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Abstract

In today’s digital age, our everyday life is filled with digital multimedia data as one
of the primary forms for communication. Such data can be generated, processed,
stored and transmitted in digital format in a very easy manner due to the widespread
availability of inexpensive cameras, computers and user-friendly editing tools. As
a result, Computer Vision (CV) systems supported by Machine Learning (ML)
and Deep Learning (DL) techniques are now pervasive to process such multimedia
content and have influenced every domain of life, ranging from security from various
malware and attacks, healthcare and finance. However, with modern technologies
in sophisticated editing tools and DL models, it becomes a critical task to protect
CV systems from digital image attacks. This thesis focuses on detecting a spectrum
of digital attacks at the image level.

Digital images play a pivotal role for carrying important information in many
real-world fields. With developments in user-friendly editing tools and DL models,
manipulating or attacking digital images becomes an easy task. These attacks have
become advanced enough to trick CV systems and deceive Human Vision (HV)
systems. Therefore, authentication of digital images is necessary. The thesis mainly
focuses on (i) detection of face swap attacks (ii) detection of Copy-Move Forgery
(CMF) attacks and (iii) detection of facial adversarial attacks.

Face swapping transfers the face of a source image to the face of a destination
image or vice-versa while preserving photo realism. Although it has many
applications, including computer gaming and entertainment, it could also be used
for malicious or fraudulent purposes. We propose a method to create face swap
attacks on original images and a technique to defend against them. Augmented 81-
facial landmark points are extracted for creating the face swap attacks. The features
are provided to Support Vector Machines (SVMs). The proposed detection method
detects face swap attacks with 95% accuracy on a real-world dataset.

In CMF attacks, the attacker copies some regions of the image and pastes them
into one or more regions of the same image. This attack’s main aim is to cover or
emphasize essential scenes in an image. We propose a detection method for such
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ABSTRACT

forgery regions based on Binary Robust Invariant Scalable Keypoints (BRISK) and
Speeded Up Robust Features (SURF) descriptors. Both fused features are matched
and clustering is performed to reduce false positives. The proposed method is tested
on real-world copy-move datasets. Experimental results show that our method is
robust against various geometric transformations and precisely determines the forged
regions.

ML models and especially DL models have impressively performed on per-
ceptual tasks over the past few years. However, these models remain vulnerable
to carefully crafted small perturbations, popularly known as adversarial attacks.
Adversarial attacks modify an input by adding small perturbations to cause the
classifier to misclassify the input. Such attacks become more problematic when
they are used for pedestrians and in autonomous vehicles. Therefore, the detection
of adversarial attacks is essential for the rightful and confident usage of DL-based
solutions in the real world. As face provides a rich source of information, we propose
novel defense methods to detect different types of adversarial facial attacks. The
proposed defenses are evaluated on real-world datasets and experimental results
show that they are robust against a wide range of adversarial face attacks.

11
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Chapter 1

Introduction

In today’s digital era, our day-to-day lives are filled with digital multimedia content

as one of the primary forms of communication. Due to the availability of low-cost

smartphones, cameras, computers and user-friendly editing tools, such content can

be generated, processed, stored and transmitted in digital format in a very easy way.

As a result, CV systems supported by ML and DL are now widespread to process

such multimedia content for decision making. These systems have an impact on

every domain of life, including security from various attacks and malware, industry,

military, finance and healthcare. The enormous success of CV can be attributed to

improvements in the algorithms, the accessibility of powerful computing resources,

and the availability of massive datasets for various purposes. However, with modern

technologies and DL algorithms, it becomes a challenging task to protect CV systems

from digital image attacks. Thus, besides the technical and economic advantages,

the rising of digital information has produced challenging problems with multimedia

security and reliability.

Digital images play a vital role and are one of the most shared forms of digital

multimedia content. They reveal information that is sensitive to a user such as

their age, gender, dressing style, the presence of people and their relationship [13].
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1 Introduction

Figure 1.1: Face attacks on facial images [1]

These images are used in various applications such as surveillance, courts of law

as a piece of evidence for crimes, journalism, scientific publications and medical

imaging [2]. With the development of many image editing tools like Snapchat,

Paint, etc. and DL models such as Generative Adversarial Networks (GANs) and

Convolutional Neural Networks (CNNs), it becomes easy even for non-professionals

to manipulate and create digital image attacks or fake images. A digital image

attack modifies the content of the original digital image and creates a fake digital

image. Its intention is to either cover or emphasize important regions of the image

or create a digital attack for illegal purposes. For example, mobile applications

and open software such as ZAO1 and FaceApp2 have opened a facility to anyone

to generate digital attacks either in images or videos, without any expertise in the

field. Such digital attacks could be used for malicious or fraudulent purposes such

as targeted commercial, political advertising, viral Internet memes and pornography

[14]. For example, DeepFakes [15] produces videos in which people perform actions

or say things that never occurred. The most harmful applications of DeepFakes

1https://apps.apple.com/cn/app/id1465199127
2https://apps.apple.com/gb/app/faceapp-ai-face-editor/id1180884341
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involve financial frauds, hoaxes, fake news and fake pornography [16]. Deb et al. [1]

presented a diversity of attacks on face images as shown in Fig. 1.1.

Face swap is one of such digital attacks. It transfers the face from a source

image to the face of a target image or vice-versa while preserving attributes such as

facial expression, lighting, color, head pose, etc. Its intention is to create a face swap

attack either in a video or image. Fig. 2.3 shows examples of face swap attacks.

It has numerous applications in computer games, cinematic entertainment, face

emotion recognition [17], preserving privacy [18] and entertainment [19]. However,

it is also associated with viral Internet memes [14] and could also be used for

malicious or illegal purposes. Zhang et al. [20] proposed the first work to address

the detection of face swapping. They detected SURF [21] keypoints and performed

k-means clustering over all selected SURF descriptors from the training data to

form a Bag of Words (BoW) model. The features are provided into either linear

or non-linear based ML models to predict their authenticity. It remains an active

problem as face swap results appear more realistic and unedited.

Figure 1.2: Examples for face swap attacks: Source image, destination image and

face swap attack row-wise respectively

One of the most actively investigated attacks in digital image forensics is the

CMF attack. It copies some regions of an image and pastes them into one or more
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parts of the same image and creates a forgery image. The purpose of this attack is

to either hide or emphasize important objects of the original image and creates one

more tampered image intentionally. It is a widely used attack to create tampered

images because it is more complicated to detect as some features of the forged region

such as noise and color are highly similar to the remaining regions of the image. Fig.

1.3 shows an example of CMF attack. The photo had appeared in Press July 2008,

showing that four Iranian missiles were launched. Later, it was proved that three out

of four were real and the other is fake. The original image is on the left side. On the

right side, the forged image in which the original and forged regions are encircled.

Fridrich et al. [22] proposed the first work based on Discrete Cosine Transform

(DCT) for detection of Copy-Move Forgeries (CMFs). The image is partitioned into

fixed-sized overlapping blocks at raster-scan and DCT is computed on each block.

The feature vectors are lexicographically sorted to match and reduce the matching

search space. Euclidean distance is used to compute the similarity between the

feature vectors. Christlein et al. evaluated various Copy-Move Forgery Detection

(CMFD) methods [23]. It is difficult to detect CMF attacks because the source and

destination images for forgery are the same [24].

Figure 1.3: Copy-move forgery photograph released by Iran (appeared in The New

York Times in July, 2008) [2]
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In recent years, ML and DL models in particular have gained popularity in

various applications including image classification [25], natural language processing

[26], object detection [27], sentiment analysis [28] and multi-modal [29]. Despite

their success in many applications, these models remain vulnerable to a particular

class of malicious attacks known as adversarial attacks [10,30]. Adversarial attacks

are intentionally created by adding small perturbations to the input to cause the

classifier for misclassification with high confidence. Such attacks can involve small

but pathological modifications causing ML models to misclassify while humans can

barely notice the perturbations. To determine if adversarial images are outside the

distribution of the training data, Grosse et al. [31] employed a model-agnostic

statistical test. They note that adversarial samples produced by some attacks can

be located in various areas of the output surface as opposed to typical inputs and

can be identified via statistical analysis. Detecting adversarial attacks is still a

challenging task because DL-based adversarial attacks are intentionally created with

key properties as follows: (i) maintaining the usefulness of images such that humans

cannot identify the distortion; (ii) hiding the distortion such that a method cannot

determine it; and (iii) preventing the deduction of a mapping between the true class

and the class of the distorted image assigned by the classifier. That is, adversarial

attacks are generated so that the impact of distortion on the adversarial image

should be imperceptible, irreversible and undetectable.

A privacy violation may occur when a classifier infers sensitive information

without user consent from fake digital images. Therefore, it is imperative to be able

to protect digital content from digital image attacks to guarantee its security and

truthfulness. The research community is active in this area, developing sophisticated

and precise solutions for protection and authentication. In this thesis, we focus on

detecting and mitigating the effect of digital image attacks to protect CV-based

systems. We extracted encoded features from the input and provided them into
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1.1 Motivation of the Research Work

Figure 1.4: Original images (in the first row) and their adversarial images

either linear or non-linear ML models to detect swapped face images from the

original. The fused features of SURF and BRISK descriptors are matched to address

CMF attacks. As it is imperative to protect DL models from adversarial attacks, we

propose various defense methods against a wide range of facial adversarial attacks.

1.1 Motivation of the Research Work

Given an image and the ease with which digital image attacks may be generated

and distributed, it becomes increasingly difficult to know whether the image is real

or if it is a fake one. Therefore, the verification of image originality is required in

several CV applications such as scientific, military, media, entertainment, forensic,

etc. [32]. Although there are many detection methods that have been proposed

in the literature to defend against fake digital images from the original [3, 33], the

research community is still active and working on advanced and accurate methods

for protection and authentication for the following challenges:

• As face swap attack combines the attributes of both the source face and

destination face images, the swapped faces appear realistic and look unedited.

Detecting such attacks effectively is a challenging task and helps to protect CV

systems such as Automatic Face Recognition (AFR), which is an imperative
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feature for face authentication in smart devices, from illegal authentication.

• The attacker sometimes copies some of the regions of an image and pastes

them onto one or more regions of the same image, popularly known as CMF

attacks. As the attacker uses the same image as the source and destination

for creating a CMF attack, properties like the color, noise and illumination

conditions are expected to be well-matched between them. It is extremely

difficult for the human eye to localize and detect such attacks. Therefore,

there is a need to extract distinct features from images to accurately localize

and detect such digital attacks.

• The face offers a rich amount of information, with just milliseconds of

exposure being sufficient to draw implicit inferences about personal qualities

like trustworthiness. The attacker intentionally adds small perturbations to

an input face image to cause ML models for a wrong prediction with high

confidence. Such attacks are known as adversarial attacks and due to their

impact on ML and DL models, they pose a real threat to the real world.

Therefore, there is a need to defend against such attacks to protect ML models

as well as improve their adversarial robustness.

1.2 Contributions of the Thesis

Based on the motivation factors mentioned so far, we present a set of detection

methods against digital image attacks. These methods detect whether an input

image is real or fake. We briefly describe the problems addressed in this thesis.

For each problem, we discuss the formulated detection method and mention the key

observations from our evaluation. The details of these are presented in subsequent

chapters of the thesis.
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1.2.1 Detection of Augmented Facial Landmarks-based Face

Swapping

We formulate the problem of detecting swapped face images from original images.

We extract augmented 81-facial landmarks which include facial landmarks on the

forehead as well. Full face swapping is performed based on the extracted augmented

81-facial landmarks of both the source face and destination face image. We extract

encoded features Weighted Local Magnitude Patterns (WLMP) from images and

feed them into different types of SVMs. We call the detection method as Face Swap

Attack Detection (FSAD) for brevity. We evaluate the performance of our proposed

FSAD on a real-world dataset and the key observations are summarized as follows:

• Linear-SVM and Polynomial-SVM achieve a precision of 96% and recall value

of 94% for swapped face images with a detection accuracy of 95%.

• Both Sigmoid-SVM and Gaussian-SVM achieve the same values for precision

and recall for both fake and original images with an accuracy of 74%.

• Linear-SVM and Polynomial-SVM outperform Sigmoid-SVM and Gaussian-

SVM in terms of all parameter values.

1.2.2 Detection of Copy-Move Forgery Attacks

We formulate the problem of localization and detection of CMF attacks in digital

images. We extract SURF and BRISK descriptors. We match both fused features

and perform clustering using Hierarchical Agglomerative Clustering (HAC) to reduce

false positives. The objective is to accurately localize and detect CMFs present

in the image. We evaluate our detection method on real-world CMF datasets

and experimental results are presented in terms of True Positive Rate (TPR) and

False Positive Rate (FPR) with varying threshold t. We also compare the results
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of our detection method with the State-Of-The-Art (SOTA) methods. The key

observations from the numerical evaluation are as follows:

• Our detection method achieves the highest 98% TPR and lowest 7.5% FPR

at the threshold 0.09.

• It outperforms some of the SOTA methods in terms of TPR and running time.

1.2.3 Defense Methods against Facial Adversarial Attacks

We formulate the problem of defending against facial adversarial attacks from clean

images. We generate different kinds of facial adversarial attacks and also present

the results obtained after facial adversarial attacks. We extract distinct feature

descriptors from face images and provide them to various types of classification

models to defend against facial adversarial attacks from clean images. We evaluate

our defense methods on real-world datasets. The performance of our methods is

demonstrated with different types of classifiers. The key observations are as follows:

• Linear SVM outperforms the remaining classifiers in terms of all evaluating

parameters for detecting intensity-based facial adversarial attacks.

• WLMP features effectively highlight intensity-based adversarial noises in face

images.

• Error Level Analysis (ELA) is effective in highlighting geometry-based adver-

sarial noises in face images.

• Logistic Regression (LR) outperforms the remaining classification models in

terms of all metrics with 0.99 precision, 1.00 recall, 1.00 F1-score and 99.75%

accuracy for detecting geometry-based facial adversarial attacks.
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1.2.4 Image Restoration for Improving Facial Adversarial

Robustness

We formulate the problem of defending against a wide range of facial adversarial

attacks and improving the facial adversarial robustness of classifiers. We generate

facial adversarial attacks based on different kinds of adversarial methods. We restore

the facial adversarial images using image restoration techniques. That is, we bring

back images into the original space from the adversarial space by applying bilateral

(BL) filtering and Super Resolution (SR). WLMP features are extracted and fed

into various classifiers. We evaluate our defense method on real-world datasets. We

also present experimental results before and after image restoration techniques. The

performance of our method is demonstrated on different kinds of classifiers. The key

observations from the numerical evaluation are as follows:

• Linear SVM shows its effectiveness in detecting facial adversarial images from

the original with the highest accuracy of 98.75%.

• After employing image restoration such as BL followed by SR (BL+SR) to the

adversarial images, the classification accuracy improves from 98.75% to 99%

for Linear SVM.

• It is also observed that sometimes BL alone is sufficient to enhance the visual

quality of images, which brings back the low-resolution adversarial images into

the high-resolution original space.

1.2.5 Organisation of the Thesis

The rest of the thesis is organized as follows:

• In the next chapter, we present the background required to understand the

problems we addressed. We also present the SOTA literature on the detection
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of face swap attacks, CMF attacks and adversarial facial attacks.

• In Chapter 3, we address the problem of detecting face swap attacks from the

original. The proposed method extracts WLMP features and provides them

into a classifier to effectively detect swapped face images.

