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Abstract

Complex biological processes, such as - ageing and cancers, progress over time through
multiple levels of biological regulations. For example, the progression of a cancer may
involve mutations at the DNA-sequence level, followed by changes at the gene-regulation
and protein-expression levels, and ultimately uncontrolled cell-growths at the tissue level.
Comprehending such a process at each of its levels and their inter-level connections is
a difficult task. Hence, attempts are made to understand each of its levels separately.
Understanding a process at the gene-regulation level is the motivation for this thesis.

At the gene-regulation level, genes regulate each others’ expression levels. If a gene’s
expression is regulated by that of one or more genes during a time interval, then it is said
that the former gene is regulated by the latter during that time interval. To decipher such
regulator-regulatee relationships, a two-step approach is traditionally followed. First,
expressions of the concerned genes are collected across multiple time points. Second,
that time-series gene expression data is analysed to reverse-engineer the underlying
relationships. When the data contains a large number of genes, the reverse-engineering
task necessitates the help of computational algorithms.

The said algorithms model the underlying relationships as a temporally-ordered se-
quence of directed networks. In each network, the nodes represent the genes, and every
directed edge represents the ‘regulator → regulatee’ relationship between two genes.
The ith network in the modelled sequence describes the relationships during the ith time
interval. The algorithms produce the modelled sequence as output, which is known
as the ‘time-varying gene regulatory networks’; and the modelling process is known as
the ‘reconstruction’ of time-varying gene regulatory networks. The objective of this
thesis is to overcome some of the challenges faced by computational algorithms in the
reconstruction of time-varying gene regulatory networks.

To identify the challenges, a comparative study is conducted between the existing
reconstruction algorithms. For this study, three widely-used benchmark datasets with
10, 50 and 100 genes are utilised. It is observed that an algorithm named ‘Auto Re-
gressive TIme VArying models’, in short, ARTIVA, outperforms all other algorithms in
terms of correctness of the reconstructed networks. The correctness is measured with a
widely-used metric called ‘F1-score’; it represents how good an algorithm is in capturing
the correct edges as well as rejecting the incorrect edges. Although ARTIVA demon-
strates superiority in F1-score, it lacks in computational efficiency. ARTIVA consumes
almost 1.5 days for the 100-gene benchmark dataset. With that speed, ARTIVA may
require months for large-scale datasets that contain hundreds to thousands of genes.
Such long time frames make the application of ARTIVA prohibitive with large-scale
datasets. Thus, the objective of this thesis is further refined to develop algorithms that
meet the following requirements:

• deliver correctness competitive to that of ARTIVA,

• offer computational efficiency compatible with large-scale datasets that contain
hundreds to thousands of genes.



Towards that objective, we propose our first algorithm named ‘an algorithm for recon-
structing Time-varying Gene regulatory networks with Shortlisted candidate regulators’,
in short, TGS. This algorithm outpaces ARTIVA for all benchmark datasets. However,
ARTIVA retains its superiority in F1-score.

To enhance F1-scores, we propose our second algorithm named ‘TGS-Plus’ (TGS+).
This algorithm supersedes ARTIVA in F1-score. Moreover, TGS+ outpaces TGS in
runtime. For the 100-gene benchmark dataset, it consumes only 1 minute. With such
time-efficiency and correctness, TGS+ can be extremely suitable for large-scale datasets.
However, that is not the case. We observe that both TGS and TGS+ are unable to man-
age computational memory efficiently. Their memory requirements grow exponentially
with the number of genes. This is a major concern for large-scale datasets.

To improve memory-efficiency, we propose our third set of algorithms. It contains
two algorithms. The first one is called ‘TGS - which is Light on memory’, in short, TGS-
Lite. This algorithm offers the same correctness and time-efficiency as that of TGS, yet,
its memory requirement grows only linearly with the number of genes. Similarly, the
second algorithm, known as ‘TGS-Lite Plus’ (TGS-Lite+), delivers the same correctness
and time-efficiency as that of TGS+, at a linear memory requirement. Nonetheless, it
is found that these algorithms, along with the ones we proposed earlier, tend to fail in
capturing the edges that remain active for short periods of time. Such edges, known as
‘transient edges’, may have crucial effects. Hence, capturing transient edges is critical
for understanding the underlying gene-regulation process.

For capturing transient edges, we propose our fourth and final set of algorithms. It
consists of four algorithms. The first algorithm is named ‘TGS - having Time-varying
shortlists’, in short, TGS-T. This algorithm captures significantly more numbers of edges
than that of TGS. Similarly, the last three algorithms, named as {TGS-T+, TGS-T-
Lite, TGS-T-Lite+} capture considerably more numbers of edges than that of {TGS+,
TGS-Lite, TGS-Lite+}, respectively.

Overall, we propose four sets of algorithms in this thesis.

• The proposed algorithms advance the state of correctness for the reconstruction
of time-varying gene regulatory networks.

• At the same time, they advance the state of computational efficiency, making them
compatible with large-scale datasets.
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8.4 Illustration of the Time-invariant Refinement strategy by the ARACNE
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a direct regulatory relationship. Instead, they are related through vk.
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vj . In such cases, ARACNE sets M (vi, vj) = 0. On the other hand, if
ARACNE is unable to find any such vk, it assumes that vi and vj have a
direct regulatory relationship. Therefore, the value of M (vi, vj) is kept
unchanged. Thus, ARACNE checks and refines (if necessary) the mutual
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i.e. M (vi tp, vk tp) > 0. On the other hand, vk tp regulates vj t(p+1).
Hence, vk tp and vj t(p+1) also share a non-zero mutual information i.e.
M
(
vk tp, vj t(p+1)

)
> 0. Since vi tp shares a non-zero mutual informa-

tion with vk tp which again shares a non-zero mutual information with
vj t(p+1), vi tp might share a non-zero mutual information with vj t(p+1)

i.e. M
(
vi tp, vj t(p+1)

)
> 0. However, according to the DPI, this false

mutual information must not exceed the true mutual informations that
have caused its non-zeroness. In other words, M

(
vi tp, vj t(p+1)

)
must

not exceed M (vi tp, vk tp) or M
(
vk tp, vj t(p+1)

)
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8.9 The TPR-vs-FPR Plots of TGS-T, TGS-T+ and a random classifier.
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Chapter 1

Introduction

Complex biological processes, such as - ageing and cancers, progress over time through
multiple levels of biological regulations (Yu et al., 2013). For example, the progres-
sion of a cancer may involve mutations at DNA sequences, consequent changes at gene
regulations, followed by modulations in protein expressions, resulting in uncontrolled
cell growth and ultimately the formation of tumours. Comprehending such a process
requires understandings of each of its levels and their inter-connections. This is an
extremely difficult task. Hence, attempts are made to understand each of its levels
separately (Alon, 2006). Understanding a process at the level of gene regulation is the
motivation for this thesis.

To understand a process at the level of gene regulation, a two-step approach is tradi-
tionally followed: first, expressions of the concerned genes are collected across multiple
time points; second, that time-series gene expression data is analysed to reverse-engineer
the underlying gene regulations (Sanguinetti and Huynh-Thu, 2019). When the data
collected in the first step is quite large, the second step necessitates the help of com-
putational algorithms. The said algorithms model the underlying gene regulations as a
temporally-ordered sequence of directed networks. In each network, the nodes represent
the genes, and every directed edge represents the ‘regulator → regulatee’ relationship
between two genes. The first network in the modelled sequence describes the relation-
ships during the first time interval i.e. between the first and second time points; the
second network describes the relationships during the second time interval i.e. between
the second and third time points, and so on. The algorithms produce the modelled
sequence as output, which is known as the ‘time-varying gene regulatory networks’; and
the modelling process is known as the ‘reconstruction’ of time-varying gene regulatory
networks (Grzegorczyk and Husmeier, 2011). The objective of this thesis is to over-
come some of the challenges faced by computational algorithms in the reconstruction of
time-varying gene regulatory networks.

To identify the challenges, we conduct a comparative study between the existing
reconstruction algorithms. For this study, three widely-used benchmark datasets are
utilised (Marbach et al., 2010, 2009; Prill et al., 2010); they are called Ds10n, Ds50n and
Ds100n since they contain time-series expressions of 10, 50 and 100 genes, respectively. It
is observed that one particular algorithm substantially outperforms all other algorithms
in correctness of reconstructed networks. The said algorithm is called ‘Auto Regressive
TIme VArying models’, in short, ARTIVA (Lèbre et al., 2010). Although ARTIVA
demonstrates superiority in correctness, it lacks in computational efficiency. ARTIVA
consumes almost 1.5 days for the benchmark dataset with 100 genes. With that speed,
ARTIVA may require months for large-scale datasets, which usually contain hundreds
to thousands of genes (Zaas et al., 2009). Such long time frames make the application
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of ARTIVA prohibitive with large-scale datasets. Thus, we refine the objective of this
thesis to develop algorithms that meet the following requirements:

• deliver correctness competitive to that of ARTIVA,

• offer computational efficiency compatible with large-scale datasets that contain
hundreds to thousands of genes.

Towards that objective, we propose our first algorithm named ‘an algorithm for recon-
structing Time-varying Gene regulatory networks with Shortlisted candidate regulators’,
in short, TGS. This algorithm outpaces ARTIVA for all benchmark datasets, with con-
siderable margins. As an example, for the benchmark dataset with 100 genes, where
ARTIVA takes around 1.5 days, TGS consumes only about 18 minutes. At the same
time, TGS consistently captures higher numbers of correct edges than that of ARTIVA,
for all benchmark datasets. On the other hand, ARTIVA succeeds to reject significantly
higher numbers of incorrect edges than that of TGS for two of the three benchmark
datasets. As a result, ARTIVA retains its superiority in correctness, which is measured
with a widely-used cumulative metric of capturing correct edges and rejecting incorrect
edges known as ‘F1-score’ (Liu et al., 2016).

To enhance F1-scores, we propose our second algorithm named ‘TGS-Plus’ (TGS+).
This algorithm has an additional step compared to TGS. The additional step prevents
a considerable number of incorrect edges from being captured. Due to this step, TGS+
is able to reject competitive numbers of incorrect edges to that of ARTIVA, while cap-
turing competitive numbers of correct edges to that of TGS. As a consequence, TGS+
supersedes ARTIVA in F1-score. Moreover, TGS+ overtakes even TGS in runtime.
For the benchmark dataset with 100 genes, where TGS takes about 18 minutes, TGS+
requires only 1 minute. With that time-efficiency, TGS+ can be extremely suitable
for large-scale datasets. However, that is not the case. We observe that both TGS
and TGS+ are unable to manage computational memory efficiently. Their memory re-
quirements grow exponentially with the number of genes. This is a major concern with
large-scale datasets.

To improve memory-efficiency, we propose our third set of algorithms. It contains
two algorithms. The first one is called ‘TGS - which is Light on memory’, in short,
TGS-Lite. This algorithm offers the same correctness and time-efficiency as that of
TGS, yet, at a low memory requirement that grows linearly with the number of genes.
Similarly, the second algorithm, known as ‘TGS-Lite Plus’ (TGS-Lite+), delivers the
same correctness and time-efficiency as that of TGS+, at a linear memory requirement.
Such computational efficiencies make TGS-Lite and TGS-Lite+ most suitable for large-
scale datasets. Nonetheless, it is found that these algorithms, along with the ones we
proposed earlier, tend to fail in capturing a particular type of edges. These edges are
known as ‘transient edges’; they remain active for short periods of time, but may have
crucial effects. Therefore, capturing transient edges is critical for understanding the
underlying gene-regulation process.

For capturing transient edges, we propose our fourth and final set of algorithms. It
consists of four algorithms. The first algorithm is named ‘TGS - having Time-varying
shortlists’, in short, TGS-T. This algorithm captures significantly more numbers of
edges than that of TGS. As an example, for the benchmark dataset with 100 genes,
TGS-T captures 49 out of 166 correct edges, compared to 28 captured by TGS. In a
similar manner, the last three algorithms, named as {TGS-T+, TGS-T-Lite, TGS-T-
Lite+} capture considerably more numbers of edges than that of {TGS+, TGS-Lite,
TGS-Lite+}, respectively.
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To summarise, we propose four sets of algorithms in this thesis. The following obser-
vations are made from comparative studies conducted between the proposed algorithms
and the existing ones:

• The proposed algorithms are significantly more time-efficient than the existing
algorithms. It makes the former algorithms most suitable for processing large-
scale datasets.

• At the same time, a subset of the proposed algorithms efficiently utilise computa-
tional memory, which makes them extremely suitable for processing large datasets
when available memory is limited.

• Most importantly, the proposed algorithms do not offer the aforementioned ef-
ficiencies at the cost of correctness. On the contrary, they surpass the existing
algorithms even in correctness.

Through the aforementioned contributions, this thesis advances the state of compu-
tational efficiency for the reconstruction task of time-varying gene regulatory networks.
It also advances the state of correctness for the same. In the next section, we discuss
the contributions in finer details.

1.1 Contributions of the Thesis

Contribution 1: Improving Time-efficiency

Performing the reconstruction task efficiently necessitates a thorough understanding of
the task at hand. To gain that understanding, we study the existing reconstruction
algorithms. It is learnt that the task can be seen as finding out which gene is regulated
by which gene (or genes) and when. Therefore, the whole task can be decomposed into
sub-tasks of finding out the regulators of a particular gene at different time intervals.
Each of these sub-tasks can be further decomposed into atomic tasks of finding out the
regulators of a particular gene at a specific time interval.

The time required for executing each atomic task increases with the number of
candidate regulators of the concerned gene. Since, any gene can be a regulator of the
said gene, including the gene itself (through a process known as auto-regulation), the
number of candidate regulators becomes same as the total number of genes. For that
reason, the existing reconstruction algorithms require significant computational time for
datasets with large numbers of genes.

To mitigate the issue, we propose a time-efficient algorithm named ‘an algorithm
for reconstructing Time-varying Gene regulatory networks with Shortlisted candidate
regulators’, in short, TGS (Pyne et al., 2020). This algorithm consists of two consecutive
steps: the short-listing step and the final selection step.

In the short-listing step, a shortlist of candidate regulators is prepared for the con-
cerned gene. The short-listing is performed based on a criterion known as ‘Context
Likelihood of Relatedness’ (Faith et al., 2007). This criterion decides whether the ex-
pressions of a candidate regulator convey a significant amount of information about the
expressions of the concerned gene; formally, whether the candidate regulator shares a
statistically significant ‘mutual information’ with the concerned gene, during all time
intervals (Cover and Thomas, 2012). If a candidate regulator shares a statistically signif-
icant mutual information with the concerned gene, it is concluded that the expressions
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of the latter are not independent of that of the former. Hence, that candidate regulator
is short-listed for further examinations.

Further examinations are conducted in the final selection step. This step tests
whether the expressions of the concerned gene, during a particular time interval, is
independent of that of the candidate regulator, given the expressions of other candidate
regulators at that time interval. This test is based on the idea of ‘conditional inde-
pendence’ (Markowetz and Spang, 2007); it says that the expressions of the concerned
gene can be independent of that of the candidate regulator, given some condition, even
though they are not independent when that condition is not given. For example, if the
concerned gene and the candidate regulator have a common regulator, then the expres-
sions of the former genes may not be independent; however, they would be conditionally
independent, given the expressions of the common regulator. The final selection step
checks whether the expressions of the concerned gene are conditionally independent of
that of the candidate regulator during a particular time interval, using the most rigorous
test of conditional independence known as ‘Bayesian networks’ (Markowetz and Spang,
2007). If the expressions of the concerned gene is not conditionally independent of that
of the candidate regulator during a specific time interval, then the latter is selected as
a regulator of the former in the reconstructed network specific to that time interval.

The time required for the Bayesian network tests grows exponentially with the num-
ber of candidate regulators. However, due to the short-listing step, the tests need to be
performed only for the short-listed candidate regulators. At the same time, the time
required by the short-listing step itself grows only quadratically with the total number
of genes. Hence, the time consumed by the short-listing step is overshadowed by the
time it saves during the final selection step. As a result, TGS outpaces all existing
algorithms, including ARTIVA, in runtime (Table 1.1 ).

Table 1.1: The Runtime of TGS and ARTIVA for the Benchmark Datasets. For each
dataset, the fastest runtime is boldfaced.

Dataset TGS ARTIVA

Ds10n 5.789 s 10 m 20 s

Ds50n 7 m 36 s 4 h 30 m 15 s

Ds100n 17 m 49 s 31 h 52 m 54 s

Moreover, TGS consistently outperforms ARTIVA in capturing correct edges, which
is measured with a metric named ‘recall’ (Table 1.2 ). Recall is the ratio of the number
of correct edges in a model to the maximum achievable number of correct edges; hence,
recall represents how good an algorithm is in capturing the correct edges (Liu et al.,
2016).

Table 1.2: The Recalls of TGS and ARTIVA for the Benchmark Datasets. For each
dataset, the highest recall is boldfaced.

Dataset TGS ARTIVA

Ds10n 0.3 0

Ds50n 0.195 0.078

Ds100n 0.169 0.084
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Nevertheless, ARTIVA retains its superiority in F1-score for two of the three bench-
mark datasets (Table 1.3 ). The reason is that TGS can not overcome ARTIVA in
rejecting incorrect edges, measured with a metric named ‘precision’ (Table 1.4). Pre-
cision is the ratio of the number of correct edges in a model to the total number of
edges in the model; therefore, precision represents how good an algorithm is in rejecting
incorrect edges (Liu et al., 2016). F1-score is the harmonic mean of recall and precision.
For that reason, F1-score indicates how good an algorithm is in balancing recall and
precision.

Table 1.3: The F1-scores of TGS and ARTIVA for the Benchmark Datasets. For each
dataset, the highest F1-score is boldfaced.

Dataset TGS ARTIVA

Ds10n 0.261 0

Ds50n 0.069 0.082

Ds100n 0.057 0.083

Table 1.4: The Precision of TGS and ARTIVA for the Benchmark Datasets. For each
dataset, the highest precision is boldfaced.

Dataset TGS ARTIVA

Ds10n 0.231 0

Ds50n 0.042 0.086

Ds100n 0.034 0.081

The aforementioned observations imply that, although TGS is able to supersede
ARTIVA in recall, the differences are not sufficient to compensate for lower precisions;
as a consequence, TGS ’s F1-scores remain lower than that of ARTIVA. We address this
limitation in the subsequent contribution.

Contribution 2: Balancing Recall and Precision

To address the limitation, we investigate the incorrect edges that TGS fails to reject. It
is found that a large number of such edges represent indirect regulatory relationships;
if gene A regulates gene B which in turn regulates gene C, then genes A and C are said
to have an indirect regulatory relationship. Such a relationship must not be represented
as an edge which indicates a direct relationship.

Therefore, a refinement strategy is added in the short-listing step; this strategy
employs an algorithm called ‘Algorithm for the Reconstruction of Accurate Cellular
NEtworks’ (in short, ARACNE ) to prevent the candidate regulators that are highly
likely to have indirect regulatory relationships with the concerned gene from being short-
listed (Margolin et al., 2006). With the modified short-listing step, we propose our
second algorithm named ‘TGS-Plus’ or ‘TGS+’ (Pyne et al., 2020). This algorithm
demonstrates a significant improvement in precision over TGS at an acceptable cost
in recall. As a result, TGS+ provides the finest balance between recall and precision;
inevitably, it supersedes ARTIVA in F1-score (Table 1.5).
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Table 1.5: The F1-scores of TGS+ and ARTIVA for the Benchmark Datasets. For each
dataset, the highest F1-score is boldfaced.

Dataset TGS+ ARTIVA

Ds10n 0.429 0

Ds50n 0.066 0.082

Ds100n 0.104 0.083

In theory, the addition of the refinement strategy slightly increases the time com-
plexity. However, in practice, the strategy results in shorter shortlists and thus saving
more time in the final selection step. As a consequence, TGS+ outpaces even TGS in
runtime for all datasets (Table 1.6).

Table 1.6: The Runtime of TGS+, TGS and ARTIVA for the Benchmark Datasets. For
each dataset, the fastest runtime is boldfaced.

Dataset TGS+ TGS ARTIVA

Ds10n 5.515 s 5.789 s 10 m 20 s

Ds50n 22.034 s 7 m 36 s 4 h 30 m 15 s

Ds100n 1 m 4 s 17 m 49 s 31 h 52 m 54 s

Nevertheless, we observe that the memory requirement of the final selection step
keeps increasing at an exponential rate with the number of candidate regulators in the
shortlist. This is alarming since shortlists may contain hundreds of genes for large-scale
datasets having thousands of genes. Hence, we address this concern in the following
contribution.

Contribution 3: Improving Memory-efficiency

To address the memory-inefficiencies, we inspect the final selection step. The root cause
is found in the memory management scheme of the algorithm employed for conducting
Bayesian network tests. This algorithm is known as Bene (Silander and Myllymäki,
2006). To select the final list of regulators for a concerned gene, Bene takes the shortlist
of candidate regulators as input. Then, it enumerates all subsets of the short-listed
candidate regulators. Consequently, each subset is scored with a scoring function. In
the end, the subset with the highest score is selected as the final list. The memory-
inefficiency arises because all the aforementioned subsets are kept together in memory
during their score calculations. Hence, the memory requirement becomes proportional
to the number of subsets, which is exponential to the number of short-listed candidate
regulators.

We propose a novel memory management scheme based on the observation that
calculating the score of one subset is independent of that of another subset. In this
scheme, all subsets are not generated at once. Instead, a computer programme is used
to take a subset as input, generate the next subset and replace the former subset with
the latter. Therefore, the process starts with only the first subset in memory. As soon
as its score is calculated, it is replaced with the second subset by the programme. The
process iterates until the score of the last subset has been calculated. All through the
process, a separate block of memory is allocated to store the highest-scoring subset.
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After every iteration, the block reflects the highest-scoring subset among the subsets
scored so far. As a result, after the last iteration, the block reflects the highest-scoring
subset among all subsets.

The aforementioned scheme requires only two subsets – the current one and the
hitherto highest-scoring one – to be stored in memory, along with the subset-generation
programme. Therefore, the memory requirement becomes linear to the number of short-
listed candidate regulators. At the same time, it does not require any additional time;
we prove that this scheme has the same time complexity as that of Bene.

Hence, we replace Bene with the proposed scheme in TGS. It gives birth to our third
algorithm that we named ‘TGS - which is Light on memory’, in short, TGS-Lite (Pyne
and Anand, 2019a). This algorithm outputs the same networks as that of TGS since
both of them use the same scoring function. Moreover, it has the same time complexity
as that of TGS. The only difference is that the memory usage of TGS grows exponentially
with the number of short-listed candidate regulators, whereas that of TGS-Lite grows
only linearly (Figure 1.1 ).
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Figure 1.1: Differences in Memory Usage between TGS and TGS-Lite. The values
represent percentages of memory used, where the total memory is 32 GB in size.

Similarly, we replace Bene with the proposed scheme in TGS+. The resultant al-
gorithm is named TGS-Lite+ (Pyne and Anand, 2019a). This algorithm reconstructs
the same networks as TGS+ within the same time complexity, yet, requires significantly
less amount of memory.

Nonetheless, a major limitation is detected in all the algorithms we proposed so
far. The limitation is that they tend to fail in capturing a particular type of edges
known as ‘transient edges’. These edges remain active for short periods of time but may
trigger long-lasting cascading effects. Therefore, capturing transient edges is crucial for
understanding the underlying gene-regulation process. We address this limitation in the
following contribution.
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Contribution 4: Capturing Transient Edges

We investigate the previously proposed algorithms to understand why they tend to miss
transient edges. The bottleneck is found in the short-listing step. This step prepares
a single time-invariant shortlist of candidate regulators for the concerned gene. The
shortlist is then passed on to the final selection step, which may select different subsets
of the shortlist for different time intervals. Therefore, the final lists may be different in
distinct time intervals. However, all of them have to be subsets of the same shortlist.

The time-invariant shortlist is prepared based on the whole time-series dataset. As a
result, the candidate regulators that share high mutual information with the concerned
gene, across all time intervals, are short-listed. On the other hand, the candidate regu-
lators that share high mutual information with the concerned gene, for a small number
of time intervals, are less likely to be short-listed. However, such candidate regulators
are most likely to be transient regulators of the concerned gene during those specific
time intervals.

To capture the transient regulators, we design a novel short-listing step that gen-
erates one shortlist for every time interval. The shortlist specific to a time interval
contains the candidate regulators that share statistically significant mutual information
with the concerned gene, during that specific time interval. A novel algorithm is de-
veloped by replacing the short-listing step of TGS with the new one; we named this
algorithm ‘TGS - having Time-varying shortlists’ or TGS-T (Pyne and Anand, 2019b).
This algorithm captures considerably higher numbers of correct edges than that of TGS.
As a consequence, TGS-T outperforms TGS in recall for two of the three benchmark
datasets (Table 1.7 ).

Table 1.7: The Recalls of TGS-T and TGS for the Benchmark Datasets. For each
dataset, the highest recall is boldfaced.

Dataset TGS-T TGS

Ds10n 0 0.3

Ds50n 0.39 0.195

Ds100n 0.295 0.169

On the other hand, TGS-T ’s precisions, though competitive to that of TGS, remain
consistently lower than the precisions of TGS+. To mitigate this issue, we attempt to in-
corporate the ARACNE -based refinement strategy used in TGS+ into the short-listing
step of TGS-T. However, it poses a challenge as ARACNE is incompatible with time-
varying shortlists. We overcome this challenge by designing a novel refinement strategy
that is compatible with time-varying shortlists. This strategy is named ARACNE-T. It
utilises the theorem underlying ARACNE known as Data Processing Inequality (Mar-
golin et al., 2006) and applies it on time-varying shortlists. By incorporating ARACNE-
T into TGS-T, we develop a new algorithm named TGS-T+ (Pyne and Anand, 2019b).
As expected, TGS-T+ obtains monotonically higher precisions than that of TGS-T. At
the same time, the former retains the same recalls as that of the latter.

In terms of memory management, both TGS-T and TGS-T+ inherit the inefficien-
cies from TGS and TGS+. To alleviate this issue, we propose two more algorithms by
replacing their final selection steps with that of TGS-Lite; the resultant algorithms are
named TGS-T-Lite and TGS-T-Lite+, respectively (Pyne and Anand, 2019b). These
algorithms offer the same correctnesses at the same time complexities, yet, with signifi-
cantly less memory.
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Nevertheless, there remain opportunities for further improvements. We discuss some
of those opportunities in the last chapter of this thesis.

1.2 Organisation of the Thesis

The thesis is organised in nine chapters. The chapters are briefly described below:

• Chapter 1: Introduction. This chapter provides an overview of the thesis.

• Chapter 2: Motivation. In this chapter, we discuss what motivated us to
explore computational algorithms that serve the needs of biology and medicine.

• Chapter 3: Literature Survey. A critical review of such algorithms are con-
ducted to discern their limitations. We find a major limitation in the computa-
tional efficiencies of the algorithms which reconstruct time-varying gene regulatory
networks from time-series gene expression datasets.

• Chapter 4: Problem Formulation. The objective of this thesis is set to develop
novel algorithms that can offer competitive correctness to that of the existing
algorithms, yet, in a significantly more efficient manner.

• Chapter 5: Improving Time-efficiency. We develop our first algorithm. This
algorithm outpaces the existing algorithms in runtime; moreover, it outperforms
the latter in recall. However, the proposed algorithm is observed to suffer from
poor precisions and exponential memory requirements.

• Chapter 6: Balancing Recall and Precision. To overcome poor precisions,
we develop our second algorithm. This algorithm offers competitive precisions to
that of the existing algorithms while being as time-efficient and recall-powerful as
the previously proposed algorithm. Therefore, the only issue that remains is that
of exponential memory requirements.

• Chapter 7: Improving Memory-efficiency. We resolve the issue by devel-
oping two novel algorithms. These algorithms are equivalent to the previously
proposed algorithms, except the former algorithms have linear memory require-
ments. At this point, we reach the objective of the thesis, which was to develop
algorithms that offer competitive correctness to that of the existing algorithms, in
a more efficient manner. However, it is observed that the newly developed algo-
rithms are unable to capture a particular type of edges known as transient edges;
such edges remain active for a short period of time but may have a long-lasting
effect. We choose to resolve this issue since the broader objective of the thesis is
to advance the state-of-the-art of reconstruction algorithms.

• Chapter 8: Capturing Transient Edges. The aforementioned issue is mit-
igated by developing four more algorithms. These algorithms are equivalent to
the four algorithms proposed previously, except the former algorithms are able to
capture significantly higher numbers of edges.

• Chapter 9: Conclusions and Future Directions. Finally, we summarise the
contributions and discuss few future directions.

At the end of every chapter, a section called ‘Chapter Summary’ is added. It presents
a bird’s eye view of how that chapter relates to the chapters preceding it. Naturally,
this rule excludes chapters ‘Introduction’ and ‘Conclusions and Future Directions’.

9



10



Chapter 2

Motivation

2.1 Important Questions

Study of biological systems finds its origin at the dawn of human consciousness. Genera-
tions of researchers have been dedicating their lives in pursuit of two important answers.
Firstly, the big philosophical question of “What is life?” How does a living system be-
have the way a non-living system can not? The answer would not be complete unless
we understand how a dynamic living system progresses through different stages of its
life. However, living systems typically do not live alone. They interact with other living
systems and environmental resources. This brings us to our second question which is of
immediate concern for human lives. A human being is a very dynamic and open system.
He or she interacts with a large number of other living systems and natural resources.
Some of the interactions are essential to carry out his or her natural developmental
processes. On the other hand, some of them are harmful to the expected developmental
progression. Deviations from the expected trajectory can cause diseases. Identifying
disease-causing interactions helps us to devise preventive and diagnostic strategies for
such diseases. At the same time, finding out the interactions whose effect can potentially
nullify that of the harmful interactions is crucial for developing therapeutic strategies.
To summarise, the second question asks “How can we apply our biological knowledge in
sustaining health?” The following statistics on burdens of wide-spread diseases in India
could help us to fathom the compelling need for finding out the answer.

• Cervical cancer: Every 8 minutes, we lose 1 woman (NICPR, 2016, Statistics)

• TB: (1/4)th of the global incidents every year; 2.1 million citizens in 2013 (Central
TB Division, 2015, Chapter 2, p. 22)

• HIV: 86,000 newly infected citizens reported in 2015 (NACO and NIMS, 2015,
Figure 3, Estimated New HIV Infections in India, 1998–2015)

and the numbers keep growing . . .

These statistics inevitably raise some questions. Such as -

Q. Complex diseases, like - cancers and diabetes, develop stage-by-stage at the molec-
ular level and may take decades before clinical symptoms start appearing. By
monitoring an apparently healthy individual at the molecular level, can we pre-
dict whether such a disease is under development?
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Q. Given data collected from healthy individuals and those suffering from a particular
disease, can we find out some novel features that can differentiate between two
classes of individuals?

Q. If so many of us are infected, why are not all of us sick? Can we identify a set of
features that can distinguish individuals more susceptible to a particular disease
than the rest?

2.2 How to Answer

One scientific approach to find the answers is to study a large number of individuals
across time and under different conditions. For each individual, we need to collect
measurements of the variables from different levels of systemic regulations. Some of
such variables are listed below:

• Innate Variables

– Molecular variables: Genes and Proteins

– Clinical variables: blood pressure, blood glucose, co-morbidities

– Demographic variables: Age, gender, ethnicity

• Environmental variables: Life style, pathogen load

The measurements of these variables need to be analysed to discover their interdepen-
dencies. This discovery can lead to preventive and therapeutic strategies. For example,
if the interdependencies between the molecular and clinical variables are learnt in the
context of a cancer, then it can be predicted in advance whether an individual is likely
to develop clinical symptoms of the cancer by monitoring his or her molecular variables.
Detection of the cancer in an early stage followed by appropriate treatments may lead
to a complete cure.

2.2.1 How to Answer: The Systems Biology Approach

“Every object that biology studies is a system of systems.” ∼ Francois Jacob, re-
cipient of the Nobel Prize in Medicine, 1965, for the hypothesis that control of enzyme
levels in all cells occurs through regulation of transcription. (Trewavas, 2006)

Every biological system is a community of smaller interacting systems. Let us con-
sider the human being for example. Human lives progress through the coordination
of diverse societies. Every society is driven by distinct individuals and their interac-
tions. Each unique individual gains its abilities by the proper functioning of multiple
function-specific systems inside him or her, such as the nervous system. Every such
system achieves its function with the help of multiple coordinating organs who take care
of specific parts of the desired function. Each organ is organised into multiple layers
of cross-talking tissues. Tissues, in turn, are collections of interacting cells. The cell is
considered as the “basic structural, functional, and biological unit of all known living
organisms” (Wikipedia, a). Human cells do not only communicate with each other but
also with environmental stimuli and other living cells, like - bacteria and viruses.

