deal with independent tasks only

and do not consider dependencies among tasks. Hence, they are not applicable to the

scheduling of parallel dependent real-time tasks. In this work, we utilize SCTDES to

compute a correct-by-construction optimal scheduler for such parallel real-time tasks mod-

eled as PTGs, executing on homogeneous multi-core systems.

Table 7.1: Comparison between SCTDES based scheduling schemes

Method Tasks Preemptive /
Non-preemptive

Uniprocessor /
Multi-core

Remarks

[29] Periodic Non-preemptive Uniprocessor It does not consider task priorities
[53] Periodic Both Uniprocessor It considers task priorities

[87] Periodic &
Sporadic Preemptive Uniprocessor It does not consider

inter-arrival time constraint

[39] Aperiodic &
Sporadic Non-preemptive Uniprocessor It correctly captures

inter-arrival time constraint

[105] Periodic Preemptive Uniprocessor It supports tasks with multiple
periods to allow reconfiguration

[106] Periodic Conditionally
preemptive Uniprocessor It can be extended to

homogeneous multi-cores

[107] Periodic &
Sporadic

Conditionally
preemptive Uniprocessor It can be extended to

homogeneous multi-cores
Present

work Sporadic Task nodes are
non-preemptive

Homogeneous
multi-core

Correctly models execution of
PTGs on multi-cores
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7.2 Scheduler Synthesis for PTGs

With a basic understanding of the fundamental notions on SCTDES based system mod-

eling presented in the above section, we proceed towards the design of an optimal sched-

uler synthesis mechanism for PTGs. First, we describe the system model, assumptions

and problem statement.

System Model: We consider a real-time system consisting of an application composed

of multiple dependent tasks modeled as a Precedence-constrained Task Graph (PTG)

to be scheduled on a multi-core system with m homogeneous processing cores (V =

{V1, V2, . . . , Vm}). A PTG G is represented by a five tuple G = 〈I, L,E,D, P 〉, where,

• I = {τ1, τ2, . . . , τn} represents a set of n-task nodes.

• L ⊆ I × I is a set of edges that describe the precedence relationships among nodes

in I.

• E = {E1, E2, . . . , En} is the set of execution times (Ei denotes the execution time

of task τi).

• D is the end-to-end deadline by which all task nodes in G must complete their

execution.

• P (≥ D) is the minimum inter arrival time between two consecutive instances of

PTG G.

Assumptions:

1. All task nodes execute non-preemptively.

2. Communication cost between task nodes is negligible.

3. Without loss of generality, we add a dummy source node τ0 and sink node τn+1

to G such that (i) τ0 has outgoing edges to all nodes in G that do not have any

incoming edges, (ii) τn+1 has incoming edges from all nodes in G that do not have
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any outgoing edges. We set E0 = En+1 = 0 and use G′ to refer to this transformed

version of PTG G. All nodes in G′ except the source and sink nodes in G′ are

referred to as intermediate nodes. Example PTG G and its transformed version

G′ are shown in Figures 7.1(a) and (b), respectively.

τ1

τ2

τ3

τ4

τ5 τ0 τ6

(a) (b)

D

τ1

τ2

τ3

τ4

τ5

D

Source
node

Sink
node

Event Description

(c)

a
si,j

ci

t

Arrival of an instance of PTG G’

Start of execution of τi on core Vj

Completion of execution of τi 

Passage of one unit time of the clock

Figure 7.1: (a) PTG G, (b) PTG G′, (c) Description of Events in Σ.

Problem Statement-1: Given a PTG G′ and m homogeneous processing cores, design

an optimal supervisor which contains scheduling sequences that guarantee the execution

and end-to-end deadline requirement of G′.

7.2.1 Scheduler Synthesis Scheme

We start the scheduler synthesis process by defining the event set associated with G′.

Individual execution models for (i) source (T0 for τ0), (ii) intermediate (T1 to Tn for τ1 to

τn, respectively), and (iii) sink task nodes (Tn+1 for τn) in G′ are developed next. Then,

we integrate all the individual models (to obtain T ) constructed for the different types

of task nodes in G′ using synchronous product composition (T = ||n+1
i=0 Ti). The marked

behavior of T may contain execution sequences that violate timing requirements such as

deadline and minimum inter-arrival time. Hence, a timing specification model H for G′

is developed and composed with T . The resulting composite model T ||H may contain

deadlock states in it. However, we prove that T ||H is controllable (in Lemma 7.2.2). The

final supervisor which contains the exhaustive set of all feasible scheduling sequences, is

obtained through trim operation over T ||H.

Event set: Σ0 = {a, c0}, Σi = {{si,j|1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {ci|1 ≤ i ≤ n}}, Σn+1 =

{cn+1} and Σ = ∪n+1
i=0 Σi ∪ {t}. The events are described in Table 7.1(c). The events are

categorized as follows:
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• Σc = ∪ni=1 ∪mj=1 {si,j}: The start of execution of a task node can be controlled by

the supervisor (i.e., scheduler), and hence, it is modeled as controllable.

• Σuc = ∪ni=1{ci}∪{a}: Since, the arrival and completion events cannot be controlled

by the scheduler, they are modeled as uncontrollable events.

• Σfor = Σc: The controllable events are also modeled as forcible events which can

preempt t.

0

∑\{cn+1}

1
a

2
t

cn+1

c0

Figure 7.2: Task execution model T0 for source node τ0

Source node τ0: The TDES model T0 for task τ0 is shown in Figure 7.2 and is formally

defined as: T0 = (Q, Σ, q0, Qm, δ0), where, Q = {State 0, State 1, State 2}, Σ is the

event set (defined at the start of Section 7.2.1), q0 = Qm = {State 0}. A description of

transition function δ0 is as follows:

• δ0(State 0, t) = State 0: T0 stays at State 0 (self-loop on t) until the arrival

(event a) of PTG G′. It implicitly models the arbitrary inter-arrival time between

consecutive instances of PTG G′.

• δ0(State 0, a) = State 1: On the occurrence of arrival event a, T0 transits to State 1.

• δ0(State 1, c0) = State 2: It marks the completion of τ0’s execution. It may be

noted that T0 does not model the assignment/execution of τ0 on any processor as

it is a dummy task node.

• δ0(State 2, Σ \ {cn+1}) = State 2: This self-loop represents that T0 continues to

stay at State 2 until the completion of sink task node τn+1.

• δ0(State 2, cn+1) = State 0: On the occurrence of event cn+1, T0 transits to State 0

to mark the completion of the current instance of PTG G′.
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# t = Ei
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** = ∑\{∑i U *c};

∑\{∑i U {t}}

*c =      U           {cj};
τj ϵ  pred(τi)

Figure 7.3: Task execution model Ti for intermediate node τi

Intermediate node τi: It may be noted that G′ contains a single source and sink

node. However, there may be multiple intermediate nodes. Let us consider a node τi

from the set of intermediate nodes in G′. The TDES model Ti for node τi is shown in

Figure 7.3. Labels have not been specified for all the states shown in the figure in order

to reduce its size. However, states are numbered sequentially starting from #1 and these

numbers will be used as references while explaining the model. Ti is formally defined as:

Ti = (Q, Σ, q0, Qm, δi), where, Q = {State #1, State #2, . . . , State #11}, Σ is the

event set (defined at the start of Section 7.2.1), q0 = Qm = {State #1}. A description

of transition function δi is as follows:

• δi(State #1, Σ \ {Σi∪ ∗c}) = State #1: This self-loop models the location of Ti

at State #1 until the completion of anyone of its predecessor task nodes. The

self-loop Σ \ {Σi∪ ∗c} may be described as:

– Since τi has not yet started its execution, the events associated with it are

excluded from Σ.

– ∗c =
⋃

∀τj∈pred(τi)

{cj}: This represents the set of completion events correspond-

ing to all immediate predecessors of τi. The events in ∗c are excluded from

Σ. In fact ∗c forms a label of a separate outgoing transition at State #1 in

order to allow τi to proceed one step closer towards its start of execution.