• In Chapter 4, we address the problem of detecting CMF attacks with various

geometric transformations. The fused features of SURF and BRISK are used

to accurately detect various CMF attacks.

• In Chapter 5, we propose defense methods against a wide range of facial

adversarial attacks. The distinct feature analysis is used to effectively detect

both intensity-based and geometry-based facial adversarial attacks from clean

images.

• In Chapter 6, we propose a defense method with improved facial adversarial

robustness. Image restoration techniques are used to improve the facial

adversarial robustness of various classifiers.

• Finally, the thesis ends with a summary and future work in Chapter 7.
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Chapter 2

Background and Literature Survey

This chapter briefly discusses the basic structure of CV, its applications and

challenges in today’s digital world. It also discusses various digital image attacks,

their impact on CV systems and the need for new detection methods against such

attacks. Finally, it discusses the SOTA methods related to detection methods

against digital image attacks.

2.1 Computer Vision

In the current digital age, Internet users have surpassed half the world’s population.

One minute on the internet might not seem like a lot of time, but with billions of users

using it every day, the statistics of what gets done are surprising 1. For instance, in a

minute, users share more than 2,40,000 images on Facebook and post approximately

70,000 images on Instagram. It aggregates to more than 1.8 billion image uploads

per day 2. It shows the impact of digital media content in everyone’s life, irrespective

of their domain of work. Moreover, digital media content has emerged as one of the

main forms of communication and it is also straightforward to create, process, store

1https://www.stackscale.com/blog/internet-one-minute/
2https://www.kleinerperkins.com/perspectives/internet-trends-report-2018/
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Figure 2.1: Major components of computer vision systems

and transmit it in digital format due to the wide variety of smartphones, modern

editing tools, low-cost cameras and computers. Thus, CV systems, mainly supported

by ML and DL models, are now widespread across all the domains to process such

largely generated multimedia content for decision making.

2.1.1 Basic Structure of Computer Vision

“Computer vision is a field of computer science that trains computers to interpret

and understand the visual world in the same way that human does”. CV focuses

on building digital systems that can process, analyze and make sense of visual data

such as images and videos for decision making. The major components of the CV

system are shown in Fig. 2.1.

Acquiring an Image: A digital image is produced by one or more image

sensors such as radar, range sensors, tomography devices, ultrasonic cameras, etc.,

in addition to various kinds of light-sensitive cameras. Depending on the type of

sensor used, the output image data can be a simple 2D image, a 3D amount, or an

image series. As the internet developed in the 1990s, generating massive collections

of images that were accessible online for analysis became easy. In particular,

smartphone technologies with built-in cameras have filled up the globe with low

to high-resolution images and videos. These expanding datasets made it feasible for

computers to recognize specific individuals in images and videos.
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Processing the Image: The digital image is processed to extract a specific piece

of information such as texture, pixels, motion, etc. Based on the application, a

choice is made regarding which regions of the image or image points are important

for processing is taken at some point in the processing. For instance, the regions of

image are as follows:

• Selection of a particular set of points of interest.

• Segmentation of one or more regions of the image which contain a particular

object of interest.

• Application-specific parameter estimation, such as object pose or size.

• Image recognition-classification of a detected object into various groups.

• Image registration of two different views of the same object are compared and

merged.

High-end hardware designed for computing is widely available. As a result,

computing power becomes more accessible and more affordable. In particular, DL

models such as CNNs are used to automate and process large collections of images

easily by taking advantage of the software and hardware capabilities. These models

are often trained by being initially provided with massive datasets with thousands

of labeled or pre-identified images.

Understanding the Image: It is the interpretative step where an object is

identified or classified. During the processing stage, the computer does intricate

computations and formulates relationships with the components of the image to

understand what it represents. The computer does this by using three levels

of data: low level, intermediate level and high level. The low level comprises

image primitives like regions, borders, or texture components. The intermediate

level includes surfaces, boundaries and volumes. The high level includes scenes,
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objects, or events. There are various types of CV systems that are used for various

applications:

• Image segmentation divides a digital image into several subgroups known

as image segments, which serves to simplify further processing or analysis of

the image by decreasing the complexity of the original image.

• Object detection identifies a particular object in an image. Advanced object

detection identifies many objects in an image. It uses (x, y) coordinates to form

a bounding box around the objects.

• Facial recognition Facial recognition is a special type of object detection. It

identifies or confirms the identification of individuals using their faces. It can

be utilized to detect individuals in images or videos in real-time.

• Edge detection is a method used to detect the boundaries of an object

to better interpret what is in the image. It detects edges by identifying

discontinuities in brightness.

• Pattern detection is used to recognize repeated colors, shapes and other

visual components in images.

• Image classification is a fundamental task that classifies images into different

groups by assigning them a particular label.

• Feature matching is a type of pattern detection algorithm. It recognizes

features of the same components across images with different viewpoints to

classify them.

2.1.2 Computer Vision Applications

CV systems are now pervasive and have applications in a wide variety of fields that

depend on computers to interpret images. It is the backbone of an autonomous
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future across many industry sectors, including transportation, healthcare, agricul-

ture, retail, manufacturing and more. Recently, Tesla announced it would transmit

entirely to Tesla Vision3, a camera-based autopilot system, retiring radar. Major

applications of CV include:

• Military uses CV to enable a crucial technology for modern armies that help

security systems identify enemy troops and improves guided missile systems’

targeting capabilities. CV systems also provide battlefield intelligence used

for tactical decision-making, military principles such as situational awareness

heavily rely on image sensors. It is also having a key role in developing

autonomous vehicles to traverse difficult terrain and recognize adversaries.

• Healthcare diagnostics relies heavily on the study of images, scans and

photographs. CV helps to detect anomalies in imagery extracted from

Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging

(MRI) scans with far higher precision than medical practitioners can get. It

also helps to simplify the analysis of various medical images to prevent false

diagnoses and reduce treatment costs.

• Manufacturing industry depends on CV systems for automatic inspection

of faulty goods on the production line and remote inspection of pipelines

and machinery. It helps to flag unusual events or discrepancies and optimize

organizational and control processes. It also provides technology for predictive

maintenance, package inspection, bar code scanning, monitoring and product

assembly.

• Education uses CV for applications such as school logistic support, knowledge

acquisition, attendance monitoring and regular assessments. CV-enabled

webcams are used to monitor students during examinations and make unfair

3https://electrek.co/2021/05/25/tesla-vision-without-radar-warns-limitations-first/
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practices easier to spot through the analysis of eye movements and body

behavior. Initiations have started to enhance the perception of the learners

through the use of CV, especially technologies such as Augmented Reality

(AR) have grown due to online or remote education. “AR is an interactive

experience of a real-world environment where the objects that reside in the real

world are enhanced by computer-generated perceptual information, sometimes

across multiple sensory modalities”. Integrating AR assists students with

various learning skills and enhances the efficacy of the classroom environment.

• Agriculture uses CV-based solutions for weeding, detecting plant health and

advanced weather analysis. It has numerous applications, including drone-

based crop monitoring, automatic spraying of pesticides, yield tracking and

smart crop sorting and classification. These vision-based applications scan

the crops’ shape, color and texture for further analysis. Modern vision-based

technologies enable farmers to cultivate ever-larger fields efficiently. If they are

not properly monitored, plant diseases can lead to painful harvest losses and

crop failures. CV also helps to analyze data generated using drones, satellites

and remote sensors to estimate various parameters and monitor automatically.

• Automotive industry are developing autonomous cars for attending to

various aspects of the real-world. Although the human driver is not yet

replaced, autonomous vehicle technology has made significant progress over

the past few years. The future of self-driving cars heavily relies on CV,

especially DL models, to capture the imagination of the public. CV enables

autonomous vehicles to interpret their surroundings such as road edges, traffic

signs, objects, people, other vehicles, etc. Cameras record video from various

perspectives and then provide it to CV software to process and make sense of

the visual data in real-time.
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• Retail industry such as Amazon and Flipkart use their digital platform’s

analysis capabilities to analyze customer behavior in detail and to optimize

the user experience. CV systems help the retail industries from marketing and

sales to customer service and retention. It also provides useful insights into

consumer behavior and helps to up-sell and cross-sell.

• Transportation uses CV systems to detect traffic signal violators and allow

law enforcement agencies to minimize unsafe on-road behavior. Intelligent

sensing and processing solutions are also being used to detect speeding and

wrong side driving violations, among other disruptive behaviors. It is also

being used by intelligent transportation systems for traffic flow analysis.

• Security industry is a noteworthy driver for face detection solutions for

detecting and preventing criminal activities. Detecting and recognizing faces

in public is a contentious application of CV that is already being implemented

in certain jurisdictions and banned in others. Although facial recognition is

already in use at the personal level such as through smartphone applications,

CV-based face recognition solutions are useful in tracking specific persons for

security missions.

2.1.3 Computer Vision Challenges

Although CV has created a significant impact across all fields, it still faces challenges

for two major reasons. First, the HV system is a complex and powerful system. It

is difficult to replicate it using technology. Second, threats from the digital infor-

mation revolution and modern technologies. The major challenges that CV systems

face from the latter are as follows:

Fake Content: It becomes an easy task even for non-experts to create fake
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content either in images, videos or text due to the availability of powerful user-

friendly editing tools, low-cost cameras and the use of DL technologies. With such

fake content, CV in the wrong hands can result in dangerous problems like many

other contemporary technologies.

Adversarial Attacks: It modifies the content of an image by adding a small

perturbation to it. It potentially misleads the ML model for misclassification. When

an attacker creates such a faulty ML model, it is very difficult to identify and may

seriously harm any system in the real world.

Reasoning Issue: Modern DL-based algorithms are complicated systems in

which the functions are often unclear. When this happens, it is difficult to under-

stand any task’s logic, which makes it difficult for CV professionals to define any

parameter in an image or video.

Privacy and Ethics: Globally, CV-powered monitoring poses a severe threat

to people’s privacy. It puts people at risk of unlawful data usage. Because of these

issues, face recognition and detection are forbidden in several nations.

2.2 Digital Image Attacks

Digital images are one of the most shared forms of digital multimedia content. In

earlier days, the amount and realism of digital image changes were constrained due to

a lack of advanced editing tools, the need for specialized knowledge and the laborious

and time-consuming procedure involved. For instance, the initial work [34] modified

the lip movements of a speaker using a different audio track by drawing links between

the subject’s face structure and the sounds of the audio track. Nowadays, with

advancements in many image editing tools like Snapchat, Paint, etc. and DL models
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such as CNNs and GANs, it becomes easy even for non-professionals to manipulate

and create digital image attacks or fake images. Digital attacks are modifications

made to the original image that can cause a classifier to provide a different output

from the original image. Recently, digital attacks on images and videos generated,

in particular by DL-based [15] approaches, have become a great public concern4.

In this section, we briefly review various digital image attacks.

2.2.1 Entire Face Synthesis

It generates whole non-existent facial images, often using a powerful Generative

Adversarial Network (GAN). These methods achieve exceptionally realistic results,

producing high-quality facial images for the observer. A GAN typically comprises

two distinct Neural Networks (NNs) competing against one another in a minimax

game: Generator G captures the distribution of the data and generates new samples,

whereas DiscriminatorD calculates the probability that a sample will really originate

from the training data (real) rather than G (fake). In order to produce high-quality

fake samples, the training approach for G aims to increase the probability that

D will make a mistake. D is discarded following the training process, while G is

employed to produce fake content. The entire face synthesis has used this idea in

recent years, increasing the realism of the modifications. Examples of entire face

synthesis produced by StyleGAN [35] are shown in Fig. 2.2. The video gaming and

3D modeling businesses stand to gain from this manipulation, but it may also be

used for undesirable purposes like developing incredibly convincing fake profiles on

social media to spread false information.

4https://www.bbc.com/news/technology-49961089
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Figure 2.2: Examples of entire face synthesis [3]

2.2.2 Identity Swap

It replaces the face of one subject (source) either in an image or video with the face

of another subject (target) or vice-versa. The goal of identity swap is to produce

realistic fake images or videos. Some examples of visual images for face swap are

shown in Fig. 2.3. Although different sectors benefit from this kind of attack,

especially in the film industry5, it could also be used for illegal purposes such as

financial frauds, hoaxes and the creation of celebrity pornographic videos, among

many other illegal uses. The identity swap generation process typically involves the

following stages for each frame of the source video: (i) face detection and cropping,

(ii) extraction of intermediate representations, (iii) synthesis of a new face based on

some driving signal (e.g., another face) and (iv) blending the generated face of the

target subject into the source video. For identity swap manipulations, two distinct

strategies are often taken into consideration:

• Traditional computer graphics-based approaches such as face swap.

• Novel DL-based algorithms known as DeepFakes.

5https://www.youtube.com/c/Shamook/featured

43



2.2 Digital Image Attacks

In face swap, face alignment, optimization and blending are used to swap the source

subject’s face with the target subject’s face. In DeepFake [15], two autoencoders

with a common encoder that has been trained to recreate training images of the

source and target faces, respectively. The images are aligned and cropped using a

face detector. The trained encoder and decoder of the source face are applied to the

target face to produce a fake image. The output of the autoencoder is subsequently

merged with the remainder of the image.

Figure 2.3: Examples for face swap attack: source image, destination image and

face swap attack row-wise respectively

2.2.3 Face Morphing

Face morphing is a sort of digital face alteration that can be used to produce fake

images that mimic the biometric data of two or more people [4]. The morphed

face images are successfully verified against face images of individuals whose Face

Recognition (FR) systems would be seriously threatened by them [36]. Examples of

face morphing are shown in Fig. 2.4. In general, the creation of face morphing images
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involves the following three steps in order: (i) finding the correlation between the

faces of the various subjects. This is often done by first extracting facial landmark

points such as the eyes, mouth, nose tips, etc.; (ii) then distorting the original

face images of the subjects until the corresponding landmarks of the images are

geometrically aligned; and (iii) performs blending to merge the color values of the

warped images.

Figure 2.4: Example of a face morphing image in the middle of the first image and

third image [4]

2.2.4 Attribute Manipulation

It is often referred to as face retouching or face editing. It modifies certain

attributes of the face, such as skin, hair color, age, gender, adding spectacles, etc.

[37]. Typically, this modification process is done using GAN such as the StarGAN

[35]. The well-known mobile application for creating this kind of manipulation is

FaceApp. With the use of this technology, users can virtually try on a wide variety of

things, including glasses, cosmetics and hairstyles. Some examples of the attribute

manipulation generated by FaceApp are shown in Fig. 2.5.
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Figure 2.5: Examples of the attribute manipulation generated using FaceApp [3,5]

2.2.5 Expression Swap

This manipulation, commonly referred to as face reenactment, involves modifying

the subject’s facial expression. Fig. 2.6 displays some visual examples taken from

the FaceForensics++ database [6]. It could be leveraged for serious implications,

e.g., a well-known video of Mark Zuckerberg making statements he never said6.

2.2.6 Copy-Move Forgery Attacks

CMF is a widely used attack in digital images. It pastes some regions of the image

to one or more parts of the same image and creates a forgery image. The purpose

of this attack is to hide an important content of the original image and create one

more forged digital image intentionally [38]. It is the most used attack because it is

more complicated to detect as some features of the forged regions, such as noise and

color are highly similar to the remaining regions of the image. Moreover, the source

and destination images for forgery are the same [24]. An example CMF attack and

its detection is shown in Fig. 2.7.

