
SDN for Large Scale IoT Networks

Subhrendu Chattopadhyay

Eo



SDN for Large Scale IoT Networks

Thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

by

Subhrendu Chattopadhyay

under the supervision of

Prof. Sukumar Nandi

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
GUWAHATI - 781039, INDIA

March 30, 2021

Eo



Se Intentionally Left Blank



वतक वचारान दाि मतानुगमात स ातः ।

1

“The absolute knowledge can be attained after thinking,
reasoning and assimilation”

Dedicated to
All my teachers

Who taught me to assimilate the information to convert it into knowledge.

iii Po



Se Intentionally Left Blank



Declaration

I declare that

1. The work contained in this thesis is original and has been done by myself under the general
supervision of my supervisor.

2. The work has not been submitted to any other Institute for any degree or diploma.

3. Whenever I have used materials (data, theoretical analysis, results) from other sources,
I have given due credit to them by citing them in the text of the thesis and giving their
details in the references.

4. Whenever I have quoted written materials from other sources, I have put them under
quotation marks and given due credit to the sources by citing them and giving required
details in the references.

Place: IIT Guwahati Subhrendu Chattopadhyay
Date: March 30, 2021 Research Scholar

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati, INDIA 781039

v Po



Se Intentionally Left Blank



Certificate

This is to certify that the work contained in this thesis entitled “SDN for Large Scale IoT
Networks” is a bonafide work of Subhrendu Chattopadhyay(Roll No. 146101002), carried out in
the Department of Computer Science and Engineering, Indian Institute of Technology Guwahati
under my supervision and is worthy of consideration for the award of the degree of Doctor of
Philosophy of the Institute.
The results contained in this thesis have not been submitted in part or full to any other university
or institute for the award of any degree or diploma.

Place: IIT Guwahati Prof. Sukumar Nandi
Date: March 30, 2021 Thesis Supervisor

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati, INDIA 781039

vii Po



Se Intentionally Left Blank



Acknowledgements

This thesis would not have been complete without the support of my thesis supervisor Prof.
Sukumar Nandi and my mentor Dr. Sandip Chakraborty. Both of them have provided their
support, knowledge and guidance to help me in my research. I have been working with both
of them from my early days of M.Tech. I am truly grateful to them for putting me back in
track during the trying times of my PhD. I have also learned many things about life while
having a discussion with them. Their constant support and positive criticism have influenced
my attitude, nature and personality in many ways.

I am very thankful to my doctoral committee members Prof. Diganta Goswami, Prof. Rat-
najit Bhattacharya and Dr. Tamarapalli Venkatesh for understanding my works and providing
valuable comments to improve the work. I extend my gratitude to the thesis reviewers, Dr.
Antony Franklin from Indian Institute of Technology Hyderabad and Prof. Ashutosh Dutta
from John Hopkins Whiting School of Engineering . I express my sincere thanks to former Head
of the Department Prof. S.B. Nair and Prof. S.V. Rao and current Head of the Department
Prof. Jatindra Deka for providing a nice research environment in the Department of Computer
Science and Engineering, IITG and support my research work in many ways. During my early
stages of research I enjoyed discussion with Dr. Sushanta Karmakar and Dr. Arnab Sarkar
who helped and motivated me in a lot of ways. I am forever grateful for their support and time.

I am also very grateful to Tata Consultancy Services India Private Limited for awarding
me the research fellowship that gave me extremely good opportunities to broaden my research
activities and interact with eminent researchers in the world, both from the industry as well
from the academia. I thank Mr. Sachin Parkhi, Program Manager of TCS Research Scholar
Program, for extending their helps and supports in technical and official activities.

I had the privilege to collaborate with Dr. Sushanta Karmakar, Dr. Samar Shailendra,
Prof. Soumya Kanti Ghosh and Dr. Abhinandan S Prasad whose interest and knowledge has
enriched me a lot. I also enjoyed working with Dr. Niladri Sett, Mr. Soumyajit Chatterjee
and Mr. Shubabrata Nath. I express my sincere gratitude towards Mr. Debasish Naskar for
designing the logos and cover page of this thesis.

I would also like to express my hearty gratitude to Prof. Gautam Barua and Prof. Gautam
Biswas the past Directors of the institute, Prof. T. G. Sitharam the present Director of the
institute, all the Deans and other officials of IIT Guwahati, whose collective efforts have made
this institute a place for world-class studies and research. I am thankful to all the faculties
and the staffs of the Department of Computer science and Engineering for extending their
cooperation in terms of technical and official supports. I thank the research scholars, M. Tech
and the B. Tech students of this institute, with whom I have closely worked. I am sorry for not
to mention all of their names, however, I have learned a lot from them during the course of our
discussions.

ix Co



I am forever thankful to Rahul, Soumadip, Akash, Mandar and Ujjal for the countless coffee
sessions and round of discussions on various topics of interests which I will be missing in my
upcoming days. My sincere thanks to my lab-mates Pranav, Madhurima, Pradeep, Debanjan,
Kangan and Sikha for providing me a healthy work environment and helping me out during
my needs. I am thankful to Bennith and Suraj who helped me to develop experimentation
frameworks.

Last, but not least, I probably would not have done a PhD were it not for my parents. From
the childhood they have encouraged me to raise questions and indulged my curiosities. Many
of the things I appreciate in research can be traced back to an idealized version of what my
parents said while I was growing up. While, I often disagree with them on issues, everything
I do is influenced by them. My wife Piyali also helped me in writing and proof reading this
thesis. Her constant support has helped me a lot in writing this thesis.

Finally, there are several collaborators and anonymous reviewers who are not listed out
explicitly, but who had an impact on my experience in grad school: people who enabled me
to solve new problems, find new topics, and just meet new people. This acknowledgement was
getting too long to list everyone, but know that all of you made a huge difference.

Place: IIT Guwahati Subhrendu Chattopadhyay
Date: March 30, 2021 Research Scholar

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati, INDIA 781039

x



Abstract

Internet of things (IoT) is one of the rapidly growing network technologies which has the po-
tential to serve millions of devices. Such a large scale IoT network (LSiN) requires network
management to efficiently serve the end-user applications. The modern network management
systems are expected to identify the time varying traffic pattern and take suitable actions to
ensure fine grained network management. Taking these dynamic decisions require programma-
bility in the network, where the programmable network management system can be used to
deploy evolutionary protocols rapidly based on the objective. However, traditional Internet ar-
chitecture suffers from lack of flexibility due to absence of programmability. Software-Defined
Network (SDN) has emerged to provide a flexible architecture for network control and manage-
ment. Additionally SDN provides opportunities to cater ever increasing bandwidth demand by
fine tuning the network resources. The objective of this thesis is to design a distributed scal-
able SDN orchestration framework which is suitable for handling the dynamic nature of LSiN.
In this thesis we explore the performance improvement of IoT applications by utilizing SDN.
Subsequently we explore various deployment and architectural design related issues of SDN.

Modern IoT and hand-held devices are equipped with multiple interfaces. To leverage the
bandwidth capacity of multiple interfaces several multi-path transport layer protocols exist
which provide bandwidth aggregation. The first contribution in this thesis enhances the perfor-
mance of IoT applications by proposing SDN control plane application SDN-MPTCP for Multipath
TCP (MPTCP), where MPTCP is one of the popular multipath transport protocols. In this
work we find that the performance of MPTCP has a strong correlation with the selected paths,
and SDN can assist in path selection of MPTCP. During the performance improvement by
employing SDN we understood that the deployment of SDN over an existing LSiN increases
the capital expenditure (capex) of the system. Moreover, the centralized nature of the SDN
control plane becomes a single point of failure for the network operation. Therefore, in this
next work we investigate the SDN deployment challenges for LSiN. As mentioned earlier, SDN
requires deployment of SDN supported hardwares. In this work, we utilized Network Function
Virtualization (NFV) for development of FLIPPER. FLIPPER enables deployment of SDN like
network management over existing Commercial off-the-shelf (COTS) devices of LSiN by con-
verting them into Policy decision and enforcement points (PDEPs). FLIPPER provides a scalable,
flexible, fail-safe and distributed “self-stabilized” architecture. In the next contribution we use
FLIPPER to design Aloe orchestration framework which utilizes the in-network or In-network
processing (In-network processing) platforms of LSiN to achieve “servicification” of SDN con-
trol plane. Aloe promises “plug-and-play” and “zero touch deployment” along with light-weight,
fault-tolerant and auto-scalable network management platform for LSiN. Through exhaustive
experimentation over an in-house test bed and Amazon web service (AWS) platform we find
that Aloe can significantly improve performance of various IoT applications. During this study
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we also observed that various end-user applications targeted for LSiN require Virtual Network
Function (VNF) based Service Function Chaining (SFC) depending on the network service ac-
cess policy. However, dynamic deployment of VNFs and traffic steering through those VNFs
to preserve the SFC ordering is difficult in a LSiN which spans across multiple administrative
domains. In the next contribution we propose Amalgam which incorporates SFC management
with Aloe to ensure scalability and dynamic SFC. Based on the NP-hard nature of VNF place-
ment problem, Amalgam also proposes a greedy heuristic for VNF placement which ensures fast
flow initialization and provides performance improvement for short-duration flows. As a whole,
this thesis provides auto-scalable and fault-tolerant distributed architecture and orchestration
framework for LSiN network management to provide fine-grained network control. We have
compared the proposed solutions with the state-of-the-art works. Based on the experimental
results we found that the proposed solutions can provide significant performance improvement
for short duration flows while incurring lower resource consumption of the system.
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Chapter 1

Introduction

Internet of things (IoT) refers to an interconnecting infrastructure to integrate everyday used

embedded computing devices. Recently IoT is being used for improving the quality of life [1].

In an IoT, the number of end-users in a single network can reach up to a million [2] very easily.

Due to this, the global Machine to Machine (M2M) traffic is estimated to reach 51% [3] of the

total traffic demand in 2023. Therefore, IoT is estimated to grow as a major technology in the

near future. In this thesis, we focus on large scale IoT network (LSiN) . Like IoT, LSiN also

spans from backbone network to edge devices. We identify LSiN as a Wide area network (WAN)

which is a subset of IoT. We make the following key assumptions to segregate LSiN from IoT

in this thesis.

• The LSiN contains millions of heterogeneous resource constraint Commercial off-the-

shelf (COTS) devices. Each device can have multiple interfaces. The traffic generated by

the LSiN devices is mainly short-flows [4].

• Since it is difficult to deploy such a vast network while maintaining single administrative

domains, LSiN spans across multiple administrative domains.

• By looking at the momentum of virtualization technologies used presently [5], we firmly

believe that virtualization can be an inherent technology used in the future LSiN.

Since the user generated network traffic pattern is time variant in nature, to optimize the

potential of the costly physical resources, the network behaviour requires periodic customization

of the device configurations. To ease the customization, network management systems exist in

the literature [6, 7]. However, most of the modern networks like LSiN require evolutionary proto-
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Chapter: 1 Introduction

cols and internet architectures to cater the diversified user needs. For example, many enterprise

systems utilize private cloud, public cloud or a mix of both to reduce the cost of operations

based on the traffic demand to reduce the cost of operation. To ensure the smooth dynamic

transition between these architectures the network administrator requires a evolutionary design.

Managing such a system with traditional network management approaches result in complicated

configuration and, minor inconsistency in configuration that results in a significance drop in per-

formance. Additionally overhead of a new protocol deployment requires significant development

and testing time due to the complicated configurations. These issues can be avoided easily

by implementing programmable network. Software-Defined Network (SDN) [8, 9, 10, 11] can

realize evolutionary network management by implementing programmable network which can

ensure easy and rapid deployment of new protocols or network architectures.

SDN plays a significant role in handling dynamic demands of network management [12]

where traditional approaches generally struggle. SDN has been developed to ensure dynamic

management of network and it relies on “control plane” and “data plane” separation where con-

trol plane responsibilities are assigned to dedicated devices called “controller”. SDN controllers

maintain a logically centralized view of the network and provide programmability through stan-

dard Application Programming Interfacess (APIs). Therefore, SDN has the potential to assist

system administrators in defining and enforcing dynamic network-wide policies.

However, available SDN oriented solutions for existing “backbone networks” like “enterprise

network” [13, 14, 15], Internet Service Provider Network (ISPN) and Data Center Networks

(DCN) [16, 17, 18] does not suit well in case of LSiN. The salient differences between existing

backbone networks and LSiN are as follows.

1. Unlike existing backbone networks, LSiN does not use costly hardware. Therefore, per-

formance improvement of traffic generated in LSiN is difficult. LSiN can be extended to

mobile devices also. For example, IoT applications can use the idle resources of mobile

devices. In such cases, LSiN provides performance improvement by aggregating resources

from multiple such devices that require fine-grained network control over a highly dis-

tributed platform.

2. LSiN requires higher degree of scalability than DCN or ISPN. On the other hand, SDN

supported devices are costly, and it isn’t easy to replace all the existing pieces of equipment

at a single sweep. Therefore, reduction of capital expenditure (capex) and operational
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expenditure (opex) are serious concerns in case of a LSiN.

3. Since LSiN can be composed of resource constraint devices and mobile devices, the sys-

tem is highly dynamic and failure-prone in nature, which rarely happens in the case of

DCN/ISPN.

4. The existence of heterogeneous devices results in diversified traffic demands. Fine-grained

management of these traffic classes requires various types of network-oriented services

apart from simple quality of service (QoS) management and route selection challenges.

1.1 Motivation for This Thesis

In this thesis, we identify some of the issues related to SDN oriented network management of

LSiN. Our research is primarily based on the following questions.

Question 1.1.1 How to improve performance of the applications in an LSiN?

Due to the increase in integrated sensors in smart-phones and other hand-held devices, mobile

devices have become one of the essential parts of LSiN deployment [19]. Improvement in mobile

traffic can significantly improve the quality of LSiN user application performance. Since, the ap-

plication layer performance is highly dependent on the transport layer performance. Therefore,

we aim to find the issues in transport layer protocols used in mobile devices.

Modern mobile devices are usually equipped with multiple hardware interfaces. Avaial-

ability of multiple interfaces can be exploited by aggregating the available bandwidth at all

interfaces. The aggregation of bandwidth can be used to satisfy the ever increasing traffic de-

mand. Multipath TCP (MPTCP) [20, 21, 22, 23, 24] is a transport layer protocol primarily used

in data-center and enterprise networks. Usually the hosts used in data-center and enterprise

network are equipped with multiple interfaces. MPTCP provides the support for bandwidth

aggregation in such cases via concurrent usage of different interfaces by creating multiple sub-

sockets.

MPTCP initiates multiple sub-flows via different interfaces to aggregate the bandwidth.

However, in a network, the path characteristics (such as bandwidth, delay, loss rate, jitter,

etc.) of the underlying sub-flows can be significantly different and time-varying. This diver-

sity adversely affects MPTCP performance. Additionally, the time-varying nature of the path
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characteristic further compounds the problem as it is difficult to estimate them apriori. The

difference in end-to-end path characteristics of each active sub-flow may lead to an increase in

out of order delivered segments at the receiver side. This increase in out of order delivery leads

to Head of Line (HOL) blocking at the receiver side [25]. HOL blocking also results in delays

and increases packet drops, which increase the number of retransmission timeouts. Currently,

MPTCP uses Round Trip Time (RTT) as a measure of path characteristics. However, in the case

of MPTCP, one segment and its acknowledgment might follow different paths which leads to

unreliable measure of path characteristics. On the other hand, the effect of MPTCP congestion

control and segment scheduling is discussed in the literature [26, 27, 28, 29] also depends on the

path characteristics. This issue can be avoided by modelling the MPTCP behaviour based on

the available end-to-end semantics which to the best of our knowledge none of the prior works

tried. The absence of such formal model becomes necessary for minimizing HOL blocking and

designing of an intelligent path identification method to increase transport layer performance.

Question 1.1.2 How to choose a suitable design of SDN for LSiN management?

Apart from the transport layer performance issue, the biggest challenge in LSiN is to main-

tain the scalability of the network. Let us consider the following scenario where the network

administrator of an LSiN wants to dynamically update bandwidth distribution policies based

on network usage statistics. The network is connected with multiple network service providers,

and therefore she needs to update the configuration at different edge routers and gateways.

With traditional network devices, like layer 3 switches, this task is tedious. Even a minor

configuration inconsistency among the edge routers and gateways may lead to severe network

under-utilization or bandwidth imbalance. Further, the system is also not scalable for dynamic

updates of network configuration policies.

SDN [15] can help in dynamic network configuration update. SDN uses a centralized con-

troller to convert system administrator defined policies to device configurations and apply those

configurations in the targeted networking devices. By using the programmable controller, SDN

separates the network control plane from the data plane. The SDN control plane takes care

of all the control functionalities (like forwarding decision) based on the network parameters

and installs the control decisions to the data plane devices. In contrast, the data plane is only

responsible for forwarding packets based on the configuration parameters set by the control

plane.
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Although SDN has revolutionized dynamic network management aspects, it requires spe-

cific hardware that can understand the instructions given by the SDN controller. Therefore

the critical question is: How much effort and cost does one need to convert an existing network

infrastructure to an SDN supported one? An SDN supported hardware is much costlier than

a COTS network device, which requires huge capex to replace existing infrastructure by SDN

supported infrastructure. Deployment of SDN supported equipments incrementally can be one

way to avoid this extra cost. On the other hand, there are existing SDN control plane archi-

tectures [30, 31, 32] which propose interoperability between the SDN and non-SDN devices.

However, in both the cases fine grained network control can be ensured. Therefore, we require

a technique that can transform COTS device into an SDN supported Policy decision and en-

forcement point (PDEP) device in order to reduce the cost of deployment. On the other hand,

the use of COTS devices as PDEPs can increase the failure rate, which increases opex. By en-

suring fault and partition tolerance the opex can be reduced which motivated us to understand

a suitable design of SDN that can satisfy the above mentioned challenges of SDN deployment

over LSiN.

Question 1.1.3 Can SDN harness the dynamic nature of LSiN?

Apart from the fault, and partition tolerance and capex related issues, the dynamic nature of the

LSiN is also difficult to manage. Due to the rise of IoT, rapid proliferation of LSiN has made the

network architecture complicated and challenging to manage for service provisioning and ensur-

ing security to end-users. Simultaneously, with the advancement of edge-computing, in-network

or In-network processing (In-network processing), and “platform-as-a-service” technologies, end-

users consider the network as a service platform for deployment and execution of myriads of

diverse applications dynamically and seamlessly over the network. Consequently, network man-

agement is becoming increasingly difficult in today’s world with this intricate service-oriented

platform overlay on top of the inherently distributed “TCP/IP” network architecture. The

cost-effective and logically centralized control plane of SDN is useful for monitoring, controlling,

and deploying new network services. Nevertheless, managing edge and in-network processing

over an LSiN platform are still challenging even with an SDN based architecture [33].

Primary requirements for supporting edge and In-network processing over an LSiN are as

follows: (1) Platform should be agile to support the rapid deployment of applications without

incurring additional overhead for In-network processing [34]. The use of In-network processing
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also ensures the scalability of the system [35]. (2) In-network processing often requires dividing a

service into multiple microservices and deploying the microservices at different network nodes for

reducing application response time with parallel computations [36]. However, such microservices

may need to communicate with each other, and therefore flow-setup delay from the in-network

nodes need to be very low to ensure near real-time processing. (3) Percentage of short-lived

flows are high for “things” centric LSiN [37]. This property of LSiN requires a reduction of

flow-setup delay in the network. (4) Failure rates of unmanaged LSiN devices are in-general

high [38]. Therefore, the system should support a fault-tolerant or fault-resilient architecture to

ensure liveness.

Although SDN supported edge computing and In-network processing have been widely stud-

ied in the literature for the last few years [39, 40, 33] as a promising technology to solve many

of the network management problems associated with LSiN, they have certain limitations. The

logically centralized control plane of SDN becomes a bottleneck when each flow initiation re-

quires communication between switches and the controller. The bottleneck scenarios can be

avoided by using a distributed SDN control plane. In such a case, placement of controllers is

vital for the reduction in flow performance of LSiN, where most of the flows are short-lived. On

the other hand, static deployment of controllers is not adequate to provide fault-tolerance to

LSiN, where most of the devices show “plug-and-play” nature. Therefore, we found that the

design of an SDN control plane that reduces control plane bottleneck and caters to “plug-and-

play” devices of an In-network processing framework deployed on top of LSiN are very much

necessary.

Question 1.1.4 How to create a management framework for rapid deployment and

performance enhancement of “middlebox” dependent traffic?

Since the LSiN can provide a large number of heterogeneous applications, it requires different

network-centric services like Network Address Translation (NAT), “proxy”, “firewall”. In liter-

ature, these services are termed as “middlebox” applications. End-user application performance

depends on locations and performances of the middlebox applications. Therefore, the manage-

ment of middlebox applications becomes important in LSiN. The source/destination oriented

routing protocols are insufficient for steering traffic through these middleboxes. The problem in-

tensifies when middleboxes are deployed using virtualized platforms (termed as Virtual Network

Function (VNF)) where locations of middleboxes can change dynamically [41, 42, 43].
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Depending on the type of applications, a single flow may require services from multiple

VNFs. In such cases, the order of execution is also essential. An ordered set of VNFs for a par-

ticular flow is known as Service Function Chaining (SFC). Since LSiN can span across multiple

administrative domains, the development of a unified, scalable framework for the management

of SFCs and traffic steering through them is not an easy feat. It isn’t easy to design a VNF

management framework that is scalable and still capable of providing QoS requirements of the

traffics. To satisfy the QoS demand in an LSiN where the number of short-duration flows is

significantly high, scheduling and placement of VNFs in the actual devices require quick con-

vergence. Furthermore, the entire framework must comply with the “plug-and-play” nature of

the LSiN devices.

1.2 Contributions

In this thesis, we propose solutions to the issues mentioned earlier by developing SDN control

plane applications and orchestration frameworks for LSiN or similar systems. The proposed

solutions presented here investigates several challenges of LSiN (and/or like scalability, incre-

mental deployment issues, transport layer protocols, network management systems, and service

chaining management. The step-by-step contributions of this thesis are as follows.

1.2.1 Improvement of MPTCP Performance

The first major contribution of our thesis is an intelligent dynamic path management scheme for

MPTCP traffics that optimizes the traffic performance as mentioned in Question 1.1.1. To de-

velop this path manager, we rely on the SDN control plane which provides a logically centralized

view of network topology parameters by periodically obtaining statistics from all its data plane

devices [10]. This centralized view makes it feasible to optimize the end-to-end performance of

MPTCP by selecting a suitable active set of MPTCP sub-flows. In order to identify a suitable

active set, we provide a formal model of MPTCP by using an irreducible and aperiodic Discrete

Time Markov Chain (DTMC). The proposed formal model provides an estimation of MPTCP

throughput and receiver buffer length based on end-to-end path characteristics (latency, avail-

able bandwidth, etc.) of the sub-flows. We use this estimation mechanism to develop an SDN

control plane application named as SDN-MPTCP. The performance of the proposed solution is

compared with various baselines. During the evaluation period, we suffered from the lack of real
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LSiN experimental facility. This challenge motivated us to investigate the deployment challenges

of an SDN enabled LSiN infrastructure.

1.2.2 SDN Deployment Over LSiN

The primary challenge to design a suitable SDN control plane for LSiN infrastructure is to reduce

thecapex as mentioned in Question 1.1.2. Therefore, in this thesis we design Flipper. Flipper is

somewhere in-between traditional architecture and SDN based architecture, where COTS routers

dynamically change their roles from a conventional network router to an Network Information

Base (NIB) and participate in PDEP functionalities. Flipper reduces capex by using COTS

devices with the help of Network Function Virtualization (NFV) [44]1. We also propose a

distributed self-stabilizing NIB placement algorithm which reduces the opex by ensuring fault

and partition tolerance. We also provide formal proofs to ensure the linear convergence of the

proposed algorithm. The performance of Flipper is analysed from both simulations through

a synthetic network environment and real implementation over an emulation platform using

“network name-space”. Our implementation of Flipper provides proof-of-concept support of the

new architecture while comparing performance with existing methods in terms of flow initiation

delay.

1.2.3 Providing Plug and Play Support

We extended the Flipper principles to develop Aloe, which is a fault tolerant SDN orchestartion

framework for dynamic In-network processing platforms. Aloe is custom built to cater the “plug-

and-play” devices (Question 1.1.3) of LSiN. Aloe primarily serves two purposes: (a) easy and

improved management of LSiN application generated flows (b) without increasing additional

capex. To implement these two features, Aloe exploits the capabilities of In-network processing

platforms and proposes “servicification”2 of control plane. Aloe ensures auto-scalability which

is desired for a large scale network like LSiN. Additionally, our proposed framework preserves

the Flipper properties like fault-tolerance and linear time convergence which help to reduce

the flow initiation time significantly. We found significant performance improvement for various

end user applications in our experimental set-up using an in-house test bed and a large scale

Amazon web service (AWS) platform.

1At the time of this research NFV was less popular
2Servicification is defined as “transformation of existing system into one or more discrete services” [45]
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1.2.4 Enhancing Capability of SDN Managed LSiN Using “middlebox”

Application Management

Aloe is further extended into Amalgam to combat the issues given in Question 1.1.4. Amalgam

couples distributed SFC management and SDN enabled traffic steering framework. Amalgam can

extend its services over multiple administrative domains by exploiting in-network processing [46,

47] architecture. Amalgam ensures fine-grained QoS. Moreover, Amalgam is compatible to cater

the “plug-and-play” nature of the devices without compromising operation, where, the plug-

and-play devices may join and leave the platform dynamically. The coupling of VNF placement

and traffic steering in Amalgam ensures dynamic service chaining during an on-going session. To

evaluate performance of Amalgam we develop an emulation framework MiniDockNet for VNF

deployment using “docker” [48] over in-network processing, as the existing network name-space

oriented mininet [49] emulator is not sufficient for in-network processing. The performance of

the proposed framework is compared with some of the existing works, which shows that Amalgam

can provide better end-to-end delay than it’s predecessors for short-duration flows.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 provides background and preliminaries

to understand various technical aspects of this thesis. Chapter 3 proposes SDN-MPTCP which is

an SDN oriented framework to improve the performance of MPTCP. In Chapter 4 we analyze

the capex-opex trade-off and propose Flipper which is a scalable control plane architecture

suitable for LSiN. Chapter 5 describes proposed Aloe orchestration framework. Aloe is an

extension of proposed Flipper and is capable of handling the dynamic nature of the LSiN. In

Chapter 6 we analyse the SFC management issues to propose Amalgam. Amalgam solves the VNF

placement and traffic steering problem over multiple administrative domains in LSiN. Finally,

we conclude the thesis and suggest possible future works in Chapter 7.