• State #2 to State #4: States that are similar to State #1 are replicated |∗c| times

(from State #1 to State #3) to model the completion of all the immediate prede-
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cessor nodes of τi. Subsequent to the completion of all immediate predecessors, Ti

reaches State #4.

• δi(State #4, Σ\Σi) = State #4: The scheduler takes a decision whether to imme-

diately allocate task τi for execution on a processing core or make it wait on the

ready queue. The latter is indicated by the self-loop Σ \ Σi at State #4.

• δi(State #4, si,1) = State #5: Task node τi is assigned on processing core V1 for

its execution.

• δi(State #5, ∗1) = State #5: The self-loop transition ∗1 (= Σ \ {Σi ∪ {t} ∪
{∪j=1,...,nsj,1}}) models the following three scenarios:

1. After assigning τi on V1 (si,1), τi will not be allowed to execute any event

associated with it. This is modeled by excluding the events Σi from ∗1.

2. τi is allowed to stay at State #5 by executing events in ∗1 until the occurrence

of the next tick event. This is modeled by excluding the tick event from ∗1.

3. After assigning τi on V1, no other task (τj ∈ I, j 6= i) will be allowed to execute

on core V1. This is modeled by excluding the events {∪j=1,...,nsj,1} from ∗1.

It ensures that task τi cannot be preempted by another task τj (τi 6= τj) for at

least one tick event. It also restricts task τi from re-executing event si,1 until

the next tick event.

• δi(State #5, t) = State #6: Task node τi completes one unit time execution on

core V1. The states that are similar to State #5 are replicated Ei times to model

the non-preemptive execution of τi until its completion (i.e., from State #5 to

State #11).

• δi(State #11, Σ \ {Σi ∪ {t}}) = State #11: This self-loop is used to allow the

execution of untimed events that may happen with respect to other tasks in the

system.
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• δi(State #11, ci) = State #1: The completion of τi’s execution is marked by

transition on ci to State #1.

Here, we have assumed that τi started its execution on core V1. However, it may be

noted that task node τi is allowed to start its execution on anyone of the available cores

{V1, V2, . . . , Vm}.

*c

cn+1

*c
∑\*c ∑\*c ∑\*c ∑\*c

#*c = #predecessors of τn+1

*c*c
#1 #2 #3 #4 #5

*c =      U                   {cj}τj ϵ pred(τn+1)

Figure 7.4: Task execution model PTi,act for sink node τn+1

Sink node τn+1: The TDES model Tn+1 for task node τn+1 is shown in Figure 7.4 and

is formally defined as follows: Tn+1 = (Q, Σ, q0, Qm, δn+1), where, Q = {State #1,

State #2, . . . , State #5}, Σ is the event set (defined at the start of Section 7.2), q0 =

Qm = {State #1}. Description of transition function δn+1 is as follows:

• δn+1(State #1, Σ\∗c) = State #1: This self-loop models the location of Tn+1 at

State #1 until the completion of anyone of its immediate predecessor task nodes.

States that are similar to State #1 are replicated |∗c| times (from State #1 to

State #4) to model the completion of all the predecessor nodes of τn+1. Subsequent

to the completion of all immediate predecessors of τn+1, Tn+1 reaches State #5.

• δn+1(State #5, cn+1) = State #1: Completion of τn+1’s execution is marked by the

transition on cn+1 to State #1. Being a dummy node, the execution of τn+1 does

not incur any dealy.

The completion of τn+1 implicitly marks the completion of the current instance of PTG

G′.

Example: Now, we illustrate the task execution models discussed above using an

example. Let us consider the PTG G shown in Figure 7.5(a). PTG G which contains five

task nodes {τ1, τ2, τ3, τ4, τ5} with corresponding execution times {1, 1, 2, 1, 1}, is executed
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on a two core system. The deadline as well as minimum inter-arrival time of G is 5

time units. According to our proposed scheme, we first transform G into G′ (shown in

Figure 7.5(b)). The event set for each task node in G′ is shown in Figure 7.5(c). The

execution model of task nodes τ0 to τ6 are shown in Figures 7.5(d) to 7.5(j). �

7.2.2 Composite Task Execution Model

Given individual TDES task models T0, T1, ...,Tn+1, a synchronous product T = ||n+1
i=0 Ti

on the individual models gives us the composite task execution model for PTG G′. The

model T represents the overall execution of PTG G′ commencing from its source node,

through all the intermediate nodes and culminating with the completion of its sink node.

T is also able to correctly capture all precedence-constraints among task nodes because

it allows a task to start execution only after the completion of all the task’s predecessor

nodes. Apart from this, T also contains sequences that represent the concurrent execu-

tion of task nodes that are mutually independent (i.e., they do not have any precedence

relations among them). Before proceeding further, we introduce three definitions related

to schedule length, deadline and inter-arrival time.

Definition: Makespan: The overall completion time of PTG G′ and is determined by

the number of ticks between the arrival event a and the completion event cn+1 within any

scheduling sequence corresponding to G′. That is, for any sequence x = x1ax2cn+1x3 ∈
Lm(T ), where x1, x3 ∈ Σ∗ and x2 ∈ (Σ \ {cn+1})∗, makespan(x) = tickcount(x2). �

Definition: Deadline-meeting sequence: A sequence x = x1ax2cn+1x3 ∈ Lm(T ),

where x1, x3 ∈ Σ∗, x2 ∈ (Σ \ {cn+1})∗ is deadline-meeting, if tickcount(x2) ≤ D. Other-

wise, x is deadline-missing. �

Definition: Sporadic Sequence: Suppose T is a TDES corresponding to a PTG G

with minimum inter-arrival time P . A sequence s ∈ Lm(T ) is a prefix of a sporadic

sequence if for all s1, s2,. . . , sk ∈ (Σ\{a})∗, and s = s1as2a. . . ska... implies that ∀k(k >

1) tickcount(sk) ≥ P . Since T represents the sporadic PTG G, this definition must be

satisfied ∀s ∈ Lm(T ). �

As execution models for individual task nodes enforce that at most one task may

execute on any processor at a given time, their composition in T also preserves the same,
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Figure 7.5: Example PTG G and TDES models for its task nodes
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thus satisfying resource constraints. However, due to the existence of self-loops on tick

events in T , makespans of sequences in Lm(T ) may violate the stipulated deadline D

of PTG G′. For example, the processing cores might be kept idle even in the pres-

ence of ready to execute task nodes. Similarly, T does not provide any bounds on the

number of ticks between consecutive instances of G′, thus being unable to satisfy any

pre-specified constraint on sporadicity. Hence, Lm(T ) contains both deadline-meeting as

well as deadline-missing sequences with arbitrary inter-arrival times for PTG G′.

Example (cntd.): Figure 7.6 shows the partial diagram of the composite task

execution model T (= ||6i=0Ti) corresponding to the individual task execution models in

Figure 7.5. Now, we consider three related sequences from Lm(T ) for discussion whose

gantt chart representations are shown at the bottom of Figure 7.6.
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Figure 7.6: Composite task execution model T = ||6i=0Ti (partial diagram).

• seq1 = ac0s1,1tc1s2,1tc2s3,2ttc3s4,1tc4s5,1tc5c6 ∈ Lm(T ): In this sequence, PTG G′

arrives at system start and the dummy start node τ0 completes its execution

without incurring any delay (i.e., ac0). Subsequently, the task node τ1 starts

its execution on core V1 and completes its execution after one tick (i.e., s1,1tc1).

Similarly, other tasks τ2, τ3, τ4 and τ5 are executed in an interleaved fashion.

Finally, the completion event associated with the dummy sink node τ6 is exe-

cuted marking the completion of the current instance of G′. The makespan of

seq1 is 6 time units which is greater than the deadline D (= 5) of G′. That

is, tickcount(ac0s1,1tc1s2,1tc2s3,2ttc3s4,1tc4s5,1tc5c6) = 6 � 5 and hence, seq1 is a
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deadline-missing.

