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Abstract

The ever increasing demand for higher processing speed with hiked data paral-

lelism force the computer architects to increase the number of processing cores

on a single chip called Chip-Multi-processors (CMPs). Towards meeting the per-

formance goals, these CMPs are equipped with larger on-chip Last Level Caches

(LLCs) to enhance the probability of the presence of data on-chip during pro-

cess execution. The existing literature portrays that conventional LLCs built-in

charge-based memory technologies are although faster but fall short in fulfilling

these demands, especially in terms of increased power consumption. Furthermore,

stagnation in process technology drove memory architects and researchers towards

investigating Non-Volatile Memories (NVMs) for designing on-chip LLCs due to

their promising scalability, reduced leakage power consumption, and compatibility

with the conventional CMOS. However, many of these NVMs suffer from costly

write operations with lower write endurance.

To achieve the best of both conventional as well as emerging NVMs, Hybrid Cache

Architecture (HCA) has been evolved where different memory technologies are fab-

ricated to build up a single level of cache. In particular, in this thesis, we adopt

HCA based LLC, in which a large portion of LLC is built-in NVM for stimulating

energy efficiency and the remaining smaller part is engineered with the conven-

tional faster SRAM. In such an HCA, the block placement to the appropriate

region is the key challenge from the energy-efficiency perspective. Towards this,

we proposed a private block-based block placement technique that allocates data-

less entries in the NVM portion of HCA. In this approach, additional savings in

the number of writes to the NVM portion are governed by employing a Reuse

Distance Aware Write Intensity Predictor. Besides the block placement approach,

the fields of the predictor are used to improve the victim replacement decision

for different portions of HCA. From this contribution, we get 34.5% reduction in

writes and 16− 19.6% savings in energy over prior works. Towards a performance

perspective, to overcome the effect of costly write latency operations, in the next

contribution, the victim cache is explored with pure NVM and HCA based cache.

With NVM cache, the victim cache is used to retain both victims as well as the

write-intensive live blocks to save on the time to exchange and subsequent slow

writes. By experimental analysis, we achieved 5.88% speedup over the baseline.

With HCA, two policies are proposed to manage the victim cache effectively, where

former one decides the placement of the block upon a victim cache hit in the dif-

ferent regions of HCA, whereas latter one gives a substantial amount of space



for the victims evicted from each region using dynamic region-based victim cache

partitioning. These couple of approaches improve the overall performance of HCA

by 4.43% and reduce the miss rate by 7.81%.

According to the available literature, due to lower write endurance, the lifetime of

NVM caches is limited. Additionally, the run-time behavior of the applications,

working set sizes, and cache replacement policies altogether lead to write variations

across and inside the sets in the cache. In that, some sets and ways (inside the

same set) get written heavily compared to others which are termed as inter-set,

and intra-set write variations, respectively. These variations are one of the biggest

design concern for HCA as they further limit the longevity and lifetime of its NVM-

portion. To mitigate these unwanted write variation, two wear-leveling techniques:

inter-set and intra-set are further proposed. The intra-set wear leveling works on

the basic concept of the write restriction by partitioning the cache horizontally

and vertically and is able to reduce the intra-set write variation in the range of

80−86.5% with 7.27 times improvement in lifetime over the prior works. The inter-

set wear-leveling technique exploits the concept of fellow sets and the dynamic

associativity management to overcome the write variation across the cache set.

With these approaches, write variation is reduced by 27.6− 34%, and the lifetime

is further improved by 14.7− 20.7% over the baseline.

The thesis has thus demonstrated the effective management techniques for longevity

enhancement of the NVM cache for an optimal lifetime and controlling the effect

of costly write operations.
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Chapter 1

Introduction

Moore’s law [1] gives us more and more transistors on the chip with every process

generation. Earlier these additional transistors were used for improving the perfor-

mance of processor architecture by adding more complex and simple pipelines and

the better arithmetic and floating-point units. All these improvements enabled

faster-performing processors due to better clock frequencies. However, if the clock

frequency is increased at the same rate, it would be challenging to manage the

heat dissipated by the processor. Hence instead of improving on the frequency,

researchers moved towards the multiple cores on the chip to keep up with Moore’s

law. We are now in an era of multi-core and many-core processors on the chip,

popularly termed as CMPs.

1.1 Modern Chip Multi-Processors (CMPs)

In CMPs, the large number of cores are attached on the same die, with identical

(homogeneous) or different (heterogeneous) power budgets. The cores employed

in the CMP are either complex or Simple super-scalar processors that can perform

a variety of tasks. The CMPs are initially designed to improve the performance

and to add the parallelism. In addition, the benefit of employing the CMPs is

that the performance can further be enhanced by integrating more number of

1
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identical cores in each new generation. As in the future, with each upcoming

generation, the workloads or applications need higher throughput and parallelism

with the larger data demands. To fulfill the data demand, the multi-level on-chip

caches are attached. Whereas to achieve parallelism, the CMPs becomes larger

and it needs a strong communication infrastructure which can only be provided

by the modern communication system, called Network-on-Chip (NoC). Figure 1.1

presents the design and the floor-plan outlines of two modern CMPs architectures:

Nehlam and UltraSparc T2 [2].

(a) Nehalem [3]

(b) UltraSPARC T2 [4]

Figure 1.1: Modern CMPs: design and floor-plan outlines

The modern CMPs are built by using the following components:

1. The processing cores as the computation unit, CPU cores.

2. The communication medium through which on-chip communication between

different component happens, Network-on-Chip.
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3. An on-chip storage to retain most of the required data needed by the running

application, On-chip Caches.

The computation performance of the CMPs are measured in terms of Instruction

Per Second (IPS), speed-up factor, Total Execution Time, Instruction Per Cycle

(IPC) to a base system etc [5]. In particular, the computation performance de-

pends upon the time taken to execute the application and the parallelism achieved

by the applications while execution. The parallelism of the application is achieved

by using the concept of multi-threading, where the application is spawned into

multiple threads.

Based on the nature of the instruction, the application execution on the CMPs is

categorized into two categories: Memory Bound and Compute Bound [6, 7, 8, 9].

In compute-bound applications, the majority of the instructions are intended for

the arithmetic and logical operations. Whereas, with memory-bound applications,

the majority of the instructions are intended for memory operations, e.g., load

and store. Therefore, with this kind of applications, the system performance

has directly relied on the two factors: memory access latency and the core clock

frequency. In the above-mentioned dependencies, the memory access time further

relies on the following factors: (1) Time taken by the memory to reach the block

that has been requested (2) Time taken by memory system to deliver the block to

requestor core. The former one depends on the type of memories employed in the

hierarchy. Whereas, the latter one relies on the performance of communication

infrastructure, i.e., Network-on-Chip. Thus, based on the above discussion, the

total execution time of the system (by assuming simplistic model) can be modeled

as:

Total Exec T ime = Computation T ime+Memory Cycles+NoC Latency

(1.1)
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1.2 Cache Memory

One of the essential part of the memory hierarchy to improve the performance of

the system is the Cache Memory. It is the smallest and the fastest storage that

contains most of the required data needed by the applications running on CMPs.

Thereby, it restricts the block accesses that directly go to the main memory every

time and thus reduces the average memory access time. In other words, for each

memory access, the processor core first requests to the cache. If the requested

block is present in the cache, it is directly supplied to the core. Otherwise, it is

fetched from the main memory. Bringing the block from the main memory takes

extra clock cycles than accessing the cache. However, the two principles: temporal

and spatial locality of the cache guarantees that once the block is placed in the

cache, it will be used multiple times (more likely) before getting evicted. Thus,

better the hit rate of the cache memory, lesser is the time consumed by main

memory accesses. By this way, the cache memory improves the performance of

the system by limiting the Average Memory Access Time (AMAT). Lesser the

AMAT, lower is the Cycles Per Instruction (CPI) or higher is the Instruction Per

Cycle (IPC).

With the rapid advancement in the CMOS in each process generation, the reduced

channel length of modern transistors [10] facilitates the computer architects to

employ large number of large-sized, multi-level on-chip caches. These large sized

multi-level caches are labeled based upon their distance from the processing core.

In particular, the level which is nearest to the processing core is labeled as the L1

cache (divided into instruction and data cache). The next level to L1 is labeled as

L2 (which is a unified cache) and so on [5]. Among these multi-levels, the on-chip

Last Level Cache (LLC) plays the most prominent role as it contains most of the

required data to save from the costly main memory accesses. The LLCs are larger

in size with a significant area overhead on the wafer real-estate (as it can be seen

from the figure 1.1). Most of the recent CMPs generally have two to three levels of

on-chip caches. Based on this, most of the work presented in this thesis is limited
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up to the three-level, set-associative cache. The set-associative cache is considered

as the best architecture compared to direct-mapped and fully associative cache.

1.3 Cache Memory Architecture in CMPs

For CMPs, accessing a larger cache is both power and time-consuming. Besides,

the large caches are also accounted as a significant contributor to on-chip power

consumption. To solve this, cache architects divide the larger cache into multiple

small slices called a cache bank. This division is based on the two-levels of patterns:

(1) Way based division in which the way(s) from all the sets are made the cache

bank (2) Set-based division in which set(s) from all the ways made the cache bank.

These multi-bank small cache structure not only reduce the access latency but also

provides more design space to the circuit designers to fabricate different memory

technologies for better power optimizations.

The CMP cache architectures are mainly of two types [11] based on the physical

placement of the LLC: (1) CMP with shared LLC (2) CMP with private LLC.

Whereas, in both the caches architectures, the L1 instruction, and data cache are

private to a core. In the former LLC placement, the LLCs are larger and shared

to each core. The data block is present only at one location of the cache, and

all the processing cores share only this copy. In shared LLC, based on workloads

executed by the processing core, the cache storage is dynamically allocated to the

core. On the other hand, in the latter LLC placement, the LLCs are small and

private to a core. The private LLC is present near to the core and thus provides

faster cache accesses compared to shared LLC. Based on the requirement by the

cores, one data block may be present in multiple private LLCs. Thus, the private

LLC size becomes limited, and it experiences more capacity misses. Considering

to both type of placements based on the growing size of workloads, the shared

LLC will be a better design choice. Thus, in this dissertation, we have considered

shared LLC in all of our works.



Chapter 1. Introduction 6

The rest of the dissertation considers the LLC as the shared LLC.

1.4 Power Consumption in CMPs

For each of the component present in the CMP, the total power consumption can

be divided into three categories [12, 13, 14]: (1) Static Power, (2) Dynamic Power,

and (3) Short Circuit Power.

1.4.1 Static Power

The static power is defined as the power drawn by the on-chip circuitry, even when

the circuitry is not performing any task. Static power resembles the leakage power

of the circuit, which is based on two important leakage units: (1) Gate Leakage,

and (2) Sub-threshold leakage [14, 15, 16, 17]. Between these two units, the sub-

threshold leakage has a direct relation with the chip temperature and the supply

voltage. As the chip temperature becomes higher, the covalent bond of the atoms

in the semiconductor material is broken that releases the electrons which flows in

the reverse bias and generates the current, called the sub-threshold leakage current.

The power drawn due to the sub-threshold current is called sub-threshold leakage

power. Whereas, the gate leakage power is due to the down-scaling of device size

and the reduction in the thickness of gate oxide material. The direct relation

of running chip temperature and supply voltage on the sub-threshold leakage is

presented in the following equation [18, 15]:

Pstat = K1VDDT
2e(λVDD+β)/T )) +K2e

(γVDD+δ) (1.2)

In the eq. (1.2), Pstat represents the static power consumption due to sub-threshold

leakage by a CMOS circuit. T denotes the current temperature and VDD implies

the supply voltage. K1, K2, λ, β, γ, and δ are the empirical constant that represent

the different circuits parameters.
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1.4.2 Dynamic Power

The dynamic power is defined as the power consumed due to on-chip circuity while

performing the task. It is due to the switching activity of the transistor while

charging/discharging the output capacitances. The dynamic power is represented

by the help of the following equation [14, 15]:

PDyn = α.C.V 2.f (1.3)

In the eq. (1.3), PDyn denotes dynamic power of cores. The parameters α, C, V

and f represent the activity factor, capacitance, supply voltage and frequency of

the core, respectively.

For the on-chip caches, the dynamic power is consumed during the cache access.

The cache is accessed either for the write operation or for the read operation.

In the traditional cache (fabricated from the SRAM/DRAM), the read and write

access power consumption are same [13, 19]. Whereas, with the advancement

of the semiconductor technologies, researchers have also considers the emerging

Non-Volatile Memory (NVM) technologies for the caches. In these NVM caches,

the access power for the read and write operation is asymmetric [20, 21, 22].

The detailed modeling of the power consumption for different types of memory

technologies used for the fabrication of the cache is discussed in Chapter 2.

Whereas, for the NoC, the major chunk of dynamic power is consumed by two basic

units: (1) Routers, and (2) Connecting Links. Among these two units, the routers

are the most complex part of the system that uses multiple routing algorithms

for sending the data optimally across the chip. The data is passed through the

connecting link, which is nothing but a set of metallic wires. During the routing

operation, the dynamic power consumed by the router is due to the following three

units [23]:

1. Router Clock: The essential part of the router that maintains the synchro-

nization.
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2. FIFO Buffers: The buffer maintains the sequence/order of incoming/out-

going data blocks in the router.

3. Arbiters and Allocators: Make sure that the data block reaches to the

proper destinations.

1.4.3 Short-Circuit Power

The short circuit power is defined as the power consumed due to non-zero fall/rise

time of the CMOS circuitry. In particular, it is the power consumed during the

short-time span when both NMOS and PMOS are active simultaneously. The

short circuit power consumption is very negligible and most of the time ignored

during the calculation of power consumption of CMPs [14, 15, 16].

This dissertation considers only the static and dynamic power/energy for the

calculation of power/energy consumption.

For the modern CMPs, among the different on-chip components, the processing

cores are usually accounted for high dynamic power consumption. Whereas, the

on-chip caches fabricated from the SRAM/DRAM are considered for their high

leakage energy. Also, in the modern CMPs, it has been noticed that the as the

size SRAM/DRAM cache become larger, the number of transistor increases and

occupies large wafer real estate area. This leads to large leakage power consump-

tion which becomes the significant contributor in the total power consumption of

the chip. Table 1.1 presents the percentage power contribution by the on-chip

SRAM caches with respect to the total power consumed by the chip [12, 24].

These large numbers in the table motivate the computer architects to reduce the

power consumption by the on-chip caches. This thesis focuses upon reducing the

high leakage power consumption of the on-chip SRAM caches by employing the

emerging near-zero leakage power NVM caches.
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Microprocessor Power Consumed by on-chip Caches
with respect to total power

ARM 920T 44%
Strong ARM SA-110 27%

21164 DEC Alpha 25-30%
Niagra 12%
Niagra2 21%

Alpha 21364 13%
Xeon (Tulsa) 13%

Table 1.1: Power consumed by on-chip caches

1.5 Memory Technologies used for Caches

Lastly, for around three decades, the cache hierarchy employed in the computer

design has been essentially the traditional charge based SRAM/DRAM memory

technologies. Their advantageous properties are low access latency, very high write

endurance, efficient dynamic energy, and manufacturability. However, they also

consume high leakage energy and occupy a large wafer real estate with each process

scaling. The previous studies [12, 24] on these traditional memory technologies

illustrates that, in the existing microprocessors, the power budget consume by the

on-chip cache ranges from 12-44%. In addition to this, one study [25] pointed

out that to limit the memory bandwidth, large-sized SRAM caches are to be used

that may occupy 90% of the chip for future CMOS generation. To counter these

challenges, different systems and architectural efforts have been made over the

previous years [24]. But the performance target needed by the modern processors

may not be fulfilled by the traditional SRAM based caches.

Recently, because of the several desired features like non-volatility, higher density

and lower leakage than SRAM, the emerging Non-Volatile Memory technologies

have been considered as a choice for the memory hierarchy by the computer archi-

tects [20, 26]. These NVM technologies include Phase-Change RAM (PCRAM),

Magnetic RAM (MRAM) and Resistive RAM (RRAM), etc. Unlike traditional

memory technologies that use charge as an information carrier to store the bit

value, the NVM technologies use resistance as an information carrier. Besides

this, the NVM technologies can store multi-bit information in the cell that in-

creases the cache capacity within the same area footprint. Even though, with

ongoing research work, some of the NVMs are at an early stage of development
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and some of them have reached the commercial product stage. However, despite

many advantages offered by these NVMs, they still lack behind as the alternate

memory choice compared to traditional memory technologies. This is due to costly

write operations and the weak write endurance of these technologies. Thus, uti-

lizing these emerging NVM technologies at the levels of cache hierarchy is a major

problem/challenge for the computer architects.

More details about the working methodology and the preliminary concepts and

characteristics of different memory technologies is discussed in Chapter 2.

1.6 Motivations

From the energy perspective, the cache fabricated from the NVM technologies

saves a lot of leakage power compared to the traditional SRAM/DRAM based

caches. In particular, for conventional caches, the leakage power is the main con-

tributor in the total power consumption. Whereas, comparatively for the NVM

memories, due to near-zero leakage power, the total power consumption is less

with process scaling and with the increase in the size of the cache. However, the

NVM memory suffers from costly write latency and energy, due to long time and

large energy consumption for the bit flipping. To mitigate the expensive write

operations, researchers make use of the best characteristics of each memory tech-

nologies by using Hybrid Cache Architecture (HCA) [27, 28]. In HCA, the cache

is partitioned into multiple regions made up of different memory technologies. In

HCA, the placement of the appropriate block in the proper region is always a

major concern/problem for energy efficiency. On the other hand, from the view

of performance, the performance reduction due to the costly write operations in

the NVM cache and the increase in the miss rate by partitioning the hybrid cache

generates another set of problems. All these phenomena motivate us to develop a

block placement policy for the hybrid cache and as well as develop strategies to

improve the performance of hybrid and non-volatile cache by using victim cache.
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Another leading set of the problems with the employment of NVM caches arise

due to weak write endurance. Compared to the traditional memory technologies

where the write endurance is more than 1015 writes, different NVMs have a write

endurance in the range of 105 to 1012 writes [20]. With these write endurance

values, the NVM cache will last only for certain minutes or days. Furthermore, it

has been observed that the write accesses to the LLC is non-uniformly distributed

among the cache sets, i.e. inter-set and among the blocks inside the cache set, i.e.

intra-set. In particular there is a variable write distribution between the cache

set where some of the cache sets are heavily written while some others are lightly

written. The same case is applicable to the blocks inside the cache set. In other

words, some of the blocks inside the cache set are heavily written while some are

lightly written. This non-uniform dispersion of the writes inside the cache creates

certain write hotspots at different levels of cache, i.e., inter-set and the intra-

set [29]. These write hotspots along with the weak write endurance affects the

lifetime of the non-volatile cache as a whole. All these circumstances encourage

us to develop strategies to maintain the uniformity in the writes and improve the

lifetime.

The main aim of the research work is to enhance the longevity of the non-volatile

cache and utilize them as a better candidates for the last level caches. To facilitate

this process, we make different contributions in the following directions:

• A private block and reuse distance aware write intensity prediction based

block placement technique to save the costly write operations in the hybrid

cache.

• Write restriction based approaches to mitigate the intra-set write non-uniformity.

• Fellow set based dynamic associativity management strategies to overcome

the inter-set write non-uniformity.

• Improving the performance of NVM and Hybrid cache by associating a victim

cache with them.
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1.7 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

1.7.1 Private Block and Prediction based Block Placement

approach in HCA

In this approach, we have presented a block placement technique that places the

different categories of blocks to the different regions of the hybrid cache. The

proposed idea is motivated by the facts that there are a considerable amount of

private blocks present in the LLC, and most of the time, these blocks contain

worthless and stale data. For such data entries, the actual worthy data is present

in the LLC at the time of first write-back operation from the upper-level cache.

We have identified all these facts, and our block placement approach is built on the

top of these concepts. In our block placement approach, when the private block is

loaded into the LLC on a miss, a dataless entry is allocated into the non-volatile

region of hybrid LLC. For such dataless entries, the appropriate tag entry is made

during the allocation of the block in the cache. In such dataless entries, the actual

worthy data is made at the time of first write-back operation. Whereas, for the

blocks (called as a shared block, including instruction block) other than the private

blocks, the normal block fill operation is performed to the NVM region when such

block is loaded in LLC on a miss. Eventually, the block is migrated to the SRAM

region, when the second write back is performed on the entry in the LLC. Besides

the private block-based placement, to further save the writes in the NVM region,

we have employed a Reuse Distance Aware Write Intensity Predictor (RDAWIP).

RDAWIP predicts the placement of the first write back operation for the dataless

entries. In addition to this, we have proposed a replacement policy that works on

top of the traditional replacement policy. The replacement decision is based on

the different fields of the predictor and the reuse distance of the block. The results

of different variations of the proposal are compared with two existing techniques:
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Read Write Aware Hybrid Cache Architecture (RWHCA) [28] and Write Intensity

(WI) [30]. In particular, the following variations are proposed:

• P: Policy with dataless entry, i.e. policy with private block based data

placement.

• T: Policy with private block based data placement along with the prediction

of the first write operation through RDAWIP.

• M: Policy with private block based data placement along with the aug-

mented replacement policy that decides with the help of RDAWIP.

• N: Policy with private block based data placement along with the prediction

of first write-back and replacement policy.

• S: Policy with private block based data placement that makes the prediction

and replacement decision based on the sampler.

The different variation of the policies saves the writes in the non-volatile region

in the range of 41.9% - 48.1% (17.5% - 25%) over RWHCA and 27.4% - 35.1%

(7% - 15.3%) over WI for Dual (Quad) core system. Whereas, the energy gains

by the different variations are in the range of 29.2% - 34.3% (16.1% - 19.6%)

over RWHCA and 17.3% - 23.3% (10.3% - 14.1%) over WI for Dual (Quad) core

respectively. The proposed techniques maintain the same performance over the

baselines.

This work is fully discussed in Chapter 3.

1.7.2 Intra-Set Write Variation mitigation using Write Re-

striction

In this work, four approaches: SWWR, DWWR, DWAWR and MWWR are pre-

sented using different partitioning techniques and at different levels of a cache

bank. These levels are classified as follows:
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• DWAWR: At the level of cache-ways.

• SWWR, DWWR: At the level of window by partitioning the cache vertically

into multiple equal-sized windows (in such a way that each window contains

an equal number of cache ways).

• MWWR: At the level of module by partitioning the cache horizontally into

multiple equal-sized modules (in such a way that each module contains an

equal number of cache sets).

All these intra-set wear leveling approaches uses the basic concept of write restric-

tion to overcome the write variation or non-uniformity. In the write restriction,

during the application execution, for the certain predefined interval, different win-

dow/ sub-ways (inside the module)/ cache ways are treated as the write restricted

or read-only. The selection of window/sub-ways/ways for the write restriction is

based on the following methods: (1) Using round-robin method, and (2) with the

help of write counters associated with each window/way/sub-way. The results

of the proposed approaches are compared with four existing intra-set wear level-

ing approaches: Polf [29], EqualChance [31], Write Aware Displacement [32] and

WriteSmoothing [33].

This work reduces the write non-uniformity in the range of 80% - 86.5% with

negligible degradation in the performance and outperforms over all the prior works.

The lifetime gains by the proposed approaches are in the range of 4.8 - 7.27 times.

The detail description of this work is given in Chapters 4 and 5

1.7.3 Inter-Set Write Variation mitigation using Dynamic

Associativity Management

In this work, to mitigate the non-uniformity in the write distribution between the

cache sets, two strategies: FSSRP and FSDRP are proposed. Both the proposals

are based upon fellow sets and uses the concept of Dynamic Associativity Man-

agement. In these approaches, the cache sets are logically grouped into different
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fellow sets. Each cache set is divided into two logical parts: Normal and Reserve

Part. During the application execution, the normal part of the heavily written

fellow sets spread out their writes in the reserve part of the lightly written fellow

sets of the fellow group. Based on the position of the reserve part of the fellow sets,

two variations of the approaches is presented. In the first approach, the position

of the reserve part is fixed and static. Whereas in the second approach, the reserve

part position is dynamic and it keeps moving over the cache after a certain period

of execution. The results of the proposed works are evaluated with one prior work:

Swap Shift [29] and the baseline for quad-core system.

The strategies reduce the non-uniformity in the writes between the cache sets in

the range of 27.6% - 34% with negligible degradation in the performance. The

lifetime gains by the proposed approaches are in the range of 14.7% - 20.7%. We

have also seen the significant improvement in the different result metrics over the

prior works.

A more detailed description of this work is given in Chapter 6.

1.7.4 Victim Caching to Improve the Performance of NVM

Caches

To fill the performance gap generated due to costly write operation in the NVM

cache, we have integrated a victim cache with the main cache. Employment of the

victim cache with the NVM cache requires good victim migration and retention

capabilities. As the migration of the block from the victim cache to the NVM

based main cache requires extra clock cycles as well as incurs extra energy with

the NVM caches. By considering these facts, we have developed a strategy that

serves write-intensive blocks directly from the victim cache without placing them

back to the main cache. In addition to this approach, we have also proposed a

replacement policy for the victim cache. The proposed replacement policy has

taken the victim replacement decision based upon the number and the type of

requests entertained by the block in the victim cache as well as the time-stamp at
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which the block is last accessed. The result of the proposed scheme is compared

with the existing hybrid cache architecture: RWHCA [28] and the baseline SRAM

and STT-RAM-based caches for the quad-core system.

The proposed technique improves performance by 5.88% over STT-RAM and

3.45% over RWHCA. Whereas, the energy improvement values over baselines STT

and SRAM and the prior works: RWHCA are 8%, 93.5%, and 78.85% respectively.

All the improvements come at the marginal cost of storage and area overhead.

The full description of this work is given in Chapter 7.

1.7.5 Victim Caching to Improve the Performance of Hy-

brid Caches

In this proposal, we have added a victim cache to compensate the performance

gap due to increased miss rate by partitioning the cache into multiple regions, and

the applied block placement policy. The employment of the victim cache with the

hybrid cache requires an effective victim block placement policy upon hit in the

victim cache to the different region of the hybrid cache and to give a substantial

amount of space for the victims evicted from each region of hybrid cache in the

victim cache, a region-based dynamic victim partitioning policy. All these facts

motivate us to develop an access based victim block placement policy and the

dynamic region-based victim cache partitioning strategy. Our access based victim

block placement policy has considered the type of access as well as the dirty

status of the victim block before making a placement decision to the different

region of the hybrid cache. Whereas, our dynamic region-based victim partitioning

approach dynamically partitions the victim cache based upon the number of victim

evictions from the smaller region of the hybrid cache. The victim eviction counts

are assimilated by dividing the application execution into multiple intervals. The

results of the proposed scheme are compared with baselines SRAM, STT-RAM

and the hybrid cache with no specific placement policy and prior hybrid cache

architecture: RWHCA [28] on a quad-core system.
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The proposed work improves the performance of hybrid cache by 4.43% against

STT, 3.03% against baseline HCA, and 2.32% over RWHCA. Whereas, the re-

spective improvements in the energies are 41.3% against SRAM, 34.1% over STT,

24.3% against HCA, and 15% over RWHCA. All these improvements come at a

marginal cost of storage and area overhead.

More details about this work are given in Chapter 7.

1.8 Summary

To fulfill the high data demands in the modern CMPs, integrated with a large

number of processing cores, larger multi-level on-chip caches are attached. Among

these multi-level caches, the LLCs play an essential role in maintaining system

performance. But these larger sized LLC fabricated from traditional memory

technologies occupies larger wafer real estate area and also accounts for signifi-

cant leakage power consumption. The recent emergence of Non-Volatile Memory

technologies has shifted the paradigm and the computer architects are looking at

them as a alternate choice in the memory hierarchy. Over the traditional mem-

ory technologies, these NVMs allow the construction of the on-chip LLC which

are highly dense, non-volatile, low static energy, and better scalability. However,

when employed in the cache, these NVMs incur extra write energy and consume

extra clock cycles for the write operations. In addition, these NVM caches also

have a minimal lifetime due to the weak write endurance and the non-uniform

write distribution (at the level of cache-sets, i.e., inter-set and blocks inside the

cache sets, i.e., intra-set) from the higher-level caches. In this dissertation, we aim

to enhance the longevity of the NVM based LLC by dealing with their challenges

and make them as a capable candidate to fit in this cache hierarchy.

To overcome the costly write operations, we initially employed a hybrid cache

architecture where a larger portion of NVM, a small portion of SRAM is integrated

to save the costly write operation. In such an HCA, block placement is a critical

task for energy efficiency. In this regard, we have presented a block placement



Chapter 1. Introduction 18

technique that considers the private blocks from the different memory block access

and uses a predictor to effectively place the different blocks in the different regions

of HCA. Whereas, with regards to compensating the performance gap due to

costly write operations for the NVM cache and the increased miss rate for HCA,

we have employed the victim cache with both the architectures. In this work, with

NVM cache, we have presented selective victim retention and caching policy for

the write-intensive blocks. Whereas, with HCA, we have proposed an access aware

block placement technique for placing the block from the victim cache upon a hit

and to give substantial space for the victim evicted from each region of HCA, a

dynamic region-based victim cache partition approach is presented.

To improve the lifetime of the NVM caches affected by the non-uniform write dis-

tributions, we propose two wear-leveling approaches for inter-set and intra-set. For

intra-set wear leveling, four approaches: SWWR, DWWR, DWAWR, and MWWR

are presented that works on the basic concept of the write-restriction. Whereas,

for inter-set wear leveling, two strategies: FSSRP and FSDRP are proposed that

works on the basic idea of fellow-set and dynamic associativity management. Both

the wear leveling proposals improve the lifetime significantly with the negligible

impact on performance.

1.9 Organization of Thesis

The rest of this thesis is organized as follows:

• Chapter 2 summarizes the background and prior works related to the con-

tributions of the thesis.

• Chapter 3 presents the first contribution, which is the private block and

prediction based block placement and the replacement technique for the

hybrid cache.

• Chapters 4 and 5 illustrate the four intra-set wear-leveling policies to im-

prove the lifetime of non-volatile cache.



Chapter 1. Introduction 19

• Chapter 6 discusses two inter-set wear-leveling strategies to enhance the

lifetime of non-volatile cache.

• Chapter 7 explore the use of the victim cache with the NVM/HCA based

main cache to improve the performance affected due to the costly writes and

miss rate.

• Chapter 8 finally concludes the thesis.

• Appendix A summarizes the simulation framework used to build up the

contributions of this thesis.





Chapter 2

Background

As presented in Chapter 1, the conventional SRAM/DRAM based LLC in modern

CMPs are usually shared and larger in size. With regards to the next generation

workloads, apart from the alarming rise of leakage power consumption with the

process scaling, the traditional charge based LLCs also fall behind in terms of

scalability and the lower density. The main goal of this thesis is to utilize the

emerging NVM technologies as the Last Level Cache by considering their weak

write endurance and the costly write operations as their main constraints. We

initially summarize the preliminary concept of current memory system and the

emerging NVMs. Also, we have discussed the challenges with the employment of

NVMs in the cache hierarchy. Later we describe the state-of-art energy/perfor-

mance efficient techniques and the wear leveling approaches for the NVM caches

developed over the years.

2.1 Cache Memory Technologies

The characteristics of an ideal memory technology are: fast, highly dense, reliable,

low energy consuming and cheap. However, none of the single memory technologies

fulfill all of these characteristics. For instance, the SRAM memories are fast, but

at the same time, they are expensive, power hungry and have high feature size.

21
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Figure 2.1: Characteristics required at each level of cache

DRAM memory technology is cheaper and has good density but it is unreliable

and slower. The solid state flash memory is reliable and has high density then

DRAM, but its write endurance, write energy, and latency are major concerns.

Fortunately, it is possible to design the different levels of cache hierarchy using

different memory technologies that are fit for that level. This enables us to allow

the formation of the system that gets the performance benefit from the use of

faster technology, energy benefit from the use of power efficient components and

cost advantage by using the cheapest level technology for the hierarchy. All these

advantages are feasible due to the concept called locality of reference. Figure 2.1

present the characteristics required for each level.

2.1.1 Conventional Charge Based Memory Technology

Over the past three decades, different levels of the cache hierarchies have been

fabricated from SRAM memory technology. Some of the prior studies [34, 35, 36]

also exploits DRAM memory technology for the last levels of the cache hierarchy.

Detailed explanation of these conventional charge based memories is given below.

2.1.1.1 Static Random Access Memory (SRAM)

The most familiar and prominent SRAM cell design used for the caches require

six transistors. Figure 2.2 shows the schematic view of the SRAM cell. As can be

seen from the figure, the core of the SRAM cell contains four transistors T1 to T4
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Figure 2.2: Schematic view of SRAM cell

that model two cross-coupled inverters and are used to store the bit information.

The stored bit information in these transistors is represented in the form of two

stable states, 0 and 1. These saved states are permanent until the power (Vdd) is

applied. The two additional transistors T5 and T6 are used for accessing the storage

cell during the read and the write operation. The read and write operation for the

SRAM cell are described below:

Read Operation: To access the state of a cell, the word access line WL is

enabled. This makes the stored stable states available for the read operation in

the lines BL and BL.

Write Operation: To write the cell, the BL and BL are first set to the desired

value, and afterward, the line WL is raised.

Other than the design perspectives, there are some other properties (that includes

pros and cons) in the SRAM which are important to discuss:

1. The access speed of the SRAM cell is very fast. In particular, as soon as the

WL is enabled, the stored stable state is available for the access.

2. The most common SRAM design requires six transistors, thereby it incurs

more area on the wafer real-estate and has lower density than the other

memory technologies.

3. The SRAM cell requires constant voltage supply to retain the data.

4. The SRAM cell is costlier in terms of cost/bit comparison.



Chapter 2. Background 24

C
T

DL
T

AL

Figure 2.3: Representational view of DRAM cell

2.1.1.2 Dynamic Random Access Memory (DRAM)

Figure 2.3 shows the representational view of the DRAM cell. The DRAM cell is

made up of a transistor and a capacitor. The state of the DRAM cell is stored in

the capacitor C as a charge. To access the state, the transistor T is used. The

read and the write operation for the DRAM cell are described below:

Read Operation: To access the state of the DRAM cell, voltage is applied to

the access line AL. This makes either the current to flow on the data line DL,

based upon the charge stored in the capacitor. In case, if there is no charge then

no current flows to the DL.

Write Operation: To write the cell, the DL is appropriately set to the desired

value. Afterward, the voltage is applied to AL for the extended period either to

charge or drain the capacitor.

Because of the more straightforward structure of the DRAM cell, the feature size

and the cost of the DRAM is lesser than the SRAM. Despite these advantages,

the capacity of a capacitor to retain the charge in the DRAM cell is shallow, and

it requires continuous refresh operation to hold the data correctly. Each refresh

operation requires extra time and energy.

The other properties of DRAM can be summarized as follows:

1. The cell structure of DRAM is simpler, and thus, it allows the high density

with low cost/bit comparison.

2. The access speed in the DRAM cell is slower compared to SRAM.

3. The refresh operations required to retain the data correctly makes DRAM

power hungry.
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2.1.2 Emerging Non-Volatile Memory Technology

Nowadays, there are several emerging Non-Volatile Memories (NVM) that are un-

der research. One of state of art [37] lists 12 such NVM technologies: Spin Trans-

fer Torque Random Access Memory (STT-RAM), Phase Change Random Ac-

cess Memory (PCRAM), Resistive Random Access Memory (ReRAM), Ferroelec-

tric Random Access Memory (FeRAM), Nano Random Access Memory (NRAM),

Conductive-Bridging Random Access Memory (CBRAM), Single Electronic Mem-

ory (SEM), Polymer, Molecular, Racetrack, Holographic and Probe. From this

list, some of the memories have reached advanced development stages and are

commercially manufactured and some are not yet mature.

In this dissertation, we limit our study to the STT-RAM, PCRAM, and ReRAM

as it is extensively studied and considered as a viable choice in the cache hierarchy.

They are also backed by commercial industries.

2.1.2.1 Spin Transfer Torque Random Access Memory (STT-RAM)

The STT-RAM [38] is the new generation of Magnetoresistive Random Access

Memory technology. Figure 2.4 (a) shows the conceptual view of STT-RAM

cell [39]. The STT-RAM cell consists of Magnetic Tunnel Junction (MTJ) con-

nected in series with access transistor. The MTJ contains two ferromagnetic layers

separated by a thin insulating oxide tunnel barrier made up of MgO. One of the

ferromagnetic layers, called the free layer, changes its magnetization direction by

using spin-polarized current. While, the other layer, called the reference layer,

keeps its direction fixed. The magnetization directions of these two layers are

used to represent the data bit stored in the cell. When the magnetization di-

rection of the free layer and reference layer are the same direction, the MTJ has

the low resistance and represents ‘0’ state of STT-RAM cell (figure 2.4 (c)). On

the other hand, if the magnetization direction is anti-parallel, the MTJ has high

resistance and represents ‘1’ state of STT-RAM cell (figure 2.4 (c)). The read and

write operation for the STT-RAM cell are described below:
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Read Operation: To access the state of the STT cell, the access transistor

of the cell is enabled and the small voltage difference is established between the

lines (source and bit line) (figure 2.4 (b) (2)). This effect causes the current to be

generated across the memory cell, which is compared with the reference current

through the sense amplifier.