Given an external or internal stimulus, the cell responds to it through an intricate
mechanism. Unravelling this mechanism more and more precisely is the secret behind
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understanding why different cellular systems behave differently under the same condi-
tion and why the same cell behaves differently under different conditions. The leading
theory of how signals flow through a cell can be summarised as follows: The cellular sys-
tem has multiple sensors or receptors; each assigned to sense a particular set of stimuli
(Alon, 2006, Chapter 2). The receptors assigned to sense external stimuli are gener-
ally found on the cell membrane. On the other hand, the internal-stimuli receptors are
located inside the cell. Given a stimulus, the corresponding receptors sense the input
signal and compare it with a reference signal. Depending on whether the input varies
significantly from the reference with respect to some threshold, the receptors initiate a
chain of events, known as the Signal transduction pathway of the given stimulus.
Typically, a signal transduction pathway involves a series of protein-protein interac-
tions. It begins with the activation of a protein molecule specific to the receptor. This
protein molecule, in turn, travels and activates another intermediate protein molecule.
The process continues until the target protein molecule, known as the Transcription
Factor (TF), is activated. Once activated, the TF reaches to the DNA and activates
the target gene. The activated gene produces a particular type of molecule called mes-
senger RNA (mRNA) through a process named as transcription. Number of copies
of mRNA transcribed from a particular gene per unit volume of the cellular environ-
ment at a specific time point is referred to as the gene expression of that gene at that
time point. Transcribed mRNAs travel to ribosomes and get converted to corresponding
Amino Acid chains; this conversion is called translation. Each amino acid chain folds
into a 3D structure, forming a protein. These newly produced proteins again cause a
cascade of protein-protein interactions to finally generate the cellular response against
the aforementioned stimulus.

From the previous paragraph, it is perceived that the response of the cellular system
emerges from a mechanistic interplay between different inter-dependent components of
the system. Hence, if we can decipher the inter-dependencies between them, we would
be able to understand and predict how the system would behave under a particular
condition. Therefore, the question remains, how to decipher the inter-dependencies
between the components of a given cellular system?

2.2.1.1 Deciphering Dependencies: Traditional Experimentation-only Ap-
proach

The traditional approach is to perturb a system variable of interest and study how
changes in its values affect the values of other variables of interest (Markowetz and
Spang, 2007). Typical perturbation strategies are to completely (knockout) or partially
(knockdown) block the component corresponding to the system variable. For example,
given a set of genes, the aim is to reverse engineer how they are dependent on each other.
In that case, each gene can be perturbed by experimentally removing it from the DNA
(knocked out) or reducing the number of mRNAs transcribed from it (knocked down);
and then observing how it affects the expressions of the rest of the genes. In addition,
multiple genes can be perturbed simultaneously to study their combinatorial effect on
the rest of the genes.

The limitation of this approach is that the number of perturbation experiments grows
exponentially with the number of system variables. Hence, when the number of system
variables of interest is very large, the effort-time-cost required for the experimentation
becomes prohibitive. For example, there are around 25, 000 genes in human DNA.
Therefore, inferring their interdependencies through the experimentation-only approach
is infeasible. In such a case, we need complementary approaches that can significantly
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reduce the burden of experimentations.

2.2.1.2 Deciphering Dependencies: The Computational Systems Biology
(CSB) Approach

The CSB approach is a complementary approach for reducing the burden of experi-
mentations. This approach requires data collected by simultaneously measuring the
system variables. Then, a computational model is constructed from the observed data.
This model indicates the potential inter-dependencies among the variables. Therefore,
perturbation experiments are performed only to verify potential inter-dependencies.

Graphical Models or Network Models In the CSB approach, a specific type of
computational models, known as graphical or network models, is found to be very conve-
nient for visualising inter-dependencies among a large number of variables (Markowetz
and Spang, 2007; Raval and Ray, 2016). In a network model, the variables are repre-
sented as nodes and their dependency relationships are represented as edges. Absence
of an edge between a pair of variables signifies their mutual independence. On the other
hand, the presence of an edge implies that they are not mutually independent. The edge
weight, if any, represents a quantitative measure of their dependence. Reverse engineer-
ing such a network from an input dataset is known as the Network Reconstruction
task. The task can be formally defined as follows:

• The input is a data matrix of dimensions (V ×N); it contains N measurements
for each of the V variables of interest.

• The output is a network adjacency matrix of dimensions (V × V ). The (i, j)th

element in the matrix represents the dependency relationship between the ith and
the jth variables. It can be noted that the data structure used to physically
store the output network may not necessarily be an adjacency matrix. Depending
upon the properties of the network and the desired operations, an efficient data
structure can be chosen.

The computational algorithms designed to accomplish the aforementioned task is
known as network-reconstruction algorithms (henceforth, simply reconstruction al-
gorithms). Once the network is reconstructed, the network-analysis and network-
visualisation techniques are applied on it. Mainly, the following two types of analyses
are performed on the reconstructed networks:

• Firstly, statistical and functional analyses are performed to check whether the
reconstructed network can explain the known functionalities, if any, of the con-
cerned system. As an example, a network that models a system responsible for
fast responses to external stresses must have a statistically significantly shorter
mean-path-length than that of a system with a slower response. As another exam-
ple, the genes known to be functionally involved in the development of butterfly’s
wings must have considerably more inter-connections in a network that models
the metamorphosis stage than in a network that models another stage.

• Secondly, new experiments are designed to verify the edges for which prior knowl-
edge is non-existent or limited. If the experimental results verify an edge, then the
domain knowledge is enriched. Otherwise, the edge may be considered as incor-
rect. Consequently, the corresponding reconstruction algorithm can be modified
to reject such incorrect edges.
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Thus, computer-based reconstructions do not replace experiment-based approaches.
Rather, the former attempt to accelerate the latter by narrowing down the experimental
search space.

Focus of the Literature Survey The network reconstruction task is the scope of
this thesis (Figure 2.1 ).

System

Observations/Measurements

Network model (independent of the reconstruction algorithm)

Reconstruction algorithm

Figure 2.1: Network Reconstruction. For a system of interest, values of its variables
are measured across time and under different conditions. These measurements are in-
putted into a reconstruction algorithm that outputs a network model of the concerned
system. For each class of network models, multiple reconstruction algorithms can be
designed to suit different types of measurements.

Different types of network models are designed to address the network reconstruc-
tion task. Moreover, for each type of models, a range of reconstruction algorithms is
proposed. Hence, our literature survey is aimed at finding answers to the following
questions:

Q. What are the different types of network models designed to represent inter-dependencies
of variables in cellular systems?

Q. Given a particular type of network model, what are the reconstruction algorithms
proposed to reconstruct it?

2.3 Chapter Summary

In this chapter, we discuss the motivation behind developing computational models to
understand the progressions of developmental and disease-specific processes in dynamic
biological systems, such as - human beings. In brief, the state of such a system can be
defined as a function of the states of its variables. Various external and internal stimuli
influence the states of the variables; thus, causing the system, as a whole, to transit
into different states. In disease progression studies, identifying the key variables whose
state changes are responsible for the transition from a healthy stage to a disease stage
is crucial for prevention, early detection and treatment planning of the disease. In order
to find out the key regulatory variables during a state transition, we need to reverse
engineer or ‘reconstruct’ the inter-dependencies between the system variables at the
states before and after the transition. Then, differential analyses need to be performed
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to learn which variables are influenced to facilitate the system-wide state transition.
Reconstructing inter-variable dependencies is traditionally done through wet-lab exper-
iments. It involves changing the values of one variable at a time and analysing how
it affects that of the other variables. However, when the number of variables is in
thousands, the traditional approach becomes cost-and-effort prohibitive. This is where
computational modelling comes in aid. It does not replace the experimental approach;
rather, it attempts to accelerate experimentations by narrowing down the search space.
For computational modelling, spatio-temporal measurements of the system variables are
inputted into a computer programme, which uses a ‘reconstruction algorithm’ to learn
state-specific inter-variable dependency structures and outputs them as computational
models. Different types of computational models are designed for this purpose. Among
them, network models are widely used for their ease with computational visualisations
and analyses. For that reason, we chose the network models as the scope of this the-
sis. In network modelling, system variables are modelled as nodes and two nodes are
connected by an edge (directed or undirected depending upon the model) if changes in
their values, as observed in the input data, are not statistically independent. Theoretical
results prescribe that, in such models, pairwise independence (un-connected node-pairs)
is more reliable than dependency relationships (connected node-pairs). It implies that
experimental validations need to be performed only for the connected node-pairs. Thus,
reconstruction algorithms play an important role in reducing the search space of ex-
pensive experimentations. In the next chapter, we critically review different types of
network models and corresponding reconstruction algorithms.
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Chapter 3

Literature Survey

With each major technological and scientific contribution, our understanding improves.
It leads to a generation of stronger hypotheses, based on which, more realistic models
come forward. In this chapter, we explore the evolution of network models and corre-
sponding reconstruction algorithms. The network models represent inter-dependencies
between components of a biological system. The corresponding algorithms attempt to
reconstruct these network models from spatio-temporal measurements of those system
components.

3.1 Co-expression Based Models

The simplest network models are co-expression based models. They are based on the
co-expression heuristic. The heuristic says that, if values of two system components are
observed to be fluctuating at the same time points, then it may imply that they are
involved in executing the same function (Eisen et al., 1998).

3.1.1 Input Data: Single system, Multiple time points

Given a system under observation, let us assume that input data D is a (p×N) matrix
(Figure 3.1). It contains measurements of p system components across N samples.
Different samples may be collected at distinct time points or from different tissues or
under varied conditions. When each sample is collected at a distinct time point, then it
forms a time-series data with N time points. Suppose that V denotes the set of system
components. Each system component v ∈ V is modelled as a random variable Xv. Also,
all system components together are modelled as a random vector X = (X1, . . . , Xp).
Therefore, dataset D contains N realizations of X, denoted as

(
x(1), . . . , x(N)

)
. The

objective is to generate a network (or graph) G = (V,E) where the edge-set E represents
pairwise co-expression relationships among the system components in V .

3.1.2 Correlation Networks

The oldest notion of co-expression is linear correlation, for example - Pearson correlation
coefficient (Bansal et al., 2007). The pseudocode is given in Algorithm 1 with a graphical
representation in Figure 3.2 . Zero correlation is a strong indicator of independence
(Markowetz and Spang, 2007, Paragraph ‘Comparison to correlation networks’) i.e. if
there exists no edge between a pair of system components {i, j} then it is highly likely
that they are mutually independent. Bickel (2005) introduces a very realistic ‘time-lag’
concept that says two components co-expressed without any time delay can not have a
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Figure 3.1: Input data matrix D. Given a system under observation, let us consider
that D is a (p×N) matrix. It contains measurements of p system components across
N samples. Different samples may be collected at distinct time points or from different
tissues or under varied conditions. When each sample is collected at a distinct time
point, it constitutes a time-series data with N time points. Suppose that V denotes
the set of system components. Each system component v ∈ V is modelled as a random
variable Xv. Also, all system components together are modelled as a random vector
X = (X1, . . . , Xp). Therefore, dataset D contains N realizations of X, denoted as(
x(1), . . . , x(N)

)
. An example of D can be a gene expression dataset having measurements

of p = 20, 000 genes across N = 30 time points from a single cell or averaged from a
collection of cells.

regulator-regulatee relationship. Instead, it may imply that both of them are regulated
by some third component.

Algorithm 1 Correlation Network Reconstruction

1: Input: Dataset D, vertex-set V , random vector X.
2: Output: An undirected graph G.
3: Edge-set E ← ∅.
4: for each pair of random variables {Xi, Xj} ∈ X do
5: Compute rij = Pearson correlation coefficient of their expression vectors.
6: if rij ≥ predefined threshold then
7: E ← E ∪ (i, j). . Add an undirected edge.
8: end if
9: end for

3.1.2.1 Merit(s) of Correlation Networks

• It is the simplest approach in terms of implementation and interpretation.

• An accurate reconstruction can be obtained even when p� N ; this is a standard
situation with high-dimensional biological dataset where number of samples is in
order of tens and that of the variables is in order of ten thousands. For example,
in a high-throughput human gene expression dataset, number of genes may be
around 25 thousands whereas samples may be collected for only 30 time points.
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Figure 3.2: Reconstruction of Correlation Network. This figure is reproduced
from Villa-Vialaneix 2014, slide 7. It provides a visual representation of how Algorithm
1 works. First, pairwise correlations are calculated and stored in a (p× p) matrix (the
leftmost sub-figure), where p = number of variables. The value at (i, j)th cell represents
the Pearson correlation coefficient between the variables i and j. All the cell values
are reduced to zero if it is less than a predefined threshold (sub-figure in the middle).
Finally the matrix is visualized as an undirected graph (the rightmost sub-figure) where
absence of edge between two nodes i and j implies that they are uncorrelated i.e. value
at (i, j)th cell is zero. It can be noted that Pearson correlation coefficient is symmetric
i.e. the values in the cells (i, j) and (j, i) of the correlation matrix should have the same
value. But in this figure, the correlation matrix does not look exactly symmetric, which
must be an unintentional mistake.

• Absence of an edge in the reconstructed correlation network is a strong indicator of
mutual independence between its end points. Hence, it is very useful for reducing
the edge search-space by removing mutually independent pairs.

3.1.2.2 Limitation(s) of Correlation Networks

• Correlation is a weak criterion for dependence. Presence of an edge between two
system components i and j can not point out the exact dependency structure.
There could be a range of dependency structures that can cause the correlation
(Markowetz and Spang, 2007, Figure 1). Hence, given a correlation network,
numerous perturbation experiments need to be performed to learn the exact de-
pendency structure. Suppose that there is an edge between genes i and j. Then
gene i can be perturbed to check how it affects the expression of gene j. In another
experiment, the reverse strategy can be followed. However, for a dense correlation
network with a large number of nodes, performing all possible perturbation exper-
iments becomes infeasible. Thus, researchers attempt to devise more sophisticated
models that can represent the underlying dependency structure more accurately.

3.1.3 Information Theoretic Models

3.1.3.1 Mutual Information Relevance Networks

Butte and Kohane (2000) propose to replace linear correlation coefficient with pairwise
mutual information (Butte and Kohane, 2000, Equations 2 and 3) of two variables. The
assumptions and the pseudocode (Algorithm 2) are given below. If mutual information
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of two variables is zero then it implies that they are independent. Otherwise, the higher
the mutual information, the less the probability of observing their co-expression by mere
chance.

Assumptions This model makes the following two assumptions:

• In case of time-course data, observations made at any time point is independent
of the observations at other time points. In practice, this assumption may hold if
the sampling intervals are large enough.

• In case of a single time point but multiple samples data, observations in each
sample is independent of the observations in the other samples.

Algorithm 2 Mutual Information Relevance Network Reconstruction

1: Input: Dataset D, vertex-set V , random vector X.
2: Output: An undirected graph G.
3: Edge-set E ← ∅.
4: for each pair of random variables {Xi, Xj} ∈ X do
5: Compute Mij = Mutual information of their expression vectors.
6: if Mij ≥ predefined threshold then
7: E ← E ∪ (i, j). . Add an undirected edge.
8: end if
9: end for

Merit(s) of Mutual Information Relevance Networks

• Pearson correlation coefficient is a linear similarity measure; hence, can not model
non-linear relationships. But pairwise mutual information can model such rela-
tionships.

Limitation(s) of Mutual Information Relevance Networks

• Non-zero mutual information is a weak criterion for dependence. So this model is
prone towards reconstructing dense networks with a large number of false positive
edges.

3.1.3.2 ARACNE

A more powerful information theoretic model is proposed by Margolin et al. to take
care of the false positive edges (Basso et al., 2005; Margolin et al., 2006). First, it
reconstructs a mutual information relevance network from the input dataset. Then it
tries to identify potential false positive edges and prune them. The resultant algorithm
is known as ARACNE (Algorithm 3). For identifying potential false positive edges,
ARACNE utilises the converse of the Data Processing Inequality (DPI) principle.

Definition 1 (Data Processing Inequality (DPI)). For any connected triplet {i, j, k},
if i and k do not have direct interaction, then Mik ≤ min (Mij ,Mjk).

Definition 2 (Converse of Data Processing Inequality (DPI)). For any fully
connected triplet (i.e. a triangle) {i, j, k}, if Mik ≤ min (Mij ,Mjk), then i and k do not
have direct interaction.
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Algorithm 3 ARACNE

1: Input: Dataset D, vertex-set V , random vector X.
2: Output: An undirected graph G.
3: Edge-set E ← ∅.
4:

5: ## Reconstruct a mutual information relevance network
6: for each pair of random variables {Xi, Xj} ∈ X do
7: Compute Mij = Mutual information of their expression vectors.
8: if Mij ≥ predefined threshold then
9: E ← E ∪ (i, j). . Add an undirected edge.

10: end if
11: end for
12: G = (V,E).
13:

14: ## Prune false positive edges
15: for each fully connected triplet (i.e. a triangle) {i, j, k} ∈ G do
16: if Mik ≤ min (Mij ,Mjk) then
17: E ← E \ (i, k). . Remove edge (i, k).
18: end if
19: end for
20: return G = (V,E).

Merit(s) of ARACNE

• ARACNE monotonically reduces the number of false positive edges in the mutual
information relevance networks.

Limitation(s) of ARACNE

• It is assumed that the converse of the DPI principle holds, which is not necessarily
true. Hence, ARACNE may prune true positive edges representing direct interac-
tions. The authors of ARACNE admit this flaw as mentioned by (Bansal et al.,
2007, Section ‘ARACNE’).

3.2 Conditional Independence (CI) Models

Distinguishing direct dependencies from the indirect ones remains a challenge with the
co-expression based models. So the concept of conditional independence is introduced
to address it.

Definition 3 (Conditional Independence (CI)). Let us assume that X, Y are two
random variables and Z is a set of random variables. They follow the joint probability
distribution function P. Then X is said to be conditionally independent of Y given Z
(written as X ⊥ Y | Z) if and only if

P (X = x | Y = y, Z = z) = P (X = x | Z = z) (3.1)

Otherwise, it is said that X is conditionally not independent of Y given Z (written as
X 6⊥ Y | Z).
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In CI models, two system components i and j are connected with an edge if and
only if the corresponding random variables Xi and Xj are conditionally not independent
given Xk, a subset of the rest of the random variables. Whether the edge is directed
or undirected, that also depends on the model itself. Different classes of CI models are
developed depending on how Xk is defined. They are -

• Full CI Models: Xk = X \ {Xi, Xj}

• Low Order CI Models: Xk ⊂ X \ {Xi, Xj}

• Bayesian Network: Xk = {XS : For all XS ⊆ (X \ {Xi, Xj})}

These CI models are comparatively reviewed in the next sections.

3.2.1 Full Conditional Independence (CI) Models / Markov Random
Fields (MRFs) / Markov Networks (MNs)

The Full CI models ask whether the observed correlation between two random variables
can be explained by the rest of the variables or not. By definition, two system compo-
nents i and j are connected with an undirected edge if and only if the corresponding ran-
dom variables Xi and Xj are conditionally not independent given Xrest = X \ {Xi, Xj},
the rest of the random variables in X.

3.2.1.1 Gaussian Graphical Models (GGMs)

Full CI models are called GGMs when the given random vector X follows a multivariate
Gaussian distribution N (µ,Σ). Here µ is the mean vector of dimension p (i.e. p-vector)
and Σ = (σij) is the covariance matrix of dimension (p× p). Σ is a symmetric matrix
since (σij) = (σji) = Covariance between the variables Xi and Xj . GGM assumes that
Σ is invertible i.e. K = Σ−1 exists. K is called the precision matrix or concentration
matrix. Since inverse of an invertible symmetric matrix is also a symmetric matrix
(Proof at Deriso (2013)), K is a symmetric matrix. The value ρij =

(
−kij/

√
kii, kjj

)
is

known as the partial correlation coefficient (pcc) between Xi and Xj , where kij stands

for the (i, j)th entry in K. Then it satisfies the bi-implications for i 6= j that

kij = 0 ⇐⇒ ρij = 0 ⇐⇒ Xi ⊥ Xj | Xrest (3.2)

An undirected edge is drawn between two system components i and j if and only if kij
has a non-zero value i.e. the correlation between Xi and Xj can not be explained by
the rest of the variables (Algorithm 4 ).

In practice, GGM faces a challenge when p � N , which is a very common scenario
with high-throughput experiments. In such a case, Σ becomes non-invertible.

3.2.1. Theorem. Σ is non-invertible when p� N .

Proof.

Σ =
1

N − 1

(
D−D

)T (
D−D

)
(Schäfer and Strimmer, 2005, Section ‘Graphical Gaussian models’)

where D = (dij) and D =
(
dij
)

s. t. di· =
1
N

∑N
j=1 dij i.e. the mean value of the random variable Xi.
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Algorithm 4 Gaussian Graphical Model (GGM) Reconstruction

1: Input: Dataset D, vertex-set V , random vector X.
2: Output: An undirected graph G.
3: Edge-set E ← ∅.
4: Estimate the concentration matrix K = Σ−1.
5: for each pair of random variables {Xi, Xj} ∈ X do
6: if kij 6= 0 then
7: ## kij = (i, j)th entry in K.
8: E ← E ∪ (i, j). . Add an undirected edge (i, j).
9: end if

10: end for
11: return G = (V,E).

Thus both D and D matrices are of dimension (p×N). Hence
(
D−D

)
is a matrix of

dimension (p×N). Therefore

rank
(
D−D

)
= rank

(
D−D

)T ≤ min (p,N)

≤ N

Since for any two multipliable matrices A and B, rank (AB) = min (rank (A) , rank (B)),

rank (Σ) = rank
((

D−D
)
·
(
D−D

)T)
= min

(
rank

(
D−D

)
, rank

(
D−D

)T)
≤ N
� p =⇒ Σ is non-invertible.

In a seminal paper, Schäfer and Strimmer (2005) address this issue. Algorithm 5 is
proposed and implemented as an R package named ‘GeneTS’.

The major contribution of GeneTS is twofold:

• It replaces matrix inverse with Moore-Penrose pseudoinverse (Penrose, 1955) Σ+ =
V D−1UT , where V and U are eigenvectors of ΣTΣ and ΣΣT , respectively; D is
a square diagonal matrix of rank ≤ min (p,N) and so trivially invertible. Their
values are obtained by Singular Value Decomposition (SVD) of Σ into UDV T .
This strategy eliminates the challenge of not being able to estimate GGM when
p� N .

• The Bootstrap Aggregation (bagging) (Breiman, 1996) scheme is incorporated to
reduce variance in the input data.

A computationally efficient algorithm for biological GGM inference is proposed in Wang
et al. (2016) and implemented as an R package called ‘FastGGM’. Through simulation,
it demonstrates its ability to accurately (Area Under ROC Curve (AUROC) = 0.96) re-
construct GGM in a high-dimensional setting {N = 1, 000, p = 10, 000} (Wang et al.,
2016, Table 1). FastGGM makes the sparsity assumption that the maximum degree of

the vertices in the true GGM is o
(√

N/ log p
)

. In addition to providing partial corre-

lation coefficient between the random variables corresponding to two end points of an
edge, it also calculates the p-value and confidence interval for the edge.
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Algorithm 5 GeneTS GGM Reconstruction

1: Input: Dataset D, vertex-set V , random vector X, number of bootstrap samples
to generate B.

2: Output: An undirected graph G.
3: Generate B number of bootstrap samples with replacement from D. . Bootstrap

Aggregation (bagging).
4: for each bootstrap sample b do
5: Estimate the concentration matrix Kb = Σb

+. . Moore-Penrose pseudoinverse.
6: Initialize adjacency matrix Ab of dimension (p× p) for the to-be-reconstructed

graph with zeroes in each cell.
7: for each pair of random variables {Xi, Xj} ∈ X do
8: if kij 6= 0 then
9: ## kij = (i, j)th entry in Kb.

10: Ab (i, j) and Ab (j, i)← kij . . Add an undirected edge (i, j).
11: end if
12: end for
13: end for
14: Final adjacency matrix A ← mean (Ab) ∀b.
15: return A.

3.2.2 Low Order Conditional Independence (CI) Models

Let us discuss the motivation behind this class of models with the help of a practical
example. Suppose a system component i simultaneously activates system components
j and k. In such a case, Pearson correlation coefficient between the random variables
Xj and Xk could be very high. But their partial correlation coefficient (pcc) given Xi

is highly likely to be very low, indicating absence of any direct dependency. Therefore
we can observe that a single third variable can be sufficient to identify an indirect
dependency between a pair of variables. It significantly reduces the computational
complexity of testing each pair w.r.t. all other variables, especially when they are large
in number. In case of gene expression data, it is hypothesized that every gene is regulated
by only a handful of other genes. If that is the case then a small subset of genes should be
able to explain the indirect correlation, if any, between a given pair of genes. This insight
motivates the researchers to come up with the First Order CI model (Magwene and Kim,
2004; De La Fuente et al., 2004; Wille and Bühlmann, 2006; Wille et al., 2004) for GGM
where an undirected edge is drawn between two system components i and j if and only if
(∀k ∈ X \ {i, j}) (Xi 6⊥ Xj | Xk). This model automatically eliminates p� N problem.
Because for each test, instead of considering the whole (p×N)-dimensional data matrix,
only a sub-matrix of dimension (3×N) is adequate for reconstruction. It results in an
exact estimation of the GGM when N ≥ 3. Similarly, the nth Order CI model asks
whether the observed correlation, if any, between two variables can be explained by
any n sized subset of rest of the variables. Given a dataset, selection of the value of n
depends upon the biological insight, computational constraints, etc.

3.2.3 Bayesian Network (BayesNet)

Pearl (1985) introduces BayesNet to generalize the idea of Conditional Independence
(CI) models. Unlike, other CI models, it produces a Directed Acyclic Graph (DAG).
A directed edge is drawn from the system component i to another component j if and
only if their correlation can not be explained by any subset of rest of the variables. It is
formally written as Xi 6⊥ Xj | XS for all XS ⊆ X \ {Xi, Xj}. Thus BayesNet envelops
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correlation networks and all the previously discussed CI models:

• Correlation networks when XS ← ∅.

• Full CI models when XS ← X \ {Xi, Xj}.

• First Order CI models when XS ← Xk for all Xk ∈ X \ {Xi, Xj}.

3.2.3.1 Merit(s) of BayesNet

• Due to testing w.r.t. all orders of Conditional Independence (CI), this model is
guaranteed to produce the lowest number of edges among all CI models.

• The edge direction implies possible regulator-regulatee relationship.

• Each random variable Xv is described by a Local Probability Distribution (LPD)
p (Xv). A key property of BayesNet is that the Joint Probability Distribution
(JPD) P (·) over all variables can be factorized as follows:

P (X) =
∏
v∈V

p
(
Xv | Xpa(v)

)
(3.3)

where pa (v) is the set of all vertices from which there is an edge to vertex v;
Xpa(v) is the set of all random variables corresponding to the vertex set pa (v).
With the help of this property, the variables can be partitioned into families.
Efficient network estimation and analysis techniques are devised based on divide-
and-conquer paradigm to utilize this property, especially when the network is very
large (Nikolova et al., 2013).

3.2.3.2 Limitation(s) of BayesNet

• For each ordered pair of random variables (Xi, Xj), number of tests to be per-
formed = |XS | = 2|X\{Xi,Xj}| = 2(p−2). And there are 2 ·

(
p
2

)
such ordered pairs

possible. Hence, a total of 2·
(
p
2

)
·2(p−2) tests are needed to reconstruct a BayesNet.

Therefore, the computational complexity increases exponentially with the number
of observed variables, rendering inference infeasible in high-dimensional setting. As
discussed in (Markowetz and Spang, 2007, Section ‘Score based structure learn-
ing’), the following strategy is generally adapted to overcome this issue:

– Define a search space of possible models: if possible reduce the search space
by applying prior knowledge;

– Define a scoring function to compute fitness of each model in the search space
with the given data

– Construct an optimization problem to find out the fittest model

– Solve the optimization problem

• BayesNet strictly prohibits cyclic dependencies. This is an unrealistic constraint
since dynamic biological systems are known to possess feedback loops that facilitate
adaptivity, which is one of the salient features of dynamic living systems.

• The biggest theoretical challenge with BayesNet is Markov equivalence. Two dif-
ferent BayesNets are called Markov equivalent if they possess the same underlying
undirected graph and directed collider sub-graph(s), like - Xi → Xj ← Xk. Two
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such BayesNets are statistically indistinguishable. It implies that given a dataset,
we can only infer to which Markov equivalence class the output BayesNet is likely
to belong. But we can not point out the exact member of the class that represents
the true dependency structure even when N −→∞.

3.3 Joint Network Inference (JNI) Models

In this section, the models under investigation help the researchers to answer how inter-
dependencies between the components of a given system readjusts differently under
different conditions so that the system, as a whole, can adapt to the changed condition.

Figure 3.3: Input Data Tensor D: Given a system under observation, let us assume that
input data D is a (p× nc × k) tensor. It contains measurements of p system components
under k different conditions. For each condition c, there are nc independent observations,
suppose at nc different time points. Total number of observations is

∑k
c=1 nc = N . Each

system component v ∈ V is modelled as k random variables {X(c)
v : For all c ∈ [k]}

corresponding to k different conditions; [n] stands for the set of first n natural numbers
starting from 1. Then all the system components can be modelled as (p× k) random

variables {X(c)
j : j ∈ [p] , c ∈ [k]}. Such a dataset is very common in interventional

experiments. Given a system, such as a cancer patient, k tissue samples are collected
from the tumour. Then each of them are treated (intervened) with a different drug.
Post intervention, gene expression of the same p = 20, 000 genes are measured across
multiple time points under each of the conditions. Being able to infer the changes in
genetic dependency structures of tumour cells in response to different types of treatment,
may help the researchers to identify the best treatment strategy against the cancer. It
is to note that different conditions may also refer to different tissues from where the
data is collected. Such spatio-temporal dataset can be very helpful to understand the
mechanism behind spread of a disease across different parts of the body.
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3.3.1 Input Data: Single system, Multiple conditions, Multiple time
points per condition

The current dataset has one more dimension, namely conditions, in addition to those
of the dataset described in Section 3.1.1 . Given a system under observation, let us
assume that input data D is a (p× nc × k) tensor [Figure 3.3 ]. It contains measure-
ments of p system components under k different conditions. For each condition c, there
are nc independent observations, suppose at nc different time points. Total number of
observations is

∑k
c=1 nc = N . Each system component v ∈ V is modelled as k random

variables {X(c)
v } corresponding to k different conditions i.e. for all c ∈ [k]; [n] stands for

the set of first n natural numbers starting from 1. Then all the system components can

be modelled as (p× k) random variables {X(c)
j : j ∈ [p] , c ∈ [k]}. The objective is to re-

construct k graphs that represent dependency structures among the system components
in k different conditions.

3.3.2 Independent Network Inference (INI) with Gaussian Graphical
Models (GGMs)

Let us assume that there are random variables
(
X

(c)
j : ∀j ∈ [p]

)
∼ N

(
0,Σ(c)

)
. One

naive approach is to independently estimate the concentration matrix K(c) for each

specific condition c . In Gaussian framework, its elements k
(c)
jj′ can be approximated by

finding the linear regression coefficients β
(c)
jj′ in the (k × p) linear regression equations

3.4 . From the relationship between k
(c)
jj′ and β

(c)
jj′ , as given in Equation 3.5 , it can be

said that
(
k

(c)
jj′ = 0

)
⇐⇒

(
β

(c)
jj′ = 0

)
⇐⇒

(
Xj ⊥ Xj′ | Xrest

)
.

X
(c)
j = X

(c)
\j
T
β

(c)
j + ε

(c)
j ∀j ∈ [p], ∀c ∈ [k] (3.4)

where

X
(c)
\j
T

=
(
X

(c)
j′

)
∀j′ ∈ [p] \ j . Random (p− 1)-vector

β
(c)
j =

(
β

(c)
jj′ : j′ ∈ [p] \ j

)T
. Linear regression coefficients. (p− 1) vector.

K(c) =
(
k

(c)
jj′

) (
∀j, j′ ∈ [p]

)
. Elements of concentration matrix

β
(c)
jj′ = −

k
(c)
jj′

k
(c)
jj

(3.5)(
ε
(c)
j : ∀j ∈ [p]

)
∼ N

(
0,Σ(c)

)
.Gaussian centered error terms

3.3.2.1 Limitation(s) of Independent Network Inference (INI)

• Independent estimation can not produce statistically acceptable model when num-
ber of observations in a condition is small or there are lots of missing/noisy data
points. This is so because it reconstructs one network per condition solely depend-
ing on the data available for that condition.

• In line with the previous point, INI can not utilize prior knowledge shared among
the condition-specific datasets. Suppose the data is collected across the following
three conditions from a cancer patient:
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– Malignant (diseased) tissue before any treatment

– The same tissue after chemotherapy

– Followed by a radiation therapy

In that case, a chain graph hierarchy exists between the conditions. A superior in-
ference strategy can be developed that can utilise this knowledge for reconstructing
more accurate models of each condition.

