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Abstract

Nowadays, safety-critical embedded systems are increasingly being imple-

mented on computing platforms which involve complex microarchitectural

designs with multi-million gates per chip and small feature sizes, to meet the

computation and performance demands of the applications. Although, such

intricate sophistication is inevitable, they come with associated side-effects

such as, high energy dissipation and increase in the probability of faults. In

addition, a significant class of contemporary embedded systems are driven

by limited energy sources like batteries. On the other hand, there is an in-

creasing trend in many futuristic safety-critical systems to be shipped with

quantifiable measures of system reliability. Increased reliability/tolerance

against faults are typically achieved through additional hardware resources

and/or by utilizing residual system capacity. Similarly, execution slowdown

and switching parts of the system into inactive low-power states, are two

commonly used system level strategies towards enhancing energy efficiency.

Therefore, energy-awareness and fault tolerance have emerged as critically

important design constraints in the development of modern safety-critical

systems. In this dissertation, we present a few novel scheduling and mod-

eling strategies for safety-critical systems which aim to achieve one of the

following objectives: 1) energy minimization, 2) fault tolerance, 3) fault tol-

erance with energy-awareness, and 4) low-overhead fault detection.

The entire thesis work is composed of multiple distinct contributions which

are categorized into four phases. In the first phase, we have developed a pro-

crastination based scheduling methodology to minimize static energy con-

sumption in a symmetric multiprocessor system. As discussed above, real-

time systems running safety-critical applications need to ensure functional

correctness in the presence of permanent/transient faults. Hence, the second



phase endeavors towards the development of an efficient scheduling strat-

egy with support for recovery from permanent faults, in a real-time multi-

processor system. The first two phases discuss scheduling mechanisms for

homogeneous multiprocessor systems. However, today’s platforms are in-

creasingly becoming heterogeneous to cater to the stringent and customized

performance demands of different applications. Scheduler design for hetero-

geneous systems is challenging because the same application may exhibit

different timing as well as power characteristics on the various processing

elements. Hence, the third phase combines the objectives of the first two

phases (minimizing energy consumption and providing fault tolerance) and

targets to develop a standby-sparing based combined scheduling strategy for

imbibing both energy-awareness and fault tolerance in heterogeneous real-

time multi-core systems. The second and third phases assume that faults

are always detectable and aim towards the design of efficient procedures that

provide functional correctness in the presence of faults. In the fourth and

last phase of this dissertation, we have endeavored towards the design of a

low-overhead formal fault diagnosis mechanism which actively monitors the

system and detects the presence of unobservable faults.

All the presented works have been validated through extensive simulation

based experiments using synthetically generated workloads as well as real

world benchmarks. The obtained results have demonstrated the versatility

and efficacy of the proposed approaches.
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Chapter 1
Introduction

With the growth in technology and larger scales of production, intelligent automation

systems have found widespread usage in safety-critical applications across all domains

of engineering, ranging from avionics and automobiles to industrial processes, manufac-

turing, and electronic systems. A system or an application is said to be safety-critical

if its failure can result in serious injury, loss of life or property, or damage to the envi-

ronment [4, 10, 61, 63]. Many safety-critical systems also have constraints on time and

hence, such class of systems is categorized into real-time safety-critical systems. These

systems are characterized by their ability to respond events that may happen in their

operating environment within stipulated temporal constraints. Thus, the correctness of

these systems depends not only on the value of the computation but also on the time

at which the results are produced [26, 76]. The time instant by which a valid result

should be produced is called deadline. Examples of real-time safety-critical systems in-

clude fly-by-wire in aircrafts, pacemakers in health-care, anti-lock braking systems in

automobiles, reactors in nuclear plants, etc. This dissertation deals with the design of

safety-critical systems in general and real-time safety-critical systems in particular.

Nowadays, modern computing platforms are being manufactured using complex mi-

croarchitectural designs with multi-million gates per chip having small feature sizes.

Although such intricate designs allow most of today’s embedded systems to meet the

computation and performance demands of safety-critical applications (often termed as

tasks), they come with associated side-effects such as increase in the probability of
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1. INTRODUCTION

faults and high energy dissipation. More and more of these embedded systems are be-

ing deployed in harsh environments such as outer space, which also adversely affect

fault-rates in these systems. In addition, there is an increasing trend in many futuristic

safety-critical systems to be shipped with quantifiable measures of system reliability.

Therefore, the ability to maintain functional and temporal correctness in the presence of

faults1 (permanent/transient) is a key design requirement in such safety-critical systems.

Increased reliability/tolerance against faults are typically achieved through time and/or

hardware redundancies [37,62,64,102]. Time redundancy based approaches use the slack

capacity available in an underloaded system to achieve fault tolerance [64]. Important

time redundancy based strategies include re-execution [94, 95] and checkpointing with

rollback recovery [40, 57]. In the re-execution scheme, whenever a fault is detected, the

faulty task is either re-executed from the beginning or a different version of the task,

called recovery block, is executed in order to recover from the fault. Unlike the re-

execution based approach, checkpointing involves periodically saving the intermediate

states of a task during its execution. On the occurrence of a failure, the latest saved

internal state of the task is restored and execution resumes from this saved state. Hard-

ware redundancy based approaches incorporate extra hardware into the design to either

detect or override the effects of failed components [62]. Important hardware redundancy

based strategies include N-modular redundancy and the use of standby spares [37, 51].

In N-modular redundancy, multiple units running in parallel execute redundant copies

of the same workload and mask errors by voting on their outputs. In the standby spares

approach (also called backup redundancy), the fault affected primary unit is replaced by

an identical secondary unit subsequent to a fault. In this dissertation, we endeavor to

develop efficient fault-tolerant design strategies for safety-critical systems.

With the exponential increase in computational demands over the years, system

designers are forced to continuously increase operating frequencies of the involved com-

putation platform. As a result, the processing elements of the computing platform

have to often operate at very high frequencies to meet the computational demands of

1For simplicity, and with a slight abuse of terminology, the terms fault and failure have henceforth
been used interchangeably.
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applications, and this causes a higher power consumption in the system. This power

dissipation, which is caused due to dynamic switching activities of the processors when

executing applications, is termed as dynamic power consumption. At the system level,

such dynamic power dissipation may be controlled by lowering the processor’s operating

frequency while taking care that the performance demands of the workloads in the sys-

tem can still be satisfied. The operating frequencies of a Complementary Metal-Oxide

Semiconductor (CMOS) based processor are typically a linear function of the supply

voltage (Vdd) and hence can be varied by scaling Vdd. Further, it has been shown that

energy dissipated per cycle in CMOS circuits scale quadratically to the supply volt-

age [89, 108]. Hence, careful management of processor operating frequencies through

Dynamic Voltage Scaling (DVS) has the potential to provide large energy savings. Fur-

ther, most of today’s high-end devices are being manufactured using deep sub-micron

technologies with multi-million gates per chip. This has caused leakage power dissipa-

tion (also termed as static power dissipation) through the gates in these chips, which is

an equally important source of energy wastage as its dynamic counterpart. This static

power consumption is independent on the operating frequencies and switching activities

of the processors and is always present whenever the system is powered-on. Figure 1.1

gives a detailed idea about the power dissipation in CMOS circuits over the years with a

decrease in the gate length [15]. It has been observed that after the year 2005 onwards,

static power consumption has become comparable with its dynamic counterpart and has

even become the predominant component. Static power dissipation can be reduced by

suspending parts of the system such as one or more processors, cache, RAM, etc., when

the utilization of system’s full capacity is not needed to meet performance requirements.

Energy dissipation of the suspended components are typically negligible compared to

their active states [13, 14, 18]. In addition, a significant class of contemporary real-time

embedded systems is driven by limited energy sources like batteries. Therefore, it is es-

sential to provide energy efficient computing mechanisms to reduce power consumption

in these systems. In this dissertation, we also endeavor to develop efficient energy-aware

design strategies for safety-critical systems.
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Figure 1.1: Increase of static and dynamic power in CMOS circuits [15]

A large class of safety-critical systems such as pacemakers in health-care, satellites

in outer space, etc. are often also energy-constrained. Hence, mechanism for both fault

tolerance and energy-awareness must be incorporated in their design process. A closer

observation reveals that both for mechanisms which aim to provide energy efficiency as

well as those targeted to achieve fault tolerance, essentially endeavor to meet their goals

by exploiting available redundant system resources in terms of time (temporal redun-

dancy) or hardware (spatial redundancy) or both. Thus, the goals of energy efficiency

and that of fault tolerance may be considered to be conflicting in nature. Hence, simul-

taneously satisfying both these goals will necessitate a careful trade-off which judiciously

balances the fraction of the available redundant resources dedicated to achieve energy

efficiency with the fraction dedicated to achieve fault tolerance [84, 118]. This disserta-

tion also deals with the development of combined energy-aware and fault-tolerant design

strategies for safety-critical systems.

The continuous endeavor towards higher performance along with the necessity to

meet more and more finely-tuned application specific performance objectives is fast

transforming computation platforms from homogeneous to heterogeneous multi-cores.
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Homogeneous processing platforms use identical computing elements to satisfy the com-

putational demands of various applications. On the contrary, processing platforms with

varying types of computing elements are called heterogeneous (or unrelated) platforms.

For example, Advanced RISC Machines (ARM) has developed a heterogeneous pro-

cessing architecture, called ARM big.LITTLE which has been deployed in cutting-edge

mobile devices such as Samsung Galaxy Note 4, S10, etc. The big.LITTLE platform con-

tains two types of cores, one of which is high-performance, called the big cores, while the

other is of lower performance and power-efficient, referred to as LITTLE cores. Due to

the differences in the internal microarchitectures of big and LITTLE cores, the same task

may exhibit different execution rates as well as power consumption characteristics on the

different cores [100, 101]. In this dissertation, we endeavor to develop design strategies

for heterogeneous computing systems as well, along with our designs for homogeneous

platforms.

The design strategies for fault tolerance discussed above assume faults to be de-

tectable. However, enforcement of fault tolerance can only be achieved through the

incorporation of safe design methodologies which enable efficient active monitoring and

detection of unobservable faults in the system. Therefore, it is desirable to incorporate

efficient strategies for fault diagnosis (detection and isolation) in the construction of

safety-critical systems. It may be noted from the literature that formally constructed

safe design methodologies are often used to make a system amenable to efficient active

monitoring and detection of unsafe execution states whenever the system behavior de-

viates from its stipulated specification. Discrete Event System (DES) is an important

formal design technique that is often used for automated failure diagnosis in a wide

range of systems primarily because of its systematic modeling approach and the sim-

plicity of its associated algorithms [28, 103, 115]. DES allows a structured, hierarchical

modeling procedure to generate composite models of complex systems from individual

component models and then allows the incorporation of diagnostics over these composite

models. Through this approach, DES methods are able to avoid the often tedious and

involved efforts that are required to construct detailed one-shot monolithic models of the
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complex system to be diagnosed. Further, complex systems which even include contin-

uous dynamics can also be viewed as DESs at a certain level of abstract discretization.

DES provides a fault detection mechanism known as Diagnoser which actively moni-

tors behavior of the system and detects the occurrence of unexpected events (faults) in

an effective way. It may be noted from the literature that complexity of the diagnosis

processes, that is, constructing a diagnoser and testing its diagnosability, is exponen-

tial in the number of system states [28, 103, 115]. This may lead to prohibitively huge

state-space requirements in the design of diagnosers for large and complex systems. As

a spin-off from our efforts related to energy-aware and fault-tolerant scheduling, we have

also endeavored to develop an efficient, low-overhead, DES-based fault diagnosis design

strategy for safety-critical systems, as part of this dissertation.

1.1 Challenges

During the development of efficient design strategies for safety-critical systems, a de-

signer must encounter several challenges. This is because the design may need to satisfy

various stringent constraints including those related to timeliness, resource utilization,

fault tolerance, power dissipation, cost, etc. We now enumerate a few such important

challenges and discuss them.

1. Timeliness:

Real-time systems are characterized by their ability to generate results whose cor-

rectness depends not only on the value of the computation but also on the time

domain. The time before which a task should complete its execution without

causing any damage to the system is called its deadline. Therefore, a real-time

safety-critical system must be able to guarantee all timing constraints (execution

times and deadlines) of various applications/tasks that co-execute in the system.

2. Resource constraints:

Over the years, the nature of computing platforms used in real-time systems has

seen a distinct transformation from uni-cores to homogeneous multi-cores to het-

erogeneous multi-core systems. These computing platforms typically consist of

6



1.1 Challenges

a limited number of processing elements (i.e., resources). Therefore, the design

strategies for safety-critical systems must be able to effectively utilize the pro-

cessing capacity of underlying platform to satisfy the computational demands of

real-time applications.

3. Fault tolerance:

As the real-time systems become more and more complex, the need to actively

monitor the system and provide safety guarantee has become critical. In general,

safety-critical systems must adhere to strict specifications on the operation of its

critical components. However, these specifications may be violated by faults caused

by environmental disturbances leading to a failure. Therefore, in addition to sat-

isfying timing constraints, fault tolerance (that is, ensuring functional correctness

in the presence of faults) is fast emerging as a design constraint of paramount

importance in safety-critical systems.

4. Energy efficiency:

Modern computing platforms involve complex microarchitectural designs with multi-

million gates per chip and small feature sizes to meet the computation and per-

formance demands of safety-critical applications. Consequently, these platforms

consume high energy during run-time. When the computing capacities of such

platforms are not fully utilized, it is possible to employ efficient reconfiguration

strategies to control and lower their energy consumption based on the computation

demands of the applications running on them.

5. Simultaneous handling of multiple conflicting challenges:

A closer observation reveals that both for mechanisms which aim to provide energy

efficiency as well as those targeted to achieve fault tolerance, essentially endeavor to

meet their goals by exploiting available redundant system resources in terms of time

(temporal redundancy) or hardware (spatial redundancy) or both. Thus, the goals

of energy efficiency and that of fault tolerance may be considered to be conflicting

in nature. Hence, simultaneously satisfying both these goals will necessitate a
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careful trade-off. In safety-critical systems, if all timing and fault tolerance related

constraints are satisfied, then the system designer can focus on minimizing the

overall energy consumption to prolong the battery lifetime of systems.

1.2 Objectives

The principle aim of this dissertation has been to investigate the theoretical and practical

aspects of energy-efficient and fault-tolerant design strategies for safety-critical systems

keeping in view the challenges/hurdles discussed in the previous section. In particular,

the objectives of this work may be summarized as follows:

1. Development of an efficient energy-aware scheduling methodology to minimize

static energy consumption in a symmetric real-time multiprocessor system.

2. Design and implementation of an efficient fault recovery mechanism to handle the

transient overloads caused by the permanent failure of a processor in a real-time

multiprocessor system.

3. The third objective combines the first two objectives (minimizing energy con-

sumption and providing fault tolerance) and develops a standby-sparing based

energy-aware fault-tolerant scheduling strategy for heterogeneous real-time multi-

core systems.

4. Development of a formally constructed light-weight fault diagnosis mechanism to

actively monitor the system and detect the presence of unobservable failures in a

safety-critical system.

1.3 Contributions

As a part of the research work, we have developed the following energy-efficient and

fault-tolerant design strategies for safety-critical systems:

1. Energy-efficient Fair Scheduling on Real-time Multiprocessor Systems

Proportional fair schedulers with their ability to provide optimal schedulability
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along with hard timeliness and QoS guarantees on multiprocessors, form an at-

tractive alternative in real-time embedded systems that concurrently run a mix

of independent applications with varying timeliness constraints. In this work,

we propose an efficient, optimal proportional fair scheduler called ERfair Sched-

uler with Suspension on Multiprocessors (ESSM) which attempts to reduce system

wide energy consumption by locally maximizing the processor suspension intervals

while not sacrificing the ERfairness timing constraints of the system. The proposed

technique takes advantage of higher execution rates of tasks in underloaded ERfair

systems and uses a novel procrastination scheme to search for time points within

the schedule where suspension intervals are locally maximal. ESSM not only en-

sures 100% resource utilization but also guarantees that fairness accuracy of no

task will ever be violated due to the procrastination applied. To the best of our

knowledge, this is the first work targeted at minimizing static energy dissipation

in proportionally fair scheduled real-time multiprocessor systems.

2. Fault-tolerant Fair Scheduling on Real-time Multiprocessor Systems

The ability to maintain functional and temporal correctness in the presence of

faults is a key requirement in many safety-critical embedded systems. This work

proposes an efficient fault recovery mechanism for real-time multiprocessor sys-

tems scheduled using a low overhead and semi-partitioned optimal proportional fair

scheduling technique. We assume a system that can handle a single permanent pro-

cessor fault at any time, using cold back-ups (with pre-specified activation/recovery

time subsequent to the detection of a fault). As a result of the fault, the system

may suffer transient overloads during such recovery periods, potentially leading

to unacceptable fairness deviations and consequent rejections/early terminations

of critical jobs. The proposed fault-tolerant scheduler, called Fault Tolerant Fair

Scheduler (FT-FS), attempts to minimize such job terminations/rejections dur-

ing recovery, by judiciously redistributing slacks accumulated by a subset of jobs,

delivering more sustainable performance in the process.

FT-FS employs a novel slack donation scheme from overallocated to underallo-
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cated tasks with the objective of maximizing resource utilization. In times of

uncontrollable overloads during recovery when task rejection becomes inevitable,

the proposed framework takes care to reject a minimum number of the least critical

tasks. The scheduler also ensures that all tasks which execute through the recov-

ery period have progressed by their prescribed amounts at the end of the recovery

period when the spare processor gets activated. This empowers the framework to

handle fresh faults immediately after recovery. Hence in this work, two consecutive

processor faults only need to be separated by just the recovery interval, and this

duration is typically small especially in closely coupled systems. The underlying

scheduling structure being based on DP-Fair, FT-FS is able to ensure high resource

utilization and fair rate-based execution progress while incurring low scheduling

related overheads through controlled migrations and context-switches.

3. Fault and Energy Aware Scheduling on Real-time Heterogeneous Dual-

cores

Devising scheduling strategies for modern safety-critical real-time systems imple-

mented on heterogeneous platforms is a challenging as well as a computationally

demanding problem. As a consequence, today we face a scarcity of low-overhead

scheduling techniques which are applicable to heterogeneous platforms. In this

work, we attempt to develop an efficient energy-aware heuristic scheme called,

FENA-SCHED, for the fault-tolerant scheduling of real-time tasks on two-core

heterogeneous platforms, where one core is high-performance and the other core

is power-efficient. In order to provide fault-tolerance against transient processor

faults, we consider a standby-sparing approach where the power-efficient core is

used to execute primary task versions while the high-performance core is operated

as a spare to re-execute fault affected tasks (i.e., backups). Since, the execution

of backups scheduled on the spare core are cancelled subsequent to the fault-free

execution of their primaries, we employ Dynamic Power Management (DPM) on

both cores to minimize energy consumption. For a DPM-enabled system, we found

that designating power-efficient (modest performance) core as primary and power-
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hungry (high-performance) core as spare yields better energy savings as compared

to its counterpart. Further, FENA-SCHED utilizes backup-backup overloading to

minimize energy consumption while guaranteeing tolerance against a given number

of transient processor faults.

4. A Formal Design Strategy for Fault Diagnosis in Safety-critical Systems

Unlike the second and third contributions which assume faults are always de-

tectable and target towards the design of efficient scheduling procedures that pro-

vide functional correctness in the presence of faults, in this work, we have de-

veloped an efficient, low-overhead, DES-based fault diagnosis design strategy for

safety-critical systems.

In this work, we present a new fault diagnosis approach called Measurement Lim-

itation based Abstract DES Diagnosis (MLAD), which attempts to reduce state

space complexity of the diagnosis process while simultaneously preserving full di-

agnosability. The MLAD approach carefully applies a set of distinct measurement

limitation operations on the state variables of the original DES model based on

fault compartmentalization to obtain separate behaviorally abstracted DES models

and corresponding abstract diagnosers with far lower state spaces. The set of mea-

surement limitation operations are so designed that although, any single abstract

diagnoser may compromise diagnosability in seclusion, the additive combination of

all diagnosers running in parallel always ensures complete diagnosability. Effective

measurement limitation also ensures that the combined state space of the abstract

diagnosers is much lower than that of the single full diagnoser that may be derived

from the original DES model.

1.4 Organization of the Thesis

The thesis is organized into seven chapters. Each contributory chapter (Chapter 3 to

Chapter 6) starts with a detailed description of the system under consideration, followed

by extensive discussions about the proposed scheme. Then, we discuss the experimental

evaluation of the proposed methodology. All chapters conclude with a summary of
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contributions. The last chapter of the thesis (Chapter 7) discusses the conclusions and

future perspectives of this research work. A summary of the contents in each chapter is

as follows:

• Chapter 2: Energy/Fault Aware Real-time and Safety-critical Systems - Back-

ground and State-of-the-art

This chapter first provides an overview on the structure of real-time systems, fol-

lowed by a review of various scheduling strategies under four important design con-

siderations: i) real-time resource allocation on multiprocessor platforms, ii) energy

awareness, iii) imbibing fault tolerance, and iv) fault tolerance with energy aware-

ness. Most of the fault-tolerant procedures that provide functional correctness in

the presence of faults, assume faults to be detectable. However, enforcement of

such fault tolerance can only be achieved through the incorporation of safe design

methodologies which enable efficient active monitoring and detection of unobserv-

able faults in the system. Therefore, it is desirable to incorporate efficient fault

diagnosis (detection and isolation) strategies in the construction of safety-critical

systems. In this chapter, we also discuss an important formally constructed safe

design technique known as Discrete Event System (DES), and introduce the formal

definitions related to DES-based fault diagnosis framework. Then, we analyze a

few important state-of-the-art works related to DES-based fault diagnosis.

• Chapter 3: Energy-efficient Fair Scheduling on Real-time Multiprocessor Systems

In this chapter, we present a novel energy-efficient design strategy which minimizes

static energy consumption in a homogeneous real-time multiprocessor system. Be-

ing based on a work-conserving proportional fair scheduling mechanism, in this

chapter, we develop an energy-aware design strategy which attempts to locally

maximize the total length of suspension intervals while simultaneously reducing

the number of such intervals using a novel procrastination scheme, thus lowering

energy consumption in the process.

• Chapter 4: Fault-tolerant Fair Scheduling on Real-time Multiprocessor Systems
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This chapter proposes a novel time-cum-hardware redundancy based fault-tolerant

design strategy for real-time multiprocessor systems containing cold-standby spares.

In this work, we assume a system that can handle at most one permanent processor

fault at any given time using a single cold-standby spare that takes a fixed recovery

time to attain operational state after the detection of a fault. Thus, during any

recovery period subsequent to a failure, the system is forced to work with one less

processor resource. The primary objective of the work presented in this chapter

is to satisfy all timing constraints of tasks during any recovery interval, given the

total workload to be handled.

• Chapter 5: Fault and Energy Aware Scheduling on Real-time Heterogeneous Dual-

cores

Research conducted in this chapter deals with the development of a combined

energy-aware and fault-tolerant design strategy for heterogeneous systems. This

work first develops a standby-sparing based fault-tolerant scheme for scheduling

real-time applications on heterogeneous dual-core systems consisting of a power-

efficient core and a high-performance core. By utilizing dynamic power man-

agement (DPM) technique with backup-backup overloading, the proposed fault-

tolerant framework is further extended to minimize overall energy consumption in

the system.

• Chapter 6: A Formal Design Strategy for Fault Diagnosis in Safety-critical Sys-

tems

This chapter proposes a formal fault detection and isolation (that is, fault diag-

nosis) framework for the design of safety-critical systems. The objective of this

novel fault diagnosis strategy is to reduce state space complexity involved in the

diagnosis process while simultaneously preserving full diagnosability.

• Chapter 7: Conclusions and Future Perspectives

The thesis concludes with this chapter. We discuss the possible extensions and

future works that can be done in this area.
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Chapter 2
Energy/Fault Aware Real-time and
Safety-critical Systems - Background and
State-of-the-art

This dissertation is oriented towards the development of efficient design strategies for

real-time and safety-critical systems which aim to achieve one of the following objectives:

1) energy minimization, 2) fault tolerance, 3) fault tolerance with energy awareness, and

4) low-overhead fault detection. The previous chapter provided an overview of the

challenges imposed by the diversity in the nature of computing platforms, performance

requirements including those related to timeliness, fault tolerance, power dissipation,

etc., towards the development of modern safety-critical systems.

In this chapter, we present a brief background as well as state-of-the-art related

to different types of real-time systems, followed by a survey on discrete event system

(DES) based fault diagnosis framework. We first provide an overview on the structure

of real-time systems. Then, we discuss various scheduling strategies under four impor-

tant design considerations: i) real-time resource allocation on multiprocessor platforms,

ii) energy awareness, iii) imbibing fault tolerance, and iv) fault tolerance with energy

awareness. It may be observed from the literature that most of the fault-tolerant proce-

dures that provide functional correctness in the presence of faults, assume faults to be

detectable. However, enforcement of such fault tolerance can only be achieved through

the incorporation of safe design methodologies which enable efficient active monitoring

and detection of unobservable faults in the system. Therefore, it is desirable to incor-
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2. ENERGY/FAULT AWARE REAL-TIME AND SAFETY-CRITICAL
SYSTEMS - BACKGROUND AND STATE-OF-THE-ART

porate efficient fault diagnosis (detection and isolation) strategies in the construction of

safety-critical systems. DES is an important formally constructed safe design technique

that is often used for automated failure diagnosis in a wide range of systems primarily

because of its systematic modeling approach and the simplicity of its associated algo-

rithms [28,103,115]. In this chapter, we also introduce the formal definitions related to

DES-based fault diagnosis framework. Then, we discuss and analyze a few important

state-of-the-art works related to DES-based fault diagnosis.

2.1 An Overview of Real-time Systems

Typically, real-time systems are composed of the following layers [90]:

• An application layer, which is composed of a set of all applications that requires

execution in the system.

• A real-time scheduler, which takes the scheduling decisions and provides ser-

vices to the application layer.

• A hardware platform, which includes the processors (among other things such

as memories, communication networks, etc.).

We will now present each of these layers in detail and introduce the theoretical models

enabling researchers to analyze these systems and design efficient schedulers for real-time

systems to allocate the application tasks on the hardware platform.

2.1.1 The Application Layer

The application layer contains a set of applications that the system needs to execute. In

real-time systems, the applications are often composed of a set of recurrent tasks. Each

such task may represent a piece of code (i.e., program) which is triggered by external

events that may happen in their operating environment. Each execution of the task

is referred to as a task instance or job. We now discuss a set of definitions related to

real-time tasks.
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2.1.1.1 A Real-time Task Model

Figure 2.1: Temporal characteristics of a real-time task Ti

Formally, a real-time task (denoted by Ti; shown in Figure 2.1) can be characterized

by the following parameters:

1. Arrival time (ai) is the time at which a task becomes ready for execution. It is

also referred as release time or request time of the task.

2. Start time (si) is the time at which a task starts its execution.

3. Execution time (ei) is the time required by the processor to finish the computa-

tional demand of a task without interruption.

4. Finishing time or Completion time is the time at which a task finishes its exe-

cution.

5. Deadline is the time before which a task is required to meet its execution require-

ment. If deadline is computed with respect to the system start time (at 0), it is

referred to as absolute deadline (Di). If it is computed with respect to its arrival

time, it is referred to as relative deadline (di).

6. Slack time or Laxity is the maximum amount of time by which execution of a

task can be delayed after its activation to complete within its deadline: di − ei.

7. Priority is the importance given to a task in context of the schedule at hand.

A real-time task Ti can be classified as periodic, aperiodic and sporadic based on

regularity of its activation [26].
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1. Periodic tasks consist of an infinite sequence of identical activities, called in-

stances or jobs, that are regularly activated at a constant rate. The activation

time of the first periodic instance is called phase (φi). The activation time of the

kth instance is given by φi + (k − 1)pi, where pi is the activation period (fixed

inter-arrival time) of the task.

2. Aperiodic tasks also consist of an infinite sequence of identical jobs. However,

their activations are not regularly interleaved.

3. Sporadic tasks consist of an infinite sequence of identical jobs with consecutive

jobs separated by a minimum inter-arrival time.

Following are the three levels of constraint related to the deadline of a task:

1. Implicit Deadline: All task deadlines are equal to their periods (di = pi).

2. Constrained Deadline: All task deadlines are less than or equal to their periods

(di ≤ pi).

3. Arbitrary Deadline: All task deadlines may be less than, equal to, or greater than

their periods.

We now provide a few other definitions related to tasks and task set.

• Utilization: The utilization of a (implicit deadline) task Ti is given by ui = ei/pi.

In case of constrained deadline, ui = ei/di.

• Hyperperiod : It is the minimum interval of time after which the schedule repeats

itself. For a set of periodic tasks (with periods p1, p2, . . . , pn) activated simulta-

neously at t = 0, the hyperperiod is given by the least common multiple of the

periods.

• Static and Dynamic Task System: In a static task system, the set of tasks that is

executed on the platform is completely defined before start running the application.

In a dynamic task system, some tasks may experience a modification of their

properties while other tasks leave or join the executed task set at run-time.
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2.1.2 A Real-time Scheduler

A real-time scheduler acts as an interface between applications and hardware platform. It

configures and manages the hardware platform (e.g., manage hardware interrupts, hard-

ware timers, etc.). More importantly, it schedules the tasks using a real-time scheduling

algorithm. The set of rules that, at any time, determines the order in which tasks are

executed is called a scheduling algorithm.

Given a set of tasks, T = {T1, T2, ..., Tn}, a schedule is an assignment of tasks to

available processors, so that each task is executed until completion. A schedule is said

to be feasible if all tasks can be completed according to a set of specified constraints.

A set of tasks is said to be schedulable if there exists at least one algorithm that can

produce a feasible schedule. A scheduling algorithm is said to be optimal if it is able

to find a feasible schedule, if one exits. An algorithm is said to be heuristic if it is

guided by a heuristic function in taking its scheduling decisions. A heuristic algorithm

tends toward the optimal schedule but does not guarantee finding it. In work-conserving

scheduling algorithm, processor is never kept idle while there exist a task waiting for

execution on the processor.

2.1.3 Processing Platform

The term processor refers to a hardware element in the platform which is able to process

the execution of a task.

1. Uniprocessor system can only execute one task at a time and must switch be-

tween tasks.

2. Multiprocessor system will range from several separate uniprocessors tightly

coupled using high speed network to multi-core. It can be classified as follows:

(a) Homogeneous: The processors are identical, i.e., they all have the same

functional units, instruction set architecture, cache sizes and hardware ser-

vices. The rate of execution of every task is same on all processors. Hence,
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the worst-case execution time of a task is not impacted by the particular

processor on which it is being executed.

(b) Uniform: The processors are identical - but they are running at different

frequencies. Hence, all processors can execute all tasks but the speed at which

they are executed and their worst-case execution time vary in function of the

processor on which they are executing.

(c) Heterogeneous: The processors are different, i.e., processors may have dif-

ferent configurations, frequencies, cache sizes or instruction sets. Some tasks

may therefore not be able to execute on some processors in the platform, while

their execution speeds (and their worst-case execution times) may differ on

the other processors.

2.1.4 Multi-criticality Systems

Many real-time systems support the execution of applications with different relative

importance values (some times called criticality levels) on a common platform [83]. For

example, in modern avionics systems, flight control tasks (responsible for the vehicle’s

safety) are considered to be more safety-critical than military mission tasks (responsible

for say, firing a missile at the enemy target). Scheduling decisions in these scenarios

must consider the criticality levels of applications. Particularly, in times of overload the

objective is usually to allow the execution of the highest critical tasks in the system while

rejecting the least critical ones, such that the overload condition can be mitigated [83,93].

The background on the structure of real-time systems and the evolution of scheduling

algorithms for these systems can be found in [15,26,96]. In the next section, we discuss

various classifications of real-time scheduling approaches.

2.2 A Classification of Real-time Scheduling Approaches

Preemptive Vs. Non-preemptive Scheduling: Preemptive schedulers are based

on the assumption that the execution of a task may be interrupted and the processor

directed to run a different piece of code after the interrupt. The unfinished portion of
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the interrupted task thus has to be re-allocated to may be, a different processor [42]. On

the contrary, scheduling algorithms following a non-preemptive approach must allow a

task to execute until completion. As a result, the response time to external events may

be quite long if some tasks have a large execution time. However, many task systems are

inherently atomic in the sense that task invocations must execute to completion without

interruption once started. Preemptive schedulers are unusable for these task systems.

Online Vs. Offline Scheduling: In offline scheduling, the scheduler has a priori

knowledge of the task set and its constraints, such as arrival times, execution times,

precedence constraints, etc. The schedule is generated and stored at design time and

dispatched later during runtime of the system. Offline scheduling is also referred to

as static scheduling [34]. On the other hand, online scheduling algorithms make their

scheduling decisions at runtime based on the information about the tasks that have

arrived so far. Although they are often flexible and adaptive, they may incur significant

overheads because of runtime processing. However, they are a must in systems which do

not have enough information before run-time to execute the scheduler statically. Online

scheduling is also referred to as dynamic or runtime scheduling.

Clock-Driven Vs. Event-Driven Scheduling: In clock-driven schedulers, schedul-

ing decisions are made at specific time instants which are chosen a priori before the

system begins its execution [77]. Typically, in a system that uses clock-driven schedul-

ing, all parameters of the job set are fixed and known. It is also called a time-driven

scheduling approach. A table-driven scheduler is an example of clock-driven approach.

Here, the schedule is generated and stored in a table off-line. The system timer kicks off

execution of a segment of code of a task at each scheduling decision time by referring to

the table at run time.

In the event-driven approach, scheduling points are defined by events such as job

release or completion. Generally, these schedulers assign priorities to each task. At

each scheduling instant, the currently highest priority task present in the ready queue

gets hold of the resource (Hence, they are also called priority-driven schedulers). These
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algorithms leave a resource idle only when no job requiring the resource is ready for

execution.

The Rate Monotonic (RM) [75, 77] and Earliest Deadline First (EDF) [75, 77] algo-

rithms (discussed in Section 2.3.1) are examples of event-driven approach. Event-driven

schedulers are more proficient than clock-driven schedulers because they can feasibly

schedule some task-sets that clock-driven schedulers cannot. These are also more flexible

because they can feasibly schedule sporadic and aperiodic tasks in addition to periodic

tasks whereas clock-driven schedulers can only handle periodic tasks.

Static Priority Vs. Dynamic Priority Scheduling: The distinction between static

priority and dynamic priority scheduling is based on the priority management policy

adopted by a priority-driven scheduler. In the static priority scheme, tasks are assigned

an integer priority value that remains fixed for the lifetime of the task. Whenever a task

is made ready to run, the active task with the highest priority commences or resumes

execution, preempting the currently executing task if need be. Priority values may

change at run time in case of dynamic priority schedulers. Rate Monotonic (RM) [75,

77] and Deadline Monotonic (DM) [3, 77] are examples of Static priority scheduling

while Earliest Deadline First (EDF) [75, 77] and Least Slack Time First (LST) [77] are

examples of dynamic priority scheduling.

Partitioning Vs. Global Scheduling: In the context of multi-processor scheduling

policies, a global scheduler is one which puts all the ready tasks in a single queue and

selects the highest priority task at each invocation irrespective of which processor is being

scheduled. Thus, a task is allowed to execute on any processor, even when resuming after

having been preempted. In a purely partitioned approach, on the other hand, the set of

tasks is partitioned into as many disjoint subsets as there are processors available, and

each such subset is associated with a unique processor [27, 79, 107]. Thus, all instances

of a task get executed on the same processor. Between these two extremes of no inter-

processor migration and full migration, there is an intermediate class of algorithms

(known as semi-partitioned) that allow restricted migration. For example, different jobs
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of the same task may be allowed to execute on different processors. However, a single

job may be constrained to execute on a particular processor.

2.3 A Brief Survey of Scheduling Algorithms

In this section, we discuss scheduling strategies under four important design consider-

ations: i) timeliness, ii) energy awareness, iii) imbibing fault tolerance, and iv) simul-

taneous handling of multiple conflicting challenges such as timeliness, energy awareness

and fault tolerance.

2.3.1 Traditional Real-time Scheduling Approaches

As representative examples of traditional real-time scheduling approaches, we have cho-

sen the Rate Monotonic (RM) and Earliest Deadline First (EDF) algorithms since they

have proved to be two of the most widely used techniques over the years and forms the

foundation upon which most of the real-time scheduling theories have developed.

Rate Monotonic (RM) Algorithm: The RM algorithm [75, 77] is a preemptive,

static priority scheduler applicable in a hard real-time environment. It assigns priorities

to tasks based on their periods; the shorter the period, the higher the priority. Because

the rate of job releases of a task is the inverse of its period, the priority is directly

proportional to the task’s rate, and hence the name rate monotonic.

An example should clarify the strategy. Let us consider three tasks T1, T2 and T3

with computational requirements e1, e2, e3 being 1, 2, 5 and period of execution p1, p2, p3

being 4, 5, 20. Figure 2.2 shows the RM schedule of the system. T1 having the shortest

period has the highest priority and is always executed as soon as its job is released. T2

has the next highest priority and is executed in the background of T1. Similarly, T3

executes in the background of both T1 and T2.

An important shortcoming of the RM algorithm (as shown by Liu and Layland

in [75]) is that even on uniprocessor systems no more than 69% of the processor may be

utilized to ensure scheduling feasibility of a set of tasks under rate-monotonic priority

assignment in the worst case (when the number of tasks is large ( ∞)).
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Figure 2.2: An example RM schedule

Earliest Deadline First (EDF) Algorithm: EDF [75,77] is a preemptive, dynamic

priority algorithm. It assigns priorities to individual jobs of the tasks according to their

absolute deadlines during run-time. Figure 2.3 shows the EDF schedule of two tasks

T1 and T2 having computational requirements (ei) 2 and 9 respectively and period (pi)

5 and 15 respectively. If more than one task have the same absolute deadline, any one

of them may be randomly chosen. Figure 2.4 shows the corresponding RM schedule.

Figure 2.3: An example EDF schedule

Figure 2.4: The RM schedule

A variation of EDF scheduling is the Least Laxity First (LLF) [86] scheduler. In

LLF, at each scheduling point, a laxity value (L) is computed for each task and the task

having the smallest laxity is assigned the highest priority. Here, the laxity value (Li)

for a task Ti is defined as: Li = di − (t− rei), where di denotes the deadline of Ti, t the

current time and rei the remaining execution requirement of Ti.
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Both EDF and LLF are optimal uniprocessor schedulers. That is, if a set of tasks

is unschedulable under EDF or LLF, then no other scheduling algorithm will be able

to schedule this task-set. The essential difference between EDF and LLF is that by

incorporating the remaining execution requirement of a task in its scheduling decision,

LLF also takes into consideration the available flexibility for scheduling a task. However,

on multi-processor systems both these algorithms (as well as RM) proves to be inefficient

in terms of the achievable processor utilization in the worst-case [70].

2.3.2 Real-time Scheduling on Multiprocessor Systems

Traditionally, scheduling of real-time applications (termed as tasks) on multiprocessors

make use of either a partitioned or global approach [35] (as discussed in Section 2.2).