9
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Chapter 2

Background

In this thesis, we contribute towards several aspects of network management of large scale IoT

network (LSiN). Each chapter presents a particular research problem, and a literature survey

related to the problem is present in the corresponding chapters itself. Instead of providing a

diverse literature survey, we present background, definitions, and brief descriptions of some of

the existing works used in this section.

2.1 Large Scale IoT Network (LSiN)

LSiN is a special case of Internet of things (IoT). Therefore, we describe LSiN in the context of

IoT.

2.1.1 Internet of Things (IoT)

IoT [50] is one of the popular and wide spread technology to connect “things” and provide intel-

ligence to the real world problems. However, most of the definitions available for IoT[51, 52] is

context dependent. In order to generalize, we define IoT, based on the desired characteristics [53]

of an IoT system as follows.

• Things: IoT systems are composed of “things”, where “things” refers to any physical

object/device relevant to an user/application.

• Sensing/Actuation capable: “Things” can be capable of sensing/actuation to interact

with the physical world and eligible to bring smartness to users/applications.
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• Programmable: “Things” are programmable devices, which means they can exert mul-

tiple behaviors based on users’ behest.

• Communication Capable: The things must be “communication capable” through stan-

dard interfaces and inter-operable communication protocol.

• Connected Through Internet: The things must be connected through the Internet.

As the name suggests, the system can not only be a Local area network (LAN).

• Uniquely Identifiable: Since the things are connected via the Internet, unique identifi-

cation for each entity is a necessity.

• Accessibility: Ideally IoT devices should be accessible “anytime” and from “anywhere”.

However, this may not be required for most of the IoT applications. Therefore, in context

of IoT, the “things” must provide accessibility only “when and where it is required” instead

of “all the time and globally”.

Based on the characteristics, we define IoT system as given in Definition 2.1.

Definition 2.1 IoT is defined as a network of “ Uniquely Identifiable”, “ Sensing/Actuation

capable”, “ communication capable”, “ heterogeneous” and “ programmable” “ things” which

are “ connected through Internet” in such a way that the things can be accessed “ when and

where it is required”

As mentioned earlier, IoT is one of the basic building blocks for making smart systems like Smart

Cities [54, 55], Smart Homes [56], Factory/office automation [57], Intelligent transportation

systems [58] etc. The scale of IoT is increasing rapidly as the availability of low-cost networked

components, and the need for automated monitoring keeps increasing.

In addition to the IoT, we define LSiN as a system having the the following characteristics

• Short-flow heavy: The end user applications running over the system generates mostly

short duration flows1.

• Multiple administrative domain: The system spans across multiple administrative

domains.

• Large scale: The system can potentially scale upto millions of devices.

1In this thesis, we identify a flow as a short-flow which has a life time of less than a minute[37]
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• Multiple interfaces: The used Commercial off-the-shelf (COTS) devices have multiple

interfaces.

• Resource constraint: The used COTS devices are resource constrained in nature.

Therefore, the system heavily utilizes micro-service architecture.

• Use of virtualization: The system relies on virtualization for resource isolation and

micro-service deployment.

Aggregation of resources in an LSiN eco-system provides better utilization of resources and

reduces the “capex/opex ” significantly by employing multiplexing on top of the same physical

hardware. Resource aggregation depends on the types of resources being shared. In this thesis,

we focus only on the following two types of resource aggregation methods; (a) Bandwidth

aggregation and (b) Computational Resource Aggregation.

2.1.2 Bandwidth Aggregation

Traffic demand for LSiN is about to consume 70% of the total users in 2023 [59]. The amount

of bandwidth demand is also expected to increase accordingly. To support bandwidth-hungry

applications running at the end-hosts, bandwidth aggregation is necessary. The majority of par-

ticipating end-host devices of an LSiN are mobile and equipped with multiple interfaces that can

be exploited for bandwidth aggregation. Several bandwidth aggregation methods (See Table 2.1)

at transport layer [60, 61] are developed to exploit capabilities of multiple interfaces. Among the

existing multipath protocols, MP-SCTP [62] uses message-oriented multiple streams, unlike byte-

oriented TCP. The use of multiple streams between source-destination pairs provides reliability

and bandwidth aggregation. However, a MP-SCTP connection can acquire greater bandwidth

than a competing TCP flow over a single bottleneck link. Thus MP-SCTP shows “unfriendli-

ness” towards existing TCP connections. The recent adoption of MP-SCTP named as MSTCP [63]

extends use of multiple streams over Software-Defined Network (SDN) controlled network to

provide fine-grained path control. However, MSTCP also suffers from TCP friendliness issues.

In a LSiN with multiple flows, TCP unfriendliness is very much undesired [64]. On the other

hand, separate congestion window management of MSTCP and MP-SCTP increases out-of-order

delivery [61]. At the same time, path qualities used by streams have a high degree of disparity.

A Data Center Networks (DCN) targeted multipath transport protocol MP-DCCP [65] uses dead-
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Table 2.1: Popular Bandwidth Aggregation Protocols

Protocol Key Benefits Issues

MP-SCTP [62] Uses multiple streams to increase reliability TCP friendliness

MSTCP [63] Stream based congestion control, independent

congestion window for each stream

TCP friendliness, out-of-

order delivery

MP-DCCP [65] Deadline aware delivery, targeted towards data-

center applications

unreliable and out-of-order

delivery [61]

NMCC [66] Ignore friendliness constraints (of LIA) if there

is no competing flow

Not compatible in LSiN

MPTCP [64] Sub-socket oriented multipath to ensure TCP

friendliness and responsiveness to network

changes

Provides better performance

than the rest [69, 70]

MP-Quic [71] User space multi-path using UDP Very recent and partially im-

plemented [69]

lines to schedule the packets among multiple streams to ensure timeliness of each flow. However,

MP-DCCP suffers significantly due to its unreliable delivery when adopted to LSiN. NMCC [66] suf-

fers from compatibility issues as it is developed to exploit capabilities of the “ICN ”/“PSI ”. To

solve existing challenges “MPTCP ” [64] uses multiple sub-flows in the place of multiple streams.

MPTCP ensures TCP friendliness by employing an appropriate congestion control mechanism.

On the other hand, MPTCP explicitly manages responsiveness of the sub-flows in the presence of

network change events, which makes it very compatible for LSiN bandwidth aggregation [67]. A

very recent and popular user space transport layer implementation of MP-Quic can be suitable

for LSiN. However, in this thesis, we use MPTCP since it has a stable source and has been adopted

by the industry [68]. On the other hand, comparison of MPTCP and Multipath Quic [69] reveals

that MPTCP can provide slightly higher throughput. Similar experimental comparison shows

that, MPTCP performs slightly better [70] than MP-SCTP.

a Architecture of MPTCP

Multipath TCP (MPTCP) is standardized by the Internet Engineering Task Force (IETF) [72].

The primary design consideration for MPTCP is to use multiple available interfaces at the
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Fig. 2.1: MPTCP Event Timing

host device to transmit data in concurrent fashion. By the doing so, MPTCP can aggre-

gate bandwidth for better throughput and error resilience. A typical connection establish-

ment scenario for two sub-flow MPTCP is provided in Fig. 2.1. The primary sub-flow is ini-

tiated with a “MP CAPABLE” flag along with standard “SYN ” segment by sender. Upon

receiving “MP CAPABLE + ACK ” from receiver, the sender initiates secondary sub-flow with

“MP JOIN ” segment as shown in Fig. 2.1.

Current Linux kernel implementation of MPTCP [73] consists of three modules: Path Man-

ager, Segment Scheduler, and Congestion Control Mechanism, as shown in Fig. 2.2. The Path

Manager module manages the available sub-flows between the end hosts. Currently, MPTCP

has proposed two choices of path manager:
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Fig. 2.2: MPTCP Architecture

• Full-mesh: This creates N × M sub-flows for a MPTCP connection with sender and

receiver having N and M ports respectively. This is the default path manager.

• ndiffports: This arbitrarily selects k sub-flows among all available sub-flows.

Congestion Control mechanism controls the congestion window for each sub-flow separately.

Several congestion control algorithms like Linked Increase Algorithm (LIA), Opportunistic

Linked Increase Algorithm (OLIA), Balanced Linked Increase Algorithm (BALIA), etc. [74]

have been proposed for MPTCP. Performance improvement of MPTCP by employing conges-

tion control techniques are discussed in [75, 76, 27]. Peng et.al. [26] have shown that a conges-

tion control mechanism design depends on a trade-off between responsiveness towards network

changes and fairness towards other transport layer protocol. According to their work, LIA is

unfair to TCP. On the other hand, OLIA is unresponsive towards network changes. Therefore,

Peng et.al.has proposed a TCP New-Reno based balanced linked adaptation a.k.a BALIA [26],

which balances this trade-off by introducing a normalized responsiveness factor. Once the con-

gestion window size for each path is decided, the segment scheduler takes responsibility for

scheduling segments to the individual sub-flows. “Round-Robin” and “lowest RTT First” are

existing segment scheduling strategies described in the MPTCP standard.

One of the segment scheduler’s core purposes is to reduce the out-of-order packets at the

receiver. Based on our pilot study, we found that, despite different segment scheduler, MPTCP

performance is adversely affected by the increasing disparity in active sub-flow characteristics.
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Ou et.al. [77, 28] have considered to tackle Head of Line (HOL) blocking and proposed a joint

congestion control and segment scheduling mechanism.

However, the existing segment schedulers use Round Trip Time (RTT) based approach to

estimate receiver buffer size, which is not a reliable estimate for a lossy and dynamic network.

Moreover, a segment and its acknowledgment might follow a different path. Therefore, segment

scheduling does not perform well in the case of a dynamic network. In their work, Zhou et.al. [76]

have shown that MPTCP provides near-optimal experience when the active sub-flows have

similar path characteristics. We emphasize this issue and provide a detailed literature survey of

MPTCP problems exclusive to this issue in Section 3.2.

2.1.3 Computational Resource Aggregation

Apart from bandwidth aggregation of communication resources, a large amount of resource

constraint devices in LSiN provide the opportunity to aggregate computational resources (like

CPU, Memory, etc.). The aggregation of resources can provide an alternative computational

platform for time-critical processing. Unlike bandwidth aggregation, which provides resource

aggregation at the end hosts, computational resource aggregation aggregates the entire net-

work’s resources. In this thesis, we denote this platform as in-network or In-network process-

ing (In-network processing) platform. One of the primary objectives of LSiN is to allow embed-

ding of intelligence inside the network. In-network processing helps to achieve that embedding.

“INP ” [78, 79] existed in the literature for a long time. Recent advancemnet of IoT and

“cloud computing” has exploited the use of In-network processing [80, 81]. In this thesis, we

define In-network processing in context of LSiN as follows.

Definition 2.2 In-network processing refers to a distributed system where residual resources of

the networking equipments can be used for data processing.

Use of In-network processing processing can significantly reduce capital expenditure (capex) and

operational expenditure (opex) by multiplexing the existing hardware. In-network processing

creates a resource pool from the residual resources from the platform’s devices to provide compu-

tational services without employing cloud or any expensive technologies. In-network processing

is also capable of providing quick responses to the delay-sensitive end-user applications [82, 83,

84], as it requires less communication overhead to access an In-network processing device than

the traditional server/cloud infrastructure. Services associated with the user applications are
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sub-divided to create “micro-services” to cater resource demands of the user applications. The

“micro-services” are light-weight so that they can be executed inside the resource constraint

LSiN devices. Depending on nature and topological position of the execution devices [85],

In-network processing architectures can be categorized into 3 platforms as shown in Fig. 2.3.
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In-network Processing
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Fig. 2.4: In-network Processing Architecture

Mobile Edge Computing: In the case of Mobile Edge Computing (MEC) [86], micro-services

are executed in the edge devices of a network. An edge device is part of an enterprise

network that is directly connected to host/client devices. In this thesis, we identify MEC

platforms are In-network processing platform where “micro-services” are executed in the

edge devices of the mobile network infrastructure. A service deployed in a MEC platform

can significantly reduce delay and jitter of the end-user application [87] since the service

is deployed as close as possible to the hosts. Therefore, latency-sensitive services are most

suitable for MEC. Additionally, MEC can reduce cloud management costs. Although MEC

can provide significant performance improvement for real-time and mobility dependent

services, it is not capable of handling huge data volume generated by LSiN.

Fog Computing: “Fog computing” [88, 34] extends the computational capabilities of MEC by

including all the possible devices having idle resources. As per the standard [89], fog com-

puting is a system-level horizontal architecture that distributes resources and services of

computing, storage, control, and networking anywhere along the continuum from “Cloud”
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to “Things”, thereby accelerating the velocity of decision making.

Mist/dew Computing: “Mist/dew computing ” [88] extends the capabilities of the Fog com-

puting by including the end host devices (IoT devices). Management of Mist/dew com-

puting platforms requires a highly scalable and dynamic management platform.

In this thesis, we refer to a combined architecture of MEC, Fog, and Mist computing ar-

chitecture, an In-network processing architecture. A pictorial representation of this integrated

architecture is shown in Fig. 2.4, where the end devices can form a mist computing resource

pool, and rest of the network components participate in the Fog computing architecture. The

resource pool of In-network processing has two significant advantages. (a) The services of end-

user applications executing over In-network processing has substantial performance benefits;

(b) The network-related services can be hosted over the In-network processing platforms to im-

prove overall quality of the network service. While advantages of the former concept are easy

to apprehend, the later idea requires an explanation that has been provided in the next section.

2.2 Network Function Virtualization (NFV) / Virtualized Network

Function (VNF)

Initial network developments and researches were to develop protocols to overcome the chal-

lenges. Though very successful, the protocol centric research is not adequate [42] for a modern

rapidly changing network where the network layer requires frequent customization. To ensure

customizability, the system must go through an evolutionary design. “The current Internet

architecture and business relationships that have developed among various stakeholders have

become a serious obstacle to its continuing evolution and growth”2. Network Function Virtual-

ization (NFV) emerged to overcome the rigidity of network infrastructure. The formal definition

of NFV is as follows.

Definition 2.3 NFV utilizes virtualization techniques to deploy network-related services/func-

tions on top of the networking/general-purpose hardware.

2https://www.arl.wustl.edu/netv/main.html
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For example routing3, load balancing4, intrusion detector [90] can be implemented using NFV.

NFV is widely used in “ETSI-MANO ” [91] for deployment of Virtual Network Function (VNF)

over LSiN. The “ETSI-MANO” standard, can be applied for management of network services

over In-network processing platforms. Thus, resource aggregation can improve performance of

the network. The “ETSI-MANO” standard consists NFV orchestrator (NFVO) which maintains

data repositories for possible configurable resources and set of permissible configurations (viz.

NFV Instances, NFV resources and network service catalogue, VNF catalogue respectively)

through VNF Manager (VNFM) module. VNFM interacts with the Element manager (EM)

and NFV for configuration of NFV resource accounting, fault management of NFV and config-

uration of NFV. The physical resources of the infrastructure which are also refereed as NFV

infrastructure (NFVI)), are managed using Virtualized infrastructure manager (VIM). VIM can

be implemented as an agent residing in each devices. Overall management system is connected

to Operations and Business Support Systems (OSS/BSS) which also provides a generic interface

to other management systems. The OSS/BSS becomes useful in presence of a network control

plane (like SDN).

NFV Management and Orchestration
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VNF
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Virtualization Layer
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Hardware
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Fig. 2.5: ETSI MANO Reference Architecture

3https://www.cisco.com/c/en/us/solutions/service-provider/network-functions-virtualization-nfv/

index.html#~virtual-routers
4https://www.sdxcentral.com/articles/contributed/delivering-load-balancing-services-data-center-nfv-technology/

2017/01/
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The “ETSI-MANO ” specification is capable of providing differentiated networking service were

dependent on pre-defined policy the traffic can enjoy multiple networking services. To enable

this, “ETSI-MANO ” facilitates dynamic deployment of NFVs over In-network processing where

the traffic is “steer ”-ed through an appropriate set of NFVs. This technique of distributing

of fine-grained services and traffic steering through the NFVs is termed as Service Function

Chaining (SFC). We define SFC as follows.

Definition 2.4 SFC represents an ordered set of NFVs through which a particular traffic class

needs to be steered.

However, network management over NFV capable In-network processing suffers from man-

ageability issues, mainly due to the following reasons.

Optimal utilization of resources: The differentiated network services implemented using

NFV can not provide optimal services. For example, the optimal bandwidth aggrega-

tion mechanism of a multi-homed device requires the sharing of end-to-end path metrics

to utilize the capacity of the interfaces fully. However, this currently not possible without

the help of an external entity.

Monitoring and controlling issues: Deployment of a VNF for a particular type of network

service requires knowledge of the traffic path. On the other hand, depending on the

deployment location of the VNF, the traffic route may require adjustment to receive the

services provided by the VNF. This close coupling between VNF placement and routing is

presented as a joint optimization problem in existing literarture [92, 93, 94]. Traditional

Simple Network Management Protocol (SNMP) driven network monitoring platforms are

not suitable for providing fine-grained control over such infrastructure [95].

Programmatic traffic handling: Due to an increase in the number of users, deployment of

a LSiN requires support for heterogeneous applications. These heterogeneous applications

require different types of network customization is required for providing support to the

applications. To scale the system and provide rapid deployment, programmatic handling

of traffic is necessary [96].

Dynamic deployment of NFV: Implementation of SFC through the dynamic deployment

of NFVs requires traffic profile-specific dynamic routing, which is difficult to attain in
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traditional destination centric routing mechanisms. Management of the traffic profile-

specific dynamic path management requires a programmable network architecture.

To overcome these challenges NFV very often utilizes the SDN [97, 98] for management

of network5. NFV and SDN are independent of each other, are considered as complementary

technologies 6. Basic concepts of SDN are described in the following section.

2.3 Software-Defined Network (SDN)

Fig. 2.6: SDN Architecture Overview

SDN emerged as an unified network management alternative to the traditional layer oriented

network management techniques [6, 7]. SDN provides freedom from the traditional complex,

static and vendor specific architectures [99, 100, 101] that are prone to mis-configuration [102,

103]. SDN decouples the network operation into multiple planes based on the objectives to

simplify network management. SDN [15] is defined as follows.

5In fact we could not find any paper on NFV that does not employ SDN
6https://datatracker.ietf.org/meeting/93/materials/slides-93-edu-openflow-9

22

https://datatracker.ietf.org/meeting/93/materials/slides-93-edu-openflow-9


Section: 2.3 Software-Defined Network (SDN)

1. Data and control plane separation: Controlling overhead is removed from network

devices. Each device acts as a forwarding element. Forwarding devices form “data plane”.

“Control plane” is defined as the part of the network which is responsible for signalling

traffic and routing.

2. Controller based decision: Control logic is performed by a separate device called “con-

troller”. A controller provides a standard programming interface with the help of a logi-

cally centralized abstract network view.

3. Flow-based decision: Unlike traditional IP based networking SDN uses forwarding

decisions are based on “flow”(s). A “flow” is broadly defined as a set of packets with

similar packet header fields.

4. Programmable network: Functionality of the network can be programmed with the

help of Network Operating System (NOS). It is task of the NOS to interact with underlying

data plane devices.

SDN data plane consists of switches. Switches can communicate with one or multiple controllers.

A typical SDN architecture looks like Fig. 2.6 [104] where controllers act as decision-makers and

data plane executes the decision taken by controllers.

2.3.1 SDN Architecture

Each switch is capable of executing actions (like forward, drop, meter, change header, etc.) on

each packet of a specific “flow”. As per [104], data plane is composed of two sub-plane; (a)

Forwarding plane and (b) Operational plane. The “forwarding plane” consists of a “flow table”.

Flow table contains a list of flow identifiers, and corresponding actions require to be applied

to that particular flow. Whenever a packet enters a switch, the forwarding plane of the switch

executes action(s) given in the flow table. On the other hand, “operational plane” keeps track

of the device states, like available ports, port status, queues, etc. The device states are input

to the “control plane”. The control plane is connected to the forwarding plane via “control

plane south bound API ”. Whenever a new flow enters the system (i.e., “packet in ” event),

the forwarding plane consults the control plane since the flow-table does not contain any action

regarding that particular flow. Similarly, the control plane intervention is requested in case of

topology change. Control plane requires network states for identification of actions in case of
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Table 2.2: Example of Existing Implemented SDN Components

Forwarding plane ForCES [105], OpenFlow [106],Yang Model [107], SNMP

MIBs [108], P4 [109], etc.

Operational plane ARP [110], LLDP [111],

Control plane south bound

API

OpenFlow [112]

Management plane south

bound API

OF-CONFIG [113]

Control plane RCP [11], Routeflow [114], SoftRouter [115] etc.

Management plane OVSDB [116], NETCONF [117], SNMP [118], ForCES [119]

etc.

NSAL XML/JSON, RPC [120], REST [121], CORBA [122], NET-

CONF [117] etc.

East/West API REST [121], XML/JSON, RPC [120], No-SQL [123] etc.

any such events are generated. The network state is a collection of the device states provided by

Device Abstraction Layer (DAL). Therefore, device state change signifies network state change.

Whenever the device state changes, the “management plane” is invoked by the operational

plane through “management plane south bound API ”, as shown in Fig. 2.7. Corresponding

change in the network state inside DAL required due to switch state change is handled by the

management plane. Both management plane and control plane are connected to “application

plane” via “north bound API ”. Application plane can provide interfaces to interact with the

system administrators or policymakers through pictorial and/or programmatic interfaces. The

application plane may require multiple services from the control plane and/or management

plane to provide a uniform interface. Therefore, the north bound interface is managed through

Network Service Abstraction Layer (NSAL). Table 2.2 provides some of the existing literature

for each component of the SDN plane. To maintain scalability, SDN control plane can be

implemented in a distributed fashion also [11, 124, 18]. To implement a distributed control

plane, the control planes of different controllers must interact with each other. To ensure inter-

controller communication, “East/west bound API ” is used.

Based on the physical connection between data plane and control plane, the SDN control
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Fig. 2.7: SDN Architechture

plane can be either “in-band”7 or “out-of-band”8. In case of “in-band” control plane, the

controller/(s) are part of the network topology and uses same communication channels for

sending control messages. On the other hand, “out-of-band” control plane uses dedicated control

channels for communication with the controllers. Although “out-of-band” control plane provides

quick initiation of flows, deployment of such plane incurs high “capex”. Therefore, apart from

“DCN ”, “out-of-band” controllers are rarely used. Use of same communication channel reduces

the cost of deployment from “in-band” control planes, but in the presence of high data traffic, the

7https://en.wikipedia.org/wiki/In-band_control
8https://en.wikipedia.org/wiki/Out-of-band_control
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control plane performance is largely affected [125, 126]. Additionally, the control plane failure

probability also increases in such cases. LSiNs connects a huge amount of user equipment; thus,

expected generated data traffic volume is reasonably high [3]. On the other hand, deployment

of “out-of-band” control plane is practically infeasible for any large scale infrastructure due

to added capex. In this thesis, our proposed solutions are primarily targeted towards the

“in-band” control plane where even single failure can jeopardize the operation of the entire

network. Whereas due to relative reduction in capex in-band control planes are the primary

choice for LSiN. Irrespective of the control plane choices, one of the primary concerns of SDN

is deployment. Since SDN is not compatible with legacy devices and requires SDN supported

hardware, deployment of SDN over an existing large scale platform has always been an issue.

2.3.2 Deployment of Data plane

Based on the internal architecture, data plane devices/switches are categorized into two broad

classes as follows.

Hardware Switch: Eventhough “Hardware switch”es are costly (increases capex), can de-

liver faster packet processing performance by utilizing Ternary Content-Addressable Mem-

ory (TCAM). To reduce cost of deployment capex Panopticon [32, 31] presents a network

hypervisor to enable SDN over legacy devices by deploying hardware switches in the strate-

gic location in the network topology. Hong et.al. [127] have proposed identification of such

strategic loactions to minimize the capex and overall link utilization. This deployment of

SDN switches in the non-SDN legecy platform is termed as “hybrid SDN ” [128]. How-

ever, WPE [129] have shown that, incremental deployment of SDN using “hybrid SDN ” can

comprise secure operation of network. To increase the SDN data plane coverage while

maintaining capex is the objective of low cost hardware switch Zodiac [130],Pica8 [131].

In order to increase performance of the data plane devices, several optimization techniques

have been proposed as listed in Table 2.3. The most critical issue with these low-cost

hardware switches is that they do not configure all “OpenFlow ” supported parameters

(e.g., metering). Whereas, Goto et.al. [135] have shown a significant increase in packet

loss probability and packet processing delay based on a queuing theory-based model if the

packet arrival rate increases.

Software Switch: To overcome the capex problem of hardware switches, data planes are im-
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Table 2.3: Optimizing Techniques for SDN Data Plane Devices/Switches

Existing Works Key Contributions

[132] Proactive flow installation to avoid race conditions in asynchronous in-band

control based on RTT estimation

FastRule [133] Find flow table entry position in “TCAM ” to minimize the update time using

binary indexed tree

[134] Selection of aggregated flows and pre-installation of wild carded flow rule

to reduce controller response time

plemented using software which can multiplex capabilities of the existing general-purpose

hardware. The key aspects of some of the existing software switches are presented in Ta-

ble 2.4. To exploit the reduction of capex, “Swift ” [140] proposed ways to enable SDN

Table 2.4: Existing Software Switches

Existing Works Key Contributions

Lagopus [136] Intel DPDK [137] based OpenFlow1.3 [106] switch, high-performance for

10Gbps bandwidth interface, Use of polling based design instead of inter-

rupt driven architecture, implements lock free queues, batch packet pro-

cessing, carrier grade

Bofus [138] Simplistic design suitable for prototyping, single threaded event handling,

separated packet parsing, role based multi-controller set-up

P4 [109] Programmable data plane, removes header fields and protocol dependence,

uses “P4 ” language for dynamic packet parsing,

OVS [139] very popular, used both in for commercial and test-beds, support for wide

varaity operating systems, user-space implementation, event driven archi-

tecture

control in commodity wifi “AP ” by using a separate Open virtual switch (OVS). Although

the proposed approach employs a non-evasive technique, Swift increases communication

delay and controller communication overhead. In[141], the authors have deployed an OVS

driven framework over COTS devices to enable seamless vertical handover. Their work
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has implemented a communication mechanism between the end host and the control plane

to improve the end host performance. This technique also shows that the evolution of

data plane deployment also requires an evolution in the control plane.