6https://www.bbc.com/news/technology-48607673
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Figure 2.6: Real and fake examples of expression swap [3]. Images are extracted

from videos of FaceForensics++ database [6]

Figure 2.7: An example copy-move forgery attack and its detection [7]

The creation of a CMF attack is simple. As the source and the target regions

are both parts of the same image, characteristics like lighting, color temperature

and noise are anticipated to be well-matched between the forged regions and the

original. This attack could be used for targeted commercial and non-commercial

advertisements, political advertisements, etc.

47



2.2 Digital Image Attacks

2.2.7 Adversarial Attacks

An adversarial image is a sample of an input image that has been very slightly al-

tered with the intention of misclassifying it by an ML classifier. In several instances,

a human observer may not even detect the modification, yet the classifier still fails

to classify the adversarial image correctly. Security issues arise from adversarial

attacks because they may be used to attack ML models even when the adversary

does not have access to the underlying model. The approaches used to generate

adversarial examples are broadly classified into three categories depending on the

adversary’s knowledge about the target classifier: 1) White-box adversarial attacks,

2) Black-box adversarial attacks and 3) Semi white-box adversarial attacks.

White-box Attacks: In white-box attacks, an attacker is assumed to have com-

plete knowledge about the kind of neural network (NN) along with the number

of layers of the target classification model. The attacker has access to the train-

ing data distribution and knowledge of the technique used for training, such as

gradient-descent optimization. He has full information about the fully trained model

architecture’s parameters. The attacker uses the available information to determine

the feature space where the model can be attacked or for which the model has a

high error rate. Then the model is exploited by altering an input image using the

adversarial example crafting method. The access to internal model weights for a

white-box attack corresponds to a very strong adversarial attack.

Black-box Attacks: In black-box attacks, the information about the target clas-

sification model is not available to attackers. Attackers can only give input for the

models and query their outcomes. For instance, when an adversarial image is given

to the model, a label or a confidence score relating to another class of image is re-

turned depending on the target classifier. The attackers usually observe such type

of relationships between the input and output of the model. They can then use its

flaws to attack the models for generating adversarial attacks.
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Semi White-box Attacks: In these attacks, first a generative model is trained

for creating adversarial samples in a white-box manner. Once it is trained, the ad-

versary can use the trained model to craft adversarial samples in a black-box way.

The authors trained GAN [39] to target the model of interest. Then, adversarial

samples are crafted directly from the trained generative model.

Adversarial Goals: An adversary makes an effort to provide a classification system

with an input adversarial image xadv that leads to incorrect output. The incorrect-

ness of the model leads to the adversary’s goal being deduced. The following broad

categories can be used to categorize adversarial goals based on their influence on

the classifier’s output integrity:

1. Confidence Reduction: The attacker attempts to lower the confidence score

of the prediction of the target classifier for the given input. For example, an

input image of a class label X can be predicted with less confidence having a

low probability of the same class label X.

2. Misclassification: The adversary attempts to change an input example’s

output classification to a different class from the original class. For instance,

any other class other than the class label X will be predicted for a real image

of the class label X.

3. Source/Target Misclassification: The adversary tries to cause a certain

target class to be the result of classification for specific input. For instance,

an input image of class label X will be predicted as the class label Y by the

classification model.
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2.3 Physical Attacks

In the information age, automatic user access to services has gained more signif-

icance. As a result, ML-based biometric or FR systems have been developed to

recognize people automatically in a variety of applications. However, such systems

are sensitive to external attacks due to advanced technology, which could compro-

mise their integrity [40]. External attacks on biometrics or FR systems are broadly

categorized into: direct attacks and indirect attacks. Direct attacks are also referred

to as physical attacks or spoofing attacks. Physical attacks are methods where a

face’s physical characteristics are altered before an image is taken. Some of the

most important methods for physical attacks are presentation attacks (PAs), vari-

ances brought on by disguise or makeup and intentional plastic surgery. Direct

attacks take place at the sensor stage when fake facial artifacts are presented. Such

attacks include attacks on the system without the attacker being aware of the sys-

tem’s functionality, feature extraction techniques, or matching algorithms. These

attacks are also known as sensor attacks. In indirect attacks, the attacker has to

be aware of system knowledge to carry out attacks. These attacks affect feature

extraction, matching, decision modules and database. For example, indirect attacks

on the biometric systems need information about the internal working of the model,

such as an attack on the communication system, feature extraction module, match-

ing module, etc. They are generally treated as black-box attacks as the internal

operation of the models is not openly known. Therefore, we present only different

types of physical attacks.

PAs [41] can be used either to impersonate or to obfuscate a person in FR

systems. Impersonation is an attack in which the adversary attempts to authenticate

himself or herself as another user. It is used to access FR systems by copying a real

user’s facial attributes. Attacks related to this type of attack are prints, replays

and masks. Obfuscation is used to conceal the identity of the user using a variety
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of techniques, including the use of glasses, cosmetics, a masked face and facial hair.

Attacks related to this type of attack generally involve different forms of disguises,

such as wigs, glasses, tattoos and makeup. The tools used for PAs, including photos,

videos and masks, are referred to as presentation attack instruments (PAIs). A

general FR system recognizes authorized people in relation to the reference database

and recognizes faces from the image or video input. The images produced by the

sensor are altered and distorted in different ways by PAs. A spoof image may have

different noise content than an actual image. It likely occurs distortions such as

color distortion, surface reflection and share deformation. PAs have replicated face

features such as masks, photographs or films to assist the adversary in breaching

the security model if the FR lacks a detection module to distinguish between real

and fake faces.

To avoid potential attacks and maximize their advantages for the users, it is

crucial to comprehend the risks to which they are exposed and to analyze their

vulnerabilities. PAs are broadly categorized into 2D and 3D attacks. Print and

replay attacks are included in 2D attacks, whereas mask attacks are in 3D attacks.

2.3.1 Print Attacks

It is a most crucial type of attack in the PAs is a print or photo attack. Attackers

are supposed to lack access to the recognition system’s internals and gain entry by

only projecting printed images of the targeted identity onto the input camera. There

are several ways to obtain high-quality facial photos of the individuals who will be

impersonated, including hidden cameras, social networks and online profiles. These

images can then be presented to the sensor of the FR systems by being printed

or shown on a screen. Print attacks include eye-cut photos, flat printed photos,

warped photos and digital display of photos. These attacks are incredibly simple for

a variety of reasons [42]. On the one hand, producing color photos of a real user’s
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face is inexpensive and simple. Alternatively, the images can be seen on a device’s

high-resolution screen, such as a smartphone, tablet, laptop, etc. On the other hand,

the recent advance in social media platforms like Twitter, Facebook and Instagram

makes it extremely simple to collect examples of real faces. Additionally, with the

recent price and size reductions experienced by digital cameras, it is now possible to

capture high-quality images of an authorized user by only utilizing a hidden camera.

Even though such print attacks might appear to be too easy to work, many SOTA

FR systems are susceptible to them [43].

2.3.2 Replay Attacks

The attacker gets a video of the real user they want to impersonate, plays it on any

device such as a smartphone, tablet, laptop, etc., to reproduce the video and then

displays it to the camera or sensor of the FR systems [44]. Such attacks are known

as replay or video attacks. Due to the expansion of video sharing platforms (e.g.

YouTube), social networks and even the usage of hidden cameras, it is extremely

simple to get face videos of the users, just like in the case of print attacks. Replay

attacks are harder to identify than photo attacks because they mimic not only the

shape and texture of the face but also its dynamics, such as blinking eyes, facial

movements and mouth. It is fair to infer that systems that are vulnerable to print

attacks would perform even worse when subjected to replay attacks due to their

increased level of complexity and that being resilient against photo attacks does not

equate to being similarly powerful when subjected to replay attacks.

2.3.3 Disguise or Makeup Attacks

It is one kind of direct attack. Accessories such as hats, sunglasses and scarves can

be used to impersonate or obfuscate either intentionally or unintentionally. Due

to their strong similarity to the genuine face, makeup attacks are more difficult to

52



2.4 Need for New Detection Methods

detect [45]. The three different makeup techniques used during data collecting are

“Heavy Contour”, “Pattern” and “Transformation”. The first two techniques are

used in three levels of intensity and are made to alter the normal shadows and the

shape of the contours of the face. In the last technique, the participant’s face is

altered to mimic another identity, typically a well-known character.

2.3.4 Mask Attacks

The Presentation Attack Instrument (PAI) for this type of attack is a 3D mask of

the user’s face. The attacker displays the sensor/camera with a 3D reconstruction

of the user’s face. Mask attacks demand greater technical proficiency than earlier

attacks, as well as access to more knowledge in order to create a convincing mask

of the real person [46]. The simplest approach involves printing a 2D image of

the user’s face, which is then adhered to a deformable structure. A plastic bag

or a t-shirt are two examples of this kind of construction. The attacker can then

show the bag to the biometric sensor by placing it on his face. This technique can

imitate some deformable facial patterns, making it possible to fool some basic 3D FR

software. Face masks are more realistic in terms of texture, color and geometry than

conventional 2D PAs. Different materials are used to create 3D masks. For example,

solid or hard masks can be manufactured from plaster, paper, resin, or plastic, while

soft masks are typically made of latex or silicon. Masks made of silicon or latex are

flexible, soft and adapt to various facial sizes and shapes. They closely resemble the

texture and color of real facial features.

2.4 Need for New Detection Methods

Despite the effectiveness of detecting fake images or videos has made great strides,

there are a number of issues with the existing detection techniques that call
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for caution. For example, CV-based systems are essential in several real-world

applications. However, their security flaws related to adversarial samples might be

utilized to control and compromise their application. Thus, some of key challenges

demand new detection methods, including:

• Evaluation of proposed attacks or defenses is not straightforward:

It is simple to assess traditional ML by calculating the loss on the test set,

supposing that a training set and test set have been generated. Defenders

facing adversarial attacks have an open-ended challenge where the attacker will

supply inputs from an unidentified distribution. It is insufficient to benchmark

a defense method against a single attack or even a group of attacks. Even if

the defense method succeeds in such an experiment, it can still lose against a

new attack that operates in a manner the defender did not foresee. A defense

method should ideally be demonstrably solid, but ML in general and DL in

specific are challenging to examine conceptually.

• Emergence of modern technologies: Digital image attack is incredibly

simple and a frequent practice due to the availability of low-cost and

open-source image handling tools such as Paint, Photoshop, Photoscape,

PhotoPlus, GIMP, Pixelmator, etc. It has also become extremely difficult

to detect visually whether a given image is the original or a modified version.

Particularly DL-generated attacks could be extremely hard to identify with the

naked eye. As a result, it is now simple for individuals and small organizations

to create digital attacks and spread them widely in a short period of time,

endangering the credibility of the news and the public’s faith in social media.

• Social media laundering: Social media platforms such as Facebook,

Twitter or Instagram are among the primary online networks utilized to

disseminate digital multimedia information to the general public. Such content
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is frequently modified before uploading to conserve network traffic or protect

the privacy of the user. These alterations, which are typically referred to

as social media laundering, eventually lead to an increase in false positive

detection rates by removing hints regarding underlying forgeries. The majority

of fake detection techniques use keypoints at the signal level, which are more

vulnerable to social media laundering. In order to improve the effectiveness

of false identification techniques for social media laundering, simulations of

these effects should be carefully incorporated into training data. Evaluation

databases should also be expanded to include information on social media

laundered visual material.

• Quality of DeepFake datasets: DL-powered technologies make the avail-

ability of large-scale datasets which facilitates the creation of detection meth-

ods.

• The rise of cloud services: Many cloud service providers, including Google,

AWS, Baidu, Alibaba, Azure, etc., offer DL Applicant Program Interfaces

(APIs) for their clients to complete CV tasks without the need to train models

and own a large amount of data. This is because DL frequently needs large

training data and prolonged training times. Users of cloud services can use

these APIs to verify photos for both profitable and non-profit purposes. For

instance, Alibaba Cloud7 and Azure8 offer APIs to determine whether the

images are legal or illegal (e.g., pornographic, violent). Such cloud service

planning must be done in a setting with greater security.

• Increasing demand for Big data applications: The rising acceptance of

big data applications which need for processing and sharing enormous amounts

7https://www.alibabacloud.com
8https://azure.microsoft.com
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of data. This must be done in an increasingly secure manner to preserve the

confidentiality of the data and project the processing models.

• Model scalability Another major concern is the inability of the current

fake detection techniques to scale for large-scale platforms like social media

[47]. In a real-world setting, inference time plays a crucial role in detection.

The model is unlikely to be extensively employed in practical applications

even if it is designed with great precision but a relatively long inference time.

Therefore, there is a need for detection methods that can detect large amounts

of fraudulent information in real-time and with high accuracy.

2.5 Related Works

In this section, we briefly discuss the survey of related works to detect digital

image attacks from genuine images particularly face swap attacks, CMF attacks

and adversarial attacks.

2.5.1 Face Swap Attacks Detection

There are many existing approaches for targeting face manipulation and its

detection. The detection approaches that target image forgery may or may not

work for face swapping. Thus, we review only the related works that address face

swap attacks and their detection. Blanz et al. [48] proposed an approach that

evaluates a 3D face model and its scene parameters, such as the focal length of the

camera, the 3D orientation, position, etc., to properly exchange faces in images.

The approach is similar to the morphable model in that it optimizes every model

parameter while going from 3D to image. Bitouk et al. proposed a fully automatic

face swap algorithm in images without the usage of 3D reconstruction methods [49].

It detects all faces that are present, aligns them to the coordinate system and selects
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the target images from the large face library that are similar to the source image in

pose and appearance. Then, the target images are modified to match the appearance

of the source images in terms of color, lighting and postures. Mahajan et al. [50]

demonstrated an algorithm that picks front-facing faces automatically and swaps

them out with stock faces. In [51], the authors used Convolutional Neural Network

(CNN) to capture the appearance of the target image from the unstructured image

datasets. In this method, the network has to be trained for each target image and

thus, it is not a practical solution for many applications. Chen et al. [52] proposed a

method for replacing faces in referenced images that share similar traits and shapes

with the input face. By adapting the reference face and its coordinating background

to the input face, a triangulation-based technique is employed to distort the image.

Numerous novel face swapping approaches have also been developed as a result of

DL’s practical success in image processing. Korshunova et al. [51] treated face swap

as a process requiring style transfer. They viewed identity as the style and position

and facial expression as the content. For image transformation, a CNN with several

scale branches that operate on various image resolutions is employed. GAN-based

methods have been proposed in [53–55], which produced impressive face swapping

results.

Zhang et al. proposed an automated face swapping method and utilized SURF

and BoW features rather than raw pixels for detecting swapped face images [20].

The performance is demonstrated with different types of classifiers like SVMs,

Random Forest (RF) and Neural Networks (NNs) to discriminate the swapped face

images from the genuine ones with an accuracy of 92%. The face swap quality

is not evaluated against other datasets. Furthermore, the authors used a dataset

consisting of only 10, 000 images which is relatively small compared to other works.

Agarwal et al. proposed a novel feature descriptor, called WLMP, which is similar

to Local Binary Patterns (LBP) and fed them into the Support Vector Machine
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(SVM) classifier to detect face swap images [56]. Instead of images, they chose

to target videos. They also produced a dataset of their own. Korshunov et al.

proposed DL-based method for detecting swapped face images in videos [57]. They

tested several DeepFakes detection techniques. Khodabakhsh et al. assessed the

generalization potential of CNN-based and texture-based fake face detection systems

[58]. For the evaluation, they employed a new dataset with 53, 000 images collected

from 150 videos. They produced the swapped faces in their dataset using several

methods. Smoothing and blending were utilized to appear the results of face swap

more realistic. Rossler et al. evaluated various detectors in different scenarios [6].