2.3.2.1 Partitioned Scheduling Schemes

In a partitioned approach, each task is assigned to a single designated processor on which

it executes for its entire lifetime. This approach has the advantage of transforming the

multiprocessor scheduling problem to a uniprocessor scheduling one. Hence, well known

optimal uniprocessor scheduling approaches such as Earliest Deadline First (EDF), Rate

Monotonic (RM) [26], etc. may be used. In addition, the overheads of inter-processor

task migrations and local cache misses is far smaller than global scheduling. Finally,

because task-to-processor mapping (which task to schedule on which processor) need

not be decided globally at each time-slot, the scheduling overhead associated with a

partitioning strategy is lower than that associated with a non-partitioning strategy [8,9,

27]. However, a major drawback of partitioning is that in the worst case, no more than

half the system capacity may be utilized in order to ensure that all timing constraints

are met [8].

Optimal assignment of tasks to processors in partitioning is a bin-packing problem

which can be stated as follows: given a list L of items of size {a1, a2, ..., an}, where

ai ∈ (0, 1] (ai represents the weight of task i), the problem of bin packing is to pack

these items into a minimal number of unit capacity bins. The problem is known to be

NP-hard and several polynomial time heuristics have been proposed to solve it.
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The performance of any bin-packing algorithm is evaluated by a measure called

competitive-ratio(R) which may be defined as follows:

R = lim
n→∞

sup
A(L)

OPT (L)
,

where, L is a list of items {a1, a2, ..., an} of size n, A(L) is the number of bins required by

the bin packing algorithm A when list L is used and OPT (L) is the best off-line number

of bins required. It is easy to interpret that the use of an infinite sized list in the above

measure gives us the worst-case performance ratio. However, there may be many other

lists of smaller size that also gives us the worst-case ratio. We consider below some of

the well known approaches [79, 107].

Next Fit(NF): This is one of the simplest of the known heuristics. It starts from the

first bin and defines it as the active bin. If the next incoming item fits the bin, it places

it in that bin. Otherwise, it creates a new bin, makes it the new active bin, and packs

the item into this bin. Thus, at any given time, there is only one active bin. The NF

algorithm has a competitive-ratio of 2.

First Fit(FF): Given a list of bins, the FF algorithm assigns the next item to the

first bin that can accept it.

Best Fit(BF): The BF algorithm assigns the next item to such a processor that can

accept the task and will have minimal remaining spare capacity after its addition.

Worst Fit(WF): WF is opposite to BF; it will find a bin which will fit a new item

with the largest spare capacity left over. The algorithms FF , BF and WF discussed

above have a competitive-ratio of 1.7.

First Fit Decreasing(FFD): FFD is the same as FF, but the items are considered in

non-increasing order of their sizes. In a similar fashion, Best Fit Decreasing (BFD) and

Worst Fit Decreasing (WFD) can also be defined. All these algorithms FFD, BFD and

WFD have a competitive-ratio of 1.22. Although, this competitive-ratio of 1.22 is the
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best among all the algorithms, the fundamental requirement of these algorithms, which

is non-increasing order of items in list L, may not satisfy the criteria of On-line. Thus,

all these algorithms (FFD, BFD and WFD) are generally used as off-line strategies.

2.3.2.2 Global and Semi-partitioned Scheduling Schemes

Unlike partitioning, global and semi-partitioned scheduling schemes allow the migration

of tasks from one processor to another during execution. Over the years, a few global

optimal schemes such as Pfair, ERfair, etc. and semi-partitioned optimal techniques like

DP-Fair, have been proposed. All these scheduling approaches allow the possibility of

utilizing the entire capacity of all processors in the system, resulting in high resource

utilization. Additionally, they possess many attractive features like flexible resource

management, dynamic load distribution, fault resilience, etc. [107].

Most of these global and semi-partitioned scheduling strategies are based on the idea

of proportional rate based execution progress for all tasks. Typically, such proportional

fairness can be achieved by providing guarantees of the following form for each task:

complete X units of execution for application A out of every Y time units. Proportionate

fair (Pfair) scheduling introduced by Baruah et al. [16] is known to be the first optimal

global scheduler for real-time repetitive tasks with implicit deadlines, on a multipro-

cessor system. Later, Anderson et al. [5] presented a work-conserving version of Pfair,

called Early-Release fair (ERfair) scheduler, which never allows a processor to be idle in

the presence of runnable/ready tasks. Since these global schemes attempt to maintain

fair proportional progress for all tasks at all time slots, they may incur unrestricted pre-

emption/migration overheads. More recently DP-Fair [71], an approximate proportional

fair scheduler with a more relaxed execution rate constraint, was proposed. DP-Fair is a

semi-partitioned scheduling technique which allows restricted preemptions/migrations.

Now, we discuss two underlying fair scheduling schemes used in this thesis, in detail.

ERfair Scheduling [5]: Consider a set of periodic tasks {T1, T2,..., Tn}. A task, say

Ti, may arrive at any time within the schedule length, execute for an arbitrary number of

instances and then depart. Each instance of Ti has a computation requirement of ei time
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units required to be completed within a period of length pi time units. ERfair schedulers

need to manage their task allocation and preemption in such a way that not only are all

task deadlines met, but also each task is executed at a consistent rate proportional to its

task weight ei
pi

. Typically, ERfair algorithms consider discrete time lines and divide the

tasks into equal-sized subtasks. Subtasks are scheduled appropriately to ensure fairness.

The fairness accuracy is generally defined in terms of the lag between the amount of

time that has been actually allocated to a task and the amount of time that would be

allocated to it in an ideal system with a time quantum approaching zero. Formally, the

lag of task Ti at time t, denoted lag(Ti, t), is defined as follows:

lag(Ti, t) = (ei/pi) ∗ t− allocated(Ti, t), (2.1)

where allocated(Ti, t) is the amount of processor time allocated to Ti in [0, t). A schedule

is ERfair iff:

(∀ T, t :: lag(T, t) < 1) (2.2)

That is, Equation 2.2 infers that the underallocation associated with each task must

always be less than one time quantum. A subtask in an ERfair system becomes eligible

for execution immediately after its previous subtask completes execution. Obviously, for

such a criterion to be guaranteed, we must have
n∑
i=1

ei/pi ≤ m (2.3)

where, m denotes the number of identical processors in the system. Equation 2.3 infers

that the total workload (summation of tasks weights) should be less than or equal to the

full system capacity to schedule a set of tasks in the system effectively. Equations 2.1,

2.2 and 2.3 are taken from [5]. In our energy-aware work (Chapter 3), we use ERfair as

the underlying scheduling mechanism.

DP-Fair Scheduling [71]: Unlike ERfair, DP-Fair [71] is an approximate propor-

tional fair scheduler with a more relaxed execution rate constraint. It is an optimal

algorithm and enables full resource utilization. That is, given n tasks and m processors,
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schedulability is ensured provided,
n∑
i=1

ei/pi ≤ m (2.4)

where, ei and pi denote the worst case execution time and period of a task Ti, respectively.

In DP-Fair, time is partitioned into slices, demarcated by the deadlines of all jobs in the

system. Within a time slice, each task is allocated a workload equal to its proportional

fair share and assigned to one or two processors for scheduling. Job subtasks within

a slice are typically scheduled using variations of traditional fairness ignorant schemes

such as Earliest Deadline First (EDF [76]). Through such a scheduling strategy, DP-

Fair is able to deliver optimal resource utilization while enforcing strict proportional

fairness (ERfairness) only at period/deadline boundaries. DP-Fair is a semi-partitioned

scheduling technique which allows at most m−1 task migrations and n−1 preemptions

within a time slice and thus incurs much lower overheads compared to ERfair. In our

fault-tolerant work (Chapter 4), we use a discrete approximation of DP-Fair as the

underlying scheduling mechanism.

2.3.3 Energy-aware Real-time Scheduling Strategies

In this section, we first provide an elaborate discussion on the need of energy-aware

execution in real-time systems and important techniques for handling energy dissipation

in such systems. Subsequently, we discuss a review of various existing energy-aware

scheduling strategies on homogeneous multiprocessor systems.

2.3.3.1 Energy-aware Execution: Need and Techniques

Power Consumption of CMOS circuits: Let P denote the total power consumption

of a CMOS-based processor/core during active operation while Psleep denote its dissi-

pated power when suspended. The total power P has three major components namely,

dynamic power consumption (Pd), static power consumption (Ps) and an inherent power

cost to keep the processor on (Pon) [55].

P = Pd + Ps + Pon.
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The dynamic power consumption (Pd) of CMOS circuits is given by:

Pd = Ceff × V 2
dd × f.

where, Vdd is the supply voltage, Ceff is the average switched capacitance per cycle, and

f is the clock frequency. Here, Vdd may be considered to be roughly proportional to f .

The major components of static current in a standard inverter are reverse bias junction

current [111] and subthreshold conduction [111]. Hence, the static power consumption,

Ps, is given by:

Ps = (Vdd × Isubn + |Vbs| × Ij)Lg.

where, Vbs is the the body bias voltage, Isubn is the subthreshold leakage current, Ij is

the reverse bias junction current and Lg is the number of devices in the circuit.

Need for Energy-aware Execution: As technology scales to lower feature sizes, leak-

age or static power consumption/energy dissipation are becoming design parameters of

higher criticality. With each technology generation, leakage drain is expected to in-

crease by a factor of more than 5 and has already become the major source of power

wastage within a chip [60]. The problem of power wastage in general and leakage drain

in particular has been further aggravated by the advent of high-end portable embedded

systems such as Personal Digital Assistants (PDAs), cell phones, car on-board systems

etc., which are powered by limited energy sources like batteries [65]. Hence, techniques

for controlling power/energy consumption are being applied at all system levels starting

from hardware and firmware to architectural, system and even application level.

Techniques For Reducing Energy Consumption: At the operating system level,

two primary mechanisms are generally used to reduce energy consumption: 1) Dynamic

Voltage Scaling (DVS) [89, 108] and 2) Dynamic Power Management (DPM) [21, 67].

The first mechanism reduces dynamic energy consumption and involves lowering the

processor’s operating frequency by appropriately scaling its supply voltage when the full

speed is not required. As energy dissipated per cycle in CMOS circuits scale quadrati-
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cally to the supply voltage, this strategy is able to provide large energy savings in DVS

enabled processors. On the other hand, DPM mechanism tries to minimize static energy

dissipation in the system by putting a processor in low-power suspension/sleep mode for

as long as possible while still guaranteeing the tasks’ timing constraints. However, tran-

sition between idle and active states require a fixed amount of time and energy. Hence,

a purely greedy policy is often not acceptable because it degrades performance and may

not decrease energy consumption. Thus, one of the primary tasks of suspension based

algorithms is to predict when the idle period will be long enough so as to compensate

the transition cost. There has also been an attempt to maximize the duration of idle

intervals by delaying task execution using the procrastination scheduling model [13].

2.3.3.2 A Review of Energy-aware Scheduling on Multiprocessor systems

Energy-aware scheduling algorithms on multiprocessor systems are mainly grouped into

two categories: partitioned scheduling [30, 53] and global scheduling [21, 67–69]. While

partition oriented scheduling strategies maintain separate local ready queues for tasks

in each processor, global scheduling employs only one queue for all tasks assuming a

single system-wide priority space. Partitioning is often the favored approach primarily

due to its lower overheads and ease of implementation using well known uniprocessor

schedulers [76] on individual processors. However, partitioning often suffers from low

resource utilization [27]. On the other hand, global scheduling has attractive features

such as flexible resource management, dynamic load distribution, fault resilience, high

resource utilization etc. [107]. Chen et al. [30] explored the energy-efficient scheduling

of periodic real-time tasks on multiprocessor systems with the consideration of leakage

current along with DVS. Huang et al. [53] presented a run-time task reallocation scheme

that improves the energy efficiency of leakage-aware DVS on multi-core processors. A

two phased scheduling heuristic for sporadic tasks on heterogeneous multi-cores was pre-

sented by Awan and Petters in [12]. Here, the first phase attempts to minimize dynamic

energy dissipation by assigning each task to its favorite processor based on the task’s

dynamic energy consumption affinity towards different processors. The second phase

reduces static energy consumption by trading off higher dynamic energy consumption of
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a task to enhance the ability of the processors to use more efficient sleep states. All these

approaches follow a partition oriented strategy, and hence, their resource utilizations are

often low.

Bhatti et al. [21] presented a DPM strategy for global multiprocessor systems called

Assertive Dynamic Power Management (AsDPM). AsDPM first determines the mini-

mum number of active processors needed to fulfill the execution requirement of released

jobs at runtime. Then it attempts to cluster the distributed idleness existing on a subset

of the active processors into longer continuous idle intervals so that these obtained inter-

vals may be employed to switch some of the processors to deeper low power states for a

longer duration of time. This AsDPM strategy is then used along with global schedulers

like Global-EDF or Global-LLF to get a better reduction in the energy consumption. As

both Global-EDF and Global-LLF are known to be sub-optimal (that is, they cannot

fully utilize the complete capacity of the set of processors comprising a multiprocessor

system), the global strategy presented in [21] also becomes sub-optimal in nature.

Legout et al. [67] presented an offline power-aware heuristic scheduling algorithm

called Linear Programming DPM (LPDPM) which tries to increase the duration of idle

periods so that deeper low-power states may be attained. It models processor idle time

as an additional task and tries to reduce the number of preemptions (or executions) of

this additional task. In [68], Legout et al. improved their previous work by employing an

existing online scheduler called Fixed Priority until Zero Laxity (FPZL) to schedule tasks

inside intervals delimited by consecutive task releases. The approach uses dynamic slack

reclamation in order to activate deeper low-power states online. Then they extended

their works in [69] to both hard real-time and mixed-criticality (MC) systems. In all

their works, they used a mixed integer linear program to compute a partial schedule

that optimizes the length of idle periods and an existing scheduling algorithm (FPZL)

to further increase the length of the idle periods online. Since FPZL is not optimal

for generic periodic tasks having arbitrary period lengths, these algorithms are also

not optimal. Also, all these algorithms use a hybrid offline-online strategy and hence

cannot be employed in completely dynamic scenarios where a task may arrive/depart at
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any time. A purely online adaptive static power management strategy called Balanced

Workload Scheme (BWS) has been presented by Chen et al. in [29] for hard real-

time pipelined multiprocessor systems. At each adaptation instant, the BWS heuristic

attempts to maximize the number of processors that may be switched to sleep mode and

exploits the slacks generated at run-time to effectively extend sleep durations.

However, there has not been a significant effort towards the development of energy-

efficient proportional fair scheduling methodologies. In chapter 3, we have chosen ER-

fair [5], a work-conserving proportional fair scheduler as our underlying scheduling

scheme and developed a novel energy-efficient algorithm called ERfair Scheduler with

Suspension on Multiprocessors (ESSM). The ESSM algorithm attempts to locally max-

imize the total length of suspension intervals while simultaneously reducing the number

of such intervals using a novel procrastination mechanism, thus lowering energy con-

sumption in the process.

2.3.4 Fault-tolerant Real-time Scheduling Strategies

In this section, we first provide an overview of various fault-tolerant techniques used

in the design of real-time systems. Then, we discuss a review of various existing fault-

tolerant scheduling strategies on homogeneous multiprocessor systems.

2.3.4.1 Fault-tolerant Techniques

As discussed in the introductory chapter, two major approaches for achieving fault tol-

erance are time and hardware redundancies [37,80]. Time redundancy based approaches

use the slack capacity available in an underloaded system to achieve fault tolerance [64].

Important time redundancy based strategies include re-execution [94, 95] and check-

pointing with rollback recovery [40,57]. In the re-execution scheme, whenever a fault is

detected, the faulty task is either re-executed from the beginning or a different version

of the task, called recovery block, is executed in order to recover from the fault. Unlike

the re-execution based approach, checkpointing involves periodically saving the inter-

mediate states of a task during its execution. On the occurrence of a failure, the latest

saved internal state of the task is restored and execution resumes from this saved state.
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Hardware redundancy based approaches incorporate extra hardware into the design to

either detect or override the effects of failed components [62]. Important hardware re-

dundant strategies include N-modular redundancy and use of standby spares [37,51]. In

N-modular redundancy, multiple units running in parallel execute redundant copies of

the same workload and mask errors by voting on their outputs. In the standby spares

approach (also called backup redundancy), the fault affected primary unit is replaced by

an identical secondary unit subsequent to a fault.

Two major standby-sparing techniques used to achieve fault-tolerance in real-time

systems are hot-standby and cold-standby [72, 113]. In hot-standby, the backup unit

runs concurrently with the primary unit and so, there is no delay in replacing the faulty

primary with the backup. However, the resource demands for such a system could be

about twice or even more (depending on the degree of fault-tolerance desired) compared

to a system without hot-standby sparing. On the other hand in cold-standby, the backup

becomes operational only after a fault in the primary is detected. As the primaries and

backups do not execute concurrently, additional resource demands that are necessary

to achieve fault-tolerance in cold-standby systems are typically far lower compared to

systems with hot-standbys. However in this case, recovery to the nominal system state

after failure requires a finite amount of time called recovery time, to replace the faulty

primary [72,113]. In addition to lower resource demands, another important advantage

of cold-standby sparing is that fault-tolerance do not necessitate extra power for running

spares, during normal operation. Hence, this scheme may be useful for systems where

power consumption is an important design constraint. Moreover, a system equipped with

cold-standby spares has lower overall operational costs and higher life times compared

to a hot-standby system.

2.3.4.2 A Review of Fault-tolerant Scheduling on Multiprocessor systems

Fault-tolerant scheduling approaches for handling transient as well as permanent pro-

cessor failures in multiprocessor systems have received a lot of attention in the last two

decades [2, 20, 59, 64, 94, 95]. Time and hardware redundancies as well as a combination

of both, are the major approaches towards achieving fault-tolerance in real-time sys-

34



2.3 A Brief Survey of Scheduling Algorithms

tems. A detailed survey on different fault-tolerant scheduling schemes for homogeneous

real-time multiprocessor systems may be found in [64]. In this section, we discuss a few

important fault-tolerant scheduling approaches in detail.

Time redundancy based scheduling schemes: Time redundancy based approaches

use the slack capacity available in an underloaded system to achieve fault-tolerance [64].

Important time redundancy based scheduling strategies include re-execution [94,95] and

checkpointing with rollback recovery [40, 57]. In the re-execution scheme, whenever a

fault is detected, the faulty task is either re-executed from the beginning or a different

version of the task, called recovery block, is executed in order to recover from the fault.

Pathan and Jonsson [95] presented a re-execution based time redundant fault-tolerance

scheme for scheduling a set of fixed-priority sporadic tasks on multiprocessors, to tolerate

multiple permanent as well as transient failures. They also presented a feasibility test

that can be used to ensure satisfaction of all deadlines even in the presence of processor

failures and task errors. Recently, Pathan [94] extended the fault-tolerant framework

presented in [95] to incorporate probabilistic schedulability guarantees, resulting in the

probabilistic satisfaction of individual task deadlines. It may be noted that the works

presented in [94, 95] use a fixed priority scheduling scheme which may possibly result

in significantly lower resource utilizations compared to dynamic priority schemes. In

addition, the preemptive nature of these global multiprocessor scheduling policies make

them potentially susceptible to unrestricted preemptions and migrations. Unlike the re-

execution based approach, checkpointing involves periodically saving the intermediate

states of a task during its execution. On the occurrence of a failure, the latest saved

internal state of the task is restored and execution resumes from this saved state. How-

ever, saving checkpoints has an associated cost in terms of both time and space, and

hence, checkpoints when taken too frequently may lead to significant overheads. In [40],

El-Sayed and Schroeder provided an extensive analysis of the performance, energy and

I/O costs associated with a wide array of checkpointing policies. Checkpointing schemes

must not only maintain an account of overheads, but also be aware of the available slack
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capacity at all times so that the increase in overall execution cost do not lead to deadline

violations.

Hardware redundancy based scheduling schemes: Hardware redundancy based

approaches incorporate extra hardware into the design to either detect or override the

effects of failed components [62]. Important hardware redundancy based scheduling

strategies include N-Modular Redundancy (NMR), Primary/Backup (PB), and Standby

Sparing (SS) [64]. In NMR, multiple copies of a hardware resource running in parallel

execute redundant copies of the same workload and mask errors by voting on their out-

puts. Since NMR requires multiple hardware units, it is expensive and used only in very

critical fault-tolerant systems. In the PB approach, each task is considered to have one

primary copy and one or more backup copies. A backup copy may be active or passive.

An active backup always executes along with its primary while a passive backup is acti-

vated only after the primary fails. In the SS approach, one or more spare processors are

maintained as standby and the fault affected primary processor is replaced by an identi-

cal secondary unit subsequent to a fault. A majority of the PB based approaches often

utilize partition-oriented scheduling schemes to assign the primary and backup copies of

tasks onto distinct processors. Whenever a transient or permanent processor failure is

detected at run-time, the outputs of the backup copies assigned on non-faulty processors

are considered as the correct outputs. As a consequence of partitioning, achievable re-

source utilizations with these approaches may be considerably lower compared to global

schemes [8]. In [2], Al-Omari et al. proposed an adaptive primary-backup (PB) based

fault-tolerant scheme to schedule soft real-time aperiodic tasks on multiprocessor sys-

tems. By considering the dynamics of faults and task parameters in the system, they

provided a mechanism which controls the degree of overlap between the primary and

backup versions of tasks within the schedule. Kim et al. [59] presented a fault-tolerant

task allocation strategy called R-BFD (Reliable Best-Fit Decreasing) which allocates

active backups in such a way that a primary and its active backups are not assigned

on the same processor. In their work, they extended R-BFD by proposing another task

allocation algorithm called R-BATCH (Reliable Bin-packing Algorithm for Tasks with
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Cold standby and Hot standby) which reduces the resource over-provisioning costs us-

ing passive backups. Recently, Bhat et al. [20] presented a system model in which each

task is characterized by an application-specific constraint called recovery time require-

ment (RTR). RTR specifies the number of consecutive deadlines of the primary task

that a backup can afford to miss without the system being considered to have failed.

The authors then use this RTR based model and extended the fault-tolerant task al-

location problem discussed in [59]. They presented different task allocation strategies

which satisfy the recovery time requirements of all tasks while attempting to optimize

resource utilization. However, determining the optimal resource over-provisioning re-

quired to efficiently implement a PB based scheme is a complex problem and requires

careful design.

Time and Hardware redundancy based scheduling schemes: A few fault-tolerant

scheduling mechanisms based on a combination of time and hardware redundancies may

also be found in the literature. Mottaghi et al. [87] presented a fault-tolerance mechanism

which dynamically selects either hardware redundancy or checkpointing with rollback

recovery based on the criticalities of tasks. In [57], Kang et al. presented a fault-tolerant

scheme which utilizes dual modular redundancy (DMR) and checkpointing to detect and

correct transient faults that may corrupt the result for a given application modeled as

a task graph. They determined the optimal points in the schedule where checkpoint

should be placed while taking into account the associated overheads.

In spite of the additional flexibility and considerably higher resource utilizations

that cold-standby sparing can potentially achieve within a global scheduling scenario,

currently there does not exist any significant research that attempts at such a design ap-

proach. This is primarily because of the following two major challenges related to global

scheduling with cold-standby: i) Efficiently managing task executions both during nom-

inal system operation as well as during the recovery interval, so that all timeliness con-

straints can always be guaranteed over the entire schedule length, ii) Efficiently handling

the execution progress of tasks while having an upper bound on both preemptions and

migrations so that their overheads can be accounted even in the face of faults. In Chap-
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ter 4, we propose a novel combined time-cum-hardware redundancy based fault-tolerant

semi-partitioned scheduling strategy called Fault Tolerant Fair Scheduler (FT-FS ) for

real-time multiprocessor systems. In order to appropriately handle both the design

challenges just mentioned, a work-conserving version of the DP-Fair algorithm has been

used as the underlying scheduling methodology. Thus, the proposed FT-FS scheduler is

able to effectively combine the benefits of high resource utilization and bounded context

switches of DP-Fair along with all the advantages of cold-standby sparing as discussed

above.

2.3.5 Energy and Fault Aware Real-time Scheduling Strategies

Recently, the problem of efficient handling of both energy and fault becomes an im-

portant research topic in real-time systems. Ejiali et al. proposed a standby-sparing

based energy-aware fault-tolerant scheme for the scheduling of aperiodic tasks on dual-

cores [39]. In order to reduce energy consumption, they employed DVFS for the main

unit and DPM for the spare. Later, this work has been extended by Haque [52] et al.

for periodic real-time applications. Recently, Guo et al. generalised the work presented

in [52] for real-time systems deployed on platforms consisting of more than two processing

cores [49]. An energy-aware partitioning and scheduling algorithm for standby-sparing

systems has been presented in [112]. It is essentially a primary-backup approach for

dual-core platform where the primaries and back-ups of tasks are always mapped to

distinct cores. Given two-cores V1 and V2, if the primaries of all tasks which require

shared resources are mapped to one of the cores (say, V1), while the primaries of the

remaining tasks which do not require shared resources are mapped to the other core

(say, V2). Another scheduling technique for standby-sparing systems has been proposed

in [85]. They presented a DVFS based energy-aware strategy to schedule fixed-priority

real-time tasks. However, all these works [39,49,52,85,112] have been targeted towards

multi-core platforms consisting of homogeneous cores.

In the context of emerging heterogeneous multiprocessor/multi-core systems, there

exists a severe dearth of energy-aware and fault-tolerant scheduling schemes. Recently,

Roy et al. explored energy-awareness on heterogeneous multicore platforms consisting of

38



2.4 DES Modeling and Fault Diagnosis Framework

both high-performance and power-efficient cores, using standby-sparing [100]. However,

their strategy is oblivious of the number of faults to be tolerated. Due to this, the

offline schedule constructed by their scheme consumes more energy than that required

to tolerate a specified number of faults. To alleviate this issue, in Chapter 5, we propose a

standby-sparing based energy-aware fault-tolerant scheduling strategy for heterogeneous

systems. We develop a low-overhead heuristic scheme called, FENA-SCHED, for the

fault-tolerant scheduling of real-time applications on heterogeneous dual-core systems

consisting of a power-efficient core and a high-performance core. FENA-SCHED utilizes

DPM with backup-backup overloading [46, 47] to minimize energy consumption while

guaranteeing tolerance against a given number of transient processor faults.

The design strategies for fault tolerance discussed above assume faults to be de-

tectable. However, enforcement of fault tolerance can only be achieved through the

incorporation of safe design methodologies which enable efficient active monitoring and

detection of unobservable faults in the system. Therefore, it is desirable to incorporate

efficient strategies for fault diagnosis (detection and isolation) in the construction of

safety-critical systems. With this insight, in the next two sections, we discuss an impor-

tant formally constructed safe design methodology known as Discrete Event System that

is often used to make a system amenable to efficient active monitoring and detection of

unsafe execution states (that is, faults) whenever the system behavior deviates from its

stipulated specification.

2.4 DES Modeling and Fault Diagnosis Framework

In this section, we present in brief the state-based modeling formalism for DES frame-

work where each state represents a distinct system status. For more details, the reader

is referred to literature [1, 23, 25,104,115].

The DES model G is defined as:

G = 〈X,S,=, X0〉 (2.5)

where X is a finite set of states, S = {s1, s2, ...., sn} is a finite set of discrete state

variables assuming values from some finite sets, called the domains of the variables, =
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is a finite set of transitions and X0 is the initial state.

Any state x ∈ X is a mapping of each state variable to one of the elements of the

domain of the variable. A transition τ ∈ = from a state x to another state x+ defined as

τ = 〈x, x+〉, where, x = initial(τ) is the initial state of the transition and x+ = final(τ)

is the final state of the transition. A trace of a model G is a sequence of transitions

generated by G denoted as q = 〈τ1, τ2, ..., τf〉, where initial(τi+1) = final(τi), for i = 1

to (f − 1). The language of G, L(G) is a subset of =w, where =w is the set of all infinite

sequences of =. Any finite prefixes of L(G) is a subset of =∗, the Kleene closure of =.

The post language of G after a trace q is denoted as L(G)/q = {r ∈ =∗ | qr ∈ L(G)}.
Lf (G)/q ⊂ L(G)/q comprises of the finite prefixes of the infinite traces of L(G)/q. We

assume G is live (this means that there is a transition defined at each state x in X) and

each model state is reachable from some initial state(s).

2.4.1 Model with Measurement Limitation

This subsection formally introduces the notion of measurement limitation in the DES

framework and discusses the non-determinism in the states and transitions of G due to

the limitation in the measurability of one or more state variables.

Measurements: In practical systems, it may not be possible to measure all the vari-

ables at a given time. Under this limitations in measurement, the state variables in the

system can be partitioned into two disjoint subsets: measurable set, Sm and unmeasur-

able set, Su, where

S = Sm ∪ Su and Sm ∩ Su = φ. (2.6)

Definition 2.4.1 (Measurement Equivalence of G-states). The measurement equivalence

of two G-states x and y denoted by xEy, is defined as x|Sm = y|Sm , where x|Sm is the

restriction of the domain of the state variables in the state x to Sm.

Therefore, all the measurable state variables of any two measurement equivalent

states have same values.
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Measurable and Unmeasurable Transitions: Under the limitations in measure-

ment, the transition set = is partitioned into two sets, measurable (denoted as =m) and

unmeasurable (denoted as =u). A transition τ = 〈x, x+〉 is said to be unmeasurable if

xEx+ (that is, states x and x+ are measurement equivalent).

Definition 2.4.2. A projection operator P : =∗ → =∗m is defined as: P (ε) = ε, the null

string; P (τ) = τ , if τ ∈ =m; P (τ) = ε, if τ ∈ =u; P (qτ) = P (q)P (τ), where q ∈ Lf (G),

τ ∈ =.

Therefore, the projection P of a trace q erases the unmeasurable transitions from

that trace. P (q) is termed as the measurable trace corresponding to the trace q.

Definition 2.4.3. The inverse projection operator P−1 : =∗m → 2=
∗

is defined as

P−1(q) = {q′ ∈ =∗ | qEq′}. (2.7)

Therefore, the inverse projection P−1 on a measurable trace q gives the set of se-

quences of measurement equivalent transitions.

Definition 2.4.4 (Measurement Equivalence of G-Transitions). Two measurable tran-

sitions τ1 = 〈x1, x
+
1 〉 and τ2 = 〈x2, x

+
2 〉 are measurement equivalent, denoted as τ1Eτ2,

when x1Ex2 ∧x+
1 Ex

+
2 . Similarly, two sequences of transitions q and q′ are measurement

equivalent if P (q) = 〈τ1, τ2, ...〉, P (q′) = 〈τ1, τ2, ...〉 and τiEτ
′
i , i ≥ 1.

2.4.2 Fault Modeling

Each state x is assigned a failure label defined by an unmeasurable status variable C ∈ S
with its domain = {N,F1, F2, ..., Fk}, where Fi, 1 ≤ i ≤ k, stand for permanent failure

status and N stands for normal status. Therefore, a state in the model may either

denote a normally operating status of the system or a faulty status. The set of all

normal G-states is denoted as XN , where xN ∈ XN represents a normal G-state. We

assume k types of fault in the system. A state is denoted as xFi
if it is a faulty state due

to the fault of type i. For a normal G-state xN , xN(C) = {N}. Similarly, for a failure

state (or synonymously, an Fi G-state) xFi
, xFi

(C) = {Fi}. The set of all states x such
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that Fi ∈ x(C) is denoted as XFi
. We use the words fault and failure interchangeably

because here, the fault or failure of a system mean the same. Simultaneous occurrence

of more than one fault is not considered here.

In fault modeling, a G-transition τ = 〈x, x+〉 is called a normal G-transition if

x, x+ ∈ XN . The set of all normal G-transitions is denoted as =N . A G-transition

τ = 〈x, x+〉 is called an Fi G-transition if x, x+ ∈ XFi
. The set of all Fi G-transitions is

denoted as =Fi
. Similarly, a G-trace q is called normal G-trace if all transitions in q are

normal G-transitions. If all transitions in a G-trace q are Fi G-transitions then q is called

Fi G-trace. A failure causing transition τFi
= 〈x, x+〉, where x(C) 6= x+(C) indicates

the first occurrence of some failure Fi. Since failures are assumed to be permanent, there

is no transition from any xFi
to any xN .

A DES model G is said to be diagnosable if it is always possible to determine the

faulty status of the states after the occurrence of a fault, using the sequence of mea-

surements. Let Ψ(XFi
) = {q|q ∈ Lf (G) and final(q) ∈ XFi

and q ends in a measurable

transition}.

Definition 2.4.5. Fi-Diagnosability: A DES model G is said to be Fi-diagnosable

under a measurement limitation for fault Fi if the following holds

(∃n ∈ N)[∀q ∈ Ψ(XFi
)](∀r ∈ Lf (G)/q)[|r| ≥ n⇒ D] (2.8)

where the condition D is ∀u ∈ P−1[P (qr)], f inal(u) ∈ XFi
.

This definition is taken from the literature, [103, 104]. It means: let q be any finite

prefix of a trace of G that ends in an Fi-state and let r be any sufficiently long continu-

ation of q. Condition D then requires that every sequence of transitions, measurement

equivalent with qr, shall end into an Fi-state. This implies that, along every continua-

tion r of q, one can detect the occurrence of fault Fi within a finite delay, specifically in

at most n transitions of the system after q.

Example: Consider a benchmark system consisting of a pump, a valve and a controller

(Figure 2.5(a)). Assume that the system is equipped with a valve flow sensor and let
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its outputs be no flow and flow. The state-based DES model of this pump-valve system,

defined as G = 〈X,S,=, X0〉 is shown in Figure 2.5(b).
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Figure 2.5: (a) Pump-valve system; (b) its state-based DES model.

Now, we illustrate various notions corresponding to this state-based DES modeling

formalism in detail. In a state-based approach, the state set of the system is partitioned

according to the failure status of the state [115]. We assume a “Stuck Closed” failure

of the valve (say, fault F ) in the system. The pump and controller are assumed to be

fault-free. The occurrence of the fault F in G is represented through an unmeasurable

transition τF . Therefore, the state set X of G is partitioned as X = XN ∪ XF , where

XN = {x1, x2, x3, x4} and XF = {x5, x6, x7, x8}. X0 = {x1}. S = {s1, s2, s3, C} is the

set of state variables associated with each state x of G. Here, the state variables s1, s2, s3

denote status of the valve (open (1)/closed (0)), status of the pump (on (1)/off (0)) and

readings of the flow sensor (flow (1)/no flow (0)), respectively, and C is the failure label

with its domain being {N,F}. Sm = {s1, s2, s3} and Su = {C}. All transitions except

τF are measurable. Here, transitions τ1 and τ5 are measurement equivalent, i.e., τ1Eτ5

due to x1Ex5 ∧ x2Ex6 (see, Definitions 2.4.1, 2.4.4). �

Note: There has traditionally been two distinct streams of works related to fault diag-

nosis based on whether the DES modeling methodology is event-based or state-based.

The transition τ1 of model G shown in Figure 2.5(b) can be equivalently defined in an
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event-based model as follows: τ1 is fired from state x1 to state x2 due to the occurrence

of “valve open” event (say, V E) at state x1. So, τ1 can defined as τ1 = 〈x1, V E, x2〉. In

an event-based approach, a fault is generally represented using an unobservable event

(say, event f). Therefore, its corresponding failure causing transition from a state x to

another state x+, denoted as τf = 〈x, f, x+〉 also becomes unobservable. In event-based

diagnosis approaches, fault diagnosis (detection and identification of the occurrence of

a fault) is performed based on the observation of event sequences [103, 104]. Here, a

system model G is said to be diagnosable for any fault event if its occurrence can be

detected within a finite delay using the record of observed events. In a state-based ap-

proach, the state set of the system can be partitioned according to the faulty status

of the state [115]. Each state x is assigned a failure label defined by an unmeasurable

status variable C ∈ S with its domain being {N,F1, F2, ..., Fk}, where Fi, 1 ≤ i ≤ k,

stand for permanent failure status and N stands for normal status. For example, let us

consider the two states x1 and x5 of model G shown in Figure 2.5(b). Even though the

measurable state variables (S1, S2, S3) of x1 and x5 have same values, their unmeasurable

status variable C has different values, that is, x1(C) = N and x5(C) = F . Therefore,

the transition τF = 〈x1, x5〉 represents a failure causing transition and is unmeasurable.

In state-based approaches, fault diagnosis is performed based on the sequence of output

measurements associated with the system states. The assumption on partitioning the

state space of the system has two benefits [115]. First, this is particularly useful in cases

where the failure might have occurred before the start of diagnosis. In these situations,

a failure can be diagnosed by determining the faulty status of the states using the se-

quence of measurements. Another benefit is that this framework simplifies the transition

function of the diagnoser. Specifically, at each step, after receiving a new measurement,

this approach only has to update the estimate of the system’s state as normal or faulty

or uncertain, and thus it avoids label propagation as done in [103]. �

2.4.3 Diagnoser Construction Procedure

This subsection describes the construction procedure for the diagnoser Gdiag under mea-

surement limitation. As of now, we denote the states, transitions and traces of model
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G as G-states, G-transitions and G-traces, respectively. Similarly, we use D-states, D-

transitions and D-traces, respectively to represent the diagnoser states, transitions and

traces.

The diagnoser is represented as a directed graph

Gdiag = 〈Z,A〉 (2.9)

where Z is the set of D-states, and A is the set of D-transitions . Each D-state z ∈ Z is a

set of G states representing the uncertainty about the actual state and each D-transition

a ∈ A of the form 〈zi, zf〉 is a set of measurement equivalent transitions, representing

the uncertainty about the occurrence of the actual measurable transition. The following

definition is introduced to discuss the procedure for constructing the diagnoser from G.

Definition 2.4.6. Unmeasurable reach of a set of G-states: The unmeasurable

reach of a set Y of G-states is the transitive closure (Kleene closure) of the unmeasurable

successors of Y and is denoted as U∗(Y ), where the unmeasurable successor of a set Y

of G-states is defined as U(Y ) =
⋃
x∈Y {x+|τ = 〈x, x+〉 ∈ =u}

Construction of the Diagnoser: The initial D-state (z0) is obtained as U∗(X0).

Now, consider the construction of the transitions from a D-state z. Let =mz denote

the set of measurable G-transitions from the states x ∈ z. Let Az be the set of all

measurement equivalence classes of transitions obtained from =mz. Corresponding to

each of these classes, there is a transition a, emanating from z. For a transition a

emanating from the D-state z, the successor state z+ via the transition a is computed

in two steps: (i) first, a set z+
a is computed as the set {final(τ)|τ ∈ a}, (ii) the set z+

is then obtained as z+ = U∗(z+
a ). For each a ∈ A, the initial and the final D-states are

designated as initial(a) and final(a), respectively. Therefore, from the above discussion,

initial(a) = z and final(a) = z+. The set of the diagnoser transitions is augmented

as A ← A ∪ {a} and the set of states is augmented as Z ← Z ∪ {z+}. It may also be

noted that each D-state z 6= z0 contains measurement equivalent states; z0, however,

may contain (initial) states, which are not necessarily measurement equivalent.
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Diagnosability Analysis: Now, we introduce certain definitions and properties needed

for diagnosability analysis on the diagnoser.