3.3.3 Joint Network Inference (JNI) with Gaussian Graphical Models
(GGMs)

JNI approach is used to overcome the limitations of INI by utilising the relationships
between different conditions under study [Figure 3.4 ]. As shown in (Villa-Vialaneix
et al., 2014, Equation (2)), all condition-specific concentration matrices can be jointly
estimated by maximizing the pseudo-loglikelihood (Wikipedia, b) Equation 3.6 w.r.t.
the concentration matrices.

arg max
K

L (K | X) = arg max
Kc

j

k∑
c=1

p∑
j=1

nc∑
t=1

logP
(
Xc
tj | Xc

t,\j,K
c
j

)
(3.6)

Efron (1981) shows that the dual of pseudo-loglikelihood Equation 3.6 is equivalent
to jointly solving p equations 3.7 [ (Villa-Vialaneix et al., 2014, Equation (3)).

arg min
βj

1

2
βTj Σ̂\j,\jβj + βTj Σ̂j,\j︸ ︷︷ ︸

E

 ∀j ∈ [p] (3.7)
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where
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Σ̂ = Estimated value of Σ ∈ R(kp×kp)

Σ̂\j,\j = Σ̂ deprived of the rows and columns corresponding to {X(c)
j : ∀c ∈ [k]}

∈ R(k·(p−1)×k·(p−1))

Σ̂
(c)
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(c)
j for c ∈ [k]

∈ R(p−1) ≡ (p− 1)-vector
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(1)
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(k)
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∈ R(k·(p−1)) ≡ (k · (p− 1))-vector

(a) Independent Network Inference (INI) (b) Joint Network Inference (JNI)

Figure 3.4: Difference between INI and JNI strategies. The whole input dataset
is denoted by D. D(c) represents the sub-dataset specific to the condition c. Similarly,
G(c) stands for the reconstructed graphical model of condition c. INI uses only the
sub-dataset D(c) to reconstruct G(c). On the other hand, JNI takes the whole dataset
D as input and reconstructs all G(c)s simultaneously through information sharing.

It can be noted that the optimisation problem in Equation 3.7 is a Quadratic Pro-
gramming Problem (QPP) (Wikipedia, c) of dimension ((p− 1) · k).
JNI of real biological networks is proved to be a challenging task. Some of the major
challenges include:
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Challenge I: Fostering Sparsity Biological regulatory networks are believed to be
sparse i.e. only a handful of system components play the role of hubs and regulate
a large number of other system components (Barabási and Albert, 1999; Barabasi
and Oltvai, 2004). Therefore, JNI must be able to reconstruct sparse networks
from high-dimensional data.

Challenge II: Preserving Commonality: JNI, by definition, must be able to pre-
serve the condition-independent dependency relationships among the system com-
ponents, while inferring the condition-specific dependencies. A motivational ex-
ample can be found in ‘The Diogenes project’ (http://www.diogenes-eu.org/).
In one of its studies, data is acquired from 204 obese women participants from
different parts of Europe under two different conditions: before and after a low-
calorie diet. From this data, two condition-specific networks are reconstructed. It
is found that around 92% of their edges are common (Villa-Vialaneix et al., 2014,
p. 57, Figure 7). An intuitive justification can lie in the modularity of the complex
biological systems, like - human cells. Each module perform very specific tasks.
So the observed adaptiveness of the whole system under a different condition may
be the result of re-adjustment in a small number of modules. The rest of the in-
teractions, like - the ones responsible for house-keeping activities, are highly likely
to be invariant to conditions.

Challenge III: Joint Estimation of Multiple Related Systems: In medical research,
cohort studies play a very important role. A group of participants with shared
characteristics (e.g. same species, healthy or suffering from different stages of the
same disease) is observed for a period of time under different conditions (like -
undergoing different types of treatments). An efficient JNI technique must be de-
veloped that can simultaneously reconstruct multiple individual-specific networks.

In the following sections, we discuss the models and corresponding reconstruction
algorithms that address the aforementioned JNI challenges.

3.3.3.1 Joint Network Inference (JNI) for Fostering Sparsity

To infer a sparse concentration matrix K, Banerjee et al. (2008) propose to add an
`1-regularised penalty to the objective function such a way that the denser the K, the
heavier the penalty is. Friedman et al. (2008) incorporate this idea with the regression
analysis framework of Least absolute shrinkage and selection operator (Lasso) (Tibshi-
rani, 1996) for inferring sparse GGMs; the inference technique is appropriately named
as Graphical Lasso (gLasso). Chiquet et al. (2011) improve upon it and propose
Graphical Intertwined Lasso (giLasso). Firstly, it uses the `1 sparsity penalty in
the objective function (3.8). Hence, the denser the network, the higher the sum of the
regression coefficients, and therefore, the higher the penalty. Thus, denser solutions are
discouraged, resulting in favour of the sparser solutions.

Secondly, an intertwined estimation Σ̂(c) of condition-specific covariance matrix is
proposed (Equation 3.9). The estimation is a linear combination of the covariance matrix
Σ(c) specific to the current condition c and the arithmetic mean Σ of the covariance
matrices across all conditions.
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arg min
βj

E +

k∑
c=1

(
1

nc

∥∥∥β(c)
∥∥∥

1

)
︸ ︷︷ ︸

sparsity penalty

 ∀j ∈ [p] (3.8)

where

β(c) =
(
β

(c)
j : j ∈ [p]

)
∈ R(p−1)·p

‖·‖1 = `1-norm of ‘·’

Σ̂(c) = α · Σ(c) + (1− α) · Σ (3.9)

where

α : is a regularization parameter; default value
1

2

Σ =
1

N

k∑
c=1

(
nc · Σ(c)

)
In the same paper, Chiquet et al. (2011) propose another inference method, namely

Graphical cooperative-Lasso (gCoopLasso). It is inspired by Group Lasso (gr-
pLasso) (Yuan and Lin, 2006), a special case of Lasso.

In gCoopLasso, covariates (predictor variables) are partitioned into groups while
performing regression analysis of a given response variable. Only one group of covariates
can be chosen for the final solution. Instead of grouping the covariates, gCoopLasso,
groups pairwise interactions.

The idea is motivated by the observation in biological systems that, if a system com-
ponent j′ is found to be up-regulating another component j in one condition (denoted
by c1), then it is vary rare that the same regulator j′ would be found down-regulating
the same regulatee j in another condition (denoted by c2).

In terms of regression analysis, the objective function (3.10) is more heavily penalised

if β
(c1)
jj′ and β

(c2)
jj′ have different signs for any two conditions c1, c2 ∈ [k] than when they

have the same sign.

arg min
βj

E +
∑

j′∈[p]\j

(∥∥∥∥(β[1:k]
jj′

)
+

∥∥∥∥
2

+

∥∥∥∥(−β[1:k]
jj′

)
+

∥∥∥∥
2

)
︸ ︷︷ ︸

sparsity penalty

 ∀j ∈ [p]

(3.10)

where

β
[1:k]
jj′ =

(
β

(1)
jj′ , . . . , β

(k)
jj′

)T
(·)+ = max (·, 0) ; Note: If input is a vector, then to be applied on each element.

Let us illustrate the aforementioned penalty function with an example. Given a
response variable j, the regression coefficients of a predictor variable j′ w.r.t. two
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different conditions {c1, c2} are (a, b)T ; the regression coefficients of another predictor
variable j′′ w.r.t. two different conditions are (a,−b)T . a, b are positive real numbers.

Penalty for j′ is =

(∥∥∥∥∥
(
a
b

)
+
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2

+
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2

)

=
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a
b
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2

+
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−a
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2

)
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2
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)
=
(√
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)

(3.11)
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2
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= (a+ b) (3.12)

Since (a+ b) is strictly greater than
√
a2 + b2 for any positive real values of {a, b}, the

penalty function imposes heavier penalty on edge {j′′, j} than on {j′, j}, as expected.
It can be observed that gCoopLasso replaces `1-regularisation with `2-regularisation. A
comparative study of these two types of regularisation is discussed in Ng (2004); log0
(2013); Narayan (2014).

In the next section, it is reviewed how JNI methods attempt to address the under-
lying commonality between different condition-specific networks. While doing so, we
encounter more sophisticated techniques that can simultaneously take care of sparsity
and commonality requirements.

3.3.3.2 Joint Network Inference (JNI) for Preserving Commonality

In order to enforce similarity between condition-specific covariance matrices, Mohan
et al. (2012) propose perturbed-node joint graphical Lasso (pnjgLasso). The
intuition behind this method is that most of the edges in the condition-specific networks
are common; the difference between responses of the whole network under distinct con-
ditions arises from perturbation of some of the nodes that in turn cause re-orientation
of the edges stemming from those nodes. Therefore to preserve the common edges, a
commonality penalty is added to the objective function [ 3.13 ].

arg min
βj


E +

∑
c,c′∈[k]
c 6=c′

∑
j′∈[p]\j

(∥∥∥Σ
(c)
j,j′ − Σ

(c′)
j,j′

∥∥∥
2

)
︸ ︷︷ ︸

commonality penalty


∀j ∈ [p] (3.13)
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Danaher et al. (2014) propose to replace the `2-norm in the pnjgLasso common-
ality penalty with `1-norm (3.14). This method, known as joint graphical Lasso
(jgLasso) outperforms the then competing methods on simulated and real lung cancer
gene expression datasets.

arg min
βj


E +

∑
c,c′∈[k]
c 6=c′

∑
j′∈[p]\j

(∥∥∥Σ
(c)
j,j′ − Σ

(c′)
j,j′

∥∥∥
1

)
︸ ︷︷ ︸

commonality penalty


∀j ∈ [p] (3.14)

Villa-Vialaneix et al. (2014) propose consensus Lasso (cLasso) to combine sparsity
and commonality penalties in a single objective function 3.15.

arg min
βj

E + λ ‖βj‖1︸ ︷︷ ︸
sparsity penalty

+µ
∑
c

(
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∥∥∥β(c)
j − β
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j

∥∥∥2

2

)
︸ ︷︷ ︸

commonality penalty

 ∀j ∈ [p]

(3.15)

where

{λ, µ} : Regularisation parameters

wc = Relative weight of condition c w.r.t. other conditions ∈ R;

by default every condition can be assigned the same weight; like 1 or
1
√
nc
.

βj =

((
β

(1)
j

)T
, . . . ,

(
β

(k)
j

)T)T
∈ R(k·(p−1)) ≡ (k · (p− 1))-vector

β
(cons)
j : Regression coefficient values of the consensus network.

Every condition-specific network is encouraged to be similar to it.

=
∑
c

(nc
N
· β(c)

j

)
or a user-defined prior network can be used as the consensus network.

The performance of cLasso is comparatively examined with the aforementioned JNI
methods in (Villa-Vialaneix et al., 2014, Section ‘4.1.3. Performance Comparisons’)
using the following simulation procedure:

• A well-recognized artificial scale-free network (titled the ‘parent network’) with
100 nodes (each node corresponds to a gene) and 200 edges is downloaded (Villa-
Vialaneix et al., 2014, Section ‘4.1. Simulated Data’).

• Cycles are removed from the parent network.

• k distinct children networks are produced by differently rewiring r% edges of the
parent network; here, k and r are experimental parameters. Each of the children
networks is considered to be representing a particular condition.
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• Time-series gene expression data is generated from each child network using a
random Gaussian process.

• The previously discussed methods are applied on this artificial gene expression
dataset to reverse engineer the condition-specific children networks as GGMs.
Their performance is measured in F1-score.

It is found that cLasso performs better than the other approaches for different values
of k and r (Villa-Vialaneix et al., 2014, Tables 2 and 3). It achieves its highest F1-score,
which is 0.86, with k = 2, r = 5, (∀condition c ∈ [k]) (sample size nc = 30), bootstrap
resampling and utilising the parent network as the consensus network. However, Villa-
Vialaneix et al. mention that this method could not address the situation when there
are different numbers of samples (or time points) available for different conditions. This
limitation opens up an immediate research opportunity.

So far, in this chapter, the JNI algorithms that deal with challenges I and II and
produce GGMs as output are reviewed. But challenge III demands more powerful output
models to capture such rich datasets. In the next section, we discuss the challenge III
scenario, related models and corresponding reconstruction strategies.

3.3.4 Joint Network Inference (JNI) for Joint Estimation of Multiple
Related Systems

In this section, the methods under investigation attempt to answer how different systems
respond differently under the same condition. More precisely, how inter-dependencies
between the components of a given set of systems re-adjust differently in response to
the same stimulus, causing differential responses.

3.3.4.1 Input Data: Multiple related systems, Multiple conditions, Multiple
time points per condition

The current dataset adds one more dimension, namely systems, in addition to those of
the dataset described in Section 3.3.1 . Given I number of related biological systems
under observation, let us assume that input data D is a (p× nc;i × k × I) tensor [Figure
3.5 ]. Subset of the data corresponding to a particular individual system i is denoted
by Di. The relationship between the given systems would be defined on case-by-case
basis during the detailed discussion of the models. Each Di contains measurements
of p system components under k different conditions. For each condition c, there are
nc;i independent observations, suppose at nc;i different time points. Total number of

observations in Di is
∑k

c=1 nc;i = Ni. Similarly, the total number of observations in D

is
∑I

i=1Ni = N . The system components v ∈ V are modelled as k random variables

{X(c)
v } corresponding to k different conditions i.e. for all c ∈ [k]; [n] stands for the

set of first n natural numbers starting from 1. Then for each of the systems, all its

components can be modelled as (p× k) random variables {X(c)
j : j ∈ [p] , c ∈ [k]}.

The objective is to reconstruct system-specific networks. Number of networks to be
reconstructed for each system depends upon the methods. Some methods reconstruct a
single network for each system, known as a summary network. On the other hand, there
are methods that can model temporal progression of the system-specific dependency
structure by reconstructing multiple time-varying networks for each individual system.
These methods are reviewed in the following sections.
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Figure 3.5: Input Data Tensor D. Given I number of related biological systems under
observation, let us assume that input data D is a (p× nc;i × k × I) tensor. Subset
of the data corresponding to a particular individual system i is denoted by Di. The
relationship between the given systems would be defined on a case-by-case basis. Each
Di contains measurements of p system components under k different conditions. For
each condition c, there are nc;i independent observations, suppose at nc;i different time

points. Total number of observations in Di is
∑k

c=1 nc;i = Ni. Similarly, the total

number of observations in D is
∑I

i=1Ni = N . The system components v ∈ V are

modelled as k random variables {X(c)
v : For all c ∈ [k]} corresponding to k different

conditions; [n] stands for the set of first n natural numbers starting from 1. Then for
each of the systems, all its components can be modelled as (p× k) random variables

{X(c)
j : j ∈ [p] , c ∈ [k]}. Such dataset is typically generated in cohort cell-line studies

where k replicates (copies) of diseased tissues are collected from each of the I patients
suffering from the same disease. Then each of the patient-specific tissue replicates is
treated with a distinct drug. The effect of the drug is monitored for multiple time
points.
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3.3.4.2 Methods: Reconstructing Summary Network for Each Individual
System

In the given data situation, Oates et al. communicate a series of three publications
addressing three distinct relationships between the given set of systems. Each publi-
cation deals with a more complex relationship than that of its prequel. The relation-
ship between system-specific networks is modelled as a network itself, to be called the
super-network or super-structure. In the super-structure, each node represents a
system-specific network. A directed edge between two nodes represents parent-child re-
lationship between the corresponding system-specific networks. All three publications
assume that the super-structure is a tree.

• The first publication in the trilogy, Oates et al. (2014) , assumes that all system-
specific networks reside at the same level of the tree, whose topology is known a
prior.

• Oates and Mukherjee (2014) , the second publication, considers that the system-
specific networks reside at different levels of the tree. The tree topology is again
known a prior.

• The third publication, Oates et al. (2015) , generalises further by assuming that
there is no prior knowledge about the tree topology.

In each of the publications, a distinct variant of Bayesian Network (BayesNet) is
used to model a system-specific network. Among them, the most widely-used variant is
Dynamic Bayesian Network (DBN) (Murphy, 2002). This is a special class of BayesNet
suitable for time-series modelling (Figure 3.6).

Limitation(s)

• Dynamic Bayesian Network (DBN) has some inherent weaknesses. The search
space of candidate networks grows exponentially with the number of variables
under study (Kim et al., 2014, p. 215). Secondly, it tends to ignore transient
edges which are present only for one or few temporal transitions in the unrolled
representation. In Song et al. (2009a), this time-homogeneity constraint is stated
as the ‘Achilles’ heel’ of DBN. Because in biological signalling networks, such
interactions can be of high significance. For example, a short-lived biological
regulation can turn on a massive chain of long-lasting regulatory events. Missing
the originating transient event would deprive the researchers from a key insight
into the concerned system. Especially, in medicine, such insights may result in a
highly effective therapy.

• The methods, reviewed in this section, come up with an accurate static summary
network, at the best. They do not provide any lead towards learning the tem-
poral progression of the system-specific signalling networks. For every system,
such summarisation mechanism across conditions comes at the cost of valuable
condition-specific information. Suppose, a cohort study infects a group of volun-
teers with a particular virus. Some of them get infected, while others stay immune.
Currently discussed methods may answer what are the edges that remain active
only in the infected sub-group during most of the observed time period. However,
they can not identify the edges that become active only during the transition from
the healthy stage to the early-disease stage in the infected sub-group but remain
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Figure 3.6: Dynamic Bayesian Network (DBN) Modelling. First, an unrolled DBN is
inferred for each system i ∈ [I]. The measurements of variable j1 in system i at time
point (t− 1) is represented as node Di;j1 at time point (t− 1) (hereafter, Di;j1 (t− 1)).
An edge from Di;j1 (t− 1) to Di;j2 (t) implies that the observations of j2 at time point
t is not conditionally independent of that of j1 at the previous time point. After the
unrolled DBN reconstruction is completed, it is summarised into a static DBN following
some rule, for example - add an edge (j1, j2) in static Gi if there is an edge (Di;j1,Di;j2)
in at least 80% of the temporal transitions (total number of temporal transitions = total
number of time points − 1). For example, the edge (j2, j3) is not added to the static
DBN because the edge (Di;j2,Di;j3) (the red arrow) appears only in 50% of the total
transitions in the unrolled DBN. It can be noted that static DBN allows cycles unlike
BayesNet.

unobserved in the immune sub-group. Knowledge of such disease on-setting regu-
lations can lead to an efficacious cure. In the next section, we review the methods
that attempt to identify such regulatory events.

3.3.4.3 Methods: Reconstructing Multiple Time-varying Networks for Each
Individual System

Temporal progression modelling is a long-standing challenge in biology and translational
medicine (https://en.wikipedia.org/wiki/Translational_medicine). It pursues
identification of the key system components and their causal roles in development of
a disease inside a host system or development of an organism. Given multiple hosts
with different disease outcomes, disease progression models help us to distinguish the
regulatory events whose presence is a necessary condition for a system to transit from
the healthy stage to the disease stage.

With the purpose mentioned above, two major methods, known as TESLA (Ahmed
and Xing, 2009) and KELLER (Song et al., 2009a) are proposed during the same time
period. Both of them follow the heuristic that temporally adjacent networks are expected
to have more edges in common than the temporally distal networks. TESLA assumes
that the temporal changes occur in bursts, like - a discrete function, and produce mul-
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tiple discontinuously time-varying sparse Markov Random Fields (MRFs). It follows an
`1-regularised logistic regression formalism to pose a standard convex-optimisation prob-
lem that can be solved by any generic solver, for even thousands of variables (Ahmed
and Xing, 2009, Equation 2). In addition, it offers user-defined temporal resolution i.e.
how many consecutive time points to be grouped together to produce each network.
On the other hand, KELLER, assumes that the temporal changes occur smoothly, like
- a continuous function, and reconstructs multiple smoothly time-varying sparse undi-
rected networks through kernel weighted `1-regularised logistic regression. It is directly
extended in Xing et al. (2010) which models role of each system component as a time-
varying mixed-membership vector that allows the component to interact differently with
different components under the same condition as well as interact in a different manner
with the same component under distinct conditions. Both TESLA and KELLER are
validated with the prior knowledge on a time-series gene expression dataset containing
four different developmental stages in Drosophila melanogaster (Dm) (commonly known
as fruit fly) life cycle.

The methods, mentioned above, are criticised owing to the use of weaker conditional
independence models, like - MRF. Song et al. (2009b) address this issue by propos-
ing a kernel re-weighted `1-regularised autoregressive structure learning algorithm that
reconstructs smoothly time-varying sparse Dynamic Bayesian Networks (DBNs). It is
appropriately named as Time-varying DBNs (TV-DBNs). In addition, its kernel
re-weighting mechanism aggregates observations from adjacent time points when the
amount of data available at a time point is scarce. Due to that, TV-DBN can recon-
struct one network for each time point, if required, even in limited data situations. It is
used for differential analysis of the datasets collected from multiple human participants
in an Electroencephalogram (EEG) motor imagining task. The reconstructed networks
are able to provide a causal interpretation that supports the experimental outcome, for
example - the networks corresponding to the high-performing participants get denser
as the time progresses implying increased interactivity among different brain regions
causing the improvement in performance. It leads one step towards understanding how
information is processed differently in higher performing individuals.

However, TV-DBN suffers from the inherent time-homogeneity issue of the DBN.
Four proposals are reviewed next that address this issue by introducing different vari-
ants of inhomogeneous DBNs. Robinson and Hartemink (2009) assume that the changes
are discontinuous; each point of discontinuity is called a change-point (in case of contin-
uous changes, local optima or any point can be selected as a change-point), representing
transition from one phase to the next. The time-series data is divided into multiple
time segments delimited by the change-points. Then a DBN is fitted into each time
segment. In addition, a commonality penalty is added to regularise differences between
the networks of adjacent time segments. Within the same time segment, network topol-
ogy (i.e. edge relationships) and parameter values (i.e. edge weights) remain static. On
the other hand, Grzegorczyk and Husmeier (2009) reconstruct smoothly time-varying
DBNs; each of them is generated from a common parent network, based on the observa-
tions at the time points covered by that DBN. There could be multiple networks within
a time segment; they must have the same network topology but the parameter values
may change in a continuous fashion. Lèbre (2007); Lèbre et al. (2010) add even more
flexibility by proposing an algorithm named ‘Auto Regressive TIme VArying models’
(ARTIVA). This algorithm allows the networks within the same time segment to vary in
network topology as well. Grzegorczyk and Husmeier (2011) criticise the first approach
to be over-restrictive as change-points are decided based on the whole network. At
the same time, they criticise the second and third approaches for their over-flexibility
as change-points are specific to each vertex. The criticisms are supported by the fact
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that, in dynamic biological systems, different system components may get influenced
differently by a process whereas there are some processes, such as - morphogenesis, that
influence all system components identically. Being true to their argument, Grzegorczyk
and Husmeier propose a fourth approach that strikes a balance between the two extreme
paradigms. This method is known as Time-varying Gene Regulatory Networks
(TV-GRNs). It uses a Bayesian clustering approach that clusters the vertices in a
data-driven manner. Then change-points are decided for each cluster separately. It
allows system components belonging to different clusters to be influenced differently
by a temporal process while the system components in the same cluster get influenced
identically.

In theory, TV-GRN provides adequate flexibility to adjust the temporal resolution;
but the modelling accuracy is highly dependent on the clustering scheme which, as
Grzegorczyk and Husmeier recommend, is a research opportunity. Moreover, outputted
networks only vary in edge parameters. As a consequence, TV-GRN is unable to recon-
struct time-varying structures. Therefore, ARTIVA remains the most viable alternative
for reconstructing time-varying GRNs till this point.

In line with TV-GRN, Dondelinger et al. argue that the flexibility of ARTIVA may
lead to over-fitting, when the number of measurements per gene at each time point is
much less than the total number of genes Dondelinger et al. (2013). Hence, they propose
‘Information sharing’ or ‘coupling’ between time-interval specific GRN estimators. The
proposed framework is categorised into two classes: hard coupling and soft coupling, de-
pending upon the strength of coupling i.e. the expected similarity between time-interval
specific GRNs. For hard coupling, two algorithms, TVDBN-bino-hard and TVDBN-exp-
hard, are introduced. These algorithms assume that the expression of each gene follows
a binomial and an exponential distribution, respectively. Similarly, for soft coupling,
two more algorithms, TVDBN-bino-soft and TVDBN-exp-soft, are proposed. An un-
constrained (no ‘Information sharing’) variant, called TVDBN-0, is also proposed. This
variant is same as ARTIVA, except in the internal sampling strategies Dondelinger et al.
(2013). Dondelinger et al. conclude that ‘Information sharing’ improves reconstruction
when the ‘smoothly time-varying assumption’ holds; the said assumption states that the
true network varies smoothly with time i.e. each GRN structure shares more common
edges with its temporally adjacent GRN structures than with the distal ones.

Limitation(s) TVDBN-bino-hard, TVDBN-bino-soft, TVDBN-exp-hard and TVDBN-
exp-soft provide a framework to tackle the situation where the number of measurements
per gene at each time point is much less than the total number of genes. However,
the framework requires the smoothly time-varying assumption. This assumption is not
required by ARTIVA. Nevertheless, ARTIVA is a computationally expensive algorithm.
It requires approximately 5 minutes per gene to reconstruct GRNs from a dataset with
20 time points and 5 measurements per gene at each time point on a 2.66 GHz CPU
having a 4 GB RAM Lèbre et al. (2010). With that speed, the time frame necessary for
ARTIVA to scale up to large-scale datasets may be considered prohibitive (' 87 days
for 25, 000 genes). Hence, developing algorithms that do not require the smoothly time-
varying assumption as well as computationally efficient can be a worthwhile challenge.

3.4 Chapter Summary: Abridged Literature Survey

In the previous chapter (Chapter 1), we discuss the motivation behind constructing
network-based computational models for studying the progression of dynamic biological
systems. With rapid advancements in experimental technologies, datasets are increas-
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ingly getting larger and richer. In this chapter, it is analysed how the complexity of
the progression models increases with that of the datasets. The major proposals that
address these challenges are reviewed. Since progression modelling of dynamic biological
systems is a data-driven scientific endeavour, it is meaningful to categorise the models
and corresponding reconstruction algorithms based on the following questions:

• Model Selection: Given a dataset with certain properties and prior knowledge,
if any, is there any model that can capture the underlying dependency structure
which has generated the data?

• Selection of Reconstruction Algorithm: Given the properties of the data and
the chosen model, which reconstruction algorithm would be most suitable?

A brief graphical summary of the proposals, categorised based on the aforementioned
criteria, is given in Figure 3.7 .

Figure 3.7: A graphical summary of the literature review. A single-bordered white
box indicates that the corresponding method generates undirected network using an
Independent Network Inference (INI) algorithm. On the other hand, the double-border
signifies that a Joint Network Inference (JNI) algorithm is employed. A blue box implies
that the generated network or networks is a directed graph. A directed edge between
two boxes signifies that the end box is an extension of the start box. Reference to each
publication is given in Table 3.1.
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Table 3.1: References for Figure 3.7

Ref ID in Fig
3.7

Citation Key Remark

Eisen ’98 Eisen et al. (1998) Hypothesises that co-expression implies in-
volvement in the same function

MI Relev Net ’00 Butte and Kohane (2000) Mutual Information Relevance Networks

1OCI ’04 Magwene and Kim
(2004); De La Fuente
et al. (2004); Wille and
Bühlmann (2006); Wille
et al. (2004)

First Order Conditional Independence Mod-
els

Bickel ’05 Bickel (2005) Introduces ‘Time-lag’ between regulator and
regulatee

ARACNE ’05 Basso et al. (2005); Mar-
golin et al. (2006)

Reduces false positive edges with the help of
Data Processing Inequality principle

GeneTS ‘05 Schäfer and Strimmer
(2005)

Solves Gaussian Graphical Model inference
when number of variables � sample size

FastGGM ‘16 Wang et al. (2016) R package for inferring Gaussian Graphical
Model with 10, 000 nodes in reasonable time

SparseL1 ‘8 Banerjee et al. (2008) Inferring sparse networks with `1 regularisa-
tion

gLasso ‘08 Friedman et al. (2008) Graphical Lasso: First use of Lasso frame-
work for inferring graphical models

giLasso ‘11 Chiquet et al. (2011) Graphical Intertwined Lasso: Graphical
Lasso with an intertwined estimation of the
covariance matrix

gCoopLasso ‘11 Chiquet et al. (2011) Graphical Cooperative Lasso: Imposes the
constraint that a system component up-
regulating another component in one condi-
tion, is less likely to down-regulate the latter
in another condition

pnjgLasso ‘12 Mohan et al. (2012) Perturbed Node Joint Graphical Lasso: In-
troduces commonality constraint between
condition-specific covariance matrices

jgLasso ‘14 Danaher et al. (2014) Joint Graphical Lasso: Tightens the com-
monality constraint in Graphical Lasso by
replacing `2 regularisation with `1 regulari-
sation

cLasso ‘14 Villa-Vialaneix et al.
(2014)

Consensus Lasso: Composes a single objec-
tive function that satisfies sparsity as well
as commonality constraints

continued . . .
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. . . continued

Ref ID in Fig
3.7

Citation Key Remark

Oates Exch ‘14 Oates et al. (2014) Reconstructs individual-specific Dynamic
Bayesian Networks for exchangeable indi-
viduals

Oates Non Exch
‘14

Oates and Mukherjee
(2014)

Reconstructs individual-specific Dynamic
Bayesian Networks for non-exchangeable in-
dividuals

Oates Exact ‘15 Oates et al. (2015) Performs exact estimation of individual-
specific Dynamic Bayesian Networks when
there is no prior knowledge about the rela-
tionship between the given individuals

TESLA ‘09 Ahmed and Xing (2009) Reconstructs multiple discontinuously time-
varying Markov Random Fields for each in-
dividual

KELLER ‘09 Song et al. (2009a) Reconstructs multiple continuously
(smoothly) time-varying Markov Ran-
dom Fields for each individual

TV-DBNs ‘09 Song et al. (2009b) Reconstructs multiple smoothly time-
varying Dynamic Bayesian Networks for
each individual

Robinson ‘09 Robinson and Hartemink
(2009)

Reconstructs multiple discontinuously time-
varying inhomogeneous Dynamic Bayesian
Networks for each individual. Each network
represents a time segment in the given time-
series data for that individual. Within the
same time-segment, network topology and
edge parameters remain static.

Grzegorczyk ‘09 Grzegorczyk and Hus-
meier (2009)

Reconstructs multiple smoothly time-
varying inhomogeneous Dynamic Bayesian
Networks for each individual. Each time
segment may have multiple networks with
the same network topology but smoothly
varying edge parameters.

Lebre ‘07 ‘10 Lèbre (2007); Lèbre et al.
(2010)

Reconstructs multiple smoothly time-
varying inhomogeneous Dynamic Bayesian
Networks for each individual. Each time
segment may have multiple networks with
varying network topology and smoothly
varying edge parameters.

MixMem ‘10 Xing et al. (2010) Models role of each system component as a
time-varying mixed membership vector

continued . . .
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. . . continued

Ref ID in Fig
3.7

Citation Key Remark

TV-GRNs ‘11 Grzegorczyk and Hus-
meier (2011)

Reconstructs multiple time-varying Gene
Regulatory Networks for each individual.
Clusters the system components. Restricts
time-variation of the system components
within the same cluster to follow the same
pattern.

TimePath ‘16 Jain et al. (2016) Reconstructs multiple time-varying par-
tially directed cellular signalling networks.
It integrates time-course gene expression
data with static protein-protein interaction
data and protein-DNA interaction data to
find out key proteins/genes and major path-
ways involved in HIV-1 immune response.
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Chapter 4

Problem Formulation

In the previous chapter, we critically review the existing reconstruction algorithms
(Chapter 3). In this chapter, we select a subset of the challenges faced by these al-
gorithms as the objective of this thesis.

The algorithms of our interest reconstruct time-varying Gene Regulatory Networks
(GRNs) from time-series gene expression datasets. Among these algorithms, the ones
that offer state-of-the-art frameworks are: ARTIVA, TVDBN-0, TVDBN-bino-hard,
TVDBN-bino-soft, TVDBN-exp-hard and TVDBN-exp-soft. In the following sections,
we conduct a comparative study of the aforementioned algorithms to identify their
limitations. Consequently, some of the limitations are proposed to be overcome in this
thesis.

4.1 Notations

4.1.1 Input: Time-series Gene Expression Dataset

Suppose that the given dataset D is comprised of a set of time series S = {s1, . . . , sS}
of gene expression data (Figure 4.1). Each time series contains the expression levels of
a set of genes V = {v1, . . . , vV } at T consecutive time points T = {t1, . . . , tT }. It is
assumed that there are no missing values in any time series. In other words, each time
series is a complete time series of T time points. Notation D(X ;Y;Z) is used to denote
the observed values of genes X at time points Y in time series Z. Hence, D(X ;Y;Z) ⊆ D
where X ⊆ V,Y ⊆ T ,Z ⊆ S.

4.1.2 Output: Time-varying Gene Regulatory Networks

Given dataset D, the objective is to reconstruct a temporally-ordered sequence of GRNs
G =

(
G(1), . . . , G(T−1)

)
(Figure 4.2). Here, each G(p) (∈ G) is a time interval specific

GRN. Thus, G(p) represents the gene regulatory events occurred during the time interval
between time points tp and t(p+1). It is a directed unweighted network on the (2× V )
nodes {vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}}. Each node vi tq represents a distinct random
variable. Expression of gene vi at time point tq is modelled as random variable vi tq.
Therefore, the observed expression values of vi at time point tq in S separate time series
are considered as S observed values of vi tq.