• seq2 = ac0s1,1tc1s2,1s3,2tc2s4,1tc3c4ts5,1tc5c6 ∈ Lm(T ): In this sequence, subsequent

to the completion of τ1, task nodes τ2 and τ3 are executed concurrently on cores V1

and V2 (i.e., c1s2,1s3,2). After the elapse of one tick, task τ2 completes its execution.

Next, τ4 starts its execution on V1 and subsequently, both τ3 and τ4 complete their

execution. Then, both the cores remain idle for one tick after which τ5 starts and

completes its execution on V1. The makespan of seq2 is 5 time units and hence, it

is deadline-meeting.

• seq3 = ac0s1,1tc1s2,1s3,2tc2s4,1tc3c4s5,1tc5c6 ∈ Lm(T ): This sequence is also similar

to seq2 except that the processing cores are never kept idle until the completion of

all nodes in G′. The makespan of seq3 is 4 and it is also deadline-meeting.

To summarize, the marked behavior Lm(T ) contains deadline-meeting and deadline-

missing execution sequences with arbitrary inter-arrival times. In order to restrict the

marked behavior to correctly capture only those sequences which satisfy the end-to-end

deadline and inter-arrival time constraints, a timing specification model corresponding

to PTG G′ is developed.

7.2.3 Timing Specification Model

Before presenting the model, let us introduce the notion of critical path in a PTG.

Definition: Critical Path (CP): It is the longest path from the source node to the

sink node in terms of the total execution time consumed by the task nodes in it. The

length of the critical path is denoted by Ecri, i.e., Ecri =
∑

τi∈CP Ei.

The timing specification model H (shown in Figure 7.7) for PTG G′ with end-to-

end deadline D and minimum inter-arrival time of P time units, is defined as: H =

(Q, Σ, q0, Qm, δH), where, Q = {State #1, State #2, . . . , State #12}, Σ is the event

set, q0 = State #1, Qm = {State #8, State #9, . . . , State #12}. Description of transition

function δH is as follows:
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Figure 7.7: Timing Specification model H for PTG G′

• δH(State #1, t) = State #1: This self-loop models the location of H at State #1

until the arrival of PTG G′. It implicitly models the arbitrary arrival of G′.

• δH(State #1, a) = State #2: On the occurrence of event a, H transits to State #2.

• δH(State #2, Σ\{t, cn+1}) = State #2: This self-loop is used to model the fact that

G′ is allowed to execute any event from Σ except t and cn+1. The reason behind

restricting cn+1 is that G′ requires at least Ecri ticks to complete the execution of

all nodes in it, irrespective of the amount of available resources.

• δH(State #2, t) = State #3: On the occurrence of t, H moves to the next state.

Since, H measures the inter-arrival time (P ) between two consecutive instances of

G′, it contains O(P ) distinct states that are separated by the tick event.

• State #3 to State #5: The states that are similar to State #3 are instantiated

Ecri times. After the elapse of Ecri ticks from the arrival of the current instance,

H reaches State #5.

• δH(State #5, cn+1) = State #8: After Ecri ticks are elapsed, G′ may possibly

complete its execution. On completion, cn+1 takes H from State #5 to State #8.

• State #5 to State #7: Since G′ may complete its execution anytime in between

Ecri and D, outgoing transition on cn+1 is defined at these states. After completion,

H may reach anyone of the states from State #8 to State #10. All these states

have been marked to represent completion of the current instance of G′.
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• State #8 to State #12: At these states, execution of any event other than tick is

disallowed. These tick events enforce the elapse of at least P ticks from the arrival

of the current instance subsequent to which, H reaches State #12.

• δH(State #12, t) = State #12: The elapse of P ticks enables the arrival of the next

instance of G′. However, the next instance of may not arrive immediately. This

self-loop captures the situation allowing an arbitrary number of ticks to elapse.

• δH(State #12, a) = State #2: On the occurrence of a, H transits back to State #2

initiating the start of the next instance of G′.

From the transition structure of H, it may be inferred that H models both dead-

line and minimum inter-arrival time constraints of G′. Therefore, Lm(H) contains all

the deadline-meeting, sporadic execution sequences for G′. However, H does not model

resource usage and consequently, allows the erroneous behavior of the concurrent execu-

tion of multiple tasks on the same processing core. In addition, H also does not model

inter task dependencies in G′. Thus, sequences in Lm(H) may violate resource as well

as precedence constraints.

Example (cntd.): The timing specification model for the example system configu-

ration under consideration is shown in Figure 7.8. From Figure 7.5(b), it may be seen

that the critical path of G′ is: τ0 → τ1 → τ3 → τ5 → τ6. The length of this path is (Ecri

=) 4 time units. Hence, the completion event c6 is allowed only after 4 ticks from the

occurrence of the arrival event a. In addition, the deadline and minimum inter-arrival

time of G′ is 5 and hence, H allows c6 to occur either after 4 or 5 ticks from the arrival

of the current instance.
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Figure 7.8: Timing Specification Model H for PTG G′
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As mentioned earlier, model H represents all possible deadline-meeting sequences for

G′. In order to illustrate this fact, let us try to find the deadline-missing sequence seq1

= ac0s1,1tc1s2,1tc2s3,2ttc3s4,1 tc4s5,1tc5c6 (refer Figure 7.6) in model H shown in Figure

7.8. After proceeding through the states State 0
a−→ State 1

c0−→ State 1
s1,1−−→ State 1

t−→
State 2

c1−→ State 2
s2,1−−→ State 2

t−→ State 3
c2−→ State 3

s3,2−−→ State 3
t−→ State 4

t−→ State 5
c3−→ State 5

s4,1−−→ State 5
t−→ State 6

c4−→ State 6
s5,1−−→ State 6, model H gets blocked due

to the absence of a transition on t at State 6. More specifically, after processing the

sub-string ac0s1,1tc1s2,1tc2s3,2ttc3s4,1tc4s5,1 of seq1, the next event in seq1 is t. However,

t is not present at State 6. Thus, Lm(H) does not contain the deadline-missing sequence

seq1.

The deadline-meeting sequence seq2 (= ac0s1,1tc1s2,1s3,2tc2s4,1tc3c4t s5,1tc5c6) can be

retrieved by tracing the states State 0
a−→ State 1

c0−→ State 1
s1,1−−→ State 1

t−→ State 2
c1−→ State 2

s2,1−−→ State 2
s3,2−−→ State 2

t−→ State 3
c2−→ State 3

s4,1−−→ State 3
t−→ State 4

c3−→
State 4

c4−→ State 4
t−→ State 5

s5,1−−→ State 5
t−→ State 6

c5−→ State 6
c6−→ State 8. Hence,

seq2 ∈ Lm(H). Similarly, seq3 can be traced in H.

7.2.4 Scheduler Synthesis

In order to determine only and all the sequences that satisfy deadline, minimum inter-

arrival time, as well as resource and precedence constraints, we compose T and H to

obtain the initial supervisor candidate M0 (= T ||H).

Lemma 7.2.1. Lm(M0) contains all the deadline-meeting and sporadic sequences in
Lm(T )

Proof. We know that Lm(T ) includes deadline-meeting as well as deadline-missing se-
quences with arbitrary inter arrival times for PTG G′. On the other hand, Lm(H)
contains all possible deadline-meeting, sporadic sequences. Since Lm(M0) = Lm(T ) ∩
Lm(H), Lm(M0) contains all the deadline-meeting and sporadic execution sequences in
Lm(T ).

Lemma 7.2.2. Lm(M0) eliminates all sequences in Lm(H) that violate resource and
precedence constraints.

Proof. Dual of Lemma 7.2.1.

The sequences that violate deadline, resource, precedence and sporadicity constraints

lead to deadlock states in M0. That is, M0 is blocking. Hence, we apply trim operation
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to remove the minimal number of states from M0 until it becomes non-blocking and

producing the resulting model M1. Thus, M1 = trim(M0). The steps towards the

computation of the supervisor for correct schedule generation has been summarized in

Algorithm 10.