Definition 2.4.7. Embedding of G-traces in D-traces:. Given a D-trace γ =

〈a1, a2, ..., ak〉, a G-trace q, where P (q) = 〈τ1, τ2..., τk〉, is said to be embedded in γ, if

τi ∈ ai, 1 ≤ i ≤ k. The set of all G-traces embedded in a D-trace γ is represented as

AD(γ).

The fault label of any D-state z = 〈x1, x2, ...xi, ...〉 is defined as z(C) =
⋃
x∈z x(C).

Definition 2.4.8. Normal D-state:. A D-state z is called normal and denoted as zN ,

if z(C) = {N}; the set of all normal D-states is denoted as ZN .

Definition 2.4.9. Fi D-state:. A D-state z is called an Fi D-state and denoted as zFi
,

if Fi ∈ z(C). The set of all Fi D-states is denoted as ZFi
.

Definition 2.4.10. Fi-certain D-state:. An Fi D-state z is called an Fi-certain D-

state if z ⊆ XFi
.

Definition 2.4.11. Fi-uncertain D-state:. An Fi D-state which is not Fi-certain is

called Fi-uncertain.

Property 1. If two traces q, y ∈ AD(γ), where q is an Fi G-trace and y is a normal

G-trace, then the D-states traversed by γ are Fi-uncertain.

Proof. The property also follows from diagnoser construction. As any D-transition a ∈ γ
has a normal G-transition and a Fi G-transition (which are equivalent), so source and

destination D-states of a are Fi-uncertain.

Therefore, an Fi-certain D-state contains only Fi G-states whereas an Fi-uncertain

D-state contains both Fi G-states and normal G-states. So, a fault is diagnosed if

the diagnoser reaches any Fi-certain D-state. Let consider a D-trace γ consisting of a

sequence of Fi-uncertain D-states which is actually a composition of a normal as well as

faulty G-trace (see Property 1 and Definition 2.4.7). If so, a fault cannot be diagnosed

until γ is exited.
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Definition 2.4.12. Fi-indeterminate cycle:. An Fi-indeterminate cycle is an Fi-

uncertain D-cycle such that there are at least two measurement equivalent syntactic

cycles y and q in G, one comprising only normal G-states and the other comprising Fi

G-states, corresponding to the D-cycle.

The equivalence between Fi-diagnosability and the absence of Fi-indeterminate cycles

has been formally established for DES models [103, 115]. Consider two measurement

equivalent cycles y and q in G, one comprising only normal G-states and the other

comprising Fi G-states. If the system is under normal condition, the diagnoser moves

in a normal cycle and once a fault Fi occurs it moves in the fault cycle. As both the

normal and fault cycles are measurement equivalent, they are indistinguishable from

one another. Therefore, in the presence of an Fi-indeterminate cycle, it is not possible

to predict whether the diagnoser is moving under normal or fault cycle leading to non-

diagnosability.

2.5 A Review of DES-based Fault Diagnosis Schemes

In this section, we discuss and analyze a few important state-of-the-art works related to

DES-based fault diagnosis.

A wide variety of methodologies have been proposed to solve the problem of fault

diagnosis for systems modeled as DESs [24,91,92,99,116]. The idea of failure diagnosis

in DESs was first proposed by Sampath et al. [103,104]. A new fault detection paradigm

called safe diagnosability was introduced and studied by Paoli and Lafortune in [91]. Safe

diagnosability requires the detection of a fault prior to the commencement of an unsafe

behavior within the failed mode of operation of the system. Then they extended their di-

agnosability theory to design a diagnosing controller which safely detects faults and takes

control actions to switch between the nominal and reconfigured control policies, subse-

quent to faults [92]. A comprehensive survey for the state-of-the-art in fault diagnosis

techniques for DESs has been discussed in detail by Zaytoon and Lafortune [116]. The

gist of any DES based fault diagnosis framework is to develop normal and fault models

corresponding to nominal and failure scenarios. Subsequently, a diagnoser is built using
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the knowledge of the states traversed in the normal and faulty models. The diagnoser

determines whether the system is operating under faulty, non-faulty or uncertain con-

ditions. Such diagnosers therefore, significantly enhance reliability and predictability of

systems operating under faults. However, the complexity of the diagnosis processes, that

is, constructing a diagnoser and testing its diagnosability, is exponential in the number

of system states and doubly exponential in the number of state variables [28, 103, 115].

This may lead to prohibitively huge state-space requirements in the design of diagnosers

for large and complex systems.

In order to reduce complexity of the diagnosis process, various approaches have been

presented in the literature. Among them, the objective of one class of approaches is to

prevent the actual construction of a diagnoser, if faults in the system are verified to be

non-diagnosable [45, 56, 114]. For this purpose, these schemes aim towards the design

of light weight test frameworks which can verify the diagnosability of a DES model in

polynomial-time. The other significant class of works essentially aim at reduction in the

state space complexity involved in the construction of a diagnoser [33,105,115]. This class

can further be considered to consist of strategies which follow one of two distinct design

approaches. The first is the top-down approach which derives a reduced diagnoser from

a monolithic model of the overall system using model reduction techniques [105, 115].

Model reduction essentially works by eliminating redundant models/variables in the

system whose measurements are not required for fault diagnosis. The second approach

follows a bottom-up strategy which generates a set of local diagnosers from component

models and performs global diagnosis of the system by collectively combining the diag-

nosis of these local diagnosers [33, 36, 106]. These local diagnosers are typically derived

from physically modular subcomponents within the system.

With these insights, discussion on DES-based fault diagnosis has been categorized

based on the three major streams of research on formal approaches to fault diagno-

sis, namely, i) works that attempt to device low overhead diagnosability verification

mechanisms, ii) approaches towards top-down diagnoser construction, and iii) strategies

that attempt to synthesize the overall diagnoser bottom-up from subcomponent diag-
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nosers/models. We now describe the overall themes of works corresponding to these

major streams of research, in more detail.

2.5.1 Diagnosability Verification Strategy

The objective of this stream of approaches is to obtain a light weight test framework for

verifying diagnosability in polynomial-time, without going through the heavily compute-

intensive process of actually constructing a diagnoser [45,56,114].

Jiang et al. [56] proposed an algorithm for testing diagnosability whose complexity

is of the fourth order of the number of states in the system. Yoo and Lafortune [114]

presented a polynomial-time diagnosability verification algorithm by constructing a ver-

ifier automata whose complexity is of the second order of the number of states in the

system. Then they modified this verifier to test a relaxed notion of diagnosability called

I-diagnosability in polynomial time. I-diagnosability is applicable to those systems in

which a failure event may be detected within a finite delay subsequent to the occur-

rence of special observable events called indicator events associated with that failure.

For example, consider the case study with the Heating, Ventilation and Air Condition-

ing (HVAC) system discussed in Section II-B-2 of [103]. Under normal operation, the

controller of the system issues the command ‘open valve’ whenever it senses a demand

for heating (termed as heating load). Similarly, the command ‘close valve’ is issued when

the load disappears. Sampath et al. [103] designated ‘open valve’ and ‘close valve’ as in-

dicator events corresponding to the valve failure events, ‘stuck-closed’ and ‘stuck-open’,

respectively. This is because the failure ‘stuck-closed’ (‘stuck-open’) can be diagnosed

only after the command ‘open valve’ (‘close valve’) has been issued.

Gascard et al. [45] proposed a polynomial diagnosability verification strategy for

systems whose models can be partitioned according to distinct operation modes. The

principal advantage of these approaches is that a diagnoser needs to be constructed only

if the light weight verifier deems the system to be diagnosable. However, only the process

of diagnosability verification is performed in polynomial-time. If the test is successful,

there is still a need to construct the diagnoser, and this may be highly compute intensive.
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2.5.2 Diagnoser Design

We now focus our attention towards strategies dealing with the actual construction of a

diagnoser. Sampath et al. [103] presented an event-based fault diagnosis approach which

constructs a diagnoser from the global model of the system. They assumed the systems to

be partially-observable where a subset of events are deemed to be unobservable due to the

lack of sensors to detect their occurrence. For example, there are no sensors available to

observe the “Stuck Closed” failure or operating temperature of the engine or temperature

of the air entering into the engine, in the EFI system discussed in Section 6.1, and hence,

the events associated with them are unobservable. Diagnosis is conducted by extracting

the observable part of both the nominal and faulty system models through a projection

operation which eliminates all unobservable events. The principle drawback of this

approach is the huge state space complexity of the diagnoser, which is exponential with

respect to the number of model states and doubly exponential with respect to the number

of events in the system, in the worst case. In order to reduce state space complexity

involved in the construction of a diagnoser, various strategies have been adopted and

these follow either a top-down or a bottom-up design approach.

2.5.2.1 Top-down Diagnoser Design Strategies

This class of strategies derive a reduced diagnoser from a monolithic model of the overall

system using model reduction/abstraction techniques [105,115]. Zad et al. [115] proposed

a model reduction technique for their state-based diagnosis framework and have shown

its effect on a heating system (refer Section-II of [115]). The heating system uses a

heater, a temperature sensor and a controller to regulate the temperature of a room

about a set point. The effect of disturbances such as the temperature of an adjoining

room and the ambient temperature, is represented through a load model. As the model

for the heating system is functionally independent of the load model, faults associated

with the heating system model also do not depend on the load model. Therefore, with

respect to fault diagnosis of the heating system, consideration of the load model becomes

redundant and its removal allows reduction in state space of the diagnoser, while not
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compromising diagnosability. In order to obtain a diagnoser with reduced state space,

Zad et al. [115] applied projection operations to derive an abstracted model of the system

by eliminating redundant models and then constructing the diagnoser from this abstract

model.

K. Schmidt [105] extended Zad’s model reduction approach to a physically modu-

lar system in which each module is functionally independent of the behavior of other

modules. The overall model for such a system can easily be obtained by hierarchically

combining the models of each subcomponent module within it. K. Schmidt [105] ap-

plied projections on individual subcomponent models to obtain their reduced models.

Although model abstractions are applied to individual subcomponent models, the diag-

nosers are not constructed at subcomponent levels as their abstract models cannot be

guaranteed to be diagnosable. Thus, the abstract subcomponent models are first com-

bined in a bottom-up fashion to obtain a reduced model for the entire system. Then, the

diagnoser is constructed from this reduced monolithic model of the system in a top-down

manner. They also presented the idea of abstraction-based diagnosability by represent-

ing a failure as the violation of a given prefix-closed specification language. However,

in the worst case, state space complexity of reduced monolithic diagnosers constructed

using either of these model reduction/abstraction schemes become comparable to that of

a monolithic diagnoser constructed from the full-blown non-reduced system model [103].

2.5.2.2 Bottom-up Diagnoser Design Strategies

This class of strategies generates a set of local diagnosers from projected component

models of a physically modular system and performs global diagnosis through the ad-

ditive combination of the diagnoses of the local diagnosers [33,36,106]. Such additively

combined diagnosers for a system have the potential of being exponentially smaller in

their state space complexities compared to diagnosers derived from monolithic system

models. Since this modular strategy uses a set of local diagnosers similar to MLAD to

conduct global diagnosis, we discuss an important modular bottom-up diagnoser syn-

thesis approach proposed by Debouk et al. [36], in detail.

Debouk et al. [36] presented a fault diagnosis framework for a modular architecture in
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which each failure in the system can be directly associated to a distinct local component

module (also called a subsystem), where it occurs. The diagnoser construction process

starts by verifying the diagnosability of each subsystem model where faults may possibly

originate and then actually constructing a local diagnoser for the model if the verification

is successful. However, if the diagnosability test results in a failure, the non-diagnosable

subsystem is incrementally composed with another subsystem, and the bigger composite

subsystem thus obtained, is again subjected to a similar phase of diagnosability test and

possible diagnoser construction. The composition is carried out with the objective of

eliminating diagnosability violating traces from the non-diagnosable subsystem model

(see Definition 2.5.3). This mechanism of incremental composition continues until the

corresponding diagnosability test results in a success. The above process finally provides

the minimal set of local diagnosers which together allows the diagnosability of all faults

in the system. The diagnoser for the system is derived through the additive combination

of these local diagnosers. Now, we discuss the notion of diagnosability introduced by

Debouk et al. [36] in more detail.

Consider a modular system G composed of two subsystems G1 and G2. The event

set Σ corresponding to G is partitioned into the set of observable events Σo and the set

of unobservable events Σuo, such that, Σ = Σo ∪ Σuo. Let Σf ⊆ Σuo denote the set of

failure events which are to be diagnosed and Πf denote the failure partition. The prefix-

closed language generated by G, denoted as L(G), describes the behavior of the system.

Gi, i = 1, 2 is defined on Σi = Σoi ∪ Σuoi, with Σ = Σ1 ∪ Σ2. Let Πfi on Σi
f , i = 1, 2

denote the failure partition for L(Gi) under the assumption that Πf1 and Πf2 do not

share any failure type. The notion of diagnosability defined by Sampath et al. [103] is

now extended to this modular architecture setup and is formally stated as follows:

Definition 2.5.1. (Sampath et al. [103]): A prefix-closed and live language L is said to

be diagnosable with respect to a projection P : Σ→ Σo and with respect to a partition

Πf on Σf , if the following holds:

(∀i ∈ Πf )(∃ni ∈ N)(∀s ∈ Ψ(Σfi))(∀t ∈ L/s)(‖ t ‖≥ ni ⇒ (w ∈ P−1
L (P (st)) ⇒

Σfi ∈ w)), where Ψ(Σfi) denotes the set of traces ending with a failure event in Σfi,

L/s denotes all continuation in L(G) of the trace s, ‖ t ‖ denotes the length of trace t,
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and P−1
L (u) denotes all traces v in L(G) such that P (v) = u.

Informally, Definition 2.5.1 means that a language is said to be diagnosable with

respect to a set of observable events and a failure partition if within a finite delay,

the occurrence of any failure can be detected using the record of observable events. A

property is formalized in the context of languages in the following definition under the

assumption that the failure is diagnosable locally.

Definition 2.5.2. (Debouk et al. [36]): Consider the languages L(G), L(G1) and L(G2)

defined over the set of events Σ, Σ1 and Σ2, respectively. Let G = G1 ‖ G2. L(G) is

said to be live with respect to L(Gi), i = 1 or 2 if ∀s ∈ L(G), Qi(s), where Qi is the

projection from Σ→ Σi, is arbitrarily long.

The sufficient conditions for a system to be diagnosable under the modular architec-

tural setup is defined as:

Definition 2.5.3. (Debouk et al. [36]): L(G) is diagnosable with respect to the set

of observable events Σo and the failure partitioning Πf on Σf if L(Gi), i = 1, 2, is

diagnosable with respect to the set of observable events Σoi and the failure partitioning

Πfi on Σi
f , and L(G) is live with respect to L(Gi).

Informally, Definition 2.5.3 means that the modular architecture is able to detect

and isolate all failures if for each of these failures the diagnoser of the subsystem which

exhibits the failure is capable of detecting and isolating it.

The applicability of modular approaches is limited under two distinct scenarios, (i)

when the architecture of the system is inherently monolithic and thus, making it difficult

to obtain modular subcomponent DES models; (ii) when one or more fault types are

majorly distributed over a significant part of the entire system and hence, it is difficult

to localize these faults within one or few subcomponents. In both the above scenarios,

the combined state space of the generated localized diagnosers may become comparable

or even higher than the diagnoser that is derived from the overall original DES model

of the system. Hence for these scenarios, we may not obtain any significant reduction

in state space.
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With the insights obtained from the analysis of different approaches for reducing

complexity of the diagnosis process, we propose here a top-down approach called Mea-

surement Limitation based Abstract DES Diagnosis (MLAD), towards localized light

weight diagnoser construction from reduced DES models. Here, such reduced models

have been obtained through the behavioral decomposition of the overall DES model on

the basis of the compartmentalization of faults, instead of functional modularization as

in [33,36,106]. The basic DES model reduction mechanism is based on measurement lim-

itation of the state variables similar to the work presented by Zad et al. [115]. However,

Zad’s work allows limitation to only redundant variables such that diagnosability of the

resultant reduced model is never compromised. In comparison, MLAD carefully chooses

and forcefully limits the measurement of a subset of even the non-redundant variables to

obtain reduced models from which controlled partially compromised diagnosers can be

constructed. Given the set of all (say k) faults, such a reduced diagnoser can be obtained

by choosing a carefully designated subset of variables whose limitation can possibly lead

to compromised diagnosability of only a stipulated subset of (say k′) faults while not

affecting the diagnosability of the remaining (k−k′) faults. MLAD performs a stipulated

number (say L) of such controlled limitations on the original model to obtain a set of

L partially compromised reduced diagnosers whose combination ensures diagnosability

of all faults. For example, let us consider a system with k possible faults and modeled

using S variables. Let us assume that measurement limitation of a designated subset

of S1 variables in S produces a reduced model whose corresponding diagnoser G1
diag

(have state space say, Z1) compromises a distinct subset of (say) k − k1 faults out of

the k possible faults. Thus, MLAD chooses L separate subsets of S1, S2, ..., SL variables

(∀i, Si ⊆ S) and applies measurement limitation on the original model using each such

subset to allow the generation of L reduced diagnosers G1
diag, G

2
diag, ..., G

L
diag (having cor-

responding state spaces Z1, Z2, ..., ZL) which ensure the diagnosis of k1, k2, ..., kL faults,

respectively. The L subsets of variables are so chosen that k = k1 ∪ k2 ∪ ... ∪ kL. Thus,

the L reduced diagnosers running in parallel ensure the diagnosability of all faults. The

design approach discussed above allows significant reduction in state space from the
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conventional approach if, Z1 + Z2 + ... + ZL << Z, where Z represents the state space

of the single full diagnoser derived from the original DES model. Analysis over various

test cases show that by effectively selecting the sets of variables to be measurement

limited, MLAD is able to achieve handsome reductions in state space in most practical

scenarios by additively combining a set of streamlined partially compromised diagnosers.

Generally, the complexity of the proposed work is additive in nature with respect to the

exponential complexity of the existing monolithic approaches.

2.6 Summary

This chapter started with a brief overview about the basic terms and definitions of

real-time systems, followed by literature survey of various scheduling algorithms for

real-time multiprocessor systems with the consideration of different design parameters

such as timeliness, energy awareness, fault tolerance, etc. Then, we have presented the

fundamental definitions related to DES-based fault diagnosis, followed by an overview

of various DES-based fault diagnosis mechanisms for safety-critical systems. These con-

cepts and definitions may either be referred or reproduced appropriately later in this

thesis. In the next chapter, we present an energy-aware fair scheduling strategy namely

ESSM, developed by us for real-time homogeneous multiprocessor systems.
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Chapter 3
Energy-efficient Fair Scheduling on
Real-time Multiprocessor Systems

In the last chapter, we discussed various scheduling algorithms for real-time multipro-

cessor systems with the consideration of different design parameters. We also discussed

and analyzed various DES-based fault-diagnosis mechanisms for safety-critical systems.

As mentioned earlier, there has not been a significant effort towards the development of

energy-efficient proportional fair scheduling methodologies. In this chapter, we develop

an efficient energy-aware fair scheduling strategy for real-time safety-critical systems

having homogeneous multiprocessors as the computing platform. The proposed energy-

efficient algorithm called ERfair Scheduler with Suspension on Multiprocessors (ESSM)

makes use of ERfair [5], a work-conserving proportional fair scheduler as an underlying

scheduling scheme. The ESSM algorithm attempts to locally maximize the total length

of suspension intervals while simultaneously reducing the number of such intervals using

a novel procrastination mechanism, thus lowering energy consumption in the process.

The chapter first presents the energy consumption model and specification of the

system considered in our work. The proposed energy-efficient ESSM scheduling scheme,

along with an example and analysis of its complexity is described next. Subsequently,

we discuss the important experimental results which highlight the performance of the

proposed energy-aware scheduling strategy under various scenarios. Finally, we conclude

our work.
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3.1 Energy Consumption Model

The basis of our energy management strategy is to suspend one or more processors during

idle times, as negligible amount of energy is consumed in suspended mode. However, a

fixed amount of time and energy is consumed when the system transits between the idle

and active states. Therefore, the processor needs to stay at the lower power state for at

least long enough so as to recover the cost of transitioning in and out of the state. This

is called the break-even time TIbe [19, 66] of a processor. That is, TIbe is the minimum

time length of an idle period during which shutting down a processor will save power,

and is defined as follows:

TIbe = TItr + TItr
Ptr − Pon
Pon − Psleep

(3.1)

Here, Pon represents the power consumption in active state, Psleep is the power con-

sumed in the lower power state, while TItr and Ptr is the cost of transition in terms

of time and power, respectively. In general, TIbe is the sum of two terms: TItr, the

total transition time (i.e., the time required to enter and exit the low-power state), and

TItr
Ptr−Pon

Pon−Psleep
, the minimum time that has to be spent in the low-power state to com-

pensate the excess power consumed during state transition [19, 66]. Hence, whenever a

suspension interval is created, Equation 3.1 is used to determine whether the idle time

is long enough to compensate for the additional energy spent in transition. If the idle

time interval is too small, the sleep is not actually taken.

3.2 System Specification and It’s Properties

The system under consideration consists of a set of n dynamic real-time periodic tasks

T = {T1, T2, ..., Tn} to be executed on a set of m homogeneous processors, using the ER-

fair scheduling strategy. We consider discrete time lines and denote time by t (t ∈ N).

Each task Ti in the system is defined by a 3-tuple (si, ei, pi), where, si represents the

start/arrival time of the current instance or job of Ti, ei denotes the execution require-

ment of each of its jobs and pi which is referred to as its period, denotes the inter-arrival

time between consecutive jobs. The utilization ui (also called weight) which represents
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the task’s minimum required rate of execution, is given by ui = ei/pi.

Processor States: The objective of an ESSM scheduled system is to allow maximal

processor suspensions such that the temporal constraints of none of the tasks are ever vi-

olated. So, any processor in the system may be in one of two states, Awake or Sleeping.

It is Awake when it is in high-power mode ready to execute client tasks. The processor

is said to be in Sleeping state when it is Suspended/Shutdown in low-power mode. One

or more processors in the system may transit to Sleeping state for a certain interval, say,

τ , if and only if the combined compute power of the rest of the processors is sufficient to

handle the total workload on the system within this interval τ . Figure 3.1(a) illustrates

the two processor states along with their transition events.

Task States: A task in an ESSM scheduled system may be in one of four different

states: 1) Running (R), 2) Suspended (S), 3) Free (F ), and 4) Engaged (E). Out of

these, the first two states (Running and Suspended) are jointly referred to as the Active

state A (= R ∪ S) while the other two states (Free and Engaged) are denoted as the

Completed state C (= F ∪E) when considered jointly. A task which has already arrived

is said to be in Active state if it has not completed executing all subtasks of its current

instance. An Active task is in Running state if it is either currently executing on a

processor, or it is in the ready queue. An Active task may sometimes be procrastinated

for a certain interval, say, τ1, to allow a processor to suspend itself. Such a procrastinated

task is said to be in Suspended state during this interval τ1. When a task has completed

executing all subtasks of its current job and is waiting for its next instance to arrive, it is

said to be in Completed state. A Completed task may also be used to allow a processor

to sleep for a certain interval, say, τ2. The Completed task is in Engaged state during

this interval τ2 when its individual utilization is being used by a processor to suspend

itself. Otherwise, if the Completed task has not yet been used to shutdown a processor,

it is said to be in Free state. Figure 3.1(b) pictorially represents the different states in

which a task can be in.
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Figure 3.1: (a) Processor states; (b) Task states: Labels on the arcs denote the state change
events; A: Procrastinate, B: End of procrastination duration, C: Finished execution, D and E:
End of period/New job begins.

The combined utilization (also referred to as total utilization or workload) for any

given set of tasks, say, Λ = {Tλ1, Tλ2, ..., Tλ|Λ|} is defined as the summation of utilizations

of the tasks in Λ and is denoted by UΛ. That is,

UΛ =

|Λ|∑
i=1

uλi. (3.2)

The set of periodic tasks (comprising all Active and Completed tasks) executing at a

given time is feasibly schedulable if its total system utilization is at most m, the available

number of processors [5], that is,

UA∪C ≤ m. (3.3)

The system is said to be underloaded with respect to its total system utilization if

UA∪C < m. A new task (say, Ti having utilization ui) may be accepted by an underloaded

ERfair system only if the above feasibility condition (refer Equation 3.3) remains valid

even after incorporation of Ti, that is,

UA∪C + ui ≤ m. (3.4)

Example 1: Consider a set of six tasks, T1 (0, 10, 50), T2 (0, 12, 60), T3 (0, 30, 150),

T4 (0, 30, 150), T5 (0, 20, 50) and T6 (10, 15, 75) to be executed on three unit capacity
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processors. So, the total system capacity is (m =) 3. Task T6 having si = 10 arrives

at time t = 10 and all other tasks arrive at t = 0. u1 = u2 = u3 = u4 = u6 = 1/5 and

u5 = 2/5. As T6 has its arrival time at t = 10, the total system utilization at t = 0 is

given by UA∪C = UR =
∑5

i=1 ui = 6/5. The system is feasibly schedulable at t = 0 since

it is underloaded (that is, UA∪C (= 6/5) < m (= 3)). A new task T6 having utilization

u6 = 1/5 is accepted at t = 10 as it satisfies the feasibility condition in Equation 3.4.

Due to the entry of task T6 at t = 10, the updated total utilization UA∪C (= UR) becomes

7/5. �

Theorem 3.2.1. In an underloaded system with total system utilization UA∪C, dUA∪Ce ≤
m processors are sufficient to ensure ERfair schedulability.

Proof. It follows from Equation 3.3 that if UA∪C ≤ m − i (i ∈ N, 0 ≤ i ≤ m − 1),

then m − i processors are sufficient to handle the workload UA∪C . Thus, the minimum

number of processors that are sufficient to handle a system load UA∪C is dUA∪Ce.

From Theorem 3.2.1, it may be inferred that as dUA∪Ce processors are sufficient to

ensure ERfair schedulability, m−dUA∪Ce processors may safely sleep (remain suspended)

perpetually without any possibility of ERfairness violation. However, even when only

dUA∪Ce processors are active, the system may still be underloaded if UA∪C < dUA∪Ce.
The system is said to be fully loaded when UA∪C = dUA∪Ce.

It may be noted that as there is no spare capacity in a fully loaded system, all tasks

will ideally complete at the last time slots of their periods. As the next instances of the

tasks arrive at the beginning of their next periods (which immediately follow the end

of their previous periods), all tasks continue to remain in their Running states forever,

with no task ever moving to its Completed state. In such a system, UA∪C remain

perpetually same as UR. However, in an underloaded system, the tasks will actually

complete execution of their jobs before the end of their periods. Let a task Ti complete

its execution at time, say, ta (referred to as the finishing time fi of the current job of Ti)

before the end of its period, which occurs at tb. Hence, Ti will be evicted from the ready

queue and will be in the Completed state within the interval [ta, tb) (the next instance

of Ti will arrive at tb). Now, assuming that all tasks were in the Running state at time
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ta and no other tasks changed states within the interval [ta, tb), the actual total load of

the Running tasks (UR) in the interval [ta, tb) is obtained as: UR = UA∪C − ui.

Further, it may be observed that if dURe < dUA∪Ce, a processor may in principle be

suspended for the interval [ta, tb). However, such a processor suspension will not yield

any gain in net energy savings (and will rather induce higher net energy dissipation)

if the length of the interval [ta, tb) is less than TIbe, the break-even time (refer Equa-

tion 3.1). As we will see later, this is the essential reason why the ESSM algorithm does

not suspend processors greedily at all possible opportunities. Instead, it takes a more

poised approach by searching for time points within the schedule at which the processor

suspension intervals may be locally maximal and actually suspending a processor only

if the corresponding sleep is found to be profitable.

In general, at any given instant, an underloaded ERfair system will have some spare

capacity beyond UR, the actual total load, which will be proportionally shared among

the currently Running tasks in the system. Hence, the effective or actual execution

rates of these tasks will be higher than their required execution rates ui. The effective

execution rate (also referred to as effective weight) eui of each task Ti is then obtained

as the up-scaled version of its original utilization as follows:

eui = min(
ui
UR
× dURe, 1). (3.5)

Assuming that a system was ERfair at an instant, say ,tx, in the past and the current

time is t, the number of subtasks of execution that a task Ti (whose lag value at time

tx is 0 (lag(Ti, tx) = 0; refer Equation 2.1)) should complete in the interval [tx, t) is

given by: ui × (t − tx). However, in an underloaded system, Ti will actually complete

eui × (t − tx) subtasks. So, oai(t) = (eui − ui) × (t − tx) denotes Ti’s overallocation at

time t. Therefore, at t, the scheduler can safely suspend Ti for an interval boai(t)/uic
without any possibility of ERfairness violation. We refer to this interval (boai(t)/uic) as

the slack of task Ti at t (denoted by slacki(t); assuming that slacki(tx) = 0). In general,

slacki(t) = slacki(tx) + boai(t)
ui
c. (3.6)

Example 2: Let us continue with the system and scenario considered in Example 1.
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It may be inferred that as dUA∪Ce = 2 processors are sufficient to ensure ERfair

schedulability, m − dUA∪Ce = 1 processor may safely sleep (remain suspended) perpet-

ually without any possibility of ERfairness violation (unless dynamic arrival of tasks

at some future time causes UA∪C to surge above 2; if this happens, then all three

processors must be awakened). As system utilization UR = 6/5 and system capacity

dUA∪Ce = 2 at time t = 0, the initial effective execution rates of the Running tasks

are eu1 = eu2 = eu3 = eu4 = 1/3 and eu5 = 2/3. It may be noted that the five

Running tasks at t = 0 proportionally consume the entire available spare capacity

with their combined effective execution rates being
∑5

i=1 eui = 2. Executing at these

effective rates, the over-allocations acquired by the five Running tasks at t = 10 are

oa1(10) = oa2(10) = oa3(10) = oa4(10) = 4/3 and oa5(10) = 8/3 and the corresponding

slacks accumulated by them are slack1(10) = slack2(10) = slack3(10) = slack4(10) =

slack5(10) = b20/3c = 6. Due to the arrival of task T6 at t = 10, the system uti-

lization UR increases to 7/5 and the modified effective utilizations of the tasks become

eu1 = eu2 = eu3 = eu4 = eu6 = 2/7 and eu5 = 4/7. �

Theorem 3.2.2. At a given instant of time, the slack generation rates of each task Ti

in the Running set is constant and is given by: SRi = dURe−UR

UR
, where UR denotes the

total load of the Running tasks.

Proof. (Using step-by-step deduction)

1. Required rate of execution of each task Ti: ui = ei
pi

2. Actual or effective rate of execution: eui = dURe
UR
× ui (refer Equation 3.5).

3. So, rate at which Ti gets overallocated: eui − ui = ui × dURe−UR

UR

4. Now, as Ti requires to execute at the rate ei
pi

, it may be suspended for bpi
ei
c time

slots for each unit of execution overallocation.

5. Hence, for ui × dURe−UR

UR
units of over-allocation, Ti may be suspended for bui ×

dURe−UR

UR
× pi

ei
c time slots = b dURe−UR

UR
c time slots, which is constant for a given

system utilization.
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6. Thus, slack rates of all Running tasks is SRi = dURe−UR

UR

Theorem 3.2.3. Slack generation rates of tasks Ti in the Completed state is SRi = −1.

Proof.

1. A task Ti is said to be in the Completed state if it has finished the execution of

its current instance and is waiting for its next job to arrive at the beginning of its

next period.

2. As the slack of a newly arrived job is always zero, the slack of a completed task

Ti at any time t is given by pi − t, and it decreases as time progresses, ultimately

reducing to 0 at the end of the period pi.

3. Hence, all tasks in the Completed state have a slack generation rate of SRi = −1.

From Theorems 3.2.2 and 3.2.3, the general definition of the slack generation rate

SRi of a task Ti may be obtained as:

SRi =

{
dURe−UR

UR
if Ti ∈ Running

−1 if Ti ∈ Suspended or Completed
(3.7)

The definition for the slack of task Ti at time t (refer Equation 3.6) may be rewritten

in terms of its slack generation rate SRi as:

slacki(t) = slacki(tx) + bSRi × (t− tx)c (3.8)

where, tx denotes a time in the past at which the value of slack is known, and slack

generation rate does not change in the interval [tx, t).

It may be observed from the definition of slack (Equation 3.8) that a task’s slack

is 0 when it just arrives. As it keeps executing at rate eui (Equation 3.5) in under-

loaded (UR < m) ERfair systems, its slack slacki(t) also keeps on increasing at a rate
dURe−UR

UR
(Theorem 3.2.2) linearly with time until the point (say, fi) where it finishes

execution of its current instance. This is the point where the slack of the task is highest.
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si fi pi

slacki (fi )
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Figure 3.2: Task Ti’s variation of slack over time. si, fi and pi represent the arrival time,
finish time and period of Ti, respectively. slacki(fi) denotes the slack generated at time fi.

Thereafter, its slack decreases linearly with time at the rate −1 (Theorem 3.2.3) until

its deadline/period-end is reached where the slack becomes 0 again. Figure 3.2 gives a

pictorial representation of a task’s slack variation with time. We call this diagram the

slack-graph of a task.

It follows from Theorem 3.2.2 that, at any given instant, all rising edges of Running

tasks have the same slope as the slack generation rate is constant. Similarly, Theo-

rem 3.2.3 says that all falling edges have a slope of = −1. So, no two rising edges or two

falling edges ever intersect. The slope of the rising edges of all tasks change whenever

the number of tasks in Running state changes. This happens because whenever such an

event occurs, the effective execution rates of all tasks and, hence, all currently running

task’s slack generation rate changes.

As discussed above, at most dUA∪Ce processors are sufficient to feasibly schedule a

set of tasks having total system utilization UA∪C . We also saw that at any time t in an

underloaded ERfair system (UA∪C < dUA∪Ce), each task Ti in the task set T acquires a

slack, represented as slacki(t), which denotes the interval of time (starting from t) for

which Ti may be safely suspended without any chance of ERfairness violation. Let us

assume that we choose a subset of tasks Λ = {Tλ1, Tλ2, ..., Tλ|Λ|} from T whose combined

utilization (
∑|Λ|

i=1 uλi) is ϕ and minimum slack at time t (min
|Λ|
i=1slackλi(t)) is γ. We

refer to this minimum slack γ among any given set of tasks Λ as the Group Slack of

Λ at t and is denoted by Group Slack(Λ, t) (thus, here, Group Slack(Λ, t) = γ). It
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may be noted that the set Λ may be formed by choosing tasks from those in states

Free or Running or both. Now, if ϕ ≥ UR∪F − bUR∪F c, then one processor in the

system may be safely shut down for an interval γ (after suspending all tasks in Λ for

the interval γ) without any possibility of ERfairness violation. (Here, we consider only

the combined utilization of the Running and Free tasks (UR∪F ) since the utilization

of the Suspended and Engaged tasks have already been used to suspend processor(s)).

The processor transits back to the Awake state at the end of this interval as the task

having the minimum slack in the Free state transits to Running state at this time due

the arrival of its next instance. A processor that slept at time t may even have to be

awakened at any time t1 before t+γ if a new task dynamically arrives at t1 and the total

capacity of the processors awake at t1 is insufficient to handle the combined workload of

the new task along with the existing Running tasks.

Without loss of generality, let us again assume that set Λ has been formed by selecting

a set Λ1 of tasks in Running state and Λ2 of tasks in Free state. That is, Λ = {Λ1∪Λ2}
(Λ1 ∩ Λ2 = ∅). As a result of the suspension of the tasks comprising Λ for the interval

γ, tasks in Λ1 move from Running to Suspended while those in Λ2 move from Free to

Engaged for the time span γ. Due to this modification in the sets of tasks contained

in different task states, the value of the system utilization UR and combined system

utilization UR∪F are updated accordingly.

Another important observation is that a constant overhead referred to as the break-

even time TIbe is associated with each shutdown. This means that processor suspension

for an interval Group Slack(Λ, t) = γ will provide a net gain in terms of energy savings

only if γ − TIbe ≥ 0. It is clear that in order to minimize the negative impact of TIbe,

it is better to avoid short sleep durations and instead search for time points within the

schedule where the suspension intervals may be locally maximal. We refer to such a

time point of maximal sleep as a viable suspension point.

Theorem 3.2.4. Let Λ = {Λ1 ∪ Λ2}, (Λ1 ∈ Running, Λ2 ∈ Free) denote a subset

of tasks from T whose combined utilization is sufficient to allow a processor to suspend

itself (
∑|Λ|

i=1 uλi ≥ UR∪F − bUR∪F c). Let us further assume a time t at which the condi-

tion Group Slack(Λ1, t) < Group Slack(Λ2, t) is satisfied for Λ. Then, the next viable
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suspension point corresponding to set Λ will be obtained at the first subsequent time

instant tp in the future at which at least one of the following two events occur in the

corresponding slack distribution graph:

1. The rising edge of the task having the minimum slack in Λ1 intersects with the

falling edge of the task having the minimum slack in Λ2.

2. The task currently having the minimum slack in Λ1 completes execution.

Proof. The set of tasks in Λ1 will be represented by parallel rising edges in the slack

distribution graph (refer Theorem 3.2.2). Similarly, slacks of tasks in Λ2 will be rep-

resented by parallel falling edges (Theorem 3.2.3). Here, we assume that there are

Free tasks in the system at time t (Λ2 6= ∅). At any given time, Group Slacks of

Λ1 and Λ2 will be represented by the minimum ordinate values among the rising and

falling edges, respectively. While the Group Slack of Λ1 will monotonically increase

at a fixed rate (Theorem 3.2.2), the Group Slack of Λ2 will monotonically decrease

at rate -1 (Theorem 3.2.3). If the lowest rising and falling edges have to intersect at

any time, say, tp (so that condition 1 of the theorem is satisfied), then the minimum

ordinate value (and hence the Group Slack) in Λ1 must be lower than the minimum

ordinate value (and hence the Group Slack) in Λ2 before time tp. Thus, Group Slack

of the admissible set Λ (= min(Group Slack(Λ1, t), Group Slack(Λ2, t))) also increases

monotonically at rate dURe−UR

UR
before tp. At tp, Group Slacks of Λ1 and Λ2 become equal

(Group Slack(Λ1, tp) = Group Slack(Λ2, tp); this may not be exactly true because we

consider discrete time lines. On a discrete time line, tp denotes the first time slot (> t)

at which Group Slack(Λ1, tp) ≥ Group Slack(Λ2, tp)). After tp, Group Slack of Λ1

will become higher than Λ2’s Group Slack, and hence Group Slack of Λ will decrease

monotonically. Hence, a locally maximal sleep interval is obtained at tp, and so, tp forms

a viable suspension point.