In this thesis, the underlying gene regulation process is assumed to be first-order
Markovian (Friedman et al., 1998, p. 140, Section 2). The assumption states that the
expression of a gene at a particular time point only depends upon the expressions of
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Genes: V = {v1, . . . , vV }

Time points: T = {t1, . . . , tT}

Samples: S = {s1, . . . , sS}

Figure 4.1: Input time-series gene expression data D is a three dimensional tensor with
the dimensions (V genes, T time points, S time series). D is comprised of a set of time
series S = {s1, . . . , sS} of gene expression data. Each time series contains the expression
levels of a set of genes V = {v1, . . . , vV } at T consecutive time points T = {t1, . . . , tT }. It
is assumed that there are no missing values in any time series. In other words, each time
series is a complete time series of T time points. Notation D(X ;Y;Z) is used to denote
the observed values of genes X at time points Y in time series Z. Hence, D(X ;Y;Z) ⊆ D
where X ⊆ V,Y ⊆ T ,Z ⊆ S.

its regulators at the previous time point. This is a realistic assumption. The time
interval between two consecutive time points in a dataset is usually sufficiently large
for regulators to have an effect on the target gene’s expression. For example, the time
interval is around one hour in a widely-used human dataset (Zaas et al., 2009). This
interval is adequately large for regulators to effect their target gene’s expression in human
cells. For instance, in human Fibroblast cells, regulators require only half an hour to
have an effect on their target gene’s expression (Alon, 2006, Table 2.1).

However, the time required for a regulator to effect its target is not always known.
As a result, the ideal time interval for data collection can not be determined. In that
case, time intervals in the data may not honour the actual effecting time. For such
data, higher order dependencies can be considered. If considered, finding out those
dependencies increases computational complexities. To avoid higher complexities, the
first-order Markovian assumption is widely used in the relevant literature (Lèbre et al.,
2010; Dondelinger et al., 2013).

From the first-order Markovian assumption, it follows that the expression of vj at
time point t(p+1) depends only upon its regulators at time point tp. If the expression of vi
at time point tp has a regulatory effect on that of vj at time point t(p+1), it is represented
as a directed edge

(
vi tp, vj t(p+1)

)
in the output time-varying GRNs (Figure 4.2).
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Figure 4.2: Output time-varying GRNs
(
G(1), . . . , G(T−1)

)
= G is a sequence of di-

rected unweighted networks. Here, G(p) (∈ G) represents the gene regulatory events
occurred during the time interval between time points tp and t(p+1). It consists of
(2× V ) nodes {vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}}. There exists a directed unweighted edge(
vi tp, vj t(p+1)

)
if and only if vi regulates vj during time interval

(
tp, t(p+1)

)
.

4.2 Benchmark Datasets

A real gene expression dataset with known true underlying GRNs is the coveted choice
of dataset for evaluating GRN modelling algorithms. To that end, Marbach et al. (2009)
design three sets of realistic GRN structures for different model organisms with 10, 50
and 100 genes. Then for each of these in silico GRNs, they choose an appropriate
dynamical model and generate a dataset through simulation (Marbach et al., 2010,
p. 6290, Section ‘Simulation of Expression Data.’; Supplementary Information, Section
‘SI Methods. Gene network model.’). These datasets are made publicly available as
benchmarks for assessing and comparing the modelling algorithms through DREAM3 In
Silico Network Challenge DREAM3; Prill et al. (2010). In each dataset, gene expressions
are normalized so that the maximum gene expression value in a data file is one. Among
these datasets, the ‘Yeast1’ time-series datasets are chosen for the purpose of this thesis.
It comprises of two sets of datasets: one noiseless and the other noisy (resulted from
adding Gaussian noise to the noiseless datasets). Each set contains three datasets as
summarized in Table 4.1 . It can be noted that the true networks are summary GRNs.
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Table 4.1: A Summary of the chosen DREAM3 Datasets. Here, V = number of genes,
T = number of time points, and S = number of time series.

Dataset (noiseless) V T S No. of True Edges

Ds10 10 21 4 10

Ds50 50 21 23 77

Ds100 100 21 46 166

Dataset (noisy) V T S No. of True Edges

Ds10n 10 21 4 10

Ds50n 50 21 23 77

Ds100n 100 21 46 166

4.3 Evaluation Metrics

The true networks are summary GRNs; on the other hand, the outputs of reconstruc-
tion algorithms are time-varying GRNs. Hence, the output set of networks G for each
algorithm is converted (‘rolled up’) into an equivalent single network G by the following
algorithm: Add a directed edge from vi to vj in G if there exists at least one edge from
vi tp to vj t(p+1) in G for any tp, t(p+1) ∈ T . For DREAM3 synthetic datasets, self-loops
(if any) are removed from the rolled network G since the true networks do not contain
self-loops.

Given a dataset and the corresponding true network, the following metrics are used
to evaluate the learning power of an algorithm. True Positive (TP) and False Positive
(FP) stand for the number of edges correctly predicted and number of edges incorrectly
predicted, respectively. On the other hand, True Negative (TN) and False Negative
(FN) represent the number of non-edges (absence of edges in the true network) correctly
predicted and number of non-edges incorrectly predicted, respectively.

• True Positive Rate (TPR) (or Recall):
TPR = TP/(TP + FN).
It measures how good an algorithm is in capturing the correct edges.

• Positive Predictive Value (PPV) (or Precision):
PPV = TP/(TP + FP ).
It measures how good an algorithm is in rejecting the incorrect edges.

• F1-Score:
F1 = (2× PPV × TPR) / (PPV + TPR). When PPV and TPR are zeros, F1
is considered zero. F1-score is simply the harmonic mean of recall and precision.
As a result, it is a measure of an algorithm’s ability to balance recall and precision.
We utilise F1-score to evaluate the overall correctness of the time-varying GRNs
reconstructed by an algorithm.

4.4 Comparative Study of the Existing Algorithms

In this section, we conduct a comparative study of the existing reconstruction algo-
rithms. For the study, we apply them on benchmark datasets Ds10n, Ds50n and Ds100n.
Consequently, the correctnesses of their reconstructed networks are evaluated.
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4.4.1 Implementations

The source code of ARTIVA is publicly available as an R package with the same name
(ARTIVA, version: 1.2.3). The source codes of TVDBN-0, TVDBN-bino-hard, TVDBN-
bino-soft, TVDBN-exp-hard and TVDBN-exp-soft are publicly available as an R package
named ‘EDISON’ ((EDISON), version: 1.1.1).

Experiments are performed on an Intel R© computing server with the following con-
figuration:

• Architecture: x86 64

• CPUs: Two Intel R© Xeon R© X5675 @ 3.07GHz CPUs

• Main Memory: 31 GB

• Swap Space: 34 GB

• Cache: {L1d cache: 32 KB, L1i cache: 32 KB, L2 cache: 256 KB, L3 cache: 12288
KB}

• Secondary Storage: 4.1 TB

• Operating System: Ubuntu 12.04.5 LTS (Codename: Precise)

4.4.2 Results

We observe that ARTIVA substantially outperforms other algorithms in F1-score for two
of the three benchmark datasets (Table 4.2). However, such superiority in correctness
comes at the cost of computational time (Table 4.3). ARTIVA consumes around 1.5
days to process dataset Ds100n which contains only a hundred genes.

It can be noted that the implementations of TVDBN-exp-hard and TVDBN-exp-soft
raise errors in all the experiments. In a personal communication with us, the maintainer
of the corresponding package hints at a potential bug. Hence, the results of TVDBN-
exp-hard and TVDBN-exp-soft are not reported here.

Table 4.2: The F1-scores of the Existing Reconstruction Algorithms for Benchmark
Datasets Ds10n, Ds50n and Ds100n. The numerical values are rounded off to three
decimal places. For each dataset i.e. column, the best value is boldfaced.

Algorithm Ds10n Ds50n Ds100n

ARTIVA 0 0.082 0.083

TVDBN-0 0 0.049 0.021

TVDBN-bino-hard 0.111 0.044 0.035

TVDBN-bino-soft 0.190 0.058 0.024

4.5 Problem Statement

ARTIVA’s runtime is a major concern for large-scale datasets with hundreds to thou-
sands of genes (Zaas et al., 2009). At the same time, rapid advancements of data-
acquisition technologies are making it possible to produce increasingly larger datasets.
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Table 4.3: The runtime of the Existing Reconstruction Algorithms for Benchmark
Datasets Ds10n, Ds50n and Ds100n. The numerical values are rounded off to three
decimal places.

Algorithm Ds10n Ds50n Ds100n

ARTIVA 10 m 20 s 4 h 30 m 15 s 31 h 52 m 54 s

TVDBN-0 2 m 24 s 11 m 59 s 52 m 17 s

TVDBN-bino-hard 2 m 15.2 s 9 m 38 s 2 h 53 m 32 s

TVDBN-bino-soft 2 m 14.6 s 8 m 8 s 17 m 20 s

Initiatives like The Precision Medicine Initiave (PMI) (https://www.whitehouse.gov/
precision-medicine) and Google Baseline Study (GBS) (https://en.wikipedia.
org/wiki/Baseline_Study) are expected to generate such massive datasets. As a con-
sequence, the gap between the desired computational speed and that of ARTIVA is
becoming wider. In this thesis, we propose to bridge this gap. Therefore, the prob-
lem statement can be formalised as follows: The objective of this thesis is to propose
algorithms that can

• deliver correctness competitive to that of ARTIVA, and

• computational efficiency compatible with large-scale datasets with hundreds to
thousands of genes.

4.6 Chapter Summary

In Chapter 2 , we investigate the motivation behind network-based progression modelling
of dynamic biological systems. A critical review of the relevant methods is presented
in Chapter 3 . That provided us insights required to design better methodology and
a range of research challenges. In this chapter, we focus on a subset of the challenges
based on feasibility and analytical demand of the contemporary experimental studies.
Specifically, the focal point is set on the large-scale studies that monitor hundreds to
thousands of genes across time. Availability of these massive datasets makes it an
appropriate time to study developmental and disease progression modelling. However,
it is found that the existing methods known to provide state-of-the-art correctness can
not scale up to such high-dimensional data settings. Therefore, it is necessary to bridge
the gap between correctness and efficiency for discovering the knowledge hidden in rich
large-scale datasets. The objective of this thesis is to mend that gap.
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Chapter 5

Improving Time-efficiency

In the previous chapter, we formulate the objective of this thesis (Chapter 4). The
objective is to develop reconstruction algorithms that can:

• deliver correctness competitive to that of ARTIVA, which is the state-of-the-art
algorithm in terms of correctness; and

• offer computational efficiency compatible with large-scale datasets with hundreds
to thousands of genes.

Towards that objective, we propose a time-efficient algorithm in this chapter. The
algorithm is called ‘an algorithm for reconstructing Time-varying Gene regulatory net-
works with Shortlisted candidate regulators’, in short, TGS.

This chapter is organised into multiple sections. In Section 5.1 , we design a novel
algorithm. Subsequently, the experimental results are discussed in Section 5.2 . An
excerpt along with a pointer to the future work are provided in Section 5.3 . The
research contributions are acknowledged in Section 5.4 . Finally, in Section 5.5 , a
summary of the chapter is presented.

5.1 Methods

In this section, two algorithms are developed. First, a baseline algorithm is developed for
reconstructing time-varying Gene Regulatory Networks (GRNs) from time-series gene
expression data. Like ARTIVA (Lèbre et al., 2010, Section ‘Conclusions’), the baseline
algorithm attempts to reconstruct the time-varying GRNs independently of each other.
Therefore, it is compatible with any dataset regardless of whether the smoothly time-
varying assumption holds for it or not. Nevertheless, it is time-intensive and hence not
suitable for large-scale datasets. Second, a set of heuristic based approximation steps
is added to the baseline algorithm to develop the final algorithm. The latter maintains
the independently time-varying framework without compromising the time-efficiency.

5.1.1 Development of the Baseline Algorithm

In this section, a conditional independence based baseline algorithm, referred to as
Time-varying Bayesian Networks (TBN ), is designed. Algorithm 8 describes the steps
in TBN. It takes a discretised complete time-series gene expression dataset D as input.
It is assumed that there are multiple time series (S > 1) in D. Then TBN reconstructs
one GRN G(p) for every time interval

(
tp, t(p+1)

)
, where 1 ≤ p ≤ (T − 1) (Figure 4.2 ).
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Each G(p) is modelled as a Bayesian Network (BN) (Markowetz and Spang, 2007, Section
‘Bayesian networks’). Absence of a directed edge

(
vi tp, vj t(p+1)

)
in G(p) implies that

the expression level of vj at time point t(p+1) is conditionally independent of that of
vi at time point tp, given the expression levels of the genes V \ {vi} at time point tp.
Biologically, it signifies that the expression level of vi at time point tp has no regulatory
effect on that of vj during time interval (tp, tp + 1). On the other hand, presence of
that edge signifies that there is a non-zero probability that vi’s expression level at tp has
affected that of vj during the (tp, tp + 1) time interval.

TBN employs a BN structure learning algorithm (Murphy, Section ‘Structure learn-
ing’) to learn every G(p) from D(V;{tp,t(p+1)};S). Therefore, the problem of learning

(T − 1) time-varying GRNs in G gets decomposed into (T − 1) independent BN struc-
ture learning problems. For learning an exact BN structure, Bene is the state-of-the-art
algorithm w.r.t. time complexity and scalability, to the best of our knowledge (Silander
and Myllymäki, 2006). Hence, TBN with Bene is chosen as the baseline for developing
a novel algorithm.

In TBN (Algorithm 8) , BIC scoring function (Markowetz and Spang, 2007, Section
‘Bayesian information criterion (BIC)’) is used with Bene to compute scores of the
candidate regulator sets. There exist some other scoring functions that can be used with
Bene, e.g. BDe. Among all available scoring functions, BIC and BDe are compared w.r.t.
their effects on learning power of Bene by Silander et al. (Silander and Myllymäki, 2006,
Section 4.4). It is observed that BIC outperforms BDe when number of observations
being considered (the value of expression (S + 1), to be specific) is below 20. Moreover,
the performance of BDe is very sensitive to the chosen value of its hyper-parameter
Silander (2017). BIC, on the other hand, does not depend on any hyper-parameters.
For these reasons, BIC is considered to be the most suitable scoring function for the
current study.

5.1.2 Development of a Novel Algorithm: The TGS Algorithm (short
form for ‘an algorithm for reconstructing Time-varying Gene
regulatory networks with Shortlisted candidate regulators’)

From Algorithm 8 , it is found that TBN ’s time complexity is TTBN (V ) = (T − 1)×V ×
o
(
V 22(V−2)

)
= o

(
(T − 1)V 32(V−2)

)
. The time complexity grows exponentially with the

number of candidate regulators for each gene, which is V in this case. Therefore, this
approach can be made more computationally efficient if a way can be discovered that:
(a) generates a significantly shorter list of candidate regulators for each gene, and (b)
the amount of time it spends for short-listing candidate regulators is overshadowed by
the time gain it brings.

Statistical pairwise association measures fulfil the first criterion. Given sufficient ob-
servations on a pair of random variables, they can identify whether there is a statistically
significant probability (w.r.t. a predefined significance threshold) that these variables
are not associated with each other. Thus the candidate regulators, whose expressions
are not statistically associated with that of the regulatee gene, could be identified. Then
these regulators can be removed from the candidate regulator set.

A set of fourteen such measures are comparatively studied by Liu et al. Liu (2017)
who conclude that Mutual Information (MI) demonstrates superior stability over other
measures. MI’s potential regulator-regulatee association predictions consistently out-
perform (Liu, 2017, Section ‘Results of Comparison Study’ and Figure 3) those of most
others across different sizes (different values of V ) of benchmark gene expression datasets
w.r.t. mean AUC (Area Under Receiver Operating Characteristic Curve). Algorithms
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NARROMI and LBN utilize MI for short-listing candidate regulators. For each reg-
ulatee gene, they calculate its MI with every candidate regulator; then eliminate the
candidates with MI lower than a user-defined threshold.

However, the Achilles’ heel of this strategy is that the prediction is heavily dependent
on the user-defined threshold value (Liu et al., 2016, Section ‘Effects of the threshold
parameters’). LBN determines the threshold for synthetic datasets by performing the
predictions multiple times with different threshold values and choosing the one that
gives the best prediction. This threshold selection strategy requires the true regulatory
relationships to be known a priori so that the quality of a prediction can be measured.
A more practical strategy is appointed by Context Likelihood of Relatedness (CLR)
algorithm Faith et al. (2007) (Algorithm 9) . It reconstructs a weighted MI network 1

over all genes from a gene expression dataset without requiring a user-defined threshold.
CLR is found to outperform other major MI network reconstruction algorithms (Faith
et al., 2007, Figure 2). Furthermore, it requires only O

(
V 2
)

time for a dataset with V
genes.

For the aforementioned reasons, CLR is chosen to be a pre-selection step for can-
didate regulators before more comprehensive selection could be performed by TBN. It
gives birth to a novel algorithm, which is named TGS (short form for ‘an algorithm
for reconstructing Time-varying Gene regulatory networks with Shortlisted candidate
regulators’). A graphical flowchart is presented in Figure 5.1.

TGS (Algorithm 10) has the time complexity TTGS (V ) =(
O
(
V 2
)

+ (T − 1)× V × o
(
M22(M−2)

))
=
(
O
(
V 2
)

+ o
(
(T − 1)VM22(M−2)

))
. Here,

M is the maximum number of neighbours a gene has in the CLR network. In theory,
M ≤ V , time complexity of TGS is upper bounded by that of TBN. Empirically, it is
found (Bhardwaj et al., 2010, Figure 2) that each gene is regulated by a small number
of regulators with the exception in case of E.coli. For this reason, major BN based
algorithms (e.g., the DBN implementation in BayesNet Toolbox for MATLAB Murphy
(2001)) have variants that allow the user to specify the maximum number of regulators
a gene can have. This user-defined value is known as the max fan-in (Mf ). For each

gene, it reduces the number of candidate regulator sets from
∑V

m=0

(
V
m

)
to
∑Mf

m=0

(
V
m

)
,

where Mf � V . It is further reduced to
∑Mf

m=0

(
Mf
m

)
in the variant of TGS with the

max fan-in restriction (Algorithm 11) . Therefore, for a high-throughput human-genome
scale time series gene expression dataset where (T − 1) = o (V ) and Mf = o (lg V ), the
time complexity of TGS asymptotically tends towards polynomial while that of TBN
remains exponential.

TTBN (V ) = o
(

(T − 1)V 3 2(V−2)
)

= o
(
o (V )V 3 2(V−2)

)
∵ (T − 1) = o (V )

= o
(
V 4 2(V−2)

)

1An MI network is an undirected graph where two nodes are connected if and only if their pairwise
MI is statistically significant. The significance threshold is either user-defined or programmatically
computed by the network reconstruction algorithm itself.
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Figure 5.1: Graphical Flowchart (Part 1) of the TGS Algorithm. The flowchart is
continued in Figure 5.2. For illustration, a dataset D is considered with four genes
{v1, v2, v3, v4} = V and two time series {S1, S2} = S. Each time series has three time
points {t1, t2, t3} = T . D is discretised into two discrete levels, represented by {1, 2}.
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Figure 5.2: Graphical Flowchart (Part 2) of the TGS Algorithm. The flowchart is
continued from Figure 5.1. For discussion of the Bene step, let us consider the ‘Selection
of regulators of {v1 t(p+1) : 2 ≤ (p+ 1) ≤ T}’. Since, v2 is the sole neighbour of v1 in
GCLR, v2 is the only candidate regulator of v1 (Figure 5.1). Therefore, the candidate
regulator sets of v1 t2 are ∅ and {v2 t1}. Among these two sets, Bene chooses {v2 t1}
based on observations DV;{t1,t2};S . Similarly, the candidate regulator sets of v1 t3 are ∅
and {v2 t2}. Among these two sets, Bene chooses ∅ based on observations DV;{t2,t3};S .
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TTGS (V ) =
(
O
(
V 2
)

+ o
(

(T − 1)VM2
f 2(Mf−2)

))
(5.1)

=
(
O
(
V 2
)

+ o
(
o (V )VM2

f 2(Mf−2)
))

∵ (T − 1) = o (V )

=
(
O
(
V 2
)

+ o
(
o (V )V o (lg V )2 2(o(lg V )−2)

))
∵Mf = o (lg V )

=

(
O
(
V 2
)

+ o

(
o
(
V 2 (lg V )2

) 2(o(lg V ))

4

))
=
(
O
(
V 2
)

+ o
(
o
(
V 2 (lg V )2

)
(o (V ))

))
=
(
O
(
V 2
)

+ o
(
V 3 (lg V )2

))
= o

(
V 3 (lg V )2

)
(5.2)

5.2 Results

The results of the TGS algorithm on the benchmark datasets are presented in this sec-
tion. TGS ’s learning power and speed are evaluated against that of TBN and ARTIVA.
TBN is included in this comparative study to analyse the effect of the CLR step.

5.2.1 Discretisation of the Datasets

The benchmark datasets are continuous in nature. However, TBN and TGS require
discrete datasets. Hence, the benchmark datasets are discretised for TBN and TGS.
For that purpose, the following two discretisation algorithms are utilised:

• The 2L.wt Algorithm: It is based on the wild type (WT) values of the genes,
provided through the DREAM challenge in Yeast1 steady state datasets. Expres-
sion of each gene is considered as a discrete random variable with two discrete
levels {1, 2}. Each observed expression value (which is a real number) of that gene
is converted to 1 if it is less the gene’s WT value; else it is converted to 2.

• The 2L.Tesla Algorithm: It is based on a domain-knowledge independent strat-
egy (i.e. biological knowledge, like - WT values, are not used). The algorithm is
described at (Ahmed and Xing, 2009, p. 2, Section ‘Evolving Gene Networks Dur-
ing Drosophila melanogaster Development. Preprocessing the gene networks.’,
Supplementary Information).

5.2.2 Implementations

Both TBN and TGS are implemented in R programming language R Development Core
Team (2008) version 3.3.2. For CLR and Bene, their implementations in R packages
minet Meyer et al. (2008) (version: 3.34.0) and bnstruct Franzin et al. (2016) (version:
1.0.2) are used, respectively.

5.2.3 Learning From Dataset Ds10n

Dataset Ds10n is chosen over Ds10 for the comparison because: (a) it is noisy and hence
more realistic than Ds10, and (b) Ds10n is used to evaluate algorithms in the DREAM
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challenge while Ds10 is released after the challenge; therefore, the reader can compare
the performances of the algorithms in this study with those of the algorithms employed
during the challenge.

In the current study, TBN and TGS both perform better than ARTIVA in terms of
learning power, except in FP (Table 5.1) 2. They also outperform ARTIVA in speed (Ta-
ble 5.2). Amongst TBN and TGS, it is found that TGS has faster learning speed. It is
expected since the regulator search space for each gene, in case of TGS, is monotonically
smaller than that of TBN. But the interesting observation is that TGS, being a heuristic
based approximate search algorithm, performs competitively with TBN, an exhaustive
search algorithm, in every metric of learning power as well. The reason behind that is
explained by the fact that the CLR step in TGS captures 7 out of 10 true edges even
from this noisy dataset; the high recall of the CLR step is utilised by the downstream
Bene step to identify at least as many true edges identified by TBN while avoiding to
search for as many potential false edges as possible. This reasoning is supported by an-
other fact that TGS suffers from much less FP than TBN. Another observation is made
that discretisation of input gene expression data based on domain-specific knowledge (as
in wild type values of genes) improves learning compared to the domain-independent
alternative (Table 5.1).

Table 5.1: Learning Power of the Selected Algorithms on Dataset Ds10n. TP = True
Positive, FP = False Positive. Two ordered values in each cell for rows ‘TBN’ and
‘TGS’ represent application of two different data discretisation algorithms – 2L.wt and
2L.Tesla, respectively. On the other hand, other rows have a single value in each cell,
since other algorithms do not require the dataset to be discretised. The numerical values
are rounded off to three decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TBN (3, 1) (17, 25) (0.3, 0.1) (0.15, 0.038) (0.2, 0.056)

TGS (3, 2) (10, 12) (0.3, 0.2) (0.231, 0.143) (0.261, 0.167)

ARTIVA 0 9 0 0 0

TVDBN-0 0 1 0 0 0

TVDBN-bino-hard 1 7 0.1 0.125 0.111

TVDBN-bino-soft 2 9 0.2 0.182 0.190

5.2.4 Learning From Datasets Ds50n and Ds100n

Due to Bene’s main memory requirement of 2(V+2) Bytes (Silander and Myllymäki,
2006, Section 5), both TBN and TGS have the same inherent exponential memory
requirement. In theory, that should enable them to learn a network with V ≤ 32
with a 31 GB main memory, since 2(32+2) Bytes = 16 GB < 31 GB. But it is found
empirically that the bnstruct implementation of Bene can learn a network with V ≤ 15
with that configuration, without any segmentation faults. Therefore, the max fan-in
variant of TGS is employed for Ds50n and Ds100n with Mf = 14, since that would
restrict each atomic network-learning problem to a maximum of 15 nodes (1 regulatee
and a maximum of 14 candidate regulators). However, TBN does not have any such
provisions and hence can not be applied on these datasets. As a result, TBN is excluded
from the current study.

2Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for Ds10n.
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Table 5.2: Runtime of the Selected Algorithms on Dataset Ds10n. Two ordered val-
ues in each cell for rows ‘TBN’ and ‘TGS’ represent application of two different data
discretisation algorithms – 2L.wt and 2L.Tesla, respectively. On the other hand, other
rows have a single value in each cell, since other algorithms do not require the dataset
to be discretised. In TGS, the CLR step takes 0.003 seconds for 2L.wt and 2L.Tesla
each.

Algorithm Ds10n

TBN (7.119s, 6.867s)

TGS (5.789s, 5.76s)

ARTIVA 10m 20s

TVDBN-0 2m 24s

TVDBN-bino-hard 2m 15.2s

TVDBN-bino-soft 2m 14.6s

In this study, ARTIVA consistently outperforms TGS in FP, with considerable mar-
gins (Tables 5.3 and 5.4) 3. Since the true GRNs are believed to be sparse in nature,
it is expected that, among all possible regulatory relationships, only a few truly exist.
For those larger number of relationships, that do not exist, ARTIVA is less likely than
TGS to mistake them as true relationships. However, ARTIVA tends to over-estimate
the non-existent relationships by mistaking a large number of true relationships as non-
existent, as evident from its considerably lower TP compared to those of TGS. Another
major concern with ARTIVA is the runtime. It takes almost 32 hours to reconstruct
100-gene GRNs, which is certainly a bottleneck for its application in reconstructing
human genome-scale GRNs (Table 5.5). In comparison, TGS consumes only about 18
minutes. Moreover, TGS ’s runtime grows almost linearly as the number of genes grow
(Figure 5.3). These observations indicate that TGS is substantially more suitable for
reconstructing large-scale GRNs than ARTIVA.

Table 5.3: Learning Power of the Selected Algorithms on Dataset Ds50n. TP = True
Positive, FP = False Positive. Algorithm 2L.wt is used for data discretisation in TGS.
The numerical values are rounded off to three decimal places. For each column, the best
value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 15 342 0.195 0.042 0.069

ARTIVA 6 64 0.078 0.086 0.082

TVDBN-0 7 199 0.091 0.034 0.049

TVDBN-bino-hard 11 410 0.143 0.026 0.044

TVDBN-bino-soft 14 395 0.182 0.034 0.058

3Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for Ds50n and
Ds100n.
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Table 5.4: Learning Power of the Selected Algorithms on Dataset Ds100n. TP = True
Positive, FP = False Positive. Algorithm 2L.wt is used for data discretisation in TGS.
The numerical values are rounded off to three decimal places. For each column, the best
value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 28 790 0.169 0.034 0.057

ARTIVA 14 158 0.084 0.081 0.083

TVDBN-0 9 678 0.054 0.013 0.021

TVDBN-bino-hard 26 1304 0.157 0.020 0.035

TVDBN-bino-soft 18 1296 0.108 0.014 0.024

Table 5.5: Runtime of the Selected Algorithms on Datasets Ds50n and Ds100n. For
TGS, algorithm 2L.wt is used for data discretisation. The CLR step in TGS takes
0.005 and 0.013 seconds for Ds50n and Ds100n, respectively.

Algorithm Ds50n Ds100n

TGS 7m 36s 17m 49s

ARTIVA 4h 30m 15s 31h 52m 54s

TVDBN-0 11m 59s 52m 17s

TVDBN-bino-hard 9m 38s 2h 53m 32s

TVDBN-bino-soft 8m 8s 17m 20s

Figure 5.3: Runtime of the TGS Algorithm w.r.t. the Number of Genes in the Bench-
mark Datasets (Table 4.1). The black and grey lines represent noisy and noiseless
versions of the datasets, respectively.
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5.2.5 Effects of Noise on Learning Power and Speed

TGS is evaluated on all noisy and noiseless datasets with different number of genes.
From Figures 5.3 and 5.4 , it can be observed that the presence of noise negatively
impacts runtime and precision. This observation can be explained by analysing the
effect of noise on the CLR step (Table 5.6). In the absence of noise, the CLR step can
eliminate more numbers of potential false regulators from the candidate set of regulators
of each regulatee, resulting in smaller and more precise shortlist of candidate regulators.
That in turn, improves precision and speed of the overall algorithm.

Figure 5.4: Precision of the TGS Algorithm w.r.t. the Number of Genes in the Bench-
mark Datasets. The black and grey bars represent noisy and noiseless versions of the
datasets, respectively. The 2L.wt algorithm is used for data discretisation.

Table 5.6: Maximum Number of Neighbours a Gene has in the CLR Network. Algorithm
2L.wt is used for data discretisation.

Total Number of Genes Noiseless Dataset Noisy Dataset

10 4 7

50 24 33

100 43 84

5.3 Excerpt and Future Work

In this chapter, a novel algorithm, namely TGS, is proposed to reconstruct time-varying
GRNs from time-series gene expression datasets. TGS assumes that there are multiple
time series in the dataset. Additionally, it assumes that there are no missing values.

TGS employs a two-step learning framework. In the first step, for each target gene,
a shortlist of its candidate regulators is inferred. In the final step, these shortlisted can-
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didates are thoroughly examined to identify the true regulators. Moreover, the temporal
sequence of the regulatory events is learnt from the data.

The novelty of the TGS algorithm is two-fold: (A) flexibility and (B) time-efficiency.
Its flexible framework allows time-varying GRNs to be learnt independently of each
other. TGS learns every GRN structure in a data-driven manner, without imposing the
smoothly time-varying assumption.

However, ARTIVA is already able to provide a similarly flexible framework (Lèbre
et al., 2010, Section ‘Conclusions’). The only challenge with ARTIVA is its substantial
runtime. That makes ARTIVA’s application prohibitive with large-scale datasets. TGS,
on the other hand, is able to offer the same flexibility but in a significantly more time-
efficient manner. It requires only around 29 minutes for a microarray dataset with 4028
genes (and 15 time series each comprised of 2 time points) (Pyne et al., 2020).

It needs to be noted that, another existing algorithm, namely TV-DBN, is also
able to demonstrate its scalability to a microarray dataset with 3626 genes (runtime is
unknown) (Song et al., 2009b). Nevertheless, TV-DBN accomplishes such scalability
by imposing the smoothly time-varying assumption. The assumption states that each
GRN shares more common edges with its temporally adjacent GRNs than with the
distal ones.

On the other hand, TGS ’s framework is compatible with any dataset regardless of
whether the smoothly time-varying assumption holds for it or not. Moreover, TGS
consistently outperforms ARTIVA in true positive detection.

Nevertheless, there are scopes for improvement. One limitation of TGS is the need
to discretise continuous datasets. One reason behind that is TGS uses BIC score to
determine the best GRN structure and BIC scoring function requires the data to be
discretised. Two of the ways the issue can be resolved are: (a) by using a scoring function
that does not require the input data to be discretised, like in Grzegorczyk and Husmeier
(2009), and (b) by developing a regression-based structure learning strategy, like- Lèbre
et al. (2010), since regression problems are inherently compatible with continuous data.

However, the experiments with the large datasets help us to identify the Achilles’ heel
of TGS. It is the fact that its main memory requirement grows exponentially with the
number of genes (and in turn number of candidate regulators for each gene) in a given
dataset. In the current implementation of TGS, the maximum number of candidate
regulators is restricted to fourteen for each gene, to avoid this issue. Relaxing this
restriction is an important challenge since the true number of regulators for a gene is
not known a priori.

The reason behind such astronomical memory requirement is that Bene and the
related Bayesian Network structure learning algorithms need to compute and store the
global conditional probability table (Silander and Myllymäki, 2006, Section 3.1) in main
memory. Some researchers are exploring efficient ways to distribute this task and storage
across multiple computing nodes using distributed computing strategies, e.g., Jahnsson
et al. Jahnsson et al. (2017). Mending this gap can be considered a worthwhile challenge.
The convergence of affordable high-throughput gene expression measurement technolo-
gies with accurate and scalable GRN reconstruction methodologies will be a valuable
achievement. It will help in improving our understanding of disease progression and life
in general through the lens of gene regulation.

Lastly, we note the immediate challenge that TGS is facing. Although TGS outper-
forms ARTIVA in recall, the former is unable to compete with the latter in precision. As
a result, ARTIVA retains its superiority in F1-score. Therefore, the immediate challenge
in this thesis is to develop algorithms that are competitive to TGS in time-efficiency
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and competitive to ARTIVA in F1-score.