2.3.3 Deployment of Control plane

In order to solve incremental deployment of SDN Fibbing [142] proposed injection of fake

“LSA ” packets to realize SDN control plane on top of a traditional network platform. SNDp [143]

have proposed deployment of SDN supported data plane devices in border nodes of the network

domains to deploy SDN incrementally. However, all these approaches can not ensure fine-grained

flow routing and monitoring. SCMon [144] have proposed a NFV oriented path monitoring

mechanism.

Deployment of full SDN architecture can be useful for attaining fine-grained control but

increases centralized control plane overhead. To avoid the controller becoming a bottleneck,

decentralized control planes have been proposed in [152] where multiple controllers are deployed

to handle issues related to the control plane. Decentralized control plane provides fault re-

silience in the control plane either by maintaining controller replica instances (e.g. ONOS [18],

Ravana [145], B4 [149] )or by partitioning the network into multiple sub-networks (e.g. Onix [44],

Hyperflow [146], Kandoo [124] etc.). Based on the role distribution, decentralized SDN control

planes are categorized into two categories; (a) distributed SDN and (b) hierarchical control plane.

Distributed control planes partition the network into several sub-networks, and the switches of

the same sub-networks are allowed to be controlled by a controller. The control plane decisions

involving multiple sub-networks are taken distributively by the controllers. In such a scenario,

the controller directly connected to a switch is called “local controller” of that switch, where

rest of the controllers are called “remote controllers” of that particular switch. Similarly, all

switches connected directly to a controller are called “local switches”, and rest of the switches

are denoted as “remote switches”. Although distributed control planes are highly fault-resilient

and scalable, the distributed decision making process requires consensus and state consistency

preservation among the controllers, which increase control plane overhead. To reduce the con-

trol plane overhead, hierarchical controllers segregate the control plane information in order of

access frequency. Where management of frequently access/required data (e.g., topology, me-

tering, local routing policy, etc.) are responsibilities of a “leaf controller”, management of less
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frequent information (e.g., global routing policy, quality of service (QoS), etc.) are managed by

the “upper layer controllers”. Key aspects of some of the popular existing decentralized SDN

control planes are listed in Table 2.5. However, most of the existing control plane designs are

primarily targeted for DCN and/or Internet Service Provider Network (ISPN); they are not

suitable for dynamic networks like LSiN.

2.4 SDN Controlled LSiN

Since, existing SDN control planes are not sufficient for LSiN, innovations are required for

network management in LSiN. In this section, we discuss some of the existing works where

the interplay between SDN and LSiN has been exploited to improve end-user performance. We

segregate this discussion into two aspects; (a) Deployment of SDN exploiting the capabilities of

LSiN, and (b) Use of SDN for network control of LSiN deployment.

2.4.1 SDN Deployment Using LSN

Although the deployment of SDN has been discussed in the previous section, in this section,

we want to address some of the approaches of SDN deployment over LSiN. The significant

difference in SDN deployment in managed networks (e.g., service provider networks, DCN) and

LSiN is the deployment of SDN of LSiN is difficult due to the use of heterogeneous resource-

constrained devices and non-standard topologies. Therefore, very few of the existing works

(given in Table 2.6) can exploit the capabilities of LSiN. The exploitation of native NFV support

of LSiN can ease the deployment of SDN. Both the control plane and data plane of SDN can

take advantage of NFV to reduce the capex/opex of softwarizing network. However, executing

NFVs over resource constraint LSiN devices requires failure management. On the other hand,

existing replica based fault resilience used in SDN control plane is not sufficient in case of LSiN

where there exists only a limited number of auxiliary paths between a switch and its controllers.

Finally, the network management of LSiN requires “in-band” control plane due to the lack of a

dedicated path between controllers and switches. Therefore, the data plane performance hugely

impacts the performance of the control plane. This problem alleviates the short flow heavy

traffic pattern of LSiN, where the control plane flow initiation delay significantly affects the

end-to-end performance of the application.
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2.4.2 LSiN Control Using SDN

As the size and users of LSiN increase, variety of traffic also increases in LSiN. Management

of diversified traffic requires fine-grained control, which SDN promises. Although, there are

multiple existing SDN control planes to ensure security [157] for LSiN. DPIDIt [158] proposes the

use of a covert timing channel to ensure secure communication between switch-controllers when

there exist malicious switches. CENSOR [159] provides a flow event monitoring to ensure security

and communication reliability of SDN. Although SDN can provide security, management of

LSiN using SDN is very difficult when the network is dynamic [160]. Whereas, the conversion

of a traditional network into a SDN enabled network is challenging [142]. SIMECA [161] proposes

a lightweight data and control plane deployment for “5G ” enabled LSiN. However, the problem

of controlling a dynamic network still a challenge in LSiN network management. In a dynamic

network, devices can join and/or leave the eco-system rapidly. The dynamic network is prone

to failure; therefore, providing fault-tolerance and partition tolerance is one of the primary

objectives of SDN control plane. Further, ensuring only a little involvement of the system

administrator can reduce the joining overhead of a device, which can significantly help in the

auto-scaling of LSiN.

Apart from the scalability issues, the network management becomes even difficult in presence

of SFC. ElasticSFC [162] and EvoVNFP [163] proposed VNF deployment and traffic steering

through VNFs over a centralized SDN. A few of of the existing methods are given in Table 2.8.

However, SFC management becomes difficult in presence of header modifying VNF. An detailed

analysis regarding the deficiencies of existing SFC management is presented in Section 6.2.

2.5 Summary

This chapter presented a brief overview of the LSiN, NFV/VNF, and SDN architecture and

technologies, which are used in this thesis. We also describe some of the problems related to

our thesis in this chapter. Our primary contribution lies in exploiting these seemingly different

architectures to help each other ensure end-user performance. Our contributions start in the

next chapter.
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Table 2.5: Popular Distributed SDN Control Plane

Architecture Existing Works Key Contributions

D
is

tr
ib

u
te

d

Onix [44] Distributed NIB

ONOS [18] Consistent network state in local ONOS instance, state infor-

mation exchange to maintain global consistency

Ravana [145] Introduces master and slave controller architecture to provide

fault-resilience from controller crash events, slave controllers

maintain replicated copies of their respective master controller,

can not handle an arbitrary number of failures.

Hyperflow [146] Local controller decides flow actions for the switches attached

to them, publish-subscribe framework for instructions to re-

mote switches and state consistency among the controllers.

Elasticon [147] Provides scaling of control plane by ensuring load balancing

to the controller, novel consistency preserving barrier based

hand-off mechanism for dynamic change of controller-switch

association

TOPSIS [148] Proposes an ILP for path finding in case of link failure, pro-

posed ILP finds the least energy consuming path, Implements

periodic path searching for minimization of failure probability

and energy consideration

H
ie

ra
rc

h
ic

al Kandoo [124] 2-layer hierarchical design, store frequent event in “leaf con-

troller”, less frequent informations are kept in “upper layer

controllers”.

B4 [149] Each Wide area network (WAN) site is managed by a “leaf con-

troller”, “root controller” provides traffic engineering services,

“leaf controller”(s) are connected to each other by gateways

CuttleFish [150] Identification of frequently accessed state information and dy-

namic off-loading of states

HiDCoP [151] 3-layer hierarchical design, “middle layer” is used for manag-

ing communication between “leaf controllers” through gateway

management, uses master-slave controller fail-over mechanism
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Table 2.6: Deployment of SDN using LSiN

Existing

Works

Key Contributions

[153] distributed SDN over Information centric network (ICN)

MEC-SDN [154] Proposed an hierarchical SDN control plane where the “leaf controllers” are

executing in the mobile edge devices

SDN-IoT [155] Proposed NFV based architecture for deployment to realize SDN enabled

gateways

“Barista ” [98] distributed SDN controller brewing framework, distributed and selective

event handlers for each component by using NFV

BLAC [156] Controller technology agnostic load balancing framework

Table 2.7: Management of LSiN using SDN

Existing

Works

Key Contributions

DPIDIt [158] State model for switch-controller association and vulnerabilities, proposes

use of covert timing channel for switch-controller communication

CENSOR [159] Proposes security and communication reliability over SDN enabled IoT

[160] Experimentally compared performance of topology discovery mechanisms of

existing SDN control planes over a dynamic LSiN, they have found that,

change of topology events introduces huge amount of jitter in the end-user

application

Fibbing [142] Partial SDN control over traditional network devices, lacks fine-grained con-

trol

SIMECA [161] Proposes a lightweight data and control plane for “5G ” enabled edge cloud
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Table 2.8: Management of LSiN using SDN under SFC

Existing Works Key Contributions

ElasticSFC [162] VNF deployment and bandwidth allocation to enable auto scaling using

centralized SDN over single administrative domain.

EvoVNFP [163] Taboo search for VNF placement, single controller, single domain

[164] Multi objective optimization based on link load and communication delay,

heuristic for single domain

BFPR [165] centralized SDN, Datacenter network, Bloom filter to encode path of each

packet for path tracing, in-network packet header modification,

[166] Distributed path optimization over multiple administrative domain, Ser-

vice provisioning by utilizing domain to node abstraction
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Chapter 3

SDN-MPTCP: MPTCP

Sub-Flow Management Over

large scale IoT network (LSiN)

3.1 Introduction

Modern day devices are usually equipped with multiple hardware interfaces that can be lever-

aged to satisfy the demand for increasing traffic by aggregating the available bandwidth at all

interfaces. Multipath TCP (MPTCP) [72] has been proposed in the literature as an end-to-end

protocol for data-center and enterprise networks with the availability of multi-interface net-

working devices, which provides the support for bandwidth aggregation via concurrent usage of

different interfaces by creating multiple sub-sockets. MPTCP initiates multiple sub-sockets via

different interfaces to aggregate the bandwidth.

Has been published in

[T.1] Subhrendu Chattopadhyay, Sukumar Nandi, Samar Shailendra, and Sandip Chakraborty. “Primary Path

Effect in Multi-Path TCP: How Serious Is It for Deployment Consideration?” In: Eigthteenth ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). 2017, p. 36

[T.2] Subhrendu Chattopadhyay, Samar Shailendra, Sukumar Nandi, and Sandip Chakraborty. “Improving

MPTCP Performance by Enabling Sub-Flow Selection over a SDN Supported Network”. In: Fourteenth Inter-

national Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). 2018
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The current Linux kernel implementation of MPTCP [73] consists of three major modules:

Path Manager, Segment Scheduler, and Congestion Control Mechanism. The Path Manager

module manages the available sub-flows between the end hosts. Currently, MPTCP has pro-

posed two choices of path manager. (a) Full-mesh path manager creates sub-sockets for

between all available pair of interfaces. (b) ndiffports selects k sub-flows among all available

sub-flows, where k is a user defined parameter. MPTCP Congestion Control module man-

ages congestion window for each sub-flow separately. Several congestion control algorithms

like Linked Increase Algorithm(Linked Increase Algorithm (LIA)) [75], Opportunistic Linked

Increase Algorithm(Opportunistic Linked Increase Algorithm (OLIA)) [27], Balanced Linked

Increase Algorithm(Balanced Linked Increase Algorithm (BALIA)) [64] etc. [74, 167] have been

proposed for MPTCP. Once the congestion window size for each path is decided, segment

scheduler takes responsibility of scheduling segments for the individual sub-flows. Round-Robin

and “lowest RTT First” are the two available segment scheduling strategies described in the

MPTCP standard.

The primary task of a segment scheduler is to reduce out of order packets at the receiver.

However, in a network, path characteristics (such as bandwidth, delay, loss rate, jitter etc.) of the

underlying sub-flows can be significantly different as well as time varying. Differences in end-to-

end path characteristics of each active sub-flow may lead to an increase in out of order segments

delivered at the receiver. Li et.al. [168] have tried to limit receiver buffer in order to decrease out

of order segment delivery by employing network coding. However, it has been found that, their

implementation violate MPTCP basic principle of do no harm objective [169]. Whereas, Guo

et.al. [170] and Lim et.al. [171] focuses on the segment scheduling mechanism to avoid out of order

segment generation. However, segment scheduling alone can not reduce out of order delivery

and may lead to Head of Line (HOL) blocking at the receiver side [25]. HOL blocking increases

delays and packet drops. So, number of spurious retransmission also increases. Therefore, Cao

et.al. [25] proposes a receiver buffer aware path selection mechanism. However, like most of

the transport layer protocols, their implementation uses Round Trip Time (RTT) as a measure

of path characteristics. In case of MPTCP, one segment and its acknowledgment might follow

different paths. So, RTT is not a faithful estimate of a path at sender side. Therefore, relying

on simple RTT driven path characteristics leads to severe performance degradation in MPTCP

performance. In this work, we provide a short experimental study to show that, MPTCP

36



Section: 3.2 Related Works

provides near-optimal experience, when the active sub-flows have similar path characteristics,

as in those cases, RTT provides a good estimation. However, the difference in delay, effective

bandwidth, and loss rate can significantly increase the number of out of order segments at the

receiver [172]. Therefore, we argue instead of relying on the RTT, MPTCP must rely on end

to end path characteristics. Based on the end to end semantics, MPTCP path management

module must choose a set of sub-flows which can avoid HOL blocking by reducing out of order

delivery [173].

Therefore, we propose SDN-MPTCP, a Software-Defined Network (SDN) [15] aided intelligent

dynamic path management scheme. SDN provides a logically centralized view of network topol-

ogy parameters to the application protocols by periodically obtaining statistics from all its data

plane devices [10]. This makes it feasible to optimize end-to-end performance of MPTCP by

selecting a suitable active set of MPTCP sub-flows. We consider a SDN controlled LSiN, where

network switches are connected with a SDN controller that can estimate sub-flow characteristics

based on end-to-end path properties. As SDN cannot obtain information about receiver buffer

evolution as well as prediction of aggregated MPTCP throughput based on the sub-flow proper-

ties, building up a SDN aided path manager application is non-trivial. Therefore, in this work,

we propose an estimation mechanism to predict the MPTCP aggregated throughput for a set of

sub-flows with their end-to-end path characteristics (latency, available bandwidth, etc.). Unlike

prior works our proposed model provides aggregated throughput for a given set of sub-flows.

Consequently, we take a two-stage approach in this work. We formulate an irreducible and ape-

riodic Discrete Time Markov Chain (DTMC) to model the aggregated throughput prediction of

a MPTCP flow with the end-to-end path characteristics of a given set of sub-flows (Section 3.5).

Based on the predicted throughput from the estimator model, we develop an optimization frame-

work to find out the optimal set of sub-flows that can maximize the aggregated throughput for

a given MPTCP flow (Section 3.6). The SDN controller executes this optimization framework

and schedules the sub-flows accordingly. Finally, we evaluate the performance of the proposed

mechanism and compare it with various baselines.

3.2 Related Works

Initial design and development of MPTCP targets aggregation of bandwidth via multiple inter-

faces[174]. Despite of having significant potential, deployment of MPTCP is not very popular
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till date, apart from some available SDN enabled research testbeds [175, 176]. Mehani et.al. [177]

have found that only 0.1% of their gathered service domains uses MPTCP end points. According

to them, two major reasons behind low adaptation of MPTCP are, (a) unreliable performance,

and (b) network management overheads. Performance improvement of MPTCP by employ-

ing congestion control techniques are discussed in [75, 76, 27]. Peng et.al. [26] have shown

that performance of MPTCP is guided by a trade-off between TCP friendliness and respon-

siveness towards network changes. They have proposed a congestion control technique (named

“BALIA”) which can balance this trade-off criteria. Ou et.al. [77] have considered to tackle

HOL blocking and proposed a joint congestion control and segment scheduling mechanism. In

another work [28], they have proposed a segment scheduling mechanism to avoid HOL blocking.

However, the existing segment schedulers uses RTT based approach to estimate receiver buffer

size which is not a good estimate for a lossy and dynamic network. Moreover, a segment and its

acknowledgement might follow different path. Therefore, segment scheduling does not perform

well in case of dynamic network.

3.3 Preliminary Experiments

In order to show the insufficiency of the RTT driven path management we conduct some pilot

study experiments. Our experimental setup is built over “Mininet” network emulator platform

where two hosts are connected via two parallel paths, Path A and Path B, through two different

interfaces of each host. The end hosts as well as all the network switches in the path use Linux

based operating system, and we use Linux tool iperf to generate the network traffic. The Linux

kernel at the hosts are configured with MPTCP V0.901. All experiments are carried out for two

cases – one by selecting Path A as the primary sub-flow and the other with Path B as the primary

sub-flow. We define a path as a primary sub-flow if the connection is initiated through that

particular path. The bandwidth, delay and loss rate for Path B is kept constant at 10 Mbps, 15

ms and 0%, respectively. We perform three experiments by varying the parameters {bandwidth,

delay, loss rate} for Path A – (a) Exp 1 (delay difference): {10Mbps, 250ms, 0%}, (b) Exp

2 (bandwidth difference): {5Mbps, 15ms, 0%}, and (c) Exp 3 (loss rate difference):

{10Mbps, 15ms, .5%}.

1https://www.multipath-tcp.org
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3.3.1 Effect on Transport Layer Throughput
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Fig. 3.1: Effect of Delay (Exp 1)
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Fig. 3.1 represents the difference in throughput when there exists a significant delay differ-

ence between the primary sub-flow and secondary sub-flow. The overall throughput reduces

significantly in case of Primary Path A (slower path). The results also show that, the number of

Out of order segments (OOS) generated are significantly higher in case of slower primary sub-

flow (i.e. Path A). MPTCP retransmission due to OOS is handled by resending the segments via

the same path for two times, and after that, the segment is assigned to a different sub-flow. A

retransmission due to three duplicate acknowledgement affects severely in case when the primary

sub-flow is Path A. The primary sub-flow takes longer time to converge to the highest attainable

bandwidth due to higher RTT. Retransmission in primary sub-flow due to OOS further worsen

the convergence. This phenomenon is absent in the case when the primary sub-flow is Path B,

as generation of OOS can be quickly mitigated by retransmitting the segment via that sub-flow

due to less end-to-end delay. Due to this behavior, the selection of primary sub-flow is more

significant in case of delay deference, even for longer flows. Fig. 3.2 shows the impact of flow

duration on the MPTCP performance for the three experimental scenarios. As flow duration

increases, delay difference has more impact on the throughput difference based on the primary
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Fig. 3.2: Effect of Flow Duration

sub-flow selection.
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In case of a bandwidth difference in between the primary and the secondary sub-flow, we

see a similar effect (Fig. 3.3). This result also suggests that choosing a higher bandwidth path

as the primary sub-flow can significantly reduce the generation of OOS. Fig. 3.4 shows the

results when primary sub-flow has higher loss rate than that of secondary sub-flow. The results

suggests that, choosing a high loss rate path as the primary sub-flow can reduce the overall
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Fig. 3.5: Throughput variation

throughput. Further from Fig. 3.2, we observe that the impacts of bandwidth difference and

loss rate difference are more in case of short duration flows.

3.3.2 Impact of Parametric Difference Between Two Paths

Next we analyze how the delay, bandwidth and throughput difference between the two paths

impact the MPTCP throughput based on primary sub-flow selection. Fig. 3.5 represents the
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change in aggregated throughput with the change in delay, bandwidth and loss rate difference

between the two paths. From these figures, it is clear that the increase in variability between

the two paths have significant impact on the throughput performance based on the selection of

primary sub-flow. The impact is significant under certain cases. For example, in case of loss

rate (Exp 3), selecting a low loss rate path as the primary sub-flow can improve the MPTCP

throughput as high as 60%, as we can observe from Fig. 3.5.

3.3.3 Summary of Observations

From the experimental results, we observe that a primary sub-flow with lower bandwidth, higher

delay and/or lower loss rate gives rise to OOS at the receiver (Fig. 3.1, Fig. 3.3 and Fig. 3.4).

Such an increase in OOS increases the number of “triple-duplicate ACK ”s at the sender causing

the reduction in the congestion window. This unduly reduction in congestion windows adversely

affects the aggregated throughput of the network. The main reason behind the increase in OOS

is, traditional RTT based congestion control algorithms are not suitable for disparate path

characteristics between sender and the receiver.

It can also be observed from Fig. 3.2 that the effect of delay disparity between paths is more

detrimental than the effect of bandwidth disparity between paths. This is due to the very nature

of congestion control algorithm and its direct dependence over the RTT. Moreover, the effect of

sub-flow selection is visible for both the short flows as well as the long flows. In the next section

we provide a formal model to capture this sub-flow selection procedure.

3.4 Network and System Model

The objective of this work is to develop a solution for dynamic sub-flow management while

considering end-to-end path characteristics. The problem is to identify a set of sub-flows from

all available paths between a source-destination pair of a MPTCP flow, such that (i) the overall

MPTCP aggregated throughput is maximized, and (ii) the receiver buffer size is always limited

by a certain threshold to avoid HOL blocking problem. However, obtaining sub-flow charac-

teristics (like receiver buffer evolution) under a dynamic scenario is non-trivial over a complete

distributed network management framework, and therefore we leverage on SDN based network

management concept in this work. We consider a centralized SDN controlled LSiN, where the

network switches are connected with a SDN controller. The controller can estimate sub-flow
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characteristics based on end-to-end path properties.

Although a SDN controller can monitor end-to-end path characteristics like latency and

available bandwidth, obtaining the information about receiver buffer evolution as well as the

prediction of aggregated MPTCP throughput based on the sub-flow properties are non-trivial.

Therefore, we need to build up an estimation mechanism to predict MPTCP aggregated through-

put for a set of sub-flows with their end-to-end path characteristics (latency, available bandwidth

etc.). To the best of our knowledge, prior works on MPTCP do not model aggregated through-

put for a given set of sub-flows. Consequently, we take two-stage approach in this work as

follows.

1. We formulate an irreducible and aperiodic DTMC to model aggregated throughput pre-

diction of a MPTCP flow with end-to-end path characteristics of a given set of sub-flows

(Section 3.5).

2. Based on predicted throughput from the estimator model, we develop an optimization

framework to find out an optimal set of sub-flows that can maximize aggregated through-

put for a given MPTCP flow (Section 3.6). The SDN controller executes this optimization

framework and schedules the sub-flows accordingly.

3.4.1 Network and System Model

We assume a network as a undirected graph G = {V,E}, where vertices represent network

switches and hosts, and edges represent physical connectivity between them. Let S be the set

of all node disjoint sub-flows between a pair of sender-receiver. A MPTCP flow is a collection of

sub-flows; therefore, we represent S = {S1, S2 . . . Sn}, where Sk represents kth sub-flow, and n

represents the total number of node-disjoint sub-flows between the corresponding sender-receiver

pair. A sub-flow Sk = {vk1 , vk2 . . . vknk
} is equivalent to an ordered set of vertices, where each

vki ∈ V such that vk1 , v
k
2 . . . v

k
nk

forms a path of hop count of nk between the sender-receiver pair.

As a consequence, we use the terms “path” and “sub-flow” interchangeably, where “sub-flow”

represents a MPTCP connection whereas “path” indicates the underlying network path between

the sender-receiver pair. Let ekij ∈ E denotes an edge between two nodes vki and vkj . Let Bkij and

Lkij represent bandwidth and loss rate of ekij . We further assume that propagation and queueing

delay of ekij follow independent normal distribution with mean Dk
ij and standard deviation Θk

ij .
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We consider that end-to-end path characteristics of Si can be represented by following

three tuples: qi = {bi, P ri(X = r), li}, where bi and li represent bandwidth and segment

loss probability of Si, respectively. Note that in this section, we use terms “packet” and

“segment” interchangeably. Pri(X = r) represents probability mass function (pmf) for RTT

of Si being r. For the sake of simplicity we assume that, ∀i : Pri(X = r) follows inde-

pendent truncated normal distribution with mean µi and standard deviation σi. Therefore,

Pri(X = r) = Ψ(µi, σi, 0,∞;X = r) where Ψ(X = r;µ, σ, a, b) represents cumulative probabil-

ity density function of a random variable X having mean as µ and standard deviation σ such

that ∀X : a ≤ X ≤ b. By using addition rule of normal distribution, we get µi ≈ 2
∑
jk

(Di
j,k) and

σ2
i ≈ 2

∑
j,k

(Θi
jk)2. However, we use notation Qi = {bi, li, µi, σi} for easy representation. Here,

Qi signifies path characteristics of Si. For ease of representation we use ~Q = {Qi}.

Each sub-flow maintains a separate congestion window. The size of congestion window of

Si at time t is represented as wi(t). We use T and R to signify steady state throughput and

receiver buffer size of MPTCP connection between intended sender-receiver pair. Our objective

is to estimate value of T andR in terms of Qi that represents the underlying path characteristics

of the MPTCP sub-flows for a sender-receiver pair.

3.5 Impact of MPTCP Sub-flow Selection on Throughput

Performance – An Estimation Model

In this section, we use an irreducible and aperiodic DTMC model to estimate values of aggre-

gated steady state throughput (T ) and receiver buffer size (R) based on path characteristics

qi. Considering n number of possible sub-flows {S1, S2, ..., Sn), states of a MPTCP flow can

be represented through the congestion window across those n different sub-flows. Therefore, a

state in the system can be represented as {w1, w2, ..., wn} where wi is the congestion window

value of the sub-flow Si. We make the following assumptions,

• The change in congestion window of a path is triggered based on a discrete event system

by observing corresponding RTT of the underlying path.