Write Operation: To write bit ‘0’, a large positive voltage difference is estab-

lished between the source and bit line (figure 2.4 (b) (2)). To write bit ‘1’, a large

negative voltage is established between the lines (figure 2.4 (b) (1)).

The other important characteristics of STT-RAM are summarized below:

1. STT-RAM tries to attain better scalability by using different write mecha-

nism based on spin polarization [40].

2. The STT-RAM cells have more density compared to SRAM, but have lesser

density compared to DRAM [41].

3. Compared to PCRAM and ReRAM, the endurance of STT-RAM is excellent.

However, when employed in the cache the endurance is still consider to be

less [20].
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4. The write operation of STT-RAM are costlier with respect to SRAM and

DRAM [41].

Other than the design characteristics, the STT-RAM chip is commercially manu-

factured and available in the market. For instances, 4Gbit STT-RAM based per-

pendicular MTJ at 90nm technology node is fabricated by Toshiba and SkHynix

incorporation [42]. Qualcomm and TDK-Headway built the 1Mbit STT at 40nm

technology node [43]. Recently, Intel and Samsung fabricated 7.2M and 8M bit

STT at 22 and 28 nm technology nodes [44, 45] respectively.

In this thesis, the terms STT-RAM or STT and PCRAM or PRAM are used

interchangeably.

2.1.2.2 Phase Change Random Access Memory (PCRAM)

Currently the most mature emerging NVM technology that is under research is

the Phase Change Random Access Memory (PCRAM) [46]. Figure 2.5 shows the

representational view of PCRAM cell. The PCRAM cell contains phase change

or chalcogenide material and an access transistor. The chalcogenide material is

generally made up of GST (Ge2Sb2Te5, or Germanium, Antimony and Tellurium)

and shows two different phases: Amorphous and Crystalline by the application of

heat. The high electrical resistivity characterizes amorphous phase and represents

the RESET state of the cell. On the other side, the crystalline phase is charac-

terized by low electrical resistivity and represents the SET state of the cell. The

read and write operation of the PCRAM cell are described below:

Read Operation: To access the state of cell, a small voltage is applied across

GST. This effect causes the current to be generated as there is a wide resistance

gap exist between the amorphous and crystalline phase. The state of the cell is

identified by sensing the pass through current with the help of access transistor

and the word-line controlling.

Write Operation: To SET the PCRAM cell, a long duration moderate power
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pulse is applied that heats the GST above the crystalline temperature and makes

the chalcogenide material crystalline. On the other side, to RESET the PCRAM

cell, a high power pulse is applied that heats the GST above the melting temper-

ature and makes the chalcogenide material amorphous.

The other important characteristics of PCRAM are as follows:

1. Due to the significant difference in resistance between the different phases of

GST, the PCRAM cell can be used to store the multi-bit information [47].

2. PCRAM is a scalable technology because as the feature density increases, it

needs less current for the operations [48].

3. The SET and RESET latency of the PCRAM is larger than the STT-RAM

and DRAM [20].

4. The endurance of PCRAM is bound to the limited number of writes. The

current write endurance value varies in the range of 104 writes to 109 writes [49].

The commercial industries focus on PCRAM as a replacement of flash memory

technology or to be used as the main memory. Different types of PCRAM chips at

different technology nodes are manufactured and fabricated. For example, at 90nm

node, Samsung electronics built the 512 Mb PCRAM chip with 266 Mb/s band-

width [50]. Later, Samsung fabricated the 8Gb PCRAM chip at 20 nm technology

with 40 Mb/s program bandwidth [51].
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2.1.2.3 Resistive Random Access Memory (ReRAM)

ReRAM [52] is based on the memristor technology where the resistance change de-

pends upon the polarity, magnitude, and the duration of the applied voltage. Fig-

ure 2.6 shows the representational view of the ReRAM cell. The memristor-based

ReRAM cell consists of two platinum electrodes with titanium dioxide (TiO2)

metal/oxide interference switches having different oxygen vacancy concentrations.

Generally, the metal/oxide interference shows rectifying behavior with low doping

and ohmic behavior with high doping [53]. In particular, the lower switch of per-

fect titanium dioxide (TiO2) is electrically insulating and the upper switch, which

has high having oxygen vacancy concentration (TiO2−x) is conductive. The read

and write operation of the ReRAM cell are described below:

Read Operation: To access the state of ReRAM cell, a small voltage is applied

across the bit lines. This effect causes the current to be generated that can be

sensed to detect the particular state of the cell.

Write Operation: To change the state of the cell, a large voltage is applied across

the bit lines. To change the state of the cell to OFF, a negative bias voltage is

used which increases the thickness of TiO2, which in turn generates the insulating

and high resistance ion path. The opposite case is seen in case of positive bias

voltage for the ON state.

The other important properties of ReRAM cell are as follows:

1. The ReRAM memory technology is less mature than the PCRAM and STT-

RAM memory technologies [54].
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2. In the terms of scalability, ReRAM is more efficient compared to STT-RAM

and PCRAM. The cell size of 10nm has been achieved and in future, the cell

density of 4-5nm is predicted [55, 56].

3. The write endurance of ReRAM is limited to 105 to 1011 writes which is

lesser than the STT-RAM and some of the prototypes of PCRAM [56, 20].

The ReRAM technology is still not as mature as other emerging NVMs and is

currently under research. Recently, only Fujitsu and Panasonic are jointly working

on the second generation ReRAM device [57].

2.2 Challenges to Employ Emerging NVMs in

the Caches

The previous section reported the design concepts, essential operations and fea-

tures of conventional charge-based memory and emerging NVMs. Table 2.1 shows

the comparative analysis between the current memory hierarchy technologies:

SRAM and DRAM and the emerging NVM technologies: STT-RAM, PCRAM,

and ReRAM [37, 41, 20, 47, 55]. To draw the comparison, the following charac-

teristics are used:

1. Cell Size: The cell size of the memory cell, measured in terms of feature

size (F 2).

2. Non-Volatile: This characters is used to explain whether the memory tech-

nology is non-volatile or not.

3. Endurance: It is the total number of write operations that the memory cell

can entertain before it eventually wears out.

4. Read Latency: It is the time consumed to perform a read operation in the

memory cell.
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Features SRAM DRAM
MRAM

(STT-RAM)
PRAM ReRAM

Cell Size >100F2 6-8F2 37F2 8-16F2 >5F2

Non-Volatility NO NO YES YES YES
Endurance >1015 >1015 1015 >108 >105

Read Latency <10 ns 10-60 ns <10 ns 48 ns <10 ns
Write Latency <10 ns 10-60 ns 12.5 ns 40-150 ns ∼10 ns

Dynamic Energy Low Medium
Low for Read
High for Write

Medium for Read
Very high for Write

Low for read
high for write

Static Energy High Medium Low Low Low

Maturity Product Product
Advance

Development
Advance

Development
Early

Development

Retention
As long as

voltage applied
<<second >10 yr >10 yr >10 yr

Multi bit 1 1 2 >2 >2

Table 2.1: Comparative analysis of different memory technologies

5. Write Latency: It is the time consumed to perform a write operation in

the memory cell.

6. Dynamic Energy: It is the energy spent during the read/write operation.

7. Static Energy: It is the energy consumed during the idleness of mem-

ory devices. This energy also includes the energy spent to retain the data

correctly.

8. Maturity: This characteristic demonstrates that the current memory tech-

nology is in the early stage or later stage of development or it is commercially

available in the market.

9. Retention: It is the ability of a memory cell that how long it can hold the

data correctly without performing any refresh operation.

10. Multi-bit: It is the ability of a memory cell to keep the multi-bit informa-

tion.

As it can be easily seen from the comparative analysis that the NVM technolo-

gies consume considerable write energy and latency, and suffer from weak write

endurance. Next we will illustrate the challenges of NVM technologies when em-

ployed in the cache.
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Figure 2.7: Hybrid cache bank organization

2.2.1 Challenges related to Write Operation

To counter the costly write operations, researchers make use of the concept of

Hybrid Cache Architecture (HCA) [27, 28] which is described below:

Hybrid Cache Architecture (HCA): In HCA, the cache architects use the

best characteristics of each memory technology. In particular, in cache bank, with

a large number of NVM ways, a small number of SRAM ways are incorporated.

Figure 2.7 shows the organization of a hybrid cache bank. The use of the SRAM

ways in the HCA is to entertain most of the write operations in a cache bank;

thereby, it saves the NVM region of the bank for writes. Block placement in such

an architecture is the key challenging issue, as placing the appropriate block in

the proper regions lead not only to the lesser write energy consumption but also

improves the performance that is degraded due to costly write operations. Hence,

in this context, different kind of block placement approaches have been proposed

that take into account migrations and prediction of the block, reconfiguration, and

partitioning of the cache. The next section illustrates all such policies. Apart from

the block placement policy, the other challenge that debases the employability of

HCA is the increase in the miss rate. This increase in miss rate in the HCA

is mainly due to two reasons: (1) Irregular sized partitions of the cache. (2)

Placement of a larger number of write-intensive blocks in the limited sized SRAM

region. Table 2.2 presents the percentage increase in miss rate by one of the

existing hybrid cache architecture: RWHCA [27] against the baseline pure NVM

cache (which uses LRU as a replacement policy). The conclusion that can be

drawn from the table is that due to larger miss rate in the smaller sized caches,

the performance gain is not as much as expected with the HCA.
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Work-
load

PARSEC v2.1 SPEC CPU 2006

Cache
Config.

Cann Ded Fluid Freq Stream X264 Mix1 Mix2 Mix3 Mix4

1MB 5.46% 15.3% 8.65% 18.3% 3% 6.8% 8.74% 7.82% 5.30% 12.30%
2MB 3.17% 11.7% 4.77% 16.25% 2.42% 5.36% 7.80% 6.23% 4.51% 10.32%
4MB 2.32% 10.8% 4.66% 15.7% 2.3% 4.46% 7.37% 5.40% 3.90% 8.51%
8MB 2.69% 10.3% 4.55% 14% 2.04% 3.27% 6.35% 4.01% 3.13% 5.60%

Table 2.2: Percentage increase in miss rate by RWHCA against baseline STT-
RAM

 

Figure 2.8: Write counts across the cache set for the baseline STT/ReRAM
caches

2.2.2 Challenges related to Weak Write Endurance

The write endurance of the cache is defined as the total number of write operations

that a memory cell can entertain before it breaks down. In the CMPs, different

levels of the cache incur different numbers of writes. For instance, the upper-level

cache experiences larger number of writes as compared to the last level caches

(LLC). With a lesser amount of writes in the LLC, there is a good possibility that

the writes are distributed unevenly inside the cache, which in turn generates write

variation. In cache architectures, the researchers classify write variation into two

categories [29]:

1. Inter-Set Write Variation: The inter-set write variation is caused due to

the uneven write distribution across the cache-sets. In particular, some of

the cache sets inside the bank incurs a large number of writes as compared

to other sets. The figure 2.8 shows the presence of inter-set write variation

in a cache bank. As can be seen from the figure, there is a non-uniform write
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Figure 2.9: Write counts inside the cache set for the different workloads in
the baseline STT/ReRAM caches

distribution across the cache sets. Such uneven distribution of writes results

into wear out of heavily written sets faster than the lightly or moderately

written ones.

2. Intra-Set Write Variation: The intra-set write variation is the variation

due to distinct write counts of the blocks inside the set. Here, some of the

blocks inside a set entertain larger number of writes as compared to other

blocks in the set. Figure 2.9 reports the existence of intra-set write variation

inside the cache sets. As can be seen from the figure, there is a variable

write count among the different ways of cache sets. Such non-uniform write

distribution leads to the early breakage of heavily written blocks as compared

to lightly or moderately written blocks.

The two write variations: Inter and Intra-Set, mentioned above, are measured

with the help of coefficients. Equations 2.1 and 2.2 present these coefficients: (i)

InterV : measures the average coefficient of variation across the cache sets (ii)

IntraV : measures the average coefficient of variation inside a cache set [29].

InterV =
1

Writeavg

√√√√√√∑S
k=1

(∑A
l=1

Wk,l

A
−Writeavg

)2

N − 1
(2.1)



Chapter 2. Background 35

IntraV =
1

S.Writeavg

S∑
k=1

√√√√√√∑A
l=1

(
Wk,l −

∑A
m=1

Wk,m

A

)2

A− 1
(2.2)

In these equations, A implies cache associativity, S represents the number of cache

sets, Wk,l is the write count in the cache set k and way l and Writeavg is the average

number of write counts in a cache bank.

Along with the weak write endurance, in the actual execution environment, the

lifetime of the NVM LLC is further affected by these two write variations as

mentioned above. The lifetime of the cache is defined as follows:

Lifetime: The lifetime of the caches can be defined either as raw lifetime or error

tolerant lifetime [29]. The raw lifetime is determined by the first failure of the

cache line. Whereas, the error tolerant lifetime is measured with the raw lifetime

and the error recovery methods.

In this dissertation, we have used raw lifetime which is the basis of an error

tolerant lifetime.

With respect to write variations and write count, the raw lifetime of caches can

be determined by either of the following two methods:

1. With respect to write counts, the lifetime is the inverse of the maximum

write counts on the block of the cache [31].

LI =
1

∀Sk=1∀Al=1 max(Wk,l)
(2.3)

2. Concerning the write variation, the lifetime is calculated by considering

the three important factors: (i) The coefficient of Intra-set write variation,

IntraV (ii) The coefficient of Inter-set write variation, InterV (iii) Average
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PARSEC v2.1 SPEC CPU 2006
Workload Body Cann Dedup Swap X264 Mix1 Mix2 Mix3 Mix4

STT-RAM
Ideal

Lifetime
41.8K 3.8K 4.8K 14.3K 8.7K 3.21K 7.44K 14.9K 25.5K

IntraV 328.7% 57.4% 136.4% 361.4% 246.3% 21.6% 95.4% 223.6% 191.9%
InterV 450.7% 32.9% 66.4% 137.4% 325.3% 15.7% 213.9% 152.2% 96.5%

Baseline
Lifetime

38 19.2 30.9 41.3 8.65 47.3 6.33 25.8 45.7

ReRAM
Ideal

Lifetime
2.12K 99.5 795.4 6.37K 462.2 185.4 175.2 565.5 666.2

IntraV 191.4% 49.37% 75.56% 396.6% 97.47% 11.25% 26.4% 80.6% 40%
InterV 332.8% 20.4% 161.9% 961.6% 50.9% 17.57% 17.1% 34.54% 17.45%

Baseline
Lifetime

0.61 0.51 0.53 1.17 1 1.16 2.22 3.03 3.02

Table 2.3: Lifetime (in years) comparison analysis for the different work-
loads in the ideal STT-RAM/ReRAM and the actual STT-RAM/ReRAM based

caches

write count in a cache bank [29].

LI =
Writeavg base ∗ (1 + InterVbase + IntraVbase)

Writeavg pt ∗ (1 + InterVpt + IntraVpt)
− 1 (2.4)

In the above equation, the Writeavg is the average number of write in a

cache bank. Whereas, the base and pt used in the subscript with each term

represent the metric value for the baseline and the proposed technique.

Table 2.3 reports the effect of the write variations on the lifetime of different

levels of non-volatile LLC. The conclusion that can be drawn from the table is

that compared to ideal caches (where the writes are uniformly distributed), the

effect of the write variations on the lifetime (ideal lifetime for the ideal caches,

baseline lifetime for the actual cache) of actual NVM cache is significant. The

values reported in the table is computed by considering the write endurance value

of STT to 4 x 1012 writes (considerably large) and the write endurance value of

ReRAM to 108 writes. However, the recent chip fabricated from Samsung and

Intel report the write endurance value of STT to 106 write cycles [44, 45] that can

affect the lifetime further.
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Figure 2.10: Classification of write reduction techniques based on the type of
caches

2.3 Reducing the Costly Write Operations

One of the major hurdles with the employment of the NVM cache is the costly write

operations. To mitigate the expensive write operations with the pure NVM caches,

the researchers proposed the different bypass and the reconfiguration strategies.

Other than these strategies, another way that has been employed by the researchers

is the use of Hybrid Cache Architectures. From the earlier discussion in the context

of HCA, it can be stated that the block placement is the major challenging issue to

reduce the impact of costly write operations. Over the previous years, many block

placement techniques have been proposed that fall into different sub-categories

like prediction, migration, cache partitioning, and reconfiguration. Figure 2.10

classifies all state of the art write reduction techniques in the pure NVM and the

HCA cache into different sub-categories. Below we discuss them one by one.

2.3.1 Migration Policies

The key objective of migration based techniques is to migrate the block to the

appropriate region of the hybrid cache based upon the run-time accesses from

the upper-level cache. The first policy that comes into this category is Read

Write aware Hybrid Cache Architecture (RWHCA) proposed by Wu et

al. [27, 28] in 2009. In RWHCA, the hybrid cache is separated into two regions:

Read region made up of STT-RAM and the write region made up of SRAM.
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The initial placement of the block into these regions is based upon the type of

access that causes a miss. If it is a read miss, the incoming block is placed in

the (read) STT region. Otherwise, for a write miss, the incoming block is placed

in the SRAM (write) region. Also, in this policy, with each cache block, a 2-bit

saturating counter is added that counts the region-wise access. Any disproportion

of read or write accesses in any of these region results in the migration of the block

from one region to another. The policy shows the 55% power reduction and 5%

IPC improvement over the baseline SRAM and STT caches, respectively.

Li et al. [58] proposed a micro-architectural mechanism for the different write

patterns of hybrid LLC. In this approach, the bank of the Hybrid LLC is either

made up of SRAM or of STT-RAM. The block placement here is as same as the

RWHCA. All the store miss blocks are placed in the target SRAM bank near to the

requesting core, and all the load miss blocks are placed in the private STT-RAM

bank of a core. Here, the migration of the write-intensive line from STT-RAM

to SRAM is initiated when two consecutive writes or there cumulative writes are

entertained by the block. On the other hand, the migration of the block from

SRAM to STT-RAM is performed by two ways: Active and Lazy, based upon

the position of the migrated block. If the block is fetched from the lower level of

memory, then the active migration is triggered only after a read hit to a block.

Otherwise, if the block is swapped from the STT-RAM, then the lazy migration

is triggered after two read hits to the block.

In 2012, Chen et al. [59] proposed a static and dynamic approach that is based on

the compiler hints for the block placement in the different regions of the hybrid

cache. Here, any misinterpretation and misprediction in the access leads to the

migration of block from one part to another in the hybrid cache. Guo et al. [60]

proposed a wear resistant hybrid cache block placement approach where initially

the cache line is placed in the SRAM region. During the lifetime of cache block,

based on the different cache accesses, the line is categorized into Dead on Load

(DoL) and Write Intensive (WI) Line. When the line is evicted from the SRAM,

all the lines other than the DoL and WI are migrated to the non-volatile region.
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Later in 2014, an adaptive block placement and migration policy is proposed

in [61]. In this work, they categorized the block based on type of writes: Prefetch

Write, Demand Write, and Core Write. The placement of the block is based upon

the access patterns and the type of the writes. Whereas, the migration decision is

taken by using the predictor. In particular, a block fetched due to prefetch miss

will be directly placed into the SRAM region. Upon eviction, the predictor is used

to check whether the evicted block is dead or not. If not, the block is migrated

to SRAM. In case of a core-write miss, the block is written directly to the main

memory. On the other hand, in case of a hit in STT, the possibility of future write

burst to the block is checked with the help of predictor, and the block is migrated

accordingly to SRAM. In case of a demand miss, the predictor is accessed to check

if the incoming block is dead or not. If it is, the bypass operation is performed.

Otherwise, the block is placed in the STT.

Wang et al. [62] propose a dynamic cache reallocation strategy to the different

partitions of L1 based hybrid cache. Here, the cache blocks are transferred between

the two regions by using the two mechanisms: Immediate Transfer and the Delayed

Transfer. In immediate transfer, for the remote read operation to SRAM block,

the block is transferred to STT-RAM, and for the remote write operation to STT-

RAM block, the block is transferred to SRAM. Whereas, in delayed transfer, until

two reads to SRAM block or two writes to STT block are entertained, the block

is not transferred.

The other recent and the notable works over the past three years in the context of

migration are reported in [63, 64]. In [63], the replacement policy of the cache is

modified and it partitions the replacement stack into two regions: Reserved and

Victim. The decision to place and migrate the cache lines from the different part

of hybrid main memory into these region of replacement stack is based upon the

Average Memory Access Time. Whereas, in [64], a priority based data migration

to reduce the migration jitter for the frequently accessed data is given for the 3D

based hybrid cache. In this approach, the data block is migrated between and in

the layers with the priority in the X direction followed by the Y and then the Z

direction. The policy reduces power consumption by 34.5%.
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All the above block placement techniques are performing the migration of the

block from one region/layer to another. The movement of the blocks between the

regions/layers consumes extra energy as well as impacts the performance of the

cache. As the applications running on the CMPs have variable behavior that can

also change the block access behavior in the cache. For such cases, the massive

migrations will nullify the benefits obtained by the existing techniques.

2.3.2 Prediction Policies

The role of the prediction policies is to predict the write behavior of the cache line

and accordingly place it into the different regions of the hybrid cache. The first

policy discussed in this subject is proposed in 2012 by Quan et al. [65]. Here, they

manage the hybrid cache using a prediction table. By using the prediction table,

they categorized the line into frequently written, less written, and dead cache line.

During the execution, they assumed that the writes in the two consecutive stays of

the cache line are probably equal. In case of a cache miss, the write frequency of

the line in the previous visit is checked, if the incoming line is frequently written,

the line is placed into the SRAM by replacing the line with the less written line.

The replaced line from the SRAM will be placed in the STT region of the hybrid

cache if it is predicted to be not dead. Otherwise, if the incoming line is less

written or a dead line, then it is placed in the STT region.

In 2013, Ahn et al. [30] proposed a write intensity prediction technique for the

data block brought down by the load miss. In this work, the prediction decision is

taken by establishing the relation between the write intensity of the block and the

instruction that incurs the cache miss. In the block placement approach, all the

blocks loaded due to store miss and all the instruction blocks brought down by the

load miss will be placed in the SRAM and the STT-RAM region, respectively. On

the other hand, all the other blocks will go through the write intensity prediction

and get appropriately placed into the STT/SRAM region by using the static write

intensity threshold. Later in 2016, they proposed the extension of this work,

where the write intensity threshold is changed dynamically and is decided based
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upon the characteristics of the application running on the system [66]. Here,

the concept of set sampling is used to reduce the storage overhead for storing

metadata information used for prediction. The proposed technique shows 31%

savings in energy consumption over the existing work.

A reuse distance based prediction scheme is reported by Kim et al. [67] for exclusive

caches. On the basis of reuse distance, the cache line is predicted to be near reuse

or far reuse. Based on predicted reuse distance, the block evicted from the upper-

level cache is placed into the different region of the hybrid cache. In particular,

all the evicted blocks predicted to be near reuse are placed into the SRAM region.

In case, if these blocks are not accessed in the SRAM region for longer period

and get evicted, the line gets migrated to STT-RAM. On the other hand, those

blocks predicted to be far reused are placed into the STT region only if space is

available. Another reuse distance-based scheme for 3D based DRAM and STT-

RAM hybrid cache architecture is presented in [68]. In their work, with the help

of reuse distance, the write probability is calculated. The block with the highest

likelihood for the writes in the STT region will get swapped with the block with

the lowest probability of writes in the SRAM region.

A recent noteworthy work that integrates there memory technology (DRAM,

volatile STT-RAM and non-volatile STT-RAM) in a cache bank is presented

in [69]. In this tri-regional hybrid cache, the read request follows the accessing

order from non-volatile STT to volatile STT and then to DRAM. On the other

hand, the write request follows the accessing order from DRAM to volatile STT

and then to non-volatile STT. In their work, to reduce the time taken for the tag

search operation, a data prediction table is added to predict hit and miss. The

proposed technique saves average static and dynamic energy by 36% and 16%

respectively.

All of the techniques mentioned above will heavily depend upon the accuracy of

the employed predictor. However, the result of the predictor will change based

on the application dynamic characteristics. In the case of correct prediction, the

block is placed in the correct region, and this leads to saving in writes as well as
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energy. However, in the case of misprediction, the block gets placed in the wrong

region, and this leads to larger write energy, as well as impact on the performance.

2.3.3 Bypass Policies

As the name suggests, these policies detour a certain amount of data blocks by

not writing them in the pure non-volatile cache. The first policy discussed in this

category is Obstruction Aware Policy (OAP) presented by Wang et al. [70]. The

OAP identifies those processes that obstructed the other running processes in the

multi-core system and bypass their data from the NVM based L3 cache upon a

hit or miss except for read hit. OAP reduces energy consumption by 64%.

Ahn et al. [71] illustrated a dead write based bypassing scheme called DASCA.

In this work, they classify the write blocks into three categories: dead on arrival

fill, dead value fill and closing writes. DASCA identifies such blocks and bypasses

them from LLC by employing two types of bypass techniques: Upward Bypass

(from main memory to upper level cache) and Downward Bypass (from upper

level cache to main memory). The bypasses due to dead on arrival fill and dead

value fill will fall into the category of the upward bypass. On the other hand, the

bypasses incurred due to closing writes will come into the type of the downward

bypass.

In 2014, a statistical based cache bypassing technique for (NVM based) L2 cache

from L3 cache is reported by Zhang et al. [72]. Here, the bypass decision is taken

based on the Distance Reuse Count (DRC). If the DRC of the particular block is

lesser than the threshold (that changes dynamically), then the block is bypassed

from the L2. Further, in 2016, to strengthen their statistical bypass decision,

they integrate the core and group-based techniques where each cache line has a

different bypassing depth in a cache bank [73]. In addition to this, they extend

the bypassing mechanism for writing back the cache line from L2 to main memory

without inserting back to the L3 cache.
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Other recent noteworthy works presented in this context of bypass over the last

three years are presented in [74, 75]. In [74], the writes in the non-exclusive non-

volatile LLC are reduced by writing only the sub-block from the upper-level cache,

thereby bypassing the writing of the other sub-blocks. To facilitate this process,

they maintain a pattern history table that counts the miss prediction. In another

work, a cache bypass technique is reported to relive the write congestion for serving

the other request by maintaining a balance between the costly write latency and

the hit rate loss [75]. Here, in this policy, to make a bypass decision, three factors:

liveliness, write fraction and request bandwidth are considered.

The bypass policies discussed here reduce a significant amount of writes in one

particular level of cache made of NVM technology. However, these techniques

lead to a large number of write accesses, miss counts, and energy consumption

of the next level of the memory hierarchy. Also, the bypassing technique is only

limited to non-inclusive and the exclusive caches. In particular, it does not apply

to strictly inclusive caches. Thus, an appropriate way of using bypassing at a

particular level of cache is required.

2.3.4 Partitioning Policies

The role of the partitioning techniques is to logically partition the cache and use

a separate partition for the block placement. These policies are intended for Non-

Volatile caches, hybrid caches, as well as for optimized NVM based hybrid main

memories.

In 2014, Lee et al. [76] proposed partitioning policies for the hybrid cache. In

their work, they place the block to the different region based on the decision of

utility based cache partitioning. In particular, all the store misses are placed in the

SRAM region, and all the load misses are placed in either SRAM or STT-RAM

based upon the result of the partitioning scheme. This scheme aims to reduce the

miss rate by periodically changing the partition size allocated to the core.



Chapter 2. Background 44

Meanwhile, in 2015, Lin et al. [77] presented partitioning and the access aware

policies to balance out the deranged writes and the wear out of STT-RAM in

CMPs. In this scheme, the partition algorithm monitors the write pressure of

each partition and accordingly decides to allocate and deallocate the number of

ways of SRAM or STT-RAM to a core.

Hybrid memory Aware Partition technique, HAP presented by Wei et al. [78]

maintains the appropriate count of the blocks from each region of hybrid memory

by partitioning the LLC. HAP also has taken into consideration the eviction cost

of dirty NVM writes from the LLC to memory, by using the 2-Chance technique.

In HAP, to maintain the partition size, two range of threshold Thigh and Tlow is

kept. On a miss, if the NVM count in the destination set is larger than the Thigh

and the incoming line is NVM line then the NVM line is evicted. In the other

case, if the NVM count in the set is lower than the Tlow and the incoming block is

DRAM block then the DRAM block is evicted from the cache. For the rest of the

cases, the LRU line is removed from the cache set. HAP improves performance

by 46.7% and reduces energy consumption by 21.9%. Another LLC partitioning

technique reported by Bakhshalipour et al. [79] reduce the number of write-backs

in the hybrid main memory by coalescing writes for the dirty lines by retaining

them in the LLC for a longer period. In their work, they partition the LLC into

the normal and dirty partition. Here, the normal partition of the cache behaves

as the normal cache. Whereas the dirty partition holds the evicted block from the

normal partition and uses cuckoo hashing [80] for the data placement; thereby, it

saves the unnecessary write-backs to the hybrid main memory.

Recently, in 2018, K-part reported by El-Sayed et al. [81] groups the applications

into clusters and shares the different sized cache partition between them. Here, the

grouping of the applications into the cluster is decided based on the performance

loss of application due to partitioning of the cache. A dynamic profiling based

mechanism is employed to make such decisions.

The partitioning policies discussed above are used for the block placement in the

hybrid cache, to balance the deranged writes in the NVM cache and to reduce
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the writes in the hybrid main memory by partitioning the LLC. However, by

partitioning the LLC, the miss rate is increased, and the performance is affected

due to less residency and premature eviction of the blocks.

2.3.5 Reconfiguration Policies

Reconfiguration techniques dynamically change the cache characteristics by turn-

ing off the cache banks/ways, changing the capacity of the cache by bank con-

catenation and at the level of the block size. In addition, some of the cache

reconfiguration techniques have also made changes in the retention time of the

non-volatile cache to reduce the latency and energy consumed due to writes. In

this context, many prior works [82, 83, 84, 85] have taken the advantage of re-

laxing the retention time to get substantial benefits for latency and energy. This

subsection reports all such policies.

Wang et al. [86] reported a study for reconfiguring the NVM cache where differ-

ential write [87] and data inverting scheme [88] is integrated. In their work, they

have also made the slowest portion of the cache drowsy. The drowsy part will

wake up only when the data is provided in execute or swap operation.

Niknam et al. [89] presented a dynamic reconfigurable hybrid cache that turns

on/off different memory technologies bank based upon the Average Memory Access

Time and the network traffic. In their work, the application execution is divided

into multiple equal-sized intervals, and in each interval, the AMAT is calculated

to reconfigure the hybrid cache. In particular, if the calculated AMAT is lesser

than AMATref, the SRAM bank which has low write access is reconfigured with

the STT-RAM bank. On the other hand, if the calculated AMAT is more than

the AMATref, the STT-RAM bank having little read accesses is reconfigured with

the SRAM bank.

Chen et al. [90] report a dynamic counter based way on/off reconfiguration policy.

The decision to turn on/off way is taken at the end of each reconfiguration interval.

The ways are turned off only when the decay counter associated with each way
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are saturated. To turn on the way, the tag array of the way are kept the power

on, and it counts the hits to be expected when the ways are power on using the

potential counter. When the value of the counter reaches a specific limit, the way

is turned on.

Another cache reconfiguration technique proposed by Adegbija et al. [91] per-

formed the cache tuning by shutting down the way/bank, concatenating the way

and changing the size of the cache line. To tune the cache at different levels, the

energy objective function is taken into consideration.

Kuan et al. [92] propose a dynamic run-time adaptable retention scheme for L1

cache. Here, four sets of STT-RAM are set up with different retention time. Based

on the run-time behavior, the applications are mapped on one of the set by taken

into consideration the EDP or miss rate at each interval. Another versatile run-

time technique for the LLC proposed by Kuan et al. [93]. As same as the previous

technique, the applications are mapped into one of the four clusters with different

retention time. Here, in addition of this, the size of the cluster is dynamically

changed at the level of bank and line size. In this proposal, for the cache tuning,

the latency is used as an objective function, and for the retention time tuning, the

EDP is used as an objective function.

The reconfiguration techniques discussed above save considerable amount of write

energy and improve the system performance by applying the constraints in the

cache configuration. However, dynamically changing the configuration and by

turning on/off leads to extra energy consumption. This loss is mainly due to the

discharging of accumulated charge in the stand-by mode.

2.4 Improving the Lifetime and the Endurance

of Non-Volatile Cache

Another hurdle with the employment of non-volatile cache is the weaker write

endurance. In real-time execution environment, this lower endurance affects the
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Figure 2.11: Classification on wear leveling techniques

lifetime of the non-volatile cache. Additionally, due to differing working set size

and the run-time access pattern of the applications, the lifetime of non-volatile

cache is affected by the write variations (categorized as an Inter and Intra-set

write variation as reported in 2.2.2). To improve the lifetime and to mitigate the

unwanted write variations, different kinds of wear leveling techniques have been

proposed over the years. This section illustrates all such policies by categorizing

them into many sub-levels. Figure 2.11 classifies these sub-levels in the wear

leveling policies.

2.4.1 Intra-Set Wear Leveling Policies

The goal of intra-set wear leveling technique is to balance out the deranged writes

inside the cache sets. Through this wear leveling, some of the cache blocks have

been prevented to entertain more number of writes compared to another blocks

inside the set.

In the year 2013, the first intra-set wear-leveling technique: Probabilistic set

line flush (Polf) was proposed by Wang et al. [29] in i2wap. The policy in-

validates a cache block after the fixed number of writes determined by the Flush

Threshold (FT). For this, a counter is used which is incremented after each write to

a cache bank. The selection of a block for invalidation is based on the probabilis-

tic method rather than some deterministic ways. In their work, most of the time,

the technique chooses the hottest data (write-intensive data) inside the cache set.

Subsequently, the method flushes the hot data without changing its replacement

information; thereby, the policy makes sure that the placement for the hot block

on a subsequent miss will happen in another location in the cache set. To facilitate

this process, the procedure uses two global counters and two registers.
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Later, in 2014, EqualChance reported by Mittal et al. [31] added the counter:

numWrite with each cache set. The numWrite is incremented with each write in

the cache set. Once the numWrite counter reaches the threshold Υ, on next write

access to a block, the transfer/swap operation with an invalid/clean cache line in

the cache set takes place and the counter numWrite is reset. In case, if there is

no clean/invalid cache line present in the cache set, the normal write operation is

performed at the same location of the cache line. A technique LastingNVCache

presented by Mittal et al. [94] associates the 4-bit write counter with each block

in the cache. The counter is used to maintain the number of writes entertained

by the block in a single generation. Once the counter reaches a specified limit,

the write operation is skipped by invalidating the block without updating the

replacement information. Another technique WriteSmoothing proposed by the

Mittal et al. [33] partitions the cache into multiple modules of equal number of

cache sets. Here, in this work, the write variation inside each module is reduced

by turning off the hot sub-ways by transferring their data to cold sub-ways within

the module.

Other most recent and noteworthy works in intra-set wear leveling are reported

in [32, 95, 96, 97]. In [95], a technique called ENVLIVE is illustrated where the

small storage called HotStore made of SRAM is added to store the write-intensive

block of the cache. Only those blocks that incur the specific number of writes

(determined by the λ) will be eligible for the placement in the HotStore. The

technique named EqualWrite reported in [96] allows write redirection and swapping

of the block based on the difference in the write counts of the cache line. The

Write-back Aware intra-set Displacement (WAD) approach proposed by

Jokar et al. [32] in Sequoia employs the counter with each cache set that increment

on each write to a set. Upon a saturation of a counter, on a next write hit

to a cache set, the policy displaces the block of the set to the victim cache line

location by invalidating the victim line back to the main memory. A hybrid random

replacement policy is presented in [97] that periodically switches the replacement

policy between the traditional replacement policy and the random replacement

policy for shuffling the actively written lines in a cache set.
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The above discussed intra-set wear-leveling techniques reduce the write variation

inside the cache set and improve the lifetime. However, the extra counters associ-

ated with these techniques will incur additional storage and area overheads to the

system.

2.4.2 Inter-Set Wear Leveling Policies

The inter-set wear-leveling approaches aim to balance out the uneven write distri-

bution across the cache sets. By this wear leveling, some of the cache sets will be

prevented from getting worn out faster than the other cache sets inside the bank.

The first inter-set wear leveling technique: Swap Shift presented by Wang et

al. [29] in i2wap changes the mapping of the cache sets after a fixed number of

writes, determined by the Swap Threshold. In their work, the mapping of the set

is adjusted by rotating the data inside the cache set. Chen et al. [98] presented

an inter-set wear leveling technique that changes the mapping of the cache set

at regular interval by performing an XOR operation between the content of the

remap register and the set index of the block. Here, the content of the remap

register is changed at the end of each interval of the application execution. A

software controlled inter-set wear leveling approach that changes the cache color

page mapping through write traffic in the cache is presented in [99, 100].

The other new works in the recent years in the inter-set wear leveling are reported

in [32, 101]. In [32], a technique: Grouped Access Intra-Set Swapping is proposed

in Sequoia that changes the cache set mapping between the heavily written and the

lightly written set of the group with the help of the counters. In [101], Soltani et al.

proposed an approach that partitions the cache into multiple clusters. During the

execution, the clusters change their mapping to counter the inter-set write varia-

tion using the write intensity, mapping history, and the number of clean/invalid

blocks.

The above-discussed approaches improve the lifetime and try to overcome the write

variation across the cache set by changing the mappings of the sets. However,
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the rearranging of the data according to the newly generated cache set mapping

requires swaps or invalidation that consumes extra energy as well as impacts the

performance.