5.4 Contributions

The TGS algorithm is jointly designed by Mr Alok Ranjan Kumar, Dr Ashish Anand
and the author. The implementations and evaluations of the same are conducted by the
author himself. This work is published in IEEE/ACM Transactions on Computational
Biology and Bioinformatics (Pyne et al., 2020).

5.5 Chapter Summary

In the previous chapter, we formulate the objective of this thesis (Chapter 4). The ob-
jective is to develop reconstruction algorithms that can deliver correctness competitive
to that of ARTIVA and computational efficiency compatible with large-scale datasets.
In this chapter, we propose an algorithm named TGS which offers time-efficiency com-
patible with large-scale datasets. However, it does not deliver correctness competitive to
that of ARTIVA. Moreover, TGS ’s memory-efficiency is not compatible with large-scale
datasets.
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Chapter 6

Balancing Recall and Precision

In the previous chapter, we propose a reconstruction algorithm, namely TGS, that
offers time-efficiency compatible with large-scale datasets having hundreds to thousands
of genes (Chapter 5). However, TGS meets the thesis objective only partially, for the
following two reasons:

• TGS is unable to provide correctness competitive to that of ARTIVA; and

• TGS does not offer memory-efficiency compatible with large-scale datasets.

In this chapter, we focus on improving correctness. Although TGS outperforms
ARTIVA in recall, the former can not compete with the latter in precision. For this
reason, TGS is unable to provide correctness competitive to that of ARTIVA. Hence,
we propose another algorithm, namely ‘TGS-Plus’ (TGS+). This algorithm offers recall
competitive to that of TGS and precision competitive to that of ARTIVA. As a conse-
quence, TGS+ supersedes ARTIVA in F1-score. Moreover, TGS+ offers time-efficiency
compatible with large-scale datasets.

The chapter is organised into multiple sections. In Section 6.1 , we design a novel
algorithm. Subsequently, the experimental results are discussed in Section 6.2 . An
excerpt along with a pointer to the future work are provided in Section 6.3 . The
research contributions are acknowledged in Section 6.4 . Finally, in Section 6.5 , a
summary of the chapter is presented.

6.1 Methods

In this section, we propose a variant of the TGS algorithm named ‘TGS-Plus’ (TGS+).
It differs from TGS only in the CLR step. In TGS+ (Algorithm 13), the CLR step does
not compute the CLR weights from the raw mutual information matrix, as computed
in TGS (Algorithm 10). Instead it feeds the raw mutual information matrix to the
ARACNE algorithm (Section 3.1.3.2), which refines the matrix. This refined matrix is
then used for the calculation of the CLR weights. The reason for applying ARACNE is
to reduce the false positive mutual informations to zero. A pair of genes, which do not
possess a regulatory relationship, can still have a positive mutual information if their
expressions are correlated (e.g., both of them are regulated by the same regulators).
Such false positive mutual informations are detected by ARACNE and their mutual
information is reduced to zero in the mutual information matrix. However, ARACNE
may underestimate some true positive mutual informations and reduce them to zero
as well. Due to that reason, it is expected that TGS+ will produce considerably less
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numbers of false positives than those of TGS, while also producing less numbers of true
positives as a trade-off.

This trade-off between true positives and false positives can be very useful for the
users. A user, who wishes to experimentally verify the predicted edges, one by one,
would prefer to have lower false positive edges, even at the cost of lower true positives.
The reason is that each false positive edge leads to an unnecessary set of experiments,
causing wastage of valuable resources. On the other hand, a user, who wishes to apply
other computational methods on the predicted network, would prefer to have as many
true positive edges as possible for further processing, even at the cost of a higher number
of false positives. Thus, two variants of the TGS algorithm cater to two different sets
of demands from the users.

6.2 Results

The results of the TGS+ algorithm on the benchmark datasets are presented in this
section. TGS ’s learning power and speed are evaluated against that of TGS and
ARTIVA. TGS is included in this comparative study to analyse the effect of the mutual-
information refinement strategy.

6.2.1 Implementations

TGS+ is implemented in R programming language R Development Core Team (2008)
version 3.3.2. For CLR and Bene, their implementations in R packages minet Meyer
et al. (2008) (version: 3.34.0) and bnstruct Franzin et al. (2016) (version: 1.0.2) are
used, respectively.

6.2.2 Learning from the Benchmark Datasets

In this section, we comparatively study the performance of TGS+ against its alternatives
on datasets Ds10n, Ds50n and Ds100n. Since TGS+ inherits the memory-inefficiencies
of TGS, we use a max fan-in value of 14 for both of them.

As expected, the false positives are considerably reduced in TGS+, compared to that
of TGS (Tables 6.1, 6.2 and 6.3) 1. As also expected, the trade-off is made with the true
positives which are reduced as well. However, the true positives in TGS+ still remain
monotonically higher than those in ARTIVA. As a result, TGS+ supersedes ARTIVA
in F1-score for two of the three datasets.

An interesting observation is made with runtime. The runtime decreases drastically
in TGS+, compared to that in TGS (Tables 6.4). This is a positive side-effect of
the ARACNE step. ARACNE produces a considerably sparser (less non-zero values)
mutual information matrix than the raw mutual information matrix. In turn, the CLR
step produces a sparser CLR network. Therefore, most of the regulatee genes have
much lower number of candidate regulators to be examined in the BN step. Thus, the
latter step consumes considerably less amount of time, which is reflected in TGS+’s
runtime. For instance, TGS+ takes only 1 minute for Ds100n, whereas ARTIVA and
TGS consume 32 hours and 18 minutes, respectively (Table 6.4).

1Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for all datasets.
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Table 6.1: Learning Power of the Selected Algorithms on Dataset Ds10n. TP = True
Positive, FP = False Positive. Algorithm 2L.wt is used for data discretisation in case
of TGS and TGS+. The numerical values are rounded off to three decimal places. For
each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 3 10 0.3 0.231 0.261

TGS+ 3 1 0.3 0.75 0.429

ARTIVA 0 9 0 0 0

TVDBN-0 0 1 0 0 0

TVDBN-bino-hard 1 7 0.1 0.125 0.111

TVDBN-bino-soft 2 9 0.2 0.182 0.190

Table 6.2: Learning Power of the Selected Algorithms on Dataset Ds50n. TP = True
Positive, FP = False Positive. Algorithm 2L.wt is used for data discretisation in case
of TGS and TGS+. The numerical values are rounded off to three decimal places. For
each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 15 342 0.195 0.042 0.069

TGS+ 6 100 0.078 0.057 0.066

ARTIVA 6 64 0.078 0.086 0.082

TVDBN-0 7 199 0.091 0.034 0.049

TVDBN-bino-hard 11 410 0.143 0.026 0.044

TVDBN-bino-soft 14 395 0.182 0.034 0.058

Table 6.3: Learning Power of the Selected Algorithms on Dataset Ds100n. TP = True
Positive, FP = False Positive. Algorithm 2L.wt is used for data discretisation in case
of TGS and TGS+. The numerical values are rounded off to three decimal places. For
each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 28 790 0.169 0.034 0.057

TGS+ 19 181 0.114 0.095 0.104

ARTIVA 14 158 0.084 0.081 0.083

TVDBN-0 9 678 0.054 0.013 0.021

TVDBN-bino-hard 26 1304 0.157 0.020 0.035

TVDBN-bino-soft 18 1296 0.108 0.014 0.024

6.3 Excerpt and Future Work

In this chapter, a novel algorithm, namely TGS+, is proposed to reconstruct time-
varying GRNs from time-series gene expression datasets. TGS+ assumes that there are
multiple time series in the dataset. Additionally, it assumes that there are no missing
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Table 6.4: Runtime of the Selected Algorithms on the Benchmark Datasets. Algorithm
2L.wt is used for data discretisation in case of TGS and TGS+.

Algorithm Ds10n Ds50n Ds100n

TGS 5.789s 7m 36s 17m 49s

TGS+ 5.515s 22.034s 1m 4s

ARTIVA 10m 20s 4h 30m 15s 31h 52m 54s

TVDBN-0 2m 24s 11m 59s 52m 17s

TVDBN-bino-hard 2m 15.2s 9m 38s 2h 53m 32s

TVDBN-bino-soft 2m 14.6s 8m 8s 17m 20s

values.

TGS+ follows the same two-step framework as TGS. In the first step, a shortlist
of candidate regulators is prepared for every regulatee gene. In the second step, the
shortlist is thoroughly examined to select the final set of regulators. TGS+ differs from
TGS in the way short-listing is performed. In TGS, short-listing is performed based on
the ‘raw’ mutual information matrix estimated from the dataset. However, in TGS+,
the raw matrix is refined through an algorithm named ARACNE. This algorithm is well-
known for removing a significant number of false-positive mutual information values at
the cost of a reasonable number of true-positive ones. Subsequently, the ‘refined’ mutual
information matrix is used for the short-listing task.

It is empirically observed that TGS+ incurs considerably less number of false-positive
edges than that of TGS. Thus, TGS+ achieves significantly higher precisions than that
of TGS and competitive to that of ARTIVA. On the other hand, the former obtains com-
petitive recalls, compared to the latter. As a consequence, TGS+ supersedes ARTIVA
in F1-score.

At the same time, TGS+ overtakes TGS and ARTIVA in runtime. The former
processes the 100-gene dataset in only a minute. The same dataset takes ARTIVA and
TGS around 1.5 days and 18 minutes, respectively.

Nevertheless, TGS+ inherits the same memory-inefficiencies as TGS. Its memory
requirement grows exponentially with the number of candidate regulators in a shortlist.
Therefore, TGS+ may not be applicable for large-scale datasets where shortlists can
contain hundreds of genes.

6.4 Contributions

This work is published in IEEE/ACM Transactions on Computational Biology and
Bioinformatics (Pyne et al., 2020).

6.5 Chapter Summary

In the previous chapter, we propose a reconstruction algorithm named TGS (Chapter
5). This algorithm offers time-efficiency compatible with large-scale datasets. However,
it does not offer correctness competitive to that of ARTIVA. In this chapter, we propose
another algorithm named TGS+ which offers time-efficiency compatible with large-scale
datasets and correctness competitive to that of ARTIVA. However, TGS+’s memory-
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efficiency is not compatible with large-scale datasets.

67



68



Chapter 7

Improving Memory-efficiency

In the previous chapters, we propose two novel algorithms for the task of reconstruct-
ing time-varying gene regulatory networks from a given time-series gene expression
dataset. The first algorithm, namely TGS, offers time-efficiency compatible with large-
scale datasets (Chapter 5). The second algorithm, namely TGS+, offers competitive
time-efficiency to that of TGS as well as correctness competitive to that of ARTIVA
(Chapter 6). However, both the proposed algorithms suffer from memory-inefficiencies.
Their memory requirements increase exponentially with the number of genes in the
given dataset. This issue makes them incompatible with large-scale datasets. In this
chapter, we mitigate this issue by designing a third set of algorithms that are more
memory-efficient.

The chapter is organised into multiple sections. In Section 7.1 , we recapitulate
the thesis objective. In Section 7.2 , we measure our progress made in the previous
chapters and discuss its limitations. In Section 7.3 , we investigate the origin of the
aforementioned limitations. In Section 7.4 , we present a novel idea for overcoming these
limitations. Based on the novel idea, we propose two novel algorithms in Section 7.5 .
Section 7.6 discusses the experimental results of the proposed algorithms. An excerpt
along with a pointer to the future work are provided in Section 7.7 . The research
contributions are acknowledged in Section 7.8 . Finally, in Section 7.9 , a summary of
the chapter is presented.

7.1 Task at Hand: Revisited

To preserve the continuity of this chapter, we briefly revisit the task at hand i.e. the
problem statement in this section. The problem is related to Gene Regulatory Networks
(GRNs); a GRN is a directed network where nodes represent genes; a directed edge from
a gene vi to a gene vj implies that the former gene is a ‘regulator’ of the latter gene (the
‘regulatee’).

However, these regulator-regulatee relationships are time-varying; it means that not
all the regulators of a particular gene have regulatory effects on the latter gene all the
time. Therefore, a fundamental question in the Systems Biology is ‘who regulates whom
and when?’

The reason the aforementioned question is considered as fundamental in the Systems
Biology is that a large number of biological processes are temporal in nature, such
as developmental programs (how an organism grows from embryo to adulthood) and
pathogenesis (how a disease develops and progresses inside an organism). If we are able
to identify how the edges (hereafter, ‘structure’) of the GRN underlying such a process
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change with time, we might be able to understand the process at a molecular level.

However, hitherto there are no publicly available technologies that allow us to visu-
alise the structural changes in a GRN. Therefore, a widely-used approach is to follow a
two-step pipeline. In the first step, the ‘expressions’ of the concerned genes are measured
at specific time intervals over a pre-decided period of time.

The expression of a gene at a particular time point is usually measured by the
quantity of mRNAs corresponding to that gene present in a single unit of sample, e.g.,
one ml of blood, drawn at that time point. Therefore, an expression value is generally
a non-negative real number. Having measured the expression values of all concerned
genes at all the time points results in a time-series gene expression dataset.

Given the aforementioned dataset, the fluctuations in the expression values of each
gene over time is dependent on the structural changes in the underlying GRN. Therefore,
the second step is to reverse-engineer (hereafter, ‘reconstruct’) the time-varying GRN
structures from the given dataset. This particular step is known as the ‘time-varying
GRN reconstruction from time-series gene expression data’.

When the given dataset is high-dimensional i.e. it contains hundreds or thousands
of genes, the task becomes infeasible to accomplish completely manually. In that case,
computational algorithms are employed to accomplish this task. Designing an algorithm
that can conduct the reconstruction task correctly and efficiently is a long-standing
challenge in the Computational Systems Biology.

This PhD thesis is conceived to make a stride towards overcoming this challenge.
The challenge is formally defined in Chapter 4 . Hence, we conclude this section by
summarising the notations that will be useful for this chapter:

Desired Input: A time-varying GRN reconstruction algorithm takes a dataset D
as input (Figure 7.1). Dataset D consists of a set of time series S = {s1, . . . , sS}. Each
time series is comprised of the expression levels a set of genes V = {v1, . . . , vV } at
T consecutive time points T = {t1, . . . , tT }. D(X ;Y;Z) denotes the expression levels of
genes X at time points Y in time series Z. Therefore, D(X ;Y;Z) ⊆ D, where X ⊆ V, Y ⊆
T , Z ⊆ S. D is assumed to be ‘complete’ i.e. D does not have any missing values.

Desired Output: Given dataset D, the objective of the algorithm is to return a
temporally ordered sequence of GRNs as output. The output sequence is denoted by
G =

(
G(1), . . . , G(T−1)

)
. Each G(p) (∈ G) is a time-interval-specific GRN; it represents

the gene regulatory events occurred during the time interval between time points tp
and t(p+1). Structurally, G(p) is a directed unweighted network with (2× V ) nodes:
{vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}} (Figure 7.1). Each node vi tq is a distinct random
variable, which represents the expression level of gene vi at time point tq; hence, data
points D({vi};{tq};S) are considered to be S instances of random variable vi tq. It is
assumed that the underlying gene regulation process is first order Markovian i.e. node
vi tq can have regulatory effects only on the nodes at the immediately next time point
t(q+1), if any (Friedman et al., 1998). Thus, there exists a directed edge

(
vi tq, vj t(q+1)

)
in G if and only if vi tq has a regulatory effect on vj t(q+1), implying that the expression
level of gene vi at time point tq plays a regulatory role on that of gene vj at time point
t(q+1).

7.2 Limitations of the Previously Proposed Algorithms

In the previous chapters, we propose two algorithms for the task at hand. In this section,
we discuss their limitations, overcoming which is the motivation behind this chapter.
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Figure 7.1: The Workflow of a Time-varying GRN Reconstruction Algorithm. The
algorithm takes a time-series gene expression data D as input. The data consists of S
number of time series. Each time series contains measured expressions of V number of
genes across T number of time points. In return, the algorithm outputs time-varying
GRNs

(
G(1), . . . , G(T−1)

)
= G, which is a sequence of directed unweighted networks.

Here, G(p) (∈ G) represents the gene regulatory events occurred during the time interval
between time points tp and t(p+1). It consists of (2× V ) nodes {vi tq : vi ∈ V, tq ∈
{tp, t(p+1)}}. There exists a directed unweighted edge

(
vi tp, vj t(p+1)

)
if and only if vi

regulates vj during time interval
(
tp, t(p+1)

)
. For instance, G(1) represents the regulatory

events that occurred between time points t1 and t2. One such event is the regulatory
effect of v1 t1 on v2 t2 as represented by a directed edge.
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The names of the previously proposed algorithms are TGS and TGS+. Both the
algorithms divide the task into smaller atomic problems. Each atomic problem is con-
cerned with finding the regulators of a distinct node in G except the nodes in the first
time point. To solve that problem, both TGS and TGS+ prepare a shortlist of candidate
regulators for the concerned node. Subsequently, they select the best set of regulators
from the shortlist. For selecting the best set, they employ a structure-learning algorithm
named Bene (Silander and Myllymäki, 2006). Hence, we address the final selection step
as the ‘Bene step’. In this step, the main memory requirement (hereafter, simply ‘mem-
ory requirement’) increases exponentially with the number of candidate regulators. As
Jahnsson et al. aptly put it,“The algorithm can always be given more time; however, if
it exceeds the available memory resources, nothing can be done to solve the instance”
(Jahnsson et al., 2017).

To mitigate the memory-efficiency of the Bene step, TGS and TGS+ use a user-
defined parameter named ‘max fan-in’ 1. This parameter accepts a positive integer
value from the user and restricts the maximum number of candidate regulators to that
value. For example, if ‘max fan-in = 14’, then at most fourteen candidate regulators
can be shortlisted for each node. However, relaxing this restriction is necessary since
the actual number of regulators for a node is not known a priori.

7.3 Investigations into the Origin of the Limitations

In this section, we investigate the reason behind the memory-inefficiency of the Bene
step. Given the shortlist of candidate regulators prepared in the previous step, the
Bene step selects the best set of regulators from the shortlist. Let us denote the given
shortlist of candidate regulators for node vj t(p+1) as V(j;(p+1)). If the value of the max
fan-in parameter is Mf , then the size of this shortlist is |V(j;(p+1))| ≤ Mf = O(Mf ).
Given shortlist V(j;(p+1)), the Bene step finds its highest scoring subset with respect
to a scoring function known as Bayesian Information Criterion (BIC) (Markowetz and
Spang, 2007). For that purpose, the Bene step needs to calculate the BIC scores of all

subsets of V(j;(p+1)). Since V(j;(p+1)) = O(Mf ), there are a total of 2|V(j;(p+1))| = 2O(Mf)

subsets. For each subset, the score is calculated. During score calculations, the Bene

step requires all 2O(Mf) subsets and their corresponding scores to be simultaneously
held in memory. For the aforementioned reason, the memory requirement of the Bene
step increases exponentially with the number of candidate regulators.

7.4 A Novel Idea for Overcoming the Limitations

In this section, we present a novel idea for accomplishing the goal of the Bene step with
significantly less memory. As discussed in the previous section, the Bene step requires
2|V(j;(p+1))| subsets and 2|V(j;(p+1))| scores to be stored in memory. It does so for finding the
subset with the highest score. However, the same goal can be achieved with 2|V(j;(p+1))|

subsets and only two scores along with two pointers; the idea is illustrated in Figure 7.2 .
It can be noted that the required gene expression data also needs to be stored in memory
for score calculations. Since the required data is same as that of the Bene step, we can
omit its discussion from the comparative analysis.

1‘Fan-in’ is a number specific to each node in a network; it represents the number of regulators the
node has.
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Figure 7.2: Illustration of the Idea for Finding the Highest Scoring Subset with 2|V(j;(p+1))|

Subsets, Two Scores and Two Pointers. Each rectangle represents a location in the
memory. It is assumed that V(j;(p+1)) = {vi1 tp, vi2 tp}. Therefore, its subsets are
{∅, {vi2 tp}, {vi1 tp}, {vi1 tp, vi2 tp}}. Each subset is represented as a binary string of
Boolean TRUE (1b) and FALSE (0b) values, indicating whether a gene is present or
not in that subset, respectively. All the subsets are held in memory simultaneously as
depicted by the four-row two-column table in the middle. In addition, two pointers
(‘curr.set’ and ‘best.set’) and two scores (‘curr.score’ and ‘best.score’) are also stored in
memory (each score is a floating point number). In step 1, the first subset is pointed
to by curr.set (current subset). In step 2, the score of this subset is calculated and
stored inside curr.score (current subset’s score). Subsequently, the values of curr.set
and curr.score are copied to best.set (hitherto best subset) and best.score (hitherto
best score), respectively. In step 3, the second subset is pointed to by curr.set. In
step 4, its score is calculated and stored inside curr.score. If curr.score is greater than
best.score, then the values of best.score and best.set are replaced with that of curr.score
and curr.set, respectively. Otherwise, if curr.score is less than or equal to best.score, then
best.score and best.set are kept unchanged. Next in step 5, the third subset is pointed
to by curr.set and the same procedure is followed till all the subsets are exhausted.
As a result, the final value of best.set points to the subset with the highest score (ties
between two equally scoring subsets are broken in favour of the subset with the lower
index). Overall, this strategy requires two pointers (curr.set and best.set), two scores
(curr.score and best.score) and 2|V(j;(p+1))| = 22 = 4 subsets to be held in memory. It
also requires corresponding gene expression data (not shown in figure) to be stored in
memory for calculating the scores.

Nevertheless, the number of subsets in memory remains exponential to |V(j;(p+1))|.
One naive way to reduce this number is to retain only the subsets pointed to by curr.set
and best.set, and move the rest of the subsets to the secondary storage (hereafter,
‘disk’). However, that will require copying each subset from disk to memory when that
subset’s score needs to be calculated. Therefore, this strategy will increase the runtime
significantly due to costly disk Input/Outputs (I/Os).

There is one way to avoid costly disk I/Os. Instead of generating all the subsets at
once and storing them in disk, we can generate a subset immediately before its score
needs to be calculated. If we are able to do that, we only need to store two subsets –
current subset and hitherto best subset – in memory at any point of time.

We find an idea to generate a subset in real-time. The idea stems from the observa-
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tion that every non-empty subset can be generated by adding 1b to the Least Significant
Bit of the previous subset (Figure 7.2). The idea is illustrated in Figure 7.3 .

7.5 Design of Novel Algorithms Based on the Novel Idea

In this section, we design two novel algorithms based on the novel idea proposed in the
previous section. First, we design an algorithm named ‘TGS - which is Light on memory’
(TGS-Lite) (Algorithm 16). This algorithm is equivalent to the TGS algorithm except
for the Bene step. In TGS-Lite, the Bene step is replaced with the novel strategy ideated
in the previous section. Second, we design another algorithm named ‘TGS-Lite-plus’
(TGS-Lite+) (Algorithm 17) by replacing the Bene step in the TGS+ algorithm with
the same novel strategy.

TGS-Lite preserves the state-of-the-art time complexity of TGS which is o
(
V 2 lg V

)
(Pyne and Anand, 2019a). Since there are no differences between the ways TGS-Lite
and TGS score and compare candidate subsets, no dissimilarities are expected between
their correctnesses. The only difference should be in their memory-efficiencies. In that
regard, TGS-Lite is expected to consume significantly less amount of memory than that
of TGS.

Similarly, TGS-Lite+ maintains the time complexity of TGS+ which is O(V 3) (Pyne
and Anand, 2019a). TGS-Lite+ is also expected to have the same correctness as TGS+
at the benefit of a significantly lower memory requirement.

7.6 Experimental Results

In this section, we present the experimental results of the novel algorithms proposed
in the previous section. For the experiments, we utilise benchmark datasets Ds10n,
Ds50n and Ds100n. Dataset Ds10n contains 4 time series, each of which is comprised
of the expression levels of 10 genes across 21 consecutive time points. Dataset Ds50n,
on the other hand, contains 23 time series, each of which is comprised of the expression
levels of 50 genes across 21 consecutive time points. Lastly, dataset Ds100n contains 46
time series, each of which is comprised of the expression levels of 100 genes across 21
consecutive time points.

Although, the datasets are longitudinal, the true networks available with the datasets
are time-invariant. Thus, each dataset has a true summary GRN. On the other hand,
both TGS-Lite and TGS-Lite+ output a sequence of GRNs, length of the sequence
being one less than the number of time points. To make the output comparable with
the true GRN, we ‘roll’ the output into a single GRN using the same strategy as used
for TGS and TGS+.

Like TGS and TGS+, TGS-Lite and TGS-Lite+ also require discretised data for
short-listing and BIC score calculations. Hence, we apply the same algorithm (namely
2L.wt) which is used with TGS and TGS+.

7.6.1 Comparative Study Against a Random Classifier

First, we conduct a preliminary study to verify whether TGS-Lite and TGS-Lite+ per-
form better than a random classifier. Here, a random classifier represents a classification
algorithm that randomly decides whether an edge should be present or absent.
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Figure 7.3: Illustration of the Idea for Finding the Highest Scoring Subset amongst
2|V(j;(p+1))| subsets with Only Two Subset-variables, Two Scores and One Subset-
generation Script. Each solid-lined rectangle represents a location in the mem-
ory. It is assumed that V(j;(p+1)) = {vi1 tp, vi2 tp}. Therefore, its subsets are
{∅, {vi2 tp}, {vi1 tp}, {vi1 tp, vi2 tp}}. Each subset is represented as a binary string of
Boolean TRUE (1b) and FALSE (0b) values, indicating whether a gene is present or not
in that subset, respectively. Initially, the empty subset is stored in location ‘curr.set’
(current subset). Please note that curr.set holds the subset itself and not a pointer to
the subset. In step 1, the score of the empty subset is calculated and stored inside
‘curr.score’ (current subset’s score which is a floating point number). Subsequently, the
values of curr.set and curr.score are copied into ‘best.set’ (hitherto best subset) and
‘best.score’ (hitherto best score), respectively. In step 2, the value of curr.set is sent to
the subset-generation script, namely ‘GEN-NEXT-SET’. In step 3, the script generates
the next value of curr.set i.e. the second subset (indicated by the dotted-lined rectangle).
In step 4, the score of the second subset is calculated and stored inside curr.score. If
curr.score is greater than best.score, then the values of best.score and best.set are re-
placed with that of curr.score and curr.set, respectively. Otherwise, if curr.score is less
than or equal to best.score, then best.score and best.set are kept unchanged. In step
5, the value of curr.set is sent to the script, which generates the next value of curr.set
in step 6. The same procedure is followed till all the subsets are exhausted. As a re-
sult, the final value of best.set represents the highest scoring subset (ties between two
equally scoring subsets are broken in favour of the subset with lower index). Overall, this
strategy requires two subset-variables (curr.set and best.set), two scores (curr.score and
best.score) and one subset-generation script (GEN-NEXT-SET) to be held in memory.
It also requires corresponding gene expression data (not shown in figure) to be stored
in memory for calculating the scores.
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Predictions of a random classifier tend to result in a line represented by equation
‘True Positive Rate = False Positive Rate’ (TPR = FPR); here, TPR = Recall; FPR
= (FP / (FP + TN)) (Liu et al., 2016). From Figure 7.4 , it is observed that the plots
of TGS-Lite and TGS-Lite+ always stay above the random classifier’s line. It signifies
that both TGS-Lite and TGS-Lite+ perform better than a random classifier on the
benchmark datasets.

TGS-Lite	

TGS-Lite

Ran
dom

class
i�er'

s Lin
e

�PR

T
P
R

Ds10n

Ds50n

Ds100n

Ds100n

Ds50n

Figure 7.4: The TPR-vs-FPR Plots of TGS-Lite, TGS-Lite+ and a random classifier.
Here, TPR = True Positive Rate, FPR = False Positive Rate. The results of TGS-Lite
for three distinct benchmark datasets are represented as three black squares. These
squares are connected (interpolated) with a smooth line (Software used: LibreOffice
Calc Version 5.1.6.2; Line type = Cubic spline, Resolution = 20; OS: Ubuntu 16.04.5
LTS). On the other hand, the results of TGS-Lite+ for three distinct benchmark datasets
are represented as three black triangles (the triangle for Ds10n overlaps with the square
for Ds10n and hence not visible). These triangles are also connected with a smooth line.

7.6.2 Comparative Study Against Alternative Algorithms

Following the success against a random classifier in the preliminary study, we conduct a
comparative study against the alternative algorithms, namely TGS, TGS+, ARTIVA,
TVDBN-0, TVDBN-bino-hard and TVDBN-bino-soft.

Naming Conventions: For TGS, TGS+, TGS-Lite and TGS-Lite+, some exten-
sions are used with their names to imply different settings of these algorithms. If no
extensions are used, then it implies a serial execution of that algorithm with Mf set to
14. On the other hand, if an extension of ‘mf[X]’ is used, then it implies that Mf is set
to ‘X’. For example, TGS.mf24 implies a serial execution of TGS with Mf set to 24.
Lastly, an extension of ‘p[X]’ implies a multicore-parallelised execution with the number
of computing cores set to ‘X’. An example would be TGS-Lite.p10, which implies a
parallel execution of TGS-Lite with 10 cores.

Lighter Memory Footprint: To compare memory footprints of TGS and TGS-
Lite, an experiment is performed with dataset Ds100n for Mf = 24. From Figure 7.5 ,
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it is observed that TGS occupies 54.7% (column ‘%MEM’) of the memory (∼ 32 GB)
within first 1 min 35.25 seconds (column ‘TIME+’) of execution. Its memory require-
ment rises further as the time goes on until it reaches a ‘thrashing’ state (Silberschatz
et al., 1991). At that point, we terminate the process. On the other hand, TGS-Lite
occupies only 0.7% of the memory during the same time point. Moreover, it completes
execution without any issues. This experiment demonstrates the advantage of TGS-
Lite’s memory-efficiency over that of TGS. Additionally, it opens up the possibility of
parallel execution with TGS-Lite. Since the serial execution of TGS-Lite only requires
0.7% of the memory, we can execute it in parallel over at most b(100/0.7)c ' 142 cores
who share the same memory. The parallelised execution is expected to reduce the run-
time by at most a factor of 142. TGS, on the other hand, can not take advantage
of multicore-parallelisation schemes, since its serial execution alone has such a heavy
memory footprint.

Percentage of Memory Usage with dataset Ds100n

TGS.mf24

TGS	Lite.mf24

Figure 7.5: Comparative Memory Requirements of the TGS and TGS-Lite Algorithms.
The percentage of memory usage (‘%MEM’) by TGS and TGS-Lite when the max fan-
in parameter is set to 24. The shown figure is a screenshot of the ‘top’ command in the
Ubuntu OS.

No Loss in Correctness: The memory-efficiency of TGS-Lite does not come at
the cost of its correctness. It provides the same recall, precision and F1-scores as that
of TGS (Figure 7.6) 2. TGS-Lite+ also meets its expectation by achieving the same
recall, precision and F1-scores as that of TGS+ (Figure 7.6).

Multicore Parallelisation: Although, TGS-Lite shares the same time complexity
as that of TGS, it takes longer runtime than that of TGS (Table 7.1). Same is true for
TGS-Lite+, which takes longer runtime than that of TGS+ even though they have the
same time complexity. The potential cause lies in the difference between their imple-
mentations. The strategy which replaces the Bene step in TGS-Lite and TGS-Lite+ is
implemented in R programming language, except the function for BIC score calculations
which is implemented in C programming language. On the other hand, the Bene step in
TGS and TGS+ is implemented in C, which is expected to be significantly faster than
the R implementation of the replacement strategy. Hence, a C implementation of the
replacement strategy is planned for future.

2Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for all datasets.
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Figure 7.6: Comparative Performance of the Selected Algorithms on the Benchmark
Datasets. A) Recall, B) precision and C) F1-scores of the selected algorithms are
shown.
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At this time, we take advantage of the memory-efficiency of TGS-Lite and TGS-
Lite+. We do that by executing them in parallel over 10 cores. As expected, the
runtime reduce drastically compared to that of the serial executions (Table 7.1) 3 .

Table 7.1: Runtime of the Selected Algorithms on the Benchmark Datasets.

Algorithm Ds10n Ds50n Ds100n

TGS-Lite 8.9s 3h 58m 2s 8h 41m 17s

TGS-Lite.p10 6.673s 24m 45s 1h 2m 3s

TGS 5.789s 7m 36s 17m 49s

TGS-Lite+ 2.986s 17.383s 12m 12s

TGS-Lite+.p10 6.028s 9.025s 1m 25s

TGS+ 5.515s 22.034s 1m 4s

ARTIVA 10m 20s 4h 30m 15s 31h 52m 54s

TVDBN-0 2m 24s 11m 59s 52m 17s

TVDBN-bino-hard 2m 15.2s 9m 38s 2h 53m 32s

TVDBN-bino-soft 2m 14.6s 8m 8s 17m 20s

Effects of Multicore Parallelisation: In this paragraph, we study the effects of
multicore parallelisation on the runtime of TGS-Lite and TGS-Lite+. We use Ds100n for
this study as this is the largest benchmark dataset. From Figure 7.7 , it is observed that
the runtime reduces strictly as the number of cores increases. The single core represents
the serial execution. The 3-core executions are presented to offer a reference point to the
users with quad-core processors, where one core can be left out for monitoring purposes.
Similarly, the 7-core executions are presented to offer a reference point to the users with
octa-core processors.
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Figure 7.7: The Effects of the Multicore Parallelisation on the Runtime of TGS-Lite
and TGS-Lite+. Dataset Ds100n is used and the max fan-in parameter is set to 14.