• The congestion window updates at different paths are mutually independent and identi-

cally distributed.
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Fig. 3.6: Markov Model for a MPTCP with 2 Sub-Flows

Therefore, congestion window evolution of ith sub-flow of a MPTCP flow can be repre-

sented as a stochastic process wi(t). Accordingly, we develop a n dimensional irreducible and

aperiodic discrete time “Markov” model, where a state of the system is represented by n-

tuple {w1, w2, ..., wn}, where each wi ∈ [2,Wmax], Wmax being the maximum congestion widow

value. An example DTMC for n = 2 is shown in Fig. 3.6. The state transition is allowed

when a segment is either received successfully or it is lost in the transmission. Transition

triggering events are handled on a sub-flow level. Therefore, we assume that state transition

triggered by sub-flow k alters only kth-element of the state variable. We term this property

of our model as “single path transition” property. Let us denote the state transition probabil-

ity from state (w1, · · · , wr, · · · , wn) to (w1, · · · , w′r, · · · , wn) by P(w1,··· ,wr,··· ,wn);(w1,··· ,w′r,··· ,wn).

Without any loss in generality we use notation P(wr;w′r)
to indicate the transition probabil-

ity P(w1,··· ,wr,··· ,wn);(w1,··· ,w′r,··· ,wn). All popular MPTCP congestion control algorithm (like

BALIA [26]) adapts congestion window size of a sub-flow based on RTT estimation along that
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sub-flow. Therefore state transition probabilities of the proposed DTMC depend on RTT esti-

mation. At this stage we ask this question: What can be RTT estimate (ri) at path (sub-flow)

Si, that can trigger a change of congestion window size to w′i from wi?

3.5.1 Estimation of RTT for Congestion Window Size Adaptation

Although any MPTCP congestion control algorithm can be used for our modeling purpose,

we use BALIA [26] as a representative case. As shown in [64], BALIA congestion control

algorithm can be represented using the family of equations given by sub-eq. (3.1a) (for successful

segment transmission) and sub-eq. (3.1b) (for a transmission failure), where Yi(t) = wi(t)
ri

and

αi(t) =
max

k
{Yk(t)}

Yi(t)
. In this case, ri represents measured RTT of Si.

w′i =


Yi(t)

ri(
∑

k Yk(t))
2

(
1+αi(t)

2

)(
4+αi(t)

5

)
Success (3.1a)

wi(t)
2 min{αi(t), 1.5} Failure (3.1b)

Based on above estimation of congestion window size as given for BALIA congestion control

algorithm, our objective is to find out ri that can trigger a congestion window size of w′i.

Let
∑
k

Yk(t) = (C−i(t) + Yi(t)) and max
k
{Yk(t)} = Ym(t). Therefore, αi(t) = wm(t)ri

rmwi(t)
. So,

sub-eq. (3.1a) simplifies to sub-eq. (3.2a) and sub-eq. (3.1b) reduces to sub-eq. (3.2b). From

this point onwards, we use wi,w
′
i and C−i instead of wi(t), wi(t+ 1) and C−i(t) for notational

simplicity.

w′i =


wi

r2i

(
C−i+

wi
ri

)2

(
4r2mw

2
i+5riwiwmrm+r2iw

2
m

10r2mw
2
i

)
(3.2a)

wi

2 min{wmri
rmwi

, 1.5} (3.2b)

By solving sub-eq. (3.2a), we get

ri =
5

4

(
−wmwirm
2r2mwiw

′
i

+ C−iwi

)

±

√((
wmwirm
2r2mwiw′i

− 2C−iwi

)2
− 8

5

(
w2

m

10r2mw
′
ii
− C2

−i

)) (3.3)

Let ~W = {w1, w2, ...wn} and ~R = {r1, r2, ..., rn}. From Eq. (3.3), we can observe that ri is a

function of ~W , ~R and m. Note that here Sm is the path for which Yk(t) is maximum. we denote

ri = f(m, ~W, ~R) where f(.) is the corresponding function as given in Eq. (3.3). We consider
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two cases – (i) Yk is maximum for the current path Si under consideration (max{Yk} = Yi, and

m = i), and (ii) Yk is maximum for some other path Sm such that m 6= i. Therefore,

ri =

f(i, ~W, ~R) if max{Yk} = Yi

f(m, ~W, ~R) otherwise

(3.4)

By substituting m = i in Eq. (3.3), we derive Eq. (3.5).

f(i, ~W, ~R) =
wi ±

√
w2
i + 12wi

5w′i
+ 1.6

2C−i
(3.5)

Similarly, sub-eq. (3.2b) can be simplified also as follows.

ri =


2w′irm
wm

w′i ≤
3wi
4

and max{Yk} = Ym (3.6a)

0 ≥ ri <∞ Otherwise (3.6b)

Now we can argue that given ~W and ~R, the required RTT ri can be calculated as per Eq. (3.4),

sub-eq. (3.6a) and sub-eq. (3.6b). Therefore, we proceed for estimating state transition proba-

bilities of the proposed DTMC based on this RTT estimation.

3.5.2 Estimation of State Transition Probabilities

According to Eq. (3.4) and sub-eq. (3.6a), transition events are:

1. SSi: If the segment is delivered successfully via Si, there can be two possible cases as

follows:

(a) SSmaxi
: This transition event is triggered if m = i, that is max{Yk} = Yi for

path Si after successful delivery. As per the definition of Yk, Yk ∝ 1
ri

. Therefore,

max{Yk} = Yi represents min{rk} = ri.

(b) SSmaxm : If m 6= i, then ∃m ∈ {1, 2, ..., i−1, i+ 1, ..., n} : max{Yk} = Ym. This event

is complement event of SSmaxi
.

2. SLi:If the segment is delivered successfully via Si, there can be two possible cases as

follows:

(a) SLmaxi
: This transition event is triggered if there is a segment loss reported, and

max{Yk} = Yi. In this case, according to sub-eq. (3.6b), the value of this event does
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not depend on ri. Therefore, we consider 0 ≥ ri ≥ ∞. In such cases only allowed

sub-event is w′i = 3wi

4 . To signify this event, we use an indicator variable Γ(wi, w
′
i)

as given in Eq. (3.7).

Γ(wi, w
′
i) =

1 if 4w′i = 3wi

0 Otherwise

(3.7)

(b) SLmaxm
: If m 6= i, then ∃m ∈ {1, 2, ..., i − 1, i + 1, ..., n} : max{Yk} = Ym. This

event is complement event of SSmaxi
. Whenever this event is triggered, transition of

w′i >
3wi

4 , becomes impossible (see, sub-eq. (3.6b)). Therefore, we only consider here

sub-event w′i ≤ 3wi

4 . To notify this sub-event, we use a separate indicator variable

∆(wi, w
′
i) as given in Eq. (3.8).

∆(wi, w
′
i) =

1 if 4w′i ≤ 3wi

0 Otherwise

(3.8)

Now from the above set of events, we can say pr(SLi) = li and pr(SSi) = (1− li), where pr(Ei)

denotes the probability of event Ei. Based on the set of events, we simplify the transition

probability P(wi;w′i)
by repeatedly applying law of total probability as given in Eq. (3.9).

P(wi;w′i)
= pr(SSi)pr(w

′
i|SSi) + pr(SLi)pr(w

′
i|SLi) (3.9)

where,

pr(w′i|SSi) = pr(w′i|SSmaxi
)pr(SSmaxi

) + pr(w′i|SSmaxm
)pr(SSmaxm

)

and,

pr(w′i|SLi) = Γ(wi, w
′
i)pr(SLmaxi) + ∆(wi, w

′
i)pr(w

′
i|SLmaxm)pr(SLmaxm)

It can be noted from sub-eq. (3.2b) that with BALIA, new congestion window (w′i) should

be less than or equals to 3
4 th of original congestion window (wi) when a segment loss occurs.

The indicator variable Γ(wi, w
′
i) ensures this and accordingly we compute pr(w′i|SLi). Now

both the events SSmaxi and SLmaxi are equivalent to the event of ith sub-flow having minimum

ri. According to our conjecture, ∀i : Pri(X = r) are independent and identically distributed.

Therefore, pr(SSmaxi
) = pr(SLmaxi

) = Z reduces to Eq. (3.10).

Z =

∫ ∞
r=0

Pri(X = r)
∏
k 6=i

Prk(X < r)dr (3.10)
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Similarly, pr(SSmaxm
) = 1− pr(SSmaxi

) and pr(SLmaxm
) = 1− pr(SLmaxi

) and other condi-

tional probabilities can be calculated as follows – (a) pr(w′i|SSmaxi
) = pr(X < f(i, ~W, ~R)), (b)

pr(w′i|SSmaxm
) = pr(X < f(m, ~W, ~R)), and (c) pr(w′i|SLmaxm

) = pr(X <
2w′irm
wm

).

This way we obtain transition probability from state (w1, w2, ..., wi, ..., wn) to state (w1, w2, ..., w
′
i, ..., wn)

(P(wi;w′i)
) based on Eq. (3.9).

3.5.3 Estimation of Average MPTCP Throughput

We now compute average throughput of a MPTCP flow considering the data transfer rate

through all its sub-flows. Let us consider that, ~Π =
[
π(2,2,...2), π(2,2,...,2,3), . . . , π(Wmax1

,Wmax2
,...,Wmaxn )

]
be the stationary probability distribution vector of states for the given DTMC. Therefore, by

using “Markovian property”, stationary distribution of this DTMC can be calculated as per the

following system of equations.

πw1,...,wn =

Wmax1∑
k1=2

πk1,...,wnP(k1;w1) + . . .+

Wmaxn∑
kn=2

πw1,...,knP(kn;wn) (3.11)

We also have the normalization equation from the DTMC, which can be represented as follows.

Wmax1∑
w1=2

Wmax2∑
w2=2

...

Wmaxn∑
wn=2

πw1,w2...wi,...,wn
= 1 (3.12)

Let us define a “round” as interval between two successive state transition events. If the sys-

tem is currently under state (w1, w2, ..., wn), then the total number of segments that can be sent

is calculated as
n∑
j=1

wj . Therefore, average number of segments sent by a state (w1, w2, ..., wn)

is π(w1,w2,...,wn)

n∑
j=1

wj . Consequently, the average number of segments that can be sent in

one round (denoted as AvgC( ~Q) for a given configuration ~Q = {q1, q2, ..., qn}) is expressed as

Eq. (3.13).

AvgC( ~Q) =
∑
∀wi

π(w1,w2,...,wn)

n∑
j=1

wj

 (3.13)

Now we have to compute average time for a “round”. Average time for a “round” includes

(a) total data transmission time (time to transmit AvgC( ~Q) number of segments), (b) time

to receive “acknowledgments” for the transmitted segments, and (c) time for “retransmission”

of lost segments. We assume a x-“duplicate acknowledgment” scheme, where a segment is
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“retransmitted” if the sender receives x number of consecutive “duplicate acknowledgments”.

Assume that segment size is ss and acknowledgment size is as. Then for a given ~Q, average

time required for one “round” (AvgT ( ~Q)) is computed as follows.

G( ~Q) =max
x

{
((wavgs + x)× ss)

bs
+ ρ

wavgs × as
bs

}
(3.14)

In this case wavgs represents average number of segments sent by a MPTCP sub-flow Ss and ρ

is RTT of that sub-flow.

Therefore, using Eq. (3.13) and Eq. (3.14), average throughput is calculated as,

AvgTh( ~Q) =
AvgC( ~Q)

G( ~Q)
(3.15)

3.5.4 Estimation of Receiver Buffer Size

The receiver buffer occupancy increases mainly due to out of order segment delivery. We define

segment segi as a “key” segment if all other segments segj : j > i reach to the destination before

segi. All segj must wait at the receiver buffer for the key segment, in order to ensure reliable

delivery. Therefore, occupancy of receiver buffer depends on the event that segj is successfully

delivered before segi. We denote segmaxi as the segment which stays in the queue for longest

time for a key segment segi. So, receiver buffer length (RL) can be expressed as Eq. (3.16),

where ∆(segk, segl) denotes arrival time difference between segk and segl.

RL = |∆(segmaxi , segi)| × throughput (3.16)

Subsequently, we can approximate average receiver buffer length (ERL( ~Q)) for a given configu-

ration ~Q based on [178]:

ERL( ~Q) ≈ (max
k

(rk)−min
k

(rk))AvgTh( ~Q) (3.17)

3.5.5 Model Verification

To verify correctness of our proposed DTMC based model, we have compared average through-

put and receiver buffer length with emulation results obtained using “Mininet” [49]. The test

topology is given in Fig. 3.7. All switches given in the topology (Sw1-Sw6) are SDN switches.

Emulation links are configured to have 20ms delay. Path S1 and S2 have bottle neck bandwidth
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Fig. 3.7: Topology Structure for Experiments
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Fig. 3.8: Throughput Comparison

of 8mbps and S3 is configured with 18mbps of bandwidth. Results are obtained for two different

loss rates (0% and 5%). Fig. 3.8 shows effect of maximum congestion window size with average

throughput for two and three active sub-flows. Fig. 3.9 represents effect of maximum congestion

window size on length of the receiver buffer. We observe that our proposed model can predict

behavior of MPTCP reasonably well as the average prediction error of the proposed model has

been found as 9.19%. Therefore, in the next section, we present the sub-flow scheduling problem
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Fig. 3.9: Receiver Buffer Size Comparison

based on this estimation model.

3.6 Sub-Flow Selection based on Performance Estimation from

DTMC

The objective of sub-flow selection problem, for a given MPTCP connection and a set of all

available sub-flows S = {S1, S2 . . . Sn}, is to select a subset of S for optimizing the average

throughput. However, optimal average throughput can increase receiver buffer size, which in

turn might deteriorate overall performance. Therefore, sub-flow selection problem must limit

receiver buffer size to a certain threshold (RLmax). Length of the receiver buffer length de-

pends upon congestion control algorithm and scheduling mechanism. Therefore, in the previous

section, we propose a mathematical model to estimate receiver buffer length in Eq. (3.17) in

presence of BALIA congestion control. The proposed model also provides average throughput

(Eq. (3.15)). Based on the estimated values, sub-flow selection problem can be formulated as a

mixed integer linear program (MILP).

Given S, power set of S (℘(S)) provides all the possible configurations. Let, ~I be an indicator

vector of all possible sub-flow configuration such that ~I = {∀k ∈ ℘(S : Ik)}. We define Ik ∈ Rn
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for a given configuration k ∈ ℘(S) as per Eq. (3.18).

Ikj =

1 if Sj ∈ k

0 otherwise

(3.18)

Let, ~Q = {q1, q2, ..., qn} be path quality matrix of all available sub-flows such that qi =

{bi, li, µi, σi}. Therefore, effective path quality matrix of only active sub-flows (Xk) for kth con-

figuration can be expressed asXk = ~Q◦Ik where ◦ denotes the Hadamard product (element wise product)

between two matrices of same dimension. We denote the average throughput of all active

sub-flows in kth configuration as AvgTh(Xk). AvgTh(Xk) can be calculated using Eq. (3.15).

Eq. (3.17) can be used to calculate estimated receiver buffer length (RL(Xk)) for the k-th con-

figuration. Now we can represent optimal sub-flow selection problem as an optimization problem

as given in Eq. (3.19).

max
k

AvgTh(Xk)

subjected to, RL(Xk) ≤ RLmax
(3.19)

This optimization problem is equivalent to “0-1 knapsack problem” [179], where AvgTh( ~X) and

RL( ~X) can be treated as the capacity of the knapsack. 0-1 knapsack problem is known to be

NP-hard. Therefore, we propose a greedy heuristic Algorithm 1 to solve Eq. (3.19).

We define effective bandwidth of a sub-flow as bi(1− li). Our proposed heuristic should be

able to increase effective bandwidth. However, as per Eq. (3.17), the length of receiver buffer

inversely proportional to effective bandwidth. Eq. (3.17) also reveals that, with increase in

RTT, delay between key segment and the rest of segment increases. Therefore, we can conclude

that RTT of a sub-flow is directly proportional to the length of receiver buffer length. So,

the proposed heuristic is built upon these two governing factors. We apply linear scalarization

to find the best possible sub-flow. Our proposed heuristic ensures that a sub-flow with high

effective bandwidth and low RTT gets higher priority of selection if that sub-flow does not

increase estimated receive buffer length than RLmax.

To implement the heuristic, we exploit SDN capabilities for accumulating ~Q. In case of SDN

supported infrastructure, an SDN controller may periodically gather individual port statistics

such as link bandwidth, loss rate and approximate delay for each data plane device. The

gathered statistics can provide an estimate of end-to-end characteristics. Upon receiving a

MPTCP connection-open request, the controller finds set of n paths between source-destination
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Algorithm 1: Heuristic for sub-flow selection

Input: ~Q

Output: ~I

1 ∀i : Ii ← 0;

2 Sort ~Q based on Ti ← bi(1− li) + 1
µi

;

3 Find maxi(Ti); Ii ← 1;

4 foreach j ∈ (2, 3 · · ·n) do

5 ~X ← ~Q ◦ I;

6 A ← AvgTh( ~X); R ← RL( ~X);

7 if R ≤ RLmax then

8 Ij ← 1;

9 return ~I;

pair based on the underlying routing protocol. The value of n depends on number of network

interfaces available and the path manager used by the end hosts. According to the full-mesh

path manager, all of n paths should be used as active sub-flows. After initial path selection

and sub-flow identification, the controller periodically calculates end-to-end quality of sub-flow

Si (as denoted by Qi). Upon calculating ~Q, the controller uses Algorithm 1 to calculate set of

active sub-flows as Sactive = {∀i, Ii 6= 0 : Si}. This Sactive is relayed back to the path manager

which activates corresponding sub-flows.

3.7 Implementation Details and Performance Evaluation

In this section, we discuss the performance of the proposed sub-flow selection mechanism in

previous section. We have emulated an SDN environment through Open vSwitch [139] via the

Mininet [49] emulation platform at the Department of Computer Science and Engineering, IIT

Guwahati.
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Fig. 3.10: Comparison of Throughput

3.7.1 Implementation Methodology

We have used open-source MPTCP kernel module [73] in our testbed. To integrate with the

SDN “POX ” controller, our developed module2 uses “UDP ” to communicate. Upon detecting

change, “POX ” recalculates the active sub-flow set and pushes to the host as a recommendation

in “JSON ” format. The recommendation identifies sub-flow set by network addresses. Upon

receiving the request, the path manager module translates network addresses to sub-flow IDs

and selects the corresponding sub-flows as active. Accordingly, it notifies the congestion control

module about these changes.

3.7.2 Competing Heuristics

It can be noted that to the best of our knowledge, existing literature have not worked on MPTCP

sub-flow selection problem. As discussed earlier, MPTCP kernel implementation has two vari-

ants of sub-flow selection or path manager algorithm – Full-mesh and ndiffports. Although

ndiffports progresses in the direction of sub-flow selection, but it uses a naive implementation

of random sub-flow selection, which does not work well in practice. Therefore, we consider

the Full-mesh path manager as the competing heuristic of our proposed protocol. Further, we

compare performance of the proposed methodology with optimal performance, as computed by

enumerating over all possible combination of paths.
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Fig. 3.11: Comparison of Flow Completion Time

3.7.3 Topology Details and Emulation Results

Topology – We choose a topology which is similar to the one given in Fig. 3.7. We configure

15 parallel paths between a sender and a receiver with the end-to-end parameters as follows.

We increase bandwidth of these paths from 1 Mbps to 15 Mbps with a step of 1 Mbps. The

delay is increased from 10 ms to 150 ms with a step of 10 ms, whereas the path loss increases

from 0% to 15% with a step of 1% per path. The sender generates MPTCP supported “HTTP ”

flows destined towards receiver host.

Average file download time and aggregated throughput – Figs. 3.10 and 3.11 shows

performance comparison of the proposed scheme with the Full-mesh path manager and off-

line optimal path manager in terms of download time of a 100MB file over standard “HTTP ”

protocol and average aggregated throughput. The emulation results reveal that, Full-mesh path

manager performs quite well for up to 3 sub-flows. However, increase in the number of sub-

flows increases download time significantly and reduces average throughput. Performance of the

proposed methodology is considerably well compared to the Full-mesh path manager, and also

very close to the optimal performance as we observe for our emulation scenarios.

Effect on congestion control parameters – To understand why the proposed methodol-

ogy significantly boosts up performance of MPTCP, we explore evolution of several parameters

that control MPTCP congestion control mechanism. As given in Fig. 3.12, a significant reduction

in out of order segments can be observed in case of our proposed methodology in comparison to

the Full-mesh path manager. As shown in Figs. 3.13 and 3.14, our proposed path manager also

significantly reduces number of retransmitted segments and lost segments by selecting effective

2https://github.com/subhrendu-subho/SDN_pathmanager
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Fig. 3.13: Retransmitted Segments
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Fig. 3.14: Lost Segments

sub-flows.

Analysis of congestion window evolution – The reason behind effectiveness of the

proposed sub-flow management mechanism can be justified by the help of congestion window

progression analysis. For this purpose we analyse and compare two particular run instances

Fig. 3.15 to explain the behaviour. The Fig. 3.15 shows progression of the congestion window

for a particular run where the Full-mesh path manager uses 4 sub-flows. For similar scenario,
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SubFlow IDs

SubFlow IDs

Fig. 3.15: Congestion window size

the proposed path manager uses only 3 sub-flows which can be observed in Fig. 3.153. As argued

earlier, due to reduction of lower bandwidth path, the proposed methodology can reduce the

number of retransmit events along with out of order segments. Therefore, it can help all the

sub-flows to converge to their steady state congestion window size quickly.

Impact on RTT – On the other hand, our proposed scheme also reduces receiver buffer

size. Therefore, the sub-flows experience lesser delay compared to the Full-mesh path manager,

and observe reduced RTT, as shown in Fig. 3.16. As a result, overall performance improves sig-

nificantly with the help of the proposed sub-flow management module hooked with the standard

MPTCP kernel.

3The sub-flow (S1) is not used by the proposed framework
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SubFlow IDs SubFlow IDs

Fig. 3.16: RTT Variation

3.8 Summary

In this chapter, we develop SDN-MPTCP, a sub-flow management framework for MPTCP protocol

over a SDN controlled LSiN. Our proposed framework reduces out of order segments and HOL

blocking in MPTCP. The emulation results show that our proposed sub-flow management

heuristic outperforms the existing path manager in MPTCP and very closely approximates a NP -

hard problem of optimal sub-flow selection in terms of various performance metrics. SDN-MPTCP

ensures the transport layer performance improvement by taking assistance of SDN. This work

shows that, integration of SDN in a LSiN can provide performance benefit along with ease of

management concerns. However, deployment of SDN over an existing LSiN is difficult due to

increase in deployment cost which we discuss in the next chapter.
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Chapter 4

Flipper: Dynamic NIB

Placement For Distributed SDN

4.1 Introduction

In the previous chapter, we have seen how Software-Defined Network (SDN) can improve the

performance of a transport layer protocol. Additionally, SDN can provide ease of network man-

agement. For example, the network administrator of an large scale IoT network (LSiN) service

provider wants to dynamically update bandwidth distribution policies based on network usage

statistics. The target network is connected with multiple network service providers, and there-

fore she needs to update configuration at different edge routers and gateways. With traditional

network devices, like layer 3 switches, this task is tedious as even a minor configuration incon-

sistency among edge routers and gateways may lead to severe network underutilization or band-

width imbalance. Further, the system is also not scalable for such dynamic updates of network

configuration policies. Since SDN [15] can help in dynamic network configuration updates by

providing programmable control plane, managing networks using SDN becomes less hectic for the

administrator. The centralized control plane of SDN converts policies into device configurations

Has been published in

[T.3] Subhrendu Chattopadhyay, Niladri Sett, Sukumar Nandi, and Sandip Chakraborty. “Flipper: Fault-

Tolerant Distributed Network Management and Control”. In: Fifteenth IFIP/IEEE International Symposium

on Integrated Network Management (IM). 2017
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and updates targeted devices in the network with the corresponding configurations. However,

deployment of SDN over an existing LSiN suffers from capital expenditure (capex)/operational

expenditure (opex) issue, which we describe next.

SDN deployment requires specific hardware that can understand language for SDN, like

Open virtual switch (OVS) [180, 181], so that a SDN controller can dynamically update config-

uration parameters for such hardware. Therefore the important question is: How much effort

and cost does one need to convert an existing network infrastructure to an SDN supported one?

The existing studies in this direction talk about interoperability among SDN supported and

non-SDN network devices, such that incremental deployment of SDN supported devices be-

comes possible [30, 31, 32]. However, concern regarding cost-effectiveness is still there. SDN

supported hardware is much costlier than Commercial off-the-shelf (COTS) network devices,

and therefore requires huge operational expenditure to replace existing infrastructure by SDN

supported infrastructure.

Although it is quite inevitable that the future of network management is SDN, simultaneously

we also ask this question: Can we make our existing network more management friendly, such

that dynamic network configuration becomes possible without changing the existing infrastructure

much? This work tries to find out the answer to this question. We show that it is quite possible

to use existing COTS routers to work as Policy decision and enforcement point (PDEP), which

are known as Network Information Base (NIB). We can turn a COTS router to a NIB by in-

stalling a few additional software tools to support Network Function Virtualization (NFV) [44].

With the help of NFV functionalities, a COTS router can dynamically update policy control

parameters within its neighborhood [18, 182]. Accordingly, we develop a new network manage-

ment architecture, which is somewhere in-between the traditional architecture and SDN based

architecture, where COTS routers dynamically change their roles from a conventional network

router to an NIB and participate in PDEP functionalities. We call this architecture Flipper.

Flipper has two specific advantages over SDN based network architecture, among others.

First, to implement Flipper, a network administrator does not need to procure new costly

hardware and second, Flipper avoids the controller bottleneck problem [30, 183, 44, 184, 185]

which is much debated in the SDN research community. Flipper is a distributed architecture,

where COTS routers execute a distributed self-stabilizing algorithm to decide which nodes can

work as an NIB. As the NIBs have limited resources because they are built on top of the existing
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routers, an NIB can manage, control, and update network policies only among its neighborhood.