2.4.3 Cell Level Wear Leveling

Apart from performing wear-leveling at the granularity of block, researchers have

also tried to enhance wear-leveling at the memory cell level. This subsection

discusses all such proposals.

Joo et al. [102] presented a technique to reduce the uneven write distribution in-

side the cache block by using the bit line shifter. The shifter is used to spread

out the writes over the whole PCM cell for the cache. To aid this process, two

registers: Shift Offset Register (SOR) and Shift Interval Counter (SIC) are used

to record how many data bits are shifted in a cache block and the number of

writes performed to cache block to update the SOR. A frequent data encoding

scheme that largely reduces the number of redundant writes is proposed in [103].

The proposed technique is motivated by the fact that the hamming distance be-

tween the frequently generating codes is small. Thus, the data encoding scheme

has the advantage to reduce the wear-out issue and improve the lifetime of the

STT-based NVM cell. Another frequent pattern-based data encoding scheme to

reduce the non-uniform write distribution is presented in [104]. In proposed work,

the frequent data write pattern is categorized into two types: Deterministic and

Non-deterministic. The frequent patterns are tracked by using dynamic profil-

ing. During the application execution, these frequent data patterns get encoded,

and their appropriate code bit is stored in the tag part of the STT-RAM cache.

Recently, a word-level write variation reduction scheme that explores the narrow

width data of the word to reduce the unnecessary writes in the STT-RAM cache

is reported in [105].
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2.4.4 Miscellaneous Wear Leveling

This subsection reports all other techniques that improve the write endurance of

non-volatile memories either by using the hybrid cache or by exploiting the write

reduction strategies.

A simple address space randomization technique that does wear leveling by the

movement of line to its neighboring location is reported in [106]. To aid this

process, two registers: Start and Gap and extra memory space Gapline are used.

The Start register counts the number of times all the cache lines in the memory

is relocated, and the Gap register counts the number of cache lines relocated

in memory. A hybrid cache architecture based wear leveling technique: Ayush

reported by Mittal et al. [107] migrates the write intensive data in the SRAM

region of HCA. In this work, upon a write to the NVM region, the possibility

of migration is checked by comparing the LRU age information of the NVM and

the victim block in the SRAM. In case, if the SRAM contains an old data, the

migration operation is performed. Sturkov et al. [108] presented an endure aware

memory design that implements slower writes to reduce the stress on the NVM

cell and to improve its lifetime. A ReRAM based NUCA architecture that does

wear leveling in a performance conscious way by using the critical line predictor

is reported by Kotra et al. [109]. Recently, an L1 cache based endurance aware

data allocation strategy is proposed by Farbeh et al. [110]. The proposed work

is motivated by the fact that the endurance of I cache is larger than the D cache

in terms of number of writes. The strategy periodically makes alternate use of D

cache as I cache and I cache as D cache.

2.5 Summary

With a large number of cores integrated on-chip, the basic building blocks of mod-

ern computing systems (CMPs) require multi-level on-chip caches. To reduce the

off-chip memory access, large-sized on-chip LLCs are incorporated which occupy
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a significant amount of on-chip area. Traditional caches made up of charge based

memory technologies like SRAM/DRAM consume a lot of leakage power due to

the continuous process scaling and fail to fulfill the application demands in terms

of scalability. To mitigate this, computer architects have moved towards emerg-

ing NVMs and look them as alternate memory technologies in the cache hierar-

chy [111]. The gain obtained by using the NVMs is low leakage power consumption,

high density, multi-bit storage capability and excellent scalability. However, by

employing NVMs in the cache hierarchies it will suffer from costly write opera-

tions and weak write endurance; thereby it will impact the performance, energy

consumption and the lifetime of the caches.

Over the previous years, many attempts have been made to counter the costly

write operations of the NVM cache by using the reconfiguration policies and by-

pass techniques. Further, to reduce the expensive write operations in the NVMs,

researchers use the best characteristics that each memory technology offers by the

use of Hybrid Cache Architecture. In HCA, block placement is the most chal-

lenging issue so as to place the appropriate block in the proper region. In the

context of HCA, different efforts have been made for the block placement using

the block migration schemes, region-based prediction techniques, and by using the

cache partitioning strategies.

To endure the cache from the write variations exhibited due to concurrent ex-

ecution of the multiple applications, researchers proposed different strategies at

different granularities of the cache. In particular, the write variation inside the

cache set are mitigated by using the intra-set wear leveling techniques. On the

other hand, the write variation across the cache sets is alleviated by inter-set wear

leveling techniques. Also, instead of concentrating on wear-leveling at the block-

level, the architects cope up the non-uniform write distribution inside the content

of block by using cell level wear-leveling. Further, along with the wear leveling

techniques, the endurance of non-volatile cache is enhanced by the write reduction

schemes and by using the HCA.



Chapter 2. Background 53

Thus, the careful management of the writes in the NVM technologies can make

them a suitable candidate in the cache hierarchy for an efficient hardware system.





Chapter 3

Reducing Write Cost by Dataless

Entries and Prediction

In this chapter, we discuss the first contribution to the longevity enhancement of

non-volatile cache. We proposed a data allocation policy that reduces the number

of writes and energy consumption of the STT-RAM region in the Hybrid last

level cache by considering the existence of private blocks. In addition to this, we

employed a predictor that helps to redirect the write-backs from L1 to SRAM

region of the hybrid cache; depending on the predicted reuse distance aware write

intensity. The proposed work is evaluated with two different existing techniques

in case of the dual and quad-core system.

3.1 Introduction

As discussed in Chapter 2, the block placement policy in the HCA is considered

to be a challenging critical issue. Previously several strategies in HCA have been

proposed, but as per our knowledge, none of the existing literature exploit the

existence of private blocks. Private blocks are those blocks that are requested by

a single core, and the cache controller serves the request with exclusive permission

(i.e., for both read and write operation). Whereas, the block requested by multiple

55
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cores is served with the shared or read-only permission to the requesting cores. In

case of private blocks, for most of the time, the blocks in the L2 (or LLC) cache

contain stale data [112, 113] (The conclusive evidence is given in section 3.2.1). For

such kind of blocks, the actual worthy data is updated when the block is written

back from the L1. In other words, data in the L2 cache is not required or needed

until the L1 cache performs the write-back operation. When the private block is

loaded into the L2 cache, the data part of the block is not stored in the data array

of the cache. To maintain such dataless entries in the L2 cache, we make some

changes in the conventional MESI protocol by adding some new states and their

associated transitions. Also, our policy uses a predictor to decide on whether or

not the first write back from the owner L1 cache to the dataless entries in the

non-volatile region should be redirected to the SRAM region. The decision of our

predictor is based on the reuse distance aware write intensity of the block. Further,

in this chapter, we also present replacement policies for the different regions of the

hybrid cache.

In this work, our proposed policy makes use of private blocks and avoids storing

its data part in the non-volatile region of the LLC. We use STT-RAM as a non-

volatile region of hybrid cache, although the policy can be easily extended to use

PCRAM or ReRAM based hybrid caches.

The main contributions of this work are as follows:

• We consider the existence of private blocks in the HCA and avoid storing its

data part in the non-volatile region.

• To maintain dataless entries in the STT region of the hybrid cache, we make

changes in the conventional MESI protocol. These changes include the addition

of new states and their associated transitions to the existing protocol.

• We propose a predictor to decide whether or not the first write-back from the

owner L1 cache to the dataless entries in the non-volatile region should be

redirected to the SRAM region. The decision of our predictor is influenced by

the reuse distance aware write intensity of the block.
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Figure 3.1: General overview of contribution in chapter 3

• We also propose a replacement policy for the different regions of the hybrid

cache.

• The proposed techniques are evaluated against two existing techniques: Read

Write aware Hybrid Cache Architecture [27, 28] and Write Intensity prediction

technique [30]. Experimental results show the reduction of overall writes along

with savings in energy.

Figure 3.1 presents the general overview of the proposed contributions in this

chapter.

The rest of the chapter is organized as follows: Motivation and Background are

presented in Section 3.2. Section 3.3 illustrates the proposed hybrid cache archi-

tecture along with the concept of set sampling. Section 3.4 discussed the experi-

mental methodology. Results and analysis are presented in Section 3.5. Finally,

we summarize this chapter in the last section 3.6.
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3.2 Motivation and Background

3.2.1 Private Blocks

As stated earlier, we consider the existence of private blocks in this work. To

measure the impact of private blocks on the cache, we conducted an experiment

on 8MB L2 cache (Details about the experimental setup used in this motivation

example are reported in Section 3.4). Fig. 3.2 shows the percentage of private and

shared blocks loaded from the main memory on the LLC miss. From the figure,

we can conclude that the single-core requests 98% of the blocks, i.e., these are

private blocks. Whereas, the rest of the blocks are either instruction blocks or the

blocks requested by multiple cores called shared blocks. Further, fig. 3.3 shows

the percentage of the blocks having exclusive permission (i.e., private blocks) that

contain dirty data at the time of replacement. As shown in the figure, on an average

50% of these blocks contain dirty data at the time of replacement. This shows

that the blocks loaded with exclusive permission in the LLC contain worthless or

stale data at some point in their lifetime. This inspires us to recognize the private

blocks and avoid storing its data part in the non-volatile region of the LLC. In these

dataless entries, the actual worthy data is present after the write-back operation

from L1 cache to the L2 cache (i.e., the LLC).
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3.2.2 Reuse Distance

In this work, we design a predictor to decide whether the first write-back from the

owner L1 cache should be redirected to the SRAM region of the hybrid LLC. The

decision made by the predictor is based on the reuse distance and write intensity of

the block being written back, by mapping the write-back block reference address as

an index in the predictor table. The reuse distance of the block address is defined

as the number of intervening accesses or the number of read or write operations

on other blocks between the two consecutive accesses to this block during the live

time of the block. As explained in Fig. 3.4, the reuse distance of the block M is 2.

Based on the reuse distance of the block, we classified them into three categories:

short, medium, and distant. Fig. 3.5 shows the percentage of the blocks falling

into these three categories for different workloads.

3.2.3 MESI Protocol

To maintain dataless entries in the non-volatile region of hybrid cache, we make

some changes in the conventional MESI protocol. These changes include the ad-

dition of some new states and their associated transitions. The MESI protocol

contains four stable states: M (Modified), E (Exclusive), S (Shared), and I (In-

valid) to maintain the cache coherence. The cache block is in state M when the

block has exclusive permission (that means the block is readable and writable)

and the core has modified it. For the block in state M, it is the only valid copy of
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the block present on the chip. The block is in state E when it is not modified yet

holds the exclusive permission. The state S of the block represents the block has

read-only permission, and it is shared among multiple caches. The state I of the

block represents the block which is not cached or not present. Furthermore, with

each entry of L2 or LLC, the directory entry is associated. The directory entry

maintains the following set of information:

1. State field: Different states of the L2 cache block is maintained within this

field.

2. Sharer list: This field maintains the list of L1 caches which share the L2

cache block.

3. Owner field: Pointer to the owner L1 cache that holds the L2 cache block

in exclusive mode.

3.3 Proposed Hybrid Cache Architecture

Our proposal is based on the modification of MESI protocol to include the existence

of private blocks.

3.3.1 Basic Organization

Fig. 3.6 shows the organization of our proposed hybrid cache architecture. In our

work, L2 cache (which is the LLC) is a hybrid cache that combines a large number

of STT-RAM ways with a small number of SRAM ways [27, 28]. This asymmetry

in the number of ways between two memories is to limit the static power dissipation

by the SRAM and to redirect the limited number of write intensive blocks (limited

number in the working set of the application) in the SRAM region (as already

elaborated in section 2.2.1). Our data placement policy allocates dataless entries

in STT region of L2 cache by sending the private blocks directly to the requesting

L1 cache. Same as in a conventional SRAM cache, the tag array of the hybrid
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cache is made up of SRAM memory technology. In particular, if the X units of

tags (made of SRAM) are required for the SRAM region, then 3X units of tags

are needed for STT region and these tags are made up of SRAM. In the hybrid

cache, the working of the lookup operation in the tag array is the same as in the

traditional SRAM cache. In case of a miss from an L1 cache, the address of the

instruction along with the block request is sent to the L2 cache. The tag lookup

operation is performed on the L2. If the result of the lookup is a hit, the L2 cache

controller checks whether there is data in the L2 cache. If data is present in the L2

cache either in SRAM or STT-RAM, the block request from the L1 cache will be

directly served by the L2 cache. On the other hand, if data is not present in the

L2 cache (i.e., dataless entry for a private block) or the data is stale, the request

from the L1 cache will be forwarded to the owner L1 cache to fetch the block and

then forwarded to the requester. In case, when the block is not found in the hybrid

cache, the block request will be sent to the next level of the memory (i.e., main

memory in our case). The Reuse Distance Aware Write Intensity Predictor shown

in Fig. 3.6, and it is discussed in 3.3.2.
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L1 Request or Response Description
GETS Request from L1 for Shared access
GETX Request from L1 for Exclusive access

GET INSTR Instruction Request
PUTS L1 replacing clean data
PUTX L1 replacing Dirty data

WB DATA Data from L1
WB CLEAN Clean data from L1

DATA Data from Main Memory
UPGRADE Request from L1 for Exclusive from Shared access

Table 3.1: Events initiated by the local L1s

3.3.1.1 States added in the MESI Protocol

The main idea of the proposal is to identify the private blocks and store only the

tag part when they are loaded from the main memory on an L2 cache miss. The

actions needed to be taken for the loaded block according to the requests/response

generated by different cores are explained in this subsection. Table 3.1 lists the

request or response generated from the L1 cache along with its brief description.

In this subsection, we discuss (1) The actions and states of the blocks when they

are loaded from the main memory on an L2 cache miss. (2) The transitions of

the blocks to different states, when they are replaced by the owner L1 cache or

when there is a new request or response from other L1 caches. (3) Migration of

blocks to SRAM, in case they become write-intensive. Note that here, the data is

migrated to the SRAM on the second write-back operation to STT region; as we

consider such blocks as write-intensive. All the cases are shown with the help of

the MESI protocol state diagram. As we maintain the entries without data in the

STT region of hybrid cache, we make some changes in the MESI protocol. The

changes include the addition of some new states and their associated transitions.

The details of all the cases mentioned above are described below:

Fig. 3.7(a) shows the actions and states of the block when they are loaded from

the main memory. The given state diagram has two types of states: (1) Tag with

Data state, and (2) Tag only state. A brief description of the states is given below:

• I: Invalid entry of L2 cache.
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• ST-S: An L2 cache entry that is shared between two or more cores or having

read-only permission in the STT region of the cache. Note that it is a tag with

data state.

• P: An L2 cache entry in the STT region that is held exclusively (both read/write

permission) by L1 cache. Note that it is the tag only state.

• ST-C: An L2 cache entry in the STT region of the cache (without any owner

or sharer(s)). Note that it is a tag with data state.

• P’: The state acts as an intermediate state. The transition to this state hap-

pens when some core requests the block with read-only permission (GETS). If

the current request is served without any intervention by another core or other

L1 cache (Another read-only request from the other core), the L2 cache block is

served to the requestor L1 cache along with the exclusive permission and the state

of the block changed to P. Otherwise, if there is an intervening request (GETS)

from another core while the block is being loaded from the main memory, the in-

coming block is served with the read-only permission to the requesting L1 caches.

In this case, the state of the block is changed to state ST-S.
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(a) Actions to be taken on L2 cache miss

The description of transitions between the states according to the requests/re-

sponses generated by the L1 cache for the block that is not present in the L2

cache is described below:

• When the core or L1 request an instruction block (GET INSTR):

The request is sent to the next level of memory, and the incoming block is loaded

in the STT region of the cache. In the directory entry, the state field is changed

from I to ST-S. The requested block is sent to L1.

• When the block is requested exclusively (GETX) by L1 cache: The

incoming block from the main memory will be allocated in the STT region of

the cache. But in this case, the loaded block will not update the data array,

and the array remains empty. The state of the block is changed from the state

I to P. The requested block is sent to L1.

• When the block is requested with read-only permission (GETS) by

L1 cache: The state of the block is first changed to intermediate P’ state.

Now, in this case, the final state of the block depends on whether there is an

intervention from another L1 cache (Read Request from another L1 cache). If

there is no intervention, the block is served exclusively to the requestor L1 by

changing the state from state P’ to P. Otherwise, a block is provided with the

read-only permission to the requestor L1 caches. In this case, the state of the

block is changed to state ST-S.

(b) Actions to be taken on a block replacement from L1 cache or on a

request or response from the L1 cache to the block in the L2 cache

When the block is placed into the L2 cache, there can be many changes in the

state of the block. The changes are due to request or response generated from the

L1 cache or when the block is replaced from the L1 cache. All these changes are

described below:

• When the block is replaced from the L1 cache (Last PUTS or PUTX)

and the state of the block in the L2 cache is ST-S: The write-back
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operation is scheduled according to the dirty bit of the block. Once the write-

back operation is performed, the state of the block is changed to state ST-C.

• When the block is evicted from the L1 cache (PUTX) and the state

of the block in the L2 cache is P: The write-back operation is scheduled

irrespective of the dirty bit of the block. In this case, the L2 cache entry is

dataless, and so the data has to be written regardless of its dirty status. The

state of the block is changed to state ST-C.

• When the L2 cache block is in state ST-S, and the sharers of the

block are reduced to one: The state of the block remains ST-S. The block

can either contain fresh or stale data, and it can handle both M and S state of

MESI protocol. The way ST-S handles both M and S states is shown in the

dotted ellipse in fig. 3.7.

• When the block is requested exclusively (GETX) by some other core

and the state of the block in the L2 cache is P: In this case, the request

from the other core will be forwarded to the owner of the block. Then, the

owner L1 will send the data to the requestor L1 and invalidate its own copy of

data. In this situation, the requestor will become the new owner of the block,

and the owner field in the directory is updated accordingly. The state of the

block remains P.

• When the block is requested with the read-only permission (GETS)

by some other core and the state of the block in the L2 cache is P:

The request from the other core will be forwarded to the owner of the block

which in turn sends the data to the requestor. But in this case, instead of

invalidating its own data, the owner L1 will keep the copy of data with shared

permission. As the block is shared by more than one core, the write operation is

performed on L2 cache as the cache entry did not contain any data previously.

The state of the block is changed to state ST-S.

• When the block is requested exclusively (GETX) by some core and

the state of the block is P’ : The write request will be stalled and will be

served later. The stalled request will continue to be stalled until the state of

the block is changed to either ST-S or P.
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• When the core or L1 request the instruction block which is residing

in L2 cache with state ST-C: The instruction request will be served by

providing the block to the requestor L1 along with the shared permission. The

state of the block is changed to state ST-S.

(c) Migration of Block to SRAM

Our policy migrates the block to SRAM region when the second write-back opera-

tion is performed on that block in the L2 cache. Fig. 3.7(b) presents the migration

process from STT to SRAM. The description of the states used in the state dia-

gram are presented below:

• ST-D: An L2 cache entry that resided in the STT region and is the potential

candidate for migration. Note that it is the tag with data state.

• SR-C: An L2 cache entry residing in SRAM region with or without own-

er/sharer(s). The state SR-C is used here as an abstraction as it follows the

normal MESI protocol for SRAM region. Note that the state is a tag with data

state.

The actions to be taken while migrating the block are described below:

• When an L2 cache block having no owner/sharer(s) (state ST-C)

gets a read or write request (GETS or GETX): In this case, the block

becomes a potential candidate for migration due to prospective multiple write

requests. The state of the block is changed to ST-D, and the data is sent to the

requestor L1.

• When an L2 cache block receives the write-back response and the

state of the block is ST-S: In this case, the write-back block becomes a

potential candidate for the migration, the state of the block is changed to ST-

D.

• When a block in the L2 cache gets a read or write request and the

state of the block in the L2 cache is ST-D: The request will be treated

similarly to state ST-S. In this case, the state of the block remains in ST-D,

and it can handle both M and S state of MESI protocol, as shown in the dotted

ellipse in fig. 3.7.
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• When a block receives the write-back response (PUTX, WB DATA)

and the state of the block in the L2 cache is ST-D: In this case, the

migration process of the block from STT to SRAM is executed in two steps.

First, the lookup operation for the invalid entry is performed in the SRAM

region. If there is no invalid entry, the LRU victim is selected from the same

cache set in the SRAM region and the write-back operation is scheduled to

the next level of memory for the victim. Second, the write-back response will

be redirected to the available entry in the SRAM region by transferring the tag

from STT-RAM to SRAM region. Afterward, the block will be invalidated from

STT-RAM. Once the write-back operation is performed, the state of the block

in the SRAM region is changed to state SR-C. The state SR-C can either act

as an S or I (in case of WB DATA) or M (in case of PUTX) state of MESI

protocol. For simplicity purpose, we denoted this by state SR-C in the state

diagram.

The benefits of these additional states (shown in fig. 3.7) is to represent the dataless

entries (P) in the STT region and to show the states of MESI protocol in an

abstract manner (I, ST-S, ST-C, ST-D, and SR-C) according to different regions

of HCA. The overheads with the state diagram is to incorporate the dataless and

intermediate state in the directory structure (that will add few bits and 5 cycles

to search in the directory and the extra changes required to maintain the dataless

entries) of the protocol. We have considered all these overheads in the simulations.

3.3.2 Design and Operation of the Reuse Distance Aware

Write Intensity Predictor (RDAWIP)

The protocol elaborated in the previous section discussed the existence of dataless

entries in the STT region of the L2 cache. During the second write operation

to such entries, the block was declared to be heavily written block and migrated

to the SRAM region. Several such blocks become candidates for migration and

eventually move to the SRAM region. However, before relocation, these blocks
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Figure 3.8: Organization of Reuse Distance Aware Write Intensity Predictor

incur one write to the STT region. One can avoid these writes if we can predict

those blocks which eventually migrate to SRAM. To incorporate this mechanism,

we propose a predictor based upon reuse distance and write intensity of blocks.

Depending on the reuse category: viz. short, medium or large the decision to

redirect the write to SRAM region is taken during the first write-back for such

blocks. In other words, when a dataless block receives the first write-back from L1

cache, the predictor directs to redirect it to SRAM if it is predicted to be heavily

written block. Otherwise, the block is written to STT region and later migrates

to SRAM if it incurs more writes. The performance of this policy depends on the

prediction accuracy, which is analyzed in the experimental section 3.5.5.

The Reuse Distance Aware Write Intensity Predictor (RDAWIP) mechanism uses

two additional data structures: the Reuse Distance Table (RDT) and the Cache

MetaData (CMD). The composition of these two data structures is shown in

Fig. 3.8. Note that the two structures used in the predictor are made up of SRAM.

The RDT is a table with a limited number of entries indexed using H3 hash func-

tion [114] on a subset of bits from the program counter (PC) and the byte offset

from the memory reference address. The reason behind using the PC-offset combi-

nation is their high coverage and accuracy for different workloads [115, 116, 117].

Each entry in the RDT stores the reuse category and confidence counter apart

from read/write counters like the Read Usage (RU), Read Overflow (RO) and the

Write Usage (WU) and Write Overflow (WO). In particular, each entry of RDT



Chapter 3. Reducing Write Cost by Dataless Entries and Prediction 69

stores the read and write behavior of the hashed address according to the reuse

distance.

The other data structure to be used in our technique is Cache MetaData (CMD).

The CMD is a table that stores the metadata information of each block in the

cache. The entry of CMD contains many fields such as: read/write counters (Read

Usage, Write Usage, Read Overflow and Write Overflow), train bit, RDT pointer

and Reuse information (Reuse counter and Reuse Distance). The description and

the use of these fields are mentioned below:

• The use of read/write counter is to capture the read/write behavior of the

associated cache block during the execution.

• The reuse information fields are used to store the reuse distance of the block.

• The RDT pointer in the CMD is used to link the RDT entry with the associated

cache block.

• The train field is used to identify the cache entry involved in initialization/up-

date the corresponding RDT entry.

The use of CMD entry is to populate, update, and verify the data stored in the

RDT as per the access during the live time of the block. When the block is evicted,

the entries in the CMD are initialized to zero or reset.

3.3.2.1 Initialization Phase

The initialization phase of the RDT is started when the entry mapped by H3 hash

function with PC-offset combination is not found in RDT. In this case, a new entry

is created in the RDT, and the CMD of the block is mapped to this newly created

entry. The address whose PC maps to an entry in the RDT is used to update

the values of the counters. In other words, that address/block is responsible for

initializing the RDT for prediction.
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Whenever the block that is linked to the RDT entry incurs a read/write request the

corresponding counters in the RDT entry are updated. In case the count reaches

saturation, its corresponding overflow bit is set. Note that the reuse information

of the block is maintained in its CMD. The initialization phase of the RDT stops

when the block linked to an entry in the RDT is evicted from the cache. At this

time, the reuse information of the CMD is used to fill the reuse category in the

RDT.

3.3.2.2 Usage or Update phase

During execution, several hashed-PC addresses will map to a given RDT entry.

However, only one of them will be used to update the RDT. Note that if RDT

block is under initialization phase, then other blocks that are mapped to the same

entry will not be involved in the initialization phase. Once the initialization phase

is over, the new block(s) mapping to the corresponding RDT entry will copy the

data from RDT in the CMD. With each read and write request to the mapped

block, the respective counters in the CMD are decremented accordingly. In the

case, when the counter of the CMD reaches the saturation, and their associated

read/write overflow bit is set then this block is assumed to be read/write-intensive

and hence no more changes are required in RDT.

However, there is a possibility of updating the RDT when the read/write overflow

is not set. In this case, when the count of read/write usage counter of the CMD

exceeds the predicted value (becomes zero), we start the update phase. For this,

we set the train bit and start updating the read/write counts (incremented or

set the read/write overflow in case the count reaches saturation) of the RDT.

When the corresponding block is evicted, the RDT has the new information of

the read/write count as per the behavior from the respective evicted entry. The

removed CMD entry also maintains the reuse distance information that helps to

verify the reuse category of the RDT. If the reuse category matches with the reuse

information, the confidence counter is incremented. Otherwise, decremented. In
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case the confidence counter becomes zero, we again categorize the RDT reuse

category as per the reuse information stored in the CMD.

3.3.3 Prediction of the First Write back from L1 to L2

Our policy predicts the region of the hybrid cache to which the first write-back

(from the owner L1 cache) is redirected. The redirection scheme is governed by

the following cases:

1. Prediction is not used

• For blocks having a tag with data entries in STT region of the cache. In this

case, the write-back operation is performed only in the region in which the

data resides.

• For the block involved in initialization of the RDT (i.e., train flag =1 in

CMD).

• For the block mapping to an RDT entry with confidence counter value zero.

2. Prediction is used

• For blocks with the dataless entry in STT.

• For blocks having RDT entry with train flag = 0.

• For blocks having RDT entry with the value of confidence counter greater

than zero.

3. If the prediction is used for the block, the decision is taken with the help of

write usage counter, write overflow bit and the reuse distance of the block in

the RDT entry. For short and medium reuse distance, the block is redirected

to SRAM only when the value of write usage counter is 2 or more. While in

the case of long reuse distance, the block is redirected when the write overflow

bit is set 1.

1We conducted extensive profiling for the different sets of values of write usage counter and
with different reuse distance. And, accordingly, we selected the most stable values.
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Figure 3.9: State Diagram showing the modified transactions with respect to
results of the predictor

In case, due to inaccuracy by the RDAWIP, if the block is not redirected to SRAM

on the first write-back, it will be migrated by the protocol (during its second

write back), by considering it as write-intensive (due to prospective multiple write

requests). Note that the only overhead in this is the first write back incurs at the

STT region of Hybrid Cache. However, there are very few times that the predictor

makes an incorrect predictions (including overestimation and underestimation, as

it is evident from the sections 3.5.5 and 3.5.8.5).

Figure 3.9 shows the modified transactions in response to the result of the

RDAWIP for the first write-back for the dataless entries having the state P .

3.3.4 Augmenting the Replacement Policy

Our proposed prediction method can also be used to augment the replacement

policy to improve the decision of conventional LRU. The new replacement policy

makes use of the predictor field to prioritize the cache line for early eviction. The

usage counter and reuse distance stored in the cache metadata and RDT decides

the prioritization of the line. The blocks which have RDT entries already trained

(i.e., train bit in CMD is not set) are used for predicting the early replacement.

If RDT anticipates that the block has completed its read and write actions, then

it can be considered for victim selection. In other words, blocks having read and

write overflow not set and whose usage counters (read/write) zero are considered to
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Figure 3.10: Organization of set sampler

be those block whose number of read-write request is predicted to have completed.

Such blocks are chosen as victims. In the case of multiple candidates, blocks with

short reuse category get priority first, followed by medium and then distant reuse

category.

3.3.5 Set Sampling

Our predictor RDAWIP includes two additional structures: CMD and RDT. These

structures introduce some area and storage overhead in the architecture (reported

in the section 3.5.7). To overcome these overheads, we introduce the concept of

set sampling. The main idea behind the set sampling is to use fewer sets for cache

metadata. These particular sets are called as sampler sets. The use of sampler

sets in the cache metadata is to train the pattern in reuse distance table. On the

other hand, the other sets of the CMD are used for the decisions of prediction

and replacement. Fig. 3.10 shows the organization of cache metadata after the

set sampling is applied. The sampled set in the cache metadata array is after

every 32 sets. The entries in the sampler set are the same as the entries in the

cache metadata without set sampling. Whereas, the rest of the entries in the cache

metadata have the following fields: Train (1 bit) and, RDT pointer (9 bit). Note

that the RDT pointer used here is for the access (read) purpose not for the update

in the RDT.
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Components Parameters
Processor 2Ghz, Dual Core and Quad Core, Alpha

L1 Cache
Private, 32 KB SRAM Split I/D caches,
4-way set associative cache, 64B block,
1-cycle latency, LRU, write-back policy

L2 Cache Bank

Shared, 1MB (256 KB SRAM and 768 KB STT-RAM) or
2MB (512 KB SRAM and 1536 KB STT-RAM), 16-way

set associative cache (12-way STT-RAM and 4-way SRAM),
64B block, write-back policy

Main Memory 2GB, 160 cycle Latency
Protocol MESI CMP Directory

Table 3.2: System configuration

3.4 Experimental Methodology

The section illustrates the experimental methodology used to examine the pro-

posed architecture. Note that the detail description of the simulation framework

is given at appendix A.

3.4.1 Simulator Setup

We evaluate our proposed architecture on full system simulator GEM5 [118]. Ta-

ble 3.2 shows the system parameters of the evaluated system. We conducted our

experiments on a dual and quad-core system with the different configurations of

L2 cache. For the dual-core, we use 4 MB 16-way set associative L2 cache, and for

quad-core, we use 8 MB 16-way set associative L2 cache. Besides, we also present

the iso-area analysis with different sizes of baseline SRAM and STT-RAM.

Table 3.3 shows the timing and energy parameters for the different configurations

of L2 cache at 32 nm technology modeled using CACTI 6.5 [19] and NVSIM [21].

We also model the energy consumption of RDAWIP by using NVSIM2.

We compared our proposed hybrid cache architecture against the two existing

techniques Read Write Aware Hybrid Cache Architecture (RWHCA) [27, 28] and

Write Intensity (WI) [30] and, baseline SRAM, STT-RAM, and Hybrid Cache

that uses LRU as a replacement policy with no prediction and data allocation. In

RWHCA, a 2-bit counter is used to capture the access to a block. The migration

2The energy values of CMD are depended upon the memory size. However, the scaling of the
values can be easily controlled by using sampler
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Core
Cache/

Peripheral

Static
Power
(mW)

Read
Energy

(nJ)

Write
Energy

(nJ)

Read
Latency

(ns)

Write
Latency

(ns)

Dual Core
(4MB)

SRAM 554.82 0.116 0.116 2.117 2.117
STT 120.76 0.122 2.043 2.96 12.85

Hybrid 229.28
0.116 /
0.122

0.116 /
2.043

2.11 /
2.96

2.11 /
12.85

CMD 5.48 0.003 0.003 0.93 0.93

Quad Core
(8 MB)

SRAM 1128.92 0.285 0.285 2.33 2.33
STT 224.8 0.149 2.084 3.10 12.87

Hybrid 450.83
0.285 /
0.149

0.285 /
2.08

2.33 /
3.10

2.33 /
12.87

CMD 10.77 0.005 0.005 1.23 1.23

Octa Core
(16 MB)

SRAM 2217.42 0.347 0.347 2.577 2.577
STT 378.7 0.181 2.113 6.12 15.89

Hybrid 838.3
0.347 /
0.180

0.347 /
2.113

2.577 /
6.12

2.577 /
15.9

CMD 21.34 0.011 0.011 1.80 1.80
RDAWIP

(CMD+RDT)
RDT 5.27 0.001 0.001 0.144 0.144

Iso Area Analysis

Dual Core
SRAM (2MB) 287.13 0.133 0.133 1.67 1.67
STT (6 MB) 172.78 0.135 2.063 3.03 12.86

Quad Core STT (12 MB) 301.73 0.164 2.098 4.60 14.38

Table 3.3: Timing and energy parameters of the L2 cache and RDAWIP

process is triggered only when there are two consecutive accesses in the wrong

region of the hybrid cache. In WI, the predictor is composed of 1024 entries that

comprise a valid bit, 10-bit hashed address field (used for indexing the predictor)

and a 3-bit state field. The write intensity threshold for placing the loaded block

in the SRAM region is 4. In addition, each entry of the L2 cache block consists of

10-bit trigger instruction and the 2-bit counter that count the number of accesses.

The reuse distance table of our architecture consists of 512 entries. In addition,

we have cache metadata that is associated with each entry of L2 cache. As we

stated earlier, each block in the L2 cache is categorized into three categories: short,

medium, and distant according to their reuse distance. The group of blocks that

fall in the short category have reuse distance between 20 to 24. Such kind of blocks

have a very short lifetime and face an extra number of accesses as compared to

other blocks. Blocks fall in the group of medium reuse distance if their reuse

distance is between 24 + 1 to 26. The distant group of the block corresponds to

the blocks whose reuse distance is more than 26. In our scheme, during the write

redirection of the block to SRAM, the tag needs to be transferred from STT-RAM

to SRAM. This requires an additional buffer and latency of 3 cycles (1 cycle to

transfer the tag in swap buffer, one cycle for writing the tag in swap buffer and
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one cycle to transfer the tag from swap buffer to SRAM region).

We also calculate the energy consumption of the additional circuits (reported in

table 3.3) with the help of NVSIM. Note that the latency of RDAWIP is not on

the critical path. This is mainly due to two reasons: First, the fields of the cache

metadata and reuse distance table are updated simultaneously with the cache

access. Second, the access of the RDAWIP happens only on the first write back

from L1 cache or at the time of the eviction of the block.

3.4.2 Workloads

To evaluate our proposed HCA, we use 24 benchmarks from SPEC CPU2006 [7]

benchmark suite with ref input. We compose twelve multi-programmed workloads

for dual-core and nine multi-programmed workloads for quad-core. Table A.5 lists

these multi-programmed workloads. The list is sorted according to WBKI (Write

back per Kilo Instruction). In particular, for dual-core, the first four workloads

(Mix1 to Mix4) show high WBKI (High1 to High4), next four workloads (Mix5

to Mix8) show average WBKI (Mid1 to Mid4) and last four workloads (Mix9 to

Mix12) show low WBKI (Low1 to Low4). Whereas, in quad-core, the Mix1 to Mix3

show high WBKI (High1 to High3), Mix4 to Mix6 show average WBKI (Mid1 to

Mid3) and Mix7 to Mix8 shows low WBKI (Low1 to Low9). In addition to the

multi-programmed workloads, we also use five multi-threaded applications (can-

neal, fluidanimate, freqmine, swaptions and, x264) from the PARSEC [6] bench-

mark suite with medium input set. We briefly discuss the result analysis with

multi-threaded applications in subsection 3.5.9.

3.5 Results and Analysis

The results are presented on different metrics: the total number of writes in the

cache, Energy savings, Miss Per Kilo Instruction (MPKI) and Speed-up. We have

conducted different simulations on different variations of the proposed technique.
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Figure 3.11: Normalized LLC writes of RWHCA(R), WI (W), P and T for
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Figure 3.12: Normalized LLC writes of P, T, M and N for quad core (lower
is better)

These variations include policy with changes in MESI protocol only (denoted by

P), a policy with changes in MESI protocol along with the prediction of the

first write back (indicated by T), a policy with changes in MESI protocol and

replacement policy (denoted by M) and policy with changes in MESI protocol

along with the prediction of first write back and replacement policy (indicated

by N). Note that the strategies mentioned above are without set sampling. The

results for the procedure with set sampling (S) is given in subsection 3.5.8. Note

that the results graphs are shown for quad-core.