Effects of Max Fan-in: Finally, we conclude this section by studying the effects
of the max fan-in parameter on the correctness and runtime of the proposed algorithms.
The maximum value of the concerned parameter with which TGS and TGS+ are suc-
cessfully demonstrated is 14. Since TGS-Lite and TGS-Lite+ are significantly more
memory-efficient than the aforementioned algorithms, they should be able to run suc-
cessfully with max fan-in values higher than 14. To verify that, we need to vary the

3Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for all datasets.
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parameter value from 14 to higher values. These variation can have an effect on the
prediction only when at least one gene has more than 14 candidate regulators and the
max fan-in restriction is not in place. We find that only dataset Ds100n fulfils this
criterion. For this dataset, at least one gene has more than 14 candidate regulators in
case of both TGS-Lite and TGS-Lite+ (Table 7.2). Therefore, we study the effects on
these algorithms with Ds100n when the parameter value is varied from 14 to 18 (eigh-
teen being the minimum of the maximum numbers of candidate regulators for TGS-Lite
and TGS-Lite+). It is observed that the recall of TGS-Lite increases monotonically
as the max fan-in increases; at the same time, its precision decreases monotonically;
as a result, an upheaval is caused in the F1-scores (Figure 7.8 A). On the other hand,
TGS-Lite+ demonstrates a robust performance as its recall, precision and F1-score re-
main unchanged for the given range of max fan-in values (Figure 7.8 B). The runtime of
both the algorithms increase proportionally to the max fan-in values (Figures 7.8 C and
7.8 D). It is as expected since the higher the max fan-in value, the higher the maximum
number of candidate regulators for a gene; therefore, the higher the runtime required
for selecting the final set of regulators.

Table 7.2: Maximum Number of Candidate Regulators of a Gene in the TGS-Lite and
TGS-Lite+ Algorithms for a given Dataset. These statistics are recorded when the max
fan-in restriction is not applied. If the max fan-in restriction is applied, the numbers
will be upper bounded by the value assigned to the max fan-in parameter.

Dataset TGS-Lite TGS-LIte+

Ds10n 7 4

Ds50n 33 8

Ds100n 84 18

7.6.3 Comparative Study Against Time-invariant Algorithms

The success against the alternative algorithms encourages us to conduct further com-
parisons. In this section, we conduct a comparative study against three widely-used
algorithms that are not direct alternatives.

The chosen algorithms are not direct alternatives because they can not reconstruct
time-varying GRNs. However, they can reconstruct a single time-invariant GRN or ‘the
summary GRN’. As the name suggests, the summary GRN summarises all regulatory
activities by capturing all regulatory edges. On the other hand, it does not capture the
temporal order of those edges. For the aforementioned reason, the output of the time-
invariant algorithms are not directly comparable with that of the proposed algorithms.

To make them comparable, we utilise the rolled GRN of each proposed algorithm.
Consequently, comparisons are performed between the rolled GRN and the summary
GRNs of the time-invariant algorithms.

The time-invariant algorithms chosen for this study are: ‘B team’s algorithm’ (here-
after, BTA), GENIE3 and the ‘local Bayesian network’ (LBN ). Each of them is chosen
for a distinct reason (Table 7.3).
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Table 7.3: The Time-invariant Algorithms Selected for the Comparative Study in Section
7.6.3 .

Algorithm Reason for selection

BTA Relevance. The winning algorithm of the challenge where the bench-
mark datasets were published.

GENIE3 Popularity. Perhaps, the most widely-used time-invariant algorithm.

LBN Contemporaneity. Perhaps, the most recently published time-
invariant algorithm.

BTA is chosen because of its relevance to the proposed algorithms. The former is the
winning algorithm of the DREAM3 In Silico Network Challenge where the benchmark
datasets were published (Yip et al., 2010). Therefore, it is interesting to study how the
proposed algorithms fare against BTA on these datasets.

On the other hand, GENIE3 is chosen for its popularity. To the best of our knowl-
edge, GENIE3 is the most widely-used time-invariant algorithm. Its publications com-
binedly possess 1007 citations in Google Scholar as of 23rd April, 2020 (Huynh-Thu
et al., 2010; Aibar et al., 2017).

Finally, LBN is chosen for its contemporaneity to the proposed algorithms. The
former is perhaps the most recently published time-invariant algorithm (Liu et al., 2016).

The findings of the comparative study against the aforementioned time-invariant
algorithms are discussed in the following sub-sections.

7.6.3.1 Comparison with BTA

The first time-invariant algorithm in comparison is BTA (Yip et al., 2010). It produces a
ranked list of all possible edges. For a dataset with V genes, the list contains (V (V − 1))
edges, when self-loops are not allowed. The higher the rank, the more the confidence
of BTA on the existence of that edge. Subsequently, a user-defined parameter ‘k’ is
used to select the top k edges and reconstruct a summary GRN. Thus, BTA generates
(V (V − 1)) summary GRNs by varying the value of k from 1 to (V (V − 1)). These
summary GRNs are then compared with the true GRN, if known, to compute an AUROC
score (Yip et al., 2010).

On the other hand, each of the proposed algorithms reconstructs a distinct rolled
GRN. Therefore, it is infeasible to find out AUROC scores for the proposed algorithms.

To make the proposed algorithms comparable with BTA, we design a novel strategy.
This strategy requires an in-depth look into the way BTA produces the ranked list. The
list is generated through seven steps, called ‘batch 1’ to ‘batch 7’. During batches 1
to 6, BTA creates a ranked sub-list of potentially true edges. The remaining edges are
then appended to the sub-list in batch 7. The experimental results indicate that the
initial sub-list contains the strongest predictions whereas batch 7 contains the weakest
ones (Yip et al., 2010). For instance, let us consider BTA’s predictions with dataset
Ds10n, which are referred to as the ‘size 10 network’ of ‘Yeast1’ in Yip et al. In batches
1 to 6, BTA predicts 32 edges out of which 9 are correct. On the contrary, in batch
7, a total of 58 edges are predicted among which only 1 is correct. Hence, we consider
the predictions of BTA till batch 6 to generate the summary GRN. It ensures that the
weakness of BTA is minimized.

With the aforementioned strategy, we extract the number of true positive (TP) and
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false positive (FP) predictions for BTA from Yip et al. Subsequently, other metrics are
calculated from TP and FP with the following formulae.

• Recall = (TP / Number of edges in the true GRN).
Number of edges in the true GRN are 10, 77 and 166 for datasets Ds10n, Ds50n
and Ds100n, respectively (Table 4.1).

• Precision = 0, if TP = FP = 0.
Otherwise, precision = (TP / (TP + FP)).

• F1-score = 0, if recall = precision = 0 (GERBIL).
Otherwise, F1-score = the harmonic mean of recall and precision.

The correctness metrics of BTA and the proposed algorithms on Ds10n are presented
in Table 7.4 . The metrics show that BTA achieves the highest number of true positives
at the cost of highest number of false positives. At the same time, it provides the highest
F1-score, jointly with TGS+ and TGS-Lite+.

Table 7.4: Reconstruction Correctness of the Selected Algorithms on Dataset Ds10n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 3 10 0.3 0.231 0.261

TGS+ 3 1 0.3 0.75 0.429

TGS-Lite 3 10 0.3 0.231 0.261

TGS-Lite+ 3 1 0.3 0.75 0.429

BTA 9 23 0.9 0.281 0.429

The same pattern is observed for the metrics on Ds50n and Ds100n, presented in
Tables 7.5 and 7.6 , respectively.

Table 7.5: Reconstruction Correctness of the Selected Algorithms on Dataset Ds50n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 15 342 0.195 0.042 0.069

TGS+ 6 100 0.078 0.057 0.066

TGS-Lite 15 342 0.195 0.042 0.069

TGS-Lite+ 6 100 0.078 0.057 0.066

BTA 69 586 0.896 0.105 0.189
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Table 7.6: Reconstruction Correctness of the Selected Algorithms on Dataset Ds100n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 28 790 0.169 0.034 0.057

TGS+ 19 181 0.114 0.095 0.104

TGS-Lite 28 790 0.169 0.034 0.057

TGS-Lite+ 19 181 0.114 0.095 0.104

BTA 145 2187 0.873 0.062 0.116

For all the datasets, BTA obtains strictly highest numbers of true positives while con-
ceding strictly highest numbers of false positives. However, it monotonically maintains
the best balance between the true and false positives, as demonstrated by its F1-scores.
Nevertheless, BTA’s high F1-scores need further discussions on two aspects.

The first aspect is that the F1-scores stem from summary GRNs. Therefore, no in-
formation is provided about the temporal order of the predicted edges. On the contrary,
each rolled GRN of the proposed algorithms possesses a distinct sequence of time-varying
GRNs. The temporal order of the edges in a rolled GRN can be directly obtained from
the corresponding time-varying GRNs.

The second aspect is the data usage. BTA utilises two additional data files provided
in the DREAM3 challenge. The first file contains ‘knock-out’ data. These data are
produced by knocking out one gene at a time i.e. reducing one gene’s expression to
zero, and recording its effects on other genes. The second file contains ‘knock-down’
data. These data are acquired by knocking down one gene at a time i.e. reducing one
gene’s expression to half of its normal or ‘wild-type’ expression, and recording its effects
on other genes. Usage of the knock-out data significantly enhances BTA’s ability for
capturing the edges where the source node is the sole regulator of the target node (Yip
et al., 2010). Hence, it is unjustified to compare the F1-scores of BTA with that of
the proposed algorithms, without keeping BTA’s additional data usage in mind. At
the same time, we recognize BTA’s ability to use that data to improve its correctness.
Adding such capability to the proposed algorithms can be a worthwhile extension in
future.

Finally, we compare the runtime of BTA with that of the proposed algorithms (Ta-
ble 7.7). The runtime of BTA is again extracted from Yip et al. BTA’s runtime are
recorded on a ‘high-end cluster’ (the cluster configuration is not found). The imple-
mentation is written in Java (Gerstein Lab, 2010). On the other hand, the proposed
algorithms are implemented in R and their runtime are recorded on 3 GHz CPUs with
32 GB main memory. Therefore, an exact comparison of BTA’s runtime with that of
the proposed algorithms is not conducted. Instead, the orders of their runtime are com-
pared. It is observed that BTA’s runtime are in hours whereas that of the proposed
algorithms are in minutes. For example, BTA requires 78 hours for Ds100n, while TGS-
Lite+ takes only 12 minutes. Therefore, BTA may require months to process datasets
with thousands of genes. As a result, usage of BTA can be prohibitive for large-scale
datasets. Yip et al. points this out to be a major limitation of BTA. On the other hand,
the proposed algorithms can process such datasets in minutes.

Summary: The findings of the comparison between BTA and the proposed algo-
rithms can be summarised as follows:
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Table 7.7: Runtime of the Selected Algorithms on the Benchmark Datasets.

Algorithm Ds10n Ds50n Ds100n

TGS-Lite 8.9s 3h 58m 2s 8h 41m 17s

TGS-Lite.p10 6.673s 24m 45s 1h 2m 3s

TGS 5.789s 7m 36s 17m 49s

TGS-Lite+ 2.986s 17.383s 12m 12s

TGS-Lite+.p10 6.028s 9.025s 1m 25s

TGS+ 5.515s 22.034s 1m 4s

BTA 2m 13h 78h

• BTA can achieve monotonically higher F1-scores with the help of additional infor-
mation, such as - knock-out data.

• BTA’s runtime can be prohibitive for its usage with large-scale datasets. The
proposed algorithms can process such datasets in convenient time frames.

7.6.3.2 Comparison with GENIE3

The second time-invariant algorithm in comparison is GENIE3 (Huynh-Thu et al., 2010;
Aibar et al., 2017). For this comparison, we use the implementation of GENIE3 in R
package ‘GENIE3’ (GENIE3). It is executed on the same hardware as that of the
proposed algorithms. The steps for reproducing GENIE3’s results can be found at:
https://github.com/sap01/Test_GENIE3_supplem .

Like BTA, GENIE returns a ranked list of all possible edges. To generate a summary
GRN from the ranked list, we devise a novel strategy. The strategy is to select the top
‘k’ number of edges from the list, where k is the number of edges in the rolled GRN
of a proposed algorithm. Then, there would be same number of edges in GENIE3 ’s
summary GRN and the rolled GRN. Comparing these GRNs with respect to the true
GRN, we can have a fair comparison between their correctness metrics.

Following the aforementioned strategy, we compute the correctness metrics of GE-
NIE3 on dataset Ds10n (Table 7.8). Since, the rolled GRNs of TGS and TGS-Lite
have 13 edges each, we select top 13 edges from GENIE3 ’s ranked list. The resultant
summary GRN is referred to as ‘GENIE3.top13’. Hereafter, we follow the naming con-
vention of ‘GENIE3.topk’ to represent the top k edges from GENIE3 ’s ranked list. It
is observed that TGS and TGS-Lite outperform GENIE3.top13 in both true and false
positive predictions.

Similarly, we use GENIE3.top4 to compare with TGS+ and TGS-Lite+. It is ob-
served that the latter algorithms outperform the former in both true and false positive
predictions.
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Table 7.8: Reconstruction Correctness of the Selected Algorithms on Dataset Ds10n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 3 10 0.3 0.231 0.261

TGS-Lite 3 10 0.3 0.231 0.261

GENIE3.top13 1 12 0.1 0.077 0.087

TGS+ 3 1 0.3 0.75 0.429

TGS-Lite+ 3 1 0.3 0.75 0.429

GENIE3.top4 0 4 0 0 0

For datasets Ds50n and Ds100n, the same pattern is observed; please see Tables 7.9
and 7.10 , respectively. Every proposed algorithm outperforms the corresponding GE-
NIE3 variant in both true and false positive predictions.

Table 7.9: Reconstruction Correctness of the Selected Algorithms on Dataset Ds50n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 15 342 0.195 0.042 0.069

TGS-Lite 15 342 0.195 0.042 0.069

GENIE3.top357 9 348 0.117 0.025 0.041

TGS+ 6 100 0.078 0.057 0.066

TGS-Lite+ 6 100 0.078 0.057 0.066

GENIE3.top106 2 104 0.026 0.019 0.022

Table 7.10: Reconstruction Correctness of the Selected Algorithms on Dataset Ds100n.
TP = True Positive, FP = False Positive. The numerical values are rounded off to three
decimal places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS 28 790 0.169 0.034 0.057

TGS-Lite 28 790 0.169 0.034 0.057

GENIE3.top818 20 798 0.12 0.024 0.041

TGS+ 19 181 0.114 0.095 0.104

TGS-Lite+ 19 181 0.114 0.095 0.104

GENIE3.top200 8 192 0.048 0.04 0.044

Finally, we investigate the runtime of GENIE3 (Table 7.11). It is found that GENIE3
is significantly faster than the TGS-Lite variants. However, other proposed algorithms
are observed to be as fast as GENIE3.
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Table 7.11: Runtime of the Selected Algorithms on the Benchmark Datasets.

Algorithm Ds10n Ds50n Ds100n

TGS-Lite 8.9s 3h 58m 2s 8h 41m 17s

TGS-Lite.p10 6.673s 24m 45s 1h 2m 3s

TGS 5.789s 7m 36s 17m 49s

TGS-Lite+ 2.986s 17.383s 12m 12s

TGS-Lite+.p10 6.028s 9.025s 1m 25s

TGS+ 5.515s 22.034s 1m 4s

GENIE3 0.906s 1m 51s 14m 5s

Summary: The findings of the comparison between GENIE3 and the proposed
algorithms can be summarised as follows:

• GENIE3 is significantly faster than TGS-Lite. However, other proposed algo-
rithms are as fast as GENIE3.

• Every proposed algorithm outperforms GENIE3 in true and false positive predic-
tions on all benchmark datasets.

7.6.3.3 Comparison with LBN

The third and final time-invariant algorithm in comparison is LBN (Liu et al., 2016).
Unfortunately, LBN ’s authors informed us that its source code is not available. Hence,
experimental comparison between LBN and the proposed algorithms can not be per-
formed. However, LBN is methodologically the most similar time-invariant algorithm
to the proposed time-varying ones. Therefore, it is interesting to comparatively study
their methodologies.

LBN follows a two-step framework. In the first step, a shortlist of candidate reg-
ulators is prepared for a given regulatee gene. Consequently in the second step, the
shortlisted candidates are further analysed to prepare the final list of regulators. The
proposed algorithms follow the same two-step framework.

In LBN, the shortlisting step is based on mutual information. Only those genes are
shortlisted whose mutual information with the regulatee gene are greater than or equal
to a user-defined threshold α. In the proposed algorithms, the shortlisting step is based
on mutual information. However, it is not dependent on any user-defined threshold.
Instead, only those genes are selected whose mutual information are statistically signifi-
cant with the regulatee gene. The statistical significance is tested with a well-established
method named CLR (Faith et al., 2007). This method is data-driven and does not re-
quire any user input. On the other hand, it is demonstrated that the correctness of
LBN varies significantly when the value of α is varied (Liu et al., 2016). Hence, it is
difficult for the users to select an appropriate value of α in case of real datasets with no
such information known a priori. The proposed algorithms overcome this limitation by
automating the shortlisting decision.

The final-selection step in the proposed algorithms is based on local Bayesian net-
works. In this step, they construct a local Bayesian network for each regulatee gene.
The local Bayesian network is comprised of the regulatee gene and its finalised regula-
tors. Then all such local Bayesian networks are united to construct the final network.
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LBN follows the same procedure. However, the united network is not the final net-
work in LBN. Instead, LBN conducts further refinements on the united network. These
refinements are again dependent on a user-defined parameter β.

Moreover, LBN performs the complete two-step process iteratively until the output
network of the current iteration is unchanged from that of the last iteration. As a result,
the time complexity of LBN is dependent on the number of iterations. If the number
of iterations is l, then LBN ’s time complexity is O

(
2× l × V 2 + l × V + l × V × 2m

)
,

where V = the total number of genes and m = the number of regulator genes (Liu
et al., 2016). When any gene can be a regulator gene i.e. m = V , the time complexity
transforms to O

(
2× l × V 2 + l × V + l × V × 2V

)
.

In case, V is significantly larger than l, LBN ’s time complexity reduces toO
(
V × 2V

)
.

On the other hand, the time complexities of TGS and TGS-Lite are o
(
V 2 × lg V

)
; that

of TGS+ and TGS-Lite+ are O
(
V 3
)

(Pyne and Anand, 2019a).

Summary: The findings of the comparison between LBN and the proposed algo-
rithms can be summarised as follows:

• The correctness of LBN depends upon two user-defined parameters, namely α and
β. Their values are used as thresholds for the significance test of genes’ mutual
information. In case of real datasets with no such information known a priori,
it is difficult for the users to set appropriate values of these parameters. On
the contrary, the proposed algorithms employ a well-established method named
CLR. This method is data-driven and does not require any user input. Thus, the
proposed algorithms overcome user-dependency for the significance test of genes’
mutual information.

• LBN is an iterative-convergent algorithm. The proposed algorithms are non-
iterative.

• LBN has a higher time complexity than that of the proposed algorithms. For a
dataset with V number of genes, the time complexity of LBN is O

(
V × 2V

)
, the

time complexities of TGS and TGS-Lite are o
(
V 2 × lg V

)
, and that of TGS+ and

TGS-Lite+ are O
(
V 3
)
.

7.6.4 Results with a Large-scale Dataset

Following favourable results with the benchmark datasets, we apply the proposed algo-
rithms on a large-scale dataset. This dataset contains time-series expressions of 4028
genes acquired throughout the life cycle of fruit flies (Drosophila melanogaster, in short,
Dm) (Arbeitman et al., 2002). However, the true time-varying GRNs are unknown.
Moreover, the summary GRN is also unknown. As a consequence, it is not possible
to compute correctness of the reconstructed networks. Hence, we follow the strategy
devised by Song et al. (Song et al., 2009a). They select a subset of 588 genes. These
genes are known to have regulatory activities during the development of fruit flies. Con-
sequently, Song et al. investigate whether the regulatory activities of these genes in the
reconstructed networks match with their known activities.

Using the aforementioned strategy, we extract a smaller dataset named ‘Drosophila
melanogaster life cycle 3’ or DmLc3 (Pyne et al., 2020). It consists of four sub-datasets
corresponding to four stages of fruit fly’s life cycle. The sub-datasets are: DmLc3E
(embryo), DmLc3L (larva), DmLc3P (pupa) and DmLc3A (adult). They contain 6, 2,
3 and 2 time points, respectively (Table 7.12).

The proposed algorithms and their alternative algorithms are applied on the DmLc3
sub-datasets. Among the alternative algorithms, we exclude TVDBN-exp-hard and
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Table 7.12: A Summary of the DmLc3 Sub-datasets.

Sub-dataset Number of
Genes

Number of
Time Points

Number of
Time Series

DmLc3E 588 6 5

DmLc3L 588 2 5

DmLc3P 588 3 6

DmLc3A 588 2 4

TVDBN-exp-soft since they fail to process any of the benchmark datasets. A compara-
tive study of the selected algorithms’ results is presented in the following sections.

7.6.4.1 Better Memory Management

We observe that TVDBN-0, TVDBN-bino-hard and TVDBN-bino-soft fail to process
any of the sub-datasets due to memory-management issues. On the other hand, ARTIVA
is able to process DmLc3E. However, it fails to process other sub-datasets. Although,
the failure is not due to memory-management; it is potentially due to ARTIVA’s imple-
mentation. On the contrary, the proposed algorithms are able to process all sub-datasets
without any issues.

7.6.4.2 Superior Correctness

Evaluation Strategy: For evaluating correctness, we select a subset of 25 genes. These
genes are known regulators in the development process (Marbach et al., 2012). For each
of these regulators, we ask the following two questions :

• Q. Does the regulator have any regulatees in the expected stages of the recon-
structed GRNs?

• Q. If yes, are they known or potentially true regulatees of that regulator?

We evaluate how successfully a GRN is able to answer these questions. Based on that,
we measure the correctness of that GRN and compare it with that of the other GRNs.
The information about the true regulatees of a regulator is retrieved from a biological
knowledge base. This knowledge base is known as ‘TRANSFAC public database version
7.0’ (GmbH). It is claimed to be a gold standard in the area of gene regulation (Gen).

Selection of Max Fan-in: For TGS and TGS+, we retain the max fan-in value
at 14 to avoid segmentation faults (Chapters 5 and 6). Hence, we refer to them as
TGS.mf14 and TGS+.mf14, respectively. On the other hand, TGS-Lite and TGS-
Lite+ do not require that restriction. Hence, their max fan-in value is incremented
to 15. The objective behind this increment is to find out whether they can capture
potentially more true edges than that of TGS.mf14 and TGS+.mf14. Following the
naming convention, the former algorithms are referred to as TGS-Lite.mf15 and TGS-
Lite+.mf15, respectively.

Evaluation: It is found that ARTIVA predicts potentially the least number of
false positive edges. The term ‘potentially’ refers to the fact that biological knowledge
about the existence or non-existence of an edge is incomplete and continually growing.
Therefore, an edge which is yet not known to exist, may later found to exist. On the other

88



hand, ARTIVA captures potentially the least number of true positive edges. TGS.mf14
and TGS-Lite.mf15 capture larger numbers of true positive edges than that of ARTIVA.
Among themselves, TGS-Lite.mf15 captures more number of true positives than that
of TGS.mf14 due to the higher max fan-in. Nevertheless, both of them make higher
false positive predictions in comparison to ARTIVA. In contrast, TGS+.mf14 and TGS-
Lite+.mf15 are able to find a balance. They incur less numbers of false positives than
that of TGS.mf14 and TGS-Lite.mf15. At the same time, they capture larger numbers
of true positives than that of ARTIVA. For the brevity of discussion, we present some
of the findings in the following paragraphs. The complete set of findings are depicted in
Pyne et al. (Pyne and Anand, 2019a).

In this paragraph, we present the results related to gene ‘Antp’. It is one among the
selected 25 regulators. ‘Antp’ is known to be essential in defining embryonal segment
identity. In the embryonic stage, ARTIVA predicts ‘Antp’ to have two regulatees –
‘hdc’ and ‘Sulf1’. For ‘hdc’, there does not exist sufficient information to validate its
relationship with ‘Antp’. On the contrary, for ‘Sulf1’, the existing biological knowledge
can be used to argue that it is potentially a false positive prediction. To have a regulatory
relationship, ‘Sulf1’ is expected to be localised in the same cellular regions as that of
‘Antp’. However, ‘Sulf1’ is localised in extracellular regions, whereas ‘Antp’ is not. Both
of the aforementioned regulatees are rejected by TGS-Lite.mf15. Instead, it selects ‘opa’
to be a regulatee of ‘Antp’. This is highly likely to be a true positive prediction, given
the facts: (a) ‘opa’ is co-localised with ‘Antp’ in nucleus, and (b) ‘opa’ is known to be
involved in the development of segmented embryos. TGS-Lite.mf15 predicts 17 more
regulatees in the embryonic stage. TGS.mf14 predicts a set of 15 regulatees which is a
proper subset of that of TGS-Lite.mf15. Most of these predictions are false positives.
They are avoided by TGS+.mf14 and TGS-Lite+.mf15. On the other hand, TGS-
Lite+.mf15 agrees with the prediction of ‘opa’. It enhances the confidence on ‘opa’ to
be a regulatee of ‘Antp’ during the embryonic stage. Experimental validation of this
relationship can be considered in future.

In this paragraph, we discuss the results corresponding to gene ‘eve’. It is one
among the selected 25 regulators. ‘eve’ contributes to the development of the central
nervous system. ARTIVA does not predict any regulatees for ‘eve’ in the embryonic
stage. On the other hand, TGS.mf14 and TGS-Lite.mf15 predict three regulatees each.
Among them, two regulatee are in common; they are – ‘twi’ and ‘inv’. Both of them
are potentially true positive predictions. The support for ‘twi’ are: (a) it is co-localised
with ‘eve’ in nucleus, and (b) they co-participate in cell organisation/biogenesis. The
support behind ‘inv’ comes from the fact that both ‘inv’ and ‘eve’ are essential during
the segmentation of embryos. ‘inv’ is missed by TGS+.mf14 and TGS-Lite+.mf15 ;
however, they successfully capture ‘twi’, which is also the sole regulatee predicted by
them.

In this paragraph, we discuss the results related to gene ‘prd’. It is one among the
selected 25 regulators. ‘prd’ plays an important role in the development of embryos.
ARTIVA predicts that ‘prd’ has a single regulatee named ‘LIMK1’ in the embryonic
stage. This is potentially a false positive prediction since ‘prd’ is localised in nucleus
and ‘LIMK1’ is not. ‘LIMK1’ is rejected by TGS.mf14 and TGS-Lite.mf15. Instead,
they select ‘eve’ which is a known regulatee of ‘prd’. At the same time, TGS.mf14
and TGS-Lite.mf15 predict seven and eight more regulatees of ‘prd’, respectively. Most
of them are potentially false positive predictions. These predictions are avoided by
TGS+.mf14 and TGS-Lite+.mf15. Instead, they predict only a single regulatee named
‘Knrl’. This is potentially a true positive prediction since ‘Knrl’ is co-localised with
‘prd’ in nucleus.
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Thus, TGS+.mf14 and TGS-Lite+.mf15 avoid potential false positive regulatees
of TGS.mf14 and TGS-Lite.mf15. Simultaneously, they capture potentially more true
positive regulatees than that of ARTIVA.

7.6.4.3 Higher Speed

Runtime can be deciding factor when large-scale datasets are concerned. In that regard,
the proposed algorithms provide significantly lower runtime than that of ARTIVA (Ta-
ble 7.13) 4 . Among the proposed algorithms, TGS+.mf14 is proved to be the fastest.
Inspired by its speed, we apply TGS+.mf14 on the parent dataset with all 4028 genes
(Pyne et al., 2020). TGS+.mf14 is able to process the data of the embryo stage, the
longest stage, in only 44 minutes.

Table 7.13: Runtime of the Selected Algorithms on the DmLc3 Sub-datasets. In each
column, the lowest runtime is boldfaced.

Algorithm DmLc3E DmLc3L DmLc3P DmLc3A

TGS.mf14 22m 28s 4m 12s 10m 49s 3m 51s

TGS-Lite.mf15 3h 54m 8s 41m 7s 1h 43m 31s 44m 41s

TGS+.mf14 22s 22s 22s 21s

TGS-Lite+.mf15 22m 21s 24m 17s 25m 30s 29m 18s

ARTIVA 6h 59m 28s err err err

From this study, it can be concluded that the proposed algorithms are the preferred
choice for processing large-scale datasets in terms of memory-management, correctness
and speed.

7.7 Excerpt and Future Work

In this chapter, we present two novel algorithms for reconstructing time-varying gene
regulatory networks from time-series gene expression datasets. The first algorithm is
named ‘an algorithm for reconstructing Time-varying Gene regulatory networks with
Shortlisted candidate regulators - which is Light on memory’ (TGS-Lite). This algo-
rithm jointly provides state-of-the-art recall and time complexity with the TGS algo-
rithm, which is proposed in Chapter 5 . However, TGS-Lite offers the aforementioned
advantages while also requiring significantly less memory than that of TGS. For these
reasons, the user can consider TGS-Lite to be the best choice when the objective is
to maximise true positive predictions at an acceptable cost of incurring false positive
predictions. One such application can be the discovery of novel biomarkers.

The second algorithm is named ‘TGS-Lite Plus’ (TGS-Lite+). It jointly offers state-
of-the-art F1-score with the TGS+ algorithm, which is proposed in the previous chapter
(Chapter 6). Moreover, TGS-Lite+ does so with a significantly less memory requirement
than that of TGS+. Although TGS-Lite+’s time complexity is slightly higher than that
of TGS-Lite, the experimental results demonstrate that its runtime is competitive to
that of TGS-Lite. Therefore, the user can consider TGS-Lite+ to be the best choice

4Please note that algorithms TVDBN-bino-hard and TVDBN-bino-soft result in error for all sub-
datasets.
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when the objective is to maximise F1-score i.e. to reconstruct the networks as correctly
as possible.
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Figure 7.8: The Effects of the Max Fan-in Parameter on the Correctness (A, B) and
Runtime (C, D) of the TGS-Lite and TGS-Lite+ Algorithms. Dataset Ds100n is used
and number of cores is set to 10 for multicore parallelisation.

Nevertheless, there are scopes for improvements. The reconstruction problem can
be viewed as a collection of smaller sub-problems. Each sub-problem corresponds to
predicting the regulators of a distinct gene at a particular time interval.

To solve each sub-problem, both the proposed algorithms follow a two-step pipeline.
In the first step, they produce a time-invariant shortlist of candidate regulators for the
concerned gene.

In the next step, they select a subset of regulators from the shortlist. This subset is
specific to a particular time interval since the selection is based on that time interval’s
gene expression data.

Therefore, the time-invariant shortlist is used to predict the time-varying final lists.
Since the shortlist is time-invariant i.e. based on all time intervals, it tends to favour
the candidates who are active for a large number of time intervals.

Thus, this short-listing strategy may overlook the candidates who are active during a
small number of time intervals. Such scenarios are common in case of biological networks
where a transient regulator can become active for a small duration and cause a large
cascading effect.

Therefore, being able to identify transient regulators is crucial for understanding the
underlying mechanism. However, if such a regulator is omitted from the shortlist, there
are no means to capture that regulator in the final list of the concerned time interval.

For that reason, we aim to develop a short-listing strategy where shortlists are specific
to every time interval.
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7.8 Contributions

This work is published in IEEE/ACM Transactions on Computational Biology and
Bioinformatics (Pyne and Anand, 2019a).

7.9 Chapter Summary

In the previous chapters, we propose two reconstruction algorithms named TGS and
TGS+ (Chapters 5 and 6). These algorithms offer time-efficiency compatible with large-
scale datasets. Additionally, TGS+ provides correctness competitive to that of ARTIVA.
However, both TGS and TGS+ lack in memory-efficiencies required to process large-
scale datasets. In this chapter, we extend TGS to TGS-Lite, and TGS+ to TGS-Lite+.
The extended algorithms offer the same time complexity and correctness as that of
their original variants. Moreover, the former algorithms provide memory-efficiencies
compatible with large-scale datasets. Nonetheless, all four proposed algorithms tend to
miss the edges that remain active for a small number of time intervals. Such edges,
known as ‘transient edges’, can be crucial for understanding the regulatory mechanism.
Hence, we aim to mitigate this limitation in the next chapter.
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Chapter 8

Capturing Transient Edges

In the previous chapters, three contributions are made towards efficient reconstruction of
time-varying Gene Regulatory Networks (GRNs) from time-series gene expression data.
The first contribution is proposing ‘an algorithm for reconstructing Time-varying Gene
regulatory networks with Shortlisted candidate regulators’, in short, TGS ; it demon-
strates the state-of-the-art time-efficiency (Chapter 5). In the second contribution, we
propose the ‘TGS Plus’ algorithm (TGS+); it maintains the time-efficiency of TGS
while achieving a better balance between recall and precision (Chapter 6). The third
contribution introduces the third set of algorithms. The set contains two algorithms –
‘TGS - which is Light on memory’ (TGS-Lite) and ‘TGS-Lite Plus’ (TGS-Lite+). They
offer the same time-efficiencies and correctnesses of TGS and TGS+, respectively, in a
significantly more memory-efficient manner (Chapter 7).