Therefore, we develop a distributed “self-stabilizing” Maximal Indemendent Set (MIS) selection

mechanism, which is indeed non-trivial. To maintain consistency in policy decisions across the

network, we have developed a fault-tolerant NIB selection mechanism. We analyse the closure,

fault-tolerance, and scalability properties of Flipper. The performance of Flipper is analysed

from both simulations through a synthetic network environment and real implementation over

an emulation platform using “network name-space ”. Our implementation of Flipper pro-

vides proof-of-concept support of the new architecture while comparing performance with other

protocols in terms of flow initiation delay.

4.2 Flipper Architecture

This section gives the details of Flipper architecture and its working procedure. Flipper uses

NFV to convert existing COTS routers to PDEP devices. For this task to convert a COTS router

to a PDEP supported device, we use the existing technology called ONIX [44] that describes how

the NFV modules can be interfaced with existing router operating system to make it work as a

PDEP device that can sync up network policies with other PDEP devices, converts it to network

configurations and feeds up those configurations to other normal routers in the neighborhood.

Although we use ONIX technology for this purpose, but deploying it over an existing network

is non-trivial, because of the limited processing capacity of the existing COTS routers. As a

consequence, such devices introduce large delay and processing overhead if a single ONIX node

works like a SDN controller. Therefore, in Flipper, we introduce a distributed dynamic PDEP

selection mechanism, which is self-stabilized and fault-tolerant. The details of this architecture

are discussed next.

4.2.1 Proposed Flipper Architecture

Our proposed Flipper architecture consists of following components which are similar to ONIX.

Although the components are similar, functionalities and arrangement of the components are

different in Flipper.

1. OpenFlow supported switch: An OpenFlow supported switch (OFS) is responsible for

data forwarding based on forwarding rule set. “OpenFlow” [186, 8] is a software component that

is installed in the router Operating System (OS) to provide NFV functionalities. However, mere
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“OpenFlow” support does not make these devices SDN complaint, as specialized hardware (like

OVS) is required for this purpose. In our Flipper architecture, we install additional components

only at the software level in COTS hardwares.

2. Host: End user devices connected with OFSs that hosts applications and generates data

traffic.

3. DHT-NIB: Memory based high update prone eventually-consistent Distributed Hash Table

based NIB (DHT-NIB) for storing link level information of switches. DHT-NIB also helps

in setting up forwarding rules in switches based on control application. As shown in ONIX

architecture, an OFS can act as a DHT-NIB with additional functionalities.

4.tran-NIB: Strongly consistent “tran-NIB” is used for rarely changed network wide policy

management.

A major difference between the existing SDN based architecture and Flipper is that the

standard SDN components have fixed roles to play. However, in this work we define a Flipper

device as a service grade router which can dynamically choose a role of either OFS or DHT-NIB.

This dynamic change of roles (“flip”) are possible due to use of NFV in Flipper devices. For

the sake of readability we refer the “Flipper” architecture as FLIPPER and “Flipper” devices as

“flipper”.

4.2.2 FLIPPER Working Principle

To understand the working principle of FLIPPER, we take help of Fig. 4.1. The topology

consists of a dedicated high performance transactional NIB, hosts (A,B,C,D) and flippers

(R1, R2, ..., R9). “switch-flipper” if a flipper that acts as an OFS. “DHT-flipper” is the flippers

that perform DHT-NIB functionalities. Initially, flippers adjust themselves so that a switch-

flippers have at least one Distributed Hash Table based flipper (DHT-flipper) in its neighbor-

hood. Upon receiving a flow request from switch-flipper, the distributed control plane consults

relevant DHT-flippers based on programmable network rules in tran-NIBs and completes flow

table setup procedure in switch-flippers.

4.2.3 Fault-tolerance in FLIPPER

The use of NFV for deployment of services provides flexibility towards FLIPPER. However, general

purpose switches in a service provider network are failure prone. The failure of a DHT-flipper can
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Fig. 4.1: FLIPPER: Architecture

significantly affect network performance as it controls all flows in its neighborhood. Therefore, to

maintain the robustness of the architecture, FLIPPER needs to be fault-tolerant. For example,

in Fig. 4.1, let us assume that R2, R5 and R8 are acting as DHT-flippers. The associated

switch-flippers of R2, R5 and R8 are {R1, R3}, {R4, R6, R7} and {R9}, respectively. If R5

fails, R4, R6 can not work in the absence of DHT-flipper. For maintaining fault tolerance, we

propose a distributed flipper readjustment framework. Whenever one or more switch-flippers

detect unavailability of DHT-flipper in its (their) neighborhood, it (they) invokes (invoke) flipper

readjustment procedure. The re-adjustment procedure provides the newly selected set of DHT-

flippers and switch-flippers. After reaching a consensus, each switch-flipper notifies its adjacent

DHT-flipper with its state information. A switch-flipper having multiple DHT-flippers in its

neighborhood chooses a DHT-flipper randomly. Therefore, they can initiate the distributed

flipper readjustment framework. In this case, we use distributed self stabilization technique to

make the flipper readjustment fault-tolerant.

4.3 Fault-tolerant Flipper Readjustment

To make readjustment of switch-flippers and DHT-flippers fault-tolerant, we consider use of

“self-stabilization” [187] which is a popular technique to provide defense against “transient

failures”. A transient failure is defined as irregular and unpredictable brief failure. In this work,
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we propose a novel flipper readjustment algorithm which expectedly converges with linear time

complexity. Our proposed algorithm also satisfies the basic properties of self-stabilization which

are as follows.

1. Convergence: From any state, the system must reach a legitimate or desired state even-

tually.

2. Closure: In case of no failure, the system is guaranteed to remain in legitimate states.

We consider the network as a graph G = {V,E}, where V is the set of flippers and E is the set of

edges representing physical connections among flippers. Each flipper periodically senses physical

medium for detecting link failure. A flipper i maintains label Labeli ∈ {NIB, Swi,Wait}

and priority variable Prii ∈ {0, 1, . . . , B}, where B denotes the maximum degree of G. Any

flipper k with Labelk = NIB signify that, the flipper k is ready to act as a DHT-flipper.

Similarly, a flipper l with Labell = Swi acts as an switch-flipper. We consider flipper with

Label = Wait as a flipper with intermediate state whose role is yet to decide. Neighborhood

of flipper i is denoted by Ni. Flipper i also maintains NNIB
i = {j|j ∈ Ni ∧ Labelj = NIB}

and NWait
i = {j|j ∈ Ni ∧ Labelj = Wait}. We consider the state of i as (Labeli, P rii). Each

flipper also maintains state of its adjacent neighbor flippers. When a flipper changes its state,

it pro-actively notifies its neighbors. Upon detecting a link failure, flipper removes entry about

the corresponding neighbor from its table.

We represent our proposed algorithm as a set of guarded actions, where each guarded action

is termed as a rule. A rule Rj , uses the following representation, (Rj)|< Gj >−→< Aj >, where

< Gj > represents condition which is required to be satisfied to execute action < Aj >. Upon

receiving an update from neighbor, each flipper checks guard statements of the rules. If any one

of the guard is found to be true, then the corresponding action is executed.

4.3.1 flipper Readjustment in Case of Failure

Following the aforementioned model, the flipper readjustment problem is defined as follows.

Given a network graph G, objective of the flipper readjustment problem is to find set of DHT-

flippers in such a way that all switch-flippers can have at least one DHT-flipper in their neigh-

borhoods, so that the policy updates can be done with minimal control plane delay and network

overhead. The solution approach must find an alternative DHT-flipper dynamically when any
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flipper or link fails, to incorporate fault-tolerance property. The flipper readjustment mechanism

is similar to finding a MIS in flipper connectivity graph. We propose a novel distributed anony-

mous self-stabilizing MIS (SS-MIS) algorithm to find DHT-flippers dynamically. The reason

for using anonymous algorithm is to remove unfairness issue caused by identifier system. Our

proposed anonymous SS-MIS protocol has a step complexity 1 of O(n). Eventhough there exists

a linear time self-stabilizing distributed algorithm [188] for solving MIS problem in idntifier sys-

tem, for anonymous systems the best proposed solution [189] has O(n log n) step complexity2.

In this work, we propose a linear time algorithm for anonymous systems that can significantly

reduce the control plane overhead in FLIPPER.

4.3.2 SS-MIS Algorithm for flipper Readjustment

The proposed SS-MIS protocol selects switch-flippers and DHT-flippers in terms of assigning

Label = Swi and Label = NIB respectively. According to MIS properties, no two DHT-flipper

can be adjacent and, each switch-flipper should have at least one DHT-flipper in its adjacency

list. The proposed protocol is described in Algorithm 2.

A flipper i which has Labeli = Wait or Labeli = NIB, violates the independence property

if any of its neighbor is in NIB state. Hence, it must execute (R2, R3), and must go to a state

having Labeli = Swi. If two adjacent flipper have Label = Wait, and no other neighbor of

them are in Label = NIB state, then both the adjacent flippers will try to enter in a state with

Label = NIB state which requires a tie breaking mechanism. Although, the tie breaking can be

done using an identifier (ID) of the flipper, in this work ID based tie breaking is not used. ID

based tie breaking introduces unfairness problem, because a flipper with higher ID always gets

a priority. Therefore, to break this tie, a randomized trial is performed. The proposed random

trial is designed in the following way. Each node in Wait state generates a random number

in the range {0, 1, 2, . . . , B}, and assigns to Pri. A “Winner” is decided based on the unique

maximum Pri value in a closed neighborhood. If no winner is found in a single experiment, it

is repeated until there is a winner. The winner gets the privilege to enter into the NIB state.

1Execution of an action is called a step. Step complexity of a distributed system is defined as the number of

steps executed by the system. Throughout this work, the terms step and move are used invariably.
2To the best of our knowledge
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Algorithm 2: SS-MIS Protocol

1 Variable: Labeli = {NIB, Swi,Wait};

2 Variable: Prii = {0, 1, . . . , B};

3 def NNIB(i: int):

4 return {j| ∀
j∈Ni

Labelj = NIB};

5 def NWait(i: int):

6 return {j| ∀
j∈Ni

Labelj = Wait};

7 def MaxW (i: int):

8 return {j| ∀
j∈NWait

i

Max(Prij)};

9 def Trial(i: int):

10 return Prii ← Rand(0, 1, 2, . . . , B);

1 begin

// R1

2 (Labeli = Swi)
∧

(NNIB(i) = ∅) −→ (Labeli ←Wait)|Trial(i);

// R2

3 (Labeli = NIB)
∧

(NNIB(i) 6= ∅) −→ (Labeli ← Swi);

// R3

4 (Labeli = Wait)
∧

(NNIB(i) 6= ∅) −→ (Labeli ← Swi);

// R4a

5 (Labeli = Wait)
∧

(NNIB(i) = ∅)
∧

(Prii = MaxW (i)) −→ (Labeli ←

Wait)|Trial(i);

// R4b

6 (Labeli = Wait)
∧

(NNIB(i) = ∅)
∧

(Prii > MaxW (i)) −→ (Labeli ← NIB);

4.4 Properties of Flipper Architecture

In this section we discuss about the properties of proposed flipper architecture. Let the global

state of the system be denoted as S; and legitimate state is defined as global configuration

where no further rule may be applied at any flipper. We claim that the proposed scheme

is self-stabilizing. A proof of self-stabilization requires the proof of Closure property and

Convergence property.
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4.4.1 FLIPPER Supports Closure Property

Theorem 4.1 If any flipper in the system is in intermediate state then there is at least one

rule which can be executed.

Proof: Assume the state of an intermediate flipper u is Wait. Now there can be following

scenarios.

Case 1: ∃v ∈ Nu : (Labelv = NIB). In this case, R3 is applicable.

Case 2: ∀v ∈ Nu : (Labelv = Wait) and (Priv < Priu). In this case flipper u has unique

maximum priority. R4b is applicable on flipper u and it acts as DHT-flipper.

Case 3: ∃v ∈ Nu : (Labelv = Wait) and (Priv = Priu) where Priv and Priu are maximum

in their neighborhood. In this case flipper u and v must apply rule R4a and retrial for a new

priority value.

Case 4: ∃v ∈ Nu : (Labelv = Wait) and (Priv > Priu). Also ∃w ∈ N (v) : (Labelw = Wait)

and (Priw > Priv). From this statement it can be concluded that (Priw > Priu). Hence

priority of these forms a non-increasing function. Also number of flippers are bounded by N .

Hence, at least one flipper has highest priority which can execute rule R4b or R4a. �

Corollary 4.1 (Closure property) If the system is in a state where flippers with DHT-flippers

form a MIS, it remains in that state forever, provided no further fault occurs.

Corollary 4.1 also suggests the correctness of the proposed scheme.

4.4.2 FLIPPER Converges If a Failure Occurs and It is Scalable

A self-stabilizing system always converges in case of a failure. We analyze the algorithm and

prove that, the expected time required to converge is linearly dependent on the number of flipper

used.

Theorem 4.2 Let P (N,B) denotes probability of finding an unique maximum in the closed

neighborhood of v where, N denotes the cardinality of the closed neighborhood of any arbitrary

flipper v. The probability of one flipper in the closed neighborhood having unique maximum after

one trial is as follows.

P (N,B) =
(N×

∑B
i=1 i

(N−1))

(B+1)N
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Proof: Let i be the highest priority in a configuration S after one round, where each round

corresponds to the event of generating priority by “at most one” flipper in the closed neighbor-

hood of v. To satisfy unique maximum property, i can be assigned to any one of the N flippers

and the rest of flippers can have a priority value ranging from 0 to i−1. So there are N× i(N−1)

different possibilities. The value of i can vary from 1 to B. The sample space is (B + 1)N as

each node in the closed neighborhood of v can take values from 0 to B independently. Hence

total probability:

P (N,B) =
(N×

∑B
i=1 i

(N−1))

(B+1)N

�

Now consider N flippers in the closed neighborhood of v are executing R4a and R4b. To find

expected number of “round”s for one of the intermediate flipper to move to DHT-flipper state,

we have to find expected number of “round”s in which there is only one flipper with unique

maximum Pri in the neighborhood.

Theorem 4.3 If X denote a random variable indicating number of rounds required to find a

unique maximum priority in the closed neighborhood of v then E[X] ≤ e, where e represents

Euler-Mascheroni constant (e).

Proof: For calculating expected number of rounds, we need to determine probability distribu-

tion function

Pr [X = r] = (1− P (N,B))(r−1) × P (N,B)

Since this is a geometric distribution, expected number of rounds can be calculated as follows.

E[X] =
1

P (N,B)
=

(B + 1)N

N ×
∑B
i=1 i

N−1

E[X]≤ (B+1)B+1

(B+1)×
B∫
0

iB di

=
(B+1)B+1

BB+1
=(1+ 1

B )
(B+1)

Note here that the value of N is upper bounded by (B + 1). Hence

lim
B→∞

(
1 +B−1

)(B+1)
= e

Therefore E[X] ≤ e. This result signifies that each flipper needs e moves on average for the

transition from Label = Wait state to Label = NIB state. �
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Theorem 4.4 Only the following sequence or subsequence of state change is possible for each

flipper during execution of the protocol.

(Wait→Swi→Wait→Swi), (Wait→Swi→Wait→NIB),

(NIB→Swi→Wait→Swi), (NIB→Swi→Wait→NIB)

Proof: We can see in Algorithm 2 that if a flipper executes R4b then it can not execute any

other rule. So no other flipper in its neighborhood can go to Label = NIB state. It can also be

shown that if a flipper executes R4b then its neighbors can only execute R2.

Now from Theorem 4.3 we can say that each node takes expected e moves to go from

Label = Wait state to Label = NIB state. Hence the sequences take expected 2 + e moves.

This is true for each flipper. Therefore, we can conclude O(n) is the expected number of moves

for convergence. �

A new flow initiated during the convergence phase can not be catered by the system due to the

unavailability of the NIB-flipper(s). However, we have also shown that, expected convergence

time is also within a finite and acceptable bound. Therefore, we can argue that FLIPPER is

scalable and available most of the time.

4.4.3 FLIPPER is Partition Tolerant

A partition tolerant network can function individually and independently, even if it gets parti-

tioned due to link or node failure. As flipper readjustment does not require any bootstrapping,

therefore the proposed architecture is partition tolerant. FLIPPER requires each switch-flipper

to have atleast one DHT-flipper in their neighborhood. Corollary 4.1 ensures this property.

Therefore, even the network becomes partitioned due to failure, FLIPPER helps them to function

individually.

4.5 Analysis of Flipper Performance from Simulation over Synthetic

Networks

To evaluate performance of FLIPPER, we simulate the proposed method and compared with one

standard fault resilient SDN based framework, called POCO-PLC [190]. POCO-PLC is a distributed

SDN platform that uses 20% of controller nodes to provide a “Pareto optimal” fault resiliency.

The controllers act as NIB also. However, POCO-PLC provides an off-line solution of controller
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placement problem. On the other hand, POCO-PLC can handle limited node failure, whereas

FLIPPER can sustain arbitrary node failures.
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4.5.1 Simulation Setup

For simulation we use NS-3.22 [191] network simulator. We use three different topologies.

Topology 1 is a synthetic 64 × 64 regular grid topology. Topology 2 (AS Topology [192]) and

Topology 3 (Oregon [193]) are real autonomous system data sets taken from University of Oregon

Route Views Project “BGP ” logs, where each node represents a border router. For simulation

purpose, we consider that these border routers are flipper devices. In each case, flippers are

connected via 100 Mbps capacity and 2 ms delay “Ethernet ” links. Each flipper is configured

to generate 4 flows/second with 5 Mbps data rate.

4.5.2 Results and Analysis

Fig. 4.2 depicts average number of moves executed by a flipper in case of random number of

flipper failures when SS-MIS is used. It shows that simulation results do not exceed theoretical

expected bound, which is 2 + e (see Theorem 4.4). The number of used DHT-flipper depends

not only on the number of nodes but also on the topology itself. We found that, required

number of DHT-flippers for the two real dataset does not exceed 30%. This result is optimistic

in a sense that, if existing network infrastructure is to be deployed, then 25% − 30% of total

number of flippers are required to act as DHT-flipper for reducing flow set-up delay. Fig. 4.3

presents a comparison between the proposed flipper architecture and the POCO-PLC framework

in terms of flow setup delay. The POCO-PLC framework uses a heuristic Pareto-optimal solution

for distributed controller placement. Their work suggests that, delay is Pareto-optimal in case

of 20% controller usage in most of the network scenarios. However, Fig. 4.3 shows that, in case

of flipper, 5%− 10% increase in number of controllers can reduce flow setup delay by more than

60% for both of the real networks. Performance improvement in terms of flow setup delay is

due to the fact that, each switch-flipper has a DHT-flipper in it’s neighborhood.

4.6 Analysis of FLIPPER from Emulation over a Testbed

Motivated with simulation results, we emulate our proposed architecture on top of mininet [194].

mininet creates virtual nodes for emulated environments over a real networking testbed.
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Table 4.1: Emulation Topology Properties

Attributes Values Attributes Values

Nodes 50 Edges 136

Avg Degree 5.44 Max Degree 20

Average

DHT-flippers
18± 1.23

Average flow

set-up delay
42.29± 7.2ms

4.6.1 Testbed Setup

We have taken a 50 node topology extracted from Oregon dataset [193]. Each node is configured

to act a switch-flipper and DHT-flipper with the help of existing OVS [139] and OpenVSwitch

database server [195] respectively. The flippers are connected via links of 5 Mbps and 2 ms

delay. Link characteristics are configured with Linux “tc” utility. Each node generates 4 random

Transmission Control Protocol (TCP) flows consuming 5 Mbps of bandwidth each. Rest of the

topology characteristics and cumulative results from the emulation are given in Table 4.1. Each

flipper periodically checks for states of adjacent neighbors and links within a time period of

20ms. When a DHT-flipper fails, newly appointed DHT-flipper interacts with switch-flippers

via “JSON-rpc” and gathers flow table as well as link state information. The objective of

these experiments is to identify effect of different types of failures on data plane operation.

As POCO-PLC uses static role assignment, convergence time of the protocol becomes irrelevant.

Therefore, we do not compare flipper with POCO-PLC in emulated experiments.

4.6.2 Effect of Node Failure

We select variable number of flippers as candidates for failure. To visualize the effect of mutual

separation (in terms of hop counts) between failed flippers, candidate flippers are selected in

following two ways. Experiment 1.a: The selected flippers are 1-hop away from each other.

Experiment 1.b: The selected flippers are more than 2 hops distance apart. The chosen nodes

are selected carefully, so that there exists at least one path between source and destination of

each “TCP ” flow even after the chosen nodes fails. The system can not accept a new flow,

until flipper readjustment converges. Therefore, convergence time of the flipper readjustment is

significant in case of failure. Convergence time for flipper readjustments are shown in Fig. 4.4.

Results suggest that, the effect of multiple flipper failure is dependent on distance of the failed
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flippers. However, convergence time difference reduces for Experiments 1.a and 1.b at k = 5 as

diameter of the topology is 5.

Role change of flippers results in path adjustment of flows. Out of generated 200 random

flows, Fig. 4.5 shows the number of flows needs to be readjusted due to change in data plane

topology. The plot signifies that the number of flow adjustments also depend on the distance

between the failed flippers. Higher separation between failed flippers requires large number of

role change operations to reach convergence. This results higher number of flow adjustment. The

result also shows that, increase in number of flipper failure increases number of flows required

to be rerouted.

4.6.3 Effect of Link Failure

To visualize the effect of link failure on data plane operation, we perform similar experiments

as mentioned earlier. In this experimental setup, k links are chosen randomly so that there is

at least one path between source to destination of each flow. We perform the following two

experiments by selecting variable number of k links as following. Experiment 2.a: The failed

links are 1-hop distance apart and Experiment 2.b: The failed links are at least 2-hop distance

apart. These selected links are disconnected simultaneously to perform failure experiments. The

emulation results shown in Figs. 4.6 and 4.7 reveal that, convergence time and required number

of flow adjustments depends on number of failed links and distance between the failed links.
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4.7 Background and Related Works

Traditional “SNMP ” based for network management systems [99, 196, 197] resulted complex and

rigid architectures. [198] shows that, network configurations are highly error prone. Error of

configuration happens due to complexity of managing each network devices individually. To

reduce network management overhead, SDN came into existence. Some of the popular SDN

control plane approaches are, [199, 200, 201, 202, 17]. To ensure scalability, SDN control plane

for service provider network needs to be distributed. According to [203], it is not possible to en-

sure strong consistency, availability and partition tolerance simultaneously in case of distributed

control platform. Increase in number of controllers increases scalability and management over-

head both [204]. On the other hand, reduction of controllers makes the control plane a bottle-

neck [205]. Therefore, designing of distributed control platform for service provider network is

non-trivial. Although, [44, 18] have proposed distributed control plane, fault-tolerance remains

an issue in case of distributed control plane. However, some of the fault resilient distributed

control planes are refereed in [206]. Among existing works, POCO-PLC [190] proposes a “Pareto

optimal ”, fault-resilient off-line control plane. Furthermore, designing a fault tolerant SDN

network management system is non-trivial due to the fact that selecting a recovery strategy

might take longer convergence time. These limitations have motivated us to design a dynamic

architecture, which can reduce the flow initiation delay and can provide fault tolerance.
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4.8 Commonly Asked Questions

Here we discuss the answer of some questions that may arise while reading this report.

How FLIPPER is different from SDN?

Standard SDN platform uses static role assignments at the time of deployment. Static deploy-

ment limits performance of SDN in case of topology changing networks. In case of controller

failure, SDN might cease to perform. In such cases, FLIPPER provides more availability than

SDN by utilizing dynamic role assignment of flippers.

Can FLIPPER Work in fail-open and fail-close semantic?

Fail-open and fail-close semantics provide partition tolerance in case of fault resilient architec-

ture. Fault-resilience architectures handle specific types of failures. In Section 4.4, we prove

that, the proposed FLIPPER is fault-tolerant. In a fault-tolerant architecture the effect of failure

only affects in terms of delay. Therefore, we argue that FLIPPER provides a stronger solution to

handle network partitioning problem.

Why our emulation results are not comparable with existing works?

Existing SDN based architectures do not focus on fault tolerance, and most of the cases solutions

are off-line and static deployment based. So, they can not handle arbitrary failure. Once the

SDN controllers fail, the switches under influence of the controllers can not perform data for-

warding until a new controller is configured to work with them. Therefore, the term convergence

time becomes irrelevant in that context.

4.9 Summary

In this work, we propose FLIPPER which supports SDN like network management and con-

trol, while avoiding controller bottleneck problem, and supporting a stronger notion of fault

tolerance. Built over the existing ONIX architecture, FLIPPER supports a scalable notion of dy-

namic role adaptation based on a distributed self-stabilizing algorithm. Simulation results show

benefits of FLIPPER, whereas emulation over a real testbed conveys the feasibility of FLIPPER

implementation over the existing network infrastructure.

theFLIPPER improves scalability of the network by exploiting capabilities of LSiN. In our

next chapter, we shall see how can LSiN utilize the proposed FLIPPER to ensure dynamic network

management.
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Chapter 5

Aloe: An Elastic Auto-Scaled

and Self-stabilized Orchestration

Framework for large scale IoT

network (LSiN) Applications

5.1 Introduction

In the previous chapter, we have seen how FLIPPER can be used to deploy programmable net-

work over an existing LSiN. In this chapter, we explore some of the management challenges

of LSiN that can be solved using the FLIPPER principle. Since the inception of LSiN, the

rapid development and deployment of end-user services have made the architecture difficult to

manage. Simultaneously, with the advancement of edge-computing, in-network or In-network
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processing (In-network processing), and platform-as-a-service technologies, end-users consider

the network as a platform for deployment and execution of myriads of diverse applications

dynamically and seamlessly. The use of Software-Defined Network (SDN) has gained momen-

tum over the last decade, where a network manager can monitor, control, and deploy new

network services through a central controller. However, management of network services over

In-network processing oriented LSiN platform is still challenging even with an SDN based ar-

chitecture [33].

The primary objectives for supporting In-network processing over an LSiN platform are as

follows: (1) The platform must support scalability [35] to cater to “plug-and-play” type devices.