If a task in Λ1 (say, Ta) completes at some time, say, t1, before the time t2 at which the

tasks with the minimal slacks in Λ1 and Λ2 were to intersect, then task Ta is moved from

Λ1 to Λ2 at t1. Group Slacks of Λ1 and Λ2 are updated accordingly (if there are no Free

tasks in the system at time t (Λ2 = ∅), then the time t2 do not exist). If Ta was the task

with the minimum ordinate value in Λ1 (before completion), then Group Slack(Λ1, t1)

will become greater than Group Slack(Λ2, t2) after Ta is moved from Λ1 to Λ2. Hence,
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both condition 1 and condition 2 of the theorem will be simultaneously satisfied at t1.

The next viable suspension point is therefore obtained at tp = t1.
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(a) Processor shuts down when task T1 having lower
slack terminates. f1 denotes the viable suspension
point
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(b) Processor shuts down when the rising edge of task T2 intersects with
the falling edge of task T1. i1 denotes the viable suspension point

Figure 3.3: Shutdown intervals for a hypothetical admissible task set consisting of two tasks

Figure 3.3 shows the sleep intervals at viable suspension points for an hypothetical

task set consisting of two tasks. While in Figure 3.3(a) shutdown occurs when task T1

having lower slack terminates, in Figure 3.3(b) shutdown occurs when the rising edge

of task T2 (having lower slack) intersects with the falling edge of task T1 at i1. In both

cases, the processor transits back to the Awake state when the next instance of T1 starts.

3.3 The ESSM Scheduling Strategy

The ESSM algorithm aims to maximize the sum of the total sleep durations over all

processors while simultaneously trying to lower the number of such sleeps because a
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constant overhead in terms of both time and energy is associated with each suspension

(refer Section 3.1). We now present a brief discussion on the working of ESSM.

3.3.1 ESSM: Algorithm Overview

When a schedule starts, we have a set (say, R) of Running tasks having total utilization

UR. All slack values are equal to 0. The Completed set (say, C) is empty. Hence,

UR = UR∪F = UA∪C . As discussed in the previous subsection, ESSM will maintain

m − dUA∪Ce processors in the Sleeping state. On the rest of the processors, ESSM

starts executing tasks in ERfair fashion and all tasks begin to generate slack at the same

rate dURe−UR

UR
(Theorem 3.2.2). At any given time t, ESSM searches for the next time

point tp at which either a Running task (say, Ta) completes execution or the rising edge

of the slack trajectory of a Running task (say, Ta) intersects with the falling edge of

a Free task (Theorem 3.2.4). This time instant tp at which the possibility of locally

maximal suspension intervals is obtained is called the Earliest Potential Suspension

Point (EPSP). An EPSP becomes a viable suspension point if slacka(tp) − TIbe ≥ 0.

At any viable suspension point tp, ESSM tries to build a set Λ whose weight
∑|Λ|

i=1 uλi is

atleast UR∪F − bUR∪F c. If such a set Λ is formed, it is referred to as an admissible task

set.

ESSM tries to generate an admissible task set Λ as follows: First, the subset Λ2 of the

Free tasks whose slacks are greater than or equal to Slacka(tp) is formed (if Ta completed

execution at tp, then it is included in Λ2). The sum of utilizations of tasks in Λ2 is UΛ2

and of those Free tasks not included in Λ2 is given by UF\Λ2. If UΛ2 ≥ UR∪F − bUR∪F c
then set Λ2 is sufficient to form an admissible set Λ. Otherwise, ESSM tries to build

a set Λ1 using a subset of those tasks from the Running set whose slack values are

greater than or equal to and closest to Slacka(tp) and UΛ1 ≥ UR + UF\Λ2 − bURc.
Although any subset of tasks with slack values greater than or equal to Slacka(tp) from

the Running set could have been used to form the Λ1, we choose the tasks with slack

values closest to Slacka(tp) to allow the slacks of higher slack-valued tasks to grow further

and potentially form admissible sets with higher viable slack values in future. The set

of tasks Λ1 = {Tλ1, Tλ2, ..., Tλ|Λ1|} is characterized as follows:
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1. Group Slack(Λ1, t) ≥ Slacka(tp)

2.
∑|Λ1|

i=1 uλi ≥ (UR + UF\Λ2 − bURc)

3. ∀ i, Slackλi(t) ≥ Slacka(tp)

4. @ i, j, such that: Ti ∈ Λ1, Tj /∈ Λ1, Slacka(tp) < Slackj(t) < Slacki(t) and∑|Λ1|
k=1 uλk − ui + uj ≥ (UR + UF\Λ2 − bURc)

5. @ i, such that: Ti ∈ Λ1 and
∑|Λ1|

k=1 uλk − ui ≥ (UR + UF\Λ2 − bURc).

If such an admissible set Λ can be formed, then a currently Awake processor (say,

Vi) is put to sleep. The tasks in Λ1 transit to Suspended state while those in Λ2 transit

to the Engaged state. At the end of this interval Slacka(tp), the slacks of at least one

Engaged task and zero or more Suspended tasks reduces to 0. Hence, Λ ceases to re-

main admissible, and Vi must transit back to Awake state. The instant tp + Slacka(tp)

is called the Earliest Potential Wakeup Point (EPWP). All Suspended and Engaged

tasks whose slacks reduced to 0 transit to the Running state. The remaining Engaged

tasks transit to the Free state.

Extending Continuous Sleep Intervals: The sleep interval for a processor, say, Vi,

may be extended if a new admissible set (say, Λ′ = Λ1′ ∪Λ2′; Λ1′ ∈ R,Λ2′ ∈ F ) may be

formed at time tp′ (= tp + Slacka(tp)) with its viable suspension point at tp′ itself. This

is possible for the admissible set Λ′ if Group Slack(Λ1′, tp′) ≥ Group Slack(Λ2′, tp′),

where Λ1′ and Λ2′ denote respectively the running and Free tasks in Λ′.

ESSM tries to generate such an admissible set Λ′ as follows: First, ESSM attempts

to build Λ′ using only the available Free tasks adding sequentially the least slack valued

tasks in F (with slack values at least TIbe) into the set Λ2′. This is only possible if the

sum of the utilizations of all the tasks in Λ2′ at tp′ is at least equal to UR∪F − bUR∪F c
(UΛ2′ ≥ UR∪F −bUR∪F c). However, if this condition is not satisfied, ESSM tries to build

the subset Λ1′ using tasks from the Running set whose slack values are greater than or

equal to and closest to Group Slack(Λ2′, tp′) and the sum of whose utilizations is greater

than or equal to UR∪F − bUR∪F c − UΛ2′ .
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We now present a theorem (Theorem 3.3.1) to show optimality of the ESSM algo-

rithm.

Theorem 3.3.1. Tasks in an ESSM scheduled system always satisfy ERfairness.

Proof. As has been proved in [5], the ERfair scheduling algorithm is optimal and allows

100% resource utilization. Therefore, the ESSM algorithm may also be proved to be

optimal if it can be shown to satisfy ERfairness for all tasks at each time instant in

the schedule. Like ERfair, ESSM follows the same scheduling strategy of executing the

most urgent subtasks (where urgency is related to earliest subtask pseudo-deadlines) at

each time slot. ESSM’s admission control strategy for accepting/rejecting new tasks

(refer Equation 3.4) is also same as ERfair. The only aspect where ESSM deviates

from the original ERfair algorithm is the procrastination of task executions to allow

processor suspension. However, it may be observed from Theorems 3.2.2 and 3.2.3 that

all sleeping tasks are brought back to Running state before their slack reduces to zero.

Due to this, the lag of any task (refer Equation 2.1) can never be higher than zero

due to procrastination. Hence, there is no possibility of ERfairness violation due to

procrastination of execution. So, ERfairness is always satisfied within the schedule and

this guarantees the optimality of ESSM.

Example 3: Let us continue with the system and scenario considered in Examples 1

and 2. At t=0, the estimated finish times of T1, T2, T3, T4 and T5 are f1 = 30, f2 = 36,

f3 = 90, f4 = 90, and f5 = 30. Since T1 and T5 have the earliest finishing time

f1 = f5 = 30, the next potential suspension point (EPSP ) is obtained at t = 30.

However, a new task T6 arrives at t = 10. System utilization UA∪C (= UR) increases

to 7/5. The new slack generation rate of each task becomes SR = 3/7. The effective

execution rates change to eu1 = eu2 = eu3 = eu4 = eu6 = 2/7 and eu5 = 4/7 and finish

times become f1 = 33, f2 = 40, f3 = 103, f4 = 103, f5 = 33, and f6 = 63. EPSP also

gets updated and scheduled at t = 33 (finishing time of T1 and T5). Both T1 and T5 finish

their executions at t = 33 and are moved to the set of Free tasks. The slacks of T1, T2,

T3, T4, and T5 are 17, and that of T6 is 10. At t = 33, Slack1(33) = Slack5(33) = 17,

and u1 + u5 ≥ UR∪F − bUR∪F c. Therefore, one processor (say, V1) can be shutdown for

the next 17 time slots at t = 33 with the next earliest potential wakeup point (EPWP )
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being t = 50. The Running tasks at t = 33 are T2, T3, T4 and T6. UR becomes 4/5

and slack generation rate is SR = 1/4. The effective execution rates of T2, T3, T4, and

T6 become 1/4 and their corresponding estimated finish times are f2 = 41, f3 = 113,

f4 = 113, and f6 = 67. Therefore, EPSP = 41. Figure 3.4 depicts this scenario.
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Figure 3.4: Slack-graph of tasks T1, T2, T3, T4, T5, and T6 in the time interval (0, 70].

At time t = 41, T2 finishes and is moved to the set of Free tasks. The slacks of T2,

T3, and T4 are same (= 19) and that of T6 is 12. Since T2 finishes with Slack2(41) = 19,

an admissible set (say, Λ) if formed at t = 41 must contain T2 as one of its elements,

and Group Slack(Λ, 41) must be equal to 19. Hence, Λ can only contain T2, T3 and T4.

T6 cannot be included in Λ since Group Slack(Λ, 41) ≥ (Slack6(41) = 12). Therefore,

UΛ � UR∪F − bUR∪F c. So, the last remaining processor cannot be suspended at t = 41.

Due to the completion of task T2’s current instance, UR decreases to 3/5 and slack

generation rate of each Running task becomes SR = 2/3. The effective execution rates

change to eu3 = eu4 = eu6 = 1/3 and finish times become f3 = 95, f4 = 95, and f6 = 60.
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Since the rising edge of T6 will intersect with the falling edge of T2 at t = 45, the next

EPSP is obtained at time t = 45.

At the intersection point t = 45, the slacks of T2, T3, T4, and T6 are 15, 22, 22, and

15. Here, ESSM generates an admissible task set using these tasks with a group slack

of 15. Therefore, the last remaining processor V2 will be suspended between t = 45 and

t = 60. The sleep duration for processor V1 ends at time t = 50 as the next jobs of T1

and T5 arrive at this time. At t = 50, UR = 3/5 and the slack generation rates of the

Running tasks T1 and T5 become SR = 2/3. eu1 = 1/3, eu5 = 2/3, and f1 = f5 = 80.

Therefore, EPSP = 80, the finishing time of T1 and T5. The next EPWP is obtained at

t = 60, the wakeup time of V2. The rest of the schedule continues as shown in Figure 3.4.

�

Data Structures: The algorithm primarily uses four data structures, namely, an AVL

tree A of the Running tasks ordered in terms of their pseudo-deadlines and three differ-

ent lists of tasks each ordered in non-decreasing fashion in terms of available slack values.

The first list H consists of the Free tasks. Lists Li hold the Suspended and Engaged

tasks corresponding to each Sleeping processor Vi. The indices of the Running tasks at

a given time are maintained in another list LL {ll1, ll2, ..., llz}.

3.3.2 Detailed Algorithm

The ESSM algorithm consists of four functions. The main function ESSM (Algorithm 1)

carries out the overall scheduling. It calls function Sleep-If-Admissible (Algorithm 2) to

determine if an admissible set may be formed at each Earliest Potential Suspension Point

EPSP and shut down the processor if such a set exists. ESSM calls function Sleep-If-

Extendable (Algorithm 4) at each Earliest Potential Wakeup Point EPWP to determine

if the sleep interval of a given processor may be extended by forming a new admissible

task set that has its viable suspension point at EPWP itself. Sleep-If-Extendable wakes

up the processor if such an extension is not possible. Finally, ESSM calls function Next

Scheduled Event (Algorithm 3) to find out the time slot at which the earlier of the

immediately next EPSP or EPWP is expected to occur.
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ALGORITHM 1: Algorithm ESSM

1 {Given: A set of n tasks and m processors. Let n′ denote the number of tasks in
Running state, m′ denote the number of Awake processors, UR denote the sum of
utilizations of these n′ tasks at any instant, and te denote the current time slot.};

2 Initialize: m′ = dURe {Calculate the number of processors sufficient to handle workload
UR};

3 for Each time slot t do
4 Execute the most urgent m′ tasks from the set of Running tasks in ERfair fashion;
5 if te == EPSP {Current time slot is an Earliest Potential Suspension Point} then
6 Call function Sleep-If-Admissible {Algorithm 2};
7 if Admissible set was formed and a processor suspended using Algorithm 2 then
8 Call function Next Scheduled Event {Algorithm 3};

9 else if te == EPWP {Current time slot is an Earliest Potential Wakeup Point}
then

10 Call function Sleep-If-Extendable {Algorithm 4};
11 if Processor must wakeup at the current time then
12 Call function Next Scheduled Event {Algorithm 3};

13 else if A new task or the next instance of an existing task Ta has arrived then
14 Add Ta to the set of Running tasks; Update system weight UR;
15 if ua + UR > m′ {System has become overloaded with the inclusion of Ta} then
16 Wake up a sleeping processor;

17 Call function Next Scheduled Event {Algorithm 3};
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ALGORITHM 2: Function Sleep-If-Admissible

1 {This function is called either when a task Ta finishes, or when Ta’s slack curve
intersects with that of a Free task at current time slot tp. tp forms a Potential
suspension Point.};

2 if Slacka(tp) < TIbe {TIbe denotes break-even time} then
3 Exit {An admissible set cannot be formed at tp};
4 if Ta completed execution at tp then
5 Move Ta from Running to Free state;

6 Form a subset Λtmp of Free tasks whose slack values are greater than or equal to
Slacka(tp);

7 {The following While loop attempts to form a set Λ2 of Free tasks from Λtmp};
8 while (UΛ2 < UR∪F − bUR∪F c) OR (Λtmp == ∅) do
9 Move the least slack valued task in Λtmp to Λ2;

10 if UΛ2 ≥ UR∪F − bUR∪F c then
11 Shutdown processor Vi;
12 Potential −Wakeup− Pointi = tp + Slacka(tp) {Potential wakeup time of

processor Vi};
13 else
14 Find UF\Λ2 {sum of utilizations of those Free tasks for whom slack value

< Slacka(tp)};
15 Build a subset Λ1 of those tasks from the Running set whose slack values are

greater than or equal to and closest to Slacka(tp) and the sum of whose utilizations
(UΛ1) is greater than or equal to UR + UF\Λ2 − bURc;

16 if UΛ1 < (UR + UF\Λ2 − bURc) then

17 Exit {An admissible set cannot be formed at tp};
18 else
19 Shutdown processor Vi; Potential −Wakeup− Pointi = tp + Slacka(tp);
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ALGORITHM 3: Function Next Scheduled Event
1 Update UR, sum of utilizations, along with slack rates and finish times of all Running

tasks;
2 Let eft and feft denote the index of this earliest finishing Running task and its finish

time;
3 if Free set is not empty then
4 Find tcut, the earliest intersection point between slack curves of a Running and

Free task;

5 else
6 tcut =∞;

7 if (tcut < EPSP ) OR (feft < EPSP ) then
8 EPSP = min(tcut, feft);

9 EPWP = ∀ProcessorsVi, min(Potential −Wakeup− Pointi);
10 NSE = min(EPSP , EPWP );

ALGORITHM 4: Function Sleep-If-Extendable

1 {If an admissible set Λ′ is possible at tp, the Potential − wakeup− point of processor
Vi, then this function continues Vi in suspended mode. Otherwise, it wakes up Vi.};

2 Update UR and UR∪F ;
3 Form a subset Λ2′ by sequentially adding least slack valued Free tasks until UΛ2′

becomes greater than or equal to UR∪F − bUR∪F c;
4 if UΛ2′ ≥ UR∪F − bUR∪F c then
5 Potential −Wakeup− Pointi = tp +Group Slack(Λ2′, tp); exit {Vi’s sleep is

extended};
6 else
7 Form the subset Λ1′ of the Running tasks whose slack values are greater than or

equal to and closest to Group Slack(Λ2′, tp) and UΛ1′ ≥ UR∪F − bUR∪F c − UΛ2′ ;
8 if Such a set Λ1′ may be formed then
9 Potential −Wakeup− Pointi = tp +Group Slack(Λ2′, tp); exit {Vi’s sleep is

extended};
10 else
11 Wake up processor Vi; exit;
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3.3.3 Complexity Analysis

Lemma 3.3.2. Complexity of function Sleep-If-Admissible (Algorithm 2) is O(n · lg(n)).

Proof.

1. Steps 5 in function Sleep-If-Admissible requires extractions and insertions on an

AVL tree and list H. All are O(lg(n)) time operations.

2. Steps 6, 8, and 14 are all O(n) list operations in the worst case.

3. Step 15 involves the transfer of a set of n tasks in the worst case from AVL tree A

to list Li. This takes O(n · lg(n)) time.

4. All other steps take constant time. Therefore, function Sleep-If-Admissible has an

overall complexity of O(n · lg(n)).

Lemma 3.3.3. Complexity of Sleep-If-Extendable (Algorithm 4) is O(n · lg(n)).

Proof.

1. Steps 2 and 3 involves O(n) list operations in the worst case.

2. Step 7 involves the transfer of a set of n tasks in the worst case from AVL tree A

to list Li. This takes O(n · lg(n)) time.

3. The other steps take constant time. Hence, function Sleep-If-Extendable has an

overall complexity of O(n · lg(n)).

Lemma 3.3.4. Complexity of Next Scheduled Event (Algorithm 3) is of O(n) (m ≤ n).

Proof.

1. Updation of the sum of utilizations of the Running tasks in step 1 takes O(n)

time. Calculation of Slack rate takes constant time (Equation 3.7) while the finish

times of all tasks may be calculated in O(n) time.
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2. Determining the earliest finishing task (Teft) and its completion time (feft) also

takes O(n) time in the worst case.

3. Step 9 finds the earliest wakeup point among all the sleeping processors and takes

time proportional to O(m).

4. All other steps in the function take constant time to execute and the function as

a whole runs in O{min(m,n)} time. Assuming, m ≤ n, its complexity is O(n).

Theorem 3.3.5. The amortized scheduling complexity C per time slot of ESSM (Algo-

rithm 1) is as follows:

C =

{
O(m · lg(n)) ; E ≥ n

O(m·n·lg(n)
E

) ; otherwise.
(3.9)

where, n denotes the number of tasks, m the number of processors and E the average

execution requirement of the n tasks.

Proof.

1. Steps 4 of algorithm ESSM (algorithm 1) takes O(m · lg(n)) time since it involves

m extractions from and insertions into the AVL tree of Running tasks.

2. Steps 5 to 17 involves the occurrence of a set of events such as arrival of a task,

potential suspension Point (EPSP ), and potential wakeup point (EPWP ). An

EPSP may occur only when either: (i) a Running task completes execution or

(ii) the rising edge of the slack trajectory of a Running task intersects with the

falling edge of a Free task. A Wakeup occurs every time a shutdown occurs. Now,

clearly, these events can occur only a constant number of times (ci) during the

lifetime of each task instance Ti. Hence, the total number of iterations possible for

these events during the lifetime of the n tasks is:
∑n

i=1 ci.

3. Steps 6 and 10 involve calls to Sleep-If-Admissible and Sleep-If-Extendable, respec-

tively, each of which takes O(n · lg(n)) time (Lemmas 3.3.2 and 3.3.3).

4. Steps 8, 12 and 17 calls Next Scheduled Event and takes O(n) time (Lemma 3.3.4).
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5. Therefore, the total complexity of these events over all the n task instances become∑n
i=1 ci ·O(n · lg(n)) = O(n2 · lg(n)).

6. Each task Ti has an execution requirement ei. So, the time required to execute n

tasks on m processors become
∑n

i=1 ei
m

.

7. If E denotes the average execution time of the n tasks,
∑n

i=1 ei
m

= n·E
m

.

8. Hence, the average complexity of executing the above events per time slot is:
m·O(n2·lg(n))

n·E = O(m·n·lg(n)
E

)

9. Therefore, steps 5 to 17 have a complexity of O(m·n·lg(n)
E

) per time slot.

10. The overall complexity of the algorithm per time slot is O(m · lg(n)) when E ≥ n

and is equal to O(m·n·lg(n)
E

) otherwise.

The above result shows that the complexity of the ESSM algorithm becomes O(m ·
n · lg(n)) when the number of tasks n is larger compared to the average execution

requirement of the tasks (n > E). However, when the task set size is smaller than E (as

in the case of most embedded systems), the complexity reduces to O(m · lg(n)), which

is same as the complexity of the typical proportional fair algorithms.

3.4 Experiments and Results

We have experimentally evaluated the performance of our algorithm and compared

it against two other optimal algorithms namely, Basic-ERfair, a strictly proportional

fair algorithm and Boundary Fair (Bfair), a semi-fair algorithm [119]. The evaluation

methodology is based on simulation studies using an experimental framework that is

described in the next subsection. An overview of both Basic-ERfair and Boundary Fair

algorithms are as follows:

Basic-ERfair: Given a set of m processors {V1, V2, ..., Vm} and n (≥ m) tasks, Basic-

ERfair chooses the m most urgent tasks from a priority queue at each time slot and

allocates processors to these tasks in the order in which they have been extracted from
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the priority queue. Basic-ERfair suspends processors only when the number of Running

tasks |R| within the system becomes less than the number of processors m. Basic-ERfair

maintains m− |R| processors in the Sleeping state whenever |R| < m.

Boundary Fair (Bfair): Bfair partitions time into slices, demarcated by the arrivals

and departures of all the jobs in the system. Within a time slice, each task is allocated

a workload equal to its proportional fair share and assigned to one or more processors

for scheduling. Tasks allocated to a processor within a time slice in an underloaded

Bfair scheduled system execute in an EDF-like fashion starting from the beginning of

the slice and complete their execution before the end of the time slice is reached. After

completion of execution of the allocated task shares, each processor idles up to the end of

the current time slice. In our experiments, it has been assumed that the Bfair scheduled

system suspends its processors during such idle intervals, provided the duration of these

intervals are at least equal to the break-even time TIbe.

3.4.1 Experimental Setup

The experimentation framework used is as follows: The datasets consist of randomly

generated hypothetical periodic tasks whose utilizations ( ei
pi

) and execution periods (pi)

have been taken from normal distributions. Given the number of tasks to be generated

(n) and the total utilization of the n tasks (U), the task utilizations have been generated

from a distribution with standard deviation (σ) = 0.1 and mean (µ) = U/n. The

summation of utilizations of these generated tasks is not constant. However, making the

summation of utilizations constant helps in the comparison of the algorithms. Therefore,

the utilizations have been scaled uniformly to make the cumulative utilization of each

task set constant and equal to U . Different types of datasets have been generated by

setting distinct values for the following parameters:

1. Execution requirements ei: Task execution times are generated from normal dis-

tributions with different values of mean (µ)-standard deviation (σ) pairs. Four

different (µ, σ) combinations (100, 10), (200, 20), (300, 30) and (400, 40) were used.
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2. Task set size n: The number of tasks have been varied between 20 and 100.

3. Number of processors m: Systems consisting of 2 to 20 processors have been used.

4. Workload : Seven different workloads were considered; we have considered cases

when the processor is 70%, 75%, 80%, 85%, 90%, 95%, or 100% loaded.

5. Break-even time TIbe: In order to study the effect of break-even time, it is varied

between 1 and 10 ms.

The length of a time slot is 1 ms. The total schedule length is 100, 000 time slots.

3.4.2 Results: ESSM vs. Basic-ERfair

We have measured the average of the total length of profitable suspension intervals

(suspension intervals greater than break-even time TIbe) over the entire schedule length

for both ESSM and Basic-ERfair algorithms running them on 100 different instances

of each dataset type. To estimate the actual energy savings obtained, we have deducted

TIbe from each profitable sleep interval. Using these values, we have found the shutdown

ratio SDR such that the total sleep duration by using ESSM is SDR times the total

sleep duration when Basic-ERfair is used. Table 3.1 summarizes the results obtained

for ESSM and Basic-ERfair on eight processor systems.

From Table 3.1, the following important observations and inferences may be made:

For a given number of tasks and processors, Basic-ERfair always produces the same total

length of sleep intervals. Moreover, at 95% workload, it is not able to produce any sleep.

This is because Basic-ERfair suspends processors only when the number of Running

tasks |R| becomes less than the number of processors m. Basic-ERfair maintains m−|R|
processors in Sleeping state whenever |R| < m, which contributes to the sleep durations

obtained in Basic-ERfair. Beyond this, it fails to extract any further sleep due to the

absence of any procrastination mechanism. Given m processors, when the workload

rises beyond a certain percentage, |R| becomes greater than m− 1, and almost no sleep

is obtained, as all available processors remain active throughout the schedule length.

The shutdown ratio SDR increases with increase in system load percentage and mean
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Table 3.1: Sleep Duration and Shutdown Ratio: ESSM vs. Basic-ERfair-8 processor system

U E n=20 n=30 n=40

Basic-ERfair ESSM SDR Basic-ERfair ESSM SDR Basic-ERfair ESSM SDR

75%

100 199996 230794 1.15399 199996 215554 1.07779 199996 208018 1.04011

200 199996 235286 1.17645 199996 222726 1.11365 199996 215287 1.07645

300 199996 236299 1.18151 199996 225023 1.12513 199996 218005 1.09004

400 199996 236543 1.18273 199996 226196 1.13100 199996 220949 1.10476

85%

100 99998 133424 1.33426 99998 116476 1.16478 99998 108671 1.08673

200 99998 139383 1.39385 99998 124543 1.24545 99998 114950 1.14952

300 99998 140280 1.40282 99998 127313 1.27315 99998 118489 1.18491

400 99998 140635 1.40637 99998 128642 1.28644 99998 121686 1.21688

95%

100 0 25626 — 0 11241 — 0 5325 —

200 0 33461 — 0 18729 — 0 10104 —

300 0 35554 — 0 21746 — 0 12972 —

400 0 37302 — 0 23288 — 0 15433 —

n: Total number of tasks; U: Total system load percentage; E: Mean execution time; SDR: Shutdown ratio

Fixed parameters:- Break-even time: 2; #processors: 8
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execution time. This is due to the fact that as average available task slacks reduce with

rise in system load, procrastination in ESSM helps to extend total sleep durations by

identifying all profitable locally maximal viable suspension points and put the processor

to sleep at least for a period equal to its corresponding viable slack. SDR, however,

exhibits a slow decrease with an increase in the number of tasks (for a given system load,

mean execution time, and number of processors). This is because a higher number of

dynamic tasks with arbitrary arrival times imply a drop in the probability of obtaining

viable suspension points with high Group Slack values.
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Figure 3.5: (a) 40 Tasks, 10 Processors, 2 ms break-even time (BT); (b) 40 Tasks, 10
Processors, 90% System Load (U), 2 ms break-even time (BT); (c) 40 Tasks, 80% or 90%
System Load (U), 2 ms break-even time (BT); (d) 40 Tasks, 10 Processors, 90% System Load
(U).
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Figure 3.5(a) compares the sleep durations achieved by ESSM and Basic-ERfair as

the system load varies between 70% and 100% (other parameters remaining constant).

As is obvious, the total sleep durations for both approaches progressively decrease with

increasing workload due to a dearth in available slacks. However, ESSM is seen to

outperform Basic-ERfair by a significant margin almost throughout. An important

observation here is the stepwise nature of the plots. The reason for this phenomenon

lies in the maximum number of processors required to handle a given workload. For

example, with 10 processors between 70% and 80% system load, 2 processors may be

perpetually maintained in sleep state. However, under higher loads between 80% and

90%, only 1 processor may be put to sleep.

The variation of sleep time with average execution time is shown in Figure 3.5(b).

For a given system load (90%), increase in mean execution time also allows a corre-

sponding increase in the periods of tasks. This in turn enhances the possibility of higher

Group Slack for eligible admissible sets at viable suspension points. Therefore, overall

sleep times may be seen to increase. On the other hand, variations in execution times do

not show any significant changes in sleep times with Basic-ERfair. Figure 3.5(c) shows

the effect of variation in the number of processors on average sleep durations, with other

parameters remaining constant. It may be observed that total sleep times increase with

a higher number of processors. As in Figure 3.5(a), the plots in Figure 3.5(c) also exhibit

a stepwise nature due to similar reasons.

In order to study the effect of TIbe, the number of processors and tasks are fixed as

10 and 40, respectively. Figure 3.5(d) shows the change in total sleep durations with

varying break-even times. It may be observed that for ESSM, the total shutdown length

decreases with increasing TIbe values. This is because higher the value of TIbe, lower

becomes the total number of profitable sleep intervals. Variation in TIbe, however, do

not have any effect on the sleep durations of Basic-ERfair.

3.4.3 Results: ESSM vs. Bfair

We now compare the performance of ESSM with a semi-fair optimal algorithm, Bound-

ary Fair (Bfair) [119]. The evaluation has been conducted on similar lines (as the
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comparison with Basic-ERfair) by measuring the average of the total length of prof-

itable suspension intervals (suspension intervals greater than 1 ms; assuming break-even

time TIbe = 1 ms) over the entire schedule length for both ESSM and Bfair. The shut-

down lengths obtained for both ESSM and Bfair incorporates overheads due to context

switches. Here, we assume the delay corresponding to a single context switch to be

5.24 µs, which is the actual average context switch overhead on a 24-core Intel Xeon

L7455 system under typical workloads [17]. Figure 3.6(a) shows plots for the average

context switch overhead (in µs) per processor per time slot incurred by ESSM and Bfair.

For a given simulation run, this value is obtained by first finding the average number

of context switches per processor per time slot and then multiplying it with the cost

of a single context switch (5.24µs). It may be observed that with an EDF-like semi-

partitioned scheduling strategy within time slices, the overhead for Bfair varies only

slightly from about 1.1 to 1.3µs as the system load increases from 70% to 100% (for

40 tasks and 4 processors). In comparison, with a proportional fair global scheduling

policy, ESSM’s overhead increases from ∼ 1.9 to ∼ 3.0µs.

In Figure 3.6(b), we show the total sleep durations (in ms) achieved by ESSM and

Bfair over a schedule length of 100,000 time slots on a 10-processor system running 40

tasks with the average task period size being 400 time slots. With an increase in system

load, total sleep durations for both approaches progressively decrease. However, Bfair

consistently achieves better total sleep durations throughout. This may be attributed to

two major reasons: (i) As discussed above, Bfair incurs lower context switch overheads,

allowing it to obtain higher overall slack times compared to ESSM. (ii) As Bfair has a

non-fair EDF-like scheduling policy within time slices, the total slack in any processor

gets accumulated as a continuous idle interval towards the end of every time slice. In

contrast, the average size of a continuous idle interval for ESSM is typically smaller due

to its necessity to maintain strict fairness at each time slot. Thus, the possibility of

profitable and longer slack durations is higher for Bfair than in ESSM.

However, it may be observed from the figure that ESSM performs fairly and is not

drastically outperformed by Bfair, especially on the closely coupled multi-core platform
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Figure 3.6: (a) Variation in the cost of context switch overheads obtained by ESSM and Bfair:
40 Tasks, 4 Processors; (b) Total sleep durations achieved by ESSM and Bfair: 40 Tasks, 10
Processors, 1 ms break-even time; (c) & (d) Fairness results for ESSM and Bfair: 4 Processors,
1 ms break-even time. Pavg denotes average task period size (in time slots) and Uavg denotes
average individual task utilization.

Intel Xeon L7455. Such fair performance may be partially attributed to a simple context

switch aware task-to-processor assignment technique incorporated in ESSM. At each time

slot, ESSM assigns the m (m denotes number of processors) most urgent tasks to the

processors in two rounds. In the first round, ESSM tries to allocate each of the m tasks

to that processor where it executed the last time it was assigned. The unallocated tasks

after this round are assigned to the remaining processors in the second round.

A last observation in Figure 3.6(b) is the stepwise nature of the plot for ESSM. As
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discussed in the previous subsection, this is due to variations in the approximate number

of processors required to handle a given workload. For example, with 10 processors, and

between 70% and 80% system load, two processors may be maintained in the sleep state.

However, for loads between 80% and 90%, only one processor may be put to sleep.

However, although Bfair exhibits better energy-awareness properties with respect to

ESSM, its fairness properties are far poorer. The results in Figures 3.6(c) and 3.6(d)

show that the degree of unfairness (in terms of the number of pseudo-deadline misses per

processor per time slot) suffered by Bfair is directly proportional to average task period

lengths and average individual task weights. It may be noted that ESSM produces zero

fairness deviations in all cases and remains perfectly fair. Figure 3.6(c) shows that even

with its lower context switch overheads, Bfair suffers ∼ 0.2 ERfairness violations/misses

per processor per time slot on a 70% loaded system. For a time slot size of 1 ms, this

is equivalent to about 200 ERfairness misses per processor per one second. The fairness

miss rate becomes higher as system load increases.

It may be further observed from Figure 3.6(c) that, especially at higher system loads,

Bfair’s fairness degrades significantly as average task period lengths increase from 200

to 600 time slots. This is due to the fact that the average duration of time slices in

Bfair is directly proportional to average task period lengths. As Bfair is guaranteed

to be perfectly fair only at time slice boundaries (hence its name Boundary Fair) with

unrestricted fairness deviation within time slices, the degree of unfairness increases as

the average length of task periods become higher. Plots in Figure 3.6(d) reveal that

fairness of Bfair degrades as the average individual task utilization increase from 0.1 to

0.2. This is primarily because, as the average individual task utilization increases, mean

task share sizes also increase (task shares are specified in terms of the number of time

slots of execution that a task should complete within a time slice to be proportionally

fair at time slice boundaries). As Bfair executes these task shares in an EDF-like fashion

and completely ignores proportional fairness in the execution progress of tasks within

a time slice, higher the average task share sizes, higher becomes the fairness deviation.

Thus, although semi-fair algorithms like Boundary Fair, which trade-off fairness in order
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to reduce context switches show better energy-awareness properties, they cannot provide

strict fairness guarantees as ensured by ESSM.

3.5 Summary

In this chapter, we presented a novel energy-efficient scheduling strategy that attempts

to minimize static energy consumption in a symmetric multiprocessor system. The pro-

posed technique takes advantage of higher execution rates of tasks in underloaded ERfair

systems and uses a procrastination scheme to search for time points within the schedule

where suspension intervals are locally maximal. We have designed, implemented, and

evaluated the ESSM algorithm and proved the feasibility of this scheme. The simulation-

based experimental results are promising. In the next chapter, we present an efficient

fault-tolerant design strategy for real-time safety-critical systems having homogeneous

multiprocessors as the computing platform.
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Chapter 4
Fault-tolerant Fair Scheduling on Real-time
Multiprocessor Systems

In the previous chapter, we have considered the energy-aware scheduling of real-time

applications executing on a homogeneous multiprocessor system, and have assumed the

underlying hardware computing platform to be fault-free. However, processing plat-

forms are subject to a variety of faults. Such faults are broadly classified into either

permanent or transient [6]. Permanent processor faults are irrecoverable and do not go

away with time. On the other hand, transient faults are short-lived (momentary) and

their effect goes away after some time. Therefore, apart from guaranteeing the timely

execution of tasks in a resource-constrained environment, ensuring proper functioning

of the system even in the presence of faults (i.e., fault tolerance) has currently become

a design constraint of paramount importance.

In this chapter, we present a semi-partitioned fair fault-tolerant scheduling strat-

egy for real-time homogeneous multiprocessor systems containing cold-standby spares.

The chapter first describes the system model under consideration. Then, we present

our proposed fault-tolerant scheduling strategy to effectively handle permanent proces-

sor faults in the system. Later, the chapter discusses important experimental results

which highlight the performance of the proposed fault-tolerant scheduling scheme un-

der various scenarios. Finally, the chapter concludes by presenting a case study using

an automated flight control system to illustrate the applicability of the proposed fault

recovery mechanism in real world scenarios.
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4.1 System Model and Problem Formulation

We consider a real-time multiprocessor system consisting of a set of n periodic tasks T =

{T1, T2, ..., Tn}, to be executed on a set ofm homogeneous processors V = {V1, V2, ..., Vm}.
We assume a discrete time line where the interval [t, t + 1) is referred to as a time slot

t (t ∈ N). Each task Ti in set T is defined by a 3-tuple (ei, pi, cri), where, ei denotes

the Worst Case Execution Time (WCET) requirement of each instance/job of Ti, pi

denotes the fixed inter-arrival time between consecutive instances (referred to as period)

and cri measures the relative importance of Ti with respect to other tasks (denoted as

the criticality level of Ti; cri takes an integer value in the range [1, 100]). Each task Ti

is associated with a utilization (also called weight), denoted as ui, which is defined as

the ratio of its execution requirement (ei) and period (pi). Each processor Vj (∈ V ) has

unit capacity.

In the nominal mode of operation, the system periodically checks for a processor

fault, every tp time slots. There is a cold standby processor which is activated if and

when there is a permanent processor fault. The standby processor requires a finite time,

called recovery time tr to become operational. Let, ti be the time instant in the past at

which the system last checked for a fault. Let, FOT (= ti + tf ), be the instant at which

the fault actually occurs before the next periodic check at FDT (= ti + tp) and so, the

system recovers at the instant FRT = FDT + tr. We assume that the system can handle

at most one permanent processor fault at any given time; no further faults are assumed

to occur during the recovery period [FDT , FRT ).

Problem Formulation: Given a set of n real-time periodic tasks and m homogeneous

processors, design an efficient fault recovery mechanism which attempts to satisfy all

DP-Fairness based timeliness constraints during any recovery period subsequent to a

permanent processor failure.

4.2 Fault Tolerant Fair Scheduler (FT-FS)

In this section, we describe the overall working of proposed FT-FS scheduler.
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The pseudocode of the FT-FS scheduler is presented in Algorithm 5. Similar to DP-

ALGORITHM 5: Fault Tolerant Fair Scheduler: FT-FS
Input: T : Task set; m: number of processors; tp: periodic safety check point interval;

tr: recovery interval; tsll: length of the time slice (tsl) currently being scheduled
Output: Generate and execute schedules of task instances

1 Initialize t = next slice = 0; check point = tp;
2 while TRUE do
3 if t = check point then
4 if a fault is detected at time t then
5 Interrupt all processors;
6 next slice = t+ tr;
7 check point = next slice+ tp;
8 Call function FT-FS Faulty() and wait until completion;

9 else
10 check point = check point+ tp;

11 if t = next slice then
12 Call function FT-FS Normal();
13 Execute the generated schedule on each processor in parallel;
14 next slice = next slice+ tsll ;

15 t = min(check point, next slice);

Fair, FT-FS partitions time into slices, demarcated by the periods/deadlines of all tasks

in the system. The duration between any two consecutive deadlines (say, the (l − 1)th

and lth deadlines) is referred to as a time slice tsl and tsll denotes the length of tsl.