These algorithms are also demonstrated to provide state-of-the-art recalls with re-
spect to three benchmark datasets. Nevertheless, the recall values are far from the
desired value of ‘1’ (the highest being 0.3). One potential reason behind such low re-
calls lies in the algorithm design. By design, the proposed algorithms tend to overlook
‘transient edges’ i.e. the edges that remain active for short periods of time. Although
such edges are short-lived themselves, they can trigger long-lasting down-stream effects.
Therefore, capturing transient edges is crucial for understanding the regulatory mecha-
nism underlying the data. In this chapter, we design the fourth set of algorithms that
combines the efficiency of the previously proposed algorithms with a superior ability to
capture transient edges.

The chapter is organised into multiple sections. In Section 8.1 , we discuss the
limitations of the previously proposed algorithms. Subsequently, in Section 8.2 , a novel
idea is presented for overcoming these limitations. Based on the novel idea, we propose
four novel algorithms in Section 8.3 . Sections 8.4 and 8.5 discuss the experimental
setup and corresponding results. An excerpt along with a pointer to the future work are
provided in Section 8.6 . The research contributions are acknowledged in Section 8.7 .
Finally, in Section 7.9 , a summary of the chapter is presented.

8.1 Limitations of the Previously Proposed Algorithms

The objective of the previously proposed algorithms is to identify the regulators of each
gene during every time interval. These algorithms accomplish the objective by employing
a two-step framework. In the first step, they generate a shortlist of candidate regulators
for each gene. These shortlists are time-invariant. In the second step, they select a
subset of the shortlisted regulators for each time interval. This subset represents the
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final set of regulators of the concerned gene during that particular time interval.

Thus, the final set of regulators of a gene may vary for different time intervals.
However, all such final sets are subsets of the same shortlist, which is specific to the
gene but invariant to time. The shortlist is time-invariant because the framework uses
the whole time-series dataset to compute the mutual-information values of other genes
with the concerned gene; subsequently, those genes which share statistically significant
mutual information with the concerned gene are shortlisted. On the other hand, when
selecting the final set for a particular time interval, the framework utilises the data
specific to that time interval.

Therefore, the genes that do not share significantly high mutual information across
the whole time series with the concerned gene are less likely to be shortlisted as the
candidate regulators of the latter gene. This strategy is useful for rejecting the genes
that have no regulatory effects on the concerned gene during any interval. However,
the strategy may also reject the genes that have regulatory effects on the concerned
gene during a small number of time intervals. Such ‘transient’ regulators may not get
shortlisted. In that case, those transient edges are not captured in the reconstructed
GRNs (Figure 8.1).

8.2 A Novel Idea for Overcoming the Limitations

We can capture the transient edges if we consider time interval-specific mutual informa-
tion. To do that, a simple idea is to generate one shortlist for each time interval with
respect to the concerned (regulatee) gene. That shortlist should represent the candidate
regulators who share a statistically significant mutual information with the latter gene
during that particular time interval (Figure 8.2).

8.3 Design of Novel Algorithms Based on the Novel Idea

Based on the idea of time-varying short-listing, we develop newer algorithms. These
algorithms follow the same two-step framework of first short-listing and then finalising.
However, the first step is modified to produce time interval-specific shortlists.

We continue using the measure of pairwise mutual information for the task of short-
listing. Suppose, we want to shortlist the candidate regulators of gene v2 during time-
interval (t1, t2). Assuming that the regulatory activities follow a first-order Markovian
process, the task translates to selecting a subset of genes whose expressions at time-
point t1 share statistically significant mutual information with the expression of v2 at
time-point t2. In the previously proposed algorithms, the statistical significance of a
mutual information value is determined with the CLR algorithm (Faith et al., 2007).
However, CLR is not directly compatible with the scenario where the genes in the given
pair belong to two different time points. For that purpose, we develop a variant of CLR,
namely ‘CLR - which is Time-varying’, in short, the CLR-T algorithm. An example of
how CLR-T works is demonstrated in Algorithm 6 .

Thus, we modify the first step of the existing framework by replacing CLR with CLR-
T. As a result, the modified framework generates time-varying shortlists of candidate
regulators in the first step; then in the second step, the finals sets of regulators are
produced from the corresponding shortlists (Figure 8.3).
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Figure 8.1: An Example for Illustrating the Limitations of the Previously Proposed
Algorithms. In this example, a system with four genes – {v1, · · · , v4} – is considered.
Among them, we arbitrarily choose v2 whose regulator(s) we want to predict. The
true regulator(s) of v2 during different time intervals are shown with the directed edges,
across five time points – {t1, · · · , t5}. We assume that these relationships are reflected in
a time-series dataset. Given that dataset, the previously proposed algorithms generate
a shortlist of candidate regulators. Since, v2 itself and v4 have no regulatory relationship
with v2 in any of the time intervals, they are expected to share a low mutual information
with v2; thus, they are correctly rejected. On the other hand, v1 is expected to share
a high mutual information with v2 during the first time interval and low during all
other time intervals. Therefore, when mutual information are computed from the whole
dataset, v1 is less likely to be shortlisted. However, v3 who is expected to share high
mutual information with v2 across most time intervals, is most likely to get shortlisted.
If v1 is not shortlisted, it is definitely not going to appear in the final list. Thus, the
previously proposed algorithms are not able to capture the transient edge from gene v1

to v2 during time interval (t1, t2).
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Figure 8.2: An Example for Illustrating the Idea of Time-varying Short-listing. In this
example, a system with four genes – {v1, · · · , v4} – is considered. Among them, we
arbitrarily choose v2 whose regulator(s) we want to predict. The true regulator(s) of v2

during different time intervals are shown with the directed edges, across five time points
– {t1, · · · , t5}. We assume that these relationships are reflected in a time-series dataset.
Given that dataset, one shortlist of candidate regulators is generated for each time inter-
val. Each shortlist is expected to capture the true regulator(s) during the corresponding
time interval, such as v1 is shortlisted during (t1, t2); it may also incorrectly capture
some false regulator(s), like v2 itself is shortlisted during the same time interval. For
each time interval, the final selection step uses the data and shortlist, both specific to
that interval, and predicts the final set of regulators. Since, the transient regulators are
captured in the shortlists, they are highly likely to be captured in the final lists. Thus,
the idea of time-varying short-listing is likely to capture more transient edges than that
of the previous strategy of time-invariant short-listing.
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Algorithm 6 An Example with the CLR-T Algorithm

1: procedure CLR-T(D∗,M ∗)
2: ## The objective of this example is to determine whether gene v1 should be
3: ## shortlisted as a candidate regulator of gene v2 for time-interval (t1, t2).
4: ## Input data D∗ represents the expression values of all genes at time-points
5: ## t1 and t2.
6: ## Input matrix M ∗ represents the mutual information matrix specific to
7: ## time-interval (t1, t2). It is a (V × V ) matrix, where V = number of genes.
8: ## The (vi, vj)

th cell, denoted by M ∗(vi, vj), represents the estimated
9: ## mutual information value between the expressions of vi at time-point t1 and

10: ## that of vj at time-point t2.
11: µ1 ← arithmetic mean of {M ∗(vi, v2) : for all vi}.
12: µ2 ← arithmetic mean of {M ∗(v1, vj) : for all vj}.
13: if M ∗(v1, v2) is either greater than µ1 or µ2 then
14: Shortlist v1 as a candidate regulator of v2 for time-interval (t1, t2).
15: else
16: Do not shortlist v1.
17: end if
18: end procedure

Based on the modified framework, we extend TGS to develop a new algorithm. This
algorithm employs CLR-T for the short-listing step and performs the final selection step
the same way TGS does. For that reason, we name the new algorithm ‘TGS - having
Time-varying shortlists’ (TGS-T ).

Similarly, we extend TGS-Lite to develop another new algorithm named ‘TGS-T-
Lite’. The latter algorithm employs CLR-T for the short-listing step and executes the
final selection step the same way TGS-Lite does.

However, a problem arises when we attempt to extend TGS+ and TGS-Lite+ with
the modified framework. We discuss its origin in the following sub-section.

8.3.1 The Issue with Extending TGS+ and TGS-Lite+

In TGS+ and TGS-Lite+, the short-listing step is performed based on ‘refined’ mutual
information values. Suppose, the objective is to decide whether to shortlist gene vi as
a candidate regulator of gene vj . In that case, their mutual information is calculated
from the whole time-series data. This mutual information is called their ‘raw’ mutual
information. If the raw mutual information is greater than zero, then an algorithm
named ARACNE is employed to verify whether this mutual information is due to a direct
relationship or an indirect one (Margolin et al., 2006). A direct relationship represents
that vi directly regulates vj . On the other hand, an example of indirect relationships is
when vi regulates a third gene vk which in turn regulates vj , thus causing a non-zero
mutual information between vi and vj . If the relationship is detected to be an indirect
one, then the ‘refined’ mutual information between vi and vj is considered to be zero.
Otherwise, their refined mutual information is regarded same as the raw one. Based
on the refined mutual information, CLR decides whether to shortlist vi as a candidate
regulator of vj .

The aforementioned strategy works because both ARACNE and CLR are time-
invariant. The output of ARACNE is a refined mutual information matrix, which is
time-invariant.
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Figure 8.3: Illustration of the Modified Framework with an Example. In this example,
the input dataset is comprised of two time series – s1 and s2. Each time series contains
the expressions of four genes {v1, · · · , v4} across three time points {t1, · · · , t3}. The
dataset is discretised as required by the proposed framework. Given this dataset, step
1 of the modified framework generates time-varying shortlists of candidate regulators.
Consequently in Step 2, the final sets of regulators are chosen from the corresponding
shortlists.

On the other hand, CLR expects a time-invariant mutual information matrix as
input. Thus, ARACNE and CLR are perfectly compatible.

However, if we wish to replace CLR with CLR-T, then the expected input is a set
of time-varying mutual information matrices – one matrix for each time interval. Thus,
CLR-T is not compatible with ARACNE. Therefore, we need to develop an algorithm
that can produce one refined mutual information matrix for each time interval. We
attempt to do that in the next sub-section.
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8.3.2 Developing a Time-varying Refinement Strategy

We begin by investigating how ARACNE performs its refinements. Suppose, there is
a non-zero mutual information between genes vi and vj , denoted by M (vi, vj). Then,
ARACNE needs to determine whether it is due to a direct or an indirect relationship.

For that purpose, ARACNE checks whether there exists any other gene vk (k 6= i, k 6= j)
such that M (vi, vj) is less than M (vi, vk) and M (vk, vj). In other words, M (vi, vj) <
min (M (vi, vk) ,M (vk, vj)). If there exists at least one vk that satisfies this condition,
then ARACNE assumes that vi and vj do not share a direct relationship; instead, they
share an indirect relationship via that vk (Figure 8.4).

vi vj

vk
M (vi, vk) M

(

vk, vj
)

M
(

vi, vj
)

Figure 8.4: Illustration of the Time-invariant Refinement strategy by the ARACNE
Algorithm. The strategy is explained with an example. In this example, we assume
that two genes – vi and vj share a non-zero mutual information, denoted by M (vi, vj).
It is represented with an undirected edge since mutual information is symmetric in
nature i.e. M (vi, vj) = M (vj , vi). Therefore, ARACNE needs to figure out whether
this mutual information is due to a direct regulatory relationship between the two genes
or not. For that purpose, ARACNE searches for a third gene vk that satisfies the
condition: M (vi, vj) < min (M (vi, vk) ,M (vk, vj)). If ARACNE is able to find at
least one such vk, it assumes that vi and vj do not have a direct regulatory relationship.
Instead, they are related through vk. One such case could be where vi regulates vk
and vk in turn regulates vj . In such cases, ARACNE sets M (vi, vj) = 0. On the
other hand, if ARACNE is unable to find any such vk, it assumes that vi and vj have
a direct regulatory relationship. Therefore, the value of M (vi, vj) is kept unchanged.
Thus, ARACNE checks and refines (if necessary) the mutual information values between
every pair of genes.

The condition used in ARACNE comes from the theorem of Data Processing Inequal-
ity (DPI) (Margolin et al., 2006). The DPI states that, if genes vi and vj are related
only through a third gene vk, then the following inequality must hold: M (vi, vj) ≤
min (M (vi, vk) ,M (vk, vj)).

Therefore, if the only relationship between vi and vj is that vi regulates vk and vk in
turn regulates vj , then it follows from the DPI that: M (vi, vj) ≤ min (M (vi, vk) ,M (vk, vj))
(Figure 8.5).

99



vi vj

vk

M
(

vi, vj
)

≤ min
(

M (vi, vk) ,M
(

vk, vj
))

Figure 8.5: An Example of the DPI. In this example, gene vi regulates gene vk and vk
in turn regulates gene vj . No other regulatory relationships exist between vi and vj . In
that case, the DPI states that the following inequality must be satisfied: M (vi, vj) ≤
min (M (vi, vk) ,M (vk, vj)).

From the DPI, it is conjectured by Margolin et al. that, if there exists such a vk
which satisfies the inequality, then it is highly likely that vi and vj are only indirectly
related through vk (Margolin et al., 2006). The conjecture is fundamentally the converse
of the DPI. It is useful when considering whether to shortlist vi as a candidate regulator
of vj or not. vi is not shortlisted if the conjecture is satisfied by a third gene vk.

However, the conjecture can not be applied directly when vi and vj belong to two
different time points, as in the case with our modified framework. In this framework,
vi belongs to the previous time point of that of vj . The objective is to determine
whether to shortlist vi at time point tp (in short, vi tp) as a candidate regulator of vj
at time point t(p+1) (in short, vj t(p+1)). For that purpose, we begin by computing
mutual information M (vi tp, vj tp+1). If it is zero, then we reject vi tp without further
examinations. Otherwise, for a non-zero mutual information, we need to examine further
to identify whether it is due to an indirect relationship.

For having an indirect relationship, there must be a gene vk that directly regulates
vj t(p+1). To be a direct regulator of vj t(p+1), vk must belong to time point tp; hence,
we rename it to vk tp (k 6= i). If vj tp+1 is regulated by vk tp and not by vi tp, then
from the DPI it follows that the mutual information between vi tp and vj tp+1 is not
higher than that between vk tp and vj tp+1. In other words, M

(
vi tp, vj t(p+1)

)
≤

M
(
vk tp, vj t(p+1)

)
.

Nevertheless, we can not reject vi tp only based on the criterion that it shares less
mutual information with vj t(p+1) than vk tp does. The reason is that the criterion alone
does not reject the possibility of vi tp and vk tp together regulating vj t(p+1).

Therefore, we need to identify a stronger criterion to claim that vi tp shares a non-
zero mutual information with vj t(p+1) only due to the presence of an indirect relation-
ship. More specifically, our claim is that vi tp shares a non-zero mutual information
with one of the true regulators of vj t(p+1). Without loss of generality, let us assume
that the true regulator of vj t(p+1) in question is vk tp. Then, vi tp shares a non-zero
mutual information with vk tp. On the other hand, vk tp shares a non-zero mutual in-
formation with its direct regulatee vj t(p+1). As a result, there exists a non-zero mutual
information between vi tp and vj t(p+1). In that case, from the DPI, we can derive the
following postulate:

Postulate 1. Let us make the following assumptions:

• Assumption 1. vi tp does not regulate vj t(p+1).
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• Assumption 2. vk tp (k 6= i) regulates vj t(p+1).

• Assumption 3. vi tp shares a non-zero mutual information with vj t(p+1). The only
reason behind this observation is that vi tp shares a non-zero mutual information
with vk tp.

Given the assumptions, it can be stated from the DPI that the mutual information be-
tween vi tp and vj t(p+1) is not higher than that between vi tp and vk tp. From the DPI,
it can also be stated that the mutual information between vi tp and vj t(p+1) is not higher
than that between vk tp and vj t(p+1). In other words,
M
(
vi tp, vj t(p+1)

)
≤ min

(
M (vi tp, vk tp) ,M

(
vk tp, vj t(p+1)

))
.

By taking the converse of Postulate 1 , we can devise the following conjecture:

Conjecture 1. If M
(
vi tp, vj t(p+1)

)
≤ min

(
M (vi tp, vk tp) ,M

(
vk tp, vj t(p+1)

))
,

then

• vi tp does not regulate have a direct relationship with vj t(p+1).

• vi tp has an indirect relationship with vj t(p+1) only through vk tp.

A realistic case where Conjecture 1 holds is shown in Figure 8.6 .

vj

vi

vk

vl

tp t(p+1)Time-points t(p−1)

Figure 8.6: A Realistic Case where Conjecture 1 Holds. In this case, vi tp and vk tp are
co-regulated by the same gene, suppose, vl t(p−1). Therefore, the formers are highly likely
to share a non-zero mutual information i.e. M (vi tp, vk tp) > 0. On the other hand,
vk tp regulates vj t(p+1). Hence, vk tp and vj t(p+1) also share a non-zero mutual infor-
mation i.e. M

(
vk tp, vj t(p+1)

)
> 0. Since vi tp shares a non-zero mutual information

with vk tp which again shares a non-zero mutual information with vj t(p+1), vi tp might
share a non-zero mutual information with vj t(p+1) i.e. M

(
vi tp, vj t(p+1)

)
> 0. How-

ever, according to the DPI, this false mutual information must not exceed the true mu-
tual informations that have caused its non-zeroness. In other words, M

(
vi tp, vj t(p+1)

)
must not exceed M (vi tp, vk tp) or M

(
vk tp, vj t(p+1)

)
.

Based on Conjecture 1 , we design a variant of ARACNE, namely - ‘ARACNE -
which is Time-varying’; in short, the ARACNE-T algorithm. It is demonstrated with
an example in Algorithm 7 .
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Thus, ARACNE-T refines every raw mutual information value. The full version of
ARACNE-T takes an ordered list of time-varying raw mutual information matrices as
input. The number of matrices in the list is equal to the number of time intervals.
The pth element in the list is the raw mutual information matrix specific to interval(
tp, t(p+1)

)
. It is a (V × V ) matrix, where V = number of genes. The (vi, vj)

th cell of
the matrix represents the raw mutual information between vi tp and vj t(p+1). For every
cell in each matrix, ARACNE-T reads the raw value and replaces it with the refined
value. As a consequence, the output of ARACNE-T is an ordered list of time-varying
refined mutual information matrices. We illustrate the workflow of ARACNE-T with
an example in Figure 8.7 .

Algorithm 7 An Example with the ARACNE-T Algorithm

1: procedure ARACNE-T(M
(
vi tp, vj t(p+1)

)
, D∗)

2: ## Input M
(
vi tp, vj t(p+1)

)
represents the ‘raw’ mutual information between

3: ## vi tp and vj t(p+1) as estimated from data D∗.
4: ## D∗ represents the gene expression data at time points tp and t(p+1).
5: ## Assuming that the raw mutual information is non-zero,
6: ## the objective for this example is to determine whether the non-zeroness
7: ## is due to a direct relationship between vi tp and vj tp or an indirect one.
8:

9: if there exists at least one vk tp (k 6= i) that
10: satisfies the following condition:
11: M

(
vi tp, vj t(p+1)

)
< min

(
M (vi tp, vk tp) ,M

(
vk tp, vj t(p+1)

))
then

12: The non-zeroness is due to an indirect relationship only through vk tp.
13: Therefore, the true mutual information between vi tp and vj t(p+1)

14: should be zero.
15: Set M

(
vi tp, vj t(p+1)

)
← zero.

16: ## M (vi tp, vk tp) and M
(
vk tp, vj t(p+1)

)
are computed from D∗.

17: else
18: The non-zeroness is due to a direct relationship.
19: Keep M

(
vi tp, vj t(p+1)

)
unchanged.

20: end if
21:

22: ## At the end of the procedure,
23: ## the value of M

(
vi tp, vj t(p+1)

)
is called

24: ## the ‘refined’ mutual information between vi tp and vj t(p+1).
25: end procedure

Therefore, the output of ARACNE-T is compatible with the input of CLR-T,
which expects a set of mutual information matrices. As a consequence, we can replace
ARACNE with ARACNE-T, and CLR with CLR-T in the TGS+ algorithm (Figure
8.8 ). Hence, a new algorithm is developed by extending TGS+ with the aforementioned
replacements. We name this algorithm – TGS-T+.

Similarly, we extend TGS-Lite+ by performing the same replacements and develop
another new algorithm. We name this algorithm – TGS-T-Lite+.

8.3.3 Section Summary

In this section, we propose four novel algorithms. They are – TGS-T, TGS-T+, TGS-T-
Lite and TGS-T-Lite+. Each of these algorithms is an extension of one of the algorithms
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proposed in the previous chapters. Each extended algorithm is designed to capture more
transient edges than that of the original one.
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Figure 8.7: Illustration of the Workflow of ARACNE-T with an Example. In this
example, the input dataset is disretised and comprised of two time series – s1 and
s2. Each time series contains the expressions of four genes {v1, · · · , v4} across three
time points {t1, · · · , t3}. From this dataset, an ordered list of time-varying raw mutual
information matrices is estimated. Each cell in a matrix contains a non-negative real
number which represents a mutual information value (the numbers are not shown inside
the cells to save space). For example, the shaded cell contains the mutual information
between v2 t1 and v3 t2. This ordered list is given as input to ARACNE-T which in
turn produces an equivalent list of refined mutual information matrices.
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Figure 8.8: The Black Box Diagrams of Algorithms TGS+ and TGS-T+. The latter
(in right) differs from the former (in left) in two places: first, ARACNE is replaced with
ARACNE-T; second, CLR is replaced with CLR-T.

8.4 Experimental Setup

8.4.1 Evaluation Strategy

In the previous section, we introduce four algorithms. They are extended versions of
the four algorithms we proposed in the previous chapters (Table 8.1 ).

Table 8.1: Mapping from the Original Algorithms to the Extended Algorithms.

Original Algorithm Extended Algorithm

TGS TGS-T

TGS+ TGS-T+

TGS-Lite TGS-T-Lite

TGS-Lite+ TGS-T-Lite+

Each extended algorithm is expected to capture a higher number of transient edges
than that of the corresponding original algorithm. Therefore, the evaluation strategy
is to test whether the extended algorithms can meet this expectation when put into
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competition with the original ones.

8.4.2 Implementations

In this study, we are interested in comparing the concerned algorithms with respect to
correctness. In that regard, TGS-T and TGS-T-Lite should not vary since the latter is
simply a more memory-efficient variant of the former. Hence, we choose to implement
only one of them, which is TGS-T. For the same reason, we choose to implement only
one among TGS-T+ and TGS-T-Lite+. In this case, TGS-T+ is selected for implemen-
tation. The implementations are done in the R programming language (R Development
Core Team, 2008) version 3.5.1. In the previous chapters, we use an older version of
R (version 3.3.2). While that can have effects on runtime and memory utilisations,
it should not affect correctness. Therefore, the results of the alternative algorithms
reported in the previous chapters are comparable to that of the proposed algorithms.

8.5 Results and Discussions

In this section, we aim to examine the results of TGS-T and TGS-T+ compared to that
of the alternative algorithms.

8.5.1 Comparative Study Against Alternative Algorithms

TGS-T and TGS-T+ require discretised data. For a fair comparison, we use the same
data-discretisation algorithm (namely 2L.wt) that is used for previously proposed algo-
rithms.

8.5.1.1 Comparison on Dataset Ds10n

For dataset Ds10n, both TGS-T and TGS-T+ reconstruct null networks i.e. networks
with no edges (Table 8.2 ) 1 . It means that none of the genes have any regulators.

Therefore, no regulators are chosen in the final selection step for every (regulatee)
gene. It makes us suspect whether any regulators are chosen in the short-listing step.
However, the suspicion is proved to be wrong after investigation. Many of the genes
have non-empty shortlist of candidate regulators. However, none of these candidates
makes it to the final list. Therefore, the question is why the short-listing step is unable
to identify even a single candidate that can pass the rigour of the final selection step.

The answer is the scarcity of data. In case of TGS and TGS+, the short-listing
step utilises the whole dataset; this dataset contains 21 time points and 4 instances per
time point for each gene’s expression. Therefore, the short-listing is performed with
(21× 4) = 84 instances of every gene’s expression. For example, in order to determine
whether to short-list gene vi as a candidate regulator of gene vj , the short-listing step
compares all 84 instances of vi with all 84 instances of vj .

On the other hand, in case of TGS-T and TGS-T+, the short-listing step generates
one shortlist for each time interval, by utilising the data specific to that time interval.
For example, in order to decide whether gene vi should be short-listed as a candidate
regulator of gene vj during time-interval

(
tp, t(p+1)

)
, the short-listing step compares the

4 instances of vi at time-point tp with the 4 instances of vj at time-point t(p+1).

1Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for Ds10n.
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Thus, scarcity of instances per time point is the reason behind the poor performance
of the short-listing step. Let us illustrate the point with gene G4. In case of TGS,
all 84 instances of G4 is compared with that of the other genes. Consequently, genes
{G2, G3, G5, G6, G7, G9, G10} are short-listed as candidate regulators of G4. Among
them, G6 is correctly finalised to be a regulator of G4. However, TGS-T misses this
true regulator. For example, in the first time interval, the short-listing step compares
the 4 instances of G4 at the second time point with the 4 instances of every genes at
the first time point. Misled by such a small number of instances, it does not short-list
G6, and instead short-lists G5 and G7. None of these short-listed candidates are true
regulators of G4. Both of them are correctly rejected in the final selection step. As a
result, G4 is predicted to have no regulators in the first time interval.

In summary, TGS-T and TGS-T+ can not capture any true edges from dataset
Ds10n due to too few instances per time point. We proceed to examine whether they
can overcome this issue for dataset Ds50n that has a larger number of instances per time
point.

Table 8.2: Performances of the Selected Algorithms on Dataset Ds10n. TP = True
Positive, FP = False Positive. The numerical values are rounded off to three decimal
places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS-T 0 0 0 0 0

TGS-T+ 0 0 0 0 0

TGS 3 10 0.3 0.231 0.261

TGS+ 3 1 0.3 0.75 0.429

TGS-Lite 3 10 0.3 0.231 0.261

TGS-Lite+ 3 1 0.3 0.75 0.429

ARTIVA 0 9 0 0 0

TVDBN-0 0 1 0 0 0

TVDBN-bino-hard 1 7 0.1 0.125 0.111

TVDBN-bino-soft 2 9 0.2 0.182 0.190

8.5.1.2 Comparison on Dataset Ds50n

For dataset Ds50n, TGS-T and TGS-T+ are able to reconstruct non-null networks
(Table 8.3 ) 2 .

Moreover, TGS-T and TGS-T+ capture the largest number of true edges (Column
‘TP’ in Table 8.3 ). This observation is in sharp contrast with that for dataset Ds10n
where these algorithms are unable to capture even a single true edge. The dissimilarity
is caused by the difference between the numbers of instances among the said datasets.
While Ds10n contains only 4 instances per time point for each gene’s expression, Ds50n
contains 23 of them.

2Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for Ds50n.
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Table 8.3: Performances of the Selected Algorithms on Dataset Ds50n. TP = True
Positive, FP = False Positive. The numerical values are rounded off to three decimal
places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS-T 30 632 0.39 0.045 0.081

TGS-T+ 30 630 0.39 0.045 0.081

TGS 15 342 0.195 0.042 0.069

TGS+ 6 100 0.078 0.057 0.066

TGS-Lite 15 342 0.195 0.042 0.069

TGS-Lite+ 6 100 0.078 0.057 0.066

ARTIVA 6 64 0.078 0.086 0.082

TVDBN-0 7 199 0.091 0.034 0.049

TVDBN-bino-hard 11 410 0.143 0.026 0.044

TVDBN-bino-soft 14 395 0.182 0.034 0.058

However, we also need to consider the ratio of number of instances to number of
genes in each dataset. For Ds10n, the ratio is (4 instances : 10 genes) = (4 : 10). On the
other hand, this ratio for Ds50n is (23 instances : 50 genes) = (4.6 : 10). Therefore, the
ratio is slightly higher for Ds50n.

Then the question arises: what exactly cause the poor performance for Ds10n? Is it
the scarcity of absolute number of instances, or is it the low ratio of instances to genes,
or is it both? We look forward for the comparative study with dataset Ds100n to answer
this question.

At present, we move on from ‘TP’ to examine the performances of TGS-T and TGS-
T+ with respect to other metrics (Table 8.3 ). These two algorithms achieve the highest
recall due to their high TP (Columns ‘Recall’ and ‘TP’ in Table 8.3 ). Nevertheless,
they concede the highest numbers of false positives (Column ‘FP’ in Table 8.3 ). It also
affects their precisions where they place after {ARTIVA, TGS+, TGS-Lite+} (Column
‘Precision’ in Table 8.3 ). In spite of that, they achieve the second highest F1-scores, less
only than that of ARTIVA (Column ‘F1’ in Table 8.3 ). Thus, they over-compensate
for their lower precisions with significantly higher recalls, compared to that of {TGS+,
TGS-Lite+}.

Finally, we compare the performances of TGS-T and TGS-T+ themselves, in order
to study the effect of the ARACNE-T sub-step. This sub-step is present in TGS-T+
only. It is observed that ARACNE-T helps TGS-T+ to incur a smaller number of false
positive predictions than that of TGS-T (Column ‘FP’ in Table 8.3 ). This observation
provides a proof of concept for ARACNE-T’s ability to identify and reject indirect
regulatory relationships. Moreover, it does not make any sacrifices in capturing the
direct regulatory relationships; as a result TGS-T+ retains the same number of true
positive predictions as that of TGS-T (Column ‘TP’ in Table 8.3 ). That, in turn,
causes TGS-T+ to exceed TGS-T with regard to precision (by ' 0.00014) and F1-score
(by ' 0.00022); the differences do not get reflected in Columns ‘Precision’ and ‘F1’
of Table 8.3 because the values in the table are rounded off to three decimal places.
These observations provide an exemplary evidence in support of Conjecture 1 that we
introduce for designing ARACNE-T (Sub-section 8.3.2 ).

107



8.5.1.3 Comparison on Dataset Ds100n

For dataset Ds100n, TGS-T and TGS-T+ are able to reconstruct non-null networks
again (Table 8.4 ) 3 .

Table 8.4: Performances of the Selected Algorithms on Dataset Ds100n. TP = True
Positive, FP = False Positive. The numerical values are rounded off to three decimal
places. For each column, the best value(s) is boldfaced.

Algorithm TP FP Recall Precision F1

TGS-T 49 1972 0.295 0.024 0.045

TGS-T+ 49 1972 0.295 0.024 0.045

TGS 28 790 0.169 0.034 0.057

TGS+ 19 181 0.114 0.095 0.104

TGS-Lite 28 790 0.169 0.034 0.057

TGS-Lite+ 19 181 0.114 0.095 0.104

ARTIVA 14 158 0.084 0.081 0.083

TVDBN-0 9 678 0.054 0.013 0.021

TVDBN-bino-hard 26 1304 0.157 0.020 0.035

TVDBN-bino-soft 18 1296 0.108 0.014 0.024

Moreover, TGS-T and TGS-T+ are able to capture the largest number of true edges
(Column ‘TP’ in Table 8.4 ), like they do for Ds50n. At this point, we return to the
unresolved question of why are the aforementioned algorithms unable to capture even
a single true edge in case of Ds10n. Earlier, we narrow down the reasons to two: the
scarcity of absolute number of instances and the low ratio of instances to genes. However,
it is not resolved – which one of them, or whether both of them are responsible for the
poor performance.

Earlier, we remain unable to resolve the question is because Ds50n has a larger
number of instances as well as a larger ratio of instances to genes than that of Ds10n.
Unfortunately, Ds100n also has a larger number of instances (46) and a larger ratio
of instances to genes (4.6 : 10) than that of Ds10n (4 instances and a ratio of 4 : 10,
respectively). Therefore, this question can not be resolved with the datasets at hand.

To resolve the question, we need datasets with the following properties: To test
whether the absolute number of instances cause the issue, we require datasets with the
same number of genes as Ds10n but with different number of instances than that of
Ds10n; on the other hand, to test whether the ratio of instances to genes is the issue, we
require datasets with lower ratios than that of Ds10n. This investigation is out-of-scope
for the current thesis. Hence, we present this opportunity as a foundation for future
works.

At present, we move on to examine the performances of TGS-T and TGS-T+ with
respect to the rest of the metrics (Table 8.4 ). Owing to their high TP, these two algo-
rithms achieve the highest recall (Columns ‘TP’ and ‘Recall’ in Table 8.4 ). Nonetheless,
they incur the highest number of false positives (Column ‘FP’ in Table 8.4 ). It severely
affects their precisions where they rank after {ARTIVA, TGS, TGS+, TGS-Lite, TGS-
Lite+} (Column ‘Precision’ in Table 8.4 ). Unlike in the case of Ds50n, the superiority

3Please note that algorithms TVDBN-exp-hard and TVDBN-exp-soft result in error for Ds100n.
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in recalls does not compensate for the low precisions; as a result, TGS-T and TGS-T+
obtain the same rank in F1-score as they do in precision (Column ‘F1’ in Table 8.4 ).