3.5.1 Write Accesses

Figs. 3.11 and 3.12 present the normalized write counts with respect to RWHCA

(R) and P for quad-core. Table 3.4 shows the savings in write accesses with respect

to RWHCA, WI, P and baselines. Note that the negative values in the table (row

8, 9, 11, 24 and 27 of table 3.4) implies the increase in writes. From the results,

we conclude that the savings in writes in the STT region (row 1, 4, 7, 10, 15, 17,
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Core Policy Region P T M N Row

Dual

RWHCA
STT 41.9% 46.4% 43% 48.1% 1

SRAM 50.6% 47.6% 45.1% 42.9% 2
Total 41% 41% 40.6% 41.7% 3

WI
STT 27.4% 33% 28.7% 35.1% 4

SRAM 54.6% 51.9% 49.6% 47.5% 5
Total 38.7% 38.7% 38.2% 39.4% 6

P
STT - 7.6% 1.8% 10.6% 7

SRAM - -5.9% -11% -15.4% 8
Total - 0.02% -0.7% 1.1% 9

Hybrid
STT 68.5% 70.9% 69.1% 71.8% 10

SRAM -32.4% -40.2% -46.9% -52.8% 11
Total 33.7% 33.8% 33.2% 34.5% 12

SRAM
SRAM 67% 65.1% 63.4% 61.9% 13
Total 33.7% 33.7% 33.2% 34.5% 14

STT
STT 76.7% 78.5% 77.1% 79.2% 15
Total 34.8% 34.8% 34.3% 35.6% 16

Quad

RWHCA
STT 17.5% 22.8% 20% 25% 17

SRAM 51% 48.6% 51.4% 48.1% 18
Total 39.7% 39.8% 40.7% 40.1% 19

WI
STT 7% 13% 9.8% 15.3% 20

SRAM 52.2% 50% 52.7% 49.5% 21
Total 38.1% 38.2% 39.1% 38.4% 22

P
STT - 6.3% 3% 9% 23

SRAM - -4.6% 1.2% -5.6% 24
Total - 0.12% 1.6% 0.52% 25

Hybrid
STT 60.7% 63.2% 61.9% 64.2% 26

SRAM -35.3% -41.5% -33.7% -42.8% 27
Total 35.3% 35.4% 36.4% 35.6% 28

SRAM
SRAM 67.1% 65.6% 67.5% 65.2% 29
Total 36.6% 36.7% 37.6% 37% 30

STT
STT 71.4% 73.2% 72.2% 74% 31
Total 37.3% 37.4% 38.3% 37.6% 32

Table 3.4: Percentage savings in write accesses P: dataless T: dataless with
prediction M: dataless with replacement N: dataless with prediction and re-

placement (higher is better)

20, 23, 26, and 31) is mainly due to three reasons: First: identification of private

blocks and providing dataless entries to such blocks. Second: prediction of first

write back from the L1 cache to dataless block in the L2 cache. Third: the large

number of write-backs in the SRAM region due to the eviction of dead blocks

according to their reuse distance. We also save the writes in the SRAM region of

hybrid cache (row 2, 5, 13, 18, 21, and 29). This is because our policy allocates all

the block loaded from the main memory in the STT region of the cache whereas

the existing policies loaded the blocks in both SRAM and STT region. As we

have 3:1 ratio in the hybrid cache of STT vs. SRAM, savings of writes in STT

and SRAM region leads to the savings in total writes (row 3, 6, 12, 14, 16, 19,

22, 25, 28, 30, and 32). However, some of the rows (8, 9, 11, 24, and 27) of the

table indicate the increase in the writes in the SRAM region. This is mainly due

to the prediction of the first write back, proposed replacement policy and no data

allocation/migration support in case of baseline hybrid policy.
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Figure 3.13: Normalized LLC energy of RWHCA (R), WI (W), P and T for
quad core (lower is better)
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Figure 3.14: Normalized LLC energy of P, T, M and N for quad core (lower
is better)

3.5.2 Energy Consumption

Figs. 3.13 and 3.14 show the normalized LLC energy consumption3 for quad-

core. Results with different variations of proposed technique against the existing

techniques are presented in table 3.5. Note that the rows (row 2, 8, 11, 20, and

23 of table 3.5) with the negative value represents the consumption of energy.

However, overall there is an improvement in total energy consumption mainly

because of less number of write operations in the STT region (row 1, 4, 7, 10, 13,

16, 19, and 22 of table 3.5) of the hybrid cache. Note that we have also considered

the energy consumption by the additional circuits: CMD and RDT in the overall

consumption of the table 3.5 and in figs. 3.13 and 3.14.

• RWHCA: Compared to RWHCA, in the SRAM region, our proposed technique

consumes energy (in case of dual-core) or saves less energy (in case of quad-core)

(row 2 and 14 of table 3.5). This is due to the transfer of read and write-intensive

blocks to the SRAM region, which in turn increases the number of hits.

3The normalized values are calculated from the actual energy values which are as follows (for
row 1): 14.4 mJ(R), 9.2 mJ(P), 8.6 mJ(T), 9 mJ(M) and 8.3 mJ(N).
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Core Policy Region P T M N Row

Dual

RWHCA
STT 36.1% 40.4% 37.6% 41.8% 1

SRAM -1% -9.6% -9.6% -14.6% 2
Total 29.2% 32.7% 30.6% 34.3% 3

WI
STT 20% 25.3% 21.8% 27.1% 4

SRAM 27.2% 21% 21% 17.3% 5
Total 17.3% 21.4% 19% 23.3% 6

P
STT - 6.7% 2.3% 9% 7

SRAM - -8.5% -8.6% -13.5% 8
Total - 5% 2% 7.2% 9

Hybrid
STT 59.7% 62.4% 60.7% 63.3% 10

SRAM -20.5% -30.8% -30.8% -36.8% 11
Total 52.9% 55.2% 53.9% 56.3% 12

Quad

RWHCA
STT 18.5% 23.1% 20.7% 24.3% 13

SRAM 6.1% 3.5% 6.6% 1% 14
Total 16.1% 19% 17.8% 19.6% 15

WI
STT 8.5% 13.7% 11% 15.1% 16

SRAM 14.2% 11.9% 14.7% 9.6% 17
Total 10.3% 13.4% 12.2% 14.1% 18

P
STT - 5.6% 2.6% 7.1% 19

SRAM - -2.7% 0.56% -5.4% 20
Total - 3.4% 2.1% 4.2% 21

Hybrid
STT 55.9% 58.4% 57.1% 59.1% 22

SRAM -41.5% -45.4% -40.7% -49.2% 23
Total 46.3% 48.1% 47.4% 48.6% 24

Table 3.5: Savings in energy against the existing techniques P: dataless T:
dataless with prediction M: dataless with replacement N: dataless with predic-

tion and replacement (higher is better)

• WI: In the case of WI, the energy savings for SRAM region (row 5 and 17 of

table 3.5) are comparable because of two reasons. First, our policy does not

allocate the block in the SRAM region at the load time. Second, the former

technique loads the block in the SRAM according to the write intensity of the

block, which in turn loads the block that is read and write-intensive.

• P: With respect to P, the large energy consumption for the SRAM region (row 8

and 20 of table 3.5) by the proposed variation (T, M, and N) is due to the more

number of write operations on account of prediction and replacement policy

which is already reported in table 3.4 (row 8 and 24).

• Hybrid: The large energy consumption in the SRAM region (row 11 and 23)

is due to less write operation in the SRAM region (reported in row 11 and 27

of table 3.4).

However, more energy saving in the STT region leads to total energy saving

(row 3, 6, 9, 12, 15, 18, 21, 24 of table 3.5).

Results against the baseline SRAM/STT is presented in table 3.6. The static and

the total energy consumption presented in the table is against the baseline SRAM
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Core Cache Energy P T M N Row

Dual
SRAM,

STT

Static 57.9% 58.3% 58.6% 58.8% 1
Dynamic 57.2% 59.3% 58% 60.3% 2

Total 57.4% 57.9% 58.2% 58.4% 3

Quad
SRAM,

STT

Static 59.8% 60.2% 60.4% 60.4% 4
Dynamic 56.8% 58.3% 57.7% 58.6% 5

Total 59.4% 59.7% 60% 60% 6

Table 3.6: Savings in energy against the baseline SRAM/STT-RAM (higher
is better)
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Figure 3.15: Normalized CPI of WI (W), P and T over RWHCA for quad
core (lower is better)

(due to the large impact of static energy consumption by SRAM in total energy

consumption). The improvements shown in these categories are mainly due to

the low static power consumption of STT-RAM (row 1, 3, 4, and 6 of table 3.6).

Whereas, the dynamic energy consumption presented in the table is against the

baseline STT (due to the large dynamic energy of STT). The gain in dynamic

energy (row 2 and 5 of table 3.6) is due to the less number of write operations in

the STT region.

3.5.3 Performance

Fig. 3.15 presents the normalized CPI for quad-core. Our proposed techniques (P,

T, M, and N) maintain the same performance with respect to RWHCA. The reason

behind not getting a performance improvement despite the reduction of write

accesses in the STT region of hybrid cache is because of migration or redirection

of the blocks/tags to and from the SRAM region and the additional search latency

for the extra states added in the directory and latency incurs due to changes in

the cache controller to maintain the dataless entries. Note that the migration or

redirection operation consumes extra cycles or latency.
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Figure 3.16: MPKI improvement of P, T, M and N over RWHCA for quad
core (higher is better)
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Figure 3.17: MPKI improvement of P, T, M and N over WI for quad core
(higher is better)

3.5.4 Misses Per Kilo Instruction

Figs. 3.16 and 3.17 present the percentage improvement in MPKI over RWHCA

and WI for quad-core. Table 3.7 summarizes the results obtained for the different

varieties of proposed technique against the existing methods and baseline hybrid

cache. As we can see from the result, the policy only with replacement (Column

5 (M)) shows the large improvement over the other proposed policy (Column 3

(P), Column 4 (T) and Column 6 (N). This is mainly due to the prioritization of

some blocks for the eviction over the other blocks. On the other hand, a policy

with the prediction (Column 4 (T)) shows very less improvement over the other

techniques. This is due to the prediction of first write-back to limited size SRAM,

which in turn increases the miss rate. Improvement in the MPKI shows that the

proposed scheme reduces the main memory accesses against the existing techniques

by prioritizing dead cache lines for eviction. However, the baseline Hybrid Cache

(H) utilizes the full capacity without considering costly write operation. Hence, it
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Core Policy P T M N Row

Dual

RWHCA 11.2% 10.1% 13.9% 13.4% 1
WI 16.7% 15.6% 19.3% 18.8% 2
P - -1.4% 3% 2.4% 3

Hybrid -18.4% -20.2% -14.8% -15.5% 4

Quad

RWHCA 6.1% 4.8% 9.3% 8.6% 5
WI 5.5% 4.1% 8.7% 7.9% 6
P - -1.4% 3.4% 2.6% 7

Hybrid -2.5% -4% 1.1% 0.24% 8

Table 3.7: MPKI Improvement (higher is better)
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Figure 3.18: Accuracy of Reuse Distance Aware Write Intensity Predictor for
quad core.

has the best MPKI.

3.5.5 Prediction Accuracy

Fig. 3.18 shows the accuracy of Reuse Distance Aware Write Intensity Predictor.

As stated earlier in appendix A.3.3, we warm up the cache for 250 million instruc-

tion and then run each workload for 1 billion instructions. Note that the warm-up

phase is required to train the predictor and the stats shown in the Fig. 3.18 are

collected during the 1 billion instruction. The graph shows the log (with base 2)

values of each entity. The reason behind showing the log value is due to the large

values in the correct estimation. We categorize our prediction results into four

categories: initialization/training, over-estimation, under-estimation, and correct

estimation. These results are measured during the eviction of the block from L2

cache.

The under-estimation indicates the blocks which are read or written after they are

predicted to become dead. On the other hand, over-estimation of the evicted block
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Core Metrics Policy P T M N

Dual
Writes

SRAM 2MB 38.3% 38.4% 37.8% 39.1%
STT 6MB 31.9% 32% 31.4% 32.7%

EDP
SRAM 2MB 20.7% 21.8% 22.5% 22.8%
STT 6MB -33.5% -31.7% -30.4% -30%

Quad
Writes

SRAM 4MB 39.7% 39.9% 40.8% 40.1%
STT 12MB 34.9% 35% 35.9% 35.2%

EDP
SRAM 4MB 20.3% 20.9% 21.5% 21.4%
STT 12MB -44.6% -43.5% -42.4% -42.6%

Table 3.8: Iso area analysis

indicates that the eviction of the block happens before it becomes dead. Lastly,

correct estimation refers to the evicted blocks that are correctly predicted.

From the prediction results, we find out that out of 225 (approx.) evicted blocks,

212 (T) and 211 (N) evicted blocks are overestimated, and 213 (T) and 212 (N)

evicted blocks are underestimated. While 224 of the ejected blocks are correctly

estimated. This on a whole shows the efficacy of our proposed technique.

3.5.6 Iso Area Analysis

In addition to the above-presented results, we also performed experiments on the

same area footprint with baseline SRAM and STT-RAM. In particular, within

the same real estate chip occupied by the proposed cache, we present analyses

with the different sizes of baseline SRAM and STT-RAM. For example, within

the same area of 4MB hybrid cache (i.e. 3MB STT and 1MB SRAM), we can

accommodate 6MB pure STT-RAM and 2MB pure SRAM by assuming STT is

3X denser than SRAM. Table 3.8 lists the improvement in writes and EDP over

the different varieties of proposed technique against pure STT and SRAM. Note

that negative values in the table imply the EDP loss (row 4 and 8). The loss

with respect to STT is due to the large static energy consumed by the SRAM

portion of the hybrid cache. The results shown in the table 3.8 clearly indicate

that within the same area footprint of SRAM, a large-sized hybrid cache can be

easily accommodated.
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3.5.7 Storage Overhead

Our policy uses Cache Metadata (CMD) and Reuse Distance Table (RDT) for

the prediction and replacement. Each entry of CMD is associated with each cache

block. The entry of CMD data comprises of many fields: Train (1 bit), Read Usage

(2 bit), Read Overflow (1 bit), Write Usage (2 bit), Write Overflow (1 bit), Reuse

Distance (8 bit), RDT pointer (9 bit) and the Reuse Counter (3 bit). Similarly,

the entry in RDT has the following fields: Hashed Address (9 bit), Read Usage (2

bit), Read Overflow (1 bit), Write Usage (2 bit), Write Overflow (1 bit), Pointer (1

bit), Reuse Category (2 bit), and, Confidence counter (2 bit). The total number

of entries in the RDT is 512. Also, a 42-bit swap buffer is used to transfer the tag

from STT to SRAM. The percentage of storage overhead with respect to hybrid L2

cache is 4.90% (for dual-core) and 4.88% (for quad-core). Similarly, the percentage

of area overhead with respect to hybrid L2 cache is 15% (in the case of dual-core)

and 14.5% (in the case of quad-core). Note that area overhead for the additional

circuit is modeled with the help of NVSIM.

3.5.8 Impact of Set Sampling

We compared the result of policy with set sampling (denoted by S) with the

procedure without set sampling (N). The results are presented on the given met-

rics (already explained in the Section 3.5). In case of a sampler, we run each

multi-programmed workload for 1 billion instructions after warming up to 1 bil-

lion instructions. The reason behind to increase the period of warm-up phase is

because of the lesser availability of sampled set entries involved in initialization

of the RDT. As the sampled sets are very less, the RDT will take longer time to

learn the behavior of different patterns. Note that figures are only presented for

quad-core.
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Figure 3.19: Normalized write counts against N.

3.5.8.1 Write Accesses

Fig. 3.19 presents the normalized LLC writes for policy N and S for the quad-core.

Our policy with set sampling (S) increases the writes in STT region by 2.21% in

dual-core. While, in quad-core, the increase in writes in STT is 8%. This marginal

increase in writes is mainly due to slow learning of the different patterns in the

RDT. Thus, the only possible way to reduce the writes in STT region in case of

quad-core is by increasing the learning period. This concludes that the policy with

set sampling maintains the same write accesses as the policy without set sampling.

3.5.8.2 Energy Consumption

Fig. 3.20 shows the normalized energy consumption by the policy with set sampling

(S) against the policy without set sampling (N). In dual-core, the policy with set

sampling (S) incurs a nominal increase in energy with respect to STT and total

region by 1.31% and 0.37% respectively. Whereas, the savings in the energy in the

SRAM region is only 0.80%. The marginal increase in energy of the STT region

is due to the rise in the number of writes. The respective values in quad-core are

the increase of 6.3% in STT region, saving of 5.5% in SRAM and, the overall rise

of 1.1%. This marginal increase can be easily avoided either by increasing the

sample set entries or the initialization period.
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Figure 3.20: Normalized energy consumption against N
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Figure 3.21: Normalized CPI of S against N

3.5.8.3 Performance

Normalized CPI for the policy with set sampling (S) against the policy without

set sampling (N) is presented in Fig. 3.21. The policy with the sampler (S) for

dual-core and quad-core maintains the same performance with the policy without

sampler (N). We observe a very less degradation in CPI due to the increase of

writes in STT region, but it is negligible.

3.5.8.4 Misses Per Kilo Instruction

Fig. 3.22 presents the result of an increase in MPKI of policy with set sampling

(S) against the policy without set sampling (N) for quad-core. The policy with

set sampling increases the MPKI by 4.25% (for dual-core) and 6.81% (for quad-

core) compared to the policy without set sampling (N). This increase in MPKI

is mainly due to the untrained pattern in the RDT, which replaces the block
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Figure 3.22: Increase in MPKI for S against N
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Figure 3.23: Accuracy of RDAWIP with set sampling for quad core

unconditionally. However, if we increase the number of sample sets entries (that

leads to large storage and area overheads) or increase the warm-up time, the MPKI

values can be improved further.

3.5.8.5 Prediction Accuracy

Fig. 3.23 presents the accuracy of RDAWIP with set sampling for the quad-core.

Same as the previous subsection, the graph shows log (base 2) values of each entity

and the stats shown in the Fig. 3.23 are collected during the 1 billion instruction

after warming up the sampler for 1 billion instruction. From the graph, we can

conclude that compared to policy without set sampling (N), the large number

of the cache entries are going through the initialization or update phase in the

policy with set sampling (S). This is because of the slow learning behavior of the

RDT entry due to less availability of sampled set entries. The slow learning, in
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turn, affects the prediction accuracy due to unstable entries stored in the RDT.

Compared to the policy without set sampling (N), out of 224 evicted blocks, 219

(dual) and 220 (quad) evicted blocks are underestimated and 221 (dual) and 222

(quad) evicted blocks are overestimated. Whereas, the 223 (for dual and quad-

core) evicted blocks are correctly estimated. However, if we increase the sampler

size or initialization period, we can even get better prediction accuracy by trading

off the area and storage overhead.

3.5.8.6 Storage Overhead

The set sampling used with the proposed policy (S) reduces the storage and area

overhead compared to the policy without set sampling (N). The storage overhead

with respect to hybrid L2 cache is 0.28% (for dual-core) and 0.275% (for quad-

core). Similarly, the area overhead is 1.02% (for dual-core) and 0.79% (For quad-

core). These less overhead are due to the limited sample set CMD entries (used to

train the RDT) (which are reduced by a factor of 32 compared to policy without

set sampling). Whereas, the rest of the entries in the CMD contains only Train (1

bit) and RDT pointer (9 bit).

3.5.8.7 Discussion

As it is evident from the sections 3.5.8.1, 3.5.8.2, 3.5.8.4 and 3.5.8.5, the set sampler

deteriorate the metrics and prediction accuracy compared to N. However, the

significant improvement in the storage and area overhead (nearly 14% in the dual

and quad-core) by the use of sampling makes it worth for the embedded system

having limited area.



Chapter 3. Reducing Write Cost by Dataless Entries and Prediction 90

Core Metrics Ref. Policy P T M N S

Quad

Writes
RWHCA 34.4% 35.8% 34.9% 36.2% 35.9%

WI 31.2% 32.6% 31.6% 33.1% 32.8%
P - 0.64% 0.42% 2.74% 2.05%

Energy
RWHCA 32.1% 33.2% 32.4% 35% 33.5%

WI 22.8% 24.2% 23.2% 26.1% 24.3%
P - 1.26% 0.47% 3.71% 1.37%

MPKI
RWHCA 13.8% 12.1% 15.6% 15.1% 14.3%

WI 15.3% 13.5% 17.0% 16.4% 15.7%
P - -1.41% 3.57% 3.02% 2.93%

Octa

Writes
RWHCA 32.6% 33.9% 33.5% 34.8% 33.6%

WI 26.6% 28.1% 27.6% 29% 27.7%
P - 2% 1.3% 3.2% 1.5%

Energy
RWHCA 22.1% 24.4% 23.2% 25.2% 23.3%

WI 18.1% 20.5% 19.3% 21.3% 19.3%
P - 1.52% 0.15% 2.6% 1.34%

MPKI
RWHCA 1.95% 0.40% 5.93% 4.23% 4.0%

WI 18.8% 17.4% 25.2% 23.6% 22.3%
P - -2.2% 10.4% 8.65% 3.8%

Table 3.9: Percentage improvement values for multi-threaded workloads on
quad-core and octa-core

3.5.9 Analysis on Multi-threaded Workloads with Larger

Cores: Quad and Octa-core

This subsection briefly illustrates the improvements by the proposed approaches

with respect to the multi-threaded applications on quad-core and octa-core. Ta-

ble 3.9 presents the improvement values (in terms of Writes, Energy and MPKI)

by the proposed approaches (P, T, M, N, and S) against the existing approaches

(RWHCA, WI, and P have given in column 2). For performance metrics, proposed

techniques maintain the same performance against the existing techniques. Note

that the negative value in the table implies the increase in the value of the metric.

3.6 Summary

The key insights of this chapter are as follows:

• We presented a policy that provides dataless entries in the STT region of HCA

for the blocks loaded exclusively from the main memory on an LLC miss.

• A Reuse distance aware write intensity prediction technique is proposed to pre-

dict the appropriate region to which write-backs for dataless entries should be

redirected.
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• In order to reduce the writing pressure in the limited sized SRAM region, we

present an effective replacement policy where the victims are chosen based on

the predicted lifetime of blocks. The lifetime of the block has been estimated

by considering the predictor field in the replacement decision.

• Experimental results on full system simulator show that the writes are not only

saved in the STT region but also in the SRAM region.

• To reduce storage and area overhead, we also propose a set sampler based pre-

diction methodology.

To conclude, in this chapter, we presented an effective method to restrict the

number of writes in the hybrid LLC. Experimental results over the two existing

techniques: RWHCA and Write Intensity demonstrate a significant reduction in

write accesses and energy consumption. The write accesses are reduced by 41.7%

(dual-core) and 40.1% (quad-core) against RWHCA and, 39.4% (dual-core) and

38.4% (quad-core) against WI. The proposed policy also reduces energy consump-

tion by 34.3% (dual-core) and 19.6% (quad-core) against RWHCA and, 23.3%

(dual-core) and 14.1% (quad-core) against WI. By applying set sampler, the area

overhead is reduced to 1.02% (dual-core) and 0.79% (quad-core). Thus, selec-

tively placing/writing blocks in latency hungry non-volatile memories will help in

effectively utilizing their potential for density and smaller leakage.





Chapter 4

Intra-Set Wear Leveling using

Write Restricted Vertical

Partitions

This chapter proposes three intra-set wear-leveling techniques: SWWR, DWWR,

and DWAWR for lifetime longevity enhancement of non-volatile cache. All the

strategies proposed in this chapter work on the basic concept of write restriction.

Our first two techniques partition the cache into windows of equal size and dis-

tribute the writes uniformly across the cache set by employing the window as

write-restricted or read-only. The selection of the write restricted window in these

techniques is by rotation or by the help of counters. In our third technique, differ-

ent ways of the cache are employed as a write-restricted throughout the execution

to distribute the writes uniformly. The proposed works are evaluated with three

different existing methods in case of dual and quad-core system.

4.1 Introduction

In the real-time execution environment, the limited write endurance of NVMs is

affected by the write variations generated by the applications running on CMPs.

93
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In cache, the write variations are categorized into two categories: Inter-set and

Intra-set write variation (ref.Chapter 2). Due to these write variations, not only

the lifetime of non-volatile cache reduces but the capacity of cache diminishes over

the period.

Existing literature proposes many states of the art intra-set wear leveling tech-

niques. One of them is the Probabilistic Set Line Flush (PoLF) presented by

Wang et al. [29] that invalidates a cache block after a fixed number of writes based

on a Flush Threshold (or FT). The only drawback here is that the possible in-

validation of MRU blocks, leading to more main memory accesses. EqualChance

reported by Mittal et al. [31] transfers/swaps the write-intensive blocks within the

cache set with invalid/clean blocks. This transfer/swap is based on a write counter

threshold Υ. However, these transfer/swaps takes extra cycles and consumes more

energy due to extra writes inside a cache bank.

The main contributions of this chapter are as follows:

• Our first technique: Static Window Write Restriction (SWWR) logically divides

the cache into multiple windows and using different window for write-restriction

in a round-robin fashion during the execution.

• The second technique: Dynamic Window Write Restriction (DWWR) consid-

ers the write count of the different windows for the write restriction over the

execution.

• In the third scheme: Dynamic Way Aware Write Restriction (DWAWR) the

heavily written cache ways are considered for the write restriction during the

execution.

• The presented techniques are evaluated extensively against three existing tech-

niques: PoLF [29], WAD [32] and EqualChance [31] and the baseline STT-

RAM/ReRAM without any wear-leveling support.

• Experimental evaluation over different levels of cache with different memory

technologies shows significant improvement in the lifetime and reduction in

intra-set write variation.
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Figure 4.1: General overview of contribution in chapter 4

Figure 4.1 presents the general overview of the proposed contributions in this

chapter.

The chapter is organized as follows: Proposed wear leveling techniques are pre-

sented in section 4.2. Section 4.3 illustrates the experimental methodology. Re-

sults and analysis are presented in section 4.4. Section 4.5 reports the parameter

comparison analysis. Finally, we summarize this chapter in section 4.6.

4.2 Proposed Wear Leveling Techniques

This section demonstrates all of our proposed wear-leveling techniques: Static/Dynamic-

Window Write Restriction (SWWR/DWWR) and Dynamic Way Aware Write Re-

striction (DWAWR). At the end of this section, we give a summary flow chart for

all in fig. 4.7.

4.2.1 Static Window Write Restriction (SWWR)

4.2.1.1 Main idea

The main idea of the SWWR is to partition the cache logically into m equal-sized

windows and use a different window sequentially during the execution for a specific



Chapter 4. Intra-Set Wear Leveling using Vertical Partitions 96

predefined interval (I). In each interval, one window of the cache is selected and

treated as a write restricted (i.e., read-only) window. In particular, during the

interval, all the writes coming from L1/L2 cache, i.e., Upper-Level Cache (called

ULC) to the Write Restricted Window (WRW) of an L2/L3 cache (i.e., LLC) are

redirected to other windows of the same cache set. At the end of a predefined

interval, the next window of the cache is selected (as a write-restricted), and the

process continues until the end of execution.

4.2.1.2 Algorithm

The working approach of the SWWR is elaborated through Algorithm 1. In our

case, L2/L3 or LLC is the non-volatile STT-RAM/ReRAM based cache. In the

algorithm, the tunable parameter I is used as a predefined interval (line 3). The

total number of logical partitions or windows in the LLC are denoted by m (line

4). Note that each partition or window in the algorithm is represented by the

variable Wi (line 5), where the range of i is from 0 to m− 1.

When the application execution begins then for the initial I cycles, the cache is

treated as an ordinarily available cache (line 6). Once the application executes I

cycles, one of the windows in the cache is treated as a write-restricted window for

next interval I (line 7) and, periodically for each interval, a new window is selected

by rotation (line 9 to 11). The process continues until the end of execution (line

26).

When the request R comes from ULC to LLC, the tag lookup operation is per-

formed. Depending upon the result of the lookup operation for requested block

B, the actions are taken as given below:

• Read Hit: The requested block B in the LLC is served normally to higher-level

cache irrespective of its location in the cache (line 13 and 14).

• Write Hit (PUTX or write-back) and requested Block B in Wi: If B

belongs to the selected window Wi with the invalid line(s) in the other windows
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Algorithm 1 Static Window Write Restriction (SWWR)

1: ULC : Upper Level Cache i.e. L1/L2.
2: LLC : Last Level Cache i.e. L2/L3.
3: I : Predefined interval.
4: m : Number of logical partitions or windows.
5: Wi : ith logical partition or window that treated as read only (or write restricted) in the current interval.

0 ≤ i < m
6: Run application for I cycles treating the whole cache as normally available cache.
7: After I cycles treat one window at a time as write restricted and rotate turns in round robin fashion.
8: repeat
9: for every interval I do
10: i = WINSELECT (i,m)
11: Window Wi is selected as Write Restricted Window (WRW) for the current interval I.
12: for each request R from ULC to the block B in LLC during I cycles do
13: if R = ReadHit then
14: NORMOPR(R,B)
15: else if R = WriteHit then
16: if B ∈ Wi then
17: WRITEREDIRECT (R,B,WRW)
18: else
19: NORMOPR(R,B)
20: end if
21: else
22: PROCESSCACHEMISS(R,WRW) . cache miss
23: end if
24: end for
25: end for
26: until the end of the execution

Write Restricted Window Selection for SWWR

27: function WinSelect(i, m)
28: i = (i+ 1)%m
29: return i
30: end function

Functions used by the Algorithms

31: function NormOpr(R, B)
32: Request R is served normally from block B as the conventional cache.
33: end function
34: function WriteRedirect(R, B, WRW)
35: Write the block B to other location L in the same cache set. Note that the location L does not belong

to currently selected WRW.
36: return L
37: end function
38: function processCacheMiss(R, WRW)
39: Forward the Request R to main memory to fetch the block. Keep the newly arrived block in a location

other than WRW location.
40: end function

of the same cache set, the request R from ULC is redirected to the first invalid

line and the Block B is invalidated from the respective location in write restricted

window. In the other case, when there is no invalid line in the other windows

of the same cache set, the LRU victim line v is picked from the Location L and

the write-back operation is performed according to its dirty bit. Note that the

location L is the location other than the write restricted window location. Once

the victim v is evicted from the LLC, the write request from a ULC is redirected

to the generated location L and the Block B is invalidated from its respective

location in WRW (line 15 to 17).
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Figure 4.2: Working example of proposed SWWR wear leveling policy

• Write Hit (PUTX or write-back) and B not in Wi: The requested Block

B in the LLC is written normally by the ULC (line 18 to 20).

• LLC miss: When the requested Block B is not present in the LLC, the request

R from the ULC is forwarded to the next level of the memory hierarchy (i.e., main

memory in our case). In this case, the newly arrived Block is placed in the location

other than the WRW Wi location (line 21 to 23).

4.2.1.3 Working Example

Figure 4.2 depicts the working methodology of the SWWR. In the figure, 16-way

set-associative LLC is partitioned into 4 (m = 4) equal-sized windows (W0,W1,W2

and W3). Each window of the LLC contains four ways and, the write restricted

window is in W0, i.e., way-0 to way-3. To explain the methodology, we used

the arrows to show the request and response from the ULC and LLC. For the

read request (shown by the arrow 1) to the way-0 of LLC, the response is served

normally by the LLC (as indicated by arrow 2). On a write request from ULC

cache to the block belongs to W0 of the LLC (arrow 3), the request is redirected to

the one of the free cache way(s) of W1, W2 and W3. In case, if all the cache ways

are occupied, the LRU victim among these ways is selected, and the write-back
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Figure 4.3: Write counts for four different workloads in the SWWR

Workloads H-Win
Type Bench 1 2 Avg.

PARSEC

Body 14.4% 3.01% 17.44%
Cann 2.54% - 2.54%
Ded 6.03% 1.41% 7.44%
Swap 17.2% 7.27% 24.5%
X264 10.04% - 10.04%

SPEC

Mix1 11.17% 3.71% 14.88%
Mix2 9.34% 4.11% 13.45%
Mix3 9.88% 4.26% 14.14%
Mix4 12.4% 4.74% 17.2%

MEAN 10.35% 3.17% 13.51%

Table 4.1: Percentage times Heavily written Window (H-Win) available in
cache

operation is scheduled with the redirection of a write request (arrow 4). Once the

write operation is performed, the write-back acknowledgment is sent to the ULC

(arrow 5), and the requested block is invalidated from the W0.

4.2.1.4 Limitation of SWWR

Figure 4.3 presents the effects in the write counts of different blocks inside the

cache sets after applying SWWR. As can be seen from the figure, the maximum

write count is reduced compared to write count of the Non-Volatile without any

wear-leveling support as shown in the figure 2.9 (Details about the experimental

setup is reported in section 4.3). However, the limitation of the SWWR is the lack

of consideration of write intensity of other windows in the window selection process.

Because of write variation generated by the applications, the write intensity of the

windows changes over the period. In other words, during execution, the lightly
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written window becomes heavily written, and vice-versa. By considering these

heavily written windows as a write-restricted during the execution, we can further

improve the relative lifetime and reduce the coefficient of intra-set write variation

(observed in figure 4.3 for SWWR). Table 4.1 shows the percentage availability of

heavily written windows (H-win) during the window selection process in SWWR.

From the table, we can conclude that on an average 13.51% times a heavily written

window other than the selected write restricted window is available in the cache.

This motivates us to identify such windows and improve the lifetime further.

4.2.2 Dynamic Window Write Restriction (DWWR)

4.2.2.1 Main Idea

The main idea of DWWR is to partition the cache into m equal-sized windows and

use different window during the execution for a predefined interval. In SWWR,

the selection of write restricted window was in a round-robin fashion. Whereas, in

DWWR, the selection of the window is based on a counter associated with each

window. In particular, with each window, we have added a counter that is used

to track the number of writes during the past interval to the window (i.e., from

ULC to LLC). Then, for each interval, the window with maximum writes is chosen

and treated as write restricted (or read-only) window. At the end of the interval,

the next window of the cache is selected based upon the counter values, and the

process continues until the end of execution. Note that, to remove the possibility

of selecting the same window in the consecutive intervals, we reset the counter for

the chosen write restricted window.

4.2.2.2 Algorithm

The working approach of DWWR is elaborated through Algorithm 2. In the

algorithm, the partition or window of the cache is represented by the variable Wi.

Similarly, the counter associated with each window is represented by the variable

Ci (line 5 and 6). Note that the range of i is from 0 to m− 1.
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Algorithm 2 Dynamic Window Write Restriction (DWWR)

1: ULC : Upper Level Cache i.e. L1/L2.
2: LLC : Last Level Cache i.e. L2/L3.
3: I : Predefined interval.
4: m : Number of logical partitions or windows.
5: Wi : ith logical partition or window that is treated as read-only (or write restricted) in the current interval.

0 ≤ i < m
6: Ci : Counter corresponding to ith window that records the number of write accesses from ULC to that

window. 0 ≤ i < m.
7: Run application for I cycles treating the whole cache as normally available cache.
8: After I cycles treat one window at a time as read-only or write restricted.
9: repeat
10: for every interval I do
11: i = WINSELECT (Ci,m)
12: Let Wi is the selected Write Restricted Window (WRW) for current interval I.
13: for each request R from ULC to the block B in LLC during I cycles do
14: if R = ReadHit then
15: NORMOPR(R,B)
16: else if R = WriteHit then
17: if B ∈ Wi then
18: L = WRITEREDIRECT (R,B,WRW)
19: The corresponding counter of the window that contains the location L is incremented.
20: else
21: NORMOPR(R,B)
22: Increment the counter Cj of the window where the block B is present.
23: end if
24: else
25: PROCESSCACHEMISS(R,WRW) . cache miss
26: end if
27: end for
28: end for
29: until the end of the execution

Write Restricted Window Selection for DWWR

30: function WinSelect(Ci, m)
31: i = max(Ci), 0 ≤ i < m
32: Reset the counter Ci to zero
33: return i
34: end function

For the initial I cycles of the application execution, the cache is employed as an

ordinarily available cache (line 7). Once the application crosses the I cycles, one of

the windows of the cache is treated as read-only or write restricted window. The

selection of the window is based upon the counter associated with each window

of the cache (line 10 and 11). Thus, the window with most write accesses in the

previous intervals is selected as a write-restricted in the next interval (line 31).

This helps to restrict the heavily written window to get further writes in the next

interval. Once the window is selected, the corresponding counter is reset to zero

(line 32). At the end of the interval, the next window with maximum writes is

selected by the method. The process continues until the end of execution (line

29).

Same as in SWWR, the tag lookup operation is performed on the LLC, for each

request coming from the Upper-Level cache (ULC) (line 13). Depending upon the
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outcome of the lookup for requested Block B, different operations are performed

in the LLC which are as follows:

• Read Hit: The read operation is performed in the same way as given in Algo-

rithm 1 (line 14 and 15 of Algorithm 2).

• Write Hit (Write-back or PUTX) and block B in Wi: The write request

for the block B in Wi is redirected to the first invalid way(s) of the same cache

set in the other windows. In case, if there is no invalid line available in the same

cache set, the victim line v is evicted from the location L. Note that location L is

different from the write restricted window location. Afterward, the write request

R from a ULC is redirected to the location L (let say in window Wj). The counter

Cj corresponding to the window Wj is incremented and the block B is invalidated

from Wi (line 16 to 19).

• Write Hit (Write-back or PUTX) and block B not in Wi: The write

request R is performed normally on the block B. The corresponding counter Cj

of window Wj (in which the write operation is performed) is incremented (line 20

to 22).

• Cache Miss: In the case of LLC miss, the request R from the ULC is forwarded

to the next level of memory (main memory in our case). When the requested block

has arrived at the LLC, it will be placed in the location apart from the location

belonging to Wi (line 24 to 26).