The entire FT-FS scheduler essentially executes within a while loop (lines 2-15) which

continues until the system stops. Within the loop, FT-FS checks whether the value of

timer t coincides with the next check pointing instant (variable check point). If it does

and a fault is detected, all processors in the system are interrupted and the scheduler

enters into fault mode (by calling the function FT-FS Faulty(); refer Algorithm 7) for

a duration tr which denotes the recovery interval. In the absence of a fault, it simply

updates check point to next periodic check point instant.

If timer t coincides with the time slice boundary (variable next slice), FT-FS first

invokes FT-FS Normal() (refer Algorithm 6) to generate a work-conserving schedule for

the ensuing time slice. Then it executes tasks in the time slice, based on the generated
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schedule. Finally, before proceeding to the next iteration of the loop, FT-FS updates

timer t to the earlier between the next check point instant and the next time slice bound-

ary. We now discuss the function FT-FS Normal() in detail. Function FT-FS Faulty()

is discussed in Section 4.2.3.

4.2.1 FT-FS: Normal Mode of Operation

The pseudocode of the function FT-FS Normal() is presented in Algorithm 6. At the be-

ginning of time slice tsl (say, at time t), each task Ti is allocated a share shli (proportional

to its weight) to be executed within tsl and is calculated as follows:

ALGORITHM 6: Function FT-FS Normal()

Input: Rl: Active task set, ēi: the remaining execution requirement of each task Ti
(∈ Rl)

Output: Generate schedule for time slice tsl
1 for each task Ti in Rl do
2 shli = min(eui × tsll, ēi) {refer Equation 4.2};
3 ēi = ēi − shli;

4 scap = m× tsll −
∑|Rl|

i=1 sh
l
i {refer Equation 4.5};

5 if scap > 0 then
6 for each task Ti in Rl do
7 if ēi > 0 then
8 Determine Ti’s urgency factor ufi, and update its share shli and ēi {refer

Equation 4.6};

9 Recalculate scap using Equations 4.3 and 4.5;

10 if scap > 0 then
11 Create a list lt of tasks for which ēi > 0, sorted in non-increasing order of their

lag(Ti, t+ tsll) values;
12 for each task Ti in lt do
13 shli = shli + 1, ēi = ēi − 1, scap = scap− 1;
14 if ēi = 0 then
15 Remove Ti from list lt;

16 if scap = 0 then
17 exit;

18 After finalizing the shares of all tasks in Rl generate schedule for time slice tsl using
McNaughton’s wrap-around rule [82].
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Let, Rl denote the set of active tasks at time t. The total workload within time

slice tsl becomes: L =
∑|Rl|

i=1 ui. Given L, the effective execution rate (also referred to as

effective weight) of each task Ti at time t is calculated as:

∀Ti ∈ Rl, eui = min(
M

L
× ui, 1) (4.1)

where, M = m, is the number of available processors. FT-FS Normal() first determines

an initial share for each task Ti in Rl as:

∀Ti ∈ Rl, sh
l
i = bmin(eui × tsll, ēi)c (4.2)

where, ēi is the currently remaining execution requirement of Ti’s current instance. Let,

sum shrl denote the sum of shares of all tasks within time slice tsl. Thus,

sum shrl =

|Rl|∑
i=1

shli (4.3)

Given sum shrl, there exists a feasible schedule within tsl only if,

sum shrl ≤M× tsll (4.4)

If sum shrl <M× tsll, there exists some spare capacity (denoted as scap) within time

slice tsl:

scap = M× tsll − sum shrl (4.5)

Now, FT-FS Normal() proportionally distributes this residual capacity scap among

all tasks in Rl for which ēi > 0. Thus, the modified task shares become:

∀Ti ∈ Rl, sh
l
i = shli + bmin(scap× ufi, ēi)c (4.6)

where, ufi is termed as the relative urgency factor of Ti and is defined as:

ufi = ēi/p̄i

/ |Rl|∑
i=1

ēi/p̄i (4.7)

Here, p̄i is the currently remaining time before the completion of Ti’s period. Equa-

tion 4.6 ensures that the fraction of the residual capacity allocated to task Ti is propor-

tional to its relative execution urgency ufi. If there still remains some residual capacity

after updating task shares, FT-FS Normal() creates a list lt of tasks for which ēi > 0,
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sorted in non-increasing order of their lag(Ti, t+ tsll)
1 values. Here, lag(Ti, t+ tsll) de-

notes the lag of task Ti at the end of tsl (at time t+ tsll), assuming Ti to have executed

its share shli in tsl. Thus, lag(Ti, t+ tsll) = ei
pi
× (t+ tsll)− (allocated(Ti, t) + shli).

Now, FT-FS Normal() sequentially chooses the next task in lt and increases its share

by 1 until the residual capacity scap is exhausted. After this, a schedule for all tasks in Rl

is generated corresponding to time slice tsl, using McNaughton’s wrap-around rule [82].

Based on this generated schedule, tasks allocated to each processor are executed in

parallel until completion of the time slice.

Example 1: Consider a set of eight periodic tasks, T1 (11, 52, 1), T2 (13, 50, 2), T3

(13, 54, 3), T4 (11, 52, 4), T5 (10, 51, 5), T6 (11, 54, 6), T7 (11, 50, 7) and T8 (10, 52, 8)

to be executed on two unit capacity processors (m = 2) using the FT-FS scheduling

scheme. Figure 4.1 depicts the FT-FS schedule for the first 100 time slots.

ts
1 ts

5

V
1

V
2

0 50 100

T
2

T
2

T
3

T
5

T
4

T
5

T
6

51 52 54

ts
2
ts
3
ts
4

T
1

T
7

T
8

T
2

T
7

T
1

T
4

T
5

T
8

T
7

T
2

T
3

T
5

T
1

T
4

T
6

T
5

T
8

T
7

Figure 4.1: FT-FS schedule for first 100 time slots.

The time slice boundaries corresponding to the above task set occur at time instants

50, 51, 52, 54 and 100. Therefore, tsl1 = 50, tsl2 = 1, tsl3 = 1, tsl4 = 2 and tsl5 =

46. So, at the beginning of ts1, the initial allocated shares of currently active tasks

T1, T2, T3, T4, T5, T6, T7, T8 become: sh1
1 = sh1

4 = sh1
6 = sh1

7 = 11, sh1
2 = sh1

3 = 13 and

sh1
5 = sh1

8 = 10, (see Equations 4.1 and 4.2). Here, sum shr1(= 90) < m × tsll(=

2 × 50 = 100) (see Equation 4.4) and all active tasks are able to satisfy their required

execution requirements. Therefore, there exists a feasible schedule within ts1 (refer

Algorithm 6) and these tasks are executed in ts1, based on the generated schedule. At

the beginning of the second time slice ts2, i.e., at time t = 50, the currently active tasks

1lag [7] defines the fairness deviation for each task Ti at time t and is given as: lag(Ti, t) =
(ei/pi)× t− allocated(Ti, t). Here, allocated(Ti, t) is the amount of execution actually completed by Ti
subsequent to its start at time 0.
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in the system are T2 and T7. The final allocated shares of these tasks to be executed

within ts2 are given by: sh2
2 = sh2

7 = 1. At the beginning of time slice ts3, the currently

active tasks are T2, T5, T7, and their allocated shares are 1, 1, 0, respectively. Here, lag

based priority order of these three tasks is: T5 > T2 > T7, and total number of available

time slots is: m × tsl3 = 2 × 1 = 2. Therefore, tasks T2 and T5 acquire a share of

1 time unit each, in time slice ts3. In the fourth time slice ts4, the currently active

tasks are T1, T2, T4, T5, T7, T8, and their allocated shares are 1, 0, 1, 0, 1, 1, respectively.

Here, lag based priority order of these six tasks is: T1 > T4 > T8 > T7 > T5 > T2, and

total number of available time slots is 4. Therefore, tasks T1, T4, T7, T8 acquire a share

of 1 time unit each, in time slice ts4. The rest of the schedule continues as shown in

Figure 4.1. �

4.2.2 Fault Model

As discussed, a fault occurring at FOT remains undetected up to FDT (refer Section 4.1:

System Model). Hence, the FT-FS scheduler continues allocating tasks on all m pro-

cessors between FOT and FDT , although tasks assigned to the faulty processor during

this interval cannot progress. Subsequent to the detection of the fault, FT-FS updates

its information regarding the partial progress of each running task at FDT , taking into

account the schedule of tasks allocated to the faulty processor during [FOT , FDT ].

At FDT , the scheduler moves to the fault mode of operation and transits back to

its normal operational mode at the end of the recovery period at FRT . Due to the

unavailability of one processor during the recovery period, the tasks may be forced

to execute at lower rates than their required execution rates, potentially leading to

transient overloads. In this context, the objective of FT-FS in fault mode is to maintain

DP-Fairness (that is, ERfairness at all deadline boundaries) of the system during the

recovery period even under transient overloads, allowing judicious task rejections, if need

be.
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4.2.3 FT-FS: Fault Mode of Operation

In order to recover from a fault, Algorithm FT-FS calls the function FT-FS Faulty().

This function first determines the schedule of tasks for the entire recovery period, at

time FDT , and then, executes tasks in accordance with the generated schedule until

the system recovers, at time FRT . The pseudocode of FT-FS Faulty() is presented in

Algorithm 7. FT-FS Faulty() proceeds in a time slice by time slice manner within the

recovery interval. The first time slice starts at time FDT while the last slice ends at FRT .

We use the term tsl to denote the lth time slice within the recovery period. The term

tsll is used to denote the length of tsl.

ALGORITHM 7: Function FT-FS Faulty()

Output: Task schedule for recovery period: [FDT , FRT )
1 Initialize: Current time tt = FDT ;
2 while tt < FRT do
3 Determine tsll, the length of the ensuing time slice;

4 Calculate required rates of execution ēi/p̄i and effective weights eufi , for all tasks in
R′l;

5 if system is in unsafe state {refer Equation 4.8} then
6 Partition task set R′l into three disjoint subsets A1, A2 and A3 based on

whether the tasks are needy, affluent or balanced, respectively;

7 Gf =
∑|A1|

i=1 Ui; H
f =

∑|A2|
j=1 Oj ;

8 if Hf < Gf then
9 Reject Ti, the least critical task instance with the highest Ui value, from A1;

10 tt = max(si, FDT ) {backtrack schedule};
11 Update R′l back to its contents at time tt;
12 Update ēi, p̄i of all tasks in R′l back to their values at tt;
13 Remove Ti from R′l;

14 else
15 Call function Weight Donation();

16 if system is in safe state then
17 Call function FT-FS Normal();
18 tt = tt+ tsll;

19 Execute schedule for the interval [FDT , FRT );

Let R′l denote the set of active tasks at the beginning of ensuing time slice tsl (say, at
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time t) within the recovery period. FT-FS Faulty() first determines tsll, which is given

by the earliest deadline among the deadlines of all currently active task instances. The

effective execution rate of each task Ti in R′l at time t, denoted as eufi , is calculated

using Equation 4.1, where M = m − 1 (the number of available processors during the

recovery period). The state of the system is considered to be safe at time t, if the actual

effective rates of execution for all tasks are at least equal to their required execution

rates. That is,

∀Ti ∈ R′l, eu
f
i ≥ ēi/p̄i (4.8)

The system is considered to be in an unsafe state, otherwise. The tasks Ti for which

the condition: eufi < ēi/p̄i, is true, are referred to as needy tasks. Similarly, tasks Ti for

which: eufi > ēi/p̄i, is true, are referred to as affluent. Lastly, when: eufi = ēi/p̄i, we

refer the tasks to be in balanced condition. Inability to steer the system to safety from

an unsafe state makes the system susceptible to a failure event in the future, in which

DP-Fairness constraints for one or more needy tasks may be violated. Here, DP-Fairness

constraint refers to the necessity to meet ERfairness only at time slice boundaries.

The algorithm checks for the safety of the system at the beginning of each time slice

tsl using Equations 4.1 and 4.8. If the state of the system is safe, the schedule generation

proceeds as in the normal operational mode, and FT-FS Faulty() calls FT-FS Normal()

in this case. In an unsafe situation, FT-FS Faulty() performs a set of corrective actions

in the endeavor to drive the system to safety. FT-FS Faulty() first divides the set of

tasks R′l into three disjoint subsets A1, A2 and A3 based on whether the tasks are needy,

affluent or balanced respectively, such that R′l = A1 ∪A2 ∪A3. The overallocation rate

corresponding to an affluent task Tj in A2 is given by:

Oj = eufj − ēj/p̄j (4.9)

Similarly, the underallocation rate of a needy task Ti in A1 is denoted by:

Ui = ēi/p̄i − eufi (4.10)

Now, if Oj ≥ Ui, it is clear that both tasks Ti and Tj will be able to complete their

execution requirements in a time slice, provided Tj is allowed to donate a portion Ui
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from its effective weight eufj , to Ti. After Ti accepts this donation, the effective execution

rates of Ti and Tj become: ēi/p̄i and eufj − Ui, respectively.

As an illustration, let us consider two tasks T1 (affluent) and T2 (needy) with effective

and required weights ({eufi , ēi/p̄i}) {1/4, 1/5} (O1 = 1/20) and {1/10, 1/8} (U2 = 1/40),

respectively. Given the parameters, in the absence of weight donation, T1 and T2 will

complete 10 and 4 time slots of execution, respectively within a time slice tsl of length

tsll = 40. However, according to required rates, T1 and T2 need to complete 8 and 5 time

slots of execution, respectively. Subsequent to weight donation, the effective weights of

T1 and T2 become: 9/40 and 1/8, respectively. T1 now completes (9/40× 40 =) 9 time

slots, while T2 is able to complete (1/8 × 40 =) 5 time slots in tsl, and so, both tasks

are able to satisfy at least their required execution requirements.

Now, FT-FS Faulty() calculates the aggregate (denoted by Hf ) over the overalloca-

tion rates of tasks in A2: Hf =
∑

Tj∈A2

Oj. Similarly, the aggregate underallocation rate

Gf over Ui’s is: Gf =
∑

Ti∈A1

Ui. When Hf ≥ Gf , FT-FS Faulty() initiates weight dona-

tion (refer Algorithm 8), which allows each needy task Ti in A1 to receive the necessary

boost to its effective weight so that it can execute at its required execution rate ēi/p̄i

in time slice tsl. For this, FT-FS Faulty() selects the first needy task Ti and the first

affluent task Tj from sets A1 and A2, respectively. If Oj ≥ Ui, Tj donates a weight

equivalent to Ui from its effective weight eufj to Ti. As a result of this donation, the

effective execution rates of Ti and Tj become: ēi/p̄i and eufj − Ui, respectively. Since

the requirement of Ti is satisfied, it is removed from A1 and added into the balanced set

A3. In the special case, when Oj = Ui, Tj is also moved to A3. On the other hand,

if Oj < Ui, Tj can only partially satisfy Ti’s need. The effective execution rates of Ti

and Tj subsequent to donation become: eufi + Oj and ēj/p̄j. Tj is moved to A3. This

donation of weights continues until A1, the set of needy tasks, becomes empty.

If Hf < Gf , it means that the aggregate slack weight (Hf ) of A2 is not sufficient

to satisfy the total additional need (Gf ) of A1, and so, even weight donation cannot

guarantee DP-Fairness of all tasks. Therefore, one or more task instances (jobs) in

A1 must be rejected so that the rest of the system remains fail-operational. At any
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ALGORITHM 8: Function Weight Donation()

Input: Needy set: A1, Affluent set: A2, Balanced set: A3
Output: Updated A1, A2, A3

1 while A1 6= ∅ do
2 Select first needy task Ti and first affluent task Tj from sets A1 and A2,

respectively;
3 if Oj ≥ Ui then

4 eufj = eufj − Ui; eufi ← ēi/p̄i;

5 Oj ← Oj − Ui; Ui ← 0;
6 A1← A1 \ Ti;A3← A3 ∪ Ti;
7 if Oj = 0 then
8 A2← A2 \ Tj ;A3← A3 ∪ Tj ;

9 else

10 eufj = eufj −Oj ; Ui ← Ui −Oj ; Oj ← 0;

11 A2← A2 \ Tj ;A3← A3 ∪ Tj ;

scheduling point if Hf < Gf , FT-FS Faulty() rejects the least critical task instance Ti

having the highest underallocation value (Ui). This strategy attempts to ensure the

rejection of the least number of high criticality jobs. Then, the algorithm backtracks the

schedule generation back to the time tt = max(si, FDT ), where si is the arrival time of

Ti. Now, FT-FS Faulty() attempts to regenerate the schedule from time tt, this time,

without task Ti in R′l. Subsequent to a rejection, the actual effective execution rates

of the tasks increase relatively due to reduced workload effected by the task rejection.

This increases the possibility of the system becoming safe (checked using Equation 4.8)

or at least reduces the total additional requirement of needy tasks during the weight

donation process. Further rejections may be required if the weight donation process

fails in satisfying the requirement of all needy tasks. After the entire schedule for the

interval [FDT , FRT ] is generated, FT-FS Faulty() executes the schedule and returns back

to the main function FT-FS() at time FRT .

Example 2: Let us continue with the same system scenario discussed in Example 1, with

the exception that processor V2 now suffers a permanent fault at time FOT = 38. The

fault is detected at FDT = 40 and the recovery interval tr being 60, we get FRT = 100.
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After detecting the fault at FDT = 40, the main function FT-FS calls FT-FS Faulty(),

which proceeds in a time slice by time slice manner within the interval [FDT , FRT ].

Therefore, the recovery duration consists of five slices ts1, ..., ts5 (tsl1 = 10, tsl2 = tsl3 =

1, tsl4 = 2, tsl5 = 46) based on task deadlines. Figure 4.2 depicts the schedule generated

by FT-FS Faulty() during the interval [FDT , FRT ].
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Figure 4.2: The schedule generated by FT-FS Faulty() during the interval [40, 100]

At the beginning of time slice ts1, the active task set is R′1 = {T4, T5, T8}. The

effective and required weights ({eufi , ēi/p̄i}) of these active tasks are {0.3526, 0.6666},
{0.3268, 0.1818} and {0.3205, 0.1666}, respectively. Here, euf4 < ē4/p̄4 (refer Equa-

tion 4.8) and the system is in unsafe state. Partitioning R′1 we get, A1 = {T4} (needy),

A2 = {T5, T8} (affluent) and A3 = ∅ (balanced). Since, Hf (= 0.2989) < Gf (= 0.31405),

the system cannot be driven to safety without incurring any rejection. Hence, task T4

(only needy task in R′1) is rejected and the system becomes safe subsequent to its re-

moval. FT-FS Faulty() therefore calls FT-FS Normal() to generate the schedule for ts1

as depicted in Figure 4.2. Similarly, FT-FS Faulty() generates the schedules for time

slices ts2 and ts3.

At time tt = 52, the next instances of T1, T4 and T8 arrive and the active task

set R′4 becomes {T1, T2, T4, T5, T7, T8}. Here, the system is in an unsafe state with

A1 = {T1, T2, T4, T5, T7, T8} and A2 = A3 = ∅. Since Hf < Gf , the least critical

task T1 in A1 is rejected and FT-FS Faulty() reattempts to generate a feasible schedule

(now, without T1) for ts4 (T1 has arrived at the beginning of ts4). However, schedule

generation fails again and the system is still observed to be unsafe with Hf < Gf

(A1 = {T2, T4, T5, T7, T8} and A2 = A3 = ∅). FT-FS Faulty() now rejects T2, the least

critical task, and attempts to regenerate a feasible schedule starting from the beginning
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of ts2, the stipulated time for the arrival of T2. After generating the schedules for ts2

and ts3 (now, without T2) in a similar manner as before, a feasible schedule for ts4

(without tasks T1 and T2) can be constructed with the task shares for T4, T5, T7, T8 being

sh4
4 = 1, sh4

5 = 0, sh4
7 = 0, sh4

8 = 1. Proceeding further, at the beginning of ts5 at time

tt = 54, the system again becomes unsafe due to the arrival of the next instances of

tasks T3 and T6 (A1 = {T3, T4, T5, T6, T7, T8} and A2 = A3 = ∅). As Hf < Gf , the least

critical task T3 is rejected and the schedule generation for ts5 is reattempted without

T3. This time, although the system is still unsafe, Hf > Gf and so, system safety

may be achieved through weight donation alone with no further task rejection being

required. Subsequent to successful weight donations (refer Algorithm 8), the effective

weights of the tasks T4, T5, T6, T7, T8 in R′5 are updated from 0.20665 to 0.2, 0.19155 to

0.19103, 0.1990 to 0.2037, 0.21492 to 0.21739, 0.18788 to 0.18788, respectively. At time

t = FRT = 100, the backup processor becomes operational and the system recovers from

the fault. �

Example 3: Let us continue with the same system scenario discussed in Example 1,

with the exception that system has three unit capacity processors and processor V2

suffers a permanent fault at time FOT = 38. The fault is detected at FDT = 40 and the

recovery interval tr being 60, we get FRT = 100. Figure 4.3 depicts the FT-FS schedule

for this system in the fault mode of operation. It may be observed from Figure 4.3 that
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Figure 4.3: The schedule generated for a 3 processor system under fault mode of operation

even in the presence of the faulty processor (V2), the system incurs no task rejections.

This is because FT-FS effectively schedules the given workload on the remaining two
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non-faulty processors. �

4.2.4 Complexity Analysis

In this section, we present the time complexity analysis of the proposed FT-FS scheduler,

with the objective of accounting the scheduling overheads associated with the algorithm.

Lemma 4.2.1. Complexity of function FT-FS Normal() (Algorithm 6) is O(nlgn) per

time slice.

Proof. The loops in lines 1-3, 6-8 and 12-17 run once for each task with each step inside

the loop taking constant time. So, the complexity of these loops become O(n). Steps 4

and 9 which involves updation of the spare capacity scap and takes O(n) time. Step 11

which creates a modified task list, consumes O(nlgn) time. Step 18 involves generation

of a schedule within a time slice and also takes O(n) time. Therefore, function FT-

FS Normal() has an overall complexity of O(nlgn) per time slice.

Theorem 4.2.2. Amortized complexity of function FT-FS Normal() (Algorithm 6) is

O(1) per processor per time slot.

Proof. From Lemma 4.2.1, the worst case time complexity of function FT-FS Normal()

is obtained as O(nlgn) per time slice. The length of a time slice may be considered to

be roughly proportional to the average task period length. Further typically, it may be

realistically assumed that: #tasks n << average period size × #processors m. Hence,

#tasks n << time slice length × #processors m. So, the amortized complexity of

FT-FS Normal() may be considered to be O(1) per processor per time slot.

Lemma 4.2.3. Complexity of function Weight Donation() (Algorithm 8) is O(n).

Proof. Algorithm 8 performs weight donation from affluent tasks in set A2 to needy

tasks in A1, until the number of needy tasks in A1 reduces to zero. The maximum

number of iterations of the while loop (Steps 1 to 11) is upper bounded by the initial

cardinality of A1 which is O(n). Therefore, this loop takes O(n) time. Steps 6, 8 and 11

involve insertion and deletion operations at the beginning of sets A1, A2, A3 and each

such operation takes constant time. The other steps in the while loop also consume O(1)

time. Therefore, the worst case time complexity of Weight Donation() is O(n).
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Lemma 4.2.4. Average complexity of function FT-FS Faulty() (Algorithm 7) is O(nlgn).

Proof. Function FT-FS Faulty() is used to generate a schedule for the recovery duration

[FDT , FRT ). Step 3 involves determination of the length of the ensuing time slice, at

each time slice boundary within [FDT , FRT ). This length is given by the earliest among

the deadlines of all currently active instances and takes O(n) time for its computation.

Each of the Steps 4 to 7 involves operations over sets of tasks where the cardinality of

each of these sets are upper bounded by the total number of tasks, n. So, each of these

steps takes O(n) time. Step 9 which involves finding the least critical needy task with

the highest utilization value, say Ti (from set A1), and consumes O(n) time to complete.

Step 10 updates tt to determine the number of time slices by which the schedule should

be backtracked and this takes O(1) time. Step 11 involves updation of the active task

set R′l, with respect to the backtracked schedule, and this can be done in O(n) time.

Step 12, which updates the ēi and p̄i values of all tasks in the modified set R′l, takes

O(n) time. Step 13 involves deletion of task Ti from R′l and incurs an overhead of O(n).

Steps 15 and 17 call functions Weight Donation() (Lemma 4.2.3) and FT-FS Normal()

(Lemma 4.2.1), respectively. These steps take O(n) and O(nlgn) times, respectively.

Step 18 increments tt and takes O(1) time. Therefore, the complexity of executing the

single iteration of the while loop (steps 2 to 18) is O(nlgn) in the worst case. The number

of iterations of the while loop is determined by the number of time slices for which the

schedule needs to be generated. This number must include backtracked re-executions of

certain time slices (the time slice intervals during re-execution may possibly be different

due to task rejections). Let us represent k to be the number of time slices generated

by the active tasks (excluding the rejected tasks) within the recovery interval and k’

to be the total number of time slices by which the schedule was backtracked due to all

task rejections. Now given k and k’, the complexity of FT-FS Faulty() may be obtained

as O((k + k′)nlgn). In this work, we have assumed a closely-coupled system in which

the cold-standby processor may be activated within a short recovery duration (varying

between say, tens of milliseconds to at most a few seconds) subsequent to the detection of

a fault. Further, as time slices are demarcated by task period boundaries, average length

of a time slice can be considered to be approximately equal to the mean period length

of the given task-set. We have also observed that for a large class of real-time systems

including automotive and avionic systems, most process control systems, satellites etc.,
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task period lengths typically vary between tens to hundreds of milliseconds, or even more.

Therefore, the number of time slices k, within the recovery duration may be reasonably

considered to be bounded by a small constant. Average number of time slices by which

the schedule needs to be backtracked (say, k”) at each task rejection is upper bounded

by k, and so, k” may also be considered to assume small values. Moreover, the algorithm

attempts to choose tasks with high utilization values for rejection. Due to this, transient

overloads during recovery are typically mitigated by only suffering a small number of

rejections (say, nr), in most cases. Based on these arguments, k’ (=k”×nr) can also be

assumed to be upper bounded by a small constant. Hence, assuming both k and k’ to

be small constants, the average complexity of FT-FS Faulty() becomes O(nlgn).

Theorem 4.2.5. Amortized complexity of function FT-FS Faulty() (Algorithm 7) is

O(1) per processor per time slot.

Proof. At the beginning of the recovery interval, FT-FS Faulty() takes O(nlgn) time

to generate a schedule for the entire recovery period (Lemma 4.2.4). Therefore, the

amortized complexity of FT-FS Faulty() may be obtained by determining the average

overhead incurred by the function per processor per time slice over the recovery interval

[FDT , FRT ). In our work, we have represented [FDT , FRT ) as an integral number (say,

k) of time slices with the duration of a typical time slice being assumed to be equal

to average task period length. Therefore, amortized complexity of FT-FS Faulty() be-

comes, O(nlgn/( k × average period size × #processors m)). Finally, with the realistic

assumption that: #tasks n × lgn ≤ k × average period size × #processors m, amor-

tized complexity of FT-FS Faulty() may be considered to be O(1) per processor per time

slot.

Example 4: Let us consider a typical fully loaded system consisting of 8 processors

with 40 tasks having an average execution requirement of 50 ms. With average task

utilization being 1/5 (=8/40), the average task period length becomes 250 ms. Thus

in this case, #tasks (40) << average period length (250) × #processors (8). These

numbers thus validate the amortized time complexity results for FT-FS Normal() and

FT-FS Faulty() obtained in Theorem 4.2.2 and Theorem 4.2.5, respectively. �

Theorem 4.2.6. Amortized complexity of the FT-FS Scheduler (Algorithm 5) is O(1)

per processor per time slot.
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Proof. It follows from Theorem 4.2.2 and Theorem 4.2.5.

The complexity analysis conducted above shows that FT-FS is a low-overhead al-

gorithm which incurs O(1) average amortized overhead. This theoretical analysis has

also being supported by our obtained experimental results as discussed in Section 4.3.4.

Before presenting the detailed results, we now present the experimental framework used

in this work.

4.3 Experiments and Results

We have evaluated the performance of the FT-FS algorithm through an extensive set

of simulation studies (conducted over an experimental framework which is described in

the next subsection) and compared its performance against a basic fault-tolerant fair

scheduling strategy called Basic-FS.

Basic-FS: In its normal mode of operation, Basic-FS is same as FT-FS. However, it

follows a naive and much simpler fault recovery policy. To drive the system to safety

during transient overloads in the recovery period subsequent to a fault, Basic-FS repeat-

edly rejects the least critical tasks from set A1 until the overload is mitigated. Therefore,

neither does this strategy employ weight donation nor backtracking subsequent to a task

rejection.

4.3.1 Experimental Setup

The experimental setup in this work consists of a scenario generation framework which

provides input test datasets corresponding to different scenarios over which both the

Basic-FS and the FT-FS algorithms are evaluated. Each result data point is the average

obtained by running the algorithms over 100 different datasets corresponding to a given

scenario. The schedule length in all simulations have been taken to be 100000 time

slots with the length of a time slot being assumed as 1 millisecond. We now discuss the

scenario generation framework in more detail.

Given the number of tasks to be generated (n) and the summation of weights of

the n tasks (L), the individual task weights (ui) have been generated from a normal
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distribution with standard deviation (σ) = 0.1 and mean (µ) = L/n. The summation

of weights of these generated tasks is not constant. However, making the summation

of weights constant helps in the comparison of the algorithms. Therefore, the weights

have been scaled uniformly to make the cumulative weight of each task set constant

and equal to L. Task execution periods (pi) have been generated from another normal

distribution with µ = 400 and σ = 40. Each task Ti in the system is assigned a criticality

level cri which is denoted by an integer generated randomly from a uniform distribution

with in the range [1, n]. The framework also includes a fault injection mechanism which

randomly generates fault occurrence instants using Poisson distribution with fault rate

λ = 1 × 10−5 [87]. The mechanism take cares that two consecutive fault occurrence

instants are separated by at least: recovery interval tr + periodic safety check interval

tp. The value of tp has been assumed to be 10 milliseconds in all experiments.

Now, various simulation scenarios have been generated by setting different values for

the following parameters:

1. Number of processors m: This parameter is varied between 2 to 10.

2. Task set size n: The number of tasks in the system have been varied from 20 to

100.

3. Workload: Our experiments are conducted on 70%, 75%, 80%, 85%, 90%, 95% or

100% loaded systems.

4. Recovery time tr: In order to study the effect of tr, the recovery interval has been

varied from 50 to 200 (in milliseconds).

4.3.2 Performance Evaluation Parameters

Fault of a processor may lead to transient overloads in the system, which in turn may

necessitate the rejection of one or more jobs in order to keep the system fail-operational.

The performance of the proposed framework has been evaluated using four different

metrics:
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1. #Job Rejections: This denotes the average number of jobs rejected over 100 runs

(with distinct datasets) by the algorithms FT-FS and Basic-FS corresponding to

a given scenario.

2. #Penalty: This parameter represents the average (over 100 runs) aggregate

penalty suffered by the system due to job rejections. Here, penalty (correspond-

ing to the single run of the experiment) is calculated by the summation of the

criticality values of rejected jobs over the schedule length.

3. Normalized context switch overhead: It is the average preemption/migration

overhead (in µs) per processor per time slot, incurred by FT-FS.

4. Normalized scheduling overhead: It is the average overhead (in µs) per time

slot, incurred by FT-FS towards making scheduling decisions.

4.3.3 Results: Performance

Figures 4.4 - 4.6 show the comparison of FT-FS and Basic-FS based on the perfor-

mance parameter #Job Rejection. The plots shown in Figure 4.4 are obtained for two

distinct values of recovery period tr (100 and 200) and varying system workloads (U)

corresponding to systems consisting of two processors and 40 tasks. It may be observed

from Figure 4.4 that for all cases, as expected, number of job rejections increases as

system workload becomes higher due to progressive reduction in slack capacity within

the system. Also, rejection rates are seen to increase very steeply when the system be-

comes almost fully loaded (for, U > 95%). In addition, as recovery interval represents

the time for which the system must deal with a sub-nominal capacity, plots for which

tr = 200 exhibit higher rejections compared to plots with tr = 100. Finally, the plots

clearly show the superiority of the proposed FT-FS algorithm over Basic-FS in terms

of the ability to control job rejections. Empowered with the weight donation and post

rejection backtracking mechanisms embedded with FT-FS, it incurs significantly lower

rejections with respect to Basic-FS.

Figure 4.5 considers scenarios containing 40 tasks, 80% or 90% loaded systems with
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Figure 4.4: #Job Rejections vs. System load: 2 processors, 40 tasks

varying number of processors. As is obvious, for any given number of processors, 90%

loaded systems suffer higher rejections compared to systems where load U = 80%. It may

also be observed that job rejections decrease with increase in the number of processors

when the workload, recovery time and number of tasks remain unchanged. This may be

attributed to the fact that fractional loss in system capacity, during recovery, due to the

failure of a single processor, decreases with increase in the available number of processors.

Also as discussed above, FT-FS being more efficient, is seen to always perform better

than Basic-FS.

Figure 4.6 shows the variation in #Job Rejections as the number of tasks is varied in

a two processor, 80% or 90% loaded system with 100 ms as the recovery interval. Here,

we observed that #Job Rejections increases with growth in the number of tasks. This is

because, as the number of tasks increases in a scenario with fixed total workload (U=80%

or 90%), the number of jobs which suffer underallocation at time slice boundaries (leading

to rejections) during recovery, also increases. However, a closer observation shows that

although #Job Rejections increases, the rejection ratio (#Job Rejections : #Tasks)

decreases with larger number of tasks. This is due to the fact that individual task

weights decrease as tasks increase in scenarios with a fixed system load and such smaller

weights have higher probability of fitting into a given available slack capacity in the
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Figure 4.5: #Job Rejections vs. #Processors: 40 tasks, tr = 100 ms

system. As for the other two figures, FT-FS performs consistently better than Basic-

FS.
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Figure 4.6: #Job Rejections vs. #Tasks: 2 processors, tr = 100 ms

Figure 4.7 compares FT-FS and Basic-FS against the performance parameter #Penalty.

As expected, FT-FS being equipped with weight donation and backtracking capabilities

incurs far low penalties compared to Basic-FS. Table 4.1 summarizes the comparison

results obtained for FT-FS and Basic-FS on two processor systems.
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Table 4.1: FT-FS vs. Basic-FS: Average number of jobs rejected

U tr n=20 n=40 n=60

FT-FS Basic-FS FT-FS Basic-FS FT-FS Basic-FS

75%

50 1.53 3.36 2.3 5.96 2.83 7.57

100 1.83 3.5 2.83 6.29 3.54 7.87

150 2.4 3.76 3.77 6.37 4.66 8.43

200 2.84 4.06 4.53 6.66 5.47 8.78

85%

50 2.99 4.97 4.97 8.65 6.38 11.85

100 3.34 5.42 5.6 9.6 7.18 12.8

150 4.1 5.72 6.88 9.76 8.97 13.07

200 4.73 6.05 8.03 10.18 10.55 14.03

95%

50 4.88 6.97 8.43 12.35 11.28 17.01

100 5.23 7.38 8.98 12.75 11.98 18.22

150 6.1 8.21 10.65 14.12 14.29 19.72

200 7.1 8.76 12.28 15.04 16.83 21.13

n: Total number of tasks; U: Total system load percentage; tr: Recovery time

#processors: 2; tp: 10 ms; Average period length of tasks, Pavg: 400 ms
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4.3.4 Results: Overheads

Figure 4.8 shows plots for the normalized context switch overheads (refer Section 4.3.2)

incurred by FT-FS, as the system load is varied on four and eight processor systems.

In this experiment, we assume the delay corresponding to a single context switch to

be 5.24µs, which is the actual average context switch overhead on a 24-core Intel Xeon

L7455 system under typical workloads [17]. The normalized context switch overhead (in

µs) is determined as follows: we first counted the average number of context switches

per processor per time slot for a given simulation run and then multiplied it with the

cost of a single context switch (5.24 µs). It may be observed that for a given task set

(n=20 or 40) and number of processors (m=4 or 8), the overhead increases as system

load increases from 70% to 100%. This may be attributed to the fact that as system

load increases, individual task weights also increase and such larger weights increase

the execution times of tasks. As a result, individual task shares within time slices be-

come larger and residual spare capacities in the system reduce. Consequently, a higher

number of context switches must be incurred to feasibly accommodate and execute the

tasks on the available processors. It may also be observed that, for a given workload,

overhead increases with increase in the number of tasks. This is because, the number

of time slices within the schedule increases proportionately with increase in the number

of tasks. Consequently, the number of migrations across time slices also increases pro-

portionately. Additionally, the number of preemptions within the time slice increases as

the number of tasks increases. It may also be observed that for a given task set (n=20

or 40) and workload, the normalized context switch overhead decreases with an increase

in the number of processors. This is due to the fact that the spare capacity in the

system increases as the number of processors become higher with the system workload

remaining the same. Due to such additional spare capacity, the tasks are able to execute

continuously on the same processor for longer durations on average, without incurring

migrations/preemptions. Finally, it may be observed from Figure 4.8 that the maximum

normalized context switch overheads for the considered scenarios is about 1.56 µs per

processor per time slot (for four processor, 40 tasks, fully loaded systems). Therefore,
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considering 1 millisecond as the time slot length, about 0.156% of a slot duration may

be considered to be wasted due to context switch related overheads.
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Figure 4.8: Normalized context switch overheads of FT-FS

Figure 4.9 shows plots for the normalized scheduling overheads (refer Section 4.3.2)

incurred by FT-FS Normal(), as the system load is varied on four and eight proces-

sor systems. In this experiment, the normalized scheduling overhead is determined by

first finding out the average scheduling overhead for the entire schedule length incurred

by FT-FS Normal() over 100 simulation runs. This average scheduling overhead is then

divided by the length of schedule to obtain the normalized overhead per time slot. As ex-

pected, the overhead increases when both the number of tasks and system load increases.

Moreover, for a given task set (n=20 or 40) and workload, normalized scheduling over-

head increases with an increase in the number of processors. Finally, it may be observed

from Figure 4.9 that the maximum normalized scheduling overheads for the considered

scenarios is about 2.27 µs per time slot (for eight processor, 40 tasks, fully loaded sys-

tems). This normalized overhead is experienced by tasks on all processors at any time

slot. Therefore, considering 1 millisecond as the time slot length, about 0.227% of a slot

duration may be considered to be wasted due to scheduling related overheads.