ALGORITHM 10: COMPUTE SUPERVISOR
Input: PTG G = (I, L,E,D, P ), Number of processing cores m.
Output: M1

1 Transform G into G′;
2 Define the event set Σ;
3 for each task node τi ∈ I of G′ do
4 Build TDES model Ti for τi (refer subsection 7.2.1);

5 Compute the composite task execution model, T = ||n+1
i=0 Ti;

6 Compute the length of the critical path Ecri;
7 Build TDES model H representing timing specification (refer subsection 7.2.3);
8 Compute the initial supervisor candiate, M0 = T ||H;
9 M1 = trim(M0);

10 return M1;

Theorem 7.2.3. Lm(M1) is: (1) controllable with respect to Lm(M0) and (2) optimal,
producing the largest schedulable language corresponding to G′.

Proof. All sequences which satisfy deadline, sporadicity, precedence and resource con-
straints, cannot lead to blocked states in M0 (refer Lemmas 7.2.1 and 7.2.2). Hence,
subsequent to the removal of blocked states resulting in the non-blocking model M1,
all these sequences remain preserved. Hence, Lm(M1) is controllable with respect to
in Lm(M0). Also, Lm(M1) is optimal since it contains the exhaustive set of all valid
scheduling sequences for PTG G′.

Lm(M1) is empty if no valid scheduling sequence can be derived corresponding to G′.

Example (cntd.): We compute the initial supervisor candidate M0 using the syn-

chronous product of T (Figure 7.6) and H (Figure 7.8). Model M0 is shown in Figure 7.9.

It may be observed that the deadline-missing sequence seq1 ∈ Lm(T ) leads to deadlock

in M0. Due to the application of the trim operation, the portion of M0 shown in red

color will be removed from it. This makes the resulting model M1 to be non-blocking. It

may be noted that the marked behavior Lm(M1) retains the valid scheduling sequences

seq2 and seq3 (refer Figure 7.6).
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Figure 7.9: Supervisor candidate: M0 = T ||H, Supervisor: M1 (shown in black colour)

7.3 Fault-tolerant Scheduler Synthesis

In this section, we extend the presented scheduler synthesis scheme to handle transient

faults that may affect task execution. We make the following assumptions : (1) Any

instance of PTG G′ encounters at most w transient faults during its execution. (2)

A task node may be affected by multiple faults during its execution. (3) A transient

fault that occurs during the execution of task node τi is detected at the end of its

execution and must be re-executed to tolerate the fault [72]. (4) Faults may be detected

using hardware [16,98] or software [83,84] based error detection methods. The overhead

corresponding to this detection mechanism is considered to be accounted as part of the

execution time of each task node [52]. (5) The recovery overhead associated with task

re-execution is assumed to be negligible.

Problem Statement-2: Given a PTG G′ to be executed on m homogeneous process-

ing cores, design a supervisor containing the exhaustive set of all deadline, sporadicity,

resource and precedence constraints satisfying scheduling sequences for G′ that has the

ability to tolerate the occurrence of at most w transient processor faults.

The event set Σ: The fault-tolerant models discussed next includes all the events used

for the fault-free models discussed earlier (Section 7.2.1). In addition, we now introduce

two more events as part of Σi: (i) di: fault detection event for τi, and (ii) fi: fault

notification event corresponding to τi. Since, faults are induced by the environment,

both di and fi are considered to be uncontrollable. Therefore, the updated event set

becomes: Σ0 = {a, c0}, Σi = {{si,j|1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {ci, di, fi|1 ≤ i ≤ n}}, Σn+1

= {cn+1} and Σ = ∪n+1
i=0 Σi ∪ {t}.
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7.3.1 Fault-tolerant Task Execution Model
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Figure 7.10: Fault-tolerant Task execution model FTi for intermediate node τi

In order to design a fault-tolerant scheduler, the task execution model associated with

intermediate task nodes (shown in Figure 7.3) has been modified. The TDES models

for the source (T0) and sink nodes (Tn+1) remain structurally same (although, the event

set Σ now includes events di and fi in it). T0 and Tn+1 are renamed as FT0 and FTn+1,

respectively. The modified model FTi for any intermediate task node τi is shown in

Figure 7.10. States #1 to #11 in the modified model are same as the initial fault-free

model Ti. We have newly introduced State #12. Subsequent to the execution of τi for

Ei ticks on anyone of the processing cores, model FTi reaches State #11. At this state,

fault detection event di takes FTi to State #12. If τi did not suffer a fault as FTi moved

from State #4 to State #11, then FTi transits back to the initial state on ci where it

waits for the completion of its predecessor nodes corresponding to the next instance of

G′. On the contrary, if the outcome of the fault detection process is positive, then τi

must be re-executed to tolerate the fault. Hence, FTi moves to State #4 from State #12

on the occurrence of the fault notification event fi. It may be observed that model FTi

represents a behavior which allows τi to tolerate an arbitrary number of transient faults

disregarding the deadline constraint. Using this modified FTi for intermediate task

nodes, we can obtain the composite fault-tolerant task execution model FT = ||n+1
0 FTi.

Example: Let us consider the PTG G shown in Figure 7.11(a). It consists of three

task nodes τ1, τ2 and τ3 with execution times 1, 2 and 1, respectively. The minimum

inter-arrival time between two consecutive instances of G is 10 time units. We assume
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Figure 7.11: The models associated with PTG G executing on a single core platform

that G is executed on a single core and must tolerate at most one transient fault during

the execution of any instance. The transformed model G′, the event set Σ and the

individual task execution models are shown in Figures 7.11(b) to (h). The composite

task execution model FT (= ||4i=0FTi) is shown in Figure 7.11(i).

7.3.2 Fault-tolerance Specification
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Figure 7.12: Fault specification model Fw for w faults

It may be noted that as FTi can tolerate an arbitrary number of faults by ignor-

ing deadlines, there composition FT also preserves the same property. However, our

objective is to tolerate at most w faults in any instance of G′. Hence, we introduce a

fault-tolerance specification model which captures this bound on the number of faults

to be tolerated. Figure 7.12 shows the transition structure of the fault specification

model Fw. This model contains w + 1 distinct states to count w faults. Model Fw al-

lows transition to a distinct state whenever a fault event from the set {f1, f2, . . . , fn} is
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encountered. All states in Fw are marked since the design must be equipped to tolerate

any number of faults between 0 and w.

Given the composite fault-tolerant task execution model FT and fault-tolerance spec-

ification model Fw, we obtain the model FTw, by conducting the synchronous product

operation, i.e., FTw = FT ||Fw. The marked behavior Lm(FTw) contains all execution

sequences that can tolerate at most w transient faults during the execution of a single

instance of G′. However, these sequences may violate the timing constraints related to

deadline and minimum inter-arrival time.
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Figure 7.13: Single fault-tolerant composite task execution model FT1

Example (cntd.): In order to tolerate a single transient fault, fault specification

model F1 can be constructed according to Figure 7.12. Next, we compose FT (in

Figure 7.11(i)) with F1 to obtain the single fault-tolerant composite task execution

model FT1 (= FT ||F1), as depicted in Figure 7.13. It may be noted that Lm(FT1)

contains all execution sequences that have the ability to tolerate at most one transient

fault.

7.3.3 Scheduler Synthesis

In order to determine all sequences in Lm(FTw) that satisfy the stipulated specifications

related to timing, we construct the finite state automaton MF 0 = FTw||H. The TDES

model for the timing specification H remain structurally same (although, the event set

Σ now includes events di and fi in it). Since Lm(MF 0) = Lm(FTw)∩Lm(H), Lm(MF 0)

contains all sequences in Lm(FTw) that satisfy specifications on deadline, sporadicity,

fault-tolerance, resource and precedence constraints. The sequences in Lm(FTw) that

do not satisfy at least one of the above constraints, lead to deadlock states in MF 0, i.e.,

M0 is blocking. Hence, we may apply trim operation to remove the minimal number

of states from MF 0 such that the resulting model (which we refers to MF 1) becomes
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non-blocking. That is, MF 1 = trim(MF 0). Although, the resulting automaton MF 1 is

non-blocking, it is not controllable, as proved in Theorem 7.3.1.