Ding et al. proposed a DL-based model that uses transfer learning for the detection

of swapped face images [59]. They also provided a large dataset containing 4, 20, 053

images taken from 86 celebrity images.

2.5.2 Copy-Move Forgery Attacks Detection

When an image has been tampered with, its statistical characteristics will be

changed. Then, the original image’s statistical features are more distinct from

the forged one. To detect tampered regions, the features of regions of the image

are calculated and subsequently similarity checking and then matching the forged

regions. Various block generation and keypoints generation based approaches have

been developed over the years for addressing CMF attacks in digital images [60]. The

majority of CMFD techniques adhere to the same essential steps [8] as displayed in

workflow Fig. 2.8. The input image is subjected to the pre-processing process in the

first stage. It enhances the picture data and features for more detection. The input

image is converted into gray-scale and additional preparation, such as filtering or

image resizing, can be optimized. After the preprocessing step, the feature extraction

process to extract the picture’s features is optimised. This feature extraction can be

done with either block-based or key points-based techniques. Once the features are

58



2.5 Related Works

extracted, an important process is to match identical features for marking forged

regions. Then, the filtering process removes the forged matched features and finally

detects if the image is attacked or not.

Figure 2.8: Typical workflow for CMFD [8]

In block-based methods, the tampered image is sliced into either overlapping or

non-overlapping blocks of fixed size. Thereafter, feature vectors are computed from

each block using different approaches. Extracted feature vectors are lexicograph-

ically sorted; therefore, matched feature vectors come close to each other. These

feature vectors are then matched to each other to find the forgery regions. The au-

thors of [61] first proposed a DCT-based method for the detection of forgeries. The

image is partitioned into fixed-sized overlapping blocks at raster-scan and DCT is

computed on each block. The feature vectors are lexicographically sorted to match-

ing and reduce the matching search space. Euclidean distance is used to compute the

similarity between the feature vectors. Popescu and Farid [62] leveraged Principal

Component Analysis (PCA) to reduce the dimensional size of each feature vector to

32. This approach is robust against compression and noise addition. In [63], Fourier

Mellin Transforms (FMT) based method is proposed for the detection of forgeries

with feature vectors of size 45. The authors used a bloom filter instead of lexico-

graphical sorting, which improves the forgery detection time. These features are

rotation invariant only for some degree. In [64], a blur moment invariant features

based method is proposed to detect the CMF in the presence of blur degradation,

additive zero-mean noise or arbitrary contrast changes. In [65], the authors pro-

posed a rotation invariant method based on Hu moments. The Gaussian pyramid is
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applied to reduce the dimension of the forgery image. Then, Hu moment is used to

extract features on the low-frequency image. Eigenvectors are then lexicographically

sorted and matching is performed between them. In [66], the authors utilize rotation

invariant Zernike moments. It is robust and gives significant performance against ge-

ometric transformations such as JPEG compression, additive noise and blurring. In

[67], a robust method is proposed for blind CMFD based on an undecimated Dyadic

Wavelet Transform (DyWT). In [7], the authors presented a method based on DCT

and Singular Value Decomposition (SVD) to precisely locate the forgery regions in

the images. A new method, PatchMatch, to detect and localize forgeries in images is

proposed in [68]. They used nearest-neighbor search to efficiently deal with features

and to achieve high robustness against scaling and rotations, especially over dense

field images. The authors in [69] proposed a blind forgery detection method based

on Local Binary Pattern Histogram Fourier Features (LBP-HF). They divided the

forgery image into overlapping blocks and the features were extracted from each

block.

In keypoints-based methods, keypoints are detected from the image and for

each keypoint, feature descriptors are extracted. Thereafter, feature descriptors

are matched for forgery region detection. Huang et al. [70] suggested an effective

approach for detecting CMF based on Scale Invariant Feature Transform (SIFT)

[71] features in images. Euclidean distance is used between the feature descriptors

for matching the keypoints. These features are robust against various image post-

processing transformations, such as rotation, scaling, additive noise and translation.

Therefore, it is used in applications of various fields. In [72], a new method is

proposed which is based on SIFT features [71] to detect duplicated and distorted

regions in a digital image. Its performance is good on various image post-processing

due to the robustness of SIFT feature descriptors. In [73], the authors presented a

SIFT-based method for detecting multiple forgeries in a digital image. Additionally,
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they used RANdom SAmple Consensus (RANSAC) to cluster the keypoints and

select a set of inliers that are appropriate for a homography transform between the

two clusters. Amerini et al. [2] utilized the SIFT [71] to detect the multiple CMFs.

They performed clustering technique on spatial locations of matched points to make

clusters and detect multiple forgery regions. In [74], the authors leveraged SURF

[21] features for detecting tampered regions. It detects the keypoints and extracts 64

feature descriptors per keypoint and so it increases the speed. Another local features

based method for the detection of forgeries is presented in [75]. In [2], the authors

proposed an approach which is based on SIFT descriptors and performed HAC on

spatial locations of matched points to make clusters and detect multiple forgery

regions in the images. Additionally, they addressed CMFD for image slicing and

also used RANSAC to identify the transformation. In [76], the authors utilized SIFT

features and density-based spatial clustering of applications with noise (DBSCAN)

clustering technique for detecting multiple forgery regions. Another contribution

based on SIFT features is presented in [77] for the detection of CMFs.

2.5.3 Defense Methods against Adversarial Attacks

Adding a small and targeted perturbation on the input image converts the clean

image into an adversarial image that can mislead a trained classification model

for a false prediction confidently. Although DL models outperformed traditional

classification models in a number of key areas, such as training big datasets and

using strong computing resources, Szegedy et al. [30] demonstrated that these DL

models are susceptible to these types of adversarial attacks.

Intensity-based Adversarial Attacks: These attacks especially aim to modify

the intensity of an input image. Biggio et al. [78] proposed initial works for a

simple gradient-based attack to systematically assess the security of traditional ML

classification models such as SVM and NN. The authors demonstrated such attacks
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with the MNIST dataset. Szegedy et al. [30] proposed a method for creating the first

adversarial samples to attack Deep Neural Networks (DNNs), which is based on a

box-constrained L-BFGS [79]. Goodfellow et al. [10] proposed a single-step approach

for generating adversarial attacks, named as Fast Gradient Sign Method (FGSM).

It is a fast and efficient attack showing that DL models are sensitive to such attacks.

The authors used the gradient of classification loss related to the input image to add

perturbation to the intensity of the original sample. To explore the sensitivity of

ML models, many extensions to create intensity-based adversarial attacks have been

developed so far. Kurakin et al. [80] proposed the first basic iterative approach to

the FGSM [10]. Dong et al. [81] proposed a momentum-based iterative method to

strengthen adversarial attacks. Rozsa et al. [82] used the actual value of the gradient

rather than the sign of the gradient to improve the robustness of attacks against

defenses. Papernot et al. [83] suggested an approach that creates Jacobian-based

Saliency Map Attacks (JSMA) using the Jacobian matrix of the predicted classes

for the input image. To reduce the number of pixels that must be changed during

the attack, it builds a saliency map of the input’s most valued pixels. Moosavi et al.

[84] considered the decision boundary of a classification model around a particular

data point x. The classifier gives a different prediction for x based on its path.

Further, a black-box attack to target Deep Neural Network (DNN) classifiers

is proposed in [85]. Chen et al. [86] proposed an optimization-based approach

for generating adversarial attacks where the adversary has no information about

the target classifier. Ilyas et al. [87] presented an approach for creating black-

box attacks, which is based on the gradient information from the outcomes of the

classification model. A genetic approach for creating adversarial samples is proposed

in [88]. A GAN-based semi white-box attack model is proposed in [89]. Deng et al.

[90] proposed a method, called ArcFace, based on additive angular margin loss to

determine highly distinctive features to maximize the classification of facial images.
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Deb et al. [91] proposed a GAN-based approach, called Advfaces to create adversarial

face images. The authors added small perturbations to the key facial features. In

[92], the authors proposed a novel approach, SemanticAdv, to generate adversarial

samples based on attribute-conditioned image editing.

In general, high-frequency elements are added to the input samples in almost

all intensity-based adversarial attacks and the amount of distortion is controlled by

lp − norm similarity measure. However, the similarity metric lp − norm is not a

suitable metric and it fails to ensure that all adversarial images fall in the same

space as the original images. As a result, it increases the sensitivity of such attacks,

particularly where the attacker has no restrictions on time for evaluating the au-

thenticity of the input images.

Geometry-based Adversarial Attacks: Xiao et al. [93] proposed a method

based on spatial transformation instead of lp− norm of intensity values to generate

adversarial attacks. They defined a flow or displacement field f per pixel to create

the adversarial image. Dabouei et al. [11] proposed a novel and fast method to gen-

erate geometrically-perturbed faces. The authors used facial landmarks to generate

such adversarial attacks.

Adversarial Attacks Detection: Since the emergence of adversarial exam-

ples, several methods have been proposed to mitigate the effect and detect such

attacks. One of the most common methods to protect classifiers from a wrong pre-

diction is to detect adversarial images from original images. These methods can not

directly predict an input label of the model. Instead, such methods first determine

whether the input sample is original or fake. The classifier then can not predict

the input class label if the input is adversarial. Thus, these defense methods effec-

tively discriminate adversarial images and mitigate the effect of adversarial attacks

63



2.5 Related Works

on classification models from a wrong prediction.

Goodfellow et al. [10] proposed an approach to create adversarial samples

based on FGSM and utilize them for training the classifier to counteract such

samples. Hendrycks et al. [94] proposed a statistical defense approach based on

PCA. Madry et al. [95] investigated the adversarial robustness of NNs. They trained

networks against a wide range of projected gradient descent (PGD) adversaries as

reliable first-order adversaries. Tramer et al. [96] proposed a method to aggregate

adversarial training to detect adversarial attacks. In [31], a complementary approach

is introduced to identify adversarial inputs. The authors specially augmented the

ML classifier with an extra output in which the classifier is trained to target all

adversarial inputs. Gong et al. [97] proposed a simple binary classifier and trained

it to detect adversarial inputs from clean data with an accuracy of over 99%. Metzen

et al. [98] proposed to augment DNN with a small subnetwork for detection. The

subnetwork is trained on a binary classifier to distinguish adversarial inputs from

genuine data. This method mainly focused on making the binary classifier itself

more robust to adversarial inputs. Massoli et al. [99] augmented the DL model with

k-nearest neighbors (k-NN) to separate adversarial images. Agarwal et al. [100]

proposed an approach based on pixel values and PCA as features and provided to

the SVM classifier for the detection of image-agnostic adversarial perturbations. An

improved approach for adversarial robustness based on feature de-noising blocks in

networks is proposed in [12]. In [101], the authors proposed a defense method based

on image SR. They performed SR on adversarial inputs to bring them back into the

natural space. Recently, the authors proposed to use Private Fast Gradient Sign

Method (P-FGSM) attacks and their performance is evaluated on different types of

SVMs to detect adversarial face images from the clean images.
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2.6 Summary

In summary, we discussed the basic structure of CV systems and their components.

We also discussed applications and their challenges in the real-world. We discussed

different types of digital and physical image attacks and their impact on CV systems.

Although there are many methods to address digital image attacks, we further

discussed why we need new detection methods. Then, we presented related works

on face swap attacks, CMF attacks and adversarial attacks for their generation and

detection.

It is observed that with modern technologies, creating digital fakes or attacks

which are strong enough to deceive CV and HV systems becomes an easy task.

These digital fakes pose a real threat in the real world. Therefore, detecting such

fakes or attacks in digital images remains a challenging task and an active problem.
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Chapter 3

Detection of Augmented Facial

Landmarks-based Face Swapping

Face swapping or face replacement is important in many situations, such as the

provision of privacy, video compositing, appearance transformation in portraiture

and other artistic applications. Depending on the application, this problem’s precise

formulation changes with certain objectives. Formally, it replaces the face of the

source with the face of the target while preserving the attributes of the source or

vice versa. Due to its realistic and unedited results, it could also be used for illegal

purposes such as financial frauds, hoaxes and the creation of celebrity pornographic

videos, among many other illegal uses [57]. Thus, face swap attacks pose a real

threat to CV-based FR and biometric systems which provide essential features for

security in many modern devices.

This chapter describes the detection of face swap attacks. It first extracts

augmented 81-facial landmark points covering the landmark points on the forehead

and performs face swapping. Given an image, the first 68 facial landmarks are

extracted using the technique proposed by Kazemi and Sullivan [9] and additional

13 facial landmark points that cover the forehead are extracted based on Surrey
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Face Model (SFM) [102] as shown in Fig. 3.1. Next, face swapping is performed

based on the extracted augmented 81-facial landmark points. Finally, Face Swap

Attack Detection (FSAD) is proposed to detect the swapped face images from the

original images. It is based on WLMP features [56] and SVM [103]. The proposed

system is evaluated on a real-world dataset. The experimental results show that it

effectively performs face swapping and accurately does the detection.

The major contributions of the chapter are:

• We propose an approach to extract augmented 81-facial landmark points of a

human face by using [9] and SFM [102].

• Face swapping is performed based on the extracted augmented facial land-

marks of source and destination image faces.

• FSAD is proposed to detect whether the image has undergone a face swap

attack or not.

• Finally, the performance of the proposed system is demonstrated by different

types of SVMs and experimental results are presented.

The remainder of the chapter is organized as follows: Section 3.1 presents the

problem formulation. The proposed methods for face swapping and its detection

are explained in Sections 3.2 and 3.3, respectively. The dataset used is presented in

Section 3.4.1. The results of the proposed methods are elaborated in Sections 3.4.2

and 3.4.3, respectively. We conclude the chapter in Section 3.5.

3.1 Problem Formulation

We take into account the situation where, given a single input facial image of any

person T , we would want to replace that person’s face with that of another person
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S while preserving the original pose, gaze direction, facial expression, lighting and

hairstyle of the input image T . The input image T is treated as the target or

destination and S is as the source image. Given an input facial image I and let C(.)

be a classifier. Then, a detection method aims to detect the face swap attacks from

the original, i.e., C(I) is either real or fake.

3.2 Proposed Face Swapping

Face swapping is challenging when swapping faces in unconstrained and arbitrarily

selected images. In such cases, there is no guarantee of the similar appearance of

expressions, viewpoints, genders or any attribute when faces are swapped.

The proposed method differs from the existing methods. It selects two random

images and swaps the face of the source image with the face of the destination

image instead of randomly searching for the destination image in the image library.

It extracts augmented 81-facial landmark points that cover facial landmark points

on the forehead instead of the 68-facial landmark points. The performance of the

proposed detection approach is demonstrated with different types of SVM classifiers.

3.2.1 Augmented Facial Landmarks Detection

Facial landmarks are utilized to represent and localize the salient components of a

face, such as eyes, eyebrows, nose, mouth and jawline. Facial Landmark Detection

(FLD) identifies points of interest in an image of a human face. Detecting precise

facial landmarks improves the performance of many CV and computer graphics

applications such as face recognition, face animation, facial emotion detection,

assessing gaze direction, facial emotion detection, augmenting face with graphics,

face swapping, facial image synthesis, etc. [104–106]. For example, several face

recognition approaches depend on the spatial locations of facial landmarks to align
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(a) (b) (c)

Figure 3.1: (a) The benchmark 68 facial landmarks by [9], (b) SFM to extract

additional landmarks and (c) Augmented 81-facial landmarks

faces from one image to another image. In this case, the detection of imprecise

facial landmarks could lead to bad alignment and degrade the performance of face

recognition. In other applications, 2D facial landmarks are utilized to deform 3D

face meshes for realistic face performances. Some significant image-based facial

landmarks detection methods are [107–109].