Figure 4.10 shows plots for the normalized scheduling overheads incurred by FT-

FS Faulty(), as the recovery time is varied on four and eight processor systems. In this
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Figure 4.9: Normalized scheduling overheads of FT-FS Normal()

experiment, the normalized scheduling overhead is determined by first finding out the

average scheduling overhead incurred by FT-FS Faulty() at the beginning of the recovery

interval and then dividing it by the recovery duration. It may be noted that during the

recovery period, the numbers of available processors in four and eight processor systems

become three and seven, respectively. In addition, these systems are assumed to be hit by

a transient overload of 5%, subsequent to the failure of a processor. So, the total system

utilization has been fixed at 78.75% for four processor systems and 91.875% for eight

processor systems, such that the workloads rise to 105% in both these systems, during

the recovery period. As expected, for a given processor (m=4 or 8), the normalized

scheduling overhead increases as the number of tasks become higher. Moreover, for a

given task set (n=20 or 40), normalized scheduling overhead increases with an increase in

the number of processors. It may also be observed that for a given task set (n=20 or 40),

processor (m=4 or 8) and transient overload, normalized scheduling overhead decreases

with an increase in the recovery time. This is due to the fact that the proportional

increase in average scheduling overhead decreases as recovery time increases. It may

be observed from Figure 4.10 that the maximum normalized scheduling overheads for

the considered scenarios is about 3.74 µs per time slot (for eight processor, 40 tasks

systems with recovery time, tr = 50 ms). This normalized overhead is experienced by
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tasks on all available processors at any time slot during the recovery period. Finally, it

may be noted that the overall normalized scheduling overhead of the FT-FS scheduler

may be obtained as the maximum of the overheads incurred by FT-FS Faulty() and

FT-FS Normal(). Finally, the total overhead of FT-FS per time slot is given by the

sum of normalized context switch and scheduling overheads. For example, for an eight

processor, 40 task system, with tr = 50 ms, the normalized scheduling overheads of

FT-FS Faulty() and FT-FS Normal() are 2.27 µs (refer Figure 4.9) and 3.74 µs (refer

Figure 4.10), respectively. Additionally, the normalized context switch overheads of

FT-FS corresponding to these system parameters is 1.379 µs (refer Figure 4.8). From

these values, the total normalized overhead of FT-FS may be obtained as 1.379 µs +

max(2.27, 3.74) µs = 5.119 µs. Therefore, considering 1 millisecond as the time slot

length, only about 0.5119% of a slot duration may be considered to be wasted due to

overheads. This overhead can be easily incorporated within the schedule by inflating

the execution requirement of each task by 0.5119%.
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Figure 4.10: Normalized scheduling overheads of FT-FS Faulty()

4.4 Case Study

In this section, we present a case study using an automated flight control system to

illustrate the generic applicability of our fault recovery mechanism in real world scenar-
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ios. The Flight Management System (FMS) in an aircraft performs several flight control

functions, including navigation, guidance, control, etc [11]. FMS requires four separate

tasks to control the aircraft during flight: Guidance, Controller, Slow Navigation and

Fast Navigation. The Guidance task (say T1) sets the reference trajectory of the aircraft

in terms of altitude and compass heading. Based on the reference trajectory and navi-

gation sensor values, the Controller task (say T2) executes closed loop control functions

that compute actuation commands for components including, elevator, ailerons, rudder

and throttle, to achieve a desired reference altitude and heading for the aircraft. The

elevator, ailerons and rudder generate aerodynamic forces that alter aircraft heading

and airspeed. The engine throttle generates a force along the aircraft fuselage which is

used in combination with the aerodynamic forces to alter aircraft airspeed and altitude.

The job of both Slow (say T3) and Fast (say T4) Navigation tasks is to read sensors

at low and high sampling frequencies, respectively. While slow navigation task is used

to feed data to the less critical Guidance task, fast navigation task feeds data to the

high critical Controller task. Now, we consider the case of an F-16 fighter aircraft which

performs an additional function, launch a missile at the enemy target during military

operation. Therefore, in addition to the basic flight control tasks (Guidance, Controller,

Slow Navigation, Fast Navigation), the fighter aircraft requires a Missile Control task

(say T5) to monitor the aircraft radar, detect enemy targets and fire a missile if a target

is detected.

Now, consider these five tasks T1 (100, 1000, 2), T2 (80, 200, 3), T3 (100, 1000, 2), T4

(60, 200, 3), T5 (500, 1000, 1) to be executed on two unit capacity processors (m = 2)

using the FT-FS scheduling scheme. The tasks and their associated parameters used for

this case study have been taken from [11]. Each of these tasks may be assigned a relative

criticality value based on the importance of their usage in flight control performance and

military mission operation. In this case study, we assume that flight control tasks have

higher relative criticality values compared to the military mission task. Figure 4.11

depicts the FT-FS schedule for this system for the first 200 time slots (time slice ts1).

All these tasks are real-time and periodic in nature, whose timing constraints have to
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Figure 4.11: Aircraft Flight Control: Schedules generated by FT-FS under nominal mode of
operation for the first 200 time slots.
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Figure 4.12: Aircraft Flight Control: Schedules generated by FT-FS under fault mode of
operation for the first 200 time slots.

be satisfied even in the presence of faults. Let us consider the following faulty scenario:

tp = 10 ms, tr = 50 ms, FOT = FDT = 100 and FRT = 150. Due to the failure of

any one of the two processors (say, processor V2 fails), tasks have to execute on the

remaining functional processor (V1) until the system recovers. Figure 4.12 depicts the

schedule generated by FT-FS under fault mode of operation. At time t = 100, the

system is observed to be unsafe and FT-FS attempts to regenerate a feasible schedule

by rejecting the least critical task T5. After this rejection, it becomes possible to generate

a feasible schedule through weight donation alone with no further task rejection being

required during the recovery interval [100, 150] (thereby, displaying the ability of the

algorithm to remain fail-operational as far as possible). It may also be observed that

under both nominal and fault modes of operation FT-FS is able to deliver optimal

resource utilization. Figure 4.11 shows that FT-FS incurs only 1 task migration and 4

preemptions, thus being able to effectively control context switching related scheduling

overheads.
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4.5 Summary

In this chapter, we have presented a fault-tolerant proportional fair scheduling mecha-

nism called FT-FS, for real-time homogeneous multiprocessor systems containing cold-

standby spares. Subsequent to the detection of a permanent processor fault, the system

requires a fixed recovery interval to boot up the spare processor to the operational state.

Equipped with two novel features namely, weight donation and post rejection back-

tracking, the proposed scheduler FT-FS attempts to minimize rejections of critical jobs,

during transient overloads within recovery intervals. The objective is to maximize the

possibility of keeping the system fail-operational even in the presence of faults. The

underlying scheduling structure being based on DP-Fair, FT-FS is able to ensure high

resource utilization and fair rate-based execution progress while incurring low schedul-

ing related overheads through controlled migrations and context-switches. Experimental

results reveal that the FT-FS algorithm performs appreciably over an extensive sets of

system scenarios pointing to the practical effectiveness of the scheme. In the next chap-

ter, we consider a combined fault-tolerant and energy-aware design strategy for real-time

safety-critical systems having heterogeneous multi-cores as the computing platform.
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Chapter 5
Fault and Energy Aware Scheduling on
Real-time Heterogeneous Dual-cores

In the earlier chapters, we have separately considered the energy-aware and fault-tolerant

design strategies for real-time safety-critical systems, and have assumed the underlying

hardware computing platform to be homogeneous. However, the nature of processing

platforms used in embedded systems is changing over the years. To satisfy the computa-

tional demands of various applications, today, we observe an increased emphasis towards

the integration of unrelated processing cores (i.e., heterogeneity) onto a single hardware

platform [15,35]. For example, ARM has developed a heterogeneous processing architec-

ture, called ARM big.LITTLE which has been deployed in cutting-edge mobile devices

such as Samsung Galaxy Note 4, S10, etc. The big.LITTLE platform contains two types

of cores, one of which is high-performance, called the big cores, while the other is of lower

performance and power-efficient, referred to as LITTLE cores. Due to the differences

in the internal microarchitectures of big and little cores, the same application/task may

exhibit different timing as well as power characteristics on the different cores [100,101].

Therefore, devising combined energy-aware and fault-tolerant design strategies for such

heterogeneous platforms is a challenging and computationally demanding problem.

In this chapter, we present a standby-sparing based energy-aware fault-tolerant de-

sign strategy for heterogeneous systems. The chapter first describes the system model

under consideration. Then, we present our proposed energy-aware fault-tolerant schedul-

ing strategy to effectively handle transient processor faults. Important experimental
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results which highlight the performance of the proposed methodology under various sce-

narios are discussed next. Finally, the chapter concludes by presenting a case study

using MiBench benchmarks to illustrate the applicability of the proposed strategy in

real world scenarios.

5.1 System Model and Problem Formulation

In this section, we describe various models under consideration in detail.

5.1.1 Platform and Application Model

We consider a real-time system consisting of a set of n independent periodic tasks (T =

{T1, T2, ..., Tn}) to be executed on a heterogeneous dual-core processing platform. This

system consists of a power-hungry, high-performance (big) core, and a power-efficient,

relatively slow (little) core. In this work, we assume that tasks are executed in a frame-

based manner [100, 117]. That is, all tasks in the system share same period, which is

equal to the common deadline D. The worst case number of cycles required by a task

Ti on a given core is denoted by Ci. However, Ti may take up to ei = Ci/f units of

execution time to complete on that core when executed at the frequency level f . Due

to the asymmetric nature of the cores, the same task may require different number of

cycles and execution times on each of these cores. Therefore, each task Ti (∈ T ) is

characterized by a two tuple (eHPi , eLPi ), where eHPi and eLPi represent the worst case

execution times of Ti on high-performance (denoted by HP ) and low-power (denoted by

LP ) cores, respectively. It is assumed that eLPi and eHPi correspond to execution time

under the maximum processing frequencies on LP and HP cores, (denoted by fLPmax and

fHPmax), respectively.

5.1.2 Power Model

Due to the asymmetric nature of the cores, the HP and LP cores have different power

consumption characteristics. The dynamic power consumption of a task Ti on any pro-

cessing core is modeled as Pi(f) = aif
3+αi, where ai indicates the switching capacitance,

f denotes the processing frequency of the task, and αi is the frequency-independent
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Figure 5.1: A standby-sparing system

power consumption [100]. Therefore, the same task may exhibit different power charac-

teristics on different cores of a heterogeneous system.

Each processing core executes tasks in its high-power state and dissipates power as

specified by the processing frequency and the characteristics of the executing task. In

this work, we employ the Dynamic Power Management (DPM) technique on both cores

to minimize the energy consumption. Therefore, when a core becomes idle (that is,

not executing any tasks), DPM switch off the core to the low-power state. When a

core transits between the high-power state to the low-power state, a specific amount of

energy and time are consumed. Therefore, the minimum processor idle time required

to compensate the cost of entering a low-power state is defined as the break-even time

TIbe [66] of a processing core. In this work, we assume that the cost of entering a low-

power state is negligible and so, TIbe is assumed to be zero. Let PLP
idle and PHP

idle denote

the power consumption of LP and HP cores at their low-power states, respectively.

The overall energy consumption within a frame is determined by aggregating the energy

consumption of all cores in that frame.

5.1.3 Fault Model

In this work, we employ a standby-sparing technique in which one processing core is

designated as primary and the other as the spare. Figure 5.1 depicts a standby-sparing

system. Each task Ti has two versions, namely, primary copy (denoted by pri) and backup

copy (denoted by bki). bki has exactly same timing parameters as that of pri. As per the

motivation of energy-awareness from literature [100], we assign primary copies of tasks

to low-power LP primary core and their backup copies to high-performance HP spare
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core, respectively. Whenever a primary copy completes, fault detection mechanisms such

as acceptance or sanity tests [62] are conducted to detect a transient fault. If a fault is

not detected, (that is, primary completes successfully), the corresponding backup copy

on the spare core is deallocated from the schedule dynamically. We assume that each

task (primary copy) encounters at most one transient fault and at any point in time,

system is able to handle at most k transient faults per frame.

Problem Formulation: Given a set of real-time tasks to be executed on a hetero-

geneous dual-core system and a number of transient faults to be tolerated, develop an

efficient scheduling strategy which

• satisfies execution and deadline constraints of all tasks,

• tolerates a specified number of faults, and

• minimizes overall energy consumption of the system.

5.2 FENA-SCHED: Fault-tolerant Energy-aware schedul-
ing Scheme

In this section, we describe the overall working of our proposed fault-tolerant energy-

aware scheduling mechanism, FENA-SCHED.

Figure 5.2 depicts our proposed scheduling framework. This framework mainly con-

sists of an offline scheduler (Module 3) which considers different models (system, power,

fault models, collectively represented as Module 1 and 2) presented in Section 5.1, and

generates a fault-tolerant, energy-aware schedule (Module 4). This offline schedule is

further enhanced at run-time by observing the completions of the primary copies of

tasks in the system (Module 5). Before describing the details of FENA-SCHED, we

first investigate a design constraint in the standby-sparing DPM-enabled system, that

is, designating which core to assign as the primary and correspondingly, spare. There

are two configurations:

• Configuration-1: Power-hungry, high-performance HP core as primary and power-

efficient, modest performance LP core as spare.
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Figure 5.2: Proposed Framework

• Configuration-2: High-performance HP core as spare and power-efficient LP core

as primary.

In a standby-sparing system, the primary copy of a task is executed in most of the

cases, and corresponding backup copy is activated only when its primary fails. In a

non-faulty scenario, spare core can always put to its low-power state. It may be inferred

that Configuration-2 yields better energy savings as compared to Configuration-1. This

is due to the fact that in Configuration-2, primary copies of tasks are assigned to the

power-efficient LP core whose power characteristics are much lower than that of the

power-hungry HP core.

Example 1: Consider a heterogeneous dual-core system with fLPmax = 0.8 and fHPmax = 1.0.

Here, fLPmax and fHPmax denote the normalized maximum frequencies of the LP core and HP

core, respectively. We assume, PLP
idle = 0.02, PHP

idle = 0.05, and D = 100ms. The power

consumption parameters for all tasks are given by: aHPi = 1.0, αHPi = 0.1, aLPi = 0.3,

and αLPi = 0.03. In a non-faulty and fully loaded primary core scenario (where the spare

core is completely idle), Configuration-1 yields an overall energy consumption of 112mJ ,

while Configuration-2 consumes only 23.36mJ of energy, showing an improvement of

79.14%. �
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Based on the inference from Example 1, we have used Configuration-2 in our design;

that is, the high-performance HP core is used as spare while the power-efficient LP is

employed as the primary.

5.2.1 Scheduling Strategy

Now, we discuss our proposed energy-aware fault-tolerant strategy FENA-SCHED (refer

Algorithm 9), in detail. This strategy can handle at most k (given) transient faults per

frame at any point in time and takes the advantage of backup-backup (BB) overloading

[46, 47]. In BB-overloading, backup copies of multiple tasks are scheduled during the

same time interval in order to make efficient utilization of available processing core time.

Therefore, in an energy-aware perspective BB-overloading reduces the overall energy

consumption of the system.

Algorithm 9 first creates a list Pr List of tasks in non-increasing order of their execu-

tion times (eLPi ) on LP core (Step 2). Steps 3-10 determine a schedule for primary copies

of tasks in the given task set T . Algorithm 9 extracts each task Ti from Pr List and

schedules its primary copy on LP core by assigning start time, a time at which Ti will

start its execution on the corresponding core. The admission control step of Algorithm 9

(Step 5) verifies the schedulability of the given task set T . If T is schedulable, Algo-

rithm 9 creates a list Bk List of tasks in non-increasing order of their execution times

(eHPi ) on HP core (Step 12). Then it computes BB overloading window (reserve cap)

from the first k tasks in Bk List based on their execution times (eHPi ) on HP core and

reserves reserve cap unit of backup slots on HP core as late as possible (Steps 13-15).

Therefore, instead of assigning time slots for all backup copies, Algorithm 9 reserves only

first k backup copies time slots on HP core to minimize overall energy consumption as

well as to tolerant k number of faults.

Now, we demonstrate the working of FENA-SCHED through a set of illustrative

examples and show its effectiveness over an existing state-of-the-art work. In this work,

we focus on the energy consumption of the generated fault-tolerant offline schedule. The

primary copies of tasks are scheduled in the non-increasing order of their execution times

on primary core. Similarly, the backup copies of tasks are scheduled in the non-increasing
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order of their execution times on spare core.

ALGORITHM 9: FENA-SCHED
Input: Heterogeneous dual-core system, T : Set of n real-time tasks, k: Number

of transient faults
Output: Fault-Tolerant Task Schedule
// primary : power-efficient core (LP); spare : high-performance

core (HP)
1 Initialize start time = 0, reserve cap = 0;
2 Create a list Pr List of tasks in non-increasing order of their execution times

(eLPi ) on LP core;
3 while Pr List 6= ∅ do
4 Extract the first task Ti from Pr List;
5 if start time+ eLPi ≤ D then
6 Schedule primary copy of Ti on LP core at start time;
7 start time = start time+ eLPi ;

8 else
9 Task set T is not schedulable;

10 exit;

11 if T is schedulable then
12 Create a list Bk List of tasks in non-increasing order of their execution times

(eHPi ) on HP core;
// Compute BB-overloading window

13 for first k tasks in Bk List do
14 reserve cap = reserve cap+ eHPi ;

15 Reserve reserve cap unit of backup slots on HP core as late as possible;

Example 2: Consider a system consisting of a set of four real-time tasks T1, T2, T3

and T4 to be executed on a homogeneous dual-core platform. The worst case execution

times (in ms) of these four tasks are assumed to be 14, 18, 10 and 6, respectively. Here,

both primary as well as spare are HP cores. This system is characterized by assuming,

PHP
idle = 0.05, fHPmax = 1.0 and D = 100ms. For all tasks, aHPi = 1.0 and αHPi = 0.1.

Figure 5.3 depicts the schedule of primary and backup tasks on this homogeneous sys-

tem. It may be observed from Figure 5.3 that each HP core has an idle time of 52

ms. Therefore, total energy consumption of the system during this idle time becomes

52 × 2 × 0.05 = 5.2mJ . Similarly, total energy consumption of the system when cores
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Table 5.1: A Sample Task Set

T1 T2 T3 T4

eHPi 14 18 10 6

eLPi 20 24 16 10

become active is given by 48× 2× (1.0× 1.03 + 0.1) = 105.6mJ . Therefore, this config-

uration yields an overall energy consumption of 5.2 + 105.6 = 110.8mJ . �
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Time D

100 20 30 40 50 60 70 80 90

pr3 pr4 52

100

bk2 bk1

100 20 30 40 50 60 70 80 90

bk3 bk4

100

HP

HP 52

Figure 5.3: Homogeneous System

Example 3: Let us continue with the same system scenario discussed in Example 2,

with the exception that these four real-time tasks now have to execute on a heteroge-

neous dual-core platform consisting of a power-efficient LP core and a high-performance

HP core. In this heterogeneous system, power characteristics of the LP core are much

lower than that of the power-hungry HP core. This system is characterized by the as-

sumptions, fLPmax = 0.8, fHPmax = 1.0, PLP
idle = 0.02, PHP

idle = 0.05 and D = 100ms. Table 5.1

shows the worst case execution times (in ms) of these four tasks on HP and LP cores.

For all tasks, aHPi = 1.0, αHPi = 0.1, aLPi = 0.3 and αLPi = 0.03. The core and task pa-

rameters are taken from [100]. Now, we consider a standby-sparing configuration named

as SlowerP discussed in [100] which assigns primary copies of all tasks to the LP core

and their backup copies to the HP core. Figure 5.4 depicts the schedule corresponding

to this SlowerP configuration. It may be observed from Figure 5.4 that the idle times of
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Figure 5.4: SlowerP Configuration [100]

LP and HP cores are 30 ms and 52 ms, respectively. Total energy consumption of the

LP core during both active and idle times become (70×(0.3×0.83+0.03))+(30×0.02) =

13.452mJ . Similarly, total energy consumption of the HP core during both active and

idle times is given by (52×0.05)+(48×(1.0×1.03+0.1)) = 55.4mJ . Therefore, the overall

energy consumption of this SlowerP configuration becomes 13.452 + 55.4 = 68.852mJ ,

giving an improvement of 37.85% as compared to the homogeneous system. �

Example 4: Let us continue with the same system scenario discussed in Example 3. It

may be noted from Figure 5.4 that the SlowerP configuration is oblivious to the number

of faults to be tolerated and hence, it assigns backup slots for all primaries in the

generated schedule. On the other hand, our proposed strategy FENA-SCHED reserves

only a fixed number of backup slots based on the number of faults to be tolerated (here,

k = 2) and allows backup-backup (BB) overloading within these backup slots. Figure 5.5

depicts our proposed fault-tolerant strategy FENA-SCHED. It may be observed from

Figure 5.5 that FENA-SCHED increases the total idle times in the HP core using BB-

overloading. This reduces total energy consumption of the HP core to (68 × 0.05) +

(32× (1.0× 1.03 + 0.1)) = 38.6mJ . Therefore, FENA-SCHED yields an overall energy

consumption of 13.452 + 38.6 = 52.052mJ and produces an improvement of 24.4% over

the SlowerP configuration and 53.02% over the homogeneous system. �

5.2.2 Run-time Behavior

During online execution, when a primary copy completes, fault detection mechanisms

such as acceptance or sanity tests [62] are conducted to detect a transient fault. If a fault
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Figure 5.5: Proposed Strategy, FENA-SCHED

is not detected, (that is, primary completes successfully), the corresponding backup copy

on the spare core is deallocated from the schedule dynamically. Moreover, the successful

completion of a primary copy allows us to dynamically readjust the BB-overloading

window in order to handle k transient faults on the remaining primary copies. Due to

the successful completion of each primary copy, the size of the BB-overloading window

is readjusted based on the HP core execution times of k remaining tasks and results in

shrinking the window size dynamically. If a transient fault is detected, the backup copy

of the failed primary executes up to its completion. It may be noted from the literature

that the actual execution time of a task at run-time is typically lower than its worst case

execution time. Therefore, at run-time tasks may finish before their offline computed

completion times. This allows a provision for the remaining unexecuted tasks to start

their execution earlier than their offline computed start times.

Example 5: Let us again continue with the same system scenario discussed in Ex-

ample 4. The offline fault-tolerant schedule generated by FENA-SCHED is shown in

Figure 5.5. Now, we discuss the behavior of FENA-SCHED at run-time (shown in

Figure 5.6). Consider a scenario in which pr2 completes its execution successfully at

time=24 (at its offline computed finish time). As a result, bk2 (the backup copy of pr2)

is deallocated from the schedule dynamically. Moreover, the size of the BB-overloading

window is readjusted dynamically based on HP core execution times of the remain-

ing two (k = 2) tasks T1 and T3. It may also be observed from Figure 5.6 that early

completion of pr2 allows the primary copy pr1 to start its execution at time=20. �
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Figure 5.6: FENA-SCHED: Run-time behavior

5.3 Experiments and Results

We have evaluated the performance of our proposed strategy FENA-SCHED through

an extensive set of simulation studies (conducted over an experimental framework which

is described in the next subsection) and compared its performance against an existing

standby-sparing configuration named SlowerP [100].

SlowerP : This standby-sparing configuration assigns primary copies of all tasks to LP

core and their backup copies to HP core. However, this configuration is oblivious to

the number of faults to be tolerated and hence, it assigns backup slots for all primary

tasks on LP core to HP core. We employ DPM on both LP and HP cores to reduce

the energy consumptions.

5.3.1 Experimental Setup

We have simulated different heterogeneous dual-core systems which consist of a high-

performance HP core with fHPmax = 1.0 and a power-efficient LP core with fLPmax varying

from 0.6 to 0.9. The experimental framework generates different task sets for various ex-

periments. The total utilization U is computed with reference to the power-efficient LP

core and normalized with its maximum frequency. Therefore, U = (Σ
CLP

i

D
)/fLPmax. Given

the total utilization (U) and the number of tasks to be generated (n), the individual task

utilization on the low-power core have been generated from a uniform distribution. The

frame deadline D is set to 200 ms for most of the experiments. For all tasks, aHPi and
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αHPi are set to 1.0 and 0.1, respectively. Similarly, PLP
idle = 0.02 and PHP

idle = 0.05. Each

result data point is the average obtained over 100 different task sets, each containing

n = 10 tasks. The number of faults (k) to be handled by the system is varied in the

range [1, 5].

From literature, it is familiar that same task may require different timing as well

as power consumption characteristics on heterogeneous systems [97,100]. Therefore, we

define a time-scaling factor tscalei =
CLP

i

CHP
i

, and a power-scaling factor pscalei =
PLP
i

PHP
i

for

each task Ti, as discussed in [100, 101]. The values of tscalei and pscalei are randomly

generated within the ranges 1.4 ≤ tscalei ≤ 2.3 and 1.4 ≤ 1/(tscalei × pscalei) ≤ 2.1,

as suggested in [97].

5.3.2 Experimental Results

Experiment 1- Impact of utilization: In this experiment, we have varied the system

load on a heterogeneous system with fHPmax = 1.0 and fLPmax = 0.8. Figure 5.7 depicts the

effect of utilization on normalized energy consumption. The values of n and k are set to

10 and 4, respectively. Here, the utilization shown in the X-axis is considered as regards

the power-efficient LP core. With reference to the energy consumption of SlowerP at

U = 1.0, we normalize the obtained results. It may be observed from Figure 5.7 that

as expected, the energy consumption of both FENA-SCHED and SlowerP increases

when system load increases. This is because for a given number of tasks, the average

individual task utilization increases with an increase in the total utilization and hence,

task execution time increases. This reduces the idle times of both processing cores, leads

to higher energy consumption. It may also be observed that in all system load conditions,

our proposed scheme FENA-SCHED outperforms SlowerP. This is due to the fact that

FENA-SCHED reserves only a fixed amount of backup slots on HP core with respect to

the number of faults to be tolerated and allows backup-backup (BB) overloading within

these backup slots. For example, when U = 0.6, FENA-SCHED and SlowerP yield an

overall energy consumption of 82.41mJ and 110.21mJ , respectively. When utilization

increases to U = 1.0, their overall energy consumptions become 127.8mJ and 174.36mJ ,

respectively.
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Figure 5.7: Impact of utilization

Experiment 2- Impact of number of faults: In this experiment, we have varied the

number of faults (k) on a moderately loaded heterogeneous system, and corresponding

result is shown in Figure 5.8. Here, fHPmax = 1.0, fLPmax = 0.8 and U = 0.6 (60% load

on power-efficient LP core). The value of n is set to 10. With reference to the energy

consumption of SlowerP at k = 5, we normalize the obtained results. It may be ob-

served from Figure 5.8 that the energy consumption of FENA-SCHED increases when

the number of faults in the system increases whereas SlowerP exhibits a constant energy

consumption. This is because the amount of backup slots reserved on the HP core by

FENA-SCHED increases with an increase in k. This reduces the idle times on HP

processing core and results in higher energy consumption. On the other hand, SlowerP

is oblivious to the number of faults to be tolerated and hence, it assigns backup slots

for all primary tasks on LP core to HP core, results in a constant energy consumption.

It may also be observed that even though the energy consumption of FENA-SCHED

increases with k, it always performs better than SlowerP. This is due to the fact that

FENA-SCHED reserves only a fixed amount of backup slots on HP core with respect

to the number of faults to be tolerated and allows BB overloading within these backup

slots. For example, when k = 2, FENA-SCHED and SlowerP yield an overall energy

consumption of 70mJ and 110.21mJ , respectively. When k increases to 5, the over-
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all energy consumption of FENA-SCHED becomes 87.98mJ , whereas that of SlowerP

remains same as 110.21mJ .
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Figure 5.8: Impact of number of faults

Experiment 3- Impact of deadline: Figure 5.9 shows the impact of deadline on a

heterogeneous system with fHPmax = 1.0, fLPmax = 0.8 and U = 0.6. The values of n and k

are set to 10 and 4, respectively. With reference to the energy consumption of SlowerP at

D = 200, we normalize the obtained results. It may be observed from Figure 5.9 that as

expected, the energy consumption of both FENA-SCHED and SlowerP increases when

deadline increases from 100ms to 200ms. This is because, for a given number of tasks

and total utilization, task execution time increases with an increase in the deadline,

leading to higher energy consumption. For example, when D = 100ms, FENA-SCHED

and SlowerP yield an overall energy consumption of 41.24mJ and 55.13mJ , respectively.

When deadline increases to 200ms, their overall energy consumptions become 82.41mJ

and 110.21mJ , respectively.

Experiment 4- Impact of the maximum speed of the LP core: In this experi-

ment, we have varied the maximum speed of the LP core (fLPmax) on a moderately loaded

heterogeneous system. Figure 5.10 depicts the effect of fLPmax on normalized energy con-

sumption. Here, fHPmax = 1.0, n = 10 and U = 0.6. The value of k is set to 4. With

reference to the energy consumption of SlowerP at fLPmax = 0.9, we normalize the ob-
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Figure 5.9: Impact of deadline

tained results. It may be observed from Figure 5.10 that for a fixed number of tasks and

total utilization, the energy consumption of both FENA-SCHED and SlowerP increases

when fLPmax increases. This is because the power consumption characteristics of the LP

core heavily depends on its operating frequency. Therefore, the power consumption of

LP core increases as fLPmax increases and results in higher energy consumption. For exam-

ple, when fLPmax = 0.6, FENA-SCHED and SlowerP yield an overall energy consumption

of 75.52mJ and 96.37mJ , respectively. When fLPmax increases to 0.9, their overall energy

consumptions become 85.86mJ and 117.13mJ , respectively.
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Figure 5.10: Impact of the maximum speed of the LP core
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Experiment 5- Impact of number of tasks: Here, the number of tasks (n) on a

moderately loaded heterogeneous system has been varied. Figure 5.11 depicts the effect

of n on normalized energy consumption. Here, fHPmax = 1.0, fLPmax = 0.8 and U = 0.6.

The value of k is set to 4. With reference to the energy consumption of SlowerP at

n = 30, we normalize the obtained results. It may be observed from Figure 5.11 that

the energy consumption of FENA-SCHED decreases when the number of tasks in the

system increases, whereas SlowerP exhibits a constant energy consumption. This is due

to the fact that for a fixed workload, the average individual task utilization decreases

with an increase in the number of tasks and hence, task execution time decreases. This

reduces the length of backup slots reserved on the HP core by FENA-SCHED (for

handling k faults), leads to lower energy consumption. On the other hand, SlowerP

is oblivious to the number of faults to be tolerated and hence, it assigns backup slots

for all primary tasks on the LP core, to HP core, and this results in constant energy

consumption. For example, when n = 10, FENA-SCHED and SlowerP yield an overall

energy consumption of 82.41mJ and 110.21mJ , respectively. When n increases to 30,

the overall energy consumption of FENA-SCHED becomes 66.12mJ , whereas that of

SlowerP remains same as 110.21mJ .
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Figure 5.11: Impact of number of tasks
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5.4 Case Study

In this section, we present a case study using MiBench benchmarks [50] to illustrate the

generic applicability of our proposed strategy in real world scenarios.

We selected a set of 6 tasks from MiBench benchmarks (Automotive and Indus-

trial Control category), and their execution times (taken from [39]) have been listed in

Table 5.2. Now, we consider a scenario where these six tasks T1, T2, T3, T4, T5, and T6

have to execute on a heterogeneous dual-core system consisting of one high-performance

HP core and one power-efficient LP core. This system is characterized by assuming,

fLPmax = 0.8, fHPmax = 1.0, PLP
idle = 0.02, PHP

idle = 0.05, and D = 2500ms. We assume that

the execution times of tasks listed in Table 5.2, represent their LP core execution times.

Table 5.3 shows the worst case execution times (in ms) of these six tasks on HP and

LP cores. For all tasks, tscalei = 2, aHPi = 1.0, αHPi = 0.1, aLPi = 0.3, and αLPi = 0.03.

Table 5.2: The execution time of the benchmark tasks [39]

Benchmark
Execution Time

(in ms)

Task Label

qsort 454 T1

basicmath 708 T2

bitcount 497 T3

susan

(smoothing)

259 T4

susan

(edges)

19 T5

susan

(corners)

11 T6

Now, consider a scenario in which these six tasks are executed on a homogeneous

dual-core (HP cores) platform with fmax = 1.0. Figure 5.12(a) depicts primary and
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Table 5.3: The execution times of the benchmark tasks on HP and LP cores

T1 T2 T3 T4 T5 T6

eHPi 182 283 199 104 8 5

eLPi 454 708 497 259 19 11

backup task schedules on this homogeneous system. Here, both the primary as well as

spare areHP cores. It may be observed from Figure 5.12(a) that each HP core has an idle

time of 1719 ms. Therefore, total energy consumption of the system during this idle time

becomes 1719× 2× 0.05 = 171.9mJ . Similarly, total energy consumption of the system

when cores become active is given by 781×2×(1.0×1.03 +0.1) = 1718.2mJ . Therefore,

this configuration yields an overall energy consumption of 171.9 + 1718.2 = 1890.1mJ .

In a heterogeneous dual-core system, we have a power-efficient LP core whose power

characteristics are much lower than that of the power-hungry HP core. Now, we consider

the SlowerP configuration, discussed in [100] which assigns primary copies of all tasks to

the LP core and their backup copies to the HP core. Figure 5.12(b) depicts the schedule

corresponding to this SlowerP configuration. It may be observed from Figure 5.12(b)

that the idle times of LP and HP cores are 552 ms and 1719 ms, respectively. Total

energy consumption of the LP core during both active and idle times become (1948 ×
(0.3× 0.83 + 0.03)) + (552× 0.02) = 368.692mJ . Similarly, total energy consumptions of

the HP core during both active and idle times are obtained as: (1719 × 0.05) + (781 ×
(1.0×1.03+0.1)) = 945.05mJ . Therefore, the overall energy consumption of this SlowerP

configuration becomes 368.692 + 945.05 = 1313.742mJ , showing an improvement of

30.49% over the homogeneous system. It may be noted that this SlowerP configuration

is oblivious to the number of faults to be tolerated and hence, it assigns backup slots

for all primaries in the generated schedule. On the contrary, our proposed strategy

FENA-SCHED reserves only a fixed number of backup slots based on the number of

faults to be tolerated (here, k = 2) and allows BB-overloading within these backup slots.

Figure 5.12(c) depicts the schedule corresponding to our proposed fault-tolerant strategy

FENA-SCHED. It may be observed from Figure 5.12(c) that FENA-SCHED increases
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Figure 5.12: Different configuration scenarios

the total idle times in the HP core using BB-overloading. This reduces total energy

consumption of the HP core to (2018 × 0.05) + (482 × (1.0 × 1.03 + 0.1)) = 631.1mJ .

Therefore, FENA-SCHED yields an overall energy consumption of 368.692 + 631.1 =

999.792mJ and produces an improvement of 23.89% over the SlowerP configuration

and 47.1% over the homogeneous system.

5.5 Summary

This chapter presents a standby-sparing based fault-tolerant energy-aware scheduling

strategy, named FENA-SCHED, for heterogeneous systems. For a DPM-enabled system,

we found that designating power-efficient (modest performance) core as primary and

power-hungry (high-performance) core as spare yields better energy savings as compared
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to its counterpart. In order to minimize overall energy consumption and to tolerate a

given number of faults, FENA-SCHED reserves only a fixed number of backup slots

on the high-performance core and takes the advantage of backup-backup overloading.

Experimental results reveal that FENA-SCHED performs appreciably over an extensive

set of system scenarios pointing to the practical effectiveness of the scheme and is able

to significantly improve energy savings of the system, compared to the state-of-the-art

work. In the next chapter, we present a formal fault detection and isolation (that is,

fault diagnosis) framework for the design of safety-critical systems.
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Chapter 6
A Formal Design Strategy for Fault
Diagnosis in Safety-critical Systems

In the previous chapters, we have assumed that faults are always detectable, and have

aimed towards the design of efficient fault-tolerant procedures that provide functional

correctness in the presence of faults. However, enforcement of such fault tolerance can

only be achieved through the incorporation of safe design methodologies which enable

efficient active monitoring and detection of unobservable faults in the system. Therefore,

it is desirable to incorporate efficient fault diagnosis (detection and isolation) strategies

in the construction of safety-critical systems.

Several approaches towards fault diagnosis have been reported in the literature.

These approaches are typically categorized based on parameters such as the degree of

automation involved in diagnosis and whether the detection methodology employs ab-

straction models of the system, or are model-free. Semi-automated fault diagnosis, used

in certain large and complex systems, necessitates the involvement of a human operator

for effective fault detection [74, 98]. On the other hand, automated diagnosis is free

of human intervention [104, 115]. For large and complex systems, it is also sometimes

difficult to derive abstraction models which aid the process of effective diagnosis. For

these systems, model-free fault detection techniques like spectrum analysis [78], limit

checking [54], expert systems [73], are used. However, it has now been widely accepted

that model-based representations are more suited towards all mechanisms related to

automated reasoning, ranging from fault diagnosability to stability analysis in complex
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systems. Examples of commonly used model-based techniques are fault-tree analysis [48],

analytical redundancy (ARR) [43], Hybrid System (HS) [22], Principal Component Ap-

proach (PCA) [38], Discrete Event System (DES) models [58, 81, 104, 110], etc. DES is

an important model-based technique that is often used for automated failure diagnosis

in a wide range of systems primarily because of its systematic modeling approach and

the simplicity of its associated algorithms [103, 104, 115]. DES allows a structured, hi-

erarchical modeling procedure to generate composite models of complex systems from

individual component models and then allows the incorporation of diagnostics over these

composite models. Through this approach, DES methods are able to avoid the often

tedious and involved efforts that are required to construct detailed one-shot monolithic

models of the complex system to be diagnosed. Further, complex systems which even

include continuous dynamics, can also be viewed as DESs at a certain level of abstract

discretization. DES provides a fault detection mechanism known as Diagnoser which ac-

tively monitors behavior of the system and detects the occurrence of unexpected events

(faults) in an effective way. It may be noted from the literature that the complexity of

the diagnosis processes, that is, constructing a diagnoser and testing its diagnosability, is

exponential in the number of system states [28,103,115]. This may lead to prohibitively

huge state-space requirements in the design of diagnosers for large and complex systems.

As a spin-off from our efforts related to energy-aware and fault-tolerant scheduling,

this chapter discusses the development of an efficient, low-overhead, DES-based fault

diagnosis design strategy for safety-critical systems. The proposed formally constructed

fault detection and isolation mechanism actively monitors the system and detects the

presence of unobservable faults in the system. An important emphasis of the work in

this chapter is the design of a modular light weight fault diagnosis mechanism which

consumes lower state space compared to the state-of-the-art.

The chapter first describes the working of a generic DES-based fault diagnosis frame-

work using a practical Electronic Fuel Injection (EFI) system. Then, we present our

proposed light weight fault diagnosis mechanism. Finally, the chapter concludes by pre-

senting important experimental results used to evaluate the performance of the proposed
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fault diagnosis design strategy.

6.1 DES Modeling and Fault Diagnosis of an Elec-
tronic Fuel Injection System

In this section, we illustrate the state-based DES framework presented in Chapter 2.4,

by employing it to model a practical Electronic Fuel Injection (EFI) system [44]. EFI

is an electro-mechanical control system in modern automotive vehicles, which monitors

and controls the operation of an engine by supplying a designated amount of air-fuel

mixture combined in a precise ratio, into the engine cylinders. Figure 6.1 depicts the

schematic diagram of an EFI system.