Theorem 7.3.1. Lm(MF 1) is not controllable with respect to L(MF 0).

Proof. Let us consider the set of fault events {f1, f2, . . . , fn}. After executing a common
prefix s on both MF 0 and MF 1 from their respective initial states, if fi is defined at
a given state of MF 0, then fi must also be defined in MF 1. According to Problem
Statement 2, the scheduler must tolerate the occurrence of at most w faults per instance
of G′. It may be noted that there is no restriction on the pattern in which faults can
occur. Therefore, in the worst-case, all w faults may affect the execution of a single
task node (say, τi) in G′. Lm(MF 1) can be controllable only if all sequences in L(MF 0)
which represent scenarios where all w faults affect a single task node lead to marked
states in MF 0. On the contrary, if any of such sequences in L(MF 0) end up in a
deadlock state subsequent to the occurrence of a fault event fi, then the suffix that
leads to the deadlock state in MF 0 will be removed during the construction of MF 1

through the trim operation. Now, Lm(MF 1) does not contain a controllable sequence
corresponding to the sequence in L(MF 0) which represented the valid occurrence of the

fault pattern which lead to the deadlock state in MF 0. Therefore, sfi ∈ L(MF 0) does

not necessarily imply sfi ∈ Lm(MF 1). Hence, Lm(MF 1) is not controllable with respect
to L(MF 0).

Since Lm(MF 1) is not controllable, we cannot apply trim operation on MF 0 to

obtain MF 1. Rather, we compute the minimally restrictive (or maximally permissive)

supervisor that restricts the system behavior to the supremal controllable sub-language

of Lm(MF 0). We can compute this supremal controllable sub-part of MF 0 using the

Safe-State-Synthesis algorithm [104]. This algorithm removes the minimal number of

states from MF 0 until it becomes controllable as well as non-blocking. Let us denote

the resulting model to be MF 1 = supC(Lm(MF 0)). The resulting behavior Lm(MF 1)

is the optimal fault-tolerant schedulable language.

Example (cntd.): Let us assume the deadlineD of PTGG′ (shown in Figure 7.11(b))

to be 5 time units. The timing specification model H for PTG G′ is shown in Fig-

ure 7.11(j). Next, we compose FT1 (in Figure 7.13) and H to obtain MF 0 (shown

in Figure 7.14(a)). Given MF 0, let us analyze the controllability of sequences in

L(MF 0) by considering four distinct example sequences. The first sequence seq4 (=

ac0s1,1td1c1s2,1ttd2c2s3,1td3c3c4 ∈ Lm(MF 0)) is fault-free. The other three sequences seq5

(= ac0s1,1td1 f1s1,1td1c1 s2,1ttd2c2s3,1td3c3c4 ∈ Lm(MF 0)), seq6 ( = ac0s1,1td1c1s2,1ttd2c2
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Figure 7.14: Partial diagram of MF 0 (= FT1||H) for Deadlines (a) D = 5, (b) D = 6.

s3,1td3 f3s3,1td3c3 c4 ∈ Lm(MF 0)) and seq7 (= ac0s1,1td1c1s2,1ttd2 f2s2,1ttd2c2 s3,1 /∈
Lm(MF 0)) represent scenarios where tasks τ1, τ3 and τ2 is affected by a fault, respec-

tively. The subsequences in seq5, seq6 and seq7 marked in red represent the occurrence

of the fault and subsequent re-execution of the fault affected task. It may be observed

that while sequences seq4, seq5 and seq6 are deadline-meeting, seq7 is deadline-missing

and lead to a deadlock state (State 36). Thus, seq7 ∈ L(MF 0) is uncontrollable.

If a trim operation is applied overMF 0 to obtainMF 1, then the suffix f2s2,1ttd2c2s3,1

(marked with red color in Figure 7.14(a)) of seq7 ∈ L(MF 0) is discarded, with the re-

maining part of MF 0 representing MF 1. However, as the prefix (ac0s1,1td1c1s2,1ttd2) of

seq7 is retained in MF 1 and there is no way to prevent the uncontrollable occurrence

of f2 at State 10, MF 1 becomes uncontrollable with respect to MF 0. Therefore, the

operation supC(Lm(MF 0)) is used instead of trim, in order to obtain MF 1 by deter-

mining the maximally accessible part of MF 0 subsequent to the removal of prefixes from

it which may lead to states where transitions representing the potential occurrence of

uncontrollable events will eventually reach deadlock states. For the example under con-

sideration, the application of supC(Lm(MF 0)) determines the accessible part of MF 0

subsequent to the removal of the prefix ac0s1,1td1c1s2,1ttd2, and this results in an empty

set. This implies that the given PTG G′ is not schedulable under the given constraints.

Now, suppose the deadline D of PTG G′ (shown in Figure 7.11(b)) is increased
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from 5 to 6 time units. Under such a modified scenario, we compute the model MF 0

(Figure 7.14(b)) and supC(Lm(MF 0)). Here, Lm(MF 1) (= supC(Lm(MF 0))) is non-

empty and contains execution sequences that can tolerate single transient faults while

meeting timing requirements of G′.

7.4 Satisfying Performance Objectives

The above sections present a systematic methodology for determining the exhaustive set

of all feasible scheduling sequences that satisfy a set of hard constraints related to the

satisfaction of deadline, sporadicity, resource, precedence and fault-tolerance, associated

with a given PTG. This set of feasible scheduling sequences may be further filtered to

obtain the best schedule with respect to one or a combination of chosen performance

parameters such as schedule length, power-dissipation, degree of fault-tolerance, resource

consumption etc. In the following two subsections, we discuss mechanisms to optimize

two such performance objectives: (i) makespan minimization, and (ii) maximizing fault-

tolerance.

7.4.1 Makespan Minimization

We conduct makespan minimization on the set of scheduling sequences obtained as

outcome from the fault-free scheduler synthesis scheme presented in subsection 7.2.1.

For this purpose, we develop a state-space search and refinement procedure which takes

M1 as input and produces the model M2 that contains the set of execution sequences in

Lm(M1) whose makespan is minimum. This algorithm is essentially based on the idea

of Breadth-First Search (BFS) and proceeds as follows:

1. Initialize each state q (∈ Q) of M1 with elapsed time (denoted by q.ET ) to be 0.

Start the search operation from the initial state q0 of M1.

2. Find the set of states that can be reached by a single transition from the states

that have been visited during last iteration.

3. For each newly reached state qx, find the set of all immediate predecessors of qx

and denote this set as Pred(qx).
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3a. If |Pred(qx)| = 1: Let qy be the only predecessor of qx (i.e., δ(qy, σ) = qx).

Compute elapsed time at qx based on whether or not qx is reached on tick

event (t):

qx.ET =

{
qy.ET + 1 if σ = t

qy.ET Otherwise
(7.1)

3b. If |Pred(qx)| > 1: Determine,

∀qy ∈ Pred(qx), ETy =

{
qy.ET + 1 if σ = t

qy.ET Otherwise

Now, qx.ET is obtained as the minimum over the ETy values corresponding to

all predecessors of qx. That is, qx.ET = min
y
{ETy}. For all qy ∈ Pred(qx), if

ETy > qx.ET , remove the transition from qy to qx on σ, i.e., set δ(qy, σ) = ∅.

4. Repeat steps (2) and (3) until all states in M1 are visited.

5. Since, we have removed some of the transitions in M1, we perform reachability

operation starting from the initial state q0 of M1 (transformed) to obtain the set

of states that are reachable from q0. The resulting model consisting only of safe

reachable states is called M2.

The marked behavior Lm(M2) contains all and only the execution sequences whose

makespan is minimal. Anyone of the execution sequences in Lm(M2) can be used to

schedule tasks on-line.