First, the faces of the source and destination images are detected using the

Histogram of Oriented Gradients (HOG) and linear SVM [110]. Next, the (x, y)-

coordinates of augmented 81-facial landmark points of the source and destination

images are extracted as shown in Fig. 3.1c. The 68-facial landmark points are

localized using a fast and accurate approach, which is based on an ensemble of

regression trees [9] as shown in Fig. 3.1a and additional 13 facial landmark points

that include the facial landmark points on the forehead are extracted by utilizing

SFM [102] as shown in Fig. 3.1b. The extracted augmented 81-facial landmarks for

a face image are shown in Fig. 3.2.
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(a) (b)

Figure 3.2: (a) A source image and (b) The augmented 81 facial landmark points

Figure 3.3: The pipeline of the proposed face swapping approach

3.2.2 Face Swapping

The pipeline of the proposed approach for face swapping is shown in Fig. 3.3. In

this subsection, the complete process of how face swapping is performed between

two face images is described in the following steps:

1. Once the facial landmark points are localized, the 3D faces can be approxi-

mated by considering the 2D planes of the facial landmark points. That is,

a small area of the 2D plane can be transformed into another 2D plane that
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(a) (b)

Figure 3.4: (a) Convex hull of facial landmark points and (b) Triangles using

Delaunay Triangulation

(a) (b) (c)

Figure 3.5: (a) A triangle of the source face, (b) A triangle of the destination face

and (c) Warped triangle after affine transformation

(a) (b) (c)

Figure 3.6: (a) The destination image, (b) Face swap before blending and (c) Final

face swap image
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approximates the 3D information of faces. For this, we segment the face of

the source image into many triangles using Delaunay Triangulation, as shown

in Fig. 3.4b.

2. Step (1) is repeated for the destination face. The advantage of triangulation

is that one can transfer each triangle of the source face to a triangle of the

destination face while maintaining the proportions between the faces. The

matching of two face triangles is done based on the indices of the triangles of

the faces. However, directly matching the triangles is not appropriate if the

size of the source face is smaller than the destination face or vice-versa.

3. Warped triangles are formed between the points of two triangles using affine

transformation to maintain the proportions between the triangles of the source

face and the destination face. This is shown in Fig. 3.5.

4. Then, the destination face is replaced with the source face. When the source

face is swapped with the destination face, the destination face does not look

natural due to variations in color and lighting conditions, as shown in Fig.

3.6b. Formally, the destination face Y is replaced with the source face X

using the following steps:

(a) For each triangle in the destination face Y , the coordinates are computed

using Eq. 3.1: 
Ya,x Yb,x Yc,x

Ya,y Yb,y Yc,y

1 1 1



α

β

γ

 =


x

y

1

 (3.1)

Here, the coordinates are given by [α, β, γ]T . In order to compute this,
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the inverse of the 3× 3 matrix of each triangle is found using Eq. 3.2:
α

β

γ

 = Y −1
∆


x

y

1

 (3.2)

Based on the values of α, β and γ, the point is inside triangle if α ∈ [0, 1],

β ∈ [0, 1], γ ∈ [0, 1], and α + β + γ ∈ [0, 1].

(b) Using these obtained coordinates, the pixel indices of image X are

computed using Eq. 3.3: 
xX

yX

zX

 = X∆


α

β

γ

 (3.3)

where

X∆ =


Xa,x Xb,x Xc,x

Xa,y Xb,y Xc,y

1 1 1

 (3.4)

Then, we compute [xX , yX , zX ]T and convert it into homogeneous coor-

dinates as given in Eq. 3.5:

xX =
xX
zX

and yX =
yX
zX

(3.5)

(c) Now, the pixel value at location (xX , yX) is copied back from the image

X to the image Y .

5. Finally, seamless cloning is applied to make the face swap more realistic as

shown in Fig. 3.6c.
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Figure 3.7: The procedure of the proposed FSAD approach

3.3 Proposed Face Swap Attack Detection

In general, digital manipulations perform blending and smoothing to minimize the

irregularities because of the differences in the source image. Sometimes more than

90% of the texture surfaces are uniform. In such cases, WLMP feature descriptors

that encode the differences between a center pixel and its neighbors are effective in

highlighting the most affected regions of images when they are being swapped or

switched. It gives more weightage to the closest pixel to the center than the other

pixel values. That is, it assigns the weight inversely in proportion to the difference

values from the center pixel instead of binarizing them. Moreover, these features

retain high-frequency information while reducing low-frequency information. We

proposed FSAD for the detection of face swap attacks which is based on WLMP

[56] and SVM [103]. Fig. 3.7 shows the steps involved in the proposed FSAD

approach. In a nutshell, it is as follows:

1. The input image is segmented into multiple blocks of 3× 3 size.

2. For each block, the difference in pixel values from the center and their absolute

differences are computed.

3. Since there are eight neighborhood pixels, there are eight pixel difference

values. The difference pixel values are sorted in ascending order and multiplied
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with 2p, where p = 0, ..., 7 for 8 neighborhood pixel values. The motivation is

to give higher weightage to the pixel value which is similar to the center pixel

value. Then the obtained final value is mapped to a value between 0 and 255.

If the final value is greater than 255, it is set to 255.

4. A histogram feature vector is computed.

5. Finally, the feature vectors extracted from the training dataset are provided

to SVM for detecting the presence of the face swap attack.

3.4 Experimental Results

3.4.1 Dataset

A large-scale face attributes dataset, called CelebFaces Attributes Dataset

(CelebA) [111] is used to evaluate the proposed system. It contains 2,02,599

celebrity face images with 40 attribute annotations each. It covers images of large

variations in pose and background clutter. It also contains face images with large

diversities and rich annotations.

3.4.2 Performance of the Proposed Face Swapping

The proposed system is trained and tested on the CelebA dataset. Examples of the

face swap results on the CelebA dataset are shown in Fig. 3.8. Despite variations in

lighting and skin-tone, the proposed system swaps the faces well and obtains results

that look realistic.

Examples of the face swap results on the CelebA dataset are shown in Fig. 3.8.

Despite variations in lighting and skin-tone, the proposed system swaps the faces

well and obtains results that look realistic.

76



3.4 Experimental Results

Figure 3.8: Source image, destination image and face swap image (from top to

bottom in each column)

The performance of the face swap approach with extracted augmented 81-facial

landmarks is compared with face swapping based on 68-facial landmarks. As the

augmented 81-facial landmarks cover landmarks on the forehead, face swap results

look more realistic and unedited when compared with 68-facial landmarks, as shown

in Fig. 3.9. It is also observed that the skin color of the forehead and swapped

regions of the face image are not matched when the face swap is done with 68

facial landmarks. Thus, augmented 81 facial landmarks achieve full face swapping,

including the forehead and the results appear realistic.

However, the proposed approach for face swapping fails to accurately swap two

face images in the following cases: i) if there are large variations in skin-tone, ii)

if there are large variations in feature size and iii) if the seam crosses the non-skin

regions. The incorrect results for face swapping are presented in Fig. 3.11. We also

presented few cases where face swap results based 68-facial landmarks appear more

realistic than face swap results based on 81-facial landmarks due to large variations
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Figure 3.9: Source image, destination image, face swap with 68-facial landmarks and

face swap with augmented 81-facial landmarks (from top to bottom in each column)

Figure 3.10: Source image, destination image, face swap with 68-facial landmarks

and face swap with augmented 81-facial landmarks in row-wise
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in pose, style and lighting conditions as shown in Fig. 3.10.

3.4.3 Performance of the Proposed FSAD

The performance of the FSAD approach is evaluated on different types of SVMs, such

as Linear, Polynomial, Sigmoid and Gaussian. Both Sigmoid-SVM and Gaussian-

SVM achieve the same values for precision and recall for both fake and original

images with an accuracy of 74%, whereas Linear-SVM and Polynomial-SVM achieve

a precision of 96% and a recall value of 94% for fake images with a detection accuracy

of 95%. Therefore, both Linear-SVM and Polynomial-SVM outperform Sigmoid-

SVM and Gaussian-SVM in terms of all parameter values. The detailed FSAD

results are shown in Table 3.1.

Figure 3.11: Incorrect face swaps: Source image, destination image and face swap

image (from top to bottom in each column)
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Table 3.1: Overall face swap attack detection results

S.No Classifier Precision Recall F1-score
Accuracy

(%)

1 Linear-SVM 0.96 0.94 0.95 95

2 Polynomial-SVM 0.96 0.94 0.95 95

3 Sigmoid-SVM 0.78 0.68 0.73 74

4 Gaussian-SVM 0.78 0.68 0.73 74

3.5 Conclusions

In this chapter, we propose an approach for face swapping based on augmented

81-facial landmark points that also cover the facial landmarks on the forehead. In

this method, a procedure for FSAD based on WLMP feature descriptors and SVM

is also incorporated. The WLMP feature descriptors are effective in differentiating

the high-frequency and low-frequency information when images are attacked. The

performance of the proposed system is demonstrated on a real-world dataset.

Experimental results show that the proposed system effectively performs swapping

of face images despite the images under different variations in pose, lighting and

skin-tone. The results look unedited and more realistic. We also present a few cases

where the proposed face swap approach fails to swap the faces accurately. For the

detection, different types of SVMs such as Linear-SVM, Polynomial-SVM, Sigmoid-

SVM and Gaussian-SVM are used to evaluate the performance of the proposed

system. Both Linear-SVM and Polynomial-SVM outperform the remaining with a

detection accuracy of 95%.

In this chapter, we assumed the attacker swaps the face of one facial image

with the face of another facial image to create an attack. In the next chapter, we

investigate an attack where the attacker uses the same image to create an attack.
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Chapter 4

Detection of Copy-Move Forgery

Attacks

In CMF attack, the attacker copies one or more regions of the image and pastes

them into one or more parts of the same image and creates a forgery image. It is

one of the most actively investigated attacks in digital image forensics. This type of

attack is used to either hide or emphasize important objects of the original image

and creates one more tampered image intentionally. It is a widely used attack to

create tampered images because it is more complicated to detect as some features of

the forged region such as noise and color are highly similar to the remaining regions

of the image. CMFD refers to the detection of which regions of the image have been

forged and to the authentication of digital images.

This chapter proposes a method for detecting CMFs in digital images. It is

based on SURF [21] and BRISK [112] features. We first extract feature descriptors

using SURF and BRISK. The fused feature descriptors are matched using Hamming

distance. Then, we group the matched features into clusters using the HAC

technique to reduce false matches, improving the proposed system’s accuracy rate

and execution time.
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The contributions of the chapter are as follows:

• A new detection method for CMF is proposed based on SURF and BRISK

features. Euclidean distance is used for matching the fused features to detect

forgeries with various geometric transformations.

• We perform a clustering technique to reduce false matches that improve the

system’s performance.

• Finally, the proposed method is tested on various real-world CMF datasets

such as MICC-F220, MICC-F2000, MICC-F8multi 1 and experimental results

are presented.

The remainder of the chapter is organized as follows: A brief review of

extraction of feature descriptors is presented in Sections 4.1, 4.2 and 4.3, respectively.

The proposed method is explained in Section 4.4. The results of the proposed

method are elaborated in Section 4.5. We conclude the chapter in Section 4.6.

4.1 SURF Features

This section presents a review on the extraction of SURF features.

4.1.1 Integral Image

Two-dimensional image features can be calculated quickly using integral images.

Given an integral image, the sum of pixel values within a region of the image at a

point (x, y) can be computed in constant time. Therefore, it improves the perfor-

mance in terms of computation speed. Its value is calculated from the above and

to the left of (x, y). Fig. 4.1 shows an integral image with the rectangular region

1www.lambertoballan.net/research/image-forensics/
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4.1 SURF Features

Figure 4.1: Integral image calculation by rectangular region

whose vertices are A, B, C, and D. The sum of the pixel intensities is calculated

by the formula, which is written in the rectangular region. Given an input image I

and a point (x, y), the integral image I∑ is calculated by the sum of the pixel values

above and to the left of the point (x, y). It is formulated by Eq. 4.1:

I∑(x, y) =
∑i≤x

i=0

∑j≤y

j=0
I(i, j) (4.1)

SURF uses rectangular filters to extract features from images. These features

can be rapidly computed using these integral images. With I∑ calculated, the

integral image takes only four additions to compute the sum of the pixel values

within a rectangular region, independent of its size.

4.1.2 Keypoints Detection

Scale spaces are implemented as image pyramids. In order to get the higher level

of the pyramid, a Gaussian is repeatedly applied to smooth the images and subse-

quently sub-sampled. That is, Laplacian of Gaussian is approximated with a box

filter and convolution is used with varying size box filters to create the scale space.

Once the scale space is constructed, the Hessian matrix is used to find the extremum

point. The determinant of the Hessian matrix is used to decide whether the Eigen

values are positive or negative. If the determinant of the Hessian matrix is positive,

that means both the Eigen values are either positive or negative. These will be

considered as extrema, in case of a positive response. Otherwise, the points will be
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ignored. The Hessian matrix H(X, σ) in X at scale σ, given a point X = (x, y) in

an image I, is defined by Eq. 4.2.

H(X, σ) =

Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

 (4.2)

where Lxx(X, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2
g(σ)

with the image I in point X and similarly for Lxy(X, σ) and Lyy(X, σ). These

derivatives are called Laplacian of Gaussian. The approximate determinant of the

Hessian matrix is calculated by Eq. 4.3.

det(Happrox) = DxxDyy − (0.9Dxy)
2 (4.3)

4.1.3 Orientation Assignment

A reproducible orientation for the interesting point is identified to make it rotation

invariant. Then, Haar wavelets are computed in x and y directions in the circular

neighborhood of a particular radius around keypoint. These increase the robustness

and decrease the computational cost. The maximum value is chosen as a dominant

orientation for that particular point.

4.1.4 Feature Descriptor Generation

In feature descriptors generation, a square region is firstly constructed around the

keypoint, the keypoint is taken as the center point. This square region is again

divided into 4 × 4 smaller sub-regions. Haar wavelet responses are computed for

each sub-region. Here, dx termed as horizontal response and dy as vertical response.

Four responses are considered for each of these sub-regions by Eq. 4.4.

Vsubregion = [
∑
dx,

∑
dy,

∑
|dx|,

∑
|dy|] (4.4)
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Figure 4.2: The BRISK sampling pattern with N = 60

4.2 BRISK Features

BRISK is a binary feature description technique [112]. It is robust against scale

transformations. It uses a sampling pattern for feature selection as shown in Fig.