4.2.2.3 Working Example

Figure 4.4 presents the working example of DWWR. As shown in the figure, the

counters C0 to C3 are associated with the window W0 to W3. Let W0 be the write

restricted window having the maximum write count i.e. C0 = max(Ci), ∀i. In

the first case, a read request from the ULC to LLC (arrow 1) is served normally

(arrow 2). In the second case, a write request from the ULC to the way-2 of LLC

(arrow 3) is redirected to another way in the same cache set (arrow 4). In case, if
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Figure 4.4: Working example of proposed DWWR wear leveling policy

Workloads H-Ways
Type Bench 1 2 3 4 5 6 7 8 Avg.

P
A

R
S

E
C

Body 24.9% 7.4% 4.9% 4.1% 0.76% 1.16% 1.22% 0.24% 44.7%
Cann 11.8% 8.14% 4.9% 2.35% 0.78% 0.33% 0.11% - 28.5%
Ded 4.85% 3.41% 2.35% 1.49% - - - - 12.1%
Swap 23.2% 17.4% 11.6% 7.34% 2.14% 1.4% 0.61% 0.54% 64.3%
X264 6.07% 2.82% 1.83% 1.03% - - - - 12.2%

S
P

E
C

Mix1 2.78% 2.79% 1.82% 1.10% 0.73% 0.34% 0.13% - 9.7%
Mix2 4.14% 3.69% 3.03% 2.47% 1.46% 0.96% 0.49% 0.29% 16.57%
Mix3 5.74% 4.07% 2.87% 1.88% 0.47% 0.38% 0.19% 0.12% 15.7%
Mix4 7.26% 5.91% 4.42% 3.13% 1.16% 0.74% 0.39% 0.18% 23.2%

MEAN 10.1% 6.18% 4.21% 2.76% 1.07% 0.76% 0.45% 0.23% 25.2%

Table 4.2: Percentage times Heavily written Ways (H-Ways) (apart from write
restricted ways) present in the cache

there is no invalid line is present in the cache way, one of the blocks is invalidated

from other windows (W1, W2 and W3 in our example) in the same cache set. Once

the write operation is performed, the block (present in the way-2) is invalidated

from the write restricted window W0. Afterward, the corresponding counter of the

window in which the write redirection happens is incremented.

4.2.2.4 Limitation of DWWR

Figure 4.5 shows the write counts of blocks within the cache set after incorporating

DWWR. However, the limitation of DWWR is the lack of consideration for heavily

written ways available in the other lightly written windows. In other words, a

particular window may have a lower write count compared to others but can
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Figure 4.5: Write counts for different workloads in DWWR

contain some ways that are written more number of times compared to those

in windows with overall higher write count. Table 4.2 presents the availability

percentage of heavily written ways (H-ways) in the windows apart from the selected

window. From the table 4.2, we can conclude that on an average 25.2% times H-

ways are present in windows other than the selected window of the cache. This

motivates us to identify such H-ways in the cache and further reduce the intra-set

write variation (shown in figs. 4.3 and 4.5) and improve the lifetime over SWWR

and DWWR.

4.2.3 Dynamic Way Aware Write Restriction (DWAWR)

4.2.3.1 Main Idea

The main idea of DWAWR is to select the n heavily written ways and designate

them as write-restricted for a specific predefined interval I over the execution. The

selection of cache ways in DWAWR is based upon examining the way counters (Z)

associated with each cache way. The way counter is used to track the number of

write accesses in the past intervals from the ULC to that way in LLC. In each

interval, the n ways with maximum writes are selected and treated as read-only

(or write restricted). At the end of the interval, the next n ways are chosen for the

next interval, and the process continues until the end of execution. Note that to

remove the possibility of choosing the same way(s) in the successive intervals, the
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counters (Z) associated with the selected ways of the previous interval are reset

to zero.

4.2.3.2 Algorithm

Algorithm 3 Dynamic Way Aware Write Restriction (DWAWR)

1: ULC : Upper Level Cache i.e. L1/L2.
2: LLC : Last Level Cache i.e. L2/L3.
3: I : Predefined interval.
4: n : Number of ways that is treated as read only (or write restricted).
5: List < integer > waysList : List of Write Restricted Ways (WRW) in the current interval. Size of list is n.
6: Zj : Way counter with respect to jth way that records the number of write accesses from L1/L2 cache to the

way. 0 ≤ j < cache assoc.
7: Run application for I cycles treating the whole cache as normally available cache.
8: After I cycles treat n ways as read-only or write restricted.
9: repeat
10: for every interval I do
11: WINSELECT (Zj , n, waysList)
12: for each request R from L1/L2 cache to the block B in L2/L3 cache during I cycles do
13: if R = ReadHit then
14: NORMOPR(R,B)
15: else if R = WriteHit then
16: if B ∈ waysList then
17: L = WRITEREDIRECT (R,B,WRW)
18: The corresponding counter ZL of the location L is incremented.
19: else
20: NORMOPR(R,B)
21: Increment the counter Zj of the cache way where the block B is present.
22: end if
23: else
24: PROCESSCACHEMISS(R,WRW) . cache miss
25: end if
26: end for
27: end for
28: until the end of the execution

Write Restricted Way Selection for DWAWR

29: function WinSelect(Zj , n, waysList)
30: for k ← 0 to n do
31: Let Zj be the maximum counter in the cache. 0 ≤ j < cache assoc
32: waysList.add(j) , 0 ≤ j < cache assoc
33: Zj = 0
34: end for
35: end function

Algorithm 3 presents the working approach of DWAWR. In the algorithm, the

use of predefined interval (I) is same as the SWWR and DWWR (line 3). The

parameter n acts here as the number of ways that are treated as write-restricted

(line 4). waysList is the list of integers of size n. It contains the list of ways in

the cache that are treated as write-restricted in the current interval (line 5). The

way counter of the cache is represented by Zj (line 6). Note that the range of j is

from 0 to A− 1 (where A is the cache associativity).
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Same as in the previous approaches, for the initial I cycles of application execution,

the cache is employed as an ordinarily available cache (line 7). Once the application

crosses the I cycles, the n ways of the cache with maximum write counts are

selected and treated as write-restricted way (or read-only) for the next interval, I

(line 8). In particular, the way counters having maximum value in the previous

interval is selected in the next interval (line 11, 30 to 32). Once the ways are

selected for the write restriction, the counters corresponding to the ways are reset

to zero (line 33). This restricts the chances of heavily written ways in the previous

intervals to get further more writes in the next interval. At the end of the interval,

the next n ways are selected, and the process continues until the end of execution

(line 28).

For each request coming from ULC to LLC, the tag lookup operation is performed

on the cache. Depending upon the result of the lookup operation, the read (line 13

and 14), write (line 15 to 22) and forward to main memory operation (line 23 to

25) is performed in the LLC. The handling of these operations is already described

in section 4.2.2.2. The only difference is that in case of the write operation, the

corresponding counter of the way in which the write is redirected or in which the

write operation is performed is incremented.

4.2.3.3 Working Example

Figure 4.6 depicts the working example of the proposed DWAWR approach. In

the example, the way counters Z0 to Z15 are associated with each way W0 to W15

of the cache. Let way-0, way-5, way-12, and way-15 are selected as write-restricted

ways in the current interval. In the first case, the read request from the ULC to

LLC (arrow 1) is served normally (arrow 2) by the LLC. In the second case, the

write request from ULC coming to way-5 of LLC (arrow 3) is redirected (arrow

4) to one of the inferior ways of the cache (let say way-2, way-8, and way-13)

depending upon the availability of invalid and victim location in the cache. Once

the write operation is performed, the write-back acknowledgment is sent back to

the ULC (arrow-5).
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Figure 4.6: Working example of proposed DWAWR wear leveling policy
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marizing the proposed schemes: SWWR, DWWR and DWAWR

The working flow diagram of the presented approaches: SWWR, DWWR and

DWAWR is summarized in fig. 4.7.
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Components Parameters
Processor 2Ghz, Dual Core and Quad Core, X86

L1 Cache
Private, 32 KB SRAM Split I/D caches, 4-way

set-associative cache, 64B block, 1-cycle
latency, LRU, write-back policy

Two-Level Cache Memory Parameters
L2 Cache Shared, STT-RAM, 64B block, LRU, write-back policy

Three-Level Cache Memory Parameters

L2 Cache
Private, 512 KB SRAM, 8-way set-associative

cache, 64B block, 5-cycle latency,
LRU, write-back policy

L3 Cache
Shared, ReRAM, 16-way set-associative cache,

64B block, LRU, write-back policy
Main Memory 2GB, 160 cycle Latency

Protocol MESI CMP Directory

Table 4.3: System parameters

4.3 Experimental Methodology

The section describes the experimental methodology employed to evaluate the

proposed architectures: SWWR, DWWR, and DWAWR. For the detail description

of the simulation framework, refer appendix A.

4.3.1 Simulator Setup

We evaluate our proposed approaches on a full system simulator GEM-5 [118]. Ta-

ble 4.3 shows the system parameters used in the simulation. We conducted our

experiments on a dual and quad-core system with different levels of cache made

up of different memory technologies and with distinct configurations of caches and

parameters. Table 4.4 shows the timing and energy parameter for these config-

urations obtained by using NVSIM [21] at 32nm technology node. We employed

STT-RAM as an LLC in two-level cache hierarchy and ReRAM as an LLC in a

three-level cache hierarchy. The reasons behind to choose the STT-RAM as the

LLC in the 2-level cache hierarchy is because the LLC at two-level cache hierarchy

experience more number of writes as compared to LLC at 3-level cache hierar-

chy. With large write endurance, the STT-RAM is best suited for level-2 LLC

compared to ReRAM.

We compared our proposed approaches against three existing approaches: Prob-

abilistic Set Line Flush (PoLF) [29], Write-Back Aware Intraset Displacement
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LLC
Configuration

Leakage
Power
(mW)

Hit
Energy

(nJ)

Miss
Energy

(nJ)

Write
Energy

(nJ)

Hit
Latency

(ns)

Miss
Latency

(ns)

Write
Latency

(ns)
Two Level STT-RAM L2 Cache System

32MB, 16way 17.187 0.544 0.093 4.261 259.536 16.8 747.147
16MB, 32way 15.668 0.457 0.186 6.548 84.074 17.475 271.035
16MB, 16way 15.674 0.367 0.096 4.322 78.453 11.854 271.035
16MB, 8way 15.659 0.317 0.047 3.244 78.283 11.684 271.035
8MB, 32way 8.116 0.366 0.185 6.454 74.792 8.259 270.981
8MB, 16way 8.030 0.273 0.093 4.387 78.497 11.964 270.981
8MB, 8way 7.983 0.227 0.047 3.221 74.454 7.921 270.981
4MB, 16way 7.960 0.217 0.093 4.228 23.876 5.575 126.585

Three Level ReRAM L3 Cache System
8MB, 16way 60.196 0.65 0.093 1.62 54.71 48.66 67.71
16MB, 16way 132.32 1.128 0.122 2.078 54.92 48.702 67.736

Table 4.4: Timing and energy parameters for STT-RAM/ReRAM LLC

(WAD) [32] and EqualChance [31] and, the baseline STT-RAM/ReRAM that

uses LRU as a replacement policy with no wear leveling policy associated. In

PoLF, the value of Flush Threshold or FT for skipping the write operation is set

to 16. In WAD, we set the value of the intraset saturation counter (RSC) to 7 and

use the clean-LRU block intraset displacement approach. On the other hand, in

EqualChance, a 4-bit write counter along with a flag bit are associated with each

set. The value of Υ to trigger the transfer/swap operation within the cache set is

set to 16. In addition to the write counter, a 64B swap buffer is used for the swap

operation of the block within the cache set. Note that we model only the single

swap buffer in our setup as the bank contention model is used in our approaches.

The C-shifting and I-shifting in Equalchance take extra cycles for transfer/swap

operation. We model these extra cycle in our simulator setup as same as in [31].

In SWWR, DWWR, and DWAWR, during the write redirection, the tag needs to

be transferred from the current write restricted window/way to the new location

within the cache set. The transfer of tag requires an additional 42-bit buffer and

additional latency of 3 cycles (one cycle to transfer the tag in tag buffer, one cycle

to writing the tag in tag buffer and, one cycle to transfer the tag to the new location

within the cache set). In DWWR, the size of the counter Ci associated with each

window is set to 13 bit. Whereas, in DWAWR, the size of the way counter Zj

is set to 11 bit. Later, we analyze the appropriate sizes of the counter values in

the section 4.5.5 with different cache configurations and parameters. Note that

the selection of window/way in DWWR and DWAWR is not on the critical path.
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Benchmark
Suite

Benchmarks

PARSEC v2.1
Bodytrack (Body), Canneal (Cann),

Dedup, Swaptions (Swap), X264

SPEC
CPU2006

Dual Core Workloads Quad Core Workloads
Mix1 bwaves, gamess

Mix1
zeusmp, bwaves,

leslie3d, cactusADMMix2 lbm, zeusmp
Mix3 perlbench, bzip2

Mix2
perlbench, omnetpp,

gcc, libquantumMix4 gcc, bzip2
Mix5 omnetpp, milc

Mix3
gobmk, tonto,
sjeng, namdMix6 dealII, namd

Mix7 h264ref, gobmk
Mix4

calculix, astar,
dealII, h264refMix8 sjeng, calculix

Table 4.5: Benchmarks used for evaluation

This is because, in the proposed approaches, the windows/way selection happens

at the end of the interval before the arrival of a new request.

4.3.2 Workloads

We verified our proposed approaches on both multi-threaded: PARSEC [6] and

multi-programmed: SPEC CPU 2006 [7] benchmark suites. Five benchmarks with

medium input set are used from the PARSEC. Twenty benchmarks with ref input

are used from SPEC CPU 2006. Table 4.5 lists the name of the benchmarks

used for the evaluation and the mixes of applications for the multi-programmed

workload.

4.4 Results and Analysis

4.4.1 Two Level Cache Analysis: L2-STT-RAM

We evaluate our proposed approaches: SWWR, DWWR, and DWAWR on the dual

and quad-core system. For a dual-core system, an 8MB 16-way set-associative

STT-RAM L2 cache is used and, for the quad-core system, 16MB 16-way set-

associative STT-RAM L2 cache is used. In our evaluation, we set the values of I

(predefined interval) to 2 million cycles in case of dual-core and 1 million cycles

in case of quad-core and, m (SWWR/DWWR)/n (DWAWR) to 4. The rationale

behind the different interval values is that the number of accesses is doubled in
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Figure 4.8: Intra-Set write variation for quad core (lower is better)

case of a quad-core system compared to the dual-core. Later in the section 4.5, we

analyze the effects of changing these values. Note that the graphs are only given

for quad-core.

We present our results on the following metrics: coefficient of Intra-set write vari-

ation (IntraV ) calculated with the help of Equation (2.2), coefficient of Inter-

set write variation (InterV ) calculated by using Equation (2.1), relative lifetime

improvement calculated by using Equation (2.3), energy overhead, speedup and

number of invalidations/flushes.

4.4.1.1 Coefficient of Intra-Set Write Variation

Figure 4.8 presents the coefficient of intra-set write variation for quad-core system.

Table 4.6 lists the percentage reduction in the coefficient of intra-set write variation

by the proposed approaches against the existing techniques and, the baseline STT-

RAM for both multi-threaded and multi-programmed applications. Note that the

negative values (row 14) in the table implies the increase of write variation.

• STT: Compared to baseline STT, the reduction in intra-set write variation (row

1-3 and 16-18) is mainly due to the more effective uniform write distribution by

the proposed approaches.
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Core
Reference

Policy
Suites SWWR DWWR DWAWR Row

Dual

STT
PARSEC 94.2% 95.4% 101.6% 1

SPEC 41% 40.8% 42% 2
Total 56.7% 56.9% 59.1% 3

PoLF
PARSEC 43.3% 44.6% 50.8% 4

SPEC 19% 18.8% 20% 5
Total 26.2% 26.4% 28.6% 6

Equal
PARSEC 38.7% 40% 46.2% 7

SPEC 31.2% 31% 32.2% 8
Total 35.4% 35.6% 37.9% 9

WAD
PARSEC 11.4% 12.7% 18.9% 10

SPEC 12.1% 11.9% 13% 11
Total 13.1% 13.3% 15.5% 12

SWWR
PARSEC - 1.3% 7.5% 13

SPEC - -0.20% 1% 14
Total - 0.2% 2.4% 15

Quad

STT
PARSEC 99.2% 102.7% 106.7% 16

SPEC 60.2% 62.4% 65.2% 17
Total 80% 82.9% 86.5% 18

PoLF
PARSEC 65.8% 69.3% 73.3% 19

SPEC 29.4% 31.6% 34.4% 20
Total 46% 48.9% 52.5% 21

Equal
PARSEC 76.2% 79.7% 83.7% 22

SPEC 31.9% 34.1% 36.9% 23
Total 51.7% 54.6% 58.2% 24

WAD
PARSEC 14.6% 18.2% 22.2% 25

SPEC 8.4% 10.6% 13.4% 26
Total 11.4% 14.3% 17.9% 27

SWWR
PARSEC - 3.6% 7.6% 28

SPEC - 2.2% 5% 29
Total - 2.9% 6.5% 30

Table 4.6: Percentage reduction in coefficient of Intra-Set write variation
(higher is better)

• PoLF: The improvement in the write variation (row 4-6 and 19-21) over PoLF

is because the existing method invalidates the data block randomly or probabilis-

tically without concerning its write behavior. On the other hand, our proposed

technique SWWR redirects the heavily written block repeatedly in the other win-

dow of the same cache set over the period. Whereas, the DWWR and DWAWR

redirect the writes in the same cache set in a pseudo-random fashion by taking

into account of the window/way write counts from the previous interval.

• EqualChance: The improvement by the proposed approaches (row 7-9 and 19-

21) against EqualChance is due to the transfer/swap policy adopted by the existing

method. In particular, for EqualChance, the transfer/swap operation takes place

only when the clean/invalid data entry is present in the cache set (which is very

limited). On the other hand, in our techniques, the write redirection takes place

to the Least Recently Used entry (always available) in the same cache set.
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Figure 4.9: Inter-Set write variation for quad core (lower is better)

• WAD: With respect to WAD, the improvement (row 10-12 and 25-27) is mainly

due to the migration of the block in a pseudo probabilistic fashion by the existing

technique. In particular, the WAD probabilistically assumes that upon the write

saturation of a counter, the next block to be written in the cache set is hot.

In our analysis, we also observed that some of the rows (row 14 and 29) of the table

indicate the limited reduction in intra-set write variation in SPEC compared to

PARSEC. The reason behind this is the limited amount of data sharing between

the multiple cores in the SPEC benchmarks [6] [119] compared to multi-threaded

PARSEC applications. Also, with the limited number of cores, the percentage of

shared data is less (row 15 and 30). All these factors limit the write-backs from

the other cores in the write-restricted window/ways.

4.4.1.2 Coefficient of Inter-Set Write Variation

Figure 4.9 and Table 4.7 shows the coefficient of inter-set write variation for quad-

core and the percentage reduction in the coefficient values against the existing

techniques. From the results, we observe that the inter-set write variation does

not change as our proposed techniques do not redirect or move the data from one

cache set to another cache set.
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Core
Reference

Policy
SWWR DWWR DWAWR Row

Dual

STT 1.12% 3.7% 5.3% 1
PoLF 0.3% 2.85% 4.45% 2
Equal -0.3% 2.3% 3.9% 3
WAD -3.1% -0.5% 1.1% 4

Quad

STT 0.75% 1.3% 4.2% 5
PoLF -4.8% -4.3% -1.4% 6
Equal 0.5% 1.1% 4% 7
WAD -1.9% -1.4% 1.5% 8

Table 4.7: Percentage reduction in coefficient of Inter-Set write variation
(higher is better)
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Figure 4.10: Normalized lifetime with respect to baseline STT-RAM for quad
core (higher is better)

4.4.1.3 Relative Lifetime

Figure 4.10 shows the improvement in the lifetime by the proposed approaches

against baseline STT-RAM for quad-core. Table 4.8 lists these improvement values

against the existing techniques and the baseline. The reason behind the large

lifetime improvement (row 1 to 12 and 16 to 27) is due to the significant reduction

in coefficient of intra-set write variation (as presented in table 4.6). However, we

observe that with the higher core count, the improvement is large compared to

the previous work: SWWR by the proposed approaches: DWWR and DWAWR

(row 13 to 15 and 28 to 30). This is because, with the higher core count, data

sharing between the multiple cores increases. This gives the proposed dynamic

approaches for more opportunity to control the large number of write-backs.
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Core
Reference

Policy
Suites SWWR DWWR DWAWR Row

Dual

STT
PARSEC 5.1 6.5 7.44 1

SPEC 5.11 5.29 6.38 2
Total 5.1 5.72 6.77 3

PoLF
PARSEC 2.31 2.94 3.38 4

SPEC 2.44 2.52 3.04 5
Total 2.4 2.68 3.17 6

Equal
PARSEC 2.62 3.33 3.83 7

SPEC 4.50 4.66 5.62 8
Total 3.65 4.1 4.85 9

WAD
PARSEC 0.87 1.11 1.28 10

SPEC 1.34 1.39 1.68 11
Total 1.14 1.28 1.51 12

SWWR
PARSEC - 1.27 1.46 13

SPEC - 1.03 1.24 14
Total - 1.12 1.32 15

Quad

STT
PARSEC 3.6 4.56 5.78 16

SPEC 6.92 7.7 9.7 17
Total 4.8 5.75 7.27 18

PoLF
PARSEC 2.77 3.52 4.47 19

SPEC 4.04 4.5 5.65 20
Total 3.3 3.92 4.96 21

Equal
PARSEC 2.97 3.78 4.80 22

SPEC 5.4 6 7.53 23
Total 3.87 4.63 5.86 24

WAD
PARSEC 0.83 1.05 1.34 25

SPEC 1.31 1.46 1.84 26
Total 1.02 1.22 1.54 27

SWWR
PARSEC - 1.27 1.61 28

SPEC - 1.11 1.4 29
Total - 1.2 1.51 30

Table 4.8: Relative lifetime improvement (in times) (higher is better)

4.4.1.4 Performance

Figure 4.11 shows the normalized CPI (with respect to STT) for quad-core. Our

proposals maintain the same performance with PoLF, EqualChance, and WAD.

The reason behind having the same performance despite lesser invalidations (re-

ported in the next subsection at point 2) can be accounted for the extra cycles

taken by the swap operations during the write redirection process. Whereas, there

is no performance loss despite the lesser available capacity at each epoch over the

baseline STT is due to the invalidation of the LRU blocks from the other windows

in the same cache set. However, there is a trade-off between the number of ways

or window size and performance. Lesser the number of the ways available for the

allocation, larger the impact on performance. Vice-versa in the opposite case. The

more elaborated discussion is given at section 4.5.2, where the size of the write

restricted window/ways is altered, and its impact on EDP is seen on the table 4.15.
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Figure 4.11: Normalized speedup with respect to baseline STT-RAM for quad
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Figure 4.12: Energy overhead with respect to baseline STT-RAM for quad
core (lower is better)

4.4.1.5 Overheads

1. Energy Overhead: As the proposed techniques redirect the writes by invali-

dating the data block, they need slightly more energy (row 1 and 5) compared to

the baseline. Figure 4.12 presents the energy overhead by the proposed techniques

against the existing methods and the baseline. Table 4.9 lists these values against

the baseline and the existing methods. Note that the negative values in the table

signifies the energy savings. The reasons behind the energy improvements against

the existing techniques are presented below:

• PoLF: The energy improvement by the proposed approaches (row 2 and 6)

with respect to the PoLF is due to two reasons: First, the invalidation of the

MRU block by the PoLF that increases the allocations in the cache. Second,
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Core
Reference

Policy
SWWR DWWR DWAWR Row

Dual

STT 2.36% 2.05% 1.82% 1
PoLF -2.46% -2.61% -2.85% 2
Equal -1.61% -1.91% -2.13% 3
WAD -0.61% -0.91% -1.13% 4

Quad

STT 2.78% 2.1% 2.65% 5
PoLF -2.16% -2.83% -2.28% 6
Equal -1.02% -1.6% -1.03% 7
WAD -1.88% -2.55% -1.99% 8

Table 4.9: Energy overhead (in percentage) (lower is better)

the number of invalidation by the proposed approaches is less as compared to

PoLF.

• EqualChance: In case of EqualChance, the energy improvement (row 3 and

7) is due to transfer/swap operation performed by the existing method within

the cache set. These kinds of activities incur extra writes in the cache, which

in turn increases the energy consumption. However, in quad-core, the energy

improvement is limited because of the less availability of clean entries (due to

increase in the number and the residency of a dirty block) which in turn reduces

the write operations.

• WAD: The energy improvement (row 1 and 8) by the proposed approaches

over WAD is due to migration of the block in either clean LRU or the LRU

position by existing proposal which incurs extra write operations in the cache

that results into extra energy.

Note that, in the energy overhead calculations presented above, we have considered

the energy consumed during the transfer of the tag from the original location to

the redirected location.

2. Invalidation/Flushes: Figure 4.13 present the normalized invalidations by

the WAD and proposed approaches against PoLF. Table 4.10 lists the percent-

age reduction in invalidation by the proposed techniques: DWWR and DWAWR

against the existing techniques: PoLF, WAD, and SWWR. Note that the neg-

ative values in the table implies the increase in invalidation (row 2, 3, 5, and

6). The improvement in the invalidation with respect to PoLF is due to selective

invalidation done by the proposed approaches. However, compared to SWWR,
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Figure 4.13: Normalized invalidation against PoLF for quad core (lower is
better)

Core
Reference

Policy
SWWR DWWR DWAWR Row

Dual
PoLF 57.4% 57.8% 52.8% 1
WAD 0.8% 1.74% -9.97% 2

SWWR - -0.96% -11.93% 3

Quad
PoLF 57.7% 58.5% 50% 4
WAD -28.4% -25.9% -51.8% 5

SWWR - -2% -20.6% 6

Table 4.10: Percentage reduction in invalidations (higher is better)

the invalidation is increased as the increase of write-back operations in write re-

stricted window/ways from L1 cache to L2 cache in the proposed approaches. On

the other hand, with respect to WAD, the invalidation by the proposed approaches

is large (row 2 and 5) because, in the existing method, the block is migrated to

either invalid location or the clean LRU block position only when the RSC counter

saturates.

4.4.2 Three Level Cache Analysis: L2-SRAM, L3-ReRAM

To evaluate our proposed techniques: SWWR, DWWR, and DWAWR in the three-

level cache, we used 8MB 16-way set-associative ReRAM based L3 cache for dual-

core and 16 MB 16-way set-associative ReRAM based L3 cache for quad-core.

Same as in two-level cache analysis, we set the parameters’ values to 2 million (1

million) cycles for I and m/n to 4 in case of dual (quad) core system (Note that

the comparative analysis are only limited for two-level cache as given in the sec-

tion 4.5). Figures 4.14 and 4.15 plot the intra-set write variation and lifetime for
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Figure 4.15: Normalized lifetime with respect to baseline ReRAM for quad
core ReRAM L3 cache (higher is better).

quad-core system. Table 4.11 shows the brief results for the following metrics: In-

traV, InterV and normalized lifetime (with respect to baseline ReRAM (presented

in times)) for dual and quad-core ReRAM based L3 cache system. The limited

improvement (row 1 and 4) between the proposed techniques in the intra-set write

variation is due to the less write access in the L3 cache compared to an L2 cache.

However, the simulation results validate that the inferences drawn out from the

two-level STT-RAM cache system are still applicable to three-level ReRAM cache

system.
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Core Metric ReRAM SWWR DWWR DWAWR Row

Dual
IntraV 53.9% 27.7% 26.8% 26.5% 1
InterV 45.2% 44.1% 42.3% 42% 2

Lifetime 1 4.96 6.76 7.39 3

Quad
IntraV 66.7% 40.8% 40.3% 38.4% 4
InterV 59.8% 59.8% 56% 57.9% 5

Lifetime 1 4.41 5.04 6.31 6

Table 4.11: Brief results and analysis for three level ReRAM last level cache
system

Core Metric SWWR DWWR DWAWR

Dual

IntraV 22.73% 22.85% 25.12%
InterV -6.11% -3.54% -1.94%

Lifetime 1.96 2.20 2.60
EDP 3.32% 3.6% 3.95%

Quad

IntraV 36.71% 39.65% 43.2%
InterV -9.43% -8.92% -6%

Lifetime 2.60 3.12 3.94
EDP 6.16% 5.72% 6.58%

Table 4.12: Results comparison analysis between i2wap and write restriction

4.4.3 I2WAP versus Write Restriction

Table 4.12 present the comparative analysis of InterV (percentage reduction),

IntraV (percentage reduction), normalized lifetime (in times) and normalized EDP

against i2wap for dual and quad-core STT-RAM based L2 cache system. Note that

negative values in the table imply the increase in inter-set write variation. The

respective improvements in the coefficient of intra-set write variation represent

the effectiveness of the proposed approaches: SWWR, DWWR, and DWAWR.

However, by integrating some of the inter-set wear-leveling techniques with the

proposed methods, the lifetime and the inter-set write variation can further be

improved with respect to i2wap. The gain in EDP by the proposed approaches

compared to i2wap is mainly due to large random invalidations performed by the

existing approach, which in turn affect the system performance and increase the

energy consumption.

4.4.4 FLASH based Adaptive Wear Leveling Technique

(FAWLT) versus Write Restriction

Along with the NVM based wear leveling technique, previous literature also re-

ported wear leveling for the flash-based memories. Hence, it is worthwhile to



Chapter 4. Intra-Set Wear Leveling using Vertical Partitions 121

Core Metric SWWR DWWR DWAWR

Dual

IntraV 50.97% 51.1% 53.35%
InterV -2.04% 0.52% 2.12%

Lifetime 4.08 4.57 5.41
EDP -2.72% -2.42% -2%

Quad

IntraV 67.53% 70.5% 74%
InterV -4.8% -4.3% -1.34%

Lifetime 3.86 4.63 5.85
EDP -2.90% -3.37% -2.44%

Table 4.13: Results comparison analysis between FAWLT and write restriction

compare our architectures with one of the existing flash-based proposals: Adap-

tive Wear Leveling in the Flash-based Memory (or FAWLT) [120]. This section

illustrates such a comparison analysis between flash-based wear leveling and the

proposed techniques. Table 4.13 reports the comparison analysis between the write

restriction and FAWLT. Note that the negative values in the table imply the in-

crease in the EDP and inter-set write variation. The result obtained from the table

shows the efficacy of the proposed techniques: SWWR, DWWR, and DWAWR.

Thus, from the result, it can be concluded the wear leveling approach used for

flash memory is not suitable for the caches.

4.5 Comparative Analysis for Parameters

In addition to the results presented in the previous section, we conducted experi-

ments with the different STT-RAM based L2 cache configurations and, with the

different values of the parameters used in the approaches. Here, in this section, we

show the effect of altering the different parameters on various metrics as compari-

son to the reference parameters. This kind of analysis is very helpful for choosing

the optimal values in the proposed algorithms for different configurations of the

cache.

4.5.1 Change in Interval (I)

Table 4.14 reports the different metrics for distinct interval values in the proposed

schemes. Change in the interval affects the frequency of the selection process of
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Core Policy Param.
Norm.

Lft.
IntraV
Base

IntraV
WrRes

InterV
Red.
(%)

Norm.
EDP

Invalid-
ation
(k)

Row

Dual

SWWR
Ref.(I=2M) 5.1 90.94% 34.2% 1.12% 1.02 433k 1

I=1M 5.36 90.94% 33.5% 3.7% 1.02 483k 2
I=5M 4.38 90.94% 35.6% 0.06% 1.01 364k 3

DWWR
Ref.(I=2M) 5.72 90.94% 34.1% 3.7% 1.02 437k 4

I=1M 5.68 90.94% 33.9% 2.4% 1.03 483k 5
I=5M 4.96 90.94% 34.8% 0.2% 1.02 382k 6

DWAWR
Ref.(I=2M) 6.77 90.94% 31.8% 5.3% 1.02 485k 7

I=1M 6.18 90.94% 31.8% 4% 1.03 555k 8
I=5M 5.57 90.94% 33.1% -1.2% 1.02 420k 9

Quad

SWWR
Ref.(I=1M) 4.8 139.7% 59.7% 0.75% 1.02 490k 10

I=0.5M 5.3 139.7% 59.8% 2.74% 1.03 558k 11
I=2M 4.4 139.7% 61.6% 2% 1.01 430k 12

DWWR
Ref.(I=1M) 5.75 139.7% 56.7% 1.26% 1.03 500k 13

I=0.5M 6.1 139.7% 57.7% 1.95% 1.03 568k 14
I=2M 4.87 139.7% 59.7% 4.3% 1.01 438k 15

DWAWR
Ref.(I=1M) 7.27 139.7% 53.2% 4.2% 1.03 591k 16

I=0.5M 5.93 139.7% 54.1% 4.4% 1.03 674k 17
I=2M 6.45 139.7% 56.8% 2.2% 1.01 525k 18

Table 4.14: Comparative analysis for different interval values (I) LFT.= life-
time, BASE = baseline STT-RAM, WrRes = Write Restricted

write restricted window/ways in the cache. With large interval value (row 3, 6, 9,

12, 15, and 18), the frequency of window/ways selection process is low compared

to the reference case. This, in turn, lessens the premature invalidation from the

L2 cache because the block evicted from other windows/ways are mostly LRU

blocks compared to the reference case. However, the long interval value leads to

the bigger coefficient of intra-set write variation with lesser improvement in the

lifetime. On the other hand, the smaller interval value (row 2, 5, 8, 11, 14 and

17) increases the write restricted window/ways selection frequency which in turn

increases the invalidations in the cache. Also, the smaller interval value does not

capture all the write-backs from the L1 cache to the write restricted window/ways.

Thus, the coefficient of intra-set variation and relative lifetime is not improved as

much as compared to the reference case. In addition, with the smaller interval, due

to premature evictions of the block, the system performance is severely affected

with increased EDP (shown in column 8 of row 2, 5, 8, 11, 14 and 17 of Table 4.14).

4.5.2 Change in Write Restricted Window/Ways (m/n)

Table 4.15 lists the result metrics for different write restricted window/ways sizes

(m/n). By altering the size of write restricted windows/ways, the write redirection
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Core Policy Param.
Norm.

Lft.
IntraV
Base

IntraV
WrRes

InterV
Red.

%

Norm.
EDP

Invalid-
ation
(k)

Row

Dual

SWWR
Ref.(m=4) 5.1 90.94% 34.2% 1.12% 1.02 433k 1

m=2 5.2 90.94% 33.7% 1.55% 1.03 410k 2
m=8 4.7 90.94% 37.8% -0.22% 1.00 309k 3

DWWR
Ref.(m=4) 5.72 90.94% 34.1% 3.7% 1.02 437k 4

m=2 5.96 90.94% 33.3% 1.68% 1.03 585k 5
m=8 4.73 90.94% 37.4% 0.85% 1.00 313k 6

DWAWR
Ref.(n=4) 6.77 90.94% 31.8% 5.3% 1.02 485k 7

n=2 4.9 90.94% 36.6% 0.72% 1.01 325k 8
n=8 6.83 90.94% 31.4% 3% 1.04 590k 9

Quad

SWWR
Ref.(m=4) 4.8 139.7% 59.7% 0.75% 1.02 490k 10

m=2 5.92 139.7% 58.6% 0.74% 1.04 600k 11
m=8 4.14 139.7% 64.8% -1.97% 1.02 368k 12

DWWR
Ref.(m=4) 5.75 139.7% 56.7% 1.26% 1.03 500k 13

m=2 6.14 139.7% 56.5% 5.1% 1.04 602k 14
m=8 4.24 139.7% 65.6% -1.15% 1.03 385k 15

DWAWR
Ref.(n=4) 7.27 139.7% 53.2% 4.2% 1.03 591k 16

n=2 5.1 139.7% 63.1% -1.71% 1.02 143k 17
n=8 7.77 139.7% 51.7% 3.1% 1.04 399k 18

Table 4.15: Comparative analysis for different write restricted window/ways
size (m/n) LFT.= lifetime, BASE = baseline STT-RAM, WrRes = Write Re-

stricted

process of the proposed approaches is influenced. On increasing the size (row 2,

5, 9, 11, 14, and 18), the number of write redirection increase (as more ways

are selected) which in turn improves the lifetime and reduces the coefficient of

intra-set write variation more than the reference case. However, at the same

time, it increases the invalidations (due to less availability of ways in the other

window/ways) and also increases the EDP. Besides, on reducing the size (row 3, 6,

8, 12, 15 and 17), fewer ways are selected for the write redirection process and this,

in turn, reduces the lifetime improvement and increases the coefficient of intra-set

write variation.

4.5.3 Change in Capacity

Table 4.16 shows the behavior of the proposed schemes with different cache ca-

pacities. Larger cache (row 3, 6, 9, 12, 15 and 18) suffers from the significant

intra-set write variation as compared to smaller cache (row 2, 5, 8, 11, 14 and 17).

This is because, in case of larger cache, the cache block faces less capacity miss as

compared to smaller cache. This, in turn, increases the residency of the block and

increases the intra-set write variation more than the reference case. However, in

these cases, for small and large size cache, the proposed schemes effectively reduce
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Core Policy Param.
Norm.

Lft.
IntraV
Base

IntraV
WrRes

InterV
Red.