Example (cntd.): Application of the makespan minimization procedure on M1

shown in Figure 7.9 results in M2 with contains sequences with maximal makespan of 4

time units. For example, the sequence seq3 (= ac0s1,1tc1s2,1s3,2tc2s4,1tc3c4s5,1tc5c6) with

makespan 4 is retained in M2 while seq2 (= ac0s1,1tc1s2,1s3,2tc2s4,1tc3c4ts5,1tc5c6) having

makespan 5 is eliminated. The gantt chart representation of the schedule using seq3

(Figure 7.15(a)) as the scheduler, is shown in Figure 7.15(b).
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Figure 7.15: (a) Supervisor, (b) Gantt chart representation

7.4.2 Maximizing Fault-tolerance

The makespan minimization objective is achieved through an adaptation of BFS on

the fault-free version of the final supervisor M1. On the other hand, the procedure

for deriving the maximally fault-tolerant supervisor is conducted through a systematic

iterative application of the fault-tolerant supervisor synthesis mechanism discussed in

Section 7.3. It may be noted that the synthesis mechanism in Section 7.3 produces a

supervisor containing sequences which are tolerant to a stipulated number of faults. The

maximization procedure starts by determining lower (wmin) and upper bounds (wmax) on

the number of faults that may possibly be tolerated in the system at hand. Initially wmin

is set to 0. The upper bound wmax is computed using the following two observations:

(1) Given Ecri, the length of the critical path, and deadline D of PTG G′, the maximum

spare time for re-executing fault affected tasks, is given by: D −Ecri, (2) All sequences

in the maximally fault-tolerant supervisor must be controllable even when all faults

affect the task having maximal execution time among nodes in G′. Therefore, wmax is

obtained as: wmax = bD−Ecri
Emax

c, where, Emax = max
i
Ei. In order to find the maximally

fault-tolerant supervisor that can tolerate wopt faults (wmin ≤ wopt ≤ wmax), we apply an

interval bisection based iterative sequence filtering technique presented in Algorithm 11.

Finally, the resulting model MF 1 contains all possible execution sequences in which each

instance of PTG G′ can tolerate at most wopt faults.

Example (cntd.): Let us consider the example PTG G′ (Figure 7.11(b)) with D as

10 time units. Under this scenario, initial value of wmin is 0 and wmax is (b10−4
2
c =) 3.

Application of Algorithm 11 on G′ returns a supervisor MF 1 with sequences which can

tolerate at most (wopt =) 3 faults.
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ALGORITHM 11: MAXIMIZE FAULT-TOLERANCE
Input: The composite fault-tolerant task execution model FT
Output: MF 1, wopt

1 Initialize wmin to 0;
2 Initialize wmax to bD−Ecri

Emax
c;

3 while wmin ≤ wmax do
4 wopt = b(wmin + wmax)/2c ;
5 Build TDES model Fwopt for fault specification to tolerate wopt faults (refer

subsection 7.3.2);
6 Compute MFw = FT ||Fwopt ;
7 Compute the initial supervisor candidate, MF 0 = MFw||H;
8 MF 1 = Computer supremal controllable sup-part of MF 0;
9 if the state set Q of MF 1 is non-empty then

10 wmax = wopt − 1;

11 else
12 wmin = wopt + 1;

13 return MF 1, wopt;

7.5 Complexity Analysis

Application
(PTG G)

Multi-core W faults

PTG G’

Task τ0 
FT0

Task τ1 
FT1

Task τn+1 
FTn+1

Composite Fault-tolerant Task 
Execution Model 

(FT = FT0 || FT1 || … || FTn+1)

Fault-tolerant Task Execution Models

FTw = FT || Fw

Fault 
Specification

Fw

MF0 = FTw || H
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Specification

H

MF1 = supC(MF0)
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Timer Fault-tolerant Scheduler Task Execution
On-line

Off-line

Yes

No

Figure 7.16: Proposed Scheduler Synthesis Framework.

A schematic diagram representing the overall flow of the fault-tolerant scheduler

synthesis framework has been summarized in Figure 7.16. We now present a step-wise

discussion on the complexity of the proposed (fault-tolerant scheduler) synthesis scheme.

1. The state-space complexity of FTi (shown in Figure 7.10) is computed as fol-

lows: State #4 of FTi has m branches emanating from it based on the events
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{si,1, si,2, ..., si,m} representing the start of task τi’s execution on anyone of the m

processors. With execution time being Ei, each of these m branches contain Ei

states due to transitions on tick events. Therefore, the state-space complexity of

FTi becomes O(mEi).

2. The state-space complexity of models FT0, FTn+1 and Fw are constant.

3. The state-space of H (in Figure 7.7) is O(P ) because distinct states are used to

count the occurrence of each tick starting from the arrival to the minimum inter-

arrival time of G′.

4. Given n DESs FT0, FT1, ..., FTn+1, an upper bound on the number of states in

the composite fault-tolerant task execution model FT is given by:
∏n+1

i=0 |QFTi |,
where |QFTi | (= O(mEi)) is the total number of states in FTi. Similarly, the total

number of states in the composite model FTw is: |QFT | × |QFw |. Thus, the total

number of states in MF 0 is: |QFTw| × |QH |.

5. The time complexity of the Safe-State-Synthesis algorithm [77] which is used for

computing Lm(MF 1) (= supC(Lm(MF 0))) is polynomial in the size of MF 0.

It may be seen that the number of states in the composite model MF 0 grows expo-

nentially as the number of tasks, processing cores and faults to be tolerated, increases.

So, the proposed scheme may be highly time consuming and unacceptably memory in-

tensive even for moderately large systems, thus severely restricting scalability, especially

for industrial applications with many tasks. Over the years, BDD (Binary Decision Di-

agram) based symbolic synthesis mechanisms have proved to be a key technique towards

the efficient computation of large finite state machine models including SCTDES based

supervisors [77]. The steps to symbolically compute the composite model from a given

set of individual models, and final supervisor can be found in the literature [38, 41,77].

7.6 Experimental Results

In this section, we evaluate our proposed scheme through simulation based experiments.
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Real-time Applications: We have considered three real-world parallel applications

namely, Fast Fourier Transform (FFT), Gaussian Elimination (GaussElim) and Epige-

nomics [55,103,109]. Figure 7.17(a) shows a commonly used sample PTG representation

of the FFT application with ρ = 4. Here, ρ is used as the size of FFT and the total

number of nodes n = (2 × ρ − 1) + ρ × log2ρ, where ρ = 2y for some integer y [109].

The first part of the RHS expression gives a number of recursively invoked task nodes,

and the second part gives the number of butterfly operation task nodes. Figure 7.17(b)

shows an example of the GaussElim application with ρ = 5, and the total number of

nodes is n = (ρ2 + ρ− 2)/2 [109]. Figure 7.17(c) shows an example of the Epigenomics

application with ρ = 4, in which the total number of nodes is given by n = (4×ρ)+4 [55].
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Figure 7.17: (a) FFT Graph [103], (b) Gaussian Elimination Graph [109], and (c) Epige-
nomics [55]

Simulation Setup: Execution times of task nodes (Ei) are randomly generated

from a normal distribution with mean µ = 25 and standard deviation λ = 10. For

each PTG, we computed the summation of execution times of all nodes along its critical

path, Ecri. Then, we set the deadline D such that D > Ecri and D > d
∑

ni∈G′ Ei

m
e. We

also set D = P . Given a PTG and m cores, we have constructed their execution and

timing specification models, using our Python scripts which are tailored according to

the generalized models presented in our framework. The scheduler synthesis steps have

been implemented using TTCT tool [2]. The computations were performed using a 24

Core Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.2 GHz with 64 GB RAM running linux
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kernel 2.6.32.

Performance Metrics:

• Schedule Length Ratio (SLR) is obtained as the ratio of the actual schedule length

to the summation of execution times of all task nodes in the critical path (CP).

i.e., SLR = makespan∑
ni∈CP

Ei
.