Furthermore, the system should be agile enough to support rapid deployment of applications

without incurring additional overhead [34]. (2) Since LSiN with In-network processing supports

micro-service architectures [36], the application services can be divided into multiple micro-

services and deployed at different network nodes for reducing application response time with

parallel computations. These micro-services may need to communicate with each other. There-

fore the flow-setup delay from the in-network nodes needs to be very low to ensure near real-time

processing. (3) As the percentage of short-lived flows are high for LSiN based networks [37],

reduction in flow-setup delay can significantly improve the performance of the end-user appli-

cation. (4) Failure rates of LSiN nodes are in-general high [38]. Therefore, the system should

support a fault-tolerant or fault-resilient architecture to ensure liveness.

Even though SDN supported In-network processing can solve multiple network management

problems; there are certain limitations. First, the SDN controller is a single-point bottleneck.

Every flow initiation requires communication between switches and controllers; therefore, perfor-

mance depends on switch-controller delay. With a single controller bottleneck, the delay between

a switch and the controller increases, affecting flow-setup performance. As we mentioned ear-

lier, majority of the flows in an LSiN network are short-lived; the impact of switch-controller

delay is more severe on the performance of short-lived flows. To solve this issue, researchers

have explored distributed SDN architecture with multiple controllers deployed over the net-

work [207]. However, with distributed SDN architectures, a question arises about how many

controllers to deploy and where to deploy them. Static controller deployments may not alleviate

this problem, as LSiN networks are mostly dynamic with plug-and-play deployment of devices.

Dynamic controller deployment requires hosting the controller software over Commercial off-
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the-shelf (COTS) devices and designing methodologies for controller coordination, which is a

challenging task [208]. The problem is escalated when the objective is to develop a fault-tolerant

or fault-resilient architecture in a network where majority of the flows are short-lived.

To alleviate the challenges mentioned above, in this work, an SDN control plane is integrated

with the In-network processing infrastructure, such that the control plane can be deployed dy-

namically over the COTS devices while maintaining a fault-tolerant architecture. We design

a distributed, robust, migration-capable, and elastically scalable control plane framework with

the help of docker containers [209] and state-of-the-art control plane technologies by exploiting

the FLIPPER principle. The proposed control plane consists of a set of small controllers, called

the micro-controller (µC), which can coordinate with each other and help deploy new appli-

cations for In-network processing. The container platform helps in installing these µCs on the

COTS devices; a container with an µC can be seamlessly migrated to another target device

if the host device fails, yielding a fault-tolerant architecture. In addition to this, deployment

mechanism for the µCs ensures elastic auto-scaling of the system; the total number of µCs

can grow or shrink based on the number of active devices in the LSiN network. We develop

a set of special-purpose programming interfaces to ensure fault-tolerant elastic auto-scaling of

the system along with intra-controller coordination. Finally, we design a set of Application

Programming Interfacess (APIs) over this platform to ensure language-free independent deploy-

ment of applications for In-network processing. Combining all these concepts, we present Aloe,

a distributed, robust, auto-scalable, platform-independent orchestration framework for edge and

In-network processing over LSiN infrastructures.

Aloe has multiple advantages for an LSiN framework with In-network processing capabilities.

(a) The distributed controller approach ensures that there is no performance bottleneck near

the controller. (b) Flow-setup delay is significantly minimized because of the availability of

a controller near every device. (c) Fault-tolerant controller orchestration ensures the system’s

liveness even in the presence of multiple simultaneous devices or network faults. We discuss

various trade-offs for Aloe deployment and service provisioning performance, based on thorough

experimentation and performance analysis under various realistic scenarios. Accordingly, we

introduce a resource management module to Aloe, which boosts performance under dynamic

workload scenarios.

We have implemented a prototype of Aloe using state-of-the-art SDN control plane tech-
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nologies and deployed the system over an in-house testbed and a 68-node Amazon web ser-

vice (AWS) platform. The in-house testbed consists of 10 nodes (“Raspberry Pi ” devices)

with “Raspbian ” kernel version 8.0. As mentioned, we have utilized docker containers to host

the distributed control plane platform. We have tested Aloe with three popular applications

for in-network Internet of things (IoT) data processing – (a) A web server (simple “python ”

based), (b) a distributed database server (“Cassandra”), and (c) a distributed file storage plat-

form (“Gluster”). We observe that Aloe can reduce flow-setup delay significantly (more than

three times) compared to state-of-the-art distributed control plane technologies while boosting

up application performance even in the presence of multiple simultaneous faults.

5.2 Related Work

Traditional single controller architecture is not suitable for LSiN infrastructure, where the net-

work is dynamic and failure prone. One way to address such a problem is to deploy a distributed

control plane [185, 210, 152, 211]. Although, some of the previous works [212, 213] have tried

to find out placement of distributed controllers in the network to improve scalability of the

network, existing distributed control planes are not sufficient for handling LSiN systems that

require in-band control. ONIX [44] and ONOS [18] are two popular distributed control plane

architectures. ONIX uses a Distributed Hash Table (DHT) data store for storing volatile link

state information. On the other hand, ONOS uses “NoSQL” distributed database and distributed

registry to ensure data consistency. Although both of them can scale easily and show a signifi-

cant amount of fault-resiliency, they require high end distributed computing infrastructure for

execution. Deployment of such infrastructure increases cost of LSiN deployment and leads to

performance degradation of LSiN services. To tackle high resource requirements, Elasticon [147]

uses controller resource pool to enforce load balancing. They also proposed a hand-off protocol

for switch controller co-ordination to ensure serializability. However, Elasticon is not suitable

for failure prone LSiN nodes. Similar problem is also faced by Kandoo [124] and [214].

LSiN applications generate short and bursty traffics. To avoid impacts of short flows,

DIFANE [16] uses special purpose authority switches, which can take localized decisions based

on pre-installed wildcard flow entries depending on traffic characteristics and network topology.

However, local authority switches creates a problem for global state management of the network.

DevoFlow [215] tries to solve this problem by proactively deciding wildcarded rules based on
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global state information. However, the dynamic topology of LSiN platform prevents proactive

installation of flow entries. Therefore, although DIFANE and DevoFlow performs well in case of

Data Center Networks (DCN), delivers substandard performance in case of LSiN platforms.

LSiN requires in-band control plane as most of the switches have limited network interfaces.

Therefore, disruption in LSiN links impacts severely on multiple LSiN nodes due to discon-

nection from the control plane. To provide disruption tolerance, SCL [216] uses replication of

controller applications on strategic places of a network. SCL uses a coordination layer inside

the switch to provide consistent updates for a single image, lightweight controllers deployed in

an in-band fashion. However, use of two-phase commit mechanism for consistency preservation

increases higher latency and affects flow setup delay for short flows. Moreover, SCL assumes

existence of robust channels among switch and controllers, which is not possible in case of low-

cost and resource-constrained LSiN platforms. On the other hand, DIFANE, DevoFlow and SCL

exploits data plane device capabilities to provide quicker response time. In order to do so, they

require special purpose switches which can take decisions locally without requiring controller

consultation. Such switch-level modifications which may not be possible for every hardware

devices.

To avoid hardware modification, BLAC [156] uses a controller scheduling mechanism to dynam-

ically scale the control plane to accommodate need of the system. BLAC introduces a scheduling

layer to achieve binding less architecture, where all flows from a switch can be dynamically

scheduled to one of the many controller instances. Although, BLAC reduces switch hand-off is-

sues, increases flow setup time. Therefore, BLAC re-introduces performance bottleneck for LSiN

short flows.

From the discussion above we can observe that, the existing control plane architectures are

not effective in managing LSiN platforms as they pour more focus on consistency of the net-

work state information than availability and partition tolerance of the control plane. However,

theoretically it is not possible to achieve all these goals simultaneously [203]. We assume that

availability and partition tolerance requires more attention than providing strong consistency

for LSiN platforms. Our assumption is grounded upon the fact that, dynamic and failure prone

nature of LSiN requires highly available control plane than preserving consistency for volatile

short flow information. Our design of Aloe is motivated by this observation, and is described

in the following section.
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Fig. 5.1: Components of Aloe Infrastructure

5.3 Components of Aloe

The Aloe orchestration framework exploits capabilities of In-network processing architecture

over an LSiN platform where devices work mostly in a plug-and-play mode. The main compo-

nents of the architecture are shown in Fig. 5.1. It can be noted here that the proposed architec-

ture does not bring new hardware or software platforms at its base; instead, we utilize available

COTS hardware and open-source software suites to design this entire architecture. Our objective

is to design an orchestration platform that can be developed with market-available components

while integrating innovations in design such that shortcomings of the existing systems can be

mitigated. We discuss individual components and their functionalities in this section.

5.3.1 Infrastructure Nodes

Networking equipment and devices are considered as infrastructure nodes. Therefore, nodes are

essentially embedded and resource-constraint devices like smart-gateways, smart routers, smart

IoT monitoring devices, etc. These devices participate in communication and provide in-network

processing platforms for lightweight services by utilizing residual resources. We consider that

these nodes are either SDN-supported or can be configured with open-source software platform

like Open virtual switch (OVS) to make them SDN capable.

We use containerized platforms like “docker ” [209] to offload services in the LSiN platform

for In-network processing. Containerized service deployment helps in supporting service isola-

tion and makes the architecture fail-safe by supporting live migration of containers. Further,
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containers reduce a programmer’s overhead for service delegation and cost of deployment, as the

same device can be used for In-network processing of LSiN applications along with execution of

custom networking services.

5.3.2 Service Deployment Controller

To identify resource requirement and delegation of services which require In-network processing,

we use a centralized Service Deployment Controller (SDC). The SDC periodically monitors re-

source consumptions of the nodes. Once a new service is ready for deployment in the system,

SDC identifies schedules in which services can be executed by the nodes without violating re-

source demands from individual services. Once the schedule is generated, the SDC is responsible

for delegating services based on the schedule. It can be noted that load of an SDC is much less

compared to the network management controller. Therefore we maintain a single instance of

SDC in our system.

5.3.3 Super Network Controller

Network management in an LSiN platform is non-trivial due to diversified inter-service commu-

nication requirements and dynamic nature of the network. Aloe uses a two-layer approach. We

deploy a high availability Super Network Controller (SNC) 1 at the first layer, which is respon-

sible for storing persistent network information, like routing protocols, quality of service (QoS)

requirements, periodicity of statistic collection from nodes, etc. A SNC also manages an Access

Control Lists (ACL) to provide necessary security to the infrastructure nodes.

5.3.4 Micro-Controllers (µC

Although super controllers are highly available, an LSiN platform has a time-varying topology

due to use of resource constraint devices and devices being plug-and-play most of the times.

Therefore, use of a centralized controller cannot achieve fault-tolerance (failure of infrastructure

nodes) and partition-tolerance (failure of network links resulting in network partitions). On

the other hand, unlike SDC, SNC needs to be consulted by nodes each time a new flow enters

the system. This increases the communication overhead and flow initiation delay which also

1It is possible to use same physical device as SDC and SNC
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affects performance of the services deployed in the infrastructure. Therefore, Aloe uses multiple

light-weight second layer of network controllers named as µC.

µCs are lightweight SDN controllers. A µC stores volatile link layer information of a small

group of nodes placed topologically close to it. Thus a µC maintains information consistency

by minimizing the delay between the governing µC and the nodes managed by it. The SNC

can aggregate these statistics via “REST ” API queries from the µC. Based on changing QoS

of services, network service provisioning can be achieved in the µC via the same “REST ” API.

Based on the configuration of the SNC, a µC collects statistics from individual OVS modules of

the nodes. Thus a µC can achieve a fine-tuned network control for infrastructure nodes.

Deployment of µCs in nodes might also create network partitioning issue. To avoid such

an undesirable scenario, Aloe uses a novel approach where the µCs are encapsulated inside a

container and deployed as a service inside the infrastructure nodes itself. Thus Aloe supports

µC as a Services (µCaaSs) which ensures fault-tolerance of the system. µC containers can be

migrated to a target node quite easily with help of live-migration technique of a container when

the host node fails. Aloe ensures that a set of µCs is always live in the system maintaining

requirements for minimized switch-controller delay. On the other hand, a µC container can be

customized depending on available capacity of the nodes and resource consumptions by controller

applications. It can be noted that this µC architecture is different from existing distributed

SDN controller approaches, such as DevoFlow [215] and SCL [216], which require switch-level

customization. µCs can run over the existing COTS devices without any requirement for switch-

level modifications.

5.4 Design of Aloe Orchestration Framework

This section discusses the Aloe orchestration framework by highlighting various functional mod-

ules of Aloe and their working principles. Finally, we develop a set of APIs for language-

independent and robust deployment of applications over the Aloe framework. The various

functional modules of Aloe are shown in Fig. 5.2; the detailed description follows.

5.4.1 Aloe Functional Modules

The proposed framework consists of four node-level modules and one SNC-level module. The

node-level modules run inside infrastructure nodes and decide topology and service parameters
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Fig. 5.2: Aloe function modules and their interactions

that need to be synchronized across various nodes. These modules collaborate with each other

to take distributed decisions in a fault-tolerant way. It can be noted that in Aloe, infrastructure

nodes are mutable and they can convert themselves as a µC if required. An interesting feature

of Aloe is that this decision mechanism is executed in a pure distributed way, preserving safety

and liveness of the system in presence of faults. The functionalities of various modules are as

follows.

a Topology Management Module

We design Aloe as a plug-and-play service, where an Aloe-supported LSiN device can be directly

deployed in an existing system for flexible auto-scaling support. The Topology Management

Module (TMM) initializes the Aloe framework on a newly deployed node. Tasks of the TMM

are as follows – (i) identify nodes in the neighborhood, and (ii) determine whether an Aloe

service is running in that node. An Aloe service is of two types – (a) µC service, and (b)

user application service. To find out active nodes in the neighborhood, TMM uses Link Layer

Discovery Protocol (LLDP) which is a standard practice for SDN controllers. We assume that

each Aloe service deployed in the LSiN cloud uses a unique predefined port address. TMM

queries about services in local neighborhood via issuing a “telnet open port” requests. Apart

from initialization, this module is invoked whenever a node/link failure or µC failure event is
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detected.

b State Discovery Module

In case of a node or a link failure after initialization through TMM, there is a possibility

that infrastructure nodes get disconnected from the µC. To identify such a scenario, Aloe

maintains various state variables for each node as follows. (i) Controller State (CTLR): This

state variable decides whether a node is in a general (does not host a µC service), µC (hosts

a µC) or undecided (an intermediate state between general state and the µC state) state.

(ii) Priority (PRIO): This state variable is required only if the node is undecided and denotes

priority of the node for becoming a µC. The states associated to nodes are kept and managed by

the nodes themselves. However, a node can access a copy of states from its neighbor to decide

its state. State Discovery Module (SDM) is responsible for accumulating state information

collected from neighbors. SDM uses “REST ” for this purpose. Once a failure event occurs,

TMM invokes the SDM. SDM keeps on executing periodically until the node finds at least one

µC in its neighborhood. The periodicity of execution of this module is dependent on link delay.

For implementation purpose, we consider periodicity as largest delay observed to fetch data from

a neighbor. The above functioning is different than control plane state discovery module which

runs inside the µC and keeps track of the network states. In contrast to that, the proposed

SDM keeps track of the roles (i.e. acting as µC or not) that a node is playing in its immediate

neighborhood. Since this module is inspired by the FLIPPER, the role transitions closely matches

the state transitions of FLIPPER given in Section 4.4

c µC Placement Module

Based on neighbor states collected through SDM, every node independently determines whether

it needs to launch a µC service. This is done through the µC Placement Module (µPM). We

consider nodes as vertices of a graph where edges determined by connectivity between two nodes,

and place µC services to the nodes that form a Maximal Indemendent Set (MIS) on that graph.

An MIS based µC placement ensures that there would be a µC at least in one-hop distance from

each node, which can take care of configurations and flow-initiations for application services

running on that node. As we have claimed earlier and will show in Section 5.6 that the µCs

utilized in Aloe are significantly light-weight but efficient for performing network and service
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Algorithm 3: µPM Controller Placement Algorithm
Input: B: Any arbitrary large value greater than maximum degree of the network.

1 Function Trial():

// Breaks priority ties

2 PRIO← dRand()
B e;

3 return;

4 Function NeighborµC():

5 if Another µC in one-hop neighborhood then

6 return true;

7 else

8 return false;

9 Function UMPriority:

// If node has unique maximum priority

10 if PRIO of this node > maximum PRIO in

neighborhood then

11 return true;

12 else if PRIO of this node = maximum PRIO in

neighborhood then

13 return false;

14 else

15 return None;

16 Function Main():

17 while state change detected do

18 if CTLR=general & NeighborµC()=false then

// No µC in neighborhood

19 CTLR← undecided;

20 Trial();

// Initialize priority

21 else if CTLR=µC & NeighborµC()=true then

// Two µCs are adjacent

22 CTLR← general;

23 else if CTLR=undecided & NeighborµC()=true

then

// µC found in neighborhood

24 CTLR← general;

25 else

26 if UMPriority()=None then

// Executor is not maximum

27 continue;

28 else if UMPriority()=true then

// Executor has unique maximum

priority, no need for further

trial.

29 CTLR← µC;

30 else

// Executor has maximum but not

unique priority

31 CTLR← undecided;

// Next round of trial starts

32 Trial();

33 return;

management activities. Therefore the total overhead due to MIS based µC placement is not

significant. For identification of a suitable set of µC capable nodes, we develop a distributed

randomized MIS algorithm given in Algorithm 3. The novelties of this algorithm are as follows.

(1) Randomized: The algorithm selects different nodes at different rounds, ensuring that load

for µC service hosting is distributed across the network and does not get concentrated on some

selected nodes. (2) Bounded set: The number of deployed µCs are always bounded based
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on total number of nodes in the network. (3) Self-stabilized: The algorithm is self-stabilized

and converges in linear time ensuring fault-tolerance of the system under single or multiple

simultaneous faults until complete network partition occurs.2.

d µC Manager Module

Once a node decides its state through µPM, the µC Manager Module (µMM) initiates µC

service on selected nodes and establishes a controller-switch relationship between the µC and

nodes with general state in one-hop neighborhood. As we mentioned earlier, a µC is initiated

as a containerized service over the node designated for hosting a µC by the µPM algorithm.

For a node with general state, this process may involve changing of controller services from one

µC to another µC, which requires reestablishment of the controller-switch relationship. For this

purpose, the SDN flow tables need to be migrated from the old µC to the newly associated

µC. The flow table migration mechanism is specific to the SDN controller software used, and is

discussed in Section 5.5.

e PushToNode Module

Along with fault-tolerance, Aloe supports rapid deployment and runtime customization of the

system. To implement this feature, we develop PushToNode Module (P2NM). Unlike rest of

the modules, P2NM is centralized and/or deployed in the SNC. It provides an interface for

monitoring and changing policy level information for the µC at runtime which is useful for

system administrators. Aloe supported policy level information include (i) ACL, (ii) controller

application to be executed in the µC, (iii) routing protocols running in the µC, and (iv) SDM

update frequency. Apart from the specified policies, Aloe also gives freedom to its user to

customize the Aloe modules itself. This feature is achieved by developing a set of APIs as

discussed next.

5.4.2 Application Programmer’s Interfaces

The primary objective of this orchestration framework is to deploy the “controller as a service” to

the in-network processing infrastructure in form of a µC. There are some significant differences

2These properties are inherited from the design of FLIPPER, and the proofs of these properties are provided

in the Section 4.4
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between a user application service and a µC service, which makes deployment of the later

non-trivial. Unlike many user application services, performance of management is dependent

on topological position of the µC services. A location transparent deployment of µC might

allocate all µCs in the same node if the node has sufficient resources. Such placement can

degrade network performance of the infrastructure. However, our placement algorithm is not

an optimal solution. Therefore, during the design of Aloe, we consider extendibility of this

work. Many of the implemented functionalities of this framework can be reused as API for

distributed controller application development. For ease of understanding, we only provide the

python sample programs here. However, all APIs can be invoked as “bash” shell commands over

SNC using P2NM.

a Topology Monitor

Using this API, Aloe can detect a topology change event (TopologyMonitor()) and take actions

accordingly. This API can also be used for general purpose routing application, as given in the

following code.

1 ’ ’ ’ Find s h o r t e s t path between dpidS and dpidD ’ ’ ’

2 G=TopologyMonitor ( )

3 p a t h d p i d l i s t=FindShortestPath (G, ” de lay ” )

Listing 5.1: Topology Change Detector

b Distributed State Inspector

We develop this API to observe the state of the nodes (getNeighborStates()), which helps

in developing new placement algorithms for µPM. This API relies on a remote procedure call

(rpc).

1 ’ ’ ’ Find max p r i o r i t y amongst ne ighbor ’ ’ ’

2 s t a t e s=getNe ighborStates ( )

3 maxPrioUndecided=max ( [ v [ ” Prio ” ] f o r v in s t a t e s . va lue s ( ) i f s t a t e [ ”CTLR”]==”

undecided ” ] )

Listing 5.2: Distributed State Inspector
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Fig. 5.3: Testbed:Topology

c Find Node Services

The framework requires to identify the deployed services (getNeighborServices()) to enforce

service level policies. We provide a python API to ease this task. The following example can be

used for selective service blocking ACL.

1 ’ ’ ’ S e r v i c e b lock ing (ACL) ’ ’ ’

2 s e r v i c e s=getNe ighborSe rv i c e s ( )

3 bport=b l o c k i n g p o r t

4 i f ( b l o c k i n g p o r t in s e r v i c e [ ” dpid ” ] ) :

5 Execute ( ”ovs−o f c t l add−f l ow match : s r c=dpid , t cp por t=bport ac t i on : drop” )

Listing 5.3: Find Node Services

Next, we discuss details of the Aloe implementation as a general orchestration framework.

5.5 Aloe Implementation

We have implemented Aloe as a middleware over Linux kernel with the integration of open-source

technologies, like docker containers, various SDN controllers, and REST API (REST) based

communication modules. We first discuss the implementation environment that we utilized,

followed by a brief description of two different implementation aspects.
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Fig. 5.4: Testbed:In Action

5.5.1 Environmental Setup

To analyze performance of Aloe, we have deployed an in-house testbed using the topology given

in Fig. 5.3 (Fig. 5.4 shows the live-snapshot of the testbed). Our deployed testbed follows

clos tree based topology and spans across two different sites to resemble the topology given in

[217]. The nodes in the testbed are Raspberry Pi version 3 Model B, which are configured with

Raspbian 8.0 operating system with kernel version 4.4.50-v7+. The nodes are connected via

multiple 100Mbps USB-to-Ethernet adapter-edges representing physical Ethernet links among

the nodes. We use Linux “tc ” to configure each link to use 5Mbps of bandwidth and added

100ms of propagation delay to match real life LSiN deployment specification. Further, to analyze

scalability of Aloe, we have also deployed Aloe in a large-scale 68-node testbed using AWS. For

this purpose, we consider a sub-topology from “rocketfuel ” [218] topology which consist 68

nodes. The nodes in the topology are deployed using 18 AWS “nano” instances (1 vCPU and

512 MB RAM) and 50 AWS micro instances (1 vCPU and 1 GB RAM). The AWS nodes are

configured with Ubuntu 16.10 operating system with Debian kernel version 4.4.0. To emulate

edges between the nodes, we use the “l2tp ” between the AWS instances. Every infrastructure

node, both in the testbed and in the AWS, are configured with “OVS ”.

5.5.2 Implementation Aspects

Here we discuss two important implementation aspects of Aloe – (i) flow-table consistency

preservation during µC migration, and (ii) choice of controller service for µC implementation.
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a Migration of µC and consistency preservation

A change in a policy level parameter requires a migration of the flow tables from the old µC

instances to new instances of the µC. Similarly, after a µPM execution, there might be a

need for change in node-controller association. To implement such functionality, we have im-

plemented a “rpc ” and “REST ” based API (changeCtlr()) which can dynamically change a

switch’s allegiance towards a µC. changeCtlr() forces the node to invoke a “controller

re-association request ” to the target µC with its previous µC address. After receiving a

“controller re-association request ”, the target controller invokes migration of flow en-

tries from the previously assigned µC. During the migration procedure, it is important to keep

track of the previous state informations. To ensure consistency, Aloe preserves snapshots of the

µC flow table entries by sending “REST ” queries to the µCs before the migration process starts.

To make the migration process lightweight, the container instance is not transferred from one

node to another node; instead, the source node container is terminated, and a new container

is invoked at the destination node via “rpc ”. In case of a network partitioning between the

previous µC and the target µC, the target µC obtains the copy of flow table from the requester

node itself. In this way, the µMM preserves weak consistency 3 in the system.

b Choice of controller service for µC

Efficiency of Aloe is dependent on efficiency of choice of a controller service for the µC. De-

ployment of a heavy-weight controller can over-consume resources of the nodes; moreover, one

µC is only responsible for managing a small set of nodes. Therefore, we target to opt for a

light-weight µC for Aloe. In order to identify a suitable controller platform for µC, we compare

a set of existing SDN controller services like Open Day light (ODL) [219], ONOS [18], ryu [220]

and Zero [221] in our in-house testbed in terms of theirs resource utilization. Amongst these

controllers, ONOS requires high memory consumption (> 500MB) which creates an instability

in the docker environment. Further, we have observed that approximately 32% times, ONOS fails

to execute in the testbed nodes due to unavailability of sufficient virtual memory. Therefore, we

report performance of the controllers other than ONOS. The performance is reported based on

three major system parameters – CPU utilization, memory utilization and CPU temperature

variation. In Fig. 5.5a, we provide comparison of performance of the competing controllers in

3https://en.wikipedia.org/wiki/Weak_consistency
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Table 5.1: Wilcoxon Rank Sum Test (↑indicates µC in top header consumes less resources,←indicates

µC in left header consumes less resources, X indicates the choice is undetermined)

CPU

µC No µC Ryu Zero ODL

No µC ← ← ←

Ryu < 0.0001 ↑ ←

Zero < 0.0001 < 0.0001 ←

ODL < 0.0001 < 0.0001 < 0.0001

Memory

No µC ← X ←

Ryu < 0.0001 X ←

Zero > 0.03 > 0.01 ←

ODL < 0.0001 < 0.0001 < 0.0001

CPU Temperature

No µC X ← ←

Ryu > 0.39 ↑ ←

Zero < 0.0001 < 0.0001 ↑

ODL < 0.0001 < 0.0001 < 0.0001

terms of CPU utilization. We observe that approximately 30% “ODL ” µCs use more than 30%

of the CPU utilization. In comparison to that, around 40% “Zero ” µCs use 15% of the CPU

utilization. In Fig. 5.5b, we observe that almost 80% “ODL ” µCs use more than 600MB of

memory space. All other controllers show lower memory utilization. Fig. 5.5c shows variation

in CPU core temperature while executing different types of controller services. The consolidated

pair-wise comparison of controllers are provided in Table 5.1 (upper right triangle in blue color).