%

Norm.
EDP

Invalid-
ation
(k)

Row

Dual

SWWR
Ref.(8MB) 5.1 90.94% 34.2% 1.12% 1.02 433k 1

4MB 5.2 76.2% 25.1% 5.92% 1.02 432k 2
16MB 3.55 111.6% 51.5% 0.66% 1.01 334k 3

DWWR
Ref.(8MB) 5.72 90.94% 34.1% 3.7% 1.02 437k 4

4MB 5.65 76.2% 24.7% 6.37% 1.03 439k 5
16MB 4.79 111.6% 49.2% 0.05% 1.02 339k 6

DWAWR
Ref.(8MB) 6.77 90.94% 31.8% 5.3% 1.02 485k 7

4MB 6.25 76.2% 23.6% 6.78% 1.03 447k 8
16MB 4.81 111.6% 47.4% 0.53% 1.02 385k 9

Quad

SWWR
Ref.(16MB) 4.8 139.7% 59.7% 0.75% 1.02 490k 10

8MB 5.1 112.5% 43.1% 4.47% 1.01 612k 11
32MB 5.3 163.1% 78.1% 14.5% 1.02 414k 12

DWWR
Ref.(16MB) 5.75 139.7% 56.7% 1.26% 1.03 500k 13

8MB 5.5 112.5% 41.5% 2.4% 1.02 617k 14
32MB 6 163.1% 76.9% 17.2% 1.02 423k 15

DWAWR
Ref.(16MB) 7.27 139.7% 53.2% 4.2% 1.03 591k 16

8MB 5.8 112.5% 38.3% 5% 1.02 703k 17
32MB 6.23 163.1% 72.8% 15.5% 1.02 517k 18

Table 4.16: Comparative analysis for different LLC capacity

the coefficient of intra-set write variation and improve the relative lifetime very

efficiently.

4.5.4 Change in Associativity

Table 4.17 shows the different behaviors by the proposed schemes under different

associativity of L2 cache. Cache with higher associativity (row 3, 6, 9, 12, 15 and

18) suffers from large intra-set write variation as compared to cache with lower as-

sociativity (row 2, 5, 8, 11, 14 and 17). This is because cache associativity impacts

the conflict misses, which in turn affects the residency of the block. In particular,

the cache with large associativity faces fewer conflict misses as compared to cache

with lower associativity. This increases the residency of the block in case of cache

with higher associativity. In both the cases (cache with lower and higher asso-

ciativity), our proposed schemes reduce the coefficient of intra-set write variation

and improve the lifetime.

4.5.5 Storage Overhead

Our techniques incur the limited amount of storage overhead over the baseline

STT-RAM. The amount of overheads by SWWR is only 42 bits. However, the
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Core Policy Param.
Norm.

Lft.
IntraV
Base

IntraV
WrRes

InterV
Red.

%

Norm.
EDP

Invalid-
ation
(k)

Row

Dual

SWWR
Ref.(A=16) 5.1 90.94% 34.2% 1.12% 1.02 433k 1
A=8 way 2.78 69.94% 32% 1.94% 1.02 407k 2
A=32 way 6.73 109.6% 37.5% 3.25% 1.04 462k 3

DWWR
Ref.(A=16) 5.72 90.94% 34.1% 3.7% 1.02 437k 4
A=8 way 2.91 69.94% 30.3% 1.92% 1.02 412k 5
A=32 way 8.53 109.6% 36.1% 2.1% 1.04 464k 6

DWAWR
Ref.(A=16) 6.77 90.94% 31.8% 5.3% 1.02 485k 7
A=8 way 3.40 69.94% 29.2% 2.3% 1.02 425k 8
A=32 way 8.78 109.6% 34.5% 2.3% 1.04 508k 9

Quad

SWWR
Ref.(A=16) 4.8 139.7% 59.7% 0.75% 1.02 490k 10
A=8 way 3.16 109.8% 50.6% 2.8% 1.02 491k 11

A= 32 way 6.40 168.8% 66.4% 2.3% 1.03 522k 12

DWWR
Ref.(A=16) 5.75 139.7% 56.7% 1.26% 1.03 500k 13
A=8 way 3.62 109.8% 48.8% 6.3% 1.02 494k 14
A=32 way 7.53 168.8% 64.7% 3.8% 1.04 568k 15

DWAWR
Ref.(A=16) 7.27 139.7% 53.2% 4.2% 1.03 591k 16
A=8 way 3.84 109.8% 45.5% 7.55% 1.02 545k 17
A=32 way 7.92 168.8% 62.4% -0.34% 1.04 606k 18

Table 4.17: Comparative analysis for different LLC associativity (A)

DWWR DWAWR

Param. Core
Ci

(bits)
Overhead

(bits)
Zk

(bits)
Overhead

(bits)

Reference
Dual 13 94 11 218
Quad 13 94 11 218

I=5M/2M
Dual 15 102 12 234
Quad 14 98 12 234

I=2M/0.5M
Dual 12 90 10 202
Quad 11 86 10 202

m=2/n=8
Dual 14 98 11 218
Quad 16 106 11 218

m=8/n=2
Dual 12 90 11 218
Quad 11 86 11 218

4MB/8MB
Dual 12 90 10 202
Quad 11 86 9 186

16MB/32MB
Dual 16 106 14 266
Quad 15 102 12 234

8way
Dual 10 82 8 170
Quad 9 78 7 154

32way
Dual 18 114 16 298
Quad 17 110 15 282

Table 4.18: Counter sizes and storage overhead (in bits) of DWWR and
DWAWR

window counter (Ci) and way counter (Zk) sizes in case of DWWR and DWAWR

are depend upon the cache configuration and the parameters of the algorithms. Ta-

ble 4.18 reports the counter size and storage overhead for the different configura-

tions and parameters of the algorithms with respect to the chosen configuration:

8MB/16MB 16-way set-associative L2 cache, I = 2M/1M and m/n = 4 on the

dual/quad-core system. The depicted overheads are mainly due to the window

and way counter size and the 42-bit tag buffer.
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PARSEC v2.1 SPEC CPU 2006
Workload Body Cann Dedup Swap X264 Mix1 Mix2 Mix3 Mix4

STT-RAM
Ideal 41.8K 3.8K 4.8K 14.3K 8.7K 3.21K 7.44K 14.9K 25.5K

Baseline 38 19.2 30.9 41.3 8.65 47.3 6.33 25.8 45.7
SWWR 72.9 128.5 134.6 60.9 65.5 451.1 66 98.1 278.5
DWWR 125.5 191.6 91.4 94.1 75.1 436.5 76.5 121 306.9
DWAWR 119.5 194.1 189.4 114.2 104.6 456.4 103.9 146.6 447.8

ReRAM
Ideal 2.12K 99.5 795.4 6.37K 462.2 185.4 175.2 565.5 666.2

Baseline 0.61 0.51 0.53 1.17 1 1.16 2.22 3.03 3.02
SWWR 1.63 4.26 1.48 1.48 2.05 13.3 22.51 16.34 21.86
DWWR 1.44 4.43 2.10 1.45 2.96 14.87 22.1 20.13 24.6
DWAWR 1.71 4.63 2.58 1.82 5.10 22.85 24.8 26.2 28.77

Table 4.19: Lifetime comparison analysis (in years) by the proposed schemes:
SWWR, DWWR and DWAWR.

SWWR/DWWR DWAWR
Cache Configuration m I n I
Small Assoc., Small Size = = / ↑ ↓ = / ↑
Small Assoc., Large Size = = / ↑ ↓ = / ↑
Large Assoc., Small Size = ↓ ↑ ↓
Large Assoc., Large Size ↓ ↓ ↑ ↓

Table 4.20: Recommended values of m and I with respect to reference values
m = n = 4 and I = 1M (dual) = 2M (quad) cycles.

4.5.6 Lifetime Comparison Analysis

Table 4.19 presents the lifetime comparison analysis (in years) over the ideal

STT-RAM/ReRAM (where the writes are uniformly distributed), baseline STT-

RAM/ReRAM, (with no wear leveling policy as reported in table 2.3) and our pro-

posed schemes: SWWR, DWWR, and DWAWR. Note that the values presented

in the table are calculated from the reference value presented in the section 4.4

(For this analysis, the write endurance values are taken as 4 x 1012 and 1011 writes

for STT-RAM and ReRAM respectively as given in [121, 20]). The conclusion

that can be derived from the table is that our technique: DWAWR works better

than the SWWR and DWWR for both types of NVMs.

4.5.7 Recommended Values

Based on the above-detailed analyses, we recommend the values to be used for m,n

and I for the different configurations of caches. Table 4.20 lists these recommended

values for the proposed schemes: SWWR, DWWR, and DWAWR. Note that these
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recommended values are with respect to m = n = 4 and I = 2M (for dual-core),

1M (for quad-core) cycles. The rationale behind the recommendations is presented

below:

• Interval (I): The value of I depends upon the associativity. For the cache

with smaller associativity, to capture the maximum write-backs, the value of I

can be kept same or increased (according to requirement). On the other hand, in

the case of cache with larger associativity, to control the block residency and to

reduce the intra-set variation, the value of I needs to be reduced.

• Write Restricted Window/Ways (m/n): The value of m,n is decided based

upon the following configuration of cache:

– Small Associativity: Smaller associative cache needs the small number of

write restricted ways. Hence, the value of n should reduce in case of DWAWR.

In the case of SWWR and DWWR, the value of m can be the same; however,

the window size (regarding ways) will reduce as associativity is small.

– Large Associativity, Small Size: In this case, to control the block residency,

the value of n (Write restricted ways) needs to be increased. On the other hand,

in the case of SWWR and DWWR, the partition size is increased accordingly

with the number of partitions (m). Hence, the value of m is kept the same.

– Large Associativity, Large Size: To control the large intra-set write varia-

tion, in this case, the partition (SWWR/DWWR)/way (DWAWR) (n) (DWAWR)

size need to be increased, or the number of partitions (m) has to be reduced.

4.6 Summary

Due to the differing working set sizes and run-time access patterns of applications,

the non-volatile caches suffer from write variations. These write variations not

only reduce the lifetime but also shrink the capacity of cache over the period.

Write variations inside the cache are governed by the access pattern as well as the
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replacement policies. In this chapter, we presented three techniques to mitigate the

intra-set write variation. Our first two techniques partition the cache into multiple

windows and uses a different window during the execution as write-restricted or

read-only window. In our first technique, the window is selected in a round robin

fashion. On the other hand, in our second technique, the window is selected by

considering its write intensity over a period of execution. In the third technique,

instead of partitioning the cache into windows, a set of cache ways are selected

based on their write-intensity. The selected ways are treated as write restricted or

read-only for certain predefined interval.

The efficacy of the proposed schemes is examined with the help of three existing

techniques: PoLF, WAD and EqualChance and, the baseline STT-RAM/ReRAM

with no wear leveling policy support. Experimental results show the significant

reduction in the coefficient of intra-set write variation along with the improvement

in the relative lifetime for dual and quad-core systems. Thus, if we reduce the

non-uniform write distribution inside the cache set, we can effectively utilize the

emerging non-volatile memories in hardware systems.



Chapter 5

Intra-Set Wear Leveling using

Write Restricted Horizontal

Partitions

This chapter proposes another alternative intra-set wear leveling method for life-

time longevity enhancement of non-volatile caches. As same as previous chapter,

the proposed method works on the basic concept of write restriction. However,

the only difference is that proposed technique is applicable at the different gran-

ularity of the cache bank. In particular, the proposed method divides the cache

logically into multiple equal-sized modules. During execution, the writes are uni-

formly distributed across different ways of the different modules within the cache

set. The proposed technique are evaluated on two different existing methods with

quad-core system.

5.1 Introduction

In this chapter, to control intra-set write variation with less performance and en-

ergy overheads, we make different sub-ways of the different sets as write-restricted,

i.e., read-only over an interval. The proposed method logically divides the cache

129
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Figure 5.1: General overview of contribution in chapter 5

into multiple equal-sized parts called modules in such a way that each module

contains an equal number of sets. During the execution, for a certain predefined

interval, different m ways are chosen from each module and made write-restricted.

At the end of the interval, the next m ways are chosen and treated as a write-

restricted for the next interval, and the process continues until the end of execution.

Note that each module of the cache can have different m ways selected. In this

chapter, we applied our proposed technique on STT-RAM-based LLC (i.e., L2

cache). Although, the technique can be easily extended to ReRAM and PCRAM

based NVM cache. The main contributions of this chapter are as follows:

• The chapter presents a technique to mitigate the intra-set write variation and

improve the lifetime of non-volatile based cache. It divides the cache into multiple

modules and controls write variation within each module.

• Experimental evaluation is performed over the full system simulator GEM5 [118]

and results are compared with two existing techniques: Polf [29], WriteSmooth-

ing [33] and the baseline STT-RAM with no wear-leveling associated.

• In-depth analysis with different configurations of L2 cache as LLC and, with the

different parameters of the method are also presented.
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Figure 5.1 presents the general overview of the proposed contribution in this

chapter.

The chapter is organized as follows: section 5.2 presents the proposed wear leveling

method. The experimental methodology is illustrated in section 5.3. Results and

analysis are discussed in section 5.4. Section 5.5 reports the parameter comparison

analysis. Finally, we summarize this chapter in section 5.6.

5.2 Proposed Wear Leveling Technique: MWWR

This section discusses our proposed wear leveling technique called Module Wise

Write Restriction (MWWR).

5.2.1 Architecture

The key idea of the proposed methodology is to logically divide the cache into

multiple equal-sized modules or parts (in such a way that each module contains

an equal number of sets) and use m different ways in each module at the regular

intervals of the application execution. We call these ways inside the module as

sub-ways. During an interval, the selected sub-ways in a module are treated as

a write-restricted (or read-only) sub-ways. In particular, all the write requests

from the L1 cache to the selected sub-ways of the module are redirected to other

ways (other than the selected sub-ways) of the module within the same cache

set. In each interval, the selection of sub-ways in the module is based upon a

counter associated with each sub-way of the module. The use of the counter is to

track the number of L1 write accesses that the particular sub-way entertained in

the past interval(s). In each interval and for each module, the m sub-ways with

maximum counter values are chosen and treated as a write-restricted sub-ways.

At the end of the interval, the next m sub-ways of each module are chosen, and the

process continues until the end of the execution. Note that, in order to remove the

possibility of choosing the same sub-way(s) within the module in the successive
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Figure 5.2: Example of the proposed MWWR L2 cache architecture

intervals, the sub-way counter of each selected sub-way is reset to zero. Note that

other lightly written sub-ways counters are remained to be intact. The reason

behind to initialize the counter with zero ensure that all the other lightly written

sub-ways counters get the chance for the write restriction over the intervals by

accumulating the writes in the past intervals. Also, note that these m sub-ways

(chosen for write restriction) may not be contiguous.

Consider a set-associative cache with S number of cache sets and associativity A.

Let the total number of modules in the cache is M then each module in the cache

has following sets of attributes:

• Total number of sets in the module (Smod): S/M .

• All the sub-ways-j of sets in a module share the same counter. Hence, the total

number of counters in a module: A.

• Total number of counters in a cache bank: A ∗M .

• Module label for a given set-id (Cset) of a cache bank: bCset/Smodc.

The example of our architecture is presented in fig. 5.2. As shown in the figure, an

8-way set associative L2 cache (A = 8) having eight sets (S = 8) and four modules

(M = 4) is considered to demonstrate the example. The four modules of the cache

are labeled with M0, M1, M2 and M3. With the given values, the Smod = S/M = 2

cache sets are present inside the module and a total of A ∗M = 32 counters are
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needed to track the write accesses of each sub-ways of the modules inside a cache

bank in the current interval or in the past intervals until it is reset to zero. In the

figure, these sub-way counters are represented by variable Cij where i represents

the module-id, and j denotes the sub-way id. For example, C04 is counter for

module-M0 and sub-way 4 of all sets in M0. Similarly, the counters C00 to C07

represent the counter for each sub-way in the module M0.

5.2.2 Operation

The operation of the proposed wear leveling technique is elaborated through al-

gorithm 4. In the algorithm, the parameter I acts as a tunable value for the

predefined interval (line 1). The total number of sub-ways that are treated as

a write-restricted in each module is represented by the variable m (line 2). The

variable M represents the total number of modules inside a cache bank (line 3).

ModulewaysList is a list of lists of size M ∗m. It contains the m sub-ways id of

all the M modules which are treated as write-restricted in that particular period

of the regular interval I (line 4). Thus, the ModulewaysList is populated in each

interval. The counter associated with each sub-way of the module is represented

by the variable Cij (line 5).

For the initial I cycles of process execution, the cache bank is treated as a normally

available bank (line 6). Once the process executes the I cycles, different sub-ways

of the different modules are treated as a write-restricted for the next I cycles (line

7). The selection of sub-ways in each module is based upon the counter Cij associ-

ated with the sub-ways of the modules. In particular, from each module, maximum

m sub-ways counter values are chosen and placed into the ModulewaysList of that

particular module (line 12 and 13). By this way, the proposed technique restricts

the chances of heavily written sub-ways of the modules to get further more writes

in the next interval. Once the m sub-ways of the module are selected for write

restriction, the respective counters associated with them are reset to zero (line 14).

When the interval I ends, the write restricted sub-way list is prepared again for

each module and the process continues until the end of execution.



Chapter 5. Intra-Set Wear Leveling using Horizontal Partitions 134

Algorithm 4 Wear Leveling Algorithm - MWWR
1: I : Predefined interval.
2: m : Number of sub-ways in each module that are treated as read only or write restricted.
3: M : Number of modules in the cache.
4: List < integer, List < integer >> ModulewaysList : List of write restricted sub-ways in each module. Size

of list is M ∗m.
5: Cij : Sub-way counter with respect to ith module and jth sub-way that records the number of write accesses

from L1 cache to that particular sub-way. 0 ≤ i < M , 0 ≤ j < cache assoc.
6: Run application for I cycles treating the whole cache as normally available cache.
7: After the I cycles treat m ways of each module as read-only or write restricted.
8: repeat
9: for every interval I do
10: for k ← 0 to M do
11: for l← 0 to m do
12: Let Cij be the maximum counter among all the counters in the module i of cache. 0 ≤ j <

cache assoc
13: ModulewaysList[k][l] = j . create module list of heavily written ways
14: Cij = 0
15: end for
16: end for
17: for each request R from L1 cache to the block B in L2 cache during I cycles do
18: if R = ReadHit then
19: Perform the read operation as in the conventional cache.
20: else if R = WriteHit then
21: if the request R is for the block B that belongs to the current ModulewaysList then
22: The write request for the block B is redirected to the other location L in the same cache

set. Note that L /∈ ModulewaysList.
23: The corresponding sub-way counter Cij of the location L is incremented.
24: else
25: Write operation is performed on B as in conventional cache. Increment the counter Cij of

the way where the block B is present.
26: end if
27: else
28: Forward the Request R to main memory to fetch the block. Keep the newly arrived block in a

location L such that L /∈ ModulewaysList. . cache miss
29: end if
30: end for
31: end for
32: until the end of the execution

In the meanwhile, between the intervals, for each request R coming from L1 cache

to the L2 cache, the tag lookup operation is performed for that particular request

in the L2 cache (line 17). Based upon the result of lookup operation and the type

of requests, different operations are performed in the L2 cache which is as follows

(Note that the PUTX used in the following cases represents the write-back of dirty

data from the L1 cache to L2 cache):

• Read Hit: The read operation is performed for the requested block B as same

as in the conventional cache (line 18 and 19).

• Write Hit (Write-back or PUTX) and block B not in ModulewaysList:

The write request R is served from the original location of block B. Once request is

served, the sub-way counter of the module where block B is located is incremented

(line 24 to 26).
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• Write Hit (Write-back or PUTX) and block B in ModulewaysList:

If the requested block B is present in the cache at location T that belongs to

the ModulewaysList, then the write request R (from L1 cache) is redirected

to the first invalid way of the same cache set other than the ways belonging to

ModulewaysList. In case, if there is no invalid entry present in the other sub-

ways of same cache set, one Least Recently Used (LRU) victim block is picked,

say v from the location L. Note that the location L is the location other than the

location contained in the ModulewaysList for that particular module. Once the

victim entry v is selected, the write-back operation is scheduled for v according to

the status of its dirty bit. Subsequently, the request R is redirected to the location

L and the block is written in that location. Once the request is served, the block

B is invalidated from its location T . The counter for the sub-way where the write

was redirected, L in this case, is incremented (line 20 to 23).

• Cache Miss: The request R from the L1 cache is forwarded to next level of

memory. When the requested block has arrived, it is placed in a location other

than those belonging to ModulewaysList for that particular module (line 27 to

29).

The working example of the proposed MWWR wear leveling technique is de-

picted in fig. 5.3. As shown in the figure 5.3 (a) at time-stamp t1, in module-2

(M2), the sub-way 1 and 5 are treated as write-restricted for the current interval

(ModulewaysList[2] = {1, 5}). Three cases are considered in part(a) to demon-

strate the method for M2 i.e., set-4 and set-5 of a cache bank. In the first case, a

read request (shown by arrow-1) to the sub-way 2 of set-4 is served normally by the

cache (arrow-2). In the second case, the write request (shown by dotted arrow-3)

from the L1 cache to set-4 and sub-way 7 is served (arrow-4) normally by the L2

cache. Once the write operation is completed, the respective counter C27 is incre-

mented. For the last case, the write request (arrow-5) from the L1 cache to the

set-5 and sub-way 5 (sub-way treated as write restricted in the current interval) is

redirected (arrow-6) to the one of the other ways (3 and 6 in our case) based upon

the availability and the victim entry location in the same cache set. Depending
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Figure 5.3: Working example of the proposed MWWR wear leveling tech-
nique. (a) Status of module-2 at time-stamp t1 (b) Status of module-2 at

time-stamp t2

Components Parameters
Processor 2Ghz, Quad Core, X86

L1 Cache
Private, 32 KB SRAM Split I/D caches, 4-way

set associative cache, 64B block, 1-cycle
latency, LRU, write-back policy

L2 Cache Shared, 64B block, LRU, write-back policy
Main Memory 2GB, 160 cycle Latency

Protocol MESI CMP Directory

Table 5.1: System parameters

upon where the write is redirected, the respective sub-way counter is incremented,

and the data block in the set 5 of sub-way is invalidated because of its relocation.

If the write is redirected to the sub-way 3, then the counter C23 is incremented.

At the end of time-stamp t1 interval, for time-stamp t2 interval (shown in fig. 5.3

(b)), different sub-ways (3 and 7) are selected for write restriction based upon the

values of write counters.
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L2
Configuration

Leakage
Power
(mW)

Hit
Energy

(nJ)

Miss
Energy

(nJ)

Write
Energy

(nJ)

Hit
Latency

(ns)

Miss
Latency

(ns)

Write
Latency

(ns)
32MB, 16way 454.35 0.486 0.094 4.215 5.047 1.616 12.425
16MB, 32way 423.03 0.534 0.193 6.296 4.19 1.522 11.974
16MB, 16way 406.22 0.432 0.092 4.162 4.227 1.560 11.974
16MB, 8way 405.40 0.387 0.047 3.189 4.225 1.558 11.974
8MB, 16way 136.2 0.329 0.096 4.164 3.605 1.479 11.81

Table 5.2: Timing and energy parameters for STT-RAM L2 cache

5.3 Experimental Methodology

We implemented our proposed wear-leveling policy: MWWR on a full system

simulator GEM-5 [118]. Table 5.1 shows the system parameters used in the simu-

lations. Table 5.2 shows the timing and energy parameters for the L2 configurations

obtained by NVSIM [21] at 32 nm technology node.

We evaluate our technique: MWWR against two existing techniques: PoLF and

WriteSmoothing (termed as Wsmooth) and the baseline STT-RAM (STT) that

uses LRU as a replacement policy with no support of wear leveling. In PoLF, the

value of FT is set to 10. Whereas in Wsmooth, the limit of the maximum sub-ways

to be turned off in each module is set to 3, and the parameter λ is set to 15%, the

interval value is set to 5M cycles and the total number of modules in the cache

are 128. All computation, latency, storage and selection overhead of the modules

with transfer of cache block are modeled in the same way as similar to [33].

In MWWR, during the write redirection, the tag needs to be transferred from the

current write-restricted sub-way to the new location within the cache set. The

transfer of tags requires 128 additional 42-bit swap buffers and extra three cycles

(1 cycle to transfer the tag from the sub-way to swap buffer, 1 cycle for writing the

data into the swap buffer and 1 cycle for transferring the data from the swap buffer

to the new location). The size of the counters (Cij) associated with each module

of the sub-way is set to 10 bit1. We assume that the computation or selection

of the ModulewaysList is not on the critical path as it can be computed in the

background just before the end of the current interval.

1Based on the experimental results, we selected the most stable sized Cij
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Benchmark
suite

Benchmarks

PARSEC
v2.1

Bodytrack (Body), Canneal (Cann), Dedup,
Freqmine (Freq) X264

SPEC
CPU2006

Mix1: perlbench, gcc, milc, hmmer
Mix2: soplex, omnetpp, bzip2, libquantum
Mix3: gobmk, tonto, sjeng, namd
Mix4: calculix, astar, dealII, h264ref

Table 5.3: Benchmarks used for evaluation

To evaluate our simulated system, we use both multi-threaded: PARSEC [6] and

multi-programmed: SPEC CPU 2006 [7] benchmark suites, Table 5.3. Note that

the detailed description of the simulation framework is given at appendix A.

5.4 Results and Analysis

Out of the different configurations, MWWR examined on 16 MB 16-way set-

associative L2 cache with I=5M cycles, M=128 and, m=4. In the later section,

we analyze the effect of changing these values on the proposed approach. We

have presented the results on the following set of metrics: coefficient of intra-set

write variation (IntraV ) (calculated with the help of eq. (2.2)), relative lifetime

improvement (calculated with the help of eq. (2.3)), speedup, energy overhead,

and invalidations.

5.4.1 Coefficient of Intra-Set Write Variation

Figure 5.4 shows the coefficient of intra-set write variation. Our proposed tech-

nique: MWWR reduces the intra-set write variation from 154.4% (STT), 114.6%

(Polf), 88.8% (Wsmooth) to 61.4% (MWWR). The reduction in intra-set write

variation over STT is basically due to uniform-write distribution by MWWR in-

side each module. However, the further reduction in coefficient by MWWR against

Polf and Wsmooth is due to two reasons: (i) Polf invalidates the data randomly

without concerning its write behavior. (ii) The MWWR selects the m hot sub-

ways for the write restriction in each interval, and with Wsmooth, the hot-sub-way

are turned off only when the module’s intra-set write variation increases beyond
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λ. Note that hot-sub-way(s) represent the sub-way(s) having maximum write

count(s) among the other sub-ways.

5.4.2 Relative Lifetime Improvement

Figure 5.5 shows the normalized lifetime with respect to STT and is presented

against the STT, Polf, and Wsmooth. Our proposed technique MWWR improves

the lifetime by 4.25 times against the STT, 2.71 times against the Polf and, 1.63

times against the Wsmooth. These respective improvements are basically due to

the reduction in the write variation coefficient values by the proposed technique

MWWR.
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5.4.3 Effect on Performance

Figure 5.6 presents the normalized speedup (against the STT). MWWR maintains

the same performance with the baseline STT. This is because MWWR evicts only

LRU block from the other sub-ways, which in turn increase the miss rate only by

2.4%. The respective values in the increase of miss rate by PoLF and WSmooth

are 12.8% and 29.3%. We observe 1% degradation in CPI with respect to STT

by Polf due to increased allocations and evictions of MRU blocks in the cache.

WSmooth shows performance degradation for STT by 3.32%. This degradation is

due to turning off the sub-ways in each module of the cache that in turn increase

the miss rate, and the extra cycles taken for the write operations due to block

transfer from hot sub-way to cold sub-way inside the module. However, there is

no impact on the performance loss compared to baseline STT despite the fact

that the lesser cache availability at each module is due to the eviction of the LRU

blocks from the other sub-ways (other than the write-restricted sub-way). Note

that there is a trade-off between the number of each sub-way available for the

allocation at each module and the performance loss, which can be easily seen from

the table 5.5 (at row 4 and 5).
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Figure 5.8: Normalized invalidation with respect to Wsmooth (lower is better)

5.4.4 Effect on Energy

Due to write redirections and the transfer of tags, MWWR consumes slightly

more energy compared to baseline STT as shown in fig. 5.7. The energy overhead

percentage against the baseline STT is merely 0.27%. However, with respect to

PoLF and, Wsmooth, there is an improvement in the energy overhead in MWWR

by 1.14% and, 3.3%. This gain in the energy is basically due to two reasons: (i)

Polf invalidates MRU which in turn increases the allocations (writes) in the cache.

(ii) Wsmooth moves the block from the hot sub-way to the cold sub-way which

incurs extra writes.
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Metric IntraV Lifetime EDP Loss

MWWR 84% 3.10 0.32%

Table 5.4: Comparison analysis between FAWLT and MWWR

5.4.5 FLASH based Adaptive Wear Leveling Technique

(FAWLT) versus MWWR

As same as in the previous chapter, the comparative analysis is illustrated between

FLASH based Adaptive Wear Leveling (FAWLT) and the proposed wear leveling:

MWWR. Table 5.4 list the analysis result between FAWLT [120] and MWWR. As

can be seen from the table, the proposed approach works better than the FAWLT

significantly, with a marginal increase in EDP.

5.4.6 Effect on Invalidation

Figure 5.8 shows normalized invalidations with respect to Wsmooth by the MWWR

and Polf. MWWR reduces the invalidations by 45.3% and, 81.6% for Polf and,

Wsmooth. Compared to Polf, the reduction is because of the selective invalidations

by MWWR. The reduction compared to Wsmooth is mainly due to the difference

between the write redirection policy of MWWR (transfer to any position of cache

set) and block-transferring policy with Wsmooth (transfers from hot to one cold

sub-way).

5.4.7 Storage Overhead

In our technique MWWR, we use A number of 10-bit Cij counters with each

module of the cache to record the write accesses of each sub-way. Besides, 128

42-bit swap buffers are used to transfer the tags. Also, the list ModulewayList of

size m∗M is composed by the entry of size log2A. Thus, the percentage overhead

implementation of MWWR compared to baseline STT-RAM is merely 0.02% for

the selected values. On the other hand, the percentage savings in storage overhead
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Param.
Norm.

Lft.
IntraV
Base

IntraV
MWWR

Norm.
EDP

Invalidations
(k)

Reference 4.25 154.4% 61.4% 1.02 645k
I=2M 4.83 154.4% 57.6% 1.03 680k
I=10M 3.85 154.4% 64.5% 1.02 573k
m=8 4.94 154.4% 60.3% 1.04 786k
m=2 3.86 154.4% 67.4% 1.01 458k

M=256 4.68 154.4% 59.4% 1.03 658k
M=64 3.9 154.4% 62.8% 1.02 612k
8MB 4.92 119.3% 41.2% 1.02 751k
32MB 4.1 186.5% 85.7% 1.02 504k

A=8way 3.70 120.9% 57.4% 1.04 714k
A=32way 5.47 189.4% 79.7% 1.02 480k

Table 5.5: Comparative analysis for different parameters of L2 cache and
algorithm (Lft.= lifetime, Base = baseline STT-RAM) ref = 16MB, 16 way, m

= 4, M = 128, I = 5M

of MWWR compared to Wsmooth is 81.1% (Note that the storage bits required

for counters and swap buffer are taken from [33]).

5.5 Comparative Analysis for Parameters

In addition to the results presented in the previous text, we also conducted ex-

periments with different values of the parameters using various configurations of

caches. Table 5.5 presents the comparative analysis where each row of the table

shows the one change in parameter value compared to the reference value. Note

that the value given in the table is with respect to STT.

5.5.1 Change in Interval (I)

With the larger interval value, the frequency of write-restricted sub-way selection

process is reduced compared to the reference case. This, in turn, reduces the

premature invalidation from the L2 cache because the blocks invalidated from the

write redirection are mostly the LRU blocks. Further, with large interval value,

the coefficient of intra-set write variation is larger with lesser improvement in a

lifetime compared to the reference case. The opposite is seen in the case of the

small interval.
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5.5.2 Change in Write-Restricted Sub-Ways (m)

On increasing the write restricted sub-ways, more writes are redirected which in

turn improves the lifetime and reduce the coefficient of intra-set write variation

more than the reference case, and vice-versa, in case of a smaller number of write-

restricted sub-ways.

5.5.3 Change in Number of Modules (M)

On increasing the number of modules, the granularity of wear-leveling is increased

as it includes the smaller number of sets inside the module. This, in turn, improves

the lifetime and reduces the intra-set write variation more than the reference case.

The opposite case is seen with a smaller number of modules.

5.5.4 Change in Capacity

Cache with larger size experiences lesser capacity misses as compared to cache with

a smaller size. This leads to the more extended residency of the block and higher

write-variation compared to the reference case. In both cases: large and small-

sized cache, our technique effectively reduces the write variation and improves the

lifetime.

5.5.5 Change in Associativity (A)

Higher associative cache experiences less conflict misses compared to lower as-

sociative cache. This, in turn, increases the residency of a block and intra-set

write variation inside the cache. In both the cases, higher and lower associativ-

ity, MWWR significantly reduces the intra-set write variation and improves the

lifetime.
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Cache Configuration m M I

Small Size, Small Assoc. ↓ ↓ = / ↓
Small Size, Large Assoc. ↑ ↓ ↑
Large Size, Small Assoc. ↓ ↑ ↓
Large Size, Large Assoc. ↑ ↑ ↓

Table 5.6: Recommended values of m, M and I

5.5.6 Recommended Values

Based on the above analyses, we present the best optimal trends of the proposed

technique for the different configurations of caches in Table 5.6. Note that the

recommended values are with respect to reference values (mentioned in Section 5.4)

and = given in the table refers to the same value as the reference.

5.6 Summary

This chapter presented a technique: MWWR to mitigate the intra-set write vari-

ation: i.e., write variation inside the cache set. MWWR partitions the cache

logically into multiple equal-sized modules and treats different sub-ways of each

module for the certain predefined interval as write-restricted. Once the interval

ends, the next set of sub-ways are chosen from the module, and the process con-

tinues until the end of execution.

The efficacy of the proposed technique is examined by comparing with the ex-

isting methods: Polf and WriteSmoothing and baseline STT-RAM. Experimental

results show that the MWWR significantly reduces the coefficient of intra-set write

variation and improves the lifetime by 4.25 times over baseline STT-RAM. Thus,

reducing write variation by modular management of portions of the cache can

increase their lifetime and make them as a capable candidates in the memory

hierarchy.





Chapter 6

Inter-Set Wear Leveling using

Dynamic Associativity

Management Techniques

The previous chapter reported the wear-leveling techniques to mitigate the intra-

set write variation. This chapter presents two efficient methods for lifetime longevity

of NVM cache by reducing the inter-set write variation. Both the strategies illus-

trated in this chapter are using the concept of Dynamic Associativity Management

to minimize the write variation across the cache set. The proposed policies par-

titions the cache sets into groups called fellow groups. Every cache set has two

logical parts: Normal and Reserved. Cache sets within a fellow group can use

the static/dynamic reserved parts from their fellow sets to distribute the writes

uniformly. To measure the efficacy, the proposed strategies are evaluated with the

baseline and the existing method in the quad-core system.

6.1 Introduction

With the limited write endurance, the lifetime of NVM cache is further affected

by the write variations generated by the applications running on multiple cores.

147
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Because of the write variations, the running applications create certain hot-spots in

a cache to better utilize the temporal locality. In a cache, the write variations are

categorized into two types: Inter-set and Intra-set write variations. This chapter

present an efficient techniques to reduce the inter set write variation.

Our first technique: Fellow Set with Static Reserve Part (FSSRP) logically par-

titions the cache sets into groups of cache sets called fellow groups. Every group

has two logical parts: Normal Part and Reserve Part (NP and RP). The working

of NP in the group is the same as conventional cache. While the RP of the group

is used to handle the non-uniform write distribution of the heavily written sets in

the group. In other words, a cache sets within a fellow group can use the reserve

parts from their fellow sets to distribute the writes uniformly. However, the major

hurdle with the employment of the FSSRP is the limited lifetime improvement

due to large number of write redirections in the static or fixed RP section of the

cache which in turn contributes to the intra-set write variation. To overcome this,

our second technique: Fellow Set with Dynamic Reserve Part (FSDRP) based on

FSSRP, logically divides the cache into multiple equal-sized windows. During the

execution, a different window of the cache is used as the RP section for certain

predefined interval in order to distribute the writes. By this way, the FSDRP

disperses the redirected writes over the cache.

We implemented our proposed schemes on STT-RAM based non-volatile cache.

However, the techniques can be easily extended to other non-volatile caches such

as PCRAM and ReRAM based caches. The main contributions of this chapter are

as follows:

• We present the efficient techniques to reduce the inter-set write variation that

helps to improve the lifetime of non-volatile caches.

• Our first technique: Fellow Set with Static Reserve Part (FSSRP) partitions

the cache sets into groups called fellow groups. Each cache set in the group has

two logical parts: Normal and Reserve. Sets within the fellow group can use the

reserve parts from their fellow sets to distribute the writes uniformly.
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Figure 6.1: General overview of contribution in chapter 6

• Our second technique: Fellow set with Dynamic Reserve Part (FSDRP) is based

on FSSRP in terms of the fellow group. In addition, it further partitions the

cache vertically into multiple equal-sized windows. During execution, a different

window of the cache is used as reserve part over a specified interval to distribute

the writes uniformly.