• Efficiency = Speedup
m

, where, Speedup =

∑
τi∈G′

Ei

makespan
.

• Fault-tolerance measures the number of transient faults to be tolerated per instance

of G′.

Related works considered for comparison: In the context of production schedul-

ing, several heuristic strategies have been proposed to solve the makespan minimization

problem of PTGs on parallel machines [89, 91]. These strategies consider different pri-

ority rules to choose a task node for execution from the available ready nodes.

• Longest Execution Time (LET): the task node with the maximum execution time

is selected.

• Shortest Execution Time (SET): the task node with the minimum execution time

is selected.

• Largest Number of Successors (LNS): the task node with the largest number of

immediate successors is selected.

• Largest Remaining Load (LRL): the task node with the largest load to be executed

by its successors (starting from the immediate successors to the sink node) is

selected.

In case of ties among multiple ready nodes, we have considered the node with the

smaller execution time. We now compare our proposed work with the above approaches.
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Figure 7.18: Average Schedule Length Ratio.

Experiment 1: Measuring Schedule Length Ratio: This experiment measures

the average schedule length ratios of applications under the different scheduling schemes

mentioned above. For this purpose, we set the number of processing cores m to 4 and

varied the number of task nodes n in the PTG. The results are reported in Figure 7.18.

It may be observed that the average SLR is almost same when the number of nodes in

the PTG is small. As the number of nodes increases, our proposed approach is able to

minimize the makespan which results in significantly lower average SLR compared to

other schemes. Among the other scheduling schemes, LRL performs better due to its

ability to always choose the subset of ready task nodes whose execution will minimize

makespan.

The performance of the remaining schemes (SET, LET, LNS ) varies depending on

the PTG structure and execution times of nodes. In case of the FFT application (Fig-

ure 7.18a), LET outperforms both SET and LNS. With respect to GaussElim applica-

tion (Figure 7.18b), LNS performs better than SET and LET. This is because GaussElim

contains a substantial number of nodes with multiple outgoing edges and LNS selects

such nodes for execution to minimize the makespan. On the other hand, SET and LNS

peform well compared to LET for the Epigenomics application (Figure 7.18c). This is

due to the presence of task nodes with smaller execution times at the start of some of

the parallel branches in Epigenomics. Since, LET delays the execution of such nodes

in the presence of other ready task nodes with higher execution times, the execution of

entire branch gets delayed. Consequently, makespan of the resulting schedule increases.
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Figure 7.19: Measuring efficiency by varying the number of processing cores

Experiment 2: Measuring Efficiency : This experiment measures and compares

the efficiency of the different scheduling schemes. We set the number of task nodes n

to 39, 44 and 40 for FFT, GaussElim and Epigenomics, respectively. The number of

processing cores m is varied from 2 to 10. The results are presented in Figure 7.19. It

may be observed that efficiency of our proposed scheme is better than other schemes

when m is relatively small. As the number of cores increases, the processing capacity

of the platform increases. Since, the computation demand of an application remains

constant, efficiency of all schemes decreases.
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Figure 7.20: Measuring fault-tolerance by varying deadline

Experiment 3: Measuring Fault-tolerance : This experiment measures and

compares the fault-tolerance capability of our proposed scheme along with other schedul-

ing schemes. We set the number of task nodes n to 39, 44 and 40 for FFT, GaussElim

and Epigenomics, respectively. The number of processing cores m is set to 4. Here,

we have varied the deadlines associated with the applications. Specifically, we have in-
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creased the deadline by up to 25% (denoted by 0.25 in x-axis of Figure 7.20) from its

initial value (which is represented by 0 in the x-axis of Figure 7.20). The results are

presented in Figure 7.20. It may be observed that our scheme is able to tolerate a higher

number of faults compared to other schemes. This is due to the ability of our scheme to

minimize makespan so that the additional remaining time before deadline may be more

effectively used to re-execute task nodes affected by faults.

7.7 Summary

In this work, first we have developed an offline scheduler synthesis framework for multi-

cores executing real-time applications modeled as precedence-constrained task graphs.

Then, we have extended our proposed scheme to handle transient processor faults that

may affect task execution. The synthesized scheduler not only controls task execution

but also drives the system to safe execution states such that all timing requirements

associated with a given PTG is satisfied, even in the presence of uncontrollable tran-

sient processor fault events induced by the environment. Next, we have upgraded the

scheduler synthesis framework to incorporate performance objectives such as makespan

minimization and fault-tolerance maximization. Conducted experiments reveal the prac-

tical efficacy of our scheme. The next chapter summarizes the contributions of this

dissertation and discusses a few possible extensions this research.
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Chapter 8
Conclusions and Future Perspectives

8.1 Summarization

In spite of the progressively increasing computing capabilities of hardware platforms,

effective allocation of computing resources to diverse competing applications is set to

remain a daunting problem in safety-critical real-time embedded systems. This is be-

cause, these systems impose stringent timing, resource, performance and safety related

constraints which must be accurately captured in the design process in order to en-

sure proper functioning of the system. In this context, scheduling acts as a vital de-

sign component which determines an appropriate co-execution order for the application

tasks such that the desired performance objectives may be achieved while satisfying all

constraints. This thesis deals with the scheduler synthesis for safety-critical real-time

systems, using SCTDES as an underlying formalism. Scheduler synthesis based on the

SCTDES framework starts with the modeling of individual components and their associ-

ated constraints. Such model-based design of safety-critical systems is very complex and

challenging. Here, we enumerate a few challenging constraints which must be considered

during the development of models for a given system configuration.

• The first challenge relates to the modeling of timing constraints associated with the

various types of computation activities (i.e., tasks) that occur in such systems. The

timing constraints of tasks are captured by their execution requirements, deadlines

and arrival patterns (i.e., time-triggered, event-triggered).
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• Modeling of the execution behavior of tasks (whether preemptive or non-preemptive)

on a given processing platform. Also, the tasks may be independent or precedence-

constrained.

• Modeling of resource constraints imposed by the underlying hardware platform

on which the system is implemented. Over the years, the nature of execution

platforms is witnessing a shift from single core to homogeneous and heterogeneous

multi-cores, where several applications share the same platform [4].

• Modeling of safety and performance related constraints such as fault-tolerance,

peak power minimization, makespan minimization etc.

In recent years, many researchers have shown that SCTDES can be used for the design

of real-time schedulers [29, 53, 85, 87, 105–107]. Most of these approaches are targetted

towards the scheduling of time-triggered (i.e., periodic) applications on a uniprocessor

platform. A few of them have also attempted to handle event-triggered (i.e., aperiodic,

sporadic) applications. However, these works have not been able to correctly model the

characteristics / constraints associated with event-triggered tasks. Subsequently, the

applicability of the above schemes have been limited only to a certain smaller subset

of safety-critical systems. In this thesis, we have attempted to develop models which

can address some of the major challenges highlighted above. In particular, scheduler

synthesis schemes presented in Chapter 3 considered both the non-preemptive as well as

preemptive scheduling of real-time sporadic tasks on uniprocessor platforms while, the

remaining chapters (from 4 to 7) dealt with the scheduling of tasks on multiprocessor

platforms. Specifically, Chapter 4 presents the fault-tolerant scheduler synthesis scheme

which can tolerate a single/multiple permanent processor faults that may happen during

the preemptive execution of set of dynamically arriving aperiodic tasks. In Chapter 5, we

have attempted to synthesize a chip level peak power aware scheduler for a set of periodic

tasks executing non-preemptively on a homogeneous multi-core platform. Next, we have

considered the scheduling of periodic tasks on a heterogeneous processing platform in

Chapter 6. Then in Chapter 7, our last contributory chapter, we proposed models
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that can be used to synthesize scheduler for real-time applications that are modeled as

precedence-constrained task graphs. We now present brief summaries of these works in

more detail.