The notation X signifies that difference cannot be ascertaind. On the other hand an upper arrow

(↑) suggests that µC listed in top header consumes less amount of resources. We use←to denote

higher efficiency of the µC application mentioned in the left header. To determine difference,

we perform a statistical hypothesis testing using non-parametric, one-tailed Wilcoxon rank sum

test (α = 0.01) [222]. Our alternative hypothesis assumes that mean resource consumptions

and core temperature is higher than the one in normal case. Left lower triangular part of Ta-
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Fig. 5.5: Resource Utilization Comparison of Controller Applications

ble 5.1 (given in green color) signifies the p-values obtained from the rank test. Based on our

experimental results we can observe that, “Zero ” can provide better performance in terms CPU

and Memory utilization as “Zero ” is built upon micro-kernel architecture. Therefore, we use

“Zero ” as our choice of µC in both testbed and AWS.

With this implementation, we evaluate performance of Aloe, as discussed in the next section.

5.6 Evaluation

We have tested performance of Aloe with three different categories of standard applications

which are common and useful for an LSiN based platform – (i) “HTTP ” service (Python “SimpleHTTPServer ”):

used for bulk data transfer via web clients, (ii) distributed database service (“Cassandra ”): for

data-driven applications, and (iii) distributed file system service (“Gluster ”): used for file

sharing and fault-tolerant file replication over a distributed platform. We further compare per-

formance of Aloe with BLAC [156], a distributed SDN control platform. To emulate realistic fault

models in the system, we have injected faults using Netflix Chaos Monkey fault injection tool.
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Table 5.2: Wilcoxon Rank Sum Test conclusions with p-values over response time of different

applications:

X=Inconclusive, X=Aloe better, •=In band better

Services
Cassendra HTTP Gluster

Failure

0 X (>0.11) X (>0.20) •(<0.0001)

1 X(<0.0001) X (>0.04) •(<0.0001)

2 X(<0.0001) X(<0.0001) X (>0.39)

3 X(<0.0001) X(<0.0001) X(<0.01)

We have taken the measurements under all possible link fault combinations 4 in the testbed and

100 different random fault combinations in AWS.

5.6.1 Application Performance

Fig. 5.6b compares download time of a 512MB file hosted using “HTTP ” service under the influ-

ence of both BLAC and Aloe over the in-house testbed. The results are obtained by varying all

possible source-destination pairs in the topology. We observe that, even though Aloe results in

higher download time compared to BLAC when there is no failure in the system, performance im-

proves rapidly in presence of link outage. While injecting failure, we observe that approximately

30% connections are timed-out while operating under governance of the BLAC controller. How-

ever, Aloe reduces such flow termination5 (< 5% connection time-out for Aloe). To compare

differences of the nature of the results for each service, we performed a Wilcoxon rank sum test.

The p-values and conclusion from the test is summarised in Table 5.2.

Fig. 5.6a shows response time of “Cassandra ” search queries. Here, we observe a signif-

icant difference in characteristics of the plots due to nature of the service. Unlike “HTTP ”,

“Cassandra ” utilizes short flows to fetch query results. Therefore, we observe that Aloe pro-

vides a significant improvement in query response time. However, in case of “Gluster ”, Aloe

performance is marginally poor compared to BLAC until there are 3 link failures (Fig. 5.6c).

4A node failure is equivalent to simultaneous failure of multiple links. Therefore, all possible link failure

automatically covers node failure scenarios.
5Only in such cases, where the network is partitioned
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Fig. 5.6: Comparison of response time of services obtained from testbed: Average percent-

age improvement of Aloe – (a) “HTTP ” server: 4% (0-fail), 11% (2-fails), 21% (3-fails), (b)

“Cassandra ”: 9% (0-fail), 26% (2-fails), 37% (3-fails), (c) “Gluster ”: -8% (0-fail), 0.1% (2-

fails), 6% (3-fails)

“Gluster ” flows are short-distant flows, usually within one-hop. Flow-setup delay is almost

negligible for a one-hop flow. Therefore the µC deployment overhead of Aloe is more when the

number of failures is less.

Similar behaviors are observed in the large-scale deployment of Aloe in the AWS cloud.

In Figs. 5.7b and 5.7c, “HTTP ” and “Gluster ” response times show similar characteristics as

observed in the testbed. In the case of “Cassandra ” (Fig. 5.7a), all the cases perform signifi-

cantly better than BLAC. From these observations, we conclude that Aloe performs significantly

better for services that generate long-distant mice flows (like database synchronization). For

a long-distant flow, flow setup delay is high, which gets further affected by link failures. As

a consequence, Aloe performance is better for failure-prone systems, like LSiN clouds, as the

flow-setup delay gets increased with the recovery time due to a failure.
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Fig. 5.7: Comparison of response time of services obtained from AWS cloud: Average percent-

age improvement of Aloe – (a) “HTTP ” server: -2% (0-fail), 0.1% (2%-fails), 34% (6%-fails), (b)

“Cassandra ”: 20% (0-fail), 21% (2%-fails), 34% (6%-fails), (c) “Gluster ”: -12% (0-fail), -6%

(2%-fails), 14% (6%-fails)

5.6.2 Dissecting Aloe

Aloe flow-setup time is dependent upon convergence time of µPM and path restoration time.

Fig. 5.8a shows distribution of average convergence time of Aloe in presence of failure. We have

an interesting observation here that as number of simultaneous failures increases, convergence

time drops. This can be explained as follows. Let us consider two different faults. If the

two faults are at two different sides of the network, then two waves of µPM starts executing

simultaneously from two different ends of the network. These two waves get diffused in the

network and meet in the middle of the network at convergence. That way, multiple faults create

multiple such µPM waves in the network in parallel, and as these individual waves need to deal

with a smaller part of the network, they converge quickly.

The convergence phase is followed by path restoration due to a change of controller positions

in case of a failure. To identify the performance of path restoration, we measure average number
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Fig. 5.8: Testbed: Effect of failure on Aloe performance (σ= standard deviation)

of flow adjustments done by the framework. Number of flow adjustment depends on the topology

and number of flows passing through the failed links. Therefore, to compare the result, we

provide enumerated number of flow adjustment required for all possible cases of link failures

in Fig. 5.8b. We observe that the experimental observations closely match with the results

obtained by enumeration. Further, these metrics have a direct impact on flow-setup delay. To

understand effect of these factors, we compare flow-setup delay for BLAC control plane and Aloe.

To identify flow-setup delay, we use “ping ” to transfer a single “ICMP ” packet. Fig. 5.9c shows

that although Aloe marginally increases flow setup-delay in absence of a failure, it provides

quick flow-setup when multiple faults occur in the network.

We observe that overhead of distributed µC in Aloe is responsible for increase in flow-setup

delay during no-failure scenario. However, it is difficult to compare exact overhead of the BLAC

control plane and Aloe due to differences in nature of overhead. We measure overhead with

respect to two different factors. Fig. 5.9a shows comparison between BLAC and Aloe regarding

the number of “openflow events ” generated over a period of 100s. Aloe additionally generates

“REST ” queries to support inter-controller communication, therefore it has more number of

openflow events compared to BLAC. Fig. 5.9b depicts number of “REST ” queries generated in

Aloe. During failure events, Aloe µC may need to migrate from one node to another. Fig. 5.10c
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Fig. 5.9: Testbed: Comparison of Aloe overhead and Flow setup delay

shows data transfer overhead required for migration, which is in the order of a few KB. As number

of nodes in the LSiN environment are increased, number of flow table entries are also increased.

Therefore, transfer size per migration also increases when the number of nodes are increased.

Size of the flow table entries also increases with more number of failures in the network, which

introduces some of redundant flow entries (“zombie flows”). However, we observe that, effect

of redundant flows has marginal effect when number of nodes in the system are significantly

high. Due to these overheads, Aloe incurs higher communication overhead than the BLAC

control plane. However, due to significant reduction in flow-setup time, Aloe ensures better

flow throughput than BLAC, as shown in Fig. 5.8c.

Although Aloe incurs communication overhead, Aloe ensures a significant drop in average

flow-setup delay. To limit flow-setup delay, Aloe provides elastic auto-scaling by increasing

the number of µC instances to guarantee that each node can find a µC in its neighborhood.

Fig. 5.10a shows the average number of µC instances when the network scales, as obtained from

the AWS implementation. Effect of elastic auto-scaling is shown in Fig. 5.10b which indicates

that flow-setup delay only increases marginally in comparison to the BLAC controller, which
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Fig. 5.10: Effect of Scaling Aloe µC Deployments

incurs a significantly high flow-setup delay as number of nodes in the network increases.

5.7 Aloe Performance Optimization

Aloe µCs are deployed over existing network infrastructure (host devices) which may have

their own workloads due to application services deployed in them; we call them as application

workloads of host devices. We perform a pilot study to check impact of application workload

of the host devices on Aloe performance. We use the same AWS cloud-based deployment of

Aloe as discussed earlier. Fig. 5.11 shows impact of application workload on Aloe performance.

To increase application workload of the host devices, we use stress-ng [223] tool. During the

experiments, memory and CPU utilization of the host devices have been increased from 0%

to 30% of the actual capacity. When application workload of the host devices are increased,

the system resources get over-utilized due to thrashing. Therefore, system performance reduces

aggressively as the µC receives less CPU time. Additionally more swap events are generated

which increases flow setup time, as we observe from Fig. 5.11c. These observations confirms that,

Aloe µCs require special attention in terms of resource reservation for severely loaded systems.

102



Section: 5.7 Aloe Performance Optimization

0% load 10% load 20% load 30% load

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  10  20  30  40  50  60  70  80  90 100

C
D

F

CPU Utilization (%)

0% load
10% load

20% load
30% load

(a) CPU Utilization (b) Memory Utilization

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  50  100  150  200  250  300  350  400

C
D

F

Flow Setup Time (ms)

0% load
10% load

20% load
30% load

(c) Flow Setup Time

Fig. 5.11: Effect of Application Workload of the Host Devices on Aloe Performance

We accordingly develop a resource management framework for Aloe, which is discussed next.

5.7.1 Effect of Resource Reservation

Reserving resources for µC applications ensures QoS in terms of flow setup time. To optimize

performance of the system, resource reservation must match resource demand of the µC. How-

ever, resource demands of a µC at a particular time depends on the amount of flows managed

by that µC. Therefore, we assume that resource demand of a µC follows a temporal pattern

and depends on network state of the LSiN infrastructure. Although over-provisioning resources

to the µC improves the QoS, it might affect the primary workload of the host devices; therefore,

it can have negative impact on overall application performance. Consequently, we implement

a Resource Management Module (RMM) based on “Monitor-Forecast-Adapt” strategy which

gets executed in each µC to balance µC resource demands and primary workloads of the host

devices. Fig. 5.12a shows the components of Aloe RMM which consists of three sub-modules.

a) Resource Monitor (RM) periodically collects usage statistics of the µC and stores it in a

“JSON ” data-store. b) Usage Estimator periodically analyzes time-series of resource usage pat-

tern of the µC and predicts probable resource demand for the next time period. c) Resource
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Enforcer (RE) is responsible for actually resource reservation for the µC based on the predicted

resource demand.

a Prediction of µC Resource Demands

For prediction of resource demands, it is important to identify distributions of resources which

depend on the flow arrival pattern. However, in practice, it is difficult to estimate flow arrival

distribution for a LSiN platform with heterogeneous applications executing in it. Therefore, we

choose a forecasting model based on characteristics of the IoT applications. We focus on two

basic characteristics of the IoT applications. (i) IoT applications generate bursty and short lived

flows [37]. The bursty and short living nature of LSiN flows reveal that, flow arrival rates per µC

during a discrete time interval is cyclic6. (ii) These characteristics also suggest that, flow arrival

rates follow a non-stationary property7 . Therefore, we use Autoregressive Integrated Moving

Average (ARIMA) [225] model for forecasting of individual resource requirements. ARIMA

relies on mean reversion principle of non-stationary data to forecast future strategy based on

the time series by employing autoregression.

b Performance Improvement with Aloe RMM

We have integrated the RMM module with Aloe and tested it over the AWS platform as dis-

cussed earlier. Like many statistical modeling methods, identification of parameters for ARIMA

is a non-trivial challenge. Therefore, we use auto-ARIMA [225] based on our experimental ob-

servations to individually forecast the CPU and memory demands according to the resource

utilization time series. Fig. 5.12b shows the amount of CPU reserved for the µC in various load

scenarios remains almost constant. Fig. 5.12c shows the memory reservation of µC application

due to resource reservation module. From results we can observe that, memory reservation

amount increases in case of 30% load. The reason behind this observation lies in the OVS to

µC mapping technique used in Aloe µMM. An OVS chooses a µC based on how quickly the µC

responds to its join request. As the system load increases, a lightly loaded µC is more likely to

provide a quick response time. Therefore, lightly loaded µCs are likely to get connected with

more switches with high number of flows passing through those switches, which in turn increases

memory overhead of those µC. Next we check how accurate the RMM prediction model can

6“A cyclic pattern exists when data exhibit rises and falls that are not of fixed period” [224].
7“The properties of non-stationary series (viz. mean, variance and co-variance) are functions of time” [224]
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Fig. 5.12: Resource Reservation for Aloe µCs

perform based on Mean Average Percentage Error (MAPE). Fig. 5.12d revels that, the pro-

posed RMM provides significantly low MAPE for prediction of memory. We observed frequent

fluctuation of CPU during our experiments which the underlying ARIMA can not predict al-

ways. Therefore, higher MAPE is observed (Fig. 5.12d) for CPU utilization prediction. Due

to this behavior performance of the IoT applications are also influenced. Figs. 5.13a and 5.13b

compare resource utilization between the µC and IoT application in terms of CPU and memory.

From Fig. 5.13a, we observe that accuracy of RMM does not significantly affect performance of

memory utilization by IoT applications. However, reduced accuracy of used ARIMA sometimes

over provisions more CPU time to the µCs. As a result the IoT application receives less CPU

time than its demand in such cases.

Interestingly, the IoT application (like “GlusterFS ”) shares more host resources than the µC;

therefore, a slight resource biasing towards µCs improve their performance significantly, while

having marginal impact on performance of the IoT application. We present this observation in

Fig. 5.14a, where we compare performance of the RMM in terms of flow setup time with that of

105



Chapter: 5 Aloe

no-RMM. The results justifies that the RMM ensures low variations in flow setup time as opposed

to the no-RMM case. In fact use of RMM can significantly improve performance of IoT short

flows by reducing average flow set-up time by 13%− 120% in various load scenarios. However,

due to resource reservation of µC, the application may suffer due to insufficient resources. To

understand this effect, we compare performance of the “GlusterFS ” application before and

after implementing the RMM in Fig. 5.14b. We find that, increase in mean download time due

to effects of RMM while downloading a 25MB file using “GlusterFS ” varies between 2%− 7%

for different load conditions which is considerably small.
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5.8 Summary

In this work, we present Aloe, an orchestration framework, for LSiN which utilizes In-network processing

infrastructure for ensuring fault-tolerant network management. Aloe uses docker container to
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support lightweight migration capable in-band controllers. This design choice helps Aloe to pro-

vide elastic auto-scaling while keeping flow setup time under control. Aloe provides controller

as a service to exploit in-network processing infrastructure and supports fault and partition

tolerance. The performance of Aloe has been tested thoroughly and compared with existing

controller scheduling framework. The results indicate a significant improvement in response

times for distributed LSiN services. In the next chapter, we shall see how the proposed Aloe

framework can be augmented to cater to various networking services to a diversified set of

traffics.
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Chapter 6

Amalgam: Distributed Network

Control With Scalable Service

Chaining

6.1 Introduction

In the previous chapter we proposed Aloe which provides Software-Defined Network (SDN)

controlled network management for dynamic large scale IoT network (LSiN). This chapter we

extend the proposed Aloe, to provide support for Service Function Chaining (SFC) and traffic

steering problem in LSiN. LSiNs serves hundreds of heterogeneous types of sensors and sup-

ports millions of devices. Apart from core networking services like topology discovery, path

management, quality of service (QoS) management, management of LSiN ecosystems require

various network services like Network Address Translation (NAT), firewall, proxy, local Domain

Name Server (DNS), etc.; these network services are called Network Functionss (NFs). De-

pending on network management policies, the application messages require steering through an

ordered set of NFs known as “NF service chain” [41]. NFs are generally deployed using Virtual

Has been published in [T.6] Subhrendu Chattopadhyay, Sukumar Nandi, Sandip Chakraborty, and Abhinan-

dan Prasad. “Amalgam: Distributed Network Control With Scalable Service Chaining”. In: Nineteenth IFIP

Networking Conference (IFIP Networking). 2020
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Machiness (VMs) to provide service isolation and reducing capital and operational expenditure

by multiplexing the same hardware resources; therefore, they are termed as Virtual Network

Function (VNF) [42, 43]. VNFs execution require computation platform to host the VM and

execute the NF within the VM.

Researchers have explored various architectures to execute VNFs over a network infras-

tructure [42, 226]; majority of them rely on SDN [227] to steer flows from one VNF to another.

However, for a large-scale network spanning across multiple administrative domains, SDN-based

service chaining falls short in several aspects such as-

(a) Lack of scalability: Existing SDN assisted VNF placement and service chaining ap-

proaches [228, 229, 227] use a central controller to monitor resource usage statistics of indi-

vidual devices associated to the platform. Based on resource usage, VNFs is deployed in the

actual devices. The use of a central controller for VNF deployment becomes challenging when

the network spans across multiple autonomous administrative domains interconnected through

different network service providers. To apply SDN assisted VNF placement, administrative

privileges across all autonomous domains is required, which is neither scalable nor feasible.

(b) Problem of maintaining state consistency for dynamic service chaining: Existing

scalable distributed VNF placement methods [230] and IP based traffic steering proposals [231]

are not suitable for dynamic service chaining where VNFs can be added or removed to/from a

service chain without terminating the flow. Dynamic service chaining aims to reduce the end

host overhead and provides reliability. For example, depending on the flow behaviour perceived

by the deep packet inspector (DPI) VNF, a load-balancer VNF may be injected in the service

chain without terminating the flow. The SDN control plane needs to keep track of the internal

states of all the VNFs to implement the dynamic service chaining over distributed SDN. In a

distributed environment, it is challenging to preserve the consistency of the states.

(c) Issues of flow monitoring over multi-administrative platforms: To steer traffic

through proper service chains, SDN requires monitoring of flows. SDN flow identification meth-

ods using packet header fields are insufficient when there exists a VNF that modifies the packet

headers (e.g., NAT, Load balancer, Proxy, etc.). Therefore, existing SDN-based flow monitoring

schemes [229, 232] utilize “vlan/mpls” tagging. However, in a multi-administrative platform,

each autonomous system may use the tags for different purposes that may not be controlled due

to the lack of administrative privileges. Therefore, the tag-based monitoring approaches are not
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suitable for multi-domain platforms.

To avoid the issues of SDN based service chaining, “session-based service chaining” [233,

234, 231] has been explored in literature. In session-based service chaining, the VNF placement

and flow steering decisions are taken by the end hosts, which reduces the complexity of VNF

state management through a centralized authority. However, session-based service chaining can

not guarantee QoS; since it can not monitor all flows of the system. Apart from that, the

placement of distributed controllers both for VNF management and SDN service steering over

a multi-administrative platform is a non-trivial problem.

To avoid these issues, we propose Amalgam in this work, which couples distributed placement

of VNFs and SDN enabled traffic steering for a multi-administrative platform by exploiting in-

network or In-network processing (In-network processing) [46, 47] architecture. In-network processing

provides a mini-cloud like platform by utilizing residual capacities of various network devices

of the platform. To harness the power of In-network processing, Amalgam proposes a novel

distributed VNF placement module along with a distributed SDN control plane as a micro-

service (µS) which can be deployed over existing network devices by utilizing their residual com-

puting capabilities. Placement of the proposed micro-controllers (µCs) ensures fault-tolerance

of the control plane whenever network topology changes. Additionally, the use of SDN ensures

fine-grained QoS over multi-domain platforms. Moreover, Amalgam is compatible to cater to

“plug-and-play” nature of the devices without compromising the operation, where, the plug-

and-play devices may join and leave the platform dynamically. The coupling of VNF placement

and traffic steering in Amalgam ensures dynamic service chaining during an on-going session,

which is very useful for large-scale platforms. In summary, our major contributions are as

follows.

• We develop Amalgam, which achieves fine-grained network control over multiple adminis-

trative domains along with distributed management of service chains. Amalgam exploits

µS architecture of the In-network processing platform to deploy the network and service

chain management modules to attain distributed control over the multi-domain platform.

• We develop a distributed heuristic to identify the placement of VNFs for a large-scale net-

worked system spanning multiple administrative domains. The proposed greedy heuristic

can deploy the VNFs very quickly without gathering resource statistics from all the de-

vices. Thus it can provide significant performance improvement in terms of flow initiation
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delay.

• To support the plug and play nature of the devices, Amalgam is developed to provide “zero

touch deployment ”. Zero-touch deployment ensures that whenever a new device enters

the eco-system, it requires minimal attention from the system administrator.

For performance evaluation, we develop an emulation framework MiniDockNet for VNF de-

ployment using “docker ” [48] over In-network processing, as the existing network name-space

oriented mininet [49] emulator is not sufficient for In-network processing. We compare per-

formance of Amalgam with an exiting service function chaining framework Dysco [234]. Our

emulation over a realistic large-scale system, which consists of 70 devices and 6 different service

chain scenarios, reveals that Amalgam can ensure fine-grained QoS without significant increase of

resource utilization of the devices. Since Dysco does not specify any VNF placement mechanism,

we compare our results with one of the state-of-the-art distributed VNF placement framework

WGT [230] on top of Dysco framework. Our experiments show that Amalgam is capable of a sig-

nificant reduction in the flow initiation delay. Therefore, Amalgam provides a better end-to-end

delay than it’s predecessors for short-duration flows.

6.2 Related Work

In the literature, most of the SDN enable service chain management primitives [235, 232, 236,

237] rely on the logically centralized view of the SDN control plane. OpenNF [236] and Split-

Merge [237] keeps track of the VNF states to ensure fault-tolerant migration. However, middle-

box developers must modify, or at least annotate, their code to perform custom state allocation

to use these two platforms. The same issue is also found in S6 [238], which relies on DHT based

shared objects for NF state management. In comparison these existing works, Amalgam does

not require any custom development since it uses containerization and provides a decentralized

architecture.

Network service header [233] is an example of session based methods that provide an

encapsulation mechanism to forward data packets from one middlebox to another. Dysco [234]

proposed a distributed architecture for managing service chaining. Dysco primarily addresses

two challenges in service function chaining; (a) Scalability: which is addressed by implementing

distributed management of traffic steering, and (b) Multiple administrative domain issues which
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are handled by intercepting TCP sessions in the hosts. However, to achieve this, Dysco requires

it’s agents to be installed in the hosts and all intermediate nodes. Installation of Dysco agents in

all devices is difficult to achieve in case of in-network processing platforms due to the plug and

play nature of its constituent devices. On the other hand, most of the session based frameworks

use encapsulation for steering, monitoring of the flow characteristics become almost impossible.

This is a common problem with nearly all the session based proposals.

Kariz [239] has proven that optimal deployment of VNFs under resource and service level

agreement constraints is NP-hard in the presence of centralized Service Chain Manager (SCM).

Authors in [240, 241, 242] have proposed online proactive heuristics for the VNF deployment

problem targeted towards various IoT scenarios. All these previous studies work under a com-

mon presumption that the IoT platform is within a single administrative domain and managed

by a single controller. However, in reality, LSiN In-network processing infrastructure may span

across multiple administrative domains, and a single controller architecture creates performance

bottleneck. WGT [230] presents an iterative VNF placement heuristic for the multidomain net-

work. WGT uses a hierarchical aggregation controller to construct an abstracted view of the

network by obtaining feedback from each domain. Therefore, this hierarchical approach re-

quires a larger initiation time. Since LSiN generates a huge amount of short-lived flows [4],

WGT can reduce the overall application performance.

6.3 Architecture

The proposed Amalgam1 is constructed on top of Aloe (Chapter 5) framework. Aloe provides

an orchestration framework for a fault-tolerant self-stabilizing distributed control plane on top

of the in-network processing platform using µCs instead of the standard SDN controller. Hence,

the proposed Amalgam is also fault-tolerant and self-stabilizing. Each device of Amalgam supports

the following modes of operations:

• Host (default) mode: A device is in this mode if it executes at least one client or server

application.

• Forwarding mode: If the device has multiple active network interfaces, then the for-

warding mode is activated. For ease of reference, we describe a device in forwarding mode

1https://github.com/subhrendu1987/NFV_MiniDockNet
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as “forwarders”. Forwarders have containerized software switch.

• µC mode: During execution of Aloe a device can be selected as µC. To handle such a

scenario, Amalgam supports µC mode of operation.

At any point in time, a device is in “atleast” any one of the above modes. Based on the

current network state, device can select their mode of operations dynamically. Each device

has a mode selector module that periodically checks neighborhood of the device and activates

and/or deactivates the µC and/or forwarding mode.

In the example given in Fig. 6.1, four devices (1, . . . , 4) are connected within a linear fashion.

There are two flows in the system (f1 and f2) such that 1 and 2 host client applications s1 and

s2 respectively. Traffic generated from s1 and s2 are served by server applications d1 and d2

hosted on d4 placed in 3 and 4 respectively. In this scenario, device 1 and 4 work in a host

mode. On the other hand, 2 and 4 have multiple active physical interfaces; so, they work in a

forwarding mode. Between these two forwarders, we assume that 2 is assigned the role of µC

by Aloe.