Lastly, we compare the performance of TGS-T with that of TGS-T+. It is observed
that TGS-T+ makes the same number of false positive predictions as that of TGS-T
(Column ‘FP’ in Table 8.4 ). From this observation, we conclude that the ARACNE-T
sub-step in TGS-T+ can not identify any additional false edges. On the other hand,
it is also observed that TGS-T+ is able to make the same number of true positive
predictions as that of TGS-T (Column ‘TP’ in Table 8.4 ). Therefore, the ARACNE-T
sub-step does not miss any true edges. These observations are slightly different from
that of Ds50n. In case of Ds50n, the ARACNE-T sub-step identifies two additional
false edges without missing any true edges. Thus, from the combined observations of
Ds50n and Ds100n, we deduce that the ARACNE-T sub-step helps TGS-T+ to reject
monotonically higher numbers of false edges than that of TGS-T, while capturing the
same number of true edges as that of the latter.

With the aforementioned deduction, we conclude the comparatice study of the pro-
posed algorithms against alternative algorithms. However, it does not guarantee that
the performances of the proposed algorithms are better than that of a random classifier.
Hence, we conduct an additional study which is presented in the following sub-section.

8.5.2 Additional Comparative Study Against a Random Classifier

A random classifier is an algorithm that randomly decides whether an edge should be
present or absent in the predicted network. Predictions of a random classifier tend to
result in a line represented by equation ‘True Positive Rate = False Positive Rate’ (TPR
= FPR); here, TPR = Recall; FPR = (FP / (FP + TN)) (Liu et al., 2016). We plot the
TPR-vs-FPR line of a random classifier against that of TGS-T and TGS-T+ (Figure
8.9 ).

From the plots, we make the following observations. For Ds10n, TGS-T and TGS-
T+ reconstruct null networks. Hence, their line overlaps with that of the random classi-
fier. However, for Ds50n and Ds100n, where TGS-T and TGS-T+ decide to reconstruct
non-null networks, their line stays above that of the random classifier. It signifies that,
when TGS-T and TGS-T+ decide to reconstruct non-null networks, they make better
decisions than randomly made decisions.

8.6 Excerpt and Future Work

In this chapter, we address an issue encountered by the algorithms proposed in the
previous chapters. The issue corresponds to their inability to capture transient edges
– the edges that remain active for short periods of time. Capturing such edges is
crucial for understanding the underlying mechanisms since they can trigger long-lasting
downstream effects.

To overcome the aforementioned issue, we propose a novel algorithm named TGS-
T. A comparative study is conducted between TGS-T and the previously proposed
algorithms. For two of the three benchmark datasets, TGS-T captures significantly
more edges than that of the previously proposed algorithms.

However, TGS-T makes more false-positive predictions than that of the previous
algorithms. To prevent that, we propose another algorithm named TGS-T+.
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Figure 8.9: The TPR-vs-FPR Plots of TGS-T, TGS-T+ and a random classifier. Here,
TPR = True Positive Rate, FPR = False Positive Rate. The results of TGS-T and TGS-
T+ for three benchmark datasets – Ds10n, Ds50n and Ds100n – are represented as three
black squares. These squares are connected (interpolated) with a smooth line (Software
used: LibreOffice Calc Version 5.4.7.2 (x64); Line type = Cubic spline, Resolution =
20; OS: Windows 10 Pro version 1809). On the other hand, the results of the random
classifier is presented as a dashed line.

TGS-T+ algorithm has an additional step that attempts to eliminate false edges.
We observe that TGS-T+ produces monotonically fewer numbers of false positives than
that of TGS-T. At the same time, the former captures as many true edges as that of
the latter algorithm.

Although TGS-T+ makes fewer numbers of false-positive predictions than that of
TGS-T, the numbers remain higher than that of the previously proposed algorithms. As
a result, TGS-T+ can not consistently outperform the previously proposed algorithms
in F1-score, for all benchmark datasets. Developing algorithms that can supersede the
previously proposed algorithms in F1-score remains an opportunity for the future.

8.7 Contributions

A manuscript of this work, titled “Capturing Transient Edges in Time-varying Gene
Regulatory Networks”, is in preparation.

8.8 Chapter Summary

In the previous chapter, we propose a set of reconstruction algorithms (Chapter 7).
The set contains two algorithms: TGS-Lite and TGS-Lite+. Among them, TGS-Lite+
provides correctness competitive to that of ARTIVA. At the same time, the former offers

110



time- and memory-efficiency compatible with large-scale datasets. However, TGS-Lite+
shares a common limitation with the other previously-proposed algorithms. All of them
tend to miss the edges that remain active for a small number of time intervals. Such
edges, known as ‘transient edges’, can have crucial down-stream effects. Therefore,
capturing them can be critical for understanding the underlying regulatory mechanisms.
To overcome this limitation, we propose another set of algorithms in this chapter. Each
algorithm in the set is a variant of a previously proposed algorithm. We demonstrate
that every variant outperforms its original algorithm in capturing the true edges.
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Chapter 9

Conclusions and Future
Directions

Complex biological processes are dynamic. They progress over time through intertwined
levels of biological regulations. One key level is that of gene regulation. At this level,
genes regulate each other, leading to modulations in their expressions. This thesis
focuses on the development of efficient algorithms that are used to reconstruct time-
varying gene regulatory networks. Input to the concerned algorithms consists of time-
course measurements of gene expressions.

Prior to this thesis, a number of such algorithms existed. In this thesis, we conduct
a comparative study among those algorithms. It is found that an algorithm named
‘Auto Regressive TIme VArying models’, in short ARTIVA, offers the state-of-the-art
correctness among the existing algorithms (Lèbre et al., 2010). However, it lacks in com-
putational speed. As a result, ARTIVA’s runtime is prohibitive for processing large-scale
datasets with hundreds to thousands of genes. At the same time, due to rapid advance-
ments in data-acquisition technologies, datasets have been increasingly becoming larger.
Consequently, the gap between the desired computational speed and that of ARTIVA
has been becoming wider. In the current thesis, we bridge this gap by contributing a
novel set of algorithms. They offer correctness competitive to that of ARTIVA, at com-
putational speeds extremely suitable for processing large-scale datasets. A summary of
the proposed algorithms is presented in the following section.

9.1 Summary of the Contributions

Improving Time-efficiency: The first algorithm proposed in this thesis is named ‘an
algorithm for reconstructing Time-varying Gene regulatory networks with Shortlisted
candidate regulators’, in short, TGS. This algorithm achieves significantly lower runtime
than that of ARTIVA. However, TGS is unable to outperform ARTIVA in correctness.
The correctness is measured with a widely-used metric called ‘F1-score’ (Liu et al.,
2016). It is the harmonic mean of two other metrics called ‘recall’ and ‘precision’.
Recall measures how good an algorithm is in capturing the correct edges. On the other
hand, precision measures how good an algorithm is in rejecting the incorrect edges.
Therefore, F1-score is a measure of how good an algorithm is in balancing recall and
precision. TGS is able to outperform ARTIVA in recall. However, the latter maintains
a considerable lead over the former in precision. As a consequence, TGS is unable to
obtain F1-scores competitive to that of ARTIVA.

Balancing Recall and Precision: To enhance precision, the second algorithm is
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proposed. It is named ‘TGS-Plus’ (TGS+). This algorithm supersedes ARTIVA in
correctness. Additionally, TGS+ outpaces TGS in runtime. Nevertheless, it is observed
that both TGS and TGS+ are unable to manage their memory requirements efficiently.
The requirements grow exponentially with the number of genes in a given dataset.
Hence, these algorithms are expected to encounter memory-overflow issues for large-
scale datasets.

Improving Memory-efficiency: To prevent memory-overflow issues, the third set of
algorithms is proposed. The set contains a pair of algorithms. The first algorithm is
called ‘TGS - which is Light on memory’, in short, TGS-Lite. This algorithm offers
the same correctness and time-efficiency as that of TGS, yet, its memory requirement
grows only linearly with the number of genes. Similarly, the second algorithm, known
as ‘TGS-Lite Plus’ (TGS-Lite+), delivers the same correctness and time-efficiency as
that of TGS+, at a linear memory requirement. Nonetheless, we observe that these
algorithms, along with the ones we proposed earlier, tend to fail in capturing the edges
that remain active for short periods of time. Such edges, known as ‘transient edges’, may
trigger long-lasting cascading effects. Therefore, capturing transient edges is crucial for
understanding the underlying gene-regulation process.

Capturing Transient Edges: For capturing transient edges, the fourth and final set
of algorithms is proposed. This set consists of four algorithms. The first algorithm is
called ‘TGS - having Time-varying shortlists’, in short, TGS-T. This algorithm captures
significantly more numbers of correct edges than that of TGS. Similarly, the last three al-
gorithms, named as {TGS-T+, TGS-T-Lite, TGS-T-Lite+} capture considerably more
numbers of correct edges than that of {TGS+, TGS-Lite, TGS-Lite+}, respectively.

Nevertheless, there remain scopes for advancements. We discuss a few of them in
the following section.

9.2 Limitations and Future Directions

Methodological Improvements

Improvement of Precision: As discussed in the last section, the fourth set of al-
gorithms are able to capture considerably more numbers of correct edges than that of
the previously proposed algorithms. As a result, the former algorithms significantly
outperform the latter algorithms in ‘recall’, which is a metric for measuring how good
an algorithm is in capturing the correct edges (Liu et al., 2016). However, the former
algorithms are unable to outperform the latter algorithms in ‘precision’, which is a met-
ric for measuring how good an algorithm is in rejecting the incorrect edges (Liu et al.,
2016). Therefore, future research can consider the challenge of developing algorithms
that offer recalls competitive to that of the former algorithms and precisions competitive
to that of latter algorithms.

Improvement of Recall: Prior to this thesis, the highest recall achieved by any
algorithm for the three benchmark datasets was 0.3. The fourth set of algorithms
proposed in this thesis advance that to 0.39. Nonetheless, there are miles to go before
we reach the perfect recall of 1. Therefore, future research can be channelised in that
direction.

Accommodation of Continuous Data: The algorithms proposed in this thesis re-
quire discrete data as input. Since the benchmark datasets contain continuous data,
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they are discretised with a conventional data-discretisation method. The discretisation
process is highly likely to have caused a loss of information. As contemporary datasets
usually contain continuous data, future research can be focused on developing algo-
rithms that are at least as correct and efficient as the proposed algorithms, and can
accommodate continuous data (Zaas et al., 2009).

Benchmark Creation

In this thesis, we utilise three benchmark datasets. They were published by an on-
line competition organised by the ‘DREAM Challenges’ community (DREAM3). The
word ‘DREAM’ stands for ‘Dialogue on Reverse Engineering and Assessment Methods’.
As the name suggests, the competition presented the datasets for assessing reverse-
engineering methods. Since then, the datasets have been widely used for benchmarking
reconstruction algorithms; the publications related to the creation of these datasets have
received over a thousand citations (Marbach et al., 2010, 2009; Prill et al., 2010).

Nevertheless, these benchmarks have limitations. Each of the benchmarks contains a
time-series dataset. However, the true time-varying gene regulatory networks that were
used to generate the dataset are not made available with the corresponding benchmark.

Instead, a single time-invariant network is made available. This network represents
the edge-wise union of the true time-varying networks. For example, suppose that there
are two true time-varying networks; the true network specific to the first time interval
contains only one edge, from gene A to gene B; the true network specific to the second
time interval also contains only one edge, from gene B to gene C. In that case, the
true time-varying networks are represented by a single time-invariant network that has
exactly two edges, A to B, and B to C.

Therefore, the temporal sequence of the true edges is not known. As a result, an
algorithm that captures the true edges in a wrong sequence would be considered as
correct as an algorithm that captures them in the correct sequence. Following the
previous example, if an algorithm predicts edge B to C in the first time interval and
edge A to B in the second time interval, then also the prediction would be considered
correct.

To overcome this limitation, future research can be conducted to create benchmarks
that include time-series datasets and the corresponding true time-varying gene regula-
tory networks.

Utilisation of Multi-omics Data

For predicting the ‘regulator → regulatee’ relationships between genes, the proposed
algorithms solely utilise gene expression data. This data represents only one type of
omics data, which is the ‘transcriptomics’ data. The algorithms can be extended to
utilise complementary omics datasets to improve their predictions (Kim et al., 2014).
For instance, the ‘functional genomics’ data can be used as prior knowledge to reduce
the false positive predictions. This data contains information about ‘transcription factor
(TF) binding sites’; TFs are protein molecules that the regulator gene sends to the
regulatee gene; after reaching the regulatee gene, the TF physically binds to a location
known as the binding site of the regulatee gene; upon binding, the TF produces the
desired regulatory effect on the regulatee gene’s expression. In this case, a regulatee
gene has binding sites only for the TFs specific to its true regulators. Therefore, a gene
can not be a true regulator if its TFs do not have binding sites at the regulatee gene. In
case we possess the prior knowledge about a candidate regulator that its TFs do not have
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binding sites at the regulatee, we can reliably reject the candidacy of that regulator. If
such a candidate regulator’s expression demonstrates a high correlation with that of the
regulatee in the gene expression data, the proposed algorithms are likely to shortlist the
candidate regulator. Such candidate regulators can be removed from the shortlist when
TF-binding-site data are incorporated. Thus, false positive predictions can be reduced
by extending the abilities of the proposed algorithms for incorporating complementary
multi-omics data.

Data Integration

For a complex biological process, reconstruction of its time-varying gene regulatory
networks enables us to understand the process at the gene-regulation level. However,
such a process has multiple levels of biological regulations. For example, development
of a cancer may involve mutations at the DNA-sequence level, consequent changes at
the gene-regulation level, followed by alterations in the protein-expression level, ulti-
mately resulting in uncontrolled cell growth and formations of tumours at the tissue
level. Therefore, understanding the whole process requires reverse-engineering it from
data acquired at different levels, such as - DNA sequence data, gene expression data,
protein profiles and pathological test reports. Researchers are attempting to develop al-
gorithms that can reconstruct a whole process by integrating different levels of biological
data (Jain et al., 2016). Pursuing such developments shall be a worthwhile challenge;
if successful, it will push the boundaries of our biological understanding and medical
acumen.
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Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Hana Imrichova, Gert
Hulselmans, Florian Rambow, Jean-Christophe Marine, Pierre Geurts, Jan Aerts,
Joost van den Oord, et al. Scenic: single-cell regulatory network inference and clus-
tering. Nature methods, 14(11):1083–1086, 2017.

Uri Alon. An introduction to systems biology: design principles of biological circuits.
CRC press, 2006.

Michelle N. Arbeitman, Eileen E. M. Furlong, Farhad Imam, Eric Johnson, Brian H.
Null, Bruce S. Baker, Mark A. Krasnow, Matthew P. Scott, Ronald W. Davis, and
Kevin P. White. Gene expression during the life cycle of drosophila melanogaster.
Science, 297(5590):2270–2275, 2002. ISSN 0036-8075. doi: 10.1126/science.1072152.
URL http://science.sciencemag.org/content/297/5590/2270.

ARTIVA. ARTIVA package. URL https://cran.r-project.org/package=ARTIVA.
Last accessed: Dec 14, 2019.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate Gaussian or binary
data. Journal of Machine Learning Research, 9(Mar):485–516, 2008.

Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego
Di Bernardo. How to infer gene networks from expression profiles. Molecular sys-
tems biology, 3(1):78, 2007.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature reviews genetics, 5(2):101–113, 2004.

Katia Basso, Adam A Margolin, Gustavo Stolovitzky, Ulf Klein, Riccardo Dalla-Favera,
and Andrea Califano. Reverse engineering of regulatory networks in human b cells.
Nature genetics, 37(4):382–390, 2005.

119

http://genexplain.com/transfac/
http://genexplain.com/genexplain-platform
http://science.sciencemag.org/content/297/5590/2270
https://cran.r-project.org/package=ARTIVA


Nitin Bhardwaj, Matthew B. Carson, Alexej Abyzov, Koon-Kiu Yan, Hui Lu, and
Mark B. Gerstein. Analysis of combinatorial regulation: Scaling of partnerships be-
tween regulators with the number of governed targets. PLOS Computational Biology,
6(5):1–9, 05 2010. doi: 10.1371/journal.pcbi.1000755. URL https://doi.org/10.

1371/journal.pcbi.1000755.

David R Bickel. Probabilities of spurious connections in gene networks: application to
expression time series. Bioinformatics, 21(7):1121–1128, 2005.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Atul J Butte and Isaac S Kohane. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In Pacific Symposium on
Biocomputing, volume 5, pages 418–429, 2000.

India Central TB Division. TB India 2015, Revised National TB Control Pro-
gramme, Annual Status Report, March 2015. URL http://www.tbcindia.nic.in/

WriteReadData/l892s/254998242TB%20India%202015.pdf. Central TB Division,
Directorate General of Health Services, Ministry of Health and Family Welfare, India.

Julien Chiquet, Yves Grandvalet, and Christophe Ambroise. Inferring multiple graphical
structures. Statistics and Computing, 21(4):537–553, 2011.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76(2):373–397, 2014.

Alberto De La Fuente, Nan Bing, Ina Hoeschele, and Pedro Mendes. Discovery of
meaningful associations in genomic data using partial correlation coefficients. Bioin-
formatics, 20(18):3565–3574, 2004.

D. Deriso. Is the inverse of a symmetric matrix also symmetric? http:

//math.stackexchange.com/q/602192, 2013. Author profile: https://math.

stackexchange.com/users/115025/d-deriso. Last accessed: Dec 15, 2019.
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Bayesian network structure learning. New Generation Computing, 35(1):47–67,
Jan 2017. doi: 10.1007/s00354-016-0004-9. URL https://doi.org/10.1007/

s00354-016-0004-9.

Siddhartha Jain, Joel Arrais, Narasimhan J Venkatachari, Velpandi Ayyavoo, and Ziv
Bar-Joseph. Reconstructing the temporal progression of HIV-1 immune response
pathways. Bioinformatics, 32(12):i253–i261, 2016.

121

https://doi.org/10.1371/journal.pbio.0050008
https://doi.org/10.1093/bioinformatics/btw807
https://bioconductor.org/packages/GENIE3/
https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure
https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure
http://info.gersteinlab.org/Dream3
http://info.gersteinlab.org/Dream3
http://gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi
http://gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi
http://papers.nips.cc/paper/3687-non-stationary-continuous-dynamic-bayesian-networks.pdf
http://papers.nips.cc/paper/3687-non-stationary-continuous-dynamic-bayesian-networks.pdf
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1007/s00354-016-0004-9
https://doi.org/10.1007/s00354-016-0004-9


Yongsoo Kim, Seungmin Han, Seungjin Choi, and Daehee Hwang. Inference of dynamic
networks using time-course data. Briefings in bioinformatics, 15(2):212–228, 2014.
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Appendix A

Pseudocodes

Algorithm 8 TBN

1: procedure TBN(D )
2: Initialize G ← a null graph over (V × T ) nodes.
3: for each time interval

(
tp, t(p+1)

)
do

4: . where 1 ≤ p ≤ (T − 1); (T − 1) iterations.
5: for each gene vj ∈ V do . (V ) iterations.
6: Candidate regulators of vj t(p+1)

7: ← {vi tp : vi ∈ V}.
8: Candidate regulator sets of vj t(p+1)

9: ← Powerset ({vi tp : vi ∈ V}).
10: Find out a regulator set with the maximum
11: BIC score by computing the scores of all
12: candidate regulator sets from
13: D(V;{tp,t(p+1)};S) using the Bene algorithm.

14: Once the regulator set is finalised, for each
15: node in it, add an edge in G
16: from that node to vj t(p+1).

17: . o
(
V 22(V−2)

)
Silander and Myllymäki (2006)

18: end for
19: end for
20: return G.
21: end procedure
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Algorithm 9 CLR Faith et al. (2007)

1: procedure CLR(D,M )
2: (M is the Mutual Information (MI) matrix. It is a
3: (V × V ) matrix. The (vi, vj)

th cell of M , denoted by
4: M (vi, vj), represents the estimated MI value
5: between vi and vj .)
6: Initialize CLR network GCLR ← a null graph over the
7: genes in V. . O

(
V 2
)
.

8: for each pair of genes {vi, vj} do . O
(
V 2
)
.

9: Calculate CLR weight wi,j =
√
z2
i + z2

j where

10: zi = max
(

0,
M (vi,vj)−v̄i

σ(vi)

)
where, in turn,

11: (v̄i, σ (vi)) are the parameters of the empirical
12: distribution, estimated from the MI values
13: {M (vi, vk) : vk ∈ V \ {vi}}.
14: Similarly, zj is calculated.
15: if wi,j > 0 then
16: Add an undirected edge in GCLR between vi
17: and vj with edge weight wi,j .
18: end if
19: end for
20: return GCLR.
21: end procedure
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Algorithm 10 TGS

1: procedure TGS(D)
2: Compute the Mutual Information (MI) matrix,
3: denoted by M . It is a (V × V ) matrix. The (vi, vj)

th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . . O

(
V 2
)
.

6: Initialize G ← a null graph over (V × T ) nodes.
7: GCLR ← CLR (D,M ). . (Algorithm 9), O

(
V 2
)
.

8: for each time interval
(
tp, t(p+1)

)
do

9: (where 1 ≤ p ≤ (T − 1)) . (T − 1) iterations
10: for each gene vj ∈ V do . (V ) iterations
11: Candidate regulators of vj t(p+1) ←
12: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
13: Candidate regulator sets of vj t(p+1) ←
14: Powerset ({vi tp : (vi, vj) ∈ Edgeset (GCLR)}).
15: Find out a regulator set with the maximum
16: BIC score by computing the scores of all
17: candidate regulator sets from
18: D(V;{tp,t(p+1)};S) using the Bene algorithm.

19: Once the regulator set is finalised, for each
20: node in it, add an edge in G from
21: that node to vj t(p+1). Suppose,
22: M = maximum number of neighbours any
23: gene has in GCLR Silander and Myllymäki (2006).
24: . o

(
M22(M−2)

)
.

25: end for
26: end for
27: return G.
28: end procedure
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Algorithm 11 TGS with the Max Fan-in Restriction

1: procedure TGS(D,Mf )
2: Compute the Mutual Information (MI) matrix,
3: denoted by M . It is a (V × V ) matrix. The (vi, vj)

th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . . O

(
V 2
)
.

6: Initialize G ← a null graph over (V × T ) nodes.
7: GCLR ← CLR (D,M ). . (Algorithm 9), O

(
V 2
)
.

8: for each time interval
(
tp, t(p+1)

)
do

9: (where 1 ≤ p ≤ (T − 1)) . (T − 1) iterations
10: for each gene vj ∈ V do . (V ) iterations
11: if |{vi tp}| > Mf then
12: (where (vi, vj) ∈ Edgeset (GCLR))
13: Sort such vi genes in descending order of
14: the edge weight wi,j in GCLR. Generate a
15: list Lj by retaining the top Mf number of
16: genes and discarding the rest. Break ties
17: using lexicographic order of the gene
18: names or indices.
19: Candidate regulators of vj t(p+1) ←
20: {vi tp :
21: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}.
22: else
23: Candidate regulators of vj t(p+1) ←
24: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
25: end if
26: Candidate regulator sets of vj t(p+1) ←
27: Powerset({vi tp :
28: (vi, vj) ∈ Edgeset (GCLR)}).
29: Find out a regulator set with the maximum
30: BIC score by computing the scores of all
31: candidate regulator sets from
32: D(V;{tp,t(p+1)};S) using the Bene algorithm.

33: Once the regulator set is finalised, for each
34: node in it, add an edge in G from

35: that node to vj t(p+1). . o
(
M2
f 2(Mf−2)

)
.

36: end for
37: end for
38: return G.
39: end procedure
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Algorithm 12 ARACNE (Margolin et al., 2006)

1: procedure ARACNE(M )
2: . M is the raw Mutual Information (MI) matrix.
3: T ← Initialize a (V × V ) matrix.
4: Assign zero to each cell. . O

(
V 2
)
.

5: for each 3-combination of genes {vi, vj , vk} do

6: . O
((

V
3

))
= O

(
V 3
)
.

7: if there exists a pair among
8: {{vi, vj}, {vj , vk}, {vk, vi}}, whose MI value
9: is less than the other two pairs then

10: Tag that pair i.e.
11: make T (vi, vj)← 1, assuming
12: that (vi, vj) is such a pair.
13: end if
14: end for
15: for each tagged pair (vi, vj) in T do . O

(
V 2
)
.

16: Reset their raw MI value i.e.
17: make M (vi, vj)← 0.
18: end for
19: return the refined mutual information matrix M .
20: end procedure
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Algorithm 13 TGS+ with the Max Fan-in Restriction

1: procedure TGS+(D,Mf )
2: Compute the Mutual Information (MI) matrix,
3: denoted by M . It is a (V × V ) matrix. The (vi, vj)

th

4: cell of M , denoted by M (vi, vj), represents the
5: estimated MI value between vi and vj . . O

(
V 2
)
.

6: Refine M by passing it through ARACNE i.e.
7: M ← ARACNE(M ). . (Algorithm 12), O

(
V 3
)
.

8: Initialize G ← a null graph over (V × T ) nodes.
9: GCLR ← CLR (D,M ). . (Algorithm 9), O

(
V 2
)
.

10: for each time interval
(
tp, t(p+1)

)
do

11: (where 1 ≤ p ≤ (T − 1)) . (T − 1) iterations
12: for each gene vj ∈ V do . (V ) iterations
13: if |{vi tp}| > Mf then
14: (where (vi, vj) ∈ Edgeset (GCLR))
15: Sort such vi genes in descending order of
16: the edge weight wi,j in GCLR. Generate a
17: list Lj by retaining the top Mf number of
18: genes and discarding the rest. Break ties
19: using lexicographic order of the gene
20: names or indices.
21: Candidate regulators of vj t(p+1) ←
22: {vi tp :
23: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}.
24: else
25: Candidate regulators of vj t(p+1) ←
26: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
27: end if
28: Candidate regulator sets of vj t(p+1) ←
29: Powerset({vi tp :
30: (vi, vj) ∈ Edgeset (GCLR)}).
31: Find out a regulator set with the maximum
32: BIC score by computing the scores of all
33: candidate regulator sets from
34: D(V;{tp,t(p+1)};S) using the Bene algorithm.

35: Once the regulator set is finalised, for each
36: node in it, add an edge in G from

37: that node to vj t(p+1). . o
(
M2
f 2(Mf−2)

)
.

38: end for
39: end for
40: return G.
41: end procedure
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Algorithm 14 Gen-next-set

1: procedure Gen-next-set(curr.set)
2: ## curr.set: current candidate regulator set.
3: *******************************
4: l ← |curr.set|. . Θ (|curr.set|) = O (Mf ).
5: Initialize the carry bit with TRUE i.e.
6: carry.bit ← 1b.
7: ## 1b : Boolean TRUE, 0b : Boolean FALSE.
8: *******************************
9: for bit index i = l to 1 do . Θ (l) = O (Mf ).

10: curr.bit ← curr.set[i ] where
11: curr.set[i ] denotes the i -th bit of curr.set.
12: ## curr.set[l ] = the least significant bit of curr.set.
13: ## curr.set[1] = the most significant bit of curr.set.
14: if curr.bit and carry.bit both are 0b then
15: curr.set[i ] ← 0b.
16: carry.bit ← 0b.
17: else if curr.bit and carry.bit both are 1b then
18: curr.set[i ] ← 0b.
19: carry.bit ← 1b.
20: else
21: curr.set[i ] ← 1b.
22: carry.bit ← 0b.
23: end if
24: end for
25: *******************************
26: return curr.set.
27: ## It is an in-place replacement i.e. the input value
28: ## of curr.set is modified in-place to generate the
29: ## next value of curr.set, without creating any
30: ## additional variable.
31: end procedure
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Algorithm 15 Find-best-set-Lite

1: procedure Find-best-set-lite(vj t(p+1),V(j;(p+1)),D∗)
2: ## vj t(p+1) : regulatee gene;
3: ## V(j;(p+1)) : candidate regulators of vj t(p+1);
4: ## D∗ : data needed to calculate the required BIC
5: ## scores; in this particular case,
6: ## D∗ = D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S) .

7: *******************************
8: curr.set ← empty set.
9: best.set ← curr.set.

10: best.score ← BIC score of curr.set.
11: . (Section 4.2, supplementary document, (Pyne and Anand, 2019a)),

12: . TBIC

(
V ;T ;S;Mf ;~δ

)
.

13: for loop counter = 2 to 2|V(j;(p+1))| do

14: . Θ
(

2|V(j;(p+1))| − 1
)

= O
(
2Mf − 1

)
15: . iterations.
16: curr.set ← GEN-NEXT-SET(curr.set).
17: . Algorithm 14 , O (Mf ).
18: curr.score ← BIC score of curr.set.
19: . TBIC

(
V ;T ;S;Mf ;~δ

)
.

20: if curr.score > best.score then
21: best.score ← curr.score.
22: best.set ← curr.set.
23: end if
24: end for
25: *******************************
26: return best.set.
27: end procedure
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Algorithm 16 TGS-Lite with the Max Fan-in Restriction

1: procedure TGS-Lite(D,Mf )
2: ## D : data; Mf : max fan-in.
3: Compute the Mutual Information (MI) matrix,
4: denoted by M . It is a (V × V ) matrix. The (vi, vj)

th

5: cell of M , denoted by M (vi, vj), represents the
6: estimated MI value between vi and vj . . O

(
V 2
)
.

7: Initialize G ← a null graph over (V × T ) nodes.
8: GCLR ← CLR (D,M ).
9: . (Algorithm 9), O

(
V 2
)
.

10: *******************************
11: for each gene vj ∈ V do . (V ) iterations
12: for each time interval

(
tp, t(p+1)

)
do

13: (where 1 ≤ p ≤ (T − 1)) . (T − 1) iterations
14: *******************************
15: if No. of neighbours of vj in GCLR > Mf then
16: From the set of neighbours of vj in GCLR,
17: generate a list Lj by selecting the top
18: Mf number of neighbours w.r.t. their
19: edge weights with vj in GCLR. Break
20: ties using the lexicographic order of
21: gene names or indices.
22: V(j;(p+1)) ←
23: {vi tp :
24: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}
25: where V(j;(p+1)) : The set of
26: candidate regulators of vj t(p+1).
27: . O (V ).
28: else
29: V(j;(p+1)) ←
30: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
31: . O (Mf ).
32: end if
33: *******************************
34: best.set ←
35: FIND-BEST-SET-LITE

(
vj t(p+1),V(j;(p+1)),

36: D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S)

)
.

37: . Algorithm 15 ,

38: . TFind-best-set-Lite

(
V ;T ;S;Mf ;~δ

)
.

39: for each node in best.set do
40: . Θ (|best.set|) = O (Mf ).
41: Add an edge in G
42: from that node to vj t(p+1).
43: end for
44: end for
45: end for
46: *******************************
47: return G.
48: end procedure
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Algorithm 17 TGS-Lite+ with the Max Fan-in Restriction

1: procedure TGS-Lite+(D,Mf )
2: ## D : data; Mf : max fan-in.
3: Compute the Mutual Information (MI) matrix,
4: denoted by M . It is a (V × V ) matrix. The (vi, vj)

th

5: cell of M , denoted by M (vi, vj), represents the
6: estimated MI value between vi and vj . . O

(
V 2
)
.

7: Refine M by passing it through ARACNE i.e.
8: M ← ARACNE(M ).
9: . (Algorithm 12), O

(
V 3
)
.

10: Initialize G ← a null graph over (V × T ) nodes.
11: GCLR ← CLR (D,M ).
12: . (Algorithm 9), O

(
V 2
)
.

13: for each gene vj ∈ V do . (V ) iterations
14: for each time interval

(
tp, t(p+1)

)
do

15: (where 1 ≤ p ≤ (T − 1)) . (T − 1) iterations
16: if No. of neighbours of vj in GCLR > Mf then
17: From the set of neighbours of vj in GCLR,
18: generate a list Lj by selecting the top
19: Mf number of neighbours w.r.t. their
20: edge weights with vj in GCLR. Break
21: ties using the lexicographic order of
22: gene names or indices.
23: V(j;(p+1)) ←
24: {vi tp :
25: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}
26: where V(j;(p+1)) : The set of
27: candidate regulators of vj t(p+1).
28: . O (V ).
29: else
30: V(j;(p+1)) ←
31: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
32: . O (Mf ).
33: end if
34: best.set ←
35: FIND-BEST-SET-LITE

(
vj t(p+1),V(j;(p+1)),

36: D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S)

)
.

37: . Algorithm 15 ,

38: . TFind-best-set-Lite

(
V ;T ;S;Mf ;~δ

)
.

39: for each node in best.set do
40: . Θ (|best.set|) = O (Mf ).
41: Add an edge in G
42: from that node to vj t(p+1).
43: end for
44: end for
45: end for
46: return G.
47: end procedure
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