• We use full system simulator GEM-5 [118] for experimental evaluation. Results

are compared with the existing technique: Swap Shift [70] and the baseline

STT-RAM-based cache with no support of wear leveling. We also provide a

detailed analysis with different configurations of the LLC and, by varying the

parameters of the techniques.

Figure 6.1 presents the general overview of the proposed contribution in this

chapter.

The rest of the chapter is organized as follows: Section 6.2 present the proposed

wear leveling techniques: FSSRP and FSDRP. Experimental Setup is discussed

in section 6.3. Results and analysis are illustrated in section 6.4. The analysis with

various parameters of the proposed techniques with the different configuration of

caches are reported in section 6.5. Finally, section 6.6 summarize the chapter.
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6.2 Proposed Wear Leveling Techniques

In this section, we will illustrate both of our proposed techniques: (i) Fellow Sets

with Static Reserve Part and (ii) Fellow Sets with Dynamic Reserve Part.

6.2.1 Fellow Sets with Static Reserve Part (FSSRP)

6.2.1.1 Architecture

The main idea behind our proposal: FSSRP is exploiting the Dynamic Associa-

tivity Management (DAM) technique towards the wear leveling. Our technique

partitions the cache into a group of sets called fellow groups. To enable DAM for

a cache set, we partition the cache set into two parts: Normal (NP) and Reserve

(RP) part. The working of NP part of the cache set is the same as the conventional

cache. While the RP part of all sets in a fellow group can be used by all the sets

within the group. In other words, if a set has high write usage, then it can use

the space from the RP section of its fellow group to store its block. This way, the

associativity can be dynamically managed. In our proposal, we do not intend to

increase associativity but to use the feature of RP and fellow sets towards wear

leveling. In particular, for a set that has a large number of writes taking place,

such a set can avoid additional writes to itself by redirecting the writes to RP

section of a lightly written set in the fellow group. Using set level write counters,

one can decide the write redirection.

The issue remains to search these relocated blocks from its home set to other sets

in its fellow group. For this, an additional mapping table: TaG Storage (TGS)

is used. The entry in the TGS consists of a valid bit and the tag address of the

block present in RP part. Note that each entry of TGS has one to one mapping

with each entry of RP part.

Consider a Set Associative Cache having S number of sets and associativity A.

The size of each group in the cache is m, and in each set of the group, r number of
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the ways are reserved for RP. Note that the cache sets in the group are statically

mapped. The group in the cache has the following characteristics:

• The distance between the two sets of the fellow group in the cache: S/m− 1

• Total number of groups in the cache: S/m.

The structure of TGS has the following attributes:

• Number of sets in TGS: Stgs = S/m

• TGS Associativity: Atgs = r ∗m

• Number of Blocks in TGS: Btgs = r ∗ S

Each block of RP in the cache has one to one mapping with each entry of the TGS.

For a given TGS set number (Stgsi) and TGS way number (Atgsj), the cache set

(Sk) and cache way (Al) can easily find out with the help of following equations.

Al = (A− r) + (Atgsj%r) (6.1)

Sk = ((Atgsj/r) ∗ Stgs) + Stgsi (6.2)

Similarly, for a given cache associativity (Av) and cache set (Su), the respective

TGS set (Stgsn) and TGS way (Atgsm) can be simply mapped with the help of

following equation:

Atgsm = (Su/Stgs) ∗ r + (Av − (A− r)), (A− r) ≤ Av ≤ A (6.3)

Stgsn = Su%Stgs (6.4)

In addition, with each set in the cache, the write counter is associated. The write

counter is used to count the number of writes in the cache set. Further, with each
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block in NP, a write bit is associated. The use of write bit and the write counter

is explained in the next subsection.

The example of our architecture is presented in figure 6.2. For this example,

consider a 16-way associative (A = 16) L2 cache having 8 sets (S = 8), partitioned

into two parts: NP and RP. The number of ways in NP and RP is 12 and 4 (r = 4)

respectively. Let the fellow group size be set to, m = 2. For the given values, the

total number of the group to be formed in the cache is S/m = 4, and the distance

between the two sets in the group is S/m − 1 = 3. In our example, these four

groups are labeled by G0, G1, G2 and G3, and the distance between the set 0 and

set 4 belongs to the group G0 is 3. The structure in TGS has following attributes:

Stgs = S/m = 4, Atgs = r ∗ m = 8 and Btgs = r ∗ S = 32. Each entry in TGS

corresponds to a fellow group. In our example, set-0 of TGS has entries for tags

belongings to blocks in G0 i.e., way 12-15 of cache set-0 and set-4.

6.2.1.2 Operation

The operation of the proposed technique is elaborated through algorithm 5. In the

algorithm, the tunable parameter I is used as the predefined interval (line 1). The

write counter associated with each set is represented by the variable Wi (line 2).

Similarly, the write bit incorporated with each block in the NP part of the cache

is represented by bmn (line 3). The lightly written set of the group is represented

by Sl. The decision of the light written set (Sl) in the group is taken with the help

of write counters associated with the sets in the group. In other words, set which

has a low value of write counter (Wi) is treated as lightly written set (Sl) of the

group.

For the initial I cycles, the cache is used as a normally available cache. During the

interval I, if any write happens to any block or in any set, the corresponding write

bit of the block bmn is set and write counter Wm of the cache set is incremented

(line 4 to 6).
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Algorithm 5 FSSRP Wear Leveling Algorithm
1: I : Predefined interval.
2: Wi : Write counter associated with set i. 0 ≤ i ≤ S
3: bij : Write bit associated with the block in set i and way j. 0 ≤ i ≤ S, 0 ≤ j < (A− r)
4: Run application for I cycles treating the cache as a normal cache.
5: During I cycle, the write counter (Wi) is incremented with each write in set i.
6: Similarly, the write bit(bij) is set with each write in the block.
7: repeat
8: for each request R coming from L1 cache to block B in L2 cache do
9: if R = ReadHit then
10: The Read operation is performed on the block B irrespective of its location.
11: else if R = WriteHit then
12: if Block B is found in NP part of cache then
13: if the write bit bij of the block B is set then
14: if there exist a light written set Sl in the group then
15: The write request for the block B is redirected to the location L in the RP part of Sl.

. Block B moved to RP on first write back
16: else
17: The write operation is performed on Block B. Increment the write counter (Wi) and

keep the write bit set.
18: end if
19: else
20: The write operation is performed on Block B. Increment the write counter (Wi) and set

the write bit bij .
21: end if
22: else
23: The write operation is performed on block B. Increment the write counter of the set in which

the write operation is performed. . Block B in RP part
24: end if
25: else
26: Forward the Request R to main memory. Keep the newly arrived block in NP part of cache. .

cache miss
27: end if
28: end for
29: until the end of the execution
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Figure 6.2: Working example of FSSRP wear leveling policy
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For the request R coming from L1 to L2 cache, the tag lookup operation is per-

formed in NP part of the cache. Simultaneously, the tag of the requested block

is also searched in the RP part of the group with the help of TGS. Note that the

TGS set location is found out with the help of equation 6.4. If the requested block

is present in the NP part of the cache, then it is a direct hit. Otherwise, it is an

indirect hit. Note that if the requested block B is in RP part of the cache, then

the cache set and cache way of the block is found out with the help of equation 6.2

and equation 6.1.

Depending upon the result of the lookup operation, different operations are per-

formed in the cache, which can be explained as follows:

• Read Hit: For a read request R, if the block B is present in the cache. The

read operation is performed on the block irrespective of its location (either NP

or RP) (line 9 to 10).

• Write Hit (PUTX or write-back) and block B in NP part of the

cache: If the requested block B is present in the L2 cache with write bit set,

and if there exist any lightly written set (Sl) in the group, the write request is

redirected from the current set to the RP part of Sl. If there is an invalid line(s)

in RP of the Sl, the request R is redirected to the first invalid line and the block

B will be invalidated from the NP part of the cache. Otherwise, if there is no

invalid line, then the LRU victim line is selected from the RP of Sl. In this

case, the write-back operation of the victim line is scheduled to next level of

memory. Afterward, the write request is redirected to the generated location,

and the block will be invalidated from the NP part of the cache. Subsequently,

the tag entry of the redirected block is created in the TGS with the help of

equation 6.4 and equation 6.3 (line 14 to 16). On the other hand, if no lightly

written set exists in the group or the write bit (bmn) of the block is not set. In

these cases, the write request is performed in its current location, and the bit

bmn of the block is set (line 17 to 21). Note that when there is no lightly written

set in the group, this implies that the current set itself is the lightly written set
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of the group. Once the request is served, the write counter (Wm) of the cache

set in which the write is performed is incremented.

• Write Hit (PUTX or write-back) and block B in RP part of the

cache: If the requested block B is present in L2 cache and it belongs to RP

part of the cache (indirect hit), the write request is performed normally on the

block B. Afterward, the write counter of the set (Wi) in which the write is

performed is incremented (line 22 to 24).

• Cache Miss: If the requested block is not present in the L2 cache, the request

R from the L1 cache will be forwarded to the next level of memory. In this case,

the newly arrived block will be placed in the NP part of the cache (line 25 to

27).

The working methodology of an algorithm is presented in fig. 6.2. Note that the

details about the structure of the cache and the TGS are already explained in

section 6.2.1.1.

Example: To demonstrate the method, three cases are considered with respect

to set-0. In the first case, a read request from L1 cache to way-i of L2 cache

(shown by the arrow with label-1) is served normally (as represented by arrow-2)

irrespective of the location (NP or RP) of the block. In the second case, a write

request from L1 cache to block in way-6 of L2 cache (shown by arrow 3) which

implies the NP part of the cache. In this case, the write request is redirected to

the RP part of lightly written set in the group, say set 4 in our example (shown

by arrow 4). Once the write operation is performed in set 4 and the entry in TGS

is updated in set 0, the write-back acknowledgment is sent back to the L1 cache

(as represented by arrow 5). In the last case, the write hit in the way-14 of L2

cache i.e., RP part of the cache (shown by arrow 6) is served normally. Once

the operation is performed, the write-back acknowledgment is sent back to the L1

cache (shown by arrow 7).
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Figure 6.3: Write count percentages in the different section of FSSRP

Workloads Swap Dedup Body Fluid Freq Stream X264 Mean
IntraV % 1.3% 45.8% 47.1% -2.5% 7.1% 8.7% 1.2% 15.5%

Table 6.1: Percentage increase in coefficient of Intra-Set write variation

6.2.1.3 Limitation

The limitation of FSSRP is the extensive write accesses and write redirections

in the static limited sized RP section of the cache. Figure 6.3 presents the write

count percentages in the NP and RP sections of the cache for different benchmark

applications (Details about the experimental setup over the selected value is given

in section 6.3). The conclusion that can be derived from fig. 6.3 is that, on an

average, 69.6% of the write access is handled by the static limited sized RP section

of the cache which in turn generates the intra-set write variation as shown in the

table 6.1. This increment in the coefficient of intra-set write variation by 15.5%

over the baseline limits the lifetime improvement (calculated from eq. (2.4)) despite

the reduction in inter-set write variation by the proposed approach: FSSRP. All

these facts motivate us to make RP section of the cache dynamic in an attempt

to control the intra-set write variation.
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6.2.2 Fellow Sets with Dynamic Reserve Part (FSDRP)

6.2.2.1 Architecture

The architecture framework of FSDRP is based on FSSRP in that terms it also

creates the fellow groups. The main idea of FSDRP is to further logically par-

tition the cache vertically into multiple uniformly sized windows (such that each

window contains an equal number of ways) and over a certain period of execution,

a single-window is used as an RP section, exclusively. In other words, instead

of partitioning the cache into two static parts: NP and RP, FSDRP partitions

the cache into multiple equal-sized windows of size r ways and dynamically use a

different partition as RP for a certain period over the execution. However, during

that time, the remaining ways behave as the NP section. The benefit obtained

by using different windows as RP over the execution is that the writes are not

concentrated on one part of the cache but get dispersed over the different ways of

the cache set in the fellow group. Note that here in FSDRP, our intention is not to

reduce the intra-set write variation of the cache, but to distributes the redirected

writes of the RP section in the cache uniformly over the set.

The one to one static mapping between the TGS entry and relocatable blocks in

the other sets of the fellow group has evolved as a significant bottleneck towards

the implementation of FSDRP. Practically, the dispersion of relocatable blocks in

the fellow sets by the dynamic RP window destroys the static mapping setup by

FSSRP. To deal with this, we add a field called win num with each entry of TGS

and a relocate bit (rij) with each entry of the cache along with the write bit (bij).

The use of the win num field is to store the partition or window number where the

relocatable block resides in the cache. The use of relocate bit (rij) is to identify

the normal block from the relocated block in the cache set since the RP window

keeps moving.

The partition or window has the following characteristics:

• Size of the window or partition in the cache: r.
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• Total number of window or partition in the cache (P ): A/r.

• Partition or window number for a given way number (W ) in the cache: bW/rc

Similar to FSSRP, for a given TGS set (Stgsi) and TGS associativity (Atgsj), the

corresponding cache set (Sk) can be easily mapped with Equation (6.2). However,

the corresponding cache way (Al) is identified by the following search operation in

the cache:

Al = Search(TGS[Stgsi ][Atgsj ].win num, TGS[Stgsi ][Atgsj ].tag) (6.5)

The Search() used in eq. (6.5) takes two arguments: win num and tag address

(tag) from the respective location of TGS and searches the corresponding block in

the cache.

Similarly, the respective TGS set (Stgsn) for the cache set (Su) and cache way (Av)

is mapped from eq. (6.4). Whereas, the TGS way (Atgsm) is derived by using the

following search operation:

Atgsm = Search(Cache[Su][Av].tag, Atgsst , Atgsst+r), Atgsst = (Su/Stgs)∗r (6.6)

Here, the Search() used in eq. (6.6) takes three arguments: tag address of the

cache block (Cache[Su][Av].tag) and the range of the TGS way location as second

and third argument (Atgsst to Atgsst + r) where the searching takes place for the

respective cache block.

Example: The example of FSDRP architecture is depicted in Figure 6.4. In the

example, a 16-way (A = 16) associative L2 cache having 8 sets is considered for the

demonstration with the values of m = 2 and r = 4. With these given parameters,

the cache is partitioned into four (A/r = 4) equal-sized windows of size four ways

each (r = 4). As shown in the example, these four windows are labeled with Win0,

Win1, Win2 and Win3 and the relocatable blocks from the different cache sets

of the fellow groups are dispersed in these four different windows. The lookup

of these relocatable blocks is performed with the help of TGS through eqs. (6.2)

and (6.5). As shown in the example, the block B12 placed in window W0 of the
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cache has an entry in TGS, and it is searched with the help of win num field (value

0) stored within the TGS entry. As can be seen from the figure, we have added

relocate bit to distinguish the relocatable block and write bit for write redirection

with every block of the cache. For example, the write bit and the relocate bit for

the relocatable block B31 are set to 0 and 1.

6.2.2.2 Operation

The operation of the FSDRP is elaborated through Algorithm 6. In this algorithm,

the use of parameters I, Wi and bij is same as the FSSRP (line 1 to 3). In addition

to these parameters, the parameter P acts as the total number of logical partitions

or windows in the cache (line 4). The relocate bit associated with each block of

the cache is represented by variable rij (line 5).

For the initial I cycles of the process execution, the cache is available as a normal

cache. Meanwhile, during the interval (I), the write operation perform to any

block in the cache set increments the write counter (Wi) of that cache set, and the

respective write bit (bij) of the block is set (line 6 to 8).

Once the application crosses first I cycles, one window of the cache is selected

and treated as RP section of the cache and the rest of the windows act as an NP

section. Afterward, periodically for every interval I, a new window is treated as

RP by rotation (line 9 to 14). The process continues until the execution is over.

In the meantime, between the intervals, for each request R coming from L1 cache to

L2 cache, the tag lookup operation is performed in the L2 cache simultaneously in

both NP and RP (through TGS by eq. (6.4)). Note that, in the case of an indirect

hit, the respective cache set and the cache way is mapped through eqs. (6.2)

and (6.5) (line 15). Depending upon the result of the lookup and the cache request,

different operations are performed in the L2 cache:

• Read Hit:The read operation is same as the FSSRP, as given in section 6.2.1.2

(line 16 and 17).



Chapter 6. Inter-set Wear Leveling using DAM Techniques 160

Algorithm 6 FSDRP Wear Leveling Algorithm
1: I : Predefined interval.
2: Wi : Write counter associated with set i. 0 ≤ i ≤ S
3: bij : Write bit associated with each cache block in set i and way j. 0 ≤ i < S, 0 ≤ j < A
4: P : Number of logical partition or windows.
5: rij : Relocate bit associated with each cache block in set i and way j. 0 ≤ i < S, 0 ≤ j < A
6: Run application for I cycles treating the whole cache as a normal available cache.
7: During I cycle, the write counter (Wi) is incremented with each write in set i.
8: Similarly, the write bit(bij) is set with each write in the block.
9: After I cycle, treat one window of the cache as a RP window and rotate window number in a round robin

fashion.
10: repeat
11: for every interval I do
12: i = (i+ 1)%P
13: Window Wini is selected as a RP section for the current interval I.
14: Windows other than the Wi is treated as NP section of the cache.
15: for each request R coming from L1 cache to block B in L2 cache do
16: if R = ReadHit then
17: The Read operation is performed on the block B irrespective of its location.
18: else if R = WriteHit then
19: if Block B is found in NP part of cache then
20: if the write bit bij of the block B is set and the relocate bit rij is not set then
21: if there is any light written set Sl exist in the group then
22: The write request for the block B is redirected to the location L in the RP part of

Sl. . Block B move to RP after first write back
23: The relocate bit (rlm) for the redirected block is set.
24: else
25: The write operation is performed on Block B. Increment the write counter (Wi) and

keep the write bit set.
26: end if
27: else
28: The write operation is performed on Block B. Increment the write counter (Wi) and

set the write bit in set i and way j.
29: end if
30: else
31: The write operation is performed on block B. Increment the write counter of the set in

which the write operation is performed. . Block B in RP part
32: if rij is not set then
33: Set the write bit (bij) for the block B.
34: end if
35: end if
36: else
37: Forward the Request R to main memory. Keep the newly arrived block in NP part of cache

(location other than Wini). . cache miss
38: end if
39: end for
40: end for
41: until the end of the execution

• Write Hit (PUTX or write-back) and block B in NP section of the

cache: In case of a write request R, if the requested block B belongs to the

NP section of the cache then we have two cases:

– In the first case, for the requested block B, if the write bit (bij) is set and

the relocate bit (rij) is zero. And, at the same time, if the lightly written

set (other than the current set) (Sl) is present in the fellow group, the write

request R is redirected to the RP window (Wini) of the Sl. In this case, if the

invalid entries exist in the TGS (within the range Atgsst to Atgsst + r) and the

RP window, the write request (R) is simply redirected to the invalid location
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Figure 6.4: Working example of FSDRP wear leveling policy

of the RP section by updating the TGS entry. On the other hand, if there is

no invalid entry present in the RP window of the cache or if there is no vacant

entry present in the TGS, the respective LRU victim entry is picked from the

RP window or from the TGS and the write-back operation is performed for

either or both the entries of the L2 cache. Note that, the cache location of

the LRU TGS entry is mapped by the eqs. (6.2) and (6.5). Afterward, the

write request R from an L1 cache is redirected to the newly generated entry

in the RP window. Simultaneously, the newly generated TGS entry is also

updated with the redirected data entry attributes. Once the write request R

is redirected, the subsequent block B is invalidated from the NP section and

the relocate bit (rlm) is set for the redirected block in the RP window section

for future identification (line 21 to 23).

– In the second case, if the write bit (bij) is not set or if the relocate bit (rij) is

set or if there is no lightly written set other than the current set exist in the

group, the write operation is performed on the current location of the block

B by setting the write bit bij (line 24 to 28). Note that the setting of the

relocate bit rij implies that the current block belongs to the other set of the

fellow group.
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Once the write operation is performed, the respective write counter (Wi) of the

cache set in which the write operation is performed is incremented.

• Write Hit (PUTX or write-back) and block B in RP section of the

cache: In this case, the write request R is performed normally from the current

location of the block B. If the relocate bit (rij) of the block, B is not set then

the corresponding write bit (bij) is set. This implies that the block B is not yet

redirected and currently belongs to the home set (line 30 to 33).

• Cache Miss: In case of a cache miss, the request R from L1 cache is forwarded

to the next level of memory (main memory in our case). The incoming block

from the main memory is placed into the window other than the RP window

(Wini). In particular, the block is situated in one of that window which is

currently treated as NP section of the cache. The write bit (bij) and the relocate

bit (rij) of the cache location in which the block is placed are reset (line 36 to

38).

Example: The working example of FSDRP is explained through fig. 6.4. In

the example, the window Win2 is treated as an RP section, and the rest of the

windows (Win0,Win1,Win3) act as an NP section of the cache. As same as the

FSSRP, three cases are considered to demonstrate the method concerning set-0.

In the first case, a read request (arrow 1) is normally served irrespective of the

location (NP or RP) (arrow 2). In the second case, a write request (arrow 3) to

the block (way-6) that belong to the NP section is redirected (arrow 4) to the RP

section window (Win2) of the lightly written set (set-4 in our case) of the fellow

group. At the same time, the respective TGS entry of set-0 is updated with the

individual data attributes. Once the write operation is performed, the write-back

acknowledgment is sent back to the L1 cache (arrow 5). In the last case, the write

request (arrow 6) to the block B3 in the RP section of the cache is served normally

by the L2 cache with the write-back acknowledgment (arrow 7).
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Components Parameters

Processor 2Ghz, Quad Core, X86

L1 Cache
Private, 32 KB SRAM Split I/D caches, 4-way

set associative cache, 64B block, 1-cycle
latency, LRU, write-back policy

L2 Cache Shared, 64B block, LRU, write-back policy
Protocol MESI CMP Directory

Table 6.2: System parameters

Leakage
Power
(mW)

Hit
Energy

(nJ)

Miss
Energy

(nJ)

Write
Energy

(nJ)

Hit
Latency

(ns)

Miss
Latency

(ns)

Write
Latency

(ns)
L2 Cache Configurations Attributes

16MB, 16way 15.674 0.367 0.096 4.322 78.453 11.854 271.035
8MB, 32way 8.116 0.366 0.185 6.454 74.792 8.259 270.981
8MB, 16way 8.030 0.273 0.093 4.387 78.497 11.964 270.981
8MB, 8way 7.983 0.227 0.047 3.221 74.454 7.921 270.981
4MB, 16way 7.960 0.217 0.093 4.228 23.876 5.575 126.585

TGS Configurations Attributes
1024 Set, 16way 8.120 0.018 0.001 0.018 1.349 0.005 1.349
1024 Set, 32way 15.96 0.034 0.002 0.034 1.66 0.010 1.66
2048 Set, 8way 8.122 0.018 0.001 0.018 1.352 0.005 1.352
2048 Set, 16way 15.96 0.033 0.002 0.033 1.673 0.007 1.673
2048 Set, 32way 30.51 0.067 0.003 0.067 3.58 0.012 3.58
4096 Set, 8way 15.96 0.034 0.002 0.034 1.67 0.007 1.67

4096 Set, 16 way 30.51 0.067 0.003 0.067 3.58 0.010 3.58

Table 6.3: Timing and energy parameters for STT-RAM L2 cache and SRAM
based TGS

6.3 Experimental Setup

We implemented our proposed schemes on a full system simulator GEM-5 [118].

Table 6.2 shows the system parameters used in our simulations. We perform the

experiments on a quad-core system with the different configuration of L2 or LLC.

Table 6.3 reports the timing and energy parameters for these configurations. The

timing and the energy parameters are obtained by using NVSIM [21] at 32 nm

technology node.

We compared our proposed techniques with baseline STT-RAM cache that uses

LRU as a replacement policy with no wear leveling strategy associated and, the

existing method: Swap Shift. In our experiment, the value of SwapTh is set

to 511. The rationale behind the large value of the SwapTh is to restrict the

frequent invalidation process of data blocks in the cache set. As the frequent

invalidation process increases the accesses in the main memory that results in the

extra performance and energy overhead.
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In the proposed schemes, the searching of the block in the home set and the other

sets of the fellow group (through TGS) will take place in parallel (as it can be

easily seen from the table 6.3, the latency of TGS can be easily overlapped with

the cache access latency), so it does not affect the system performance. However,

the write redirection of the blocks from home set to the other set takes three extra

cycles and an additional swap buffer to the transfer the tag. These three cycles

are divided as follows: 1 cycle for tag transfer into the swap buffer, one cycle for

writing the tag in swap buffer and, one cycle for transferring the tag to TGS and

RP part of the cache. In addition to these cycles, an extra cycle is required in

FSDRP for the searching of the block into the respective window of the other sets

in the fellow group. We have considered all these overheads in our simulations.We

also take into account the energy consumption due to accesses in the TGS and the

area overhead of extra hardware circuitry compares to the main STT-RAM-based

data array (refer section 6.4.7). The timing, energy (as shown in the table 6.3)

and area overhead of TGS (made up of SRAM) is modeled by using NVSIM. Note

that we have considered the Fast access mode of the NVSIM during the modeling

of TGS to make sure the parallel access. There is some logic overhead associated

with the algorithms 5 and 6, which will consume a mere amount of extra area

overhead.

We verified our proposed techniques with the help of PARSEC benchmarks suite [6].

From the suite, we have used seven applications (Swaptions (Swap), Dedup, Body-

track (Body), Fluidanimate (Fluid), Freqmine (Freq), Streamcluster (Stream),

X264) in the simulation. Note that the detailed description of the simulation

framework is given at appendix A.

6.4 Results and Analysis

We evaluate our proposed approaches on a quad-core system. Out of the differ-

ent configurations of L2 cache, we conducted our experiment on 8MB, 16-way

associative L2 cache. In the proposed schemes, we set the value for m, r, and
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Figure 6.5: Inter-Set write variation of proposed schemes: FSSRP and FSDRP
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I to 4, 4, and 5 million cycles. Later in the section, we analyze the effects by

changing these values. We present our results on the following metrics: reduc-

tion in coefficient of Inter-set write variation (InterV ) calculated with the help

of eq. (2.1), percentage reduction in coefficient of Intra-set write variation over the

proposed scheme: FSSRP and the baseline STT-RAM (computed with the help

of eq. (2.2)), lifetime improvement percentage calculated with the help of eq. (2.4),

speedup, energy overhead and the number of invalidation/flushes. In this chap-

ter, the comparison analysis of proposed techniques with flash based wear leveling

techniques is not presented. This is because flash-based wear-leveling aimed to

reduce the unwanted erasure count between the blocks (consist of multiple pages)

that leads to Intra-Block wear leveling. Whereas the proposals presented in this

chapter are aimed to reduce the write variation across the cache sets in a bank i.e.,

Inter-Set write variation. Thus, it is unfair to compare the proposed techniques

with existing flash-based wear-leveling proposals.

6.4.1 Coefficient of Inter-Set Write Variation

Figure 6.5 shows the Coefficient of Inter-Set Write Variation. Our proposed

schemes reduce the coefficient of inter-set write variation from 103.9% (STT),

91.4% (Swap Shift), 76.3% (FSSRP) to 69.9% (FSDRP). The reduction in the

coefficient of inter-set write variation is due to uniform write distribution across
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the cache sets by redirecting the writes from the heavily written sets to the lightly

written sets of the fellow groups. However, further improvement in the inter-set

write variation for FSDRP over FSSRP is due to different RP window throughout

execution that restricts the write redirection of the some fraction of the blocks

from their home sets. Note that, FSSRP redirects every block on the second write

without considering its write intensity. On the other hand, this is not the case

with FSDRP as it partially restricts the write redirection of the block that belongs

to the current RP window.

6.4.2 Reduction in Coefficient of Intra-Set Write Variation

Figure 6.6 shows the percentage reduction in intra-set write variation by FSDRP.

Compared to baseline and FSSRP, FSDRP reduces the intra-set write variation

by 8.55% and 17.7%, respectively. The reduction in the intra-set write variation

is mainly due to the dispersion of the relocatable blocks over the cache set by

dynamic RP window. This reduces the possibility of write concentration in the

specific section/region of the cache.
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6.4.3 Lifetime Improvement

Figure 6.7 presents the lifetime improvement percentage by the proposed schemes.

Compared to STT-RAM, the improvement in the lifetime by FSSRP is 14.77% and

by FSDRP is 20.77%. However, the respective values for the lifetime improvement

over Swap Shift is 6.58% by FSSRP and 12.11% by FSDRP. These improvements

by the proposed schemes are mainly due to the reduction in the coefficient of inter-

set write variation. The development in the lifetime by FSDRP with respect to

FSSRP is 3.03%. The reason for the further lifetime improvement by FSDRP is

due to the reduction in intra-set write variation in lieu of the dynamic RP window.
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Figure 6.9: Energy overhead by the proposed techniques: FSSRP and FSDRP
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6.4.4 Invalidation/flushes

The invalidation/flushes by the proposed schemes with respect to Swap Shift is

depicted in fig. 6.8. Flushes take place due to the write redirection from heavily

written cache sets to lightly written cache sets of the fellow group. Compared to

swap shift, the proposed schemes reduce the invalidation by 21.59% (FSSRP) and

15.58% (FSDRP). However, as can be seen, the FSDRP increases the invalidation

against the FSSRP by 7.66%. This is because, in FSDRP with each write redirec-

tion, two blocks gets evicted: (i) from current RP to accommodate the redirected

block and (ii) in order to make an entry in the TGS one would need to evict

the relocatable block from the current NP or RP section. Note that in some of

the cases (dedup, fluid, freqmine, and x264), the number of invalidation by our

techniques is large than the swap shift. This is because we set a more consider-

able value of threshold (SwapTh) in swap shift, to maintain the performance and

energy consumption.

6.4.5 Energy Overhead

The energy overheads of the proposed schemes is shown in fig. 6.9. Note that the

negative values in the figure imply energy savings. The energy overhead percentage

over the baseline and the Swap Shift by the proposed schemes are 0.78% and

0.99% by FSSRP and, 0.84% and 1.05% by FSDRP. This marginal increment in
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the energy is basically due to the transfer of tag, invalidation/flushes, accesses in

TGS and, the extra window search operation for the relocatable block in the cache

by FSDRP.

6.4.6 Performance

The proposed scheme: FSSRP maintains the same performance as in the baseline

STT-RAM and Swap Shift, as shown in Figure 6.10. Performance is not affected

due to less available capacity in FSSRP due to two reasons: Firstly, searching for

the block in RP section (with the help of TGS) takes place in parallel with the

lookup operation in the NP section, and the writing in TGS will be in parallel

with the writing in the RP. Secondly, due to the DAM, the set having higher write

access will transfer its load to lightly written set in the fellow-group. However, a

small degradation of 1% is observed in the CPI for FSDRP due to the time taken

by extra search operations in the dynamic RP windows.

6.4.7 Storage and Area Overhead

In our proposed schemes, we use 12-bit write counter (Wi) to measure the write

counts in the cache set. Besides this, we add a relocate bit (rij) and a write bit

(bij) with each block in the cache. Further, each entry of TGS is made up of 42-bit
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tag address (t), one valid bit (v) and log2A/r bits for window number (win num)

(used in case of FSDRP). We also add a 42-bit swap buffer to transfer the tag to

the new location. Thus, the storage overhead of FSDRP and FSSRP are computed

by using the following couple of equations:

OFSDRP =
S ∗Wi + S ∗ A ∗ (bij + rij) + S ∗ r ∗ (t+ v + win num) + 42

S ∗ A ∗ (B + t)
∗ 100

(6.7)

OFSSRP =
S ∗Wi + S ∗ (A− r) ∗ bij + S ∗ r ∗ (t+ v) + 42

S ∗ A ∗ (B + t)
∗ 100 (6.8)

In the above eqs. (6.7) and (6.8), B represents the block size. As an example, in

our selected configuration: 8MB 16-way associative L2 cache with the following

set of attributes: m = 4, r = 4 and I = 5 million cycles, the percentages of storage

overhead in FSSRP and FSDRP are merely 2.21% and 2.52%.

Whereas, the area overhead of FSDRP and FSSRP with respect to baseline STT

cache computed by using the NVSIM is 16%. Note that while obtaining the area

parameters, we have taken into the consideration of parallel (or FAST access in

the NVSIM) access with the STT-RAM main data cache array.

6.5 Parameter Comparison Analysis

In addition to the results presented in the previous section, we also performed

experiments with different configurations of the cache and the parameters (m, r

and I) for the algorithms. Here, we show the results for the reduction in inter-set

write variation, the percentage reduction in the intra-set write variation over the

baseline, lifetime improvement, EDP overhead, and the number of invalidations.

This analysis is instrumental in picking the optimal values (of the parameters) for

the proposed approaches in different cache configurations.
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Param.
LI

(%)
InterV
Base

InterV
FSDRP

IntraV
Red. (%)

Norm.
EDP

Invalid-
ation(k)

Ref.(I = 5M) 20.7% 103.9 69.9 8.5% 1.02 173k
I = 2M 23.2% 103.9 68.2 9% 1.03 188k
I = 10M 19.3% 103.9 73.3 3.5% 1.01 155k

Table 6.4: Comparison analysis for different interval values (I) (LI = Lifetime
Improvement, Base = baseline STT-RAM) ref.= 8MB, 16-way, m = 4, r = 4

and I = 5M

Param. Policy
LI

(%)
InterV
Base

InterV
FS

IntraV
Red. (%)

Norm.
EDP

Invalid-
ation(k)

Ref. (m=4)
FSSRP 14.7% 103.9 76.3 -14.8% 1.01 161k
FSDRP 20.7% 103.9 69.9 8.5% 1.02 173k

m=8
FSSRP 15.5% 103.9 71.3 -17.6% 1.02 172k
FSDRP 22.1% 103.9 68.9 2.2% 1.02 186k

m=2
FSSRP 12.8% 103.9 78.5 -13.6% 1.00 119k
FSDRP 19.8% 103.9 73.5 9.3% 1.01 157k

Table 6.5: Comparison analysis for different fellow group size (m)

6.5.1 Change in Interval (I)

Table 6.4 reports the values over distinct intervals against the reference interval

with I = 5 Million cycles in case of FSDRP. Change in the interval-span affects

the RP window rotation process. Smaller interval increase the number of rotations

of the RP window over the cache. Whereas, for the larger interval, the number

of rotations of the RP window are reduced. Small interval value reduces the

inter-set write variation more compared to the large interval. This is because

the large interval value increases the residency of the block that belongs to the

home set in the RP window. Such blocks residing in the RP window do not get

redirected and thus increase the write count of the set and become eventually

dead over the interval. In particular, the blocks belonging to the home set and the

RP window incurs several writes before the RP window gets rotated to another

location. Simultaneously, with large interval, the write concentration in the RP

window region of the cache increases that in turn impacts (and increases) the

intra-set write variation. However, in case of small interval values, due to increased

invalidations and write redirections, the system performance is affected with more

energy consumption, which further results into the increase in EDP.
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Param. Policy
LI

(%)
InterV
Base

InterV
FS

IntraV
Red. (%)

Norm.
EDP

Invalid-
ation(k)

Ref. (r = 4)
FSSRP 14.7% 103.9 76.3 -14.8% 1.01 161k
FSDRP 20.7% 103.9 69.9 8.5% 1.02 173k

r = 6 FSSRP 12.7% 103.9 78.2 -18% 1.00 139k
r = 8 FSDRP 16.7% 103.9 73.8 2.1% 1.01 169k

r = 2
FSSRP 14.3% 103.9 75.8 -12.4% 1.02 201k
FSDRP 19.3% 103.9 70.3 8.4% 1.03 187k

Table 6.6: Comparison analysis for different window size or RP size (r)

6.5.2 Change in Group Size (m)

Table 6.5 presents the results for the different group size (m) in the proposed

schemes. Note that, the negative values in the table implies the increment in the

intra-set write variation. Change in group size affects the availability of the lightly

written sets in the fellow group. In particular, the large group size increases the

chance of finding the lightly written set(s) in the group compared to small group

size. With the large availability of lightly written set, the chances of write redi-

rection increases, and this improves the lifetime and further reduce the inter-set

write variation. However, due to increased invalidation and the write redirections,

the system performance is marginally affected along with the energy consump-

tion that in turn, increases the EDP. Also, the increased number of redirections

populates more data in the RP window over the interval, which further impacts

the reduction in intra-set write variation as can be seen by the reduced reduction

percentage in the table 6.5 for both FSSRP and FSDRP.