To facilitate the different modes of operation of each device, Amalgam can be described as a

composition of several components. The working of the components is shown in Fig. 6.2.
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6.3.1 Host Component

The host component is composed of two modules namely data flow and service chain requester

module. For the sake of abstraction, we refer to the Internet of things (IoT) client and server

applications as part of the data flow module that is responsible for generation/consumption of

LSiN traffic. All packets generated by data flow modules are directly forwarded to the forwarder

module, which in turn forward towards the destination host device through service chains.

Consider a scenario of higher/lower server load during an data exchange sessions. Normally

additional load balancers are dynamically added or removed from the service chains. In such a

scenario, a host also get affected. Hence, we propose service requester module, a “REST ” based

interface to communicate with the µC to dynamically adjust the hosts with modified service
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chain.

6.3.2 Policy Manager Component

For any ongoing data transfer session, generated traffic from a host component needs to be

forwarded through specific sequences of VNFs (service chain). Since sequence VNFs depend on

the flow characteristics such as application, source, and destination. We utilize a separate policy

manager component to provide the service chain related policy information for an individual

flow. In this context, we adopt the definition of flow as given in the SDN literature [15]. We also

consider that each flow can be identified by a suitable set of match fields using “OpenFlow ”.

Policy for each flow contains two parts; (i) the flow identifier (i.e., “OpenFlow ” match field) and

(ii) ordered list of the types of VNF (service chain) through which the flow should be steered.

The policy manager keeps the list of service chain policies in a distributed database. A system

administrator can update policies via the “REST ” interface, that allows dynamic adjustment of

policies during execution. The µC components read, process, and translate these policies and

modifies flow table entries of the forwarder component as recommended by the policy.

6.3.3 Forwarder Component

As mentioned in Section 6.3.1, data generated by the host components are forwarded to the

forwarder component. This component can be either in the same device where the host com-

ponent is or in an adjacent forwarder device. Forwarder provides two basic services; a) Data

forwarding via software switch module and b) VNF hosting by utilizing residual capacity of the

device executing this component. The software switch module is connected to µC adjacent to

it via standard OpenFlow interfaces and acts as a SDN capable switch.

Forwarder components use containerization tools (e.g., Docker [48], Kubernates [243], etc.)

to host the VNFs and utilize residual resources of forwarder devices. To manage the containers,

Amalgam forwarder component provides “RPC ” interfaces, which can be accessed by the µC.

Successful placement of VNFs in the forwarder depends on residual resource of the forwarder.

To keep track of residual capacities of the forwarder, we implement a separate monitor module

that can provide resource utilization of the device to the µC associated with it via “REST ”.
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6.3.4 µC Component

For a large scale and multiple administrative domains based LSiN eco-system has multiple µC

devices that take care of the forwarders adjacent to them. Each µC has information about its

neighbor µCs. Amalgam introduces Service Chain Identifier (SCI) and VNF manager module

(VMM) module along with the Path Manager Module (PMM) module in each µC as shown in

Fig. 6.2. The task of the PMM is to find path between a source device under its influence and

a remote destination device. To find path, each µC exchanges the “constituent list” of devices

periodically. Other two modules can obtain path related information by querying PMM. The

detailed working principles of rest of the modules are as follows.

a Service Chain Identifier

At the startup phase of the µC, SCI caches policy in a local cache. The local cache is updated

whenever policy manager database is updated. SCI module is consulted when an “OpenFlow ”

“packet in ” event is initiated at the µC. From list of VNFs in the service chain, SCI chooses

first VNF, and it’s execution status in the local domain. If VNF is executing inside a forwarder

connected to µC, SCI consults PMM to establish data flow path by installing flow table entries

via standard “OpenFlow ” protocol. Otherwise, it sends a search query to the other µCs to iden-

tify target VNF address. If address of the VNF is not found, then SCI consults VMM(Section b)

to start execution of the VNF. This procedure is iterated for all the VNFs in the service chain.

b VNF Manager

The VMM works in a distributed fashion and communicates with the neighbor µCs. VMM tries

to answers the following two questions; (a) should the VNF be placed in any of the forwarders

associated with the µC? (b) which forwarder should take care of the VNF?. The detailed

protocol to find an answer to these questions is described in Section 6.4.2. Additionally, VMM

also takes care of dynamic addition or removal of the VNFs to an ongoing flow.

6.3.5 Interaction of Amalgam Components

The interactions between these components are represented in Fig. 6.2 using labeled edges

(referred using boxed numbers). Let us consider the following scenario where the host data

flow module generates a flow that needs to be forwarded through VNF-1. The flow path is
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shown using ( 1 ). As soon as the flow enters, software switch module consults µC PMM via

“OpenFlow ” interface ( 2 ) since the software switch module does not have any pre-loaded action

for this flow. The PMM identifies service chain policy for the flow by querying SCI ( 3 ). SCI

generally pre-loads the policy during bootstrapping. However, in the event of an absence of

a suitable policy, SCI queries the policy manager through the “REST ” interface ( 4 ) to obtain

policy information. Once the policy information is obtained, PMM consults VMM to obtain

exact location of the VNFs required for the flow ( 8 ). The VMM identifies location of the VNFs

by consulting with rest of the µCs ( 12 ) if the service chain has already been deployed. For a

first time flow, service chain may not exist. Therefore, VMM takes responsibility of deploying

the service chain. To deploy individual VNF, VMM communicates to the forwarders to obtain

their resource allocation via “REST ” ( 10 ). Once suitable forwarder is found, VMM deploys

the VNFs by using “RPC ” ( 9 ). After deployment of the service chain, PMM calculates the

flow table entries to send the flow through sequence of VNFs and pro-actively installs them

to the forwarders, which are being controlled by it. During the session, a host may decide to

add/remove one/some of the VNFs, as mentioned in Section 6.3.1. To cater to such scenarios,

the service chain requester module in the host component can invoke a “REST ” request to the

SCI ( 5 ). Upon receiving such a request, SCI notifies VMM and PMM ( 6 ) and VMM and

PMM act accordingly. The detailed implementation and design choices are described in the

next section.

6.4 Implementation Details and Design Choices

Amalgam is targeted for a highly dynamic In-network processing platform. The scalability is-

sues and dynamic behavior of the platform is responsible for the challenges we faced during

implementation. In this section, we describe the implementation challenges and the proposed

solutions to overcome the issues.

6.4.1 Plug-and-Play Capability

A typical LSiN platform is composed of plug-and-play devices where “zero touch deployment ” [244]

is highly desired. Whenever a new device enters the eco-system, it requires to be configured.

To avoid individually configuring the devices, we design each component of Amalgam (except

the host component) as Docker containers. Once a device enters the eco-system, it assumes the
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Algorithm 4: Distributed Placement of VNF

1 Function GreedyPlace(Path: Pa, Service Chain: Cj , µC: l):

2 Find ordered set of unplaced VNFs from Cj ;

3 I ← {i : i ∈ Pa, ϕi = l};

4 Place as many VNFs as possible among I;

5 return number of VNFs placed;

6 Function Main(Flow: fj ,µC: l):

// Find VNF placement profile for fj in ϕi

7 Find set of paths (P ) from sj to dj by querying “Path Management” module of l;

8 maximize
Pa∈P

GreedyPlace(Pa, Cj , l);

9 if ∃cj,k · · · cj,jmax not placed then

// All devices under l

10 Obtain the list of adjacent µC of l and store it in Nµforeach l′ ∈ Nµ do

11 Main(fj ,l′);

12 return;

host mode of operation. Since the host mode does not require anything more than the IoT ap-

plications (clients and servers), they can work smoothly. Whenever the device wishes to change

its mode, it can pull container image of the Amalgam component from the nearest forwarder.

6.4.2 Distributed VNF Placement

In a short-lived flow heavy system, minimization of the flow initiation delay is critical. The

flow initiation delay consists of following components namely (a) Controller consultation delay

(b) SFC deployment delay, and (c) path setup delay. The proposed VNF placement reduces

the SFC deployment delay. A SFC for a particular flow is composed of multiple VNFs, which

requires resource consumption. Each device of a IoT in-network processing platform has residual

resources that can be used for deployment of these VNFs’s. The proposed VNF placement

identifies the set of devices where the VNFs of the SFCs can be placed for a given network

and flow profile while satisfying the capacity constraints of the devices. Maintaining capacity

constraints in a multi-domain system is non-trivial since the residual capacity of a device residing

in a different administrative domain is difficult to collect. Therefore, we propose the greedy

heuristic as given in the Algorithm 4.

Each µC in the end-to-end path (P ) executes the proposed heuristic for each flow (f j rep-

resents jth flow) from source (sj) to destination (dj). We denote SFC of f j with Cj . Certain
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µC with ID l maintains the topology information as the list of devices (Dl) and list of links

(El) where each link ei,i′ ∈ El represents the physical connection between two devices (i and

i′). For the sake of simplicity, we denote the µC associated with ias ϕi. The proposed heuristic

identifies a path P a between sj to dj from the set of P such that, most of the VNFs of Cj are

placed near sj in a distributed fashion. This way, one µC does not need the resource utilization

of devices from other administrative domains. Once the flow is established, the resource utiliza-

tion of devices in the path (info) is piggybacked with the data packets. The VNF manager can

re-solve the Algorithm 4 and find a new allocation of VNF with updated utilization.

6.4.3 Migrations of the VNFs

A VNF may need to be relocated in the following circumstances.

a Sub-optimal VNF placement

The initial path for a service chain is sub-optimal and during the optimization period some of

the VNFs requires migration from one to another. The decision of moving an arbitrary VNF

cj,k from i to i′ is taken by ϕ(i). In order to ease migration, VNFs are deployed using containers

which allows save the state of cj,k via standard APIs. Once the decision is made, ϕ(i) notifies

ϕ(i′) to copy the snapshot of cj,k to i′ via implemented “REST ” interface. After restoration of

the snapshot, the path manager module of ϕ(i) and ϕ(i′) are consulted to reconfigure the flow

table entries of the intermediate forwarders between i to i′.

b Addition/removal of devices

The dynamic nature of the LSiN eco-system allows a device to move in or out of the platform.

The addition of VNF introduces a new opportunity to optimize VNF placement further. On the

other hand, removal of a device requires migration of VNFs running in the device to another

device. Let i is either going to join or exits from the system. This event results in a topology

change event in ϕ(i). Based on the topology change event type, ϕ(i) decides the services that

need to be migrated to/from i.
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Fig. 6.3: Service Chain Management

6.4.4 Dynamic management of service chains

Amalgam provides a dynamic change of service chaining. This feature is required for the following

scenario. Let’s assume, flow f j passes through a Deep Packet Inspector (DPI) VNF cj,k. Based

on the signature of f j , cj,k conditionally decides if the flow needs to be steered through a firewall

VNF cj,k+1. To implement this, Amalgam allows the VNFs to interact with the local µC via

“REST ” interface as given in Fig. 6.3. The local µC can deploy the cj,k+1 if it is not available

and sends the “OFPT FLOW MOD ” events to the forwarder component in order to enable the flow

steering.

6.4.5 Flow Tags for Monitoring

Once the VNFs are placed, the path management module of µCs set-up flow table entries of the

participating forwarders via OpenFlow protocol. One issue regarding path management through

service chains is to identify an end-to-end flow that arises in presence of the “5-tuple” changing

VNFs (e.g., Load balancer, web proxy cache, NATs, etc.). Since such VNFs may alter the

packets in unpredictable ways, fine-grained management and monitoring of the flows passing

through becomes difficult. To avoid this issue, Amalgam uses packet tagging. Let us consider a

scenario where f j requires cj,k, which is a flow identifier modifying VNF hosted in i. In this
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case, at the time of flow table entry installation ϕ(i) attaches a “VLAN ” tag entry to the flow.

Using this “VLAN ” tag i can identify f j even if the original flow identifier is modified by cj,k.

The µC also maintains a table for flows like fa, which keeps track of the original id of the flow

and the modified ids (alias).

6.4.6 Providing QoS

Amalgam is developed on top of the SDN decentralized control plane, which enables us to ensure

flow specific QoS guarantees. On the other hand, since the VNF deployment is done using

containers, using “cgroups ”2 can ensure the VNF specific QoS like reservation of CPU, Memory,

etc. The policy server module contains the “cgroups ” parameters for each VNFs of a service

chain, which is used to ensure VNF specific QoS.

6.5 Prototype and Experimental Results

“Mininet” [49] a popular emulation framework used by both academia and industry mainly for

prototyping SDN applications. Internally, “Mininet” uses network name-spaces for emulation

of nodes, and all the switches are emulated using Open virtual switch (OVS) bridges. However,

“Mininet” is not suitable for testing In-network processing framework and VNFs for following

reasons:

• In-network processing architecture requires resource isolation for individual nodes, which

is non-trivial to achieve in “Mininet” OVS-bridges.

• Each VNF may require a collection of dependent software to execute actual network func-

tion. However, “Mininet” hosts and “network name-spaces” can not guarantee isolation

at software granularity.

Therefore, we develop “MiniDockNet” over existing Application Programming Interfacess

(APIs) of the “Mininet” framework. The salient feature of “MiniDockNet” is the usage of actual

docker containers to emulate individual devices instead of network namespaces to address above

issues. To implement “MiniDockNet” we use “docker-py”[245] and original “Mininet” sources.

“MiniDockNet” supports the following types of devices; (a) hosts, (b) µC, (c) Switches, and (d)

VNFs. Here hosts are standard docker containers equipped with IoT client-server applications.

2http://man7.org/linux/man-pages/man7/cgroups.7.html
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Each µCs can act as SDN controller. Switches have OVS installed in them. VNFs mimic

real-life VNFs and execute inside switch dockers using the “Docker-in-Docker” configuration to

implement In-network processing of VNFs. Therefore, the VNFs can migrate from one switch to

another, depending on the VNF placement decisions. To implement migration, we use standard

live container migration using “CRIU ”3. For the emulation of the links between any two nodes,

we use Layer Two Tunneling Protocol (l2tp)4

Name Service chain

C1 (N)

C2 (L)

C3 (W)

C4 (N→L)

C5 (L→W))

C6 (N→L→W)

Table 6.1: List of Service Chains

Resource Distinguishable

CPU Y (<0.05)

Memory N (0.42)

Bandwidth Y (<0.01)

Delay Y (<0.01)

Table 6.2: Wilcoxson test for QoS provision-

ing

6.5.1 Experimental Setup

For experimental purpose, we use “rocketfuel ” [218] topology5 with 68 nodes. Each link is

configured to emulate 3ms of delay and 10Mbps of bandwidth using linux “tc ” utility. We

use “iperf ” to generate long flows; for shorter flows we use “ping ”. The clients and server

applications are hosted on diameter of the topology. For background traffic we use python based

“HTTP ” client and server.

We use “cassendra ”6 to implement the policy server module. Rest of the Amalgam modules

targeted for µC are implemented on top of “Ryu ”7, a python based SDN controller framework.

For experiments, we use 3 different VNFs (NAT (N), Load Balancer (B)8 and Web Proxy(W)9)

3https://criu.org/Live_migration
4https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
5https://raw.githubusercontent.com/subhrendu1987/NFV_MiniDockNet/master/topology/rocket_fuel_

68.graphml
6https://gitbox.apache.org/repos/asf?p=cassandra.git
7https://ryu.readthedocs.io/en/latest/
8https://hub.docker.com/_/haproxy/
9https://hub.docker.com/r/sameersbn/squid/
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Fig. 6.4: Flow Initialization Delay

to create 6 different combination of service chain as given in Table 6.1. In order to ensure the

confidence on the results, each experiments are performed atleast 30 times.

6.5.2 Results

We compare the performance of Amalgam with P4 based distributed session-oriented service func-

tion chaining framework called Dysco [234]. Since, Dysco ensures session related performance

and does not provide any VNF placement strategy, performance evaluation of the proposed dis-

tributed VNF placement algorithm is done with another existing work WGT [230] which proposes

a distributed heuristic for VNF placement for the multi-domain network.

a Session Related Performances

Figure 6.4 shows comparison between Dysco and Amalgam in terms of flow initialization delay.

We found that Amalgam is capable of quicker flow initialization than Dysco. This reduction in

flow initialization delay comes from the parallel deployment of VNFs as opposed to the hop by

hop deployment of VNFs in Dysco. The advantage of flow initialization delay becomes much

evident in case of longer service chains like C6 than smaller service chain like C1. Since

Amalgam uses containers to deploy the VNFs as opposed to the P4 applications used in Dysco,

deployment of VNFs using Amalgam incurs greater latency, as shown in Fig. 6.5. The increase

in VNF deployment time for Amalgam depends on VNF container size. Therefore, deployment

latency is higher for C6 in compared to C1. However, in a large scale network, VNF deployment
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Fig. 6.5: Latency of Deployment
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events are far rare than a flow generation event. On the other hand, the use of containers

provide greater flexibility as creation of new “middlebox” application using container requires

less programming overhead than creation of a new P4 application. As a result, state management

during migration of VNFs from one node to another becomes easy when they are running inside

a container as compared to the P4 applications of Dysco. However, these management benefits

of containers come at the cost of resource utilization.

The placement of VNFs requires resource occupancy in the deployed devices, which is an

important aspect of resource constraint LSiN devices. In Fig. 6.6, we compare the performance

of Amalgam with Dysco in terms of CPU utilization of devices due to the placement of VNFs.

125



Chapter: 6 Amalgam

 0
 5

 10
 15
 20
 25
 30
 35
 40

C
1

C
2

C
3

C
4

C
5

C
6

Amalgam [
M

e
m

o
ry

 (
%

)

Service Chain configuration

With Docker
Without Docker

Dysco

Fig. 6.7: Memory Utilization

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5

 2  4  6  8  10

A
v

g
. 

B
a

n
d

w
id

th
 (

M
b

p
s

)

Flow Duration (s)

Dysco Amalgam

Fig. 6.8: Average Throughput: P > 0.05

In order to normalize additional resource consumption of Amalgam due to the use of containers,

we also compare resource utilization of Amalgam without using docker. Similarly, we provide a

comparison of memory utilization for Amalgam and Dysco in Fig. 6.7. Based on these two experi-

ments, we observe that Dysco incurs less utilization of resources than the proposed Amalgam with

the container. However, based on the “Wilcoxon Rank Sum test” [222] we find that, difference

of resource utilization of Amalgam without Docker and Dysco is statistically insignificant (i.e.

p−value > 0.05) for C4, C5 and C6. Fig. 6.8 shows comparison of throughput between Amalgam

and Dysco. The Wilcoxson rank sum test reveals that throughput between Amalgam and Dysco

are statistically indistinguishable (Here our alternate hypothesis Ha is Amalgam provides less
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Fig. 6.10: Average End-To-End Delay for C5

throughput than Dysco).

b Performance of Distributed VNF Placement

To measure performance of distributed VNF placement heuristic used in Amalgam, as mentioned

earlier, we deploy WGT [230] on top of Dysco. However, it is difficult to deploy a centralized

controller for a large scale multi-domain system. Therefore, we place WGT in µC nearest to the

source device. We measure and compare effect of delay for all the service chains when flow

duration increases. Based on experimental results, we found that effect of delay for single VNF

127



Chapter: 6 Amalgam

 50

 100

 150

 200

 10  20  30  40  50  60  70

A
v

g
. 

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s
)

Flow Duration (s)

WGT Amalgam

Fig. 6.11: Average End-To-End Delay for C6
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does not change since “Amalgam” and WGT provides the same results for VNF placement. Hence,

we omit the plots for C1, C2, C3. For multiple VNF oriented service chains like C4, C5 and

C6, we provide average end-to-end delay in Figs. 6.9 to 6.11 respectively.

Based on the results, we can observe that Amalgam can perform significantly well for shorter

flows as the iterative WGT requires a significant amount of feedback rounds to find the proper

placements of VNFs.
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6.5.3 QoS Provisioning

Amalgam is capable of showing QoS provisioning by reserving resources limiting CPU, memory,

bandwidth, and link delay. We perform two experiments for each resource type, one with no

provisioning and another with resource reservation limit set as the mean value found in the

previous experiment. Based on the two results, we tried to identify if resource utilization is

statistically significant based on Wilcoxson rank-sum test. We report the results in Table 6.2

along with the P-value. We found that except memory utilization rest of the resource reservation

works significantly well. We also find that resource reservation can reduce the jitter of the flow,

as given in Fig. 6.12.

6.6 Summary

In this work, we present “Amalgam”, which integrates distributed SDN orchestration framework

with a distributed service chain management framework. The proposed “Amalgam” is suitable

for large scale multi-domain IoT in-networking platforms. We also provide a distributed heuris-

tics for the placement of constituent VNFs of service chains. The lack of an existing emulation

platform for container oriented VNF service chain has motivated us to develop “MiniDockNet”.

Using this emulation platform, we found that “Amalgam” incurs a lesser flow initialization delay

than that of a very recent distributed service chain management framework (Dysco). We also

show that “Amalgam” is capable of ensuring less end-to-end delay for short flows.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have investigated scalability and network management issues of large scale

Internet of things (IoT) network (large scale IoT network (LSiN)) by utilizing Software-Defined

Network (SDN). Apart from standard IoT features LSiN supports in-network or In-network

processing (In-network processing) and spans across multiple administrative domains. Scale of

the network and use of resource constrained Commercial off-the-shelf (COTS) devices makes

the network unstable and prone to failures. The proposed techniques and architectures in this

thesis are designed to provide failure tolerance. During design of the architectures we have also

considered traffic characteristics of LSiN to improve the end-to-end network performance. The

major contributions of this thesis can be summarized as follows.

The use of SDN for network management has been well studied in the literature. We observed

that the network management decisions like route discovery have a strong correlation with

the transport layer decision like path management. This correlation increases in the presence

of a multi-path transport protocol. In Chapter 3, we developed SDN-MPTCP, which helps the

transport layer decision making of Multipath TCP (MPTCP), a popular multi-path transport

layer protocol, by exploiting SDN. We observed that the proposed SDN-MPTCP can reduce the

Head of Line (HOL) blocking problem of MPTCP sub-flow selection.

Even though, SDN can improve performance of LSiN, deployment of SDN over an existing

LSiN is challenging. The capital expenditure (capex)/operational expenditure (opex) introduced
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at the time of deployment of SDN over a LSiN environment restricts the system managers to

adopt SDN for network management. To overcome this issue, we propose FLIPPER in Chapter 4.

FLIPPER lies some where between the traditional network architecture and SDN and provides

SDN like control of the COTS devices of the LSiN. Additionally FLIPPER can provide fault-

tolerance by dynamically assigning roles using Network Function Virtualization (NFV). FLIPPER

can reduce the flow initiation delay by dynamically deploying Network Information Base (NIB).

One of the major challenges in SDN based management of LSiN lies in its dynamic na-

ture, where the devices can enter/leave the eco-system without notification. In Chapter 5 we

extended the FLIPPER to provide plug-and-play support to tackle the dynamic behaviour of

LSiN components by developing Aloe. Aloe provides zero-touch deployment with self-healing

properties through self-stabilization. Aloe proposes servicification of control plane over the

In-network processing platform provided by LSiN. We also proposed a light-weight controller

independent control plane framework to enhance the capabilities of Aloe.

Apart from core services like routing, quality of service (QoS) etc., management of a large

scale network like LSiN requires multiple auxiliary Virtual Network Function (VNF) services

like Network Address Translation (NAT), proxy etc. Where the core functionalities of SDN

are supported in Aloe, the existence of VNF requires more attention. In Chapter 6 we propose

Amalgam which proposes the integration of middle-box application into Aloe. Like Aloe, Amalgam

provides plug-and-play support for LSiN which is spanned over multiple administrative domain.

Additionally, Amalgam proposes a novel VNF deployment and traffic steering framework to

support Service Function Chaining (SFC) over LSiN. For experimental purpose, we developed a

new emulation tool MiniDockNet which overcomes the issue of In-network processing emulation

using existing “Mininet” emulation framework. Based on the experimental results we found

that, Amalgam performs well for short flows.

7.2 Future Direction

The management capabilities and performance of LSiN can further be improved by providing

support for advanced features to the proposed orchestration frameworks and architectures which

are kept as the future direction of this thesis. Some of the features are discussed as follows.
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7.2.1 Enhancement of Amalgam

In this thesis, the proposed Amalgam uses a distributed greedy heuristics for the placement of

VNF. The proposed VNF placement strategy provides initial benefits to the short-duration

flows. However, there is room for improvement here. A pro-active deployment of VNFs can

improve the performance for short as well as long-duration flows. On the other hand, pro-

active placement of VNFs requires the prediction of upcoming traffic requirements and load

distribution of the devices. We have some initial experimental results [O.1] to believe that an

online reinforcement learning mechanism can help in this direction, which we kept as a future

work of this research.

7.2.2 Dynamic Telemetric Application Deployment

The proposed Aloe orchestration framework relies on the dynamic deployment of control plane

applications based on the necessity (in our case failure events). However, this feature can be

customized for multiple other event monitoring purposes. For example, a flow monitor can be

auto-inserted into a particular region of the LSiN to estimate security lapses, traffic pattern

analysis, identification of a heavy hitter flow etc. based on a system administrator defined

policy. We kept this customizability as a future work for Aloe.
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[185] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. “Disco: Distributed multi-domain

SDN controllers”. In: Proc. of International Conference on NOMS. IFIP/IEEE, 2014,

pp. 1–4.

[186] Fei Hu, Qi Hao, and Ke Bao. “A Survey on Software-Defined Network and OpenFlow:

From Concept to Implementation”. In: IEEE Communications Surveys Tutorials 16.4

(2014), pp. 2181–2206.

[187] Edsger W Dijkstra. “Self-stabilizing systems in spite of distributed control”. In: Commu-

nications of the ACM 17.11 (1974), pp. 643–644.

153



Chapter: 7 References

[188] Volker Turau. “Linear self-stabilizing algorithms for the independent and dominating

set problems using an unfair distributed scheduler”. In: Elsevier Information Processing

Letters 103.3 (2007), pp. 88–93.
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