In Chapter 3, our first contributory chapter, we have presented scheduler synthesis

frameworks for real-time sporadic tasks executing (non-preemptively / preemptively) on

uniprocessors. Although, in recent years, there has been a few significant works dealing

with real-time scheduling using SCTDES, this is possibly the first work which addresses

the scheduler synthesis problem for sporadic tasks. Our first framework considered the

scheduling of dynamically arriving aperiodic tasks. Then, proposed models have been

extended towards sporadic tasks. We have also illustrated the scheduler synthesis process

using a motor network example. Next, our second framework proposed the synthesis of

preemptive scheduler for sporadic tasks. The synthesized scheduler is guaranteed to be

work-conserving, i.e., it will never keep the processor idle in the presence of ready to

execute tasks. The scheduler is also able to support concurrent execution of multiple

accepted tasks and correctly model the inter-arrival time requirement of a sporadic task.

The practical applicability of our proposed framework has been illustrated using an

industrial control system example.

In Chapter 4, we have presented a systematic way of synthesizing an optimal fault-

tolerant scheduler for multiprocessor systems which processes a set of dynamically ar-

riving aperiodic tasks. First, we have developed models that can be used to synthesize a

single permanent processor fault-tolerant scheduler and then, extended it towards toler-

ating multiple faults. It may be noted that the state-space of the fault-tolerant scheduler

synthesized using our proposed models increases exponentially as the number of tasks,

processors, faults to tolerated increases. Hence, we have devised a mechanism to obtain

a non-blocking supervisor using BDD based symbolic computation. This has helped us

to control the exponential state space complexity of the optimal exhaustive enumeration

oriented synthesis methodology.

Apart from providing tolerance against processor faults, safety-critical systems im-

plemented on modern multi-core chips with high gate densities, must adhere to a strict
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power budget called TDP constraint, in order to control functional unreliability due to

temperature hot-spots [78]. Hence, in Chapter 5, we have presented a systematic way of

synthesizing an optimal scheduler for non-preemptive real-time tasks on multi-core sys-

tems with pre-specified chip level peak power constraints. The synthesis process starts

with the development of the execution models for tasks and resource-constraint models

for processing cores. Composition over these models ultimately provides the deadline

and resource constraint satisfying supervisor. Further, the power-constraint violating

sequences are filtered-out from the initial supervisor through a search and refinement

mechanism. Subsequently, the targeted supervisor containing only scheduling sequences

that dissipate minimal power is retained. To control state-space complexity involved in

the synthesis process, a BDD based computation flow has been designed correspond-

ing to the TDES oriented construction steps. Finally, we presented the experimental

evaluation of our proposed framework using real-world benchmark programs. With re-

spect to the state-of-the-art related works [67, 78], our framework is able to minimize

the peak-power and improve the acceptance ratio of task sets.

In the earlier chapters, we have assumed the processing cores in a multi-core plat-

form to be identical (i.e., homogeneous). However, the nature of processors in embedded

systems is changing over the years. Therefore, in Chapter 6, we dealt with the synthesis

of scheduler for a set of independent, non-preemptive periodic tasks executing on het-

erogeneous multi-cores. The synthesis process begins by developing the task execution

models for each periodic task which effectively captures a task’s, (i) distinct execution

requirements on different processing cores, (ii) deadline requirement and (iii) fixed inter-

arrival time constraint between any two consecutive instances. Then, we developed for

each processor the specification models in order to enforce resource-constraints. Through

a synchronous product on the individual models, we obtained the composite task exe-

cution model and specification model. Finally, the scheduler which contains the set of

valid execution sequences, that can be used during on-line execution, is synthesized. We

have also discussed the optimality and working of the scheduler synthesized using our

proposed models.
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In the earlier chapters, we have assumed the real-time tasks to be independent.

However, they are also often modeled as PTG where nodes represent tasks and edges

represent inter-task dependencies. Hence, in Chapter 7, as our last contributory chapter,

we have delved towards the synthesis of scheduler for multi-cores executing real-time

applications modeled as PTGs. We have also extended our proposed scheme to handle

transient processor faults that may affect task execution. The synthesized scheduler not

only controls task execution but also drives the system to safe execution states such that

all timing requirements associated with a given PTG is satisfied, even in the presence

of uncontrollable transient processor fault events induced by the environment. Next, we

have upgraded the scheduler synthesis framework to incorporate performance objectives

such as makespan minimization and fault-tolerance maximization. Simulation results

revealed that the proposed scheme is able to minimize the makespan and improve the

fault-tolerance capability of real-time systems executing PTGs, compared to the other

existing schemes.

In summary, the work conducted as part of this thesis deals with the development

of formal correct-by-construction scheduling methodologies for different types of real-

time applications (including aperiodic, periodic, sporadic; with / without preemption

etc.) on platforms ranging from uniprocessors to homogeneous as well as heterogeneous

multiprocessors. Techniques necessary to imbibe fault-tolerance, power awareness etc.

within the designed scheduler synthesis mechanisms, have also been proposed. BDD-

based symbolic computation techniques have been devised to control the inherent state-

space complexities associated with the scheduler synthesis mechanism.

8.2 Future Works

The work presented in this thesis leaves several open directions and there is ample scope

for future research in this area. In this section, we present three such future perspectives.

• Verification of the individual TDES models for correctness: Given a sys-

tem and its specification model, the supervisor synthesized using the SCTDES

framework is provably correct-by-construction [18]. However, this correctness prop-
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erty is based on the assumption that the designs of individual system and specfica-

tion models are sound and complete. It is obvious that adhoc mechanisms cannot

be employed to make such strong guarantees on the correctness of the individual

models. Handcrafted models developed by the system engineers based on their

domain knowledge and experience may often be prone to design flaws as depicted

by us in [40]. For example, Park and Cho [86] presented a systematic way of com-

puting a largest fault-tolerant and schedulable language that provides information

on whether the scheduler (i.e., supervisor) should accept or reject a newly arrived

aperiodic task. The computation of such a language is mainly dependent on the

task execution model presented in their paper. However, the task execution model

is unable to capture the situation when the fault of a processor occurs even before

the task has arrived. Consequently, a task execution model that does not cap-

ture this fact may possibly be assigned for execution on a faulty processor. This

problem has been illustrated with an appropriate example in [40].

To avoid the issues associated with individual models, we may apply automated

verification techniques to identify and correct the presence of possible errors in the

developed models. For this purpose, formal approaches such as model checking1

seem to be an attractive alternative. In order to apply model-checking, the proper-

ties of interest, the correctness of which we desire to check, must first be identified.

Given these properties, model checking through the following three steps: (1) The

model M must be specified using the description language of a model checker;

(2) The specification language must then be used to code the properties and this

will produce a temporal logic formula φ for each specification; (3) Run the model

checker with inputs M and φ. The model checker outputs YES if M satisfies φ

(represented by M � φ) and NO otherwise; in the later case, a counter-example in

the form of a trace of the system behavior exhibiting the violation of the property

is produced. The automatic generation of such counter traces is an important

tool in the design and debugging of safety-critical systems. When a model check-

1Model checking [35] is an automatic, model-based, property-verification technique for finite state
concurrent systems.
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ing mechanism is applied on the handcrafter system and specification models, we

can ensure the soundness and completeness of these models against our chosen

properties of interest.

• Scheduler synthesis for distributed processing platforms: In the current

research work, we have assumed a tightly-coupled interconnection of individual

processing elements. Hence, inter-processor communication delays have been ig-

nored. However, in a loosly-coupled distributed processing platform, such an as-

sumption does not hold [103]. In addition, depending on the type and structure of

the interconnection network between processing elements, the interprocessor mes-

sage transmission time may significantly vary. To match the requirements of the

distributed systems mentioned above, the research presented here must be suitably

adapted.

• Minimizing temporal overheads related to supervisor computation: Given

the initial supervisor candidate S0, SAFE STATE SYNTHESIS (Algorithm 1)

removes the minimal number of states from S0 such that it becomes both con-

trollable and non-blocking. This technique essentially conducts a search over the

entire state-space of S0 to remove blocking states. This search can be parallelized

to minimize the total amount of time taken to compute the final supervisor [74].
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