Intake Manifold Injector Fuel Rail Fuel Filter

ECUEngine

Ignition signal

Engine RPM

Manifold pressure

Fuel supplyFuelInjection

Injection volume
control

Fuel pressure
control

Operational
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Fuel Tank

Fuel Pump
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Fuel supply

Fuel Flow Subsystem

Air-Fuel Ratio Control Subsystem
Valve control
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Figure 6.1: The electronic fuel injection system.

6.1.1 Functioning of the EFI System

Air enters into the intake manifold through the air cleaner, throttle body and air intake

chamber of the ‘Air Flow Subsystem’. The amount of air entering into the engine can

be controlled by adjusting the position of the throttle valve present in the throttle body.

This varying air intake volume can be measured by monitoring the pressure in the intake

manifold. Fuel is pumped from the tank to the injector through the fuel filter and rail
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by an electric fuel pump which is controlled by a fuel pump relay (see the block named

‘Fuel Flow Subsystem’ shown in Figure 6.1). The pressure regulator located at the fuel

rail maintains a constant fuel pressure across the fuel injector. The injector injects the

fuel into the intake manifold where it is mixed with air and the resulting mixture flows

into the engine cylinders for burning. The Electronic Control Unit (ECU) is responsible

for monitoring and controlling different engine functions by taking as input, information

from various sensors located at different parts of the engine. ECU determines the right

ratio for the air-fuel mixture based on the engine’s RPM and the volume of air in the

intake manifold. It then signals the injector to deliver the correct fuel quantity. The

block named ‘Air-Fuel Ratio Control Subsystem’ shown in Figure 6.1 depicts this control

behavior of the ECU.

6.1.2 DES Model of the EFI System

The DES model of the EFI system is defined as G = 〈X,S,=, X0〉. Each state x ∈ X
in the EFI system model is distinguished by an enumeration of the set of state variables

S. There exist two pressure sensors and one exhaust oxygen sensor in the EFI system.

The control commands issued by the ECU and outputs of the sensors are considered as

the state variables. Table 6.1 summarizes the state variables and their meaning. The

EFI system represented by model G is shown in Figure 6.2. In order to model the faulty

behaviors in G, we assume a ‘Stuck Closed’ failure of the throttle valve in the Air Flow

Subsystem (fault type F1) and a ‘Pump On’ failure of the fuel pump in the Fuel Flow

Subsystem (fault type F2). The control subsystem is assumed to be fault-free in our

case.

The model G has a set of states X = {x1, x2, ..., x12}, and a set of transitions

= = {τ1, τ2, ..., τ12, τF1 , τF2}. The occurrence of the fault types F1 and F2 in the sys-

tem model G are represented through unmeasurable transitions τF1 and τF2 , respec-

tively. All states reachable through the transition τFi
are faulty (of type Fi) and labeled

with Fi, i.e., xd(C) = {Fi},1 where i ∈ {1, 2}. Corresponding to the nominal states,

xd(C) = {N}. An enumeration of the variables corresponding to each state in G is

1d denotes the state number.
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Table 6.1: State variables and their meaning.

State variable Meaning

SV Status of the throttle valve (Open (1)/Closed (0))

SP Status of the fuel pump (ON (1)/OFF (0))

SOS
Readings of the oxygen sensor

(Presence (O)/Absence of Oxygen (NO))

SV S
Readings of the air-pressure sensor (PS1) located in the

intake manifold (Pressure (P1)/No Pressure (NP1))

SPS
Readings of the fuel-pressure sensor (PS2) located in the

fuel rail (Pressure (P2) /No Pressure (NP2))

C Unmeasurable status variable associated with a state
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Figure 6.2: The model of the EFI system: G.

presented in Table 6.2. It may be noted that, all state variables except C are mea-

surable, that is, Sm = {SV , SP , SOS, SV S, SPS} and Su = {C}. We have modeled the
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‘Stuck Closed’ fault only from initial state x1 and ‘Pump On’ fault only from state x5

because the corresponding fault causing transitions become unmeasurable from these

states. The fault causing transitions from other states are measurable resulting in triv-

ial fault diagnosability and hence, we have not considered them. The behavior of G

Table 6.2: State variables of the model G.

State State variables State State variables

x1 SV = 0, SP = 0, NO,NP1, NP2 x6 SV = 1, SP = 1, NO,NP1, P2

x3 SV = 1, SP = 0, NO, P1, NP2 x8 SV = 1, SP = 0, NO,NP1, NP2

x5 SV = 1, SP = 1, O, P1, P2 x9 SV = 1, SP = 1, O, P1, P2

x7 SV = 1, SP = 0, NO, P1, NP2 x10 SV = 1, SP = 0, O, P1, P2

x2 SV = 0, SP = 0, NO,NP1, NP2 x11 SV = 0, SP = 0, NO,NP1, P2

x4 SV = 1, SP = 0, NO,NP1, NP2 x12 SV = 1, SP = 0, O, P1, P2

(shown in Figure 6.2) is explained as follows:

• The nominal behavior of G is represented through the set of states {x1, x3, x5, x7}
and transitions τ1, τ2, τ3, τ4. The initial state X0 = {x1} defined by SV = 0, SP =

0, SOS = NO,SV S = NP1, SPS = NP2, denotes the ‘Closed’ status of the throttle

valve and ‘OFF’ status of the fuel pump. The pressure sensors PS1 and PS2 do

not detect air or fuel flows in the system at this state and hence, SV S = NP1

and SPS = NP2. When the ECU issues the command to open the throttle valve

(SV = 1), G moves from state x1 to state x3 through the transition τ1. Here, the

sensor reading SV S = P1 shows the flow of air in the system due to the opening of

the valve. G moves to state x5 from state x3 through the transition τ2 when the

ECU issues the command to start the fuel pump (SP = 1). State x5 with its state

variables SV = 1, SP = 1, SOS = O, SV S = P1, SPS = P2 represents the functioning

of the engine due to the flow of air and fuel in the system. When the ECU issues

the command to stop the fuel pump (SP = 0), G moves from state x5 to state

x7 through the transition τ3. Here, the sensor PS2 gives the reading SPS = NP2
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which shows no fuel flow in the system. G moves back to its initial state x1 through

the transition τ4 when the ‘Closed’ command is issued to the throttle valve from

the ECU (SV = 0).

• Due to the occurrence of the fault F1, G moves from nominal to its faulty behavior

represented through the set of states {x2, x4, x6, x8} and the set of transitions

{τ5, τ6, τ7, τ8}. G moves from the nominal state x1 to the faulty state x2 through

the unmeasurable transition τF1 . All the states after τF1 have the label F1, that is,

xd(C) = {F1}, where d ∈ {2, 4, 6, 8}. All state variables in x2 barring C assume

the same set of values as that of x1 and hence, these two states are considered

as measurement equivalent (represented as x1Ex2; see Definition 2.4.1). From

x2, G moves to faulty state x4 on transition τ5 representing the situation when

the ECU has issued the command to open the valve (SV = 1) but sensor PS1

does not detect any air pressure (SV S = NP1). G moves from x4 to x6 on τ6

representing the situation when there is fuel flow (SP = 1, SPS = P2) but no air

flow (SV S = NP1) even though SV = 1. Subsequently, when the ECU issues the

command to stop the fuel pump, G moves from x6 to faulty state x8 on transition

τ7. At x8, SV = 1, SP = 0, SOS = NO,SV S = NP1, SPS = NP2. G moves back to

state x2 through the transition τ8 when the ECU issues the command to close the

valve.

• Similarly, as a result of the fault F2, G moves from nominal to its faulty behavior

represented by the states x9, x10, x11, x12 and the transitions τ9, τ10, τ11, τ12. G

moves from the nominal state x5 to its measurement equivalent faulty state x9

(x5Ex9) through the unmeasurable transition τF2 . All the states after τF2 have the

label F2, that is, xd(C) = {F2}, where d ∈ {9, 10, 11, 12}. From x9, G moves to

faulty state x10 on transition τ9 representing the situation when there is both air

and fuel flow in the system (SV S = P1, SPS = P2) even though the desired status

of the pump is ‘OFF’ (SP = 0). G moves from x10 to x11 on τ10 to model the

situation when fuel pressure is detected (SPS = P2) even though both air and fuel

flow are desired to be stopped (SV = 0, SP = 0). Subsequently, when the ECU

145



6. A FORMAL DESIGN STRATEGY FOR FAULT DIAGNOSIS IN
SAFETY-CRITICAL SYSTEMS

issues the command to open the valve, G moves from x11 to faulty state x12 on

transition τ11. G moves back to state x9 through the transition τ12 when the ECU

issues the command to start the pump.

6.1.3 Fault Diagnosis of the EFI System

In this subsection, we briefly illustrate the diagnosis of the EFI system modeled as G

shown in Figure 6.2. According to the diagnosis theory discussed in Section 2.4, a

diagnoser Gdiag (say, global diagnoser) is constructed from G which detects the presence

of a fault of type Fi, (either F1 or F2) in the system. Figure 6.3 depicts the global

diagnoser Gdiag for the the EFI system G. The construction of Gdiag is explained (see

Section 2.4.3 for detailed steps) as follows.
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Figure 6.3: The global diagnoser Gdiag for the DES model G

The initial D-state of the diagnoser Z0 is obtained as Z0 = U∗(X0) = {x1, x2},
where X0 = {x1}, the set of initial states of G and U∗(X0) denotes the unmeasurable

reach of X0. It may be noted that Z0 is F1-uncertain as X1(C) = N while X2(C) =
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F1. With =mz0 = {τ1, τ5} being the set of measurable G-transitions from the states

xi ∈ Z0 the corresponding measurement equivalence classes of transitions become Az0 =

{{τ1}, {τ5}}. While {τ1} is designated as D-transition a0, {τ5} becomes a4. Now, the

successor state Z1 through transition a0 is obtained as Z1 = U∗(Z+
0a0

) = {x3}, where,

Z+
0a0

= {final({τ1)}} = {x3}. Similarly Z4, the successor state through transition a4

is obtained as Z4 = U∗(Z+
0a4

) = {x4}. In a similar way, the whole diagnoser Gdiag

is constructed. Therefore, Gdiag has a set of states Z = {Z0, Z1, ..., Z11} and a set of

transitions A = {a0, a1, ..., a13}.

It can be observed that Gdiag shown in Figure 6.3 contains three cycles, the first one

being a cycle of F1-certain D-states, the second being a cycle of F2-certain D-states,

while the third is a cycle over the normal and Fi-uncertain D-states Z0, Z1, Z2 and

Z3. So, Gdiag does not contain any cycle over Fi-uncertain states only, where i ∈ {1, 2}
and therefore, there is no Fi-indeterminate cycle in the diagnoser Gdiag (see Section 2.4-

Definition 2.4.12). Hence, the EFI system modeled as G is diagnosable with respect to

the fault type Fi where i ∈ {1, 2}. The diagnosis of the EFI system by the diagnoser

Gdiag is described as follows.

Gdiag monitors the behavior of the EFI system by measuring the values of the state

variables. The state change transition a4 from F1-uncertain D-state Z0 to F1-certain

D-state Z4 in Gdiag detects occurrence of the ‘Stuck Closed’ failure of the throttle valve

(fault type F1). This is accomplished by observing the measurement variations in the

state variables SV and SV S. Under normal operation, whenever the status of the throttle

valve is ‘Open’ (SV = 1) there should be a pressure in the intake manifold (SV S = P1).

However, for D-state Z4, SV = 1 but SV S = NP1, thus establishing the fault F1. Simi-

larly, the transition a9 from F2-uncertain D-state Z2 to F2-certain D-state Z8 identifies

the presence of the ‘Pump On’ failure of the fuel pump (fault type F2). This is ac-

complished by observing the measurement variations in the state variables SP and SPS

which should have the co-enumerations {SP = 1, SPS = P2} when operating normally.

However, for D-state Z8, SP = 0 but SPS = P2, which establishes the fault F2.
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Remark: Since all variables considered in the design of Gdiag are measurable, it has

full knowledge of the system at any point in time and this helps Gdiag to precisely

identify any fault. Let us consider a modified model G′ of the EFI system whose state

variable measurements are listed in Table 6.3. Here, Sm = {SV , SP , SPS} and Su =

Table 6.3: State variables of the model G′.

State State variables State State variables

x1 SV = 0, SP = 0, NP2 x6 SV = 1, SP = 1, P2

x3 SV = 1, SP = 0, NP2 x8 SV = 1, SP = 0, NP2

x5 SV = 1, SP = 1, P2 x9 SV = 1, SP = 1, P2

x7 SV = 1, SP = 0, NP2 x10 SV = 1, SP = 0, P2

x2 SV = 0, SP = 0, NP2 x11 SV = 0, SP = 0, P2

x4 SV = 1, SP = 0, NP2 x12 SV = 1, SP = 0, P2

{SV S, SOS, C}. The system model G′ and its corresponding diagnoser G′diag are shown

in Figure 6.4. It can be noticed that G′diag contains an F1-indeterminate cycle formed

by F1-uncertain D-states Z0, Z1, Z2 and Z3. Therefore, G′ is F2-diagnosable, but not

F1-diagnosable. This shows that measurement limitation on a subset of state variables

compromises diagnosability of the system. �

Global diagnosers typically consume spatially huge state spaces, their sizes being very

sensitive to the number of model states. State space of the model in turn is exponential in

the number of state variables. For n state variables, the number of model states is upper

bounded by O(2n). The number of diagnoser states in turn can possibly be exponential

with respect to the number of model states, thus making the state space complexity of

such monolithic diagnosers to be O(22n) in the number of state variables. From this

observation, it can be concluded that a reduction in the number of measurable state

variables may possibly lead to drastic reduction in the state space involved in diagnoser

synthesis.

Typically for a practical system, the number of state variables ranges from 4 to 10 [28].
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Figure 6.4: DES model G′ and its global diagnoser G′diag.

Let us consider a system modeled with five state variables whose corresponding diagnoser

has a state space upper bounded by O(232) (O(225)). If we are able to measurement limit

even a single variable (say), the state space complexity of the diagnoser constructed from

the resulting abstracted model reduces to O(216) (O(224)). Therefore, measurement

limitation of state variables in a system can potentially provide significant reductions

in state space complexity of the model G as well as the diagnoser Gdiag. This essential

insight was employed by Zad et al. [115] where they applied measurement limitation

on redundant state variables to achieve significant state space reductions involved in

diagnoser synthesis with respect to conventional approaches. It may be noted that

further measurement limitation beyond that proposed by Zad et al. cannot be achieved

without compromising diagnosability (at least partially) of the system. However through

a deeper look, we realized that full diagnosis with significantly lower overall state spaces

may be obtained by deploying multiple intelligently constructed partially compromised

diagnosers in parallel. For example, let us consider a system constituted of five variables

S1, ..., S5 of which one variable (say, S5) is redundant, and thus, its limitation do not
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affect diagnosability of the system. So, Zad’s approach would reduce the required state

space from O(232) to O(216). Further, let us assume that the system may be affected

by two fault types F1 and F2. Also, measurement limiting S3 and S4 compromises the

diagnosability of F1 and F2, respectively. Thus, measurement limiting S3 and S5 (S4

and S5) will lead to the generation of a diagnoser say, Gdiag1 (Gdiag2), which is F2-

diagnosable (F1-diagnosable) only and consumes state space O(28) (O(223)). Further,

it may be observed that the diagnosability of all faults is achieved by deploying Gdiag1

and Gdiag2 in parallel, resulting in a combined state space of 2 · O(28) = O(29). Thus,

by utilizing the additive nature of the rise in the state space complexity when multiple

diagnosers are deployed together, it is possible to achieve complete diagnosability with

far lower state space complexity compared to Zad’s method. This insight has been the

fundamental motivation towards the design approach MLAD, which is proposed in this

work.

6.2 Proposed Fault Diagnosis Scheme

This section discusses our proposed fault diagnosis approach in detail.

6.2.1 Measurement Limitation based Abstract DES Diagnosis
(MLAD)

In this section, we present a procedure to construct a set of partially compromised

behaviorally abstracted diagnosers whose additive combination ensures diagnosability

of all faults. Before proceeding further, we provide the following few definitions.

Definition 6.2.1 (Model Abstraction). Model abstraction is defined as the mech-

anism for generating a reduced/abstracted model HG from a given model G by forcefully

limiting the measurement of a subset of measurable state variables SC = {Sj, Sj+1, ..., Sl},
where SC ⊆ Sm of G. So, the set of measurable and unmeasurable state variables in

HG becomes HSm = Sm \ SC and HSu = Su ∪ SC , respectively.

Model abstraction may or may not lead to compromised fault diagnosis. This brings

us to the next important definition.
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Definition 6.2.2 (FC-Model Abstraction). Given a set of k fault types, FC-Model

Abstraction is defined as the mechanism for generating a reduced model HGj from

a given model G, which carefully chooses a designated subset of variables SC whose

limitation can possibly lead to compromised diagnosability of only a stipulated subset

of (say k′) faults while not affecting the diagnosability of the remaining (k − k′) faults.

It means that, a FC-model abstraction leads to the compartmentalization of faults in

the system and results in the non-diagnosability of a subset of faults FC = {FC1 , ..., FCk′
}

in the generated reduced model HGj.

Due to the measurement limitation of SC ⊆ Sm in G, its set of measurable and un-

measurable state variables are updated as Smc = Sm\SC and Suc = Su∪SC , respectively.

In this situation, many states in G may become measurement equivalent which leads

to the existence of a new set of unmeasurable transitions (say, =C) in G. Therefore,

the set of measurable transitions in G after limiting the measurement of SC becomes

=mc = =m \ =C .

Hence, a FC-model abstraction can be viewed in terms of a projection operation

P : =∗ → =∗mc, referred to as controlled projection, defined over two transition sets =
and =mc, where = denotes the transition set of original model G and =mc denotes the

set of measurable transitions after the measurement limitation of SC .

Let P1, ..., PL denote the controlled projection operations, denoted as Pj : =∗ → =∗mcj ,
where 1 ≤ j ≤ L which possibly lead to L controlled measurement limitations and each

such projection operation Pj results in a FC-model abstracted subsystem model HGj.

Definition 6.2.3. Fi-compartmentalized Diagnosability: A DES model G is said

to be Fi-compartmentalized diagnosable with respect to a set of projection operations

P1, ..., PL for fault Fi, if the following holds:

(∃n ∈ N)[∀q ∈ Ψ(XFi
)](∀r ∈ Lf (G)/q)[|r| ≥ n⇒ D] (6.1)

where the condition D is (∀u ∈ P−1
1 [P1(qr)], final(u) ∈ XFi

) ∨ ... ∨ (∀u ∈ P−1
L [PL(qr)],

f inal(u) ∈ XFi
).

Informally, Definition 6.2.3 means the following: let q be any finite prefix of a trace of

151



6. A FORMAL DESIGN STRATEGY FOR FAULT DIAGNOSIS IN
SAFETY-CRITICAL SYSTEMS

G that ends in an Fi-state and let r be any sufficiently long continuation of q. Condition

D then requires that every sequence of transitions, measurement equivalent with qr and

belonging to P−1
j [Pj(qr)], where ∃j ∈ {1, ..., L}, shall end into an Fi-state. This implies

that, along every continuation r of q, there exists at least one FC-model abstracted

subsystem HGj which can detect the occurrence of fault Fi within a finite delay, more

specifically in at most n transitions after q.

Definition 6.2.4 (REACH(xi)). REACH(xi) is defined as the set of all states reach-

able from state xi in G including xi. So, REACH(xi) = {xi} ∪ {xj|∃τij = 〈xi, xj〉 :

xi, xj ∈ X}.

The model abstraction mechanism fundamentally involves the following steps: i) Par-

titioning G into subcomponents based on nominal and faulty behaviors, ii) Determining

the connected components in each such subcomponent, iii) Reducing each connected

component obtained in the previous step, by merging states which have become mea-

surement equivalent due to forceful limitation of the set of variables SC in G (refer

Definition 6.2.1), and adjusting corresponding transitions.

Now, we formally present the methodology to construct an abstracted model HG =

〈HX,HS,H=, HX0〉 from G = 〈X,S,=, X0〉, in Algorithm 10. Line 1 of the algorithm

initializes the tuple variables HX,H= and HX0 of HG. Line 2 determines the set of

measurable and unmeasurable state variables in HG and line 3 removes fault causing

transitions τFi
in G, from H=. It may be noted that the removal of fault causing transi-

tions of a particular type τFi
, transforms HG into a forest of connected components. One

of these components represents the nominal and faulty behaviors, excluding those be-

haviours induced by Fi. The remaining connected components represent distinct faulty

behaviors in different subsystems induced by failure type Fi. Let HXh denote either, the

set of states in the nominal behavior or the states in the forest of faulty behaviors corre-

sponding to a distinct fault type. Line 4 partitions HX into disjoint subsets such that

HX =
⋃

h=N,F1,...,Fp

HXh. The for loop in lines 5-27 merges mutually measurement equiv-

alent states in each subset HXh and constructs the reduced automata corresponding to

the behaviors involving states in HXh. Line 6 determines all the equivalence classes of
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ALGORITHM 10: Synthesis of an abstracted model, HG

Input: G = 〈X,S,=, X0〉, SC
Output: HG = 〈HX,HS,H=, HX0〉

1 HX ← X, H= ← =, HX0 ← φ;
2 HSm = Sm \ SC , HSu = Su ∪ SC , HS = HSm ∪HSu;
3 H= = H= \ (τFi

= 〈u, v〉), where u ∈ XN , v ∈ XFi
, XN , XFi

∈ X and
i ∈ {1, 2, ..., k}, k denotes the number of failure types in G;

4 Partition state set HX into disjoint subsets such that
HX = HXN ∪HXF1 ∪ ... ∪HXFk

;
5 for each HXh ⊆ HX, where h = N,F1, ..., Fk do
6 Determine the equivalence classes (HXhj , 1 ≤ j ≤ l) of measurement

equivalent states in HXh such that HXh = HXh1 ∪HXh2 ∪ ... ∪HXhl ;
7 for each HXhj ⊆ HXh where j = 1, 2, ..., l do
8 while HXhj 6= φ do
9 Select any state x ∈ HXhj ;

10 XR = REACH(x) ;
11 Merge states in XR to obtain composite state xr;
12 HXhj = HXhj \XR;
13 HXh = HXh ∪ xr \XR;
14 H= = H= \ {τij|∃τij = 〈xi, xj〉 : xi, xj ∈ XR};
15 for each x′j ∈ HXh \ xr do
16 =a = {τij|∃τij = 〈xi, x′j〉 : xi ∈ XR};
17 =b = {τji|∃τji = 〈x′j, xi〉 : xi ∈ XR};
18 if =a 6= φ then
19 H= = H= \ =a ∪ 〈xr, x′j〉;
20 if =b 6= φ then
21 H= = H= \ =b ∪ 〈x′j, xr〉;

22 Add faulty transitions τFi
= 〈x, y〉, where x ∈ HXN and y ∈ HXFi

such that x is
generated by collapsing u with zero or more other state(s) of G and y is generated
by collapsing v with zero or more other state(s) of G and ∃τFi

= 〈u, v〉 in G:
H= = H= ∪ τFi

;
23 HX0 = {x|x ∈ HXN and x is generated by collapsing a G-state x0 ∈ X0};
24 HX = HXN ∪HXF1 ∪ ... ∪HXFk

;

measurement equivalent states in HXh. Corresponding to each equivalence class HXhj

considered within the next for loop (lines 7-26), the while loop in lines 8-25 merges each
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mutually reachable set of states HXhj and updates corresponding transitions to realize a

reduction step. Merging of a particular set of mutually reachable states occurs in lines 9

to 11. Lines 12 and 13 update HXhj and HXh, while lines 14-24 update the transitions

in H=, to account for the merge of states in XR. Line 28 of the algorithm adds fault

causing transitions τFi
back into HG. Line 29 determines the initial state HX0 and

finally, line 30 updates the final set of states HX in HG.

Now, we illustrate the construction of the model abstractions for the EFI system

discussed in Section 6.1, through the steps of Algorithm 10. We discuss the gener-

ation of two reduced models HG1 and HG2 obtained by measurement limiting vari-

able sets {SV , SV S, SOS} and {SP , SPS, SOS} (refer Table 6.1 for a description of the

variables) respectively, in model G (see Figure 6.2). As a result of this measure-

ment limitation, HG1 becomes F2-compartmentalized diagnosable (Pump On failure

of the fuel pump) but compromises F1 (Stuck Closed failure of throttle valve), whereas

HG2 becomes F1-compartmentalized diagnosable only. The procedure for constructing

HG1 = 〈HX1, HS1, H=1, HX10〉 from G is described as follows:

The tuple attributes HX1, H=1 and HX10 of HG1 are initialized as in Algorithm 10.

HS1 is determined as HS1 = HSm1 ∪ HSu1, where HSm1 = {SP , SPS} and HSu1 =

{SV , SV S, SOS, C}. Now, we remove fault causing transitions τF1 and τF2 from HG and

partition HX1 into HX1 = HXN ∪HXF1∪HXF2 . By only measuring the values of vari-

ables SP and SPS, two equivalence classes of measurement equivalent states {x1, x3, x7}
and {x5} are obtained in HXN . Similarly, HXF1 and HXF1 gets divided into equiva-

lence classes {{x2, x4, x8}, {x6}} and {{x10, x11, x12}, {x9}}, respectively. Application of

the reach operation (REACH()) on the equivalence classes {x1, x3, x7}, {x2, x4, x8} and

{x10, x11, x12} produces corresponding composite states x1x3x7, x2x4x8 and x10x11x12,

because all states within a given equivalence class are mutually reachable from each

other. After this, the transitions to and from these composite states to the other states

are updated to obtain the reduced nominal and faulty behaviors. The final reduced

model HG1 as shown in Figure 6.5(a) is derived by adding the fault causing transitions

τF1 and τF2 back into the model and assigning the initial state HX10 = {x1x3x7}.
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Figure 6.5: (a) & (b) The abstracted models HG1 and HG2, respectively of G.

Likewise, the reduced model HG2 shown in Figure 6.5(b) is obtained by only allowing

measurement of state variables SV and SV S. The model abstraction mechanism is similar

to the one described for HG1 above.

It may be noted that HG1 and HG2 are obtained through FC-model abstractions

where FC = {F1} for HG1 and FC = {F2} for HG2. While HG1 which compromises

the ‘Stuck Closed’ failure of the throttle valve is obtained by measurement limiting

variables related to Air Flow Subsystem, HG2 limits variables related to Fuel Flow

Subsystem and makes the ‘Pump On’ failure of the fuel pump non-diagnosable. Thus,

as an empirical inference, it may be concluded that measurement limitation of a set

of carefully chosen variables related to a particular subset of faulty behaviors FC leads

to FC-model abstractions producing reduced models that compromises FC . Conversely,

this highlights that the model abstraction mechanism discussed here is based on the
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compartmentalization of faults, rather than modularization based on functionality.

6.2.1.1 Fault Diagnosis under Behavioral Abstraction

In this subsection, we describe the fault diagnosis mechanism proposed in MLAD by

constructing two diagnosers Gdiag1 and Gdiag2 (see Figure 6.6) corresponding to the

abstracted models HG1and HG2 of the EFI system.
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Figure 6.6: The MLAD approach: (a) Gdiag1, (b) Gdiag2.

Gdiag1 shown in Figure 6.6(a) monitors the behavior of the EFI system by measuring

the state variables SP and SPS only. In a nominally functioning system or subsequent to

the occurrence of the ‘Stuck Closed’ failure of the throttle valve (fault type F1), Gdiag1

moves from D-state ZH0 to ZH1 (on transition τ2 under normal operation or τ6 after fault

F1) or vice versa (on τ3 under normal operation or τ7 subsequent to F1). Thus, transi-

tion pairs τ2, τ6 and also τ3, τ7 are measurement equivalent and represented through D-

transitions a0 and a1, respectively as shown in the figure. From the above statements, it

also follows that both ZH0 and ZH1 are F1-uncertain and so, the cycle involving these two

states with corresponding transitions a0, a1, becomes F1-uncertain. Validation with G

shows that this F1-uncertain cycle is actually F1-indeterminate (refer Definition 2.4.12).

This is because corresponding to this D-cycle, there exists two measurement equivalent
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cycles q and y in HG1, among which q (= 〈τ2, τ3〉) comprises only of normal G-states

and y (= 〈τ6, τ7〉) comprises of F1 G-states only (see Figure 6.5(a)). Therefore, the di-

agnoser Gdiag1 cannot detect fault type F1. Gdiag1 however, can precisely diagnose the

‘Pump On’ failure of the fuel pump by detecting fuel pressure in the fuel rail (SPS = P2)

even when the ECU instructs otherwise (by changing the value of SP from 1 to 0). In

this situation, Gdiag1 transits from D-state ZH1 to F2-certain state ZH2 on transition a2

and thereby, establishes F2. It may be noted that there are no F2-indeterminate cycles

in Gdiag1, and hence, the abstracted model HG1 is F2-compartmentalized diagnosable.

Similarly, Gdiag2 (see Figure 6.6(b)) derived from the abstracted model HG2 monitors

the behavior of the EFI system by measuring the state variables SV and SV S. Here, we

observe that contrary to HG1, HG2 is not F2-compartmentalized diagnosable due to

the presence of the F2-indeterminate cycle over F2-uncertain states ZH3 and ZH4 in

Gdiag2. However, fault type F1 is diagnosed by detecting the absence of air pressure in

the intake manifold (SV S = NP1) even when the throttle valve is opened (SV = 1).

In this situation, Gdiag2 moves to the F1-certain D-state ZH1 from D-states ZH0 or

ZH4, thus establishing F1. Further, it may be noted that Gdiag2 does not contain any

F1-indeterminate cycle in it, and hence HG2 is F1-compartmentalized diagnosable.

From the above discussion, we see that although either of Gdiag1 or Gdiag2 cannot

ensure the diagnosability of all faults in seclusion, this limitation can be eradicated

by concurrently deploying both diagnosers in parallel. The principal advantage of this

approach is the reduction in state space that is achieved with respect to the single

monolithic diagnoser that is obtained directly from the original model G. Figures 6.3

and 6.6 show that while the diagnoser Gdiag obtained from model G of the EFI system

contains 12 states, the combined state space ofGdiag1 andGdiag2 contains only 9 states. In

general, it may be concluded that as diagnoser sizes are doubly exponential with respect

to the number of state variables in the system, the diagnosis methodology based on, the

additive combination of partially compromised diagnosers presented here, is expected to

provide handsome reductions in state space for larger, more complex systems.

Example: We now discuss an example to show that, the state space of a modular
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diagnoser (synthesized using Debouk’s approach [36]) may become as big as, or even

larger than a monolithic diagnoser (built using Sampath’s approach [103]), in case, one or

more faults associated with a particular subcomponent of the system cannot be detected

by the local subsystem diagnoser. However, it may still be possible that such a system

can be compartmentalized based on faults, allowing the generation of diagnosers with far

lower state spaces when synthesized using MLAD. The example uses a slightly modified

model of the EFI system presented in Section 6.1. Specifically, we assume that: i) The

air-pressure sensor which measures the flow of air in the Air Flow Subsystem, is now

physically unavailable. ii) The system can suffer only one failure, “Stuck Closed” failure

of the throttle valve in the air flow subsystem (denoted as F1). All other components

are fault-free.

Let G1, G2 and G3 represent DES models corresponding to Air-Fuel Ratio Control

Subsystem, Air Flow Subsystem and Fuel Flow Subsystem, respectively (see Figure 6.7).

It may be seen from Figure 6.8(a) (depicting the local diagnoser Gdiag2, for subsys-
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Figure 6.7: Component models of the EFI modular system.

tem model G2) that Gdiag2 contains an F1-indeterminate cycle. So, fault F1 cannot

be detected by Gdiag2. In this situation, Debouk’s approach composes the subsystem

models G2 and G3 producing G23 = G2 ‖ G3 and builds diagnoser Gdiag23 as shown in

Figure 6.8(b). However as the figure reveals, Gdiag23 is also unable to detect the fault

F1 as it contains an F1-indeterminate cycle. Thus now, Debouk’s approach is forced

to build a diagnoser Gdiag (Figure 6.8(c)) corresponding to the overall system model
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Figure 6.8: Fault diagnosis of the EFI modular system.
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Table 6.4: A qualitative comparison among related works

Diagnosis

Framework

System

Structure

Modeling

Framework

Projection/

Measurement

Limitation

Diagnosis

Diagnoser

Design

Strategy

Sampath et al. [103] Monolithic Event-based Physical restriction Monolithic diagnoser Top-down

Zad et al. [115] Monolithic State-based
Limits redundant

variables

Monolithic diagnoser Top-down

Modular Approaches

(Debouk et al. [36])

Modular Event-based
Projections based on

local observations

local diagnosers Bottom-up

Our MLAD
Monolithic,

Modular

State-based

Controlled projections

w.r.t. fault

compartmentalization

local diagnosers Top-down

G (= G1 ‖ G23) and therefore, incurs the same state space complexity as Sampath’s

approach. It may be seen from the figure that Gdiag contains 8 states and is free from

F1-indeterminate cycles.

On the other hand, the diagnoser shown in Figure 6.8(d), build from a fault com-

partmentalization oriented reduced model using the MLAD approach, contains only 4

states, and therefore, is able to achieve significant state space reduction compared to

Debouk/Sampath’s approach. Here, the compartmentalization of fault F1 is done by

applying a projection on the composite model of the system in a controlled manner

which measures only the readings of the oxygen sensor and the fuel-pressure sensor. �

Since the composite DES model has both nominal and faulty behaviors, our approach

is naturally applicable to modular systems where faults are always contained in a subset

of components. Even if the overall system is non-modular or monolithic, we can do a

fault compartmentalization using FC-model abstraction. Therefore, our fault diagnosis

approach is applicable to both monolithic as well as modular systems. A detailed com-

parative study of our proposed scheme with the state-of-the-art is given in Table 6.4.
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6.3 Experimental Evaluation

In this section, we briefly discuss the experimental evaluation of our proposed MLAD

approach on different standard practical benchmark systems and show its effectiveness

over the conventional monolithic diagnosis mechanisms proposed by Sampath et al. [104]

and Zad et al. [115]. For this purpose, we have considered nominal and faulty behaviors

corresponding to two benchmark systems presented in [104]: i) the Air Handling Unit

(AHU) of a HVAC (Heating, Ventilation and Air Conditioning) system and ii) the Nitric

Acid Cooling (NAC) system.

6.3.1 System I

AHU is one of the principal components of a HVAC system. When there is a demand for

heating (termed as heating load), the essential job of an AHU under normal operation

is as follows: AHU accepts cold air at a given temperature, heats it to the stipulated

degree inside its heating coil and drives out appropriate amount of heated air through

a valve into a set of rooms, such that a desired comfort level is maintained. The degree

of heating within the heating coil is regulated by a controller which commands a pump

to drive in appropriate amounts of heated water or stream from a boiler, as required.

Similarly, the operation of the valve is also regulated by the controller. This nominal

system behavior gets affected due to the occurrence of the following failures: i) Valve

Stuck-Open (fault type F1): Valve remains ‘Open’ even when the controller signals it to

be closed, ii) Valve Stuck-Closed (fault type F2): Valve remains ‘Closed’ even when the

controller signals it to be opened, iii) Controller Failed-On (fault type F3): Controller

always assumes a positive load and instructs the system to run regardless of whether a

load is actually present, iv) Controller Failed-Off (fault type F4): Controller does not

detect the presence of load on the system and so, fails to issue appropriate control signals.

Simultaneous occurrence of more than one fault is not considered here. For the purpose

of diagnosability, we assume that the system is always in power-on state. Otherwise, it

is obvious that if the system is not activated, it is not possible to diagnose occurrences

of the above mentioned failures.
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Table 6.5 summarizes the diagnosability of the HVAC system discussed above. From

Table 6.5: The effectiveness of MLAD: HVAC System.

Diagnosability

Diagnoser F1 F2 F3 F4 Number of States Measurable Variables

Global Diagnoser Gdiag

(Sampath et al. [104])

X X X X 45 All (refer, Section IV-A in [104]).

Reduced Diagnoser Gdiag1

(Zad et al. [115])

X X X X 27
All except status of the fan,

pump and boiler.

Abstract Diagnoser Gdiag2 X X χ χ 9
Status of the valve and valve

flow sensor reading.