4.2. In Fig. 4.2, the blue dots denote the location and the red-colored dashed lines

indicate the radius ri, which is based on the Gaussian kernel to smooth intensity

values of the sampling point for avoiding aliasing at point ni in the pattern. Thus,

the local gradient can be computed by Eq. 4.5:

g(ni, nj) = (nj − ni)×
(I(nj, σj)− I(ni, σi))

‖ni − nj‖2
(4.5)

where g(ni, nj) is local gradient, (ni−nj) denotes the sampling point pairs, I(ni, σi)

and I(nj, σj) represent the smoothed intensity values. BRISK uses sampling pattern

around keypoint k rotated by α = arctan2(gx, gy) to identify the scale invariance

features. The bit vector dk is calculated by comparing all the short-distance
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sampling-point pairs (nαi , n
α
j ) ∈ Ss such that every bit b is either 0 or 1 as shown in

Eq. 4.6. The size of bit-vector dk is 64×N with keypoint in the range specified by

[δminimum, δmaximum].

b =

1, I(nαj , σj) > I(nαi , σi)

0, otherwise

(4.6)

4.3 Keypoints Clustering

We fuse both features extracted using BRISK and SURF. The fuse features are then

matched using Hamming distance and grouped into clusters using HAC [113] to

reduce false positive matches. The spatial coordinates are considered for calculating

the distance between the matched points. It starts clustering the keypoints by

considering each keypoint as a cluster initially. Then, it calculates all the reciprocal

spatial distances among clusters to find the closest pair of clusters and merges them

into a single cluster if they are dissimilar. Such a process is iteratively repeated

until there is only one cluster left by the linkage method adopted or the dissimilarity

criterion is unsatisfied. Thus, Centroid, Ward and Single linkage methods are used

for creating a hierarchy of clusters that can be represented by a tree structure.

4.4 Proposed CMFD Method

The proposed method is based on SURF [21] and BRISK [112] to detect the

keypoints and extract their feature descriptors. The matching is performed between

the feature descriptor of one keypoint and the feature descriptor of another keypoint

to detect CMFs in the image. On matched keypoints, we use clustering to form

the clusters and reduce the false positives. Matching the keypoints is done using

Euclidean distance and we then detect multiple CMFs in the digital image. Fig.
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Figure 4.3: An overview of the proposed CMFD system; features extraction, clusters

and detection results

4.3 shows a schematic diagram of the proposed CMFD. In the first step, keypoints

are detected and keypoints matching is done. Second, clustering is performed on

matched keypoints. Finally, detects the forged regions if forgery is presented. An

algorithm to detail a step by step process of the proposed method for detecting

copy-move forgery attacks is presented in Algorithm 1.

4.5 Experimental Results

4.5.1 Dataset

We evaluate the proposed approach on three different datasets.

First, on MICC-F220 by properly set the threshold t. It is a small dataset and

composes of 220 images of resolution varying from 722 × 480 to 800 × 600 pixels.

Out of which 110 images are originals and the remaining 110 images are forged. On

average, the size of the forged area is 1.2% of the whole image.

Second, on MICC-F2000, the evaluation is performed by testing the robustness

of the system against different kinds of forgery images. It is a larger dataset and

consists of 2000 images 2048× 1536 pixels. The forgery area on average is 1.12% of
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Algorithm 1 The proposed CMFD based on SURF and BRISK Features
Input: Image

Output: Detected forged regions with image

1. Convert the image into gray-scale image if RGB image.

2. Extract keypoints using SURF from an image (1, 2, 3, ...,M) and for each

keypoint, features are extracted (f1, f2, f3, .., fM).

3. Extract keypoints using BRISK from an image (1, 2, 3, ...,M) and for each

keypoint, features are extracted.

4. Fuse both extracted features.

5. For each feature descriptor, matching is performed with each other feature

descriptor.

6. If a match exists, clustering is performed using HAC. Euclidean distance is

utilised to compute the distance between matched feature descriptors.

7. A line is drawn between the matched objects of different clusters.

8. Forged regions are shown from clusters.

the image.

Third, on a small dataset, MICC-F8multi, contains 8 images in which multiple

portions were copied and pasted. In all datasets, the tampered images are obtained

by randomly copying region(s) of the image (rectangular or square) and pasting

over the image after having applied different attacks such as scaling, rotation and

translation.

4.5.2 Evaluation Metrics

The performance of the system is measured based on TPR, FPR and detection time

complexity where

TPR =
total images detected as forged being forged

total number of forged images
(4.7)
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(a) Down scaling attack (b) Up scaling attack

(c) Rotation attack (d) Multiple cloning attack

(e) Multiple cloning and scaling attack

Figure 4.4: Performance of the proposed method against various CMF attacks
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Table 4.1: Performance of the proposed CMFD in terms of TPR and FPR on varying

threshold t

t
Centroid Single Ward

TPR % FPR % TPR % FPR % TPR % FPR %

0.07 87 8.43 87.3 8.34 87.3 8.34

0.08 92.1 8.5 93.2 8.48 93.2 8.5

0.09 98 7.5 97.4 7.6 98 7.5

FPR =
total images detected as forged being original

total number of original images
(4.8)

We tested the proposed method on all three datasets which cover different CMF

attacks on images for checking the robustness of the system. The performance

against different types of CMF attacks is shown in Fig. 4.4. Table 4.1 presents the

accuracy of the system in terms of TPR and FPR in varying threshold t for the

detection of forgeries in digital images.

Table 4.2: Performance comparison of the proposed CMFD

Method TPR FPR Time(s)

Fridrich et al. [114] 89 84 294.69

Popescu and Farid [62] 87 86 70.97

Amerini et al. [2] 100 8 4.94

Mishra et al. [77] 73.64 3.64 2.85

Our method 98 7.5 6.5

Table 4.2 shows the performance of the system and comparison with other

methods. The proposed method achieves 98% of TPR and outperforms SOTA

methods in the presence of multiple cloning.
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4.6 Conclusions

We propose a detection method for CMF to support image forensics investigation

based on SURF and BRISK features. The proposed method was evaluated on three

benchmark datasets. Given a forged image, it can efficiently detect if certain portions

have been tampered with. The results show its effectiveness against CMF attacks

with respect to various geometric transformations.

In the next chapter, we investigate a digital image attack where an attacker

adds small perturbations to an input image to create attacks.
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Chapter 5

Defense Methods against Facial

Adversarial Attacks

DL models have been gaining popularity in various ML tasks because they can

represent higher-level concepts from low-level features and generalize them involving

a highly complex input space such as image classification, etc. However, these

models are vulnerable to versions of input images with slight perturbations added

intentionally to the input image to cause misclassification [10]. Such attacks are

known as adversarial attacks. These attacks are generated intentionally to mislead

the classifier for a wrong prediction. Based on the assumption of the attacker’s

knowledge, there are various types of adversarial attacks where each attack with a

specific goal. In general, the primary goal is to disrupt the input image by adding

small perturbations to cause the desired misclassification by the classifier.

Based on assumptions of the attacker’s knowledge, attacks are broadly classified

into white-box and black-box attacks. In a white-box attack, it is assumed that the

attacker is fully aware of the model’s inputs, outputs, weights and architecture. In

a black-box attack, it presumes the attacker is just aware of the model’s inputs and

outputs and is unaware of its underlying architecture or weights. While generating
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adversarial attacks, attackers can have a variety of goals such as source/target

misclassification and misclassification. The goal of misclassification is the attacker

does not care what the new classification is but only wants the output classification

to be wrong. A source/target misclassification means the adversary tries to change

an image from a certain source class so that it is classified as a particular target

class.

In this chapter, we investigate two effective defense methods for detecting

facial adversarial attacks. The first method is against intensity-based facial

adversarial attacks and another method is against geometry-based adversarial

attacks. Distinctive feature analysis is utilized for each method and linear and

non-linear classifiers to effectively detect facial adversarial attacks from the clean

images. The following is the list of key contributions of this chapter:

• Two defense methods are proposed against facial adversarial images. Intensity-

based and geometry-based facial adversarial images are generated based on

P-FGSM and FLM, respectively.

• WLMP features are extracted for detecting intensity-based adversarial noises

in face images.

• ELA is performed for the detection of geometry-based adversarial noises in

face images.

• Experimental results are presented.

The remainder of the chapter is organized as follows: Section 5.1 presents the

problem formulation. The proposed defense method against intensity-based facial

adversarial attacks along with a brief review on related works is discussed in Section

5.2. Its experimental results are elaborated in Section 5.2.3. The proposed defense

method against geometry-based facial adversarial attacks along with related works
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is discussed in Section 5.3. Its performance is detailed in Section 5.3.4. We conclude

the chapter in Section 5.5.

5.1 Problem Definition

We study the defense method against non-targeted adversarial facial attacks. Let

X ′ = [0, 1]R×C×Ch be the input image space, where R is the number of rows, C is

the number of columns and Ch is the number of channels. Given an image classifier

C(.) and a source image x ∈ X ′, a non-targeted adversarial image of x is a small

perturbed image xadv ∈ X ′ such that C(x) 6= C(xadv) and D(x, xadv) ≤ t for some

dissimilarity function D(., .) and t ≥ 0. Given a set of N clean images x1, ..., xN and

a target classifier C(.), an adversarial attack aims to generate xadv1 , ..., xadvN where

each xadvn is an adversarial image for xn. On the other way, a defense method aims

to make the prediction on adversarial image C(xadv) that is similar to the prediction

on the corresponding clean image.

5.2 Intensity-based Facial Adversarial Attacks

Intensity-based adversarial attack directly tries to alter the intensity of an input

image. This section describes the proposed defense method against intensity-based

facial adversarial attacks. First, face adversarial attacks are generated based on

P-FGSM [115]. It picks the target class label from a subset of adaptive class labels.

Thus, it reduces the probability of deducing the mapping between the target and

original classes. As a result, the adversarial image is more protected and increases

the probability of misleading the classification by a classifier. Next, the encoded

WLMP features are extracted from an input image and provided to various types

of SVM classifiers to discriminate between adversarial examples and real ones. The

effectiveness of the proposed defense method is shown on a real-world face image
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dataset.

5.2.1 Adversarial Attacks Generation

A simple and effective method, FGSM, for creating intensity-based adversarial

attacks is presented in [10]. FGSM is a type of white-box attack with the goal

of misclassification. It uses gradients in the way the NNs learn the gradients

to attack them. It adjusts the input data to maximize the loss on the same

backpropagated gradients instead of minimizing the loss by adjusting the weights

using the backpropagated gradients. This can be summarized using the following

eq. 5.1:

Adv X = X + ε× sign(∇XJ(θ,X, Y )) (5.1)

where

Adv X: Adversarial image

X: The input original image

Y : The true label of the input image

ε: Small value to multiply the signed gradients to control perturbations such that

they are small enough to deceive the human eye but large enough to mislead the

neural network

θ: Neural network model parameters

J : The loss function

An example for FGSM attack is as shown in Fig. 5.1. Where X depicts an input

image and it is rightly classified as “macaw” with 97.3% confidence score. A small

perturbation ε × sign(∇XJ(θ,X, Y )) is added to the input image. The obtained

adversarial image X + ε × sign(∇XJ(θ,X, Y )) is wrongly classified as “bookcase”

with 88.9% confidence score, when it still appears as “macaw”. Iterative FGSM (I-

FGSM) [116] is an extended version of FGSM. It iteratively generates perturbations

until a maximum number of iterations or desired misclassification probability is
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Figure 5.1: The FGSM for adversarial image generation [10]

reached. The final X ′ = XN is obtained as:

X ′ = X ′N−1 + ε× sign(∇XJ(θ,X ′N−1, Y )) (5.2)

from the initialization X ′0 = X.

We generate intensity-based adversarial images based on P-FGSM [115]. It is

an iterative FGSM with the goal of target misclassification. Let an image I and ŷi

be its true class label of one of the scene types shown in I. Let a set of N scene

classes of an image be y1, ..., yi, ..., yN . Then, a multiclass classifier M is applied to

image I to generate a one-hot vector y of size N-dimensional, which is given by:

y = M(I) (5.3)

where y = {y1, ..., yi, ..., yN} is obtained from a selection on the probability vector

p = {p1, ..., pi, ..., pN}. Here, pi is the probability of the scene class yi of the image

I.

pi = p(yi/I) (5.4)

A transformation T is defined such that Î = T (I) to induce M to classify the image

I with a different scene label:

y 6= M(Î) (5.5)
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The transformation T applies distortion to the image I. The distortion should be

minimal so that T is unnoticeable. Moreover, T should not be reversible such that

the true class ŷi can not be inferred from the predicted class M(Î) or from the

probability distribution of the predicted classes. Thus, T is defined as follows:

Î = T (I) = I + δ∗I (5.6)

where δ∗I is an adversarial perturbation. It is generated as follows:

δ∗I = argδImaxJM(θ, I + δI , y) (5.7)

P-FGSM generates adversarial images by adaptively targeting a class label ŷ

that is picked as a function of the classification probability vector p. It achieves a

high misclassification rate by utilizing the fact that the true class labels are always

among the class labels with the highest collective probabilities. Let p′ = {p′1, ..., p′N}

are the elements of p that are sorted in non-increasing order. P-FGSM arbitrarily

picks ŷ from the subset of classes if its cumulative probability crosses a specified

threshold σ ∈ [0, 1]:

ŷ = R({yj :

j−1∑
i=1

p′j > σ}), (5.8)

where R is a function that selects a class label arbitrarily from the input set

and σ is a threshold to control the number of classes to select ŷ: a higher σ denotes

a smaller subset of target classes. P-FGSM generates the adversarial image Î = ÎN

iteratively, starting from Î0 = I, as

Î = ÎN−1 − ε× sign(∆IJM(θ, ÎN−1, ŷ)), (5.9)

by increasing the prediction probability of class label ŷ until the desired classification

probability or a threshold on the maximum number of iterations is reached.
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Figure 5.2: The procedure for proposed defense method

5.2.2 Defense Method

Although there have been several methods for defending intensity-based facial

adversarial attacks, it is a challenging task and remains an active problem. Since

small perturbations added to the input image by many adversarial methods appear

like high-frequency noise, several authors have recommended leveraging the benefit

of image preprocessing and denoising techniques as a potential defense against

adversarial images. There is a lot of variance in preprocessing methods such as

applying median filtering and lowering the precision of input data [117] or using

JPEG compression [118]. However, such defense methods may be effective against

certain attacks, it has been shown that they fail in the white-box case in which the

attacker is aware of the defense.

The proposed defense method is based on WLMP features [56] and SVM [103].

The flowchart of the proposed approach is shown in Fig. 5.2. It is explained in

detail in section 3.3.

5.2.3 Experimental Results

The CelebA dataset is used to train and test the proposed method. It generates

adversarial images based on P-FGSM. Examples of the experimental results obtained

using the proposed system on a real-world dataset CelebA are shown in Fig. 5.3.
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Figure 5.3: Original images (first row) and adversarial images generated with P-

FGSM (second row)

The performance of the proposed defense method is demonstrated by training

and testing on different types of SVMs. It effectively defended intensity-based

adversarial images from the original images with an accuracy of 98.75% under Linear

SVM. The experimental results are shown in Table 5.1.

Table 5.1: Performance of the proposed defense method

Classifier Precision Recall F1-score Accuracy(%)

Linear-SVM 1.0 0.975 0.987 98.75

Poly-SVM 1.0 0.97 0.984 98.5

Gaussian-SVM 1.0 0.96 0.979 98

Sigmoid-SVM 0.72 0.725 0.723 72.2

5.3 Geometry-based Facial Adversarial Attacks

The geometry of the face is distinctive for each person. It offers highly discriminating

inputs for face recognition. In this section, we discuss the proposed defense method

against geometry-based facial adversarial attacks. First, we generate adversarial
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Figure 5.4: Geometry-based adversarial face image generation by FLM [11]

images based on the FLM method. Next, ELA is performed and features are

extracted from the input facial images. Then, the extracted features are provided

to different types of classifiers for the detection of the adversarial images.

5.3.1 Adversarial Attacks Generation

We generate geometry-based adversarial face attacks based on FLM [11]. It uses the

k spatial locations of facial landmarks to create such attacks as shown in Fig. 5.4.