6.5.3 Change in Window or RP Size (r)

Table 6.6 lists the result metrics for changing the window size (i.e. RP size

(r)). Change in the window size affects the residency of the relocatable block in

the different sets of the fellow group. An increment in window size increases the

residency of the relocatable blocks. This, in turn, increases the write count of the

lightly written set and it becomes heavily written set over the period. This reduces

the possibility of finding the lightly written set in the group and leads to more

inter and intra-set write variation compared to small RP/window size. However,
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Param. Policy
LI

(%)
InterV
Base

InterV
FS

IntraV
Red. (%)

Norm.
EDP

Invalid-
ation(k)

Ref. (C = 8MB)
FSSRP 14.7% 103.9 76.3 -14.8% 1.01 161k
FSDRP 20.7% 103.9 69.9 8.5% 1.02 173k

C = 4MB
FSSRP 4.2% 73.6 66 -18.4% 1.01 138k
FSDRP 13.7% 73.6 53.6 4% 1.02 145k

C = 16MB
FSSRP 11.2% 169.5 141.2 -2.20% 1.01 153k
FSDRP 13% 169.5 133.2 2% 1.03 198k

Table 6.7: Comparison analysis for different LLC capacity (C)

Param. Policy
LI

(%)
InterV
Base

InterV
FS

IntraV
Red. (%)

Norm.
EDP

Invalid-
ation(k)

Ref. (A=16way)
FSSRP 14.7% 103.9 76.3 -14.8% 1.01 161k
FSDRP 20.7% 103.9 69.9 8.5% 1.02 173k

A=8way
FSSRP 8.8% 149.8 130.3 -11.4% 1.00 132k
FSDRP 16.5% 149.8 110.8 12.9% 1.01 151k

A=32way
FSSRP 5.4% 74.8 66.2 -4.9% 1.02 202k
FSDRP 10.6% 74.8 58.3 1.6% 1.03 243k

Table 6.8: Comparison analysis for different LLC associativity (A)

in these cases, the inter-set write variation is marginally affected compared to the

reference case.

6.5.4 Change in Capacity (C)

Table 6.7 lists the change in metrics values for different cache capacities. The

size of the cache impacts the number of sets in the cache. Larger caches suffer

from large inter-set variation compared to the smaller sized cache. This is because,

in the case of larger caches with fixed associativity, the number of cache sets are

large. With a large number of cache sets, there is a good possibility for the non-

uniform write distribution across the cache set which in turn generates the inter-set

write variation. However, in both the cases (for smaller and larger caches), our

proposed schemes show considerable improvement in the coefficient of inter-set

write variation and thus improves the lifetime.

6.5.5 Change in Associativity (A)

Table 6.8 shows the behavior of the proposed schemes with different associativity

of the cache. Caches with lower associativity suffer from large inter-set write

variation as compared to cache with larger associativity. This is because the
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FSSRP FSDRP
Cache Configuration m r m r I
Small Size, Small Assoc. ↑ ↓ ↑ ↓ = / ↑
Small Size, Large Assoc. ↓ ↑ ↓ ↑ ↓
Large Size, Small Assoc. ↑ ↓ ↑ ↓ = / ↑
Large Size, Large Assoc. ↑ ↑ ↑ ↑ ↓

Table 6.9: Recommended values of m, r and I

cache with the same size and lower associativity have a large number of cache sets

compared to the cache with higher associativity. As same as the previous case, the

large number of cache sets introduces the uneven write distribution across the set.

Although, in both cases, cache with lower associativity and higher associativity,

our proposed schemes efficiently reduce the inter-set write variation and improves

the lifetime, accordingly.

6.5.6 Recommended Values

Based on the above analyses, we recommend the values to be used for the m, r

(in case of FSSRP) and I (in case of FSDRP) with the different configurations

of caches. Table 6.9 lists these recommended values for the proposed schemes:

FSSRP and FSDRP. Note that these recommended values are with respect to the

reference values i.e. m = 4, r = 4 and I = 5 million cycles. The rationale behind

the recommended values are presented below:

• Interval (I): To control the block residency, higher associativity needs small

interval value. Whereas, the cache with lower associativity is not directly af-

fected by I. Here, the value of I may be increased or kept the same according

to the requirement.

• Reserve ways (r): In case of larger associativity, to handle the large write

redirections from the NP, the value of r need to be increased. Whereas, the

value of r has to be decreased for lower associativity.

• Fellow Group Size (m): Large-sized cache suffers from large write variation.

For the removal of large write variation, the value of m needs to be increased.
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However, in the case of a smaller cache, the value of m is decided according to

the associativity and the window size.

6.6 Summary

Write variation inside the cache are affected by the applied replacement policy and

the access patterns of the next generation applications running on many cores. In

NVM based cache, this large write variation not only curtails the life but also di-

minishes the capacity of the cache over the period. This chapter presented efficient

techniques to reduce the write variation across the cache sets called the inter-set

write variation. Our first technique: FSSRP partitions the cache into groups of

cache sets called fellow groups. Further, each group is logically divided into two

parts: Normal and Reserve. To distribute the writes uniformly across the set, the

normal part of the set can use the reserve part of the other sets in a fellow group.

However, the major concern with the architecture of FSSRP is the increment in

write concentration in the reserve part of the cache, which in turn increases the

intra-set write variation, thus limiting the lifetime improvement. To overcome

this shortcoming, our second technique: FSDRP, based on FSSRP, partitions the

cache vertically into multiple equal-sized windows. During the execution, a dif-

ferent window is selected exclusively as a reserve part for a specified predefined

interval. This helps to disperse the redirected writes over the cache. We examine

the efficacy of the proposed approaches against the baseline STT-RAM and an

existing technique: Swap Shift. Experimental evaluation with a full system sim-

ulator shows a significant reduction in the coefficient of inter-set write variation

along with the lifetime improvement of 14.77% (FSSRP) and, 20.77% (FSDRP),

respectively. Simultaneously, we also observe some reduction in intra-set write

variation by FSDRP due to the dispersion of redirected writes. Thus, minimiz-

ing write variation inside the limited endurance non-volatile caches can make the

system even more reliable and efficient.





Chapter 7

Improving the Performance of

Non-Volatile and Hybrid Cache

using Victim Caching

This chapter proposed methods to compensate for the performance gap caused

due to the slow writes and the increase miss rate of NVM and the HCA. Towards

this, the victim cache is integrated with both NVM and HCA by taking into

account of various challenges with the employment of victim cache. The efficacy

of the proposed methods is evaluated with baseline and the existing hybrid cache

architecture.

7.1 Introduction

In the existing literature survey, many policies have been proposed to deal with the

reduction of write energy and the weak write endurance of the caches made up of

NVM technologies. But, at the same time, very less attention is paid to the perfor-

mance loss (due to costly write operations) in these NVM caches. Section 7.1 shows

the performance gap analysis in terms of percentage of CPI difference between the

SRAM cache and the STT-RAM-based LLC for different types of workloads for

177
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Work-
load

PARSEC v2.1 SPEC CPU 2006

Cache
Config.

Cann Ded Fluid Freq Stream X264 Mix1 Mix2 Mix3 Mix4

1MB 48.6% 7.1% 4.4% 3.63% 35.3% 16% 17.6% 12.2% 13.3% 10.2%
2MB 42.1% 5.4% 3.56% 2.37% 27.6% 11.9% 14.7% 11.8% 11.6% 9.53%
4MB 35.8% 2.2% 3.42% 1.75% 5.83% 11.1% 14.2% 10.3% 9.6% 9.3%
8MB 27% 1.8% 2.13% 1.66% 1.10% 8.6% 12.2% 8.82% 7.6% 7.85%

Table 7.1: Performance gap comparison between conventional SRAM and
STT-RAM LLCs

different cache configurations (Details about the experimental setup are reported

in section 7.5). From the table, we can conclude that the speedup reduction is the

significant bottleneck towards NVM employment. Some of the previous techniques

try to cope with the increased write latency by the use of Hybrid Cache Archi-

tecture (HCA) [27, 61]. In HCA, a small-sized SRAM partition is used to handle

the write pressure of the cache, thereby saving energy and improving the perfor-

mance. The only drawback with HCA is the increased miss rate on account of less

residency of the block in write-intensive workloads and the limited capacity of the

SRAM region. Table 2.2 shows this evidence in terms of percentage increase in

miss rate by the existing technique: RWHCA [27, 28] against STT-RAM baseline

for the different cache configuration against different workloads. The conclusion

that can be derived from the table is that as the cache size becomes larger, the res-

idency of the blocks increases, which in turn improves the miss rate. At the same

time, due to increased miss rate, the smaller-sized caches (which are generally used

in embedded systems) suffer from the performance.

To mitigate these performance gaps, this chapter proposes policies to improve the

performance gap between the SRAM and Non-volatile cache/HCA by not changing

the write behavior of caches but by associating an SRAM based fully associative

victim cache [122] with the existing Non-volatile cache architecture/Hybrid Cache

Architecture. As per our knowledge, none of the states of the art techniques

exploit the use of victim cache towards reducing the performance gap in NVM

caches and HCA. In particular, our proposed techniques differ in terms of the

employment of victim cache with the type of memory technology used in the cache.

However, some of the recent previous works [123, 124] tries to exploit victim cache

with SRAM based LLCs to reduce the write operations in the NVM based main
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memory system. With NVMs, our proposed victim cache architecture utilizes the

write intensity of the blocks in victim cache to decide whether it is moved to the

main cache or not upon a hit. Whereas, in HCA, the blocks evicted from main

hybrid cache are stored in victim cache. During the regular cache access upon a

miss in HCA, the VC is searched. If the required block is found in VC, it has to

be moved to HCA. In this case, we propose a policy that intelligently places the

blocks from the VC to an appropriate region of HCA depending on the type of

request. We also propose to partition the VC dynamically into STT and SRAM

region to balance the uneven block evictions from the different regions of the hybrid

cache according to run-time load. In this chapter, we employed victim cache with

the L2 as the hybrid LLC or pure LLC made of non-volatile memory technology.

We use STT-RAM memory technology as non-volatile memory. However, our

proposed technique can be easily extended to other non-volatile technologies such

as PCRAM and ReRAM based cache.

The main contribution of this chapter is as follows:

• In NVM cache, upon hits to blocks in the victim cache, our policy selectively

moves them to the main cache based on their write-intensity.

• In HCA, upon hit in the victim cache, we proposed a technique to intelligently

place the required block in the appropriate region of HCA.

• In HCA, another technique is proposed that partitions the victim cache dynam-

ically into two variable-sized regions to balance the uneven evictions from the

different regions of HCA.

• Experimental evaluation on a full system simulator GEM-5 [118] shows signif-

icant performance improvement along with the savings in the execution time

over the existing technique and the baselines.

Figure 7.1 presents the general overview of the proposed contributions: (a). Vic-

tim Cache with NVM cache (b). Victim Cache with Hybrid Cache in this chapter.
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Figure 7.1: General overview of contributions: (a). Victim cache with NVM
cache (b). Victim cache with hybrid cache in chapter 7

The rest of the chapter is organized as follows. Background and motivation are re-

ported in section 7.2. Section 7.3 presents the technique to overcome the challenges

imposed by integrating the victim cache with NVM cache. Section 7.4 Illustrates

the methods to mitigate the obstacles generated by the integration of victim cache

with HCA. Section 7.5 discussed the experimental evaluation. Results and analy-

sis are reported in section 7.6. Comparative analysis with different configurations

and parameters are presented in section 7.7. Finally, we conclude this chapter

in section 7.8.

7.2 Background and Motivation

7.2.1 Victim Cache

The victim cache proposed by Jouppi [122] is used for improving the performance

of SRAM based primary cache by retaining the victims evicted from the main

cache. Usually, the victim cache is an SRAM based fully associative structure,

and it is associated with any level of cache in the multi-level cache hierarchy.

When the block is evicted from the main cache, it is retained into the victim cache

by substituting the LRU block from the victim cache. When a block request (R)

is received from the upper-level cache, the requested block is searched in both the
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Figure 7.2: Percentage increase in write energy due to swap operation with
victim cache

main cache and victim cache in parallel. If the block is found in the victim cache,

the requested block is first placed into the main cache, and afterward, the request

(R) is served. In case, if there is no invalid entry in the main cache, the LRU block

from the cache set in the main cache is swapped with the requested block in the

victim cache.

7.2.2 Motivation

Employment of the victim cache with the non-volatile cache requires excellent vic-

tim retention and block migration policy (from victim cache to the main cache).

This is because migration incurs extra write cost and latency in the case of the

non-volatile cache. Fig. 7.2 shows the increase in write energy due to swap/migra-

tion operation in between victim cache and non-volatile main cache for different

workloads. These extra swaps or migration operations due to hits in the victim

cache increase the dynamic energy by around 14.4% and adversely impact the

expected performance gain offered by the use of victim cache. The conclusion

that can be derived from the figure is that instead of migrating or swapping every

block, if we selectively retain some of the blocks in the victim cache based on

their write intensity, and entertain future requests to such blocks directly from the

victim cache, we can further save the increase in write energy and improve the

performance of the non-volatile cache.
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Work-
loads

PARSEC v2.1 SPEC CPU 2006
Mean

Cann Ded Fluid Freq Stream X264 Mix1 Mix2 Mix3 Mix4
STT

Placement
96.1% 99.8% 89.7% 60.3% 98.1% 53.6% 60.6% 89.3% 80.8% 97.7% 82.6%

SRAM
Placement

3.9% 0.2% 10.3% 39.7% 1.9% 46.4% 39.2% 10.7% 19.2% 2.3% 17.4%

Table 7.2: Percentage times the block placed from victim cache to different
region of hybrid cache

On the other hand, the employment of victim cache with hybrid cache requires

good victim retention policy; and policy to place the blocks to the appropriate

region of hybrid cache when they are moved back from the victim cache. This

policy is needed because, upon a hit in the victim cache, there is a possible place-

ment of the write-intensive victim blocks in the STT region of hybrid cache as this

depends on the replacement policy of HCA, and that the LRU may be from STT

region. This placement may incur extra writes to STT, which may degrade the

performance as well as increase energy consumption. Such cases will overcome the

benefits offered by the victim cache associated with the main hybrid cache. Sec-

tion 7.2.2 shows the percentage times a block is placed in the STT region of main

hybrid cache upon a hit in the victim cache (for different workloads). The con-

clusion that can be derived from the table is that, on average, 82.6% of the times

block is placed in the STT region. This is due to the fact that there is a large

possibility of LRU victim selection from the STT region as the cache set contains

three fourth STT ways compared to one fourth SRAM ways. This motivates us

to propose an effective and intelligent block placement policy to the appropriate

regions of the hybrid cache upon a hit in the victim cache.

7.3 Integration of Victim Cache With Non-Volatile

Cache

In this work, we propose to add SRAM based victim cache to NVM based main

cache. The victim cache stores the victims as well as directly serves the request

for write-intensive blocks instead of relocating them to NVM main cache. The

decision to keep the block in victim cache is based upon the weight associated
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Figure 7.3: Schematic view of proposed victim cache architecture with non-
volatile main cache

with each block. As the victim cache directly serves the request for individual

blocks, the state of these blocks is maintained with directory entry of the main

cache. These extra entries help in maintaining the coherence of the blocks. In our

experimental evaluation, we update the LLC controller to handle the coherence of

these additional blocks.

7.3.1 Architecture

Fig. 7.3 shows the representational view of victim cache architecture and its re-

spective position in the memory hierarchy. In our architecture, the victim cache is

associated with last level STT-RAM-based cache. We implemented victim cache

as a fully associative structure that consists of both tag and data array as same

as the normal cache. The data array of the victim cache consists of a victim data

block and a 4-bit weight field. The weight is computed by giving three times more

weight to write counts over read counts. This is because writes are more expensive

in the non-volatile cache. The values of read and write counters are taken from

the main cache at the time of eviction.
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Algorithm 7 Write Latency aware Victim Caching (WLVC)

1: ULC: Upper Level Cache.
2: LLC: Last Level Cache.
3: I : Predefined interval.
4: Th: Threshold to decide write intensive block.
5: Vn: Total number of entries in victim cache.
6: List < integer > wt : List of weight entries associated with each block of victim cache. Size of list is Vn.
7: RCij : Read Counter with respect to set i and way j that records the number of read accesses from the ULC

to the particular entry of LLC. 0 ≤ i < S, 0 ≤ j < A
8: WCij : Write Counter with respect to set i and way j that records the number of write accesses from the

ULC to the particular entry of LLC. 0 ≤ i < S, 0 ≤ j < A
9: Run application for I cycles treating the LLC and victim cache as per their normal behavior.
10: repeat
11: for every interval I do
12: Thr = Avg(wt[i]) +Bias
13: for each request R from ULC to LLC do
14: if R = ReadDirectHit then
15: The read operation is performed on block B in the LLC. Increment the corresponding RCij

counter of the block.
16: else if R = WriteDirectHit then
17: The write operation is performed on block B in the LLC. Increment the corresponding WCij

counter of the block.
18: else if R = ReadIndirectHit or R = WriteIndirectHit then
19: Let k be the position of the block in the victim cache.
20: if wt[k] ≥ Th then
21: Serve request R from the victim cache.
22: wt[k] + +
23: else
24: Swap the block with the LRU entry of main cache.
25: Serve request R from main cache.
26: Increment the corresponding counter associated with block in main cache.
27: end if
28: else
29: Forward request R to next level memory. . Cache Miss
30: Evict LRU B′ from main cache and load the incoming block.
31: Place B′ in victim cache by evicting the WLRU.
32: Update weight of B′ in victim cache.
33: end if
34: end for
35: end for
36: until the end of the execution

7.3.2 Operation

The operation of the proposed technique is described through the Algorithm 7. To

discuss the algorithm in a better way, we consider a regular STT LLC of size M

with S number of cache sets and associativity A and its associated fully associative

victim cache of size N with Vn number of entries (line 5). The parameter I is used

as a predefined interval (line 3). The weight associated with each victim entry in

the victim cache is represented by the list wt of size Vn (line 6). Read and write

counters associated with each block in the LLC is represented by two 2D arrays

RCij and WCij (line 7 and 8).

For the initial I cycles of application execution, the LLC is treated as a usually
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available cache, and its associated victim cache behaves as per their normal be-

havior (line 9). The read and writes counters are updated accordingly. Upon the

block eviction from the main cache, the block move to the victim cache, and its

weight value is calculated.

Our second aim is to retain the write-intensive block inside the victim cache. We

defined the write-intensive blocks as those blocks weighting above average. Due

to the limited capacity of the victim cache, we can retain a small percentage of

write-intensive blocks. Hence, the threshold is defined as the summation of average

weight entries of all victim entries and Bias (line 12). The Bias will be empirically

calculated.

After I cycles are over, for every request R coming from upper-level cache, we

perform a parallel search in the main cache and victim cache. If the block is found

in the LLC, we call it a direct hit. Otherwise, if the block is found in the victim

cache, we call it an indirect hit. Depending upon the type of requests and the

result of the lookup operation, different operations are performed in the proposed

architecture, which is described below:

• Read Direct Hit: The read operation is performed regularly on the block B

in the LLC. Along with the read operation, the read counter RCij of block B is

incremented (lines 14 and 15).

• Write Direct Hit: The write operation is performed normally on block B,

and the corresponding write counter WCij is incremented (lines 16 and 17).

• Indirect Hit: In this case, the block B is found in the victim cache at location

(say) k (line 18 and 19). If the weight entry of the block is equal or greater than

Th (line 20), then the request R is served for the block B from its location in the

victim cache (line 21). In this scenario, the corresponding weight entry of the B

is incremented depending upon the type of request (+1 for read and +3 for write)

(line 22).

On the other hand, if the weight entry of block B is less than Th (line 23), then

the block in victim cache is swapped with the LRU position L of the LLC (line 24).
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The weight of the new incoming block to the victim cache is updated accordingly.

The request R is served by the LLC (lines 25 and 26).

• Cache Miss: In case, when the block is not found in either of the caches, i.e.,

main cache or victim cache, the Request R from ULC is forwarded to the next

level of memory (main memory in our case) (line 28 and 29). The new incoming

block is loaded in the main cache, and LRU B′ is evicted (line 30). This B′ is kept

in the victim cache by removing Weighted Least Recently Used block (discussed

in the next subsection) of victim cache (line 31). The weight entry of B′ in the

victim cache is updated using the read and write counters from the main cache

(line 32). Note that with each miss in the victim cache, the weight value of all the

entries is decremented by one. This keeps the most accessed and updated blocks

in the victim cache.

7.3.3 Weighted Least Recently Used Replacement Policy

(WLRU)

In place of conventional Least Recently Used replacement policy, we use WLRU

for the block eviction in the victim cache. In the WLRU, the block is evicted

according to the weight, as well as the timestamp. Weight has the priority to

make a decision. The block whose weight is less than the other blocks is evicted

first. In case, if two or more blocks have the same weights, then the decision is

made according to the timestamp. This helps in retaining write-intensive blocks

in the victim cache.

7.3.4 Working Example

The working example of WLVC for the indirect hit is presented in fig. 7.4. The

figure shows the ULC, LLC, and victim cache having eight entries. Two cases are

considered to demonstrate the method. In the first case, a write request (shown

by dotted arrow-1) from the ULC to the way-1 of the victim cache is generally
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different (b) When some of the weights and time stamps are same

served from the original location as the weight entry of the block is greater than

the Th. Once the request is served, the write-back acknowledgment is sent back to

the ULC (arrow 2), and the weight entry of the block at way-1 is incremented by

+3 (arrow 3). For the second case, the read request from the ULC to the way-3 of

the victim cache (arrow 4) results in the swap operation between the LRU entry

of the LLC and the requested block of victim cache (arrow 5). This is because the

associated weight entry of way-3 is less than Th. Once the blocks are swapped,

the request from the ULC is served from the LLC (arrow 6). Note that during

the swap operation, the weight of the LRU entry of the LLC coming to the victim

cache is updated with the help of read and write counters (arrow 7).

The working example of the Weighted LRU replacement (WLRU) policy is shown
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in Fig. 7.5. The gray-scale of the blocks represents the stack position in the re-

placement queue with dark gray representing the maximum weight and the lightest

color representing minimum weight. The explanation of the example in part (a) is

straightforward. Among all the entries, the block DB3 is at the WLRU position

in the stack, as its weight value is least among the other weight values. Hence

victim is DB3. In the other case (part (b)), when some of the entries have the

same weight, the WLRU position is decided based upon the timestamp associated

with each entry of the cache. For example, DB2 becomes the WLRU because its

timestamp is less than that of DB1.

7.4 Integration of Victim Cache with Hybrid Cache

In this work, our main aim is to improve the performance of HCA using a Victim

Cache (VC), at the same time, maintain the principles of HCA that control the

writes in the STT region. The supporting VC must obey this, and therefore we

propose a policy that decides the partition in HCA when a block is moved back

to HCA from VC called: Access-based Victim Block Placement (AVBP).

The theme of VC is to retain the most recent victims from the HCA. However,

due to the uneven partition size of HCA, the evictions from HCA may be more

from smaller partition: SRAM or will depend on application behavior. In case the

SRAM partition of HCA performs more evictions over an interval, these evicted

blocks, when moved to VC, will remove the blocks in VC belonging to the STT

partition of HCA. To maintain a balanced mix of victims coming from individual

partitions of HCA to the VC, we propose to partition the VC to hold blocks

coming from each region. Depending on the increase or decrease in the number of

evictions from SRAM, the size of partitions in VC is adjusted at run-time so that

victims from STT get judicious space in VC. This policy is called Region-based

Dynamic Victim Cache Partitioning (RDVCP).



Chapter 7. Victim Caching to improve the Performance of NVM and HCA 189

Core / Upper Level Cache

Hybrid L2 Cache
(LLC)

Victim
Cache

Main Memory

S

R

E
M

Set-0
Set-1

Set-N

Way-0 Way-1 Way-2 Way-11

Tag Array STT Data Array

w0 w1 w15

Tag MD
Victim Tag Array

Victim Data Array

0 1 31

0 1 31

Tag DBMD

Way-12 Way-15

SRAM Data Array

r_bit

Figure 7.6: Schematic view of victim cache architecture associated with hybrid
cache

7.4.1 Architecture

Figure 7.6 shows the schematic view of victim cache architecture associated with

the main hybrid last level cache architecture. As shown in the figure, the hybrid

cache is made up of a large number of STT ways and the small number of SRAM

ways. The tag array (made up of SRAM) of main hybrid cache contains the tag and

the metadata (MD) information: state information (to maintain the coherence of

LLC block), valid and dirty bit for each block in the data array. The victim cache

is a small SRAM based fully associative structure that consists of both tag and

data array as a normal cache. The tag array of victim cache contains the tag and

the MetaData (MD) information (a valid bit and a dirty bit) for each data block

entry of victim cache. Note that when the block is evicted from the main hybrid

cache and placed into the victim cache at the location, say T , the dirty bit at

location T will be updated with the value of the dirty bit in the main cache. With

each data entry in the data array of victim cache, a single bit: r bit, is associated.

The use of r bit is to identify the region of the main hybrid cache from where the

block was evicted. Note that, with each entry of victim cache, there is no need to

maintain the coherence information as the blocks maintained in the victim cache

is the evicted block from the main cache.
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Algorithm 8 AVBP
1: ULC: Upper Level Cache.
2: LLC: Last Level Cache.
3: Vn: Total number of entries in victim cache.
4: repeat
5: for every request R coming from ULC to LLC and miss in HCA along with hit in VC do
6: Let the requested block B found in the victim cache at position m.
7: if R == ReadHit then
8: if B.dirty == 1 then
9: Swap B with LRU of SRAM region of the HCA.
10: else
11: Swap B with LRU of STT region of the HCA.
12: end if
13: else
14: Swap B with LRU of SRAM region of the HCA. . WriteHit
15: end if
16: end for
17: until the end of the execution

7.4.2 Access based Victim Block Placement (AVBP)

This section elaborates on our proposed Access-based Victim Block Placement

(AVBP) technique that places the block effectively and intelligently to the appro-

priate region of hybrid cache when found in the victim cache.

Operation: We elaborate on our proposed technique through the algorithm 8.

The algorithm reports the case when the block is found in the victim cache, and it

is to be placed into the appropriate region of the main hybrid last level cache. To

explain the algorithm in an easy way, we consider a fully associative Victim Cache

with Vn number of entries (line 3). For each request coming from Upper-Level

Cache (ULC) to Last Level Cache (LLC), the tag lookup operation is performed

in both the main hybrid cache and victim cache. Upon a hit in the main hybrid

cache, the requested block is normally served as same as the normal cache. On

the other hand, when the block is found in the victim cache, at position m (line

6) then according to the type of request, the block is swapped with appropriate

regions of the main hybrid cache as described below:

• Read Hit: In this case, the dirty bit of the requested block B at position m in

the victim cache is examined. If the requested block is found to be dirty, the block

B is swapped (or moved if there is an invalid entry in the SRAM region of hybrid

cache) with the LRU block of the SRAM region in the main hybrid cache. The

reason behind putting the block in the SRAM partition is the multiple prospective

future write requests for the requested block B, it being already dirty (lines 8 and
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Work-
loads

PARSEC v2.1 SPEC CPU 2006
Mean

Cann Ded Fluid Freq Stream X264 Mix1 Mix2 Mix3 Mix4
SRE >STE 99.4% 39.6% 19.6% 22.7% 4.31% 32.1% 19.3% 18.5% 13.2% 23.1% 29.8%

Table 7.3: Percentage times SRAM Eviction (SRE) greater than the STT
eviction (STE)

9). On the other hand, if the requested block is not dirty, the block is swapped

with the LRU block in the STT region of the main hybrid cache (lines 10 and 11).

• Write Hit: In this scenario, the block is swapped with the LRU victim block

of the SRAM region due to multiple prospective future write requests (line 13 to

15).

• HCA Miss and VC Miss: In case, if the block is not found in the main

hybrid cache and the victim cache, then it is fetched from the main memory. As

per the placement policy of the main cache, the fetched block is placed in the

particular region, and the LRU block is evicted from that region. The LRU is

kept in the victim cache. Note that, in this case, in order to make room for the

evicted block of HCA, the LRU block of the victim cache is evicted.

Limitation: The limitation of AVBP is the larger number of evictions from the

SRAM region on account of the proposed placement policy of HCA and the ac-

cess behavior of running applications. In other words, the behavior of applica-

tions running on the multiple cores will not be constant, and it will change over

the period. By experimental analysis, we have found that within an interval of

two million cycles, sometimes the eviction from the SRAM region is greater. Sec-

tion 7.4.2 presents this evidence where the number of times the SRAM region

eviction is greater than the STT region eviction throughout two million intervals

for the whole execution. As reported in the table, on an average 29.8% of times,

the evictions from the SRAM region are higher than the STT region, and these

evicted SRAM blocks will replace the STT block of VC. This can cause the vic-

tims evicted from the STT-RAM will not stay back longer in the victim cache and

get prematurely evicted from thereself. This motivates us to propose a dynamic

region-based victim cache partitioning technique to control this uneven SRAM

eviction behavior and keep judicious space in VC for STT blocks.
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7.4.3 Region based Dynamic Victim Cache Partitioning

(RDVCP)

Main Idea: The key idea of RDVCP is to intelligently partition the victim cache

dynamically into two regions: one for SRAM victims and one for STT victims.

The victim evicted from the main hybrid cache is placed appropriately in one of

these victim regions. The sizes of the SRAM victim region and STT victim re-

gion are adjusted at run-time depending on the application pattern. Note that

the dynamic decision for altering the sizes is taken after every predefined interval I.

Operation: We explain the operation of RDVCP through the algorithm 9. The

algorithm describes the interval wise Region-based Dynamic Victim Cache Parti-

tioning and the placement of the evicted block from the main hybrid cache to the

different regions of victim cache. Note that while placing the victims, the algo-

rithm is maintaining the allocated partition sizes for the current interval. Similar

to algorithm 8, the functionality of parameter Vn is the same (line 2 of algorithm 9).

The tunable parameter I is used as a predefined interval for making the decision

of dynamic victim cache partitioning (line 3). The threshold used for altering

the allocated partition sizes of the victim cache is represented by the parameter

Bias1 (line 4) at the end of each interval. The count of the total number of evic-

tions from the SRAM region of the main hybrid cache in the current interval and

in the previous interval is represented by the variables Curr SRAM Evict and

Prev SRAM Evict respectively (line 5 and 6). The variables vic STT ways and

vic SRAM ways are used to maintain the count of the number of victim ways

allocated to the STT-RAM victim region and SRAM victim region respectively

for the current interval (line 7 and 8). Initially, at the beginning of execution, half

of the ways of the victim cache is allocated to each region (line 9). For a block

in victim cache, to identify from which region in the main hybrid cache it came

1We have found that the value of Bias by empirical analysis by conducting an extensive
profiling for the different set of values as reported in section 7.7.3
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Algorithm 9 RDVCP
1: HCA: Hybrid Cache Architecture
2: Vn: Total number of entries in victim cache.
3: I: Predefined Interval.
4: Bias: Threshold to change the partition size of V C.
5: Curr SRAM Evict: Eviction counter that records the number of eviction from SRAM in the current interval.
6: Prev SRAM Evict: Eviction counter that maintains the eviction count from the previous interval.
7: vic STT ways: Number of ways allocated in V C for STT region.
8: vic SRAM ways: Number of ways allocated in the V C for SRAM region.
9: vic STT ways = Vn/2; vic SRAM ways = Vn/2
10: max SRAM vic = 3Vn/4; min SRAM vic = Vn/2
11: Run application for I cycles treating the whole cache as a normal cache and the victims evicted from each

region of HCA are stored in the respective partition of V C.
12: repeat
13: for at the end of every interval I do
14: Let δ = Curr SRAM Evict− Prev SRAM Evict
15: Let δ′ = Prev SRAM Evict− Curr SRAM Evict
16: x = vic SRAM ways+ Vn/4; x′ = vic SRAM ways− Vn/4
17: y = vic SRAM ways+ Vn/8; y′ = vic SRAM ways− Vn/8
18: if δ ≥ 2 ∗Bias then
19: if x ≤ max SRAM vic then
20: vic SRAM ways = x
21: else if y ≤ max SRAM vic then
22: vic SRAM ways = y
23: end if
24: else if Bias ≤ δ < 2 ∗Bias then
25: if y ≤ max SRAM vic then
26: vic SRAM ways = y
27: end if
28: else if δ′ ≥ 2 ∗Bias then
29: if x′ ≥ min SRAM vic then
30: vic SRAM ways = x′

31: else if y′ ≥ min SRAM vic then
32: vic SRAM ways = y′

33: end if
34: else if Bias ≤ δ′ < 2 ∗Bias then
35: if y′ ≥ min SRAM vic then
36: vic SRAM ways = y′

37: end if
38: end if
39: vic STT ways = Vn − vic SRAM ways size.
40: IRV P (vic STT ways, vic SRAM ways)
41: end for
42: until the end of the execution

Interval wise Region based Victim Placement

43: function IRVP(new STT ways, new SRAM ways)
44: exist STT ways: Existing allocation of STT victim counts.
45: exist SRAM ways: Existing allocation of SRAM victim counts.
46: for every eviction of block B in HCA do
47: Let the block B evicted from the region P of HCA.
48: if new P ways ≤ exist P ways then
49: Place B to its respective region P of VC.
50: else
51: Place B to the other region P ′ of VC.
52: exist P ways−−; exist P ′ ways+ +
53: Update r bit for B.
54: end if
55: end for
56: end function
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from, we use a bit called r bit. If the r bit is set, the block has come from the

STT region; else from the SRAM region.

We propose the maximum and minimum (line 10) size allowed for each victim

region as follows:

• max SRAM vic = 3Vn/4, min SRAM vic = Vn/2

• max STT vic = Vn/2, min STT vic = Vn/4

For the initial I cycles of application execution, the victim cache behaves normally

with each block evicted from the main hybrid cache stored in the respective region

of the victim cache (line 11). Once the application crosses the I cycles, i.e., at

the end of interval, different operations are performed according to the uneven

evictions from the SRAM region of the main hybrid cache:

• The SRAM evictions in the current interval are greater than the

Previous interval: In this case, depending on the difference (δ) in the values

of current interval SRAM eviction and the previous interval SRAM eviction, an

appropriate increase in the SRAM victim region is performed. Also, note that

increment in the SRAM partition results in the corresponding decrease in the

STT partition of VC (line 39). Specifically, if δ ≥ 2 ∗ Bias, we increase SRAM

part by at most Vn/4 (lines 18 to 20). If the increase in the value of victim regions

violates a maximum constraint, then an increase of Vn/8 is performed (lines 21

to 23). Further, in case, if the partition size is already at the maximum limit, no

change in size is performed.

On the other hand, if the difference Bias ≤ δ < 2 ∗ Bias an increase by Vn/8 is

performed to the size of the SRAM victim region (lines 24 to 26).

• The SRAM evictions in the current interval are less than the pre-

vious interval: Using the same logic as in the above case, a decrease of SRAM

victim region size is performed keeping the minimum size constraint (lines 28 to

38).
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Note that the above operations of the dynamic victim cache partitioning are per-

formed at the end of each interval until the end of application execution (line 42).

This decides the new sizes of the partition for the next interval. In the meanwhile,

between the intervals, the evicted block from the main hybrid cache will be placed

to the appropriate regions of the victim cache according to the new sizes of the

victim regions (line 40). If the size of victim region changes, then there may be

a case that SRAM blocks are in the STT region of victim cache and vice-versa.

To stabilize the region with the correct block, we proposed an Interval wise

Region-based Victim Placement (IRVP) algorithm.

In the algorithm, the existing status count for each region in the victim cache is

represented by the variables exist STT ways and exist SRAM ways respectively

(lines 44 and 45). Let the block B be evicted from HCA from region P (the region

other than P of HCA is represented by P ′) (line 46 and 47), to place B in V C;

two cases are described below:

• The new size of the P is less than or equal to the existing count: In

this case, the block B is placed in the region P of the victim cache by victimizing

the LRU block from P . Note that, in this case, for identifying the region of the

block for victim selection, the r bit is used (lines 48 and 49).

• The new size of the P is higher than the existing count: Here, the

block B is placed in the region P ′ of the victim cache by evicting the LRU block

(at the location, say T ) from P ′. Once the block B is placed, the respective r bit

at location T is accordingly updated (line 50 to 54).

7.4.4 Working Example

Figure 7.7 shows the working example of Interval wise Region-based Victim Place-

ment. In the example, an eight entry fully associative victim cache is considered

that consist of the victim data block (represented by SR for SRAM region block

and ST for STT region block) and it’s associated r bit. Two cases are considered
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to demonstrate the method. In the first case (a), the existing count of the SRAM

victim region blocks in the victim cache is lesser than the new SRAM victim region

count in the current interval. In such conditions, when the block SR6 is evicted

from the SRAM region of the hybrid LLC, then the evicted block is placed in

the STT victim region of the victim cache at LRU position 4 and r bit is made

to zero. On the other hand, in the second case (b), the existing status count of

the SRAM victim region block in the victim cache is greater than the new SRAM

victim region count of the interval. Here, when the block SR6 is evicted from the
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Components Parameters
Processor 2Ghz, Quad Core, X86

L1 Cache
Private, 32 KB SRAM Split I/D caches, 4-way

set associative cache, 64B block, 1-cycle
latency, LRU, write-back policy

L2 Cache
Shared, 16-way STT/Hybrid (12-way STT-RAM and 4-way SRAM)

set associative cache , 64B block, LRU, write-back policy
Victim Cache SRAM, fully-associative, 64B block, WLRU/LRU policy
Main Memory 2GB, 160 cycle Latency

Protocol MESI CMP Directory

Table 7.4: System parameters

LLC, it will be placed in the respective SRAM region by evicting its LRU blocks

say at location 0, and r bit remains the same.

Figure 7.8 summarizes the working flow chart of the proposed approach: WLVC. Fig-

ure 7.9 shows the summarized working flow diagram of proposed approaches:

AVBP and, RDVCP during application execution in the CMP system. The fig. 7.9

(a) shows the approach used during the RDVCP. While, fig. 7.9 (b) presents the

working of AVBP and fig. 7.9 (c) shows the interval wise region-based victim

placement.

7.5 Experimental Methodology

7.