Abstract Diagnoser Gdiag3 χ χ X X 14 Status of the valve and the load

Table 6.5, it can be observed that the global diagnoser Gdiag corresponding to the HVAC

system model G (constructed based on Sampath et al. [104]) ensures the diagnosability

of all fault types. Gdiag contains 45 states. The global model G of the HVAC system

consists of 6 measurable state variables: the valve flow sensor readings (SFS), status of

valve (SV ), status of fan (SF ), status of pump (SP ), status of boiler (SB) and status of

load (SL). Therefore, the set of measurable state variables (say, Sm) in G is denoted as

Sm = {SFS, SV , SF , SP , SB, SL}. Each state variable except SL takes values from boolean

domain whereas SL takes values from domain = {0, 1, 2}. Table 6.6 depicts the global

model G of the HVAC system under consideration. The attributes of this state-transition

table are explained as follows: τ = 〈x, x+〉 denotes a transition from a state x to another

state x+. Sx and Sx+ denote the set of values corresponding to measurable state variables

in states x and x+, respectively. For example, the transition τ2 in G (see Table 6.6) is

defined from state 4 having S4 = {SFS = 0, SV = 0, SF = 1, SP = 0, SB = 0, SL = 0}
to another state 7 with S7 = {SFS = 0, SV = 0, SF = 1, SP = 0, SB = 0, SL =

2}. Out of these six state variables, SF , SP and SB are redundant with respect to

the diagnosability of faults F1, F2, F3 and F4. By limiting these redundant variables

following the mechanism by Zad et al. [115], we obtain the reduced diagnoser Gdiag1
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Table 6.6: State-Transition Table: Global Model G

x Sx τ x+ Sx+ x Sx τ x+ Sx+ x Sx τ x+ Sx+

1 0,0,0,0,0,0 τ1 4 0,0,1,0,0,0 4 0,0,1,0,0,0 τ2 7 0,0,1,0,0,2 7 0,0,1,0,0,2 τ4 10 0,1,1,0,0,2

τF1 2 0,0,0,0,0,0 τ3 28 0,0,1,0,0,1 τF1 8 0,0,1,0,0,2

τF2 3 0,0,0,0,0,0 τF1 5 0,0,1,0,0,0 τF2 9 0,0,1,0,0,2

τF3 31 0,0,0,0,0,0 τF2 6 0,0,1,0,0,0 16 1,1,1,1,1,2 τ7 19 1,1,1,1,1,1

τF4 79 0,0,0,0,0,0 13 1,1,1,1,0,2 τ6 16 1,1,1,1,1,2 τF1 17 1,1,1,1,1,2

10 0,1,1,0,0,2 τ5 13 1,1,1,1,0,2 τF1 14 1,1,1,1,0,2 τF2 92 1,1,1,1,1,2

τF1 11 0,1,1,0,0,2 τF2 91 1,1,1,1,0,2 25 0,0,1,0,1,1 τ10 28 0,0,1,0,0,1

τF2 12 0,1,1,0,0,2 22 0,0,1,1,1,1 τ9 25 0,0,1,0,1,1 τF1 26 0,0,1,0,1,1

19 1,1,1,1,1,1 τ8 22 0,0,1,1,1,1 τF1 94 0,0,1,1,1,1 τF2 27 0,0,1,0,1,1

τF1 20 1,1,1,1,1,1 τF2 24 0,0,1,1,1,1 11 0,1,1,0,0,2 τ16 14 1,1,1,1,0,2

τF2 93 1,1,1,1,1,1 2 0,0,0,0,0,0 τ12 5 0,0,1,0,0,0 14 1,1,1,1,0,2 τ17 17 1,1,1,1,1,2

28 0,0,1,0,0,1 τ11 7 0,0,1,0,0,2 5 0,0,1,0,0,0 τ13 8 0,0,1,0,0,2 17 1,1,1,1,1,2 τ18 20 1,1,1,1,1,1

τF1 29 0,0,1,0,0,1 τ14 29 0,0,1,0,0,1 20 1,1,1,1,1,1 τ19 23 1,0,1,1,1,1

τF2 30 0,0,1,0,0,1 8 0,0,1,0,0,2 τ15 11 0,1,1,0,0,2 23 1,0,1,1,1,1 τ20 26 0,0,1,0,1,1

26 0,0,1,0,1,1 τ21 29 0,0,1,0,0,1 29 0,0,1,0,0,1 τ22 8 0,0,1,0,0,2 3 0,0,0,0,0,0 τ23 6 0,0,1,0,0,0

6 0,0,1,0,0,0 τ24 9 0,0,1,0,0,2 9 0,0,1,0,0,2 τ26 12 0,1,1,0,0,2 12 0,1,1,0,0,2 τ27 15 0,1,1,1,0,2

τ25 30 0,0,1,0,0,1 15 0,1,1,1,0,2 τ28 18 0,1,1,1,1,2 18 0,1,1,1,1,2 τ29 21 0,1,1,1,1,1

21 0,1,1,1,1,1 τ30 24 0,0,1,1,1,1 24 0,0,1,1,1,1 τ31 27 0,0,1,0,1,1 27 0,0,1,0,1,1 τ32 30 0,0,1,0,0,1

30 0,0,1,0,0,1 τ33 9 0,0,1,0,0,2 31 0,0,0,0,0,0 τ34 34 0,0,1,0,0,0 34 0,0,1,0,0,0 τ35 37 0,0,1,0,0,2

37 0,0,1,0,0,2 τ37 40 0,1,1,0,0,2 49 0,0,1,0,0,1 τ38 52 0,1,1,0,0,1 τ36 49 0,0,1,0,0,1

40 0,1,1,0,0,2 τ39 43 1,1,1,1,0,2 52 0,1,1,0,0,1 τ40 55 1,1,1,1,0,1 46 1,1,1,1,1,2 τ43 58 1,1,1,1,1,1

43 1,1,1,1,0,2 τ41 46 1,1,1,1,1,2 55 1,1,1,1,0,1 τ42 67 1,1,1,1,1,1 67 1,1,1,1,1,1 τ44 70 1,1,1,1,1,2

58 1,1,1,1,1,1 τ45 61 1,1,1,1,1,1 70 1,1,1,1,1,2 τ46 73 1,1,1,1,1,2 61 1,1,1,1,1,1 τ47 64 1,1,1,1,1,1

73 1,1,1,1,1,2 τ48 76 1,1,1,1,1,2 64 1,1,1,1,1,1 τ49 67 1,1,1,1,1,1 76 1,1,1,1,1,2 τ50 46 1,1,1,1,1,2

79 0,0,0,0,0,0 τ51 82 0,0,1,0,0,0 82 0,0,1,0,0,0 τ52 85 0,0,1,0,0,2 85 0,0,1,0,0,2 τ54 88 0,0,1,0,0,1

τ53 88 0,0,1,0,0,1 88 0,0,1,0,0,1 τ55 85 0,0,1,0,0,2
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having 27 states (constructed from the reduced model G1) and with the same power

as Gdiag in terms of diagnosability. Table 6.7 depicts the reduced model G1. Since

Table 6.7: State-Transition Table: Reduced Model G1

x Sx τ x+ Sx+ x Sx τ x+ Sx+ x Sx τ x+ Sx+

x1 0,0,-,-,-,0 τ1 x2 0,0,-,-,-,2 x2 0,0,-,-,-,2 τ3 x4 0,1,-,-,-,2 x3 0,0,-,-,-,1 τ7 x2 0,0,-,-,-,2

τ2 x3 0,0,-,-,-,1 τF1 x8 0,0,-,-,-,2 τF1 x9 0,0,-,-,-,1

τF1 x7 0,0,-,-,-,0 τF2 x15 0,0,-,-,-,2 τF2 x16 0,0,-,-,-,1

τF2 x14 0,0,-,-,-,0 x4 0,1,-,-,-,2 τ4 x5 1,1,-,-,-,2 x5 1,1,-,-,-,2 τ5 x6 1,1,-,-,-,1

τF3 x19 0,0,-,-,-,0 τF1 x10 0,1,-,-,-,2 τF1 x12 1,1,-,-,-,2

τF4 x26 0,0,-,-,-,0 τF2 x17 0,1,-,-,-,2 τF2 x29 1,1,-,-,-,2

x6 1,1,-,-,-,1 τ6 x3 0,0,-,-,-,1 x7 0,0,-,-,-,0 τ8 x8 0,0,-,-,-,2 x10 0,1,-,-,-,2 τ11 x12 1,1,-,-,-,2

τF1 x13 1,1,-,-,-,1 τ9 x9 0,0,-,-,-,1 x12 1,1,-,-,-,2 τ12 x13 1,1,-,-,-,1

τF2 x30 1,1,-,-,-,1 x8 0,0,-,-,-,2 τ10 x10 0,1,-,-,-,2 x13 1,1,-,-,-,1 τ13 x11 1,0,-,-,-,1

x11 1,0,-,-,-,1 τ14 x9 0,0,-,-,-,1 x14 0,0,-,-,-,0 τ16 x15 0,0,-,-,-,2 x15 0,0,-,-,-,2 τ18 x17 0,1,-,-,-,2

x9 0,0,-,-,-,1 τ15 x8 0,0,-,-,-,2 τ17 x16 0,0,-,-,-,1 x17 0,1,-,-,-,2 τ19 x18 0,1,-,-,-,1

τ34 x11 1,0,-,-,-,1 x16 0,0,-,-,-,1 τ21 x15 0,0,-,-,-,2 x18 0,1,-,-,-,1 τ20 x16 0,0,-,-,-,1

x19 0,0,-,-,-,0 τ22 x20 0,0,-,-,-,2 x20 0,0,-,-,-,2 τ24 x22 0,1,-,-,-,2 x21 0,0,-,-,-,1 τ25 x23 0,1,-,-,-,1

τ23 x21 0,0,-,-,-,1 x22 0,1,-,-,-,2 τ26 x24 1,1,-,-,-,2 x23 0,1,-,-,-,1 τ27 x25 1,1,-,-,-,1

x24 1,1,-,-,-,2 τ28 x25 1,1,-,-,-,1 x25 1,1,-,-,-,1 τ29 x24 1,1,-,-,-,2 x26 0,0,-,-,-,0 τ30 x27 0,0,-,-,-,2

x27 0,0,-,-,-,2 τ32 x28 0,0,-,-,-,1 x29 1,1,-,-,-,2 τ35 x17 0,1,-,-,-,2 τ31 x28 0,0,-,-,-,1

x28 0,0,-,-,-,1 τ33 x27 0,0,-,-,-,2 x30 1,1,-,-,-,1 τ36 x18 0,1,-,-,-,1

the set of measurable state variables in G1 becomes {SFS, SV , SL}, we represent the

symbol ‘-’ as the value of an unmeasurable state variable in Sx. Now, we apply our

proposed MLAD approach on the model G for the HVAC system under consideration to

obtain two partially compromised reduced diagnosers Gdiag2 and Gdiag3. These reduced

diagnosers are constructed from the abstract models HG1 (refer Table 6.8) and HG2

(refer Table 6.9), respectively. The sets of measurable state variables corresponding

to HG1 and HG2 become {SFS, SV } and {SV , SL}, respectively. Gdiag2 which consists
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Table 6.8: State-Transition Table: Abstract Model HG1

x Sx τ x+ Sx+ x Sx τ x+ Sx+ x Sx τ x+ Sx+

x1 0,0,-,-,-,- τ1 x2 0,1,-,-,-,- x2 0,1,-,-,-,- τ2 x3 1,1,-,-,-,- x3 1,1,-,-,-,- τ3 x1 0,0,-,-,-,-

τF1 x4 0,0,-,-,-,- τF1 x5 0,1,-,-,-,- τF1 x6 1,1,-,-,-,-

τF2 x8 0,0,-,-,-,- τF2 x9 0,1,-,-,-,- τF2 x15 1,1,-,-,-,-

τF3 x10 0,0,-,-,-,- x4 0,0,-,-,-,- τ4 x5 0,1,-,-,-,- x6 1,1,-,-,-,- τ6 x7 1,0,-,-,-,-

τF4 x13 0,0,-,-,-,- x5 0,1,-,-,-,- τ5 x6 1,1,-,-,-,- x7 1,0,-,-,-,- τ7 x4 0,0,-,-,-,-

x8 0,0,-,-,-,- τ9 x9 0,1,-,-,-,- x10 0,0,-,-,-,- τ12 x11 0,1,-,-,-,- x4 0,0,-,-,-,- τ8 x7 1,0,-,-,-,-

x9 0,1,-,-,-,- τ10 x8 0,0,-,-,-,- x11 0,1,-,-,-,- τ13 x12 1,1,-,-,-,- x15 1,1,-,-,-,- τ11 x9 0,1,-,-,-,-

Table 6.9: State-Transition Table: Abstract Model HG2

x Sx τ x+ Sx+ x Sx τ x+ Sx+ x Sx τ x+ Sx+

x1 -,0,-,-,-,0 τ1 x2 -,0,-,-,-,2 x2 -,0,-,-,-,2 τ3 x4 -,1,-,-,-,2 x3 -,0,-,-,-,1 τ6 x2 -,0,-,-,-,2

τ2 x3 -,0,-,-,-,1 τF1 x7 -,0,-,-,-,2 τF1 x8 -,0,-,-,-,1

τF1 x6 -,0,-,-,-,0 τF2 x12 -,0,-,-,-,2 τF2 x13 -,0,-,-,-,1

τF2 x11 -,0,-,-,-,0 x4 -,1,-,-,-,2 τ4 x5 -,1,-,-,-,1 x5 -,1,-,-,-,1 τ5 x3 -,0,-,-,-,1

τF3 x16 -,0,-,-,-,0 τF1 x9 -,1,-,-,-,2 τF1 x10 -,1,-,-,-,1

τF4 x21 -,0,-,-,-,0 τF2 x14 -,1,-,-,-,2 τF2 x15 -,1,-,-,-,1

x6 -,0,-,-,-,0 τ7 x7 -,0,-,-,-,2 x7 -,0,-,-,-,2 τ9 x9 -,1,-,-,-,2 x8 -,0,-,-,-,1 τ12 x7 -,0,-,-,-,2

τ8 x8 -,0,-,-,-,1 x9 -,1,-,-,-,2 τ10 x10 -,1,-,-,-,1 x10 -,1,-,-,-,1 τ11 x8 -,0,-,-,-,1

x11 -,0,-,-,-,0 τ13 x12 -,0,-,-,-,2 x12 -,0,-,-,-,2 τ15 x14 -,1,-,-,-,2 x15 -,1,-,-,-,1 τ17 x13 -,0,-,-,-,1

τ14 x13 -,0,-,-,-,1 x14 -,1,-,-,-,2 τ16 x15 -,1,-,-,-,1 x13 -,0,-,-,-,1 τ18 x12 -,0,-,-,-,2

x16 -,0,-,-,-,0 τ19 x17 -,0,-,-,-,2 x17 -,0,-,-,-,2 τ21 x19 -,1,-,-,-,2 x18 -,0,-,-,-,1 τ22 x20 -,1,-,-,-,1

τ20 x18 -,0,-,-,-,1 x19 -,1,-,-,-,2 τ23 x20 -,1,-,-,-,1 x20 -,1,-,-,-,1 τ24 x19 -,1,-,-,-,2

x21 -,0,-,-,-,0 τ25 x22 -,0,-,-,-,2 x22 -,0,-,-,-,2 τ27 x23 -,0,-,-,-,1

τ26 x23 -,0,-,-,-,1 x23 -,0,-,-,-,1 τ28 x22 -,0,-,-,-,2

of just 9 states is F1 and F2-diagnosable but compromises the diagnosability of F3 and

F4. On the other hand, Gdiag3 which consists of 14 states can diagnose faults F3 and
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F4 only. Now, we observe that Gdiag2 and Gdiag3 when deployed in parallel can detect

all four faults F1, F2, F3 and F4 with their combined additive state space having size

9 + 14 = 23. Thus, Gdiag2 and Gdiag3 acting in union attains the same power as the

monolithic diagnosers Gdiag and Gdiag1 while at the same time consuming a much lower

state space.

6.3.2 System II

The nitric acid cooling (NAC) system under normal operation maintains a desired set-

point value for the temperature of the acid that is fed to the reactor. The degree of

cooling is regulated by a controller which commands a valve to provide appropriate

amounts of cooling water by sensing the output temperature. Similarly, the flow of

incoming nitric acid is regulated by a nitric acid shutdown system which commands a

control valve to operate accordingly. This nominal system behavior gets affected due to

the occurrence of the following failures: i) NAS Failure (fault type F1): Control valve

remains ‘Open’ due to failure of nitric acid shutdown system, ii) Controller Failed-Off

(fault type F2): Controller fails to issue control signals.

Table 6.10: The effectiveness of MLAD: Nitric Acid Cooling System

Diagnosability

Diagnoser F1 F2 Number of States Measurable Variables

Global Diagnoser Gdiag

(Sampath et al. [104])

X X 312 All (refer, example 2.2 of Section II in [104]).

Reduced Diagnoser Gdiag1

(Zad et al. [115])

X X 228 All except status of the load.

Abstract Diagnoser Gdiag2 X χ 11 Status of the control valve and the pump.

Abstract Diagnoser Gdiag3 χ X 16

Status of the cooling water valve, readings of

the temperature sensor and the valve

stem-position sensor.

The diagnosability of the NAC system discussed above is summarized in Table 6.10.

166



6.4 Summary

It can noticed that its Gdiag containing 312 states ensures the diagnosability of all fault

types. The reduced diagnoser Gdiag1 obtained by limiting a redundant variable, following

the mechanism of Zad et al. [115], contains 228 states and has the same power as Gdiag

in terms of diagnosability. Now, we apply our proposed MLAD approach on the model

for the NAC system to obtain two partially compromised reduced diagnosers Gdiag2

and Gdiag3. Gdiag2 which consists of just 11 states can diagnose fault F1 only. On the

other hand, Gdiag3 which consists of 16 states is F2-diagnosable but compromises the

diagnosability of F1. From Table 6.10, it can be further observed that Gdiag2 and Gdiag3

when deployed in parallel can detect both the faults F1 and F2, with their combined

additive state space being 11 + 16 = 27. So, there is a drastic reduction in state space

compared to monolithic diagnosers. From Table 6.5 and Table 6.10, it may be observed

that MLAD based diagnosis can achieve the same power as that of the monolithic

diagnosers, however with much lower state spaces, and the gain gets enhanced with size

of the systems.

6.4 Summary

In this chapter, we have presented a new fault diagnosis approach called MLAD which

is capable of producing controlled partially compromised diagnosers with state spaces

far lower than those obtained through the existing state-of-the-art mechanisms. MLAD

carefully chooses a designated subset of variables whose forceful limitation can possibly

lead to compromised diagnosability of only a stipulated subset of faults from a given set of

faults, while not affecting the diagnosability of the remaining faults. For fault diagnosis,

MLAD performs a stipulated number of such controlled limitations on the original model

to obtain a set of partially compromised reduced diagnosers whose combination ensures

diagnosability of all faults. We have exhibited this capability of MLAD through the

case study of a state-based DES model of an electronic fuel injection system. Here, we

have discussed the idea of fault compartmentalization using the concept of measurement

limitation and experimentally shown the effectiveness of our approach. The next chapter

summarizes the contributions of this dissertation and discusses a few possible extensions
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to this research.
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Chapter 7
Conclusions and Future Perspectives

In this chapter, we summarize the contributions of this dissertation and outline some

possible directions for future work.

7.1 Discussion and Summarization

This thesis deals with the design of safety-critical systems in general and real-time safety-

critical systems in particular. During the development of a safety-critical system, the

design methodology may need to consider various stringent constraints, including those

related to timeliness, resource utilization, fault-tolerance, power dissipation, cost, etc.

We now enumerate a few important challenges that must be considered in the design of

safety-critical systems.

• The first challenge relates to timing constraints associated with various safety-

critical applications/tasks that co-execute in the system. The timing constraints

of these applications are captured by their execution requirements and deadlines.

• The second challenge deals with the design of safety and performance related con-

straints such as fault tolerance, energy minimization, etc.

• The third challenge relates to resource constraints imposed by the underlying com-

puting platform on which the system is implemented. Over the years, the nature of

computing platforms used in real-time systems has seen a distinct transformation
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from uni-cores to homogeneous multi-cores to heterogeneous multi-core systems.

These computing platforms typically consist of a limited number of processing

elements (i.e., resources). Therefore, the design strategies for safety-critical sys-

tems must be able to effectively utilize the processing capacity of the underlying

platform to satisfy the computational demands of applications.

7.1.1 Overall Summary of Chapters and Thesis

This dissertation presents a few novel ideas towards the design of energy-efficient and

fault-tolerant strategies for safety-critical systems keeping in view the challenges/hurdles

discussed above. We now present brief summaries of these works in more detail.

In our first contributory chapter, Chapter 3, we have presented a novel energy-

efficient scheduling strategy that aims to minimize static energy consumption in a real-

time multiprocessor system. The underlying scheduling structure being based on ERfair,

the proposed optimal proportional fair scheduler, named ERfair Scheduler with Suspen-

sion on Multiprocessors (ESSM), attempts to reduce system wide energy consumption

by locally maximizing the processor suspension intervals while not sacrificing the ER-

fairness timing constraints of the system. The proposed technique takes advantage of

higher execution rates of tasks in underloaded ERfair systems and uses a novel procras-

tination scheme to search for time points within the schedule where shutdown interval

lengths may be locally maximized. ESSM not only ensures 100% resource utilization

but also guarantees that fairness accuracy of no task will ever be violated due to the

procrastination applied. We have designed, implemented, and evaluated the ESSM al-

gorithm and proved the feasibility of this scheme. The simulation-based experimental

results are promising.

In Chapter 3, we have assumed the underlying hardware computing platform to be

fault-free. However, the processing platforms are subject to a variety of faults. There-

fore, apart from guaranteeing the timely execution of tasks in a resource-constrained

environment, ensuring the proper functioning of the system even in the presence of

faults has currently become a design constraint of paramount importance. Hence, in

Chapter 4, we have presented a fault-tolerant proportional fair scheduling mechanism
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called Fault Tolerant Fair Scheduler (FT-FS), for real-time multiprocessor systems con-

taining cold-standby spares. Subsequent to the detection of a permanent processor fault,

the system requires a fixed recovery interval to boot up the spare processor to the op-

erational state. Equipped with two novel features namely, weight donation and post

rejection backtracking, the proposed scheduler FT-FS attempts to minimize rejections

of critical jobs, during transient overloads within recovery intervals. The objective is to

maximize the possibility of keeping the system fail-operational even in the presence of

faults. The underlying scheduling structure being based on DP-Fair, FT-FS is able to

ensure high resource utilization and fair rate-based execution progress while incurring

low scheduling related overheads through controlled migrations and context switches.

Experimental results reveal that the FT-FS algorithm performs appreciably over an

extensive set of system scenarios pointing to the practical effectiveness of the scheme.

In the earlier chapters, we have assumed the underlying hardware computing plat-

form to be homogeneous. However, the nature of processing platforms used in embedded

systems is changing over the years. To satisfy the computational demands of various ap-

plications, today, we observe an increased emphasis towards the integration of unrelated

processing cores (i.e., heterogeneity) onto a single hardware platform [15, 35]. In Chap-

ter 5, we have presented a combined fault-tolerant and energy-aware design strategy

for real-time safety-critical systems having heterogeneous multi-cores as the computing

platform. This chapter proposed a standby-sparing based fault-tolerant energy-aware

scheduling strategy, named FENA-SCHED, for a heterogeneous dual-core system, con-

sists of a power-hungry, high-performance core, and a power-efficient, relatively slow

core. For a DPM-enabled system, we found that designating power-efficient (modest

performance) core as primary and power-hungry (high-performance) core as spare yields

better energy savings as compared to its counterpart. In order to minimize overall en-

ergy consumption and to tolerate a given number of faults, FENA-SCHED reserves only

a fixed number of backup slots on the high-performance core and takes advantage of

backup-backup overloading. Experimental results reveal that FENA-SCHED performs

appreciably over an extensive set of system scenarios pointing to the practical effective-
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ness of the scheme and is able to significantly improve energy savings of the system,

compared to the state-of-the-art work.

Chapters 4 and 5 have assumed that faults are always detectable, and have aimed

towards the design of efficient fault-tolerant procedures that provide functional correct-

ness in the presence of faults. However, enforcement of such fault tolerance can only

be achieved through the incorporation of safe design methodologies which enable effi-

cient active monitoring and detection of unobservable faults in the system. Therefore,

it is desirable to incorporate efficient fault diagnosis (detection and isolation) design

strategies in the construction of safety-critical systems. Hence, in Chapter 6, as our last

contributory chapter, we have presented a formal fault diagnosis strategy for the design

of safety-critical systems. The primary objective of the research work in this chapter is

to develop an efficient strategy which attempts to reduce state space complexity involved

in the design of the fault diagnosis process. In this chapter, we have developed a new

fault diagnosis approach called MLAD, which is capable of producing controlled par-

tially compromised diagnosers with state spaces far lower than those obtained through

the existing state-of-the-art mechanisms. MLAD carefully chooses a designated subset

of variables whose forceful limitation can possibly lead to compromised diagnosability

of only a stipulated subset of faults from a given set of faults, while not affecting the

diagnosability of the remaining faults. For fault diagnosis, MLAD performs a stipulated

number of such controlled limitations on the original model to obtain a set of partially

compromised reduced diagnosers whose combination ensures diagnosability of all faults.

We have exhibited this capability of MLAD through the case study of a state-based DES

model of an electronic fuel injection system. Here, we have discussed the idea of fault

compartmentalization using the concept of measurement limitation and experimentally

shown the effectiveness of our approach.

In summary, the work conducted as part of this thesis has dealt with the development

of efficient energy-aware and fault-tolerant design strategies for safety-critical systems.

Figure 7.1 depicts a pictorial representation of the thesis workflow. This research work

is divided into three modules. Module 1 which comprises Chapter 3 in the thesis, deals
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Figure 7.1: Thesis Workflow Diagram

with the development of an energy-efficient design strategy for safety-critical systems.

The primary objective of the work presented in Module 1 is to reduce the static energy

consumption in the system by employing a novel procrastination based scheduling tech-

nique. Chapters 4 and 6 together constitute Module 2 which endeavor to develop efficient

fault-tolerant design mechanisms. Module 2 consists of two components: fault diagnosis

(Chapter 6) and recovery (Chapter 4) sub-modules. In the fault diagnosis module, faults

are assumed to be unobservable. Therefore, this module deals with the development of

a formal automata based fault detection mechanism, named as Diagnoser, to actively

monitor the system and detect the presence of unobservable faults in the system. On the

contrary, the fault recovery module performs a set of recovery operations to make the

system operational subsequent to the detection of faults. The research work presented

in this module employs a combined time and hardware redundancy based fault-tolerant
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technique to handle the effects of faults in the system. The scheme handles faults using

cold-standby spare hardwares. However, such spare hardwares become available only

after an interval called recovery time subsequent to the detection of a permanent pro-

cessor fault. In order to keep the system fail-operational during this recovery interval,

the scheme uses redundant time or slack capacity to reconfigure the workload priorities

so that all tasks can meet their timeliness demands during the recovery period. The

third module (Module 3) comprises Chapter 5 in the thesis and deals with the develop-

ment of a combined energy-efficient and fault-tolerant design strategy for heterogeneous

systems. We employ the well known standby-sparing technique for fault tolerance and

DPM to minimize energy consumption.

7.1.2 Comparison Across the Proposed Techniques

This section discusses a few important system scenarios that may be used to compare the

scheduling techniques developed across the chapters in this dissertation. They are listed

as follows: i) Comparison of basic scheduling schemes, ii) Fault tolerance in the ERfair

system, iii) Fault tolerance in the ESSM system iv) Energy awareness in the DP-Fair

system v) Fault tolerance and Energy awareness in the DP-Fair system. Among these,

the last four scenarios (ii-v) may be considered as possible immediate extensions to the

works presented in Chapter 3 and Chapter 4. We now discuss each of these scenarios in

detail.

i) Comparison of basic scheduling schemes: In Chapter 3, we have presented

an energy-efficient fair scheduling scheme, called ESSM for homogeneous multiprocessor

systems. ESSM uses an optimal, strictly fair scheduling scheme called as ERfair [6]

as the underlying scheduling mechanism. ERfair is a work-conserving version of Pro-

portionate fair (Pfair) scheduling introduced by Baruah et al. in [16], and so, it never

allows a processor to be idle in the presence of runnable/ready tasks. Since ERfair

follows a strict proportional fair strategy, it is an attractive alternative for applications

where meeting fairness is not an option but a necessity, as in applications like real-time

audio processing, streaming video, interactive gaming, and so on. However, ERfair is a
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global scheduling scheme and thus, incurs unrestricted preemption/migration overheads

to maintain fair proportional progress for all tasks at all time slots. On the other hand,

the fault-tolerant scheme presented in Chapter 4 uses a work conserving version of the

DP-Fair algorithm [71] as the underlying scheduling mechanism. DP-Fair is able to

deliver optimal resource utilization while enforcing strict proportional fairness (ERfair-

ness) only at period/deadline boundaries. Therefore, it is an approximate proportional

fair scheduler. Moreover, DP-Fair is a semi-partitioned scheduling technique that allows

at most m − 1 task migrations and n − 1 preemptions within a time slice and thus

incurs much lower overheads compared to ERfair. It may be noted that the scheduling

works presented in Chapters 3 and 4 have assumed the underlying hardware comput-

ing platform to be homogeneous. As different from these works, Chapter 5 presents a

low-overhead heuristic scheme called FENA-SCHED, for the energy-aware fault-tolerant

scheduling of real-time applications on heterogeneous dual-core systems. FENA-SCHED

follows a primary-backup fault-tolerant scheduling strategy and does not impose any fair-

ness constraint on the task system. FENA-SCHED utilizes dynamic power management

(DPM) with backup-backup overloading [46, 47] to minimize energy consumption while

guaranteeing tolerance against a given number of transient processor faults.

ii) Incorporating fault tolerance in the ERfair system: Let us consider a fault

model similar to one defined in Chapter 4, for the ERfair system. The objective of any

fault-tolerant scheme in an ERfair system is to maintain an ERfair schedule within the

recovery period, which means that every task has to meet its pseudo-deadlines within

the recovery period. To generate an effective fault-tolerant scheme for such systems,

it is desirable to have a few assumptions at the time of fault detection (represented

as FDT ). As a part of the fault model, we assume that one processor was faulty for

some duration of time before the detection of a fault, and no task was actually executed

on that faulty processor for that interval. We also assume that no task has missed its

pseudo-deadline at FDT . At FDT , a few tasks may have actually executed more than

their stipulated execution rates, and a few may have executed less than their required

rates. So, everybody has a different amount of slacks at FDT . In this situation, a slack
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distribution strategy similar to the weight donation scheme used in FT-FS, may be

formulated so that this slack distribution provides a best possibility for every task to

meet its pseudo-deadline within the recovery interval. If we assume that some tasks

have missed their pseudo-deadlines at FDT , then we have to reject this deadline missed

tasks and have to allocate time slots of the rejected tasks to others for meeting their

pseudo-deadlines, as one similar to FT-FS.

iii) Incorporating fault tolerance in the ESSM system: The basic technique

used for achieving energy savings in ESSM and fault tolerance in FT-FS is the efficient

distribution of slacks generated in an underloaded system. Thus, the goals of energy

efficiency and that of fault tolerance may be considered to be conflicting in nature.

Hence, simultaneously satisfying both these goals will necessitate a careful trade-off.

In safety-critical systems, fault tolerance always has the highest priority over energy

efficiency. As discussed in the above paragraph, we first consider a fault model similar

to one defined in Chapter 4, for the ESSM system. In this fault model, we assume

that faults occur on processors when they are active, that is, no faults are allowed to

occur on processors when they are suspended. We now determine the amount of slack

accumulated by each task in the system at fault detection time FDT . Subsequently, we

design a slack distribution strategy that initiates the donation of slacks to the required

set of tasks so that the system becomes fault-tolerant during the recovery period. Then

we find out how much additional slack is available after providing the required fault

tolerance to the system. If there is such an additional slack available in the system, then

it may be used for energy minimization.

Now, we provide an illustrative example that demonstrates how the accumulated

slack in the system can be used for both fault tolerance and energy awareness, by con-

sidering ESSM as the underlying scheduling scheme. In this example, we first utilize a

portion of the slack available in the system to provide one processor fault tolerance for a

given recovery period, and then we use the additional slack available to minimize energy

consumption in the system.
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Example: Consider a set of five tasks, T1(10, 50), T2(12, 60), T3(30, 150), T4(30, 150),

and T5(20, 50) to be executed on two unit capacity processors (m = 2) using the ESSM

scheduling scheme. As similar to the fault model discussed in Chapter 4, we assume that

the system can handle at most one transient/permanent processor fault at any given

time; no further faults are assumed to occur during the recovery period [FDT , FRT ).

Here, FOT = FDT = 34 and FRT = 50. u1 = u2 = u3 = u4 = 1/5 and u5 = 2/5. The

total system utilization at t = 0 is given by UA∪C = UR =
∑5

i=1 ui = 6/5. The system is

feasibly schedulable at t = 0 since it is underloaded (that is, UA∪C (= 6/5) < m (= 2)).

As system utilization UR = 6/5 and system capacity dUA∪Ce = 2 at time t = 0, the

effective execution rates of the Running tasks are eu1 = eu2 = eu3 = eu4 = 1/3 and

eu5 = 2/3. The slack generation rate of these tasks is 2/3. At t=0, the estimated finish

times of T1, T2, T3, T4 and T5 are f1 = 30, f2 = 36, f3 = 90, f4 = 90, and f5 = 30. Since

T1 and T5 have the earliest finishing time f1 = f5 = 30, the next potential suspension

point (EPSP ) is obtained at t = 30. Figure 7.2 depicts this scenario.

T1, T5

Faulty V2

T3, T4

0 30 34 36 50 60

V1

V2

T1, T2, T3, T4, T5

T2, T3, T4

T2, T3, T4

T1, T5

FOT = FDT = 34 FRT = 50

Active processor with running tasks

Sleeping processor with suspended/engaged tasks

Faulty processor

T1, T5 finishes T1, T5 arrivesT2 finishes

Figure 7.2: ESSM with fault tolerance

Both T1 and T5 finish their executions at t = 30, and are moved to the set of Free

tasks. The slacks of T1, T2, T3, T4, and T5 are 20. At t = 30, Slack1(30) = Slack5(30) =

20, and u1 + u5 ≥ UR∪F − bUR∪F c. Now, ESSM generates an admissible task set using

the Free tasks T1 and T5 with a group slack of 20. Therefore, one processor (say, V1)

can be shutdown for the next 20 time slots at t = 30 with the next earliest potential

wakeup point (EPWP ) being t = 50. The Running tasks at t = 30 are T2, T3, and T4.
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UR becomes 3/5 and slack generation rate is SR = 2/3. The effective execution rates of

T2, T3, and T4 become 1/3, and their corresponding estimated finish times are f2 = 36,

f3 = 90, and f4 = 90. Therefore, EPSP = 36.

The processor V2 now suffers a fault at time FOT = 34. The fault is detected at

FDT = 34 and the recovery interval tr being 16, we get FRT = 50. As part of our

fault-tolerant strategy, we wake up the sleeping processor V1 to handle the transient

overload caused by the fault. At t = 34, the slacks of T1 and T5 are used for handling

the fault, instead of allowing a processor to sleep. Now, the wake up processor V1 is

able to accommodate the Running tasks T2, T3, and T4. UR becomes 3/5 and slack

generation rate is SR = 2/3. The effective execution rates of T2, T3, and T4 become

1/3 and their corresponding estimated finish times are f2 = 36, f3 = 90, and f4 = 90.

Therefore, EPSP = 36. At time t = 36, T2 finishes and is moved to the set of Free

tasks. The slacks of T2, T3, and T4 are same (= 24). Here, the fault-tolerant ESSM

generates an admissible task set using the Running tasks T3, and T4 with a group slack

of 24. Therefore, the non-faulty processor V1 will be suspended between t = 36 and

t = 60. Figure 7.2 depicts this scenario.

At time t = FRT = 50, the faulty processor V2 becomes operational and the system

recovers from the fault. The next instances of tasks T1 and T5 also arrive at this time.

At t = 50, UR = 3/5 and the slack generation rates of the Running tasks T1 and T5

become SR = 2/3. eu1 = 1/3, eu5 = 2/3, and f1 = f5 = 80. Therefore, EPSP = 80,

the finishing time of T1 and T5. The next EPWP is obtained at t = 60, the wake up

time of V1. The rest of the schedule continues as ESSM schedule. �

iv) Incorporating energy awareness in the DP-Fair system: In an underloaded

DP-Fair system, tasks allocated to a processor within a time slice execute in an EDF-like

fashion starting from the beginning of the slice and complete their execution before the

end of the time slice is reached. After executing the allocated task shares, each processor

idles up to the end of the current time slice. One straight forward energy-saving method

is to suspend processors during such idle intervals provided the duration of these intervals

is at least equal to the break-even time TIbe. We can also employ our energy-aware
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strategy used in ESSM to the DP-Fair scheduling scheme. For this purpose, we first have

to design a work-conserving version of DP-Fair, similar to one discussed in Chapter 4.

Then we can apply a similar slack generation strategy used in ESSM to accumulate

slacks in the system and use a procrastination scheme to suspend the processors. This

ESSM based energy-aware strategy can be improved further by applying the concept of

slack donation (as one discussed in Chapter 4). This slack donation enhances the group

slack available at viable suspension points and thus, maximizes sleep durations.

v) Incorporating fault tolerance and energy awareness in the DP-Fair system:

To incorporate an energy-aware strategy over the proposed fault-tolerant scheduling

scheme FT-FS presented in Chapter 4, we can make use of the slack distribution strategy

in the third system scenario (ESSM with fault tolerance), discussed above. Here, we

first utilize a portion of the slack available in the system to provide one processor fault

tolerance for a given recovery period, and then we use the additional slack available to

minimize energy consumption in the system.

In the next section, we outline some possible directions for future work.

7.2 Future Works

The work presented in this thesis leaves several open directions and there is ample scope

for future research in this area. In this section, we present four such future perspectives.

• Design strategies for total system energy minimization: Techniques for

controlling power/energy consumption are being applied at all system levels start-

ing from hardware and firmware to the architectural, system, and even applica-

tion levels. As discussed in Chapter 2, at the operating system level, two pri-

mary mechanisms are generally used to reduce energy consumption: (1) Dynamic

Power Management (DPM) [21,67] and (2) Dynamic Voltage and Frequency Scal-

ing (DVFS) [89, 108]. The first mechanism involves suspending/shut-downing the

system when the processor is idling because the energy consumed during the sus-

pension period is negligible. DVFS, on the other hand, involves lowering the pro-
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cessor’s operating frequency by appropriately scaling its supply voltage when the

full speed is not required. As energy dissipated per cycle in CMOS circuits scale

quadratically to the supply voltage, this strategy is able to provide large energy sav-

ings in DVFS-enabled processors. In Chapters 3 and 5, we have utilized the DPM

technique to minimize energy consumption in real-time multiprocessor/multi-core

systems. It would be interesting to extend the works presented in these chapters

by integrating the DPM technique with existing DVFS schemes in DVFS-enabled

processors that support a set of discrete voltage/frequency levels. This integra-

tion endeavors to minimize total energy consumption (including both static and

dynamic) in the system.

• Design strategies for peak power constrained safety-critical systems:

Nowadays, modern multi-core chips are designed with a Thermal Design Power

(TDP) value which is considered to be the highest sustainable power that a chip

can consume without triggering any performance throttling mechanism such as

Dynamic Thermal Management (DTM) [88]. Whenever the power dissipation in

the system crosses this specified TDP value, DTM is triggered to ensure thermal

stability of the system. However, activation of DTM introduces unpredictability

in the timing behavior of the safety-critical real-time applications executing on the

system [88]. Therefore, in order to ensure the timely execution of these applica-

tions, we need to keep the cumulative peak power consumption of the cores to

be within the specified TDP value. As future work, we plan to develop efficient

scheduling mechanisms which not only guarantee to satisfy the timing requirements

of safety-critical applications but also minimize peak power consumption within

the TDP constraint. In addition, we also plan to develop a reliability-aware model

over this peak power-aware scheduling scheme.

• Design strategies for parallel real-time applications: In Chapters 3, 4, and 5

of this dissertation, we have considered the scheduling of independent real-time

applications on a multiprocessor/multi-core platform. Applications in many safety-

critical real-time systems, ranging from avionic, automotive and industrial control
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to telecommunication systems, health care and even a significant class of consumer

electronics systems, are often highly parallelizable [41]. One of the most generic

mechanisms for modeling parallel real-time applications is the Directed Acyclic

Graph (DAG) [31,32, 96]. In the DAG model of an application, nodes correspond

to the tasks, and edges denote inter-task dependencies. In the near future, we

intend to propose an efficient energy-aware and fault-tolerant scheduling strategy

for parallel real-time applications represented as DAGs, executing on a multi-core

platform.

• Design strategies for safety-critical systems on distributed processing

platforms: The scheduling (energy-aware and fault-tolerant) mechanisms pre-

sented in this dissertation assumed tightly-coupled interconnection of individual

processing elements as in a symmetric multi-core system. Hence, inter-processor

communication delays have been ignored in the system design process. However,

this assumption is not valid in the case of a safety-critical system to be implemented

on loosely-coupled distributed processing platforms [109]. The applications that

execute on different computing elements of a distributed system communicate with

each other typically by exchanging the messages through an interconnected com-

munication network. In such a distributed environment, the real-time requirements

of applications not only depend on the processing speed of the computing elements

but also rely on specifications of the underlying communication network. As fu-

ture work, we plan to extend the research presented in this dissertation to develop

efficient design strategies for safety-critical distributed systems.
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