It is briefly discussed as follows: Let φ be a function for landmarks detection that

converts the input image space into a collection of k locations of 2D face landmarks

L = {l1, l2, ...lk}, where li = (pi, qi). Let ladvi = (padvi , qadvi ) is the obtained after

the transformation of landmark li and it defines the ith landmark location of the

corresponding adversarial image xadv. FLM defines flow or displacement field f

per landmark to identify the corresponding landmark location of the adversarial

image and manipulates the input image space based on L. It optimizes the spatial

flow vector fi = (∆pi,∆qi) for the ith landmark ladvi = (padvi , qadvi ). It uses the

gradient direction of the prediction like as FGSM [10] to iteratively determine the

displacement field f for each landmark. The adversarial landmark ladvi can be

computed from the original landmark li and its corresponding displacement vector
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fi as:

ladvi = li + fi, (padvi , qadvi ) = (pi + ∆pi, qi + ∆qi) (5.10)

The displacement field f for k 2D landmarks where k is particularly small compared

to the pixel count of the input image. The adversarial face image is generated by

transforming the original image using the transformation function T , defined as

follows:

xadv = T (L,Ladv, x) (5.11)

where T represents a transformation function that maps the landmarks of the input

image space L to the adversarial image space Ladv.

5.3.2 Error Level Analysis

ELA [119] is a forensic methodology that makes use of the lossy compression methods

of forged images to reveal the fake. It works on image grids which are re-compressed

independently by a lossy technique with a known error rate. It then calculates the

absolute difference between the image suspected of being under attack and the re-

compressed image. Formally, ELA is defined as follows: For each color channel error

levels, ELA(r, c) where r and c are the indices of row and column respectively, can

be denoted by

ELA(r, c) = |I(r, c)− Irecompressed(r, c)|, (5.12)

where I denotes the image suspected of being under attack and Irecompressed is the

re-compressed image. Total averaged error levels across all color channels is denoted

as,

ELA(r, c) =
1

3

3∑
i=1

|I(r, c)− Irecompressed(r, c)|, (5.13)

where i varies from 1 to 3 for an RGB image.

The difference obtained between the two images represents the error levels

associated with the pixels of the original and re-compressed images. The error
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Figure 5.5: The overall procedure of the proposed defense method against geometry-

based adversarial attacks

levels shows a magnitude of change that occurred in the image suspected of being

under attack. If the magnitude of error levels is small, the pixel has reached its local

minima for error at the stated error rate. The pixels are likely to be attacked and

not at their local minima if the magnitude of error levels is large.

5.3.3 Defense Method

Once ELA is performed, the extracted features are provided to different types of

classification models to detect the adversaries from the clean images. The overall

flowchart of our defense method is as shown in Fig. 5.5. The proposed defense

is evaluated on various types of classification models such as Logistic Regression

(LR), Random Forest (RF), Ada Boosting (AdaBoost), Gradient Boosting (GB), RF

with Gradient Boosting (RF-GB), RF with Ada Boosting (RF-Ada) and XGBoost

(xgBoost). The experimental results show that the proposed defense effectively

classifies adversarial attacks from the original facial images.

5.3.4 Experimental Results

Our experiments evaluate the robustness of the proposed defense on CelebA Dataset

[111]. Examples of FLM attacks are shown in Fig.5.6. The performance is evaluated

on different types of classifiers as shown in Table 5.2.

If the precision is considered as the efficiency metric of the classifier, the
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Figure 5.6: Some of the results for geometry-based face attacks generated using

FLM. The first row represents original images from the CelebA dataset

Table 5.2: Overall results of the proposed defense method

S.No Classifier Precision Recall F1-score
Accuracy

(%)

1 Logistic Regression 0.99 1.00 1.00 99.75

2 Gradient Boost 0.99 1.00 0.99 99.38

3 Random Forest with Gradient Boosting 0.99 1.00 0.99 99.38

4 Random Forest with Ada Boosting 0.99 1.00 0.99 99.38

5 XGBoost 0.99 0.99 0.99 99.13

6 Ada Boosting 0.97 0.96 0.97 96.77

7 Random Forest 0.97 0.96 0.97 96.77

Figure 5.7: Performance comparison of the proposed defense on all classification

models
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classifiers LR, GB, RF-GB, RF-Ada and xgBoost with precision 0.99 outperform

the remaining classifiers. The classifiers RF and AdaBoost have the lowest precision

0.97 while discriminating the adversarial images from the clean images. If the recall

is considered as the efficiency metric of the classifier, the classifiers LR, GB, RF-GB

and RF-Ada have better recall with 1.00 against the remaining classifiers. In the

remaining classifiers, RF and AdaBoost have the lowest recall 0.96. Considering

F1-score as the efficiency metric of the classifier, the classifier LR with F1-score of

1.00 outperforms other classifiers. Among the other classifiers, RF and AdaBoost

observe the lowest F1-score of 0.97.

The performance comparison of our defense method on all classification models

with respect to TPR and FPR is shown in Figure 5.7. Among all the classifiers,

LR outperforms the remaining classification models in terms of all metrics with

0.99 precision, 1.00 recall, 1.00 F1-score and 99.75% accuracy. Whereas, RF and

AdaBoost have the same and lowest values in all the metrics to detect adversarial

face images with 0.97 precision, 0.96 recall, 0.97 F1-score and accuracy of 96.77%.

5.4 Evaluating Robustness of Intensity-based and

Geometric-based Adversarial Attacks

Almost all intensity-based attacks augment the input samples with high-frequency

components and employ a lp − norm constraint to regulate the distortion. The

adversarial samples may not necessarily sit on the same manifold as the natural

samples since the lp − norm is not a perfect similarity metric. On the other hand,

geometric-based adversarial attacks are extremely robust against adversarial training

compared to intensity-based adversarial attacks because they are targeting the most

important locations in the images using geometric perturbations. We use P-FGSM

[115] and FLM [11] for intensity-based and geometric-based adversarial attacks. We
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evaluate the robustness of intensity-based and geometric-based adversarial attacks

by extracting the encoded WLMP features with various classifiers on CelebA dataset.

Geometric-based adversarial attacks are much more resistant against all evaluating

classifiers except Sigmoid SVM. The overall statistics for evaluating the robustness

of both adversarial attacks are presented in Table 5.3.

Table 5.3: Robustness comparison of intensity-based and geometric-based adversar-

ial attacks on CelebA dataset

Intensity-based Adversarial Attack

(P-FGSM)

Geometric-based Adversarial Attack

(FLM)
S.No Classifier

Precision Recall F1-score Accuracy(%) Precision Recall F1-score Accuracy(%)

1 Linear SVM 0.96 0.97 0.96 96.4 0.77 0.75 0.76 76.16

2 Polynomial SVM 0.89 0.96 0.92 91.89 0.75 0.79 0.77 76.16

3 Random Forest 0.91 0.98 0.94 94.14 0.74 0.8 0.77 75.99

4 Sigmoid SVM 0.52 0.54 0.53 51.35 0.58 0.63 0.6 58.77

5 Gaussian SVM 0.91 0.94 0.92 92.34 0.7 0.79 0.74 72.35

6 k-NN 0.87 0.99 0.93 91.89 0.74 0.49 0.59 65.73

5.5 Conclusions

In this chapter, we propose two defense methods against different types of facial

adversarial attacks. One method is against a well-protected version of intensity-

based facial adversarial attacks. We proposed the encoded feature descriptors and

provided to different types of SVMs to effectively differentiate such attacks from the

original. The second method is against geometry-based facial adversarial attacks in

which adversarial attacks are generated based on the facial landmarks of the facial

image. ELA is performed and the performance is evaluated on various types of

classifiers to detect such types of attacks. The performance of the proposed defense

methods is shown on real-world datasets and the results show their effectiveness in

detecting facial adversarial images from the original.
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In the next chapter, we investigate various types of image restoration techniques

for improving the facial adversarial robustness of different types of classifiers on other

types of adversarial attacks.
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Chapter 6

Image Restoration for Improving

Facial Adversarial Robustness

The sensitivity of DL models to adversarial attacks can be problematic and even

prevent them from being used in safety and security-critical applications. When

human safety is at stake, such as in perceptual tasks for autonomous driving, the

problem becomes even more serious. Despite multiple defense methods that have

been developed to avoid misclassification by the classifier [82, 95, 120, 121], many

of these defenses can be easily attacked by more powerful adversarial examples

[30, 122]. Thus, improving adversarial robustness is essential for mitigating the

effect of adversarial attacks on classification models.

6.1 Motivation

It is observed that despite adversarial noises being modest in the pixel space, they

produce a significant amount of noise in their corresponding feature maps, as shown

in Fig. 6.1. That is, the features for the clean image appear to concentrate mostly

on semantically informative regions in the image, while the feature maps for the
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(a) (b)

Figure 6.1: (a) Feature maps of clean and adversarial images and (b) Feature maps

of adversarial images before and after denoising [12]

adversarial images are active across semantically irrelevant regions as well. It is also

observed that image de-noising techniques can significantly minimize the amount of

noise in the feature maps.

In this chapter, we present an extension of our work [123] by introducing

deep image restoration networks for improving adversarial robustness. First, facial

adversarial attacks are crafted based on StyleGAN [35], FLM [11] and P-FGSM

[115]. The crafted adversarial images are enhanced using deep image restoration

networks to bring them back into the original space. Then, we extract the

encoded WLMP features from an input image and provide them to various types

of SVM, Random Forest (RF) and k-NN classifiers for evaluating the performance.

The experimental results show that the proposed model effectively discriminates

adversarial images from real ones and significantly improves performance on all the

evaluating classification models.

Key contributions of this chapter are listed as follows:

• A new defense method is proposed against facial adversarial images based

on deep image restoration networks. It enhances adversarial images by
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bringing them back into the original space using Bilateral (BL) filter and

Super Resolution (SR) before detecting them from the original. Adversarial

attacks are generated using FLM, StyleGAN and P-FGSM methods.

• The encoded features are extracted from each facial image and provided to k-

NN, Random Forest and different types of SVM classifiers to detect adversarial

facial images from the original.

• Finally, the performance of the proposed defense is demonstrated on real-world

datasets and experimental results before and after using image restoration

networks are presented.

The remainder of the chapter is organized as follows: The related topics

are briefed in Sections 6.2 and 6.3. Section 6.4 presents the proposed model for

improving adversarial robustness. Its experimental results are elaborated in Section

6.5. We conclude the chapter in Section 6.6.

6.2 Adversarial Attacks Generation

The adversarial face images are generated based on attacks P-FGSM [115] and FLM

[11], as explained in the sections 5.2.1 and 5.3.1 of chapter 5.

6.3 Feature Denoising and Deep Image Restora-

tion Networks

An effective denoising technique can help to mitigate the effect of added perturba-

tions if not eliminated because all adversarial attacks add noise to an input image in

the form of well-crafted small perturbations. Image denoising, either in the spatial
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or frequency domain, causes a loss of textural information, which is counterpro-

ductive to our goal of producing clean image-like performance on denoised images.

We denoise adversarial images using the BL filter [124], which is the most used

edge-preserving denoising technique. It combines both range and domain filter-

ing to smooth images and preserves edges in a way similar to human performance.

It averages only perceptually similar colors and preserves only perceptually visible

edges.

SR reconstructs a high-resolution image ISR from a low-resolution image ILR.

Depending on the situation, the relationship between ILR and the original high-

resolution image IHR can change. Recently, DNNs [125, 126] have been shown to

significantly enhance the Peak Signal-to-Noise Ratio (PSNR) in the SR problem.

We reconstruct high-resolution images for denoised images based on the Enhanced

Deep Super-Resolution (EDSR) network [127]. It consists of residual blocks and

ResNet architecture and produced significantly improved performance in the single

image SR problem.

6.4 Proposed Model for Improving Facial Adver-

sarial Robustness

Once the adversarial images are restored to the original space, we extract WLMP

features [56] from each facial image. Generally, it is observed that smoothing and

blending are common digital image editing methods used to remove abnormalities in

fake or altered face images. As a result, the texture surfaces sometimes appear more

than 90% unaltered. In such cases, the encoded WLMP features are more effective in

highlighting the most altered regions of the face images when they are being altered

or attacked. The basic idea of the WLMP features is that it encodes the differences

computed by a center pixel with its adjacent pixels and weighs the nearest pixel to
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Figure 6.2: The overall procedure of the proposed defense method

Figure 6.3: The procedure for the extraction of WLMP features

the center pixel more than the far away pixels. It is observed that these features

also retain the information of high-frequency pixels while reducing the information

of low-frequency pixels. The flowchart shown in Fig. 6.3 describes the procedure

for extracting the WLMP features for each facial image. These extracted features

are provided to various types of SVM [103] classifiers, RF and k-NN classifiers to

discriminate the face adversarial images from the original. The procedure of the

proposed model for improving adversarial robustness is as shown in Fig. 6.2.

The steps for extracting WLMP features for each facial image are detailed as

follows:

1. The input face image is first divided into multiple blocks of size 3× 3.

2. The differences between the center pixel and its adjacent pixels are computed

for each block and their absolute values are also computed.
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3. Since there are eight adjacent pixels to each center pixel, eight differences are

obtained. To give a higher weightage to the pixels that are close to the center

pixel, the obtained differences are sorted in increasing order and each absolute

value of the difference is multiplied by a value 2p, where p = 0, 1..., 7. Then,

the final value of the center pixel is set to a value in the range of 0 and 255.

That is, its value is set to 255 if the obtained value is greater than 255.

4. Finally, the histogram feature vector is computed.

Algorithm 2 A Robust Defense against Adversarial Facial Images with Image

Restoration (BL + SR)

/* Image de-noising Input */

Input: Adversarial image xadv // P-FGSM, FLM, StyleGAN Attacks

Output: Denoised Image xD = D(xadv)

1. Convert the RGB image into gray color image using the transformation

0.299 ∗R + 0.587 ∗G+ 0.114 ∗B.

2. Denoise noisy patterns in the image using BL Filter.

3. Revert the denoised image back to RGB.

/* Image Super-Resolution (SR) */

Input: Denoised image xD = D(xadv)

Output: Super Resolved Image xSR = N(xD)

4. Transform adversarial images back to normal image space using deep image

restoration networks: N(.).

/* Adversarial Images Detection */

5. Extract WLMP encoded features for the recovered or super resolved images.

6. Forward the extracted features to the classifier model for correct prediction.
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Figure 6.4: Examples of original images, adversarial images generated using FLM,

restored adversarial images by BL filter and restored adversarial images by BL+SR

(from top to bottom in each column)

6.4.1 Algorithm Description

The algorithm of the proposed defense method is provided in Algorithm 2. We

used three techniques P-FGSM, FLM and StyleGAN for generating adversarial

images. Then, denoising is performed on the adversarial face image using the BL

filter. It smoothes the effects of adversarial noise. After that, SR is performed as a

mapping function to enhance the visual quality of images, which brings the images

in the adversarial space into the original space in high-resolution. Then, encoded

WLMP features are extracted for each facial image and trained with different types

of SVM classifiers, RF and k-NN. Our defense method minimizes the effect of

adversarial perturbations in the image domain and significantly improves the overall

performance of the classifier.
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Figure 6.5: Examples of original images, adversarial images generated using P-

FGSM, restored adversarial images by BL filter and restored adversarial images by

BL+SR (from top to bottom in each column)

6.5 Experimental Results

The proposed defense method is trained and tested on two real-world image datasets

CelebA [111] and Flickr-Faces-High Quality (FFHQ) [35]. Its performance is

demonstrated with different types of classifiers.

6.5.1 FFHQ Dataset

It contains 70,000 real faces from Flickr and 70,000 fake faces generated by using

StyleGAN [35]. It contains considerable variation in terms of age, ethnicity and

image background. It also has good coverage of accessories such as eyeglasses,

sunglasses, hats, etc. Only images under permissive licenses were collected. Various

automatic filters were used to prune the set and finally, Amazon Mechanical Turk

was used to remove the occasional statues, paintings, or photos of photos.
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Table 6.1: Overall results of the proposed defense method on CelebA Dataset with

P-FGSM attacks

Image Restoration Classifier Precision Recall F1-score Accuracy(%)

Linear SVM 1.0 0.98 0.99 98.75

Polynomial SVM 1.0 0.97 0.98 98.5

Random Forest 1.0 0.97 0.97 98.5

Sigmoid SVM 0.72 0.73 0.72 72

Gaussian SVM 1.0 0.96 0.98 98

No

k-NN 0.98 0.97 0.98 97.5

Linear SVM 0.99 1.0 1.0 99

Polynomial SVM 0.98 1.0 0.99 98

Random Forest 0.99 1.0 0.99 99

Sigmoid SVM 0.93 1.0 0.96 93

Gaussian SVM 0.99 1.0 0.99 99

BL+SR

k-NN 0.98 1.0 0.99 98

Fig. 6.4 depicts the original facial images, their corresponding FLM attacks,

restored adversarial images after BL and restored adversarial images after BL+SR

row-wise, respectively. Similarly, Fig. 6.5 shows examples of original face images,

their P-FGSM attacks, restored adversarial images after BL and restored adversarial

images after BL+SR row-wise, respectively.
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6.5 Experimental Results

Table 6.2: Overall results of the proposed defense method on FFHQ Dataset

No Image Restoration BL BL+SR
Adversarial

Attack

Classifier

Precision Recall F1-score
Accuracy

(%)

Precision Recall F1-score
Accuracy

(%)

Precision Recall F1-score
Accuracy

(%)

Linear SVM 0.71 0.7 0.7 70.1 0.85 0.85 0.85 80.07 0.85 0.85 0.85 80.07

Polynomial SVM 0.78 0.78 0.78 77.94 0.89 0.89 0.89 85.29 0.89 0.89 0.89 85.29

Sigmoid SVM 0.66 0.65 0.65 65.69 0.83 0.82 0.82 77.12 0.83 0.81 0.82 76.47

Gaussian SVM 0.62 0.56 0.59 60.29 0.8 0.71 0.75 68.63 0.8 0.71 0.75 68.95

Random Forest 0.66 0.67 0.66 66.18 0.83 0.82 0.82 76.47 0.83 0.81 0.82 75.82

StyleGAN

k-NN 0.71 0.48 0.57 63.73 0.88 0.73 0.8 75.16 0.88 0.71 0.79 74.18

Linear SVM 0.67 0.58 0.62 64.66 0.78 0.66 0.72 68.09 0.78 0.67 0.72 68.45

Polynomial SVM 0.65 0.43 0.52 60.21 0.77 0.53 0.63 62.29 0.77 0.53 0.63 62.49

Sigmoid SVM 0.56 0.58 0.57 55.86 0.65 0.56 0.6 55.24 0.65 0.57 0.61 55.68

Gaussian SVM 0.57 0.6 0.58 57.66 0.71 0.71 0.71 64.81 0.71 0.71 0.71 64.65

Random Forest 0.59 0.62 0.6 59.26 0.71 0.72 0.71 66.01 0.71 0.72 0.71 65.77

FLM

k-NN 0.59 1 0.74 65.52 0.67 0.95 0.79 69.5 0.67 0.94 0.78 68.65

6.5.2 Performance of the Proposed Defense Method

The proposed defense method is trained and tested on two real-world datasets.

Its performance is demonstrated with various types of classifiers. The overall

statistics of the proposed defense method on the CelebA dataset are presented

in Table 6.1. The results show that before employing image restoration, the

classifiers Linear SVM, Polynomial SVM, Sigmoid SVM, Gaussian SVM, RF and

k-NN classifier detect with an accuracy of 98.75%, 98.5%, 72%, 98%, 98.5% and

97.5% respectively. Among the classifiers, Linear SVM shows its effectiveness in

detecting facial adversarial images from the original with the highest accuracy of

98.75%. After employing image restoration such as BL followed by SR (BL+SR) to

the adversarial images, the classification accuracy improves from 98.75% to 99% for

118



6.6 Conclusions

Linear SVM, from 72% to 93% for Sigmoid SVM, from 98% to 99% for Gaussian

SVM, from 98.5% to 99% for RF and from 97.5% to 98% for k-NN on CelebA dataset

with P-FGSM adversarial attack.

On the FFHQ dataset with both adversarial attacks StyleGAN and FLM, our

method achieves 5 − 10% improvement in the classification accuracy in almost all

classification models, even if it achieves low classification accuracy before applying

image restoration. The results on the FFHQ dataset before and after applying

image restoration (BL+SR) with adversarial attacks StyleGAN and FLM are shown

in Table 6.2. Our experimental results show that BL alone is sufficient sometimes

to bring back the adversarial images into the original space, leading the classifier

toward correct prediction. Thus, the results show that significant improvement in the

detection accuracy after employing the image restoration BL+SR on the adversarial

images.

6.6 Conclusions

In this chapter, we investigate a new defense model for improving robustness

against facial adversarial attacks based on deep image restoration networks. We

generate a well-protected version of adversarial face images based on P-FGSM,

FLM and StyleGAN and have proved that these images can mislead the classifier to

misclassification with high confidence. Image restorations such as BL followed by SR

are performed on adversarial images to enhance the visual quality of images, which

brings back the low-resolution adversarial images into the original high-resolution

space. The encoded features are extracted for the recovered images and trained on

various types of classifiers. The results are demonstrated on two real-world datasets

for different types of adversarial attacks. The experimental results show that there

is a significant improvement in the classification accuracy after employing image

restoration in the classification models.
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Chapter 7

Conclusions and Future Directions

The work in this thesis addressed the research problems of detecting digital image

attacks. We proposed models for detecting and mitigating the effect of digital image

attacks to protect CV-based models from misclassification.

First, we addressed the problem of detecting swapped face images from

the original. We extracted augmented 81-facial landmarks which include facial

landmarks on the forehead as well. A full face swapping is performed based on the

extracted augmented 81-facial landmarks of both the source face and destination

face image. We extracted encoded WLMP features from images and provided them

to different types of SVMs for the detection of the presence of an attack. Numerical

results show that Linear-SVM and Polynomial-SVM achieve a precision of 96%

and a recall value of 94% for swapped face images with a detection accuracy of

95%. Whereas both Sigmoid-SVM and Gaussian-SVM achieve the same values for

precision and recall for both fake and original images with an accuracy of 74%.

Next, we proposed a method for the localization and detection of CMF attacks

in digital images. The objective is to accurately localize and detect CMFs present

in the image. We extract SURF and BRISK descriptors. We match both fused

features and perform clustering using the HAC method to reduce false positives.
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We evaluate our detection method on real-world CMF datasets and experimental

results are presented in terms of TPR and FPR with varying threshold t. We also

compare the results of our detection method with the SOTA methods. Our detection

method achieves the highest 98% TPR and the lowest 7.5% FPR at the threshold

of 0.09. It outperforms some of the SOTA methods in terms of TPR and running

time.

Next, we proposed two defense methods against facial adversarial attacks. The

first method is against intensity-based adversarial attacks and another is against

geometry-based facial adversarial attacks. We generate different kinds of facial

adversarial attacks and also present the results obtained after facial adversarial

attacks. Distinct feature descriptors are extracted from face images and provided

to various types of classification models to defend against facial adversarial attacks

from clean images. We evaluate our defense methods on real-world datasets. The

performance of our methods is demonstrated with different types of classifiers.

Numerical results show that our defense methods achieve significant performance

on a wide range of adversarial attacks.

Finally, we proposed a model for improving facial adversarial robustness. We

generate facial adversarial attacks based on different kinds of adversarial methods.

We restore the facial adversarial images using image restoration techniques. That

is, we bring back images into the original space from the adversarial space by

applying BL filtering and image SR. WLMP features are extracted and fed into

various classifiers. We evaluate our defense method on real-world datasets. We

also present experimental results before and after image restoration techniques.

The performance of our method is demonstrated on different kinds of classifiers.

Numerical results show that the proposed model improves the adversarial robustness

against a spectrum of adversarial attacks for different types of classification models.
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7.1 Future Directions

7.1 Future Directions

Although the contributions of this thesis detect and mitigate the effect of digital

image attacks on CV-based systems, constant defensive strategy improvement is

necessary due to the dynamic nature of attacks. For instance, in the age of DL,

the components of DL systems, such as filters, whole layers, or decision functions

can also be attacked [128]. In addition, the creation of high-resolution humans,

such as face photographs or generic object images is incredibly simple because of

advancements in the development of synthetic images using generative networks.

Such synthetic crafted images can be added to the training data through backdoor

data poisoning [129]. Thus, there are several possible directions in which the work

in this thesis can be extended. We list a few immediate extensions of our work.

• Since DL often requires large datasets and takes more time for training,

cloud service providers such as Azure, Google, Baidu, AWS and Alibaba offer

Applicant Program Interfaces (APIs) for their clients to accomplish CV tasks.

Such APIs can help the users of cloud services to check images for both non-

commercial and commercial purposes. Therefore, potential defense methods

are required to protect vision APIs.

• It is observed that images contain a natural and intrinsic structure that can

be leveraged to reverse many types of adversarial attacks. Extracting various

kinds of intrinsic features of an image may play a critical role in reversing

adversarial attacks.

• Facial adversarial attacks mainly focus on facial features to attack. The

geometry of the face is a unique identity and provides distinct information

about the face. Thus, geometry-based features such as facial landmarks, face

embedding, etc., could improve adversarial robustness.
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7.1 Future Directions

• A large-scale dataset with difficult attacks using advanced latex and silicone

masks, image synthesis and morphing technologies in many imaging spectrums

would help to detect image attacks effectively.

• CV-based models usually contain blocks such as feature extraction, matching

and network manipulation. Recently, it has been demonstrated that tradi-

tional blocks of any deep learning model may be transformed into secure sys-

tems using blockchain technology. The security of CV-based models can be

enhanced from the attacks with a combination of blockchain and ML frame-

work [130].
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[37] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner, and L. Verdoliva,

“Forensictransfer: Weakly-supervised domain adaptation for forgery detec-

tion,” arXiv preprint arXiv:1812.02510, 2018.

[38] H. Huang, W. Guo, and Y. Zhang, “Detection of copy-move forgery in

digital images using sift algorithm,” in 2008 IEEE Pacific-Asia Workshop

on Computational Intelligence and Industrial Application, vol. 2, Dec 2008,

pp. 272–276.

128



REFERENCES

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

neural information processing systems, 2014, pp. 2672–2680.

[40] B. Schneier, “Inside risks: The uses and abuses of biometrics,”

Commun. ACM, vol. 42, no. 8, p. 136, aug 1999. [Online]. Available:

https://doi.org/10.1145/310930.310988

[41] M. Singh, R. Singh, and A. Ross, “A comprehensive overview of biometric

fusion,” Information Fusion, vol. 52, pp. 187–205, 2019.

[42] A. Anjos and S. Marcel, “Counter-measures to photo attacks in face recogni-

tion: a public database and a baseline,” in 2011 international joint conference

on Biometrics (IJCB). IEEE, 2011, pp. 1–7.

[43] U. Scherhag, R. Raghavendra, K. B. Raja, M. Gomez-Barrero, C. Rathgeb,

and C. Busch, “On the vulnerability of face recognition systems towards

morphed face attacks,” in 2017 5th international workshop on biometrics and

forensics (IWBF). IEEE, 2017, pp. 1–6.

[44] Y. Kim, J.-H. Yoo, and K. Choi, “A motion and similarity-based fake

detection method for biometric face recognition systems,” IEEE Transactions

on Consumer Electronics, vol. 57, no. 2, pp. 756–762, 2011.

[45] K. Kotwal, Z. Mostaani, and S. Marcel, “Detection of age-induced makeup

attacks on face recognition systems using multi-layer deep features,” IEEE

Transactions on Biometrics, Behavior, and Identity Science, vol. 2, no. 1, pp.

15–25, 2019.

[46] S. Bhattacharjee, A. Mohammadi, and S. Marcel, “Spoofing deep face

recognition with custom silicone masks,” in 2018 IEEE 9th international

129



REFERENCES

conference on biometrics theory, applications and systems (BTAS). IEEE,

2018, pp. 1–7.

[47] J. Hu, X. Liao, W. Wang, and Z. Qin, “Detecting compressed deepfake videos

in social networks using frame-temporality two-stream convolutional network,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 32,

no. 3, pp. 1089–1102, 2021.

[48] V. Blanz, K. Scherbaum, T. Vetter, and H.-P. Seidel, “Exchanging faces in

images,” in Computer Graphics Forum, vol. 23, no. 3. Wiley Online Library,

2004, pp. 669–676.

[49] D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, and S. K. Nayar, “Face swap-

ping: automatically replacing faces in photographs,” in ACM SIGGRAPH

2008 papers, 2008, pp. 1–8.

[50] S. Mahajan, L.-J. Chen, and T.-C. Tsai, “Swapitup: A face swap application

for privacy protection,” in 2017 IEEE 31st International Conference on

Advanced Information Networking and Applications (AINA). IEEE, 2017,

pp. 46–50.

[51] I. Korshunova, W. Shi, J. Dambre, and L. Theis, “Fast face-swap using

convolutional neural networks,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 3677–3685.

[52] D. Chen, Q. Chen, J. Wu, X. Yu, and T. Jia, “Face swapping: realistic image

synthesis based on facial landmarks alignment,” Mathematical Problems in

Engineering, vol. 2019, 2019.

[53] R. Natsume, T. Yatagawa, and S. Morishima, “Fsnet: An identity-aware

generative model for image-based face swapping,” in Asian Conference on

Computer Vision. Springer, 2018, pp. 117–132.

130



REFERENCES

[54] ——, “Rsgan: face swapping and editing using face and hair representation in

latent spaces,” arXiv preprint arXiv:1804.03447, 2018.

[55] Y. Nirkin, Y. Keller, and T. Hassner, “Fsgan: Subject agnostic face swapping

and reenactment,” in Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 7184–7193.

[56] A. Agarwal, R. Singh, M. Vatsa, and A. Noore, “Swapped! digital face

presentation attack detection via weighted local magnitude pattern,” in 2017

IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2017,

pp. 659–665.

[57] P. Korshunov and S. Marcel, “Deepfakes: a new threat to face recognition?

assessment and detection,” arXiv preprint arXiv:1812.08685, 2018.

[58] A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, and C. Busch, “Fake

face detection methods: Can they be generalized?” in 2018 International

Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, 2018,

pp. 1–6.

[59] X. Ding, Z. Raziei, E. C. Larson, E. V. Olinick, P. Krueger, and M. Hahsler,

“Swapped face detection using deep learning and subjective assessment,”

EURASIP Journal on Information Security, vol. 2020, pp. 1–12, 2020.

[60] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An

evaluation of popular copy-move forgery detection approaches,” arXiv preprint

arXiv:1208.3665, 2012.

[61] A. J. Fridrich, B. D. Soukal, and A. J. Lukáš, “Detection of copy-move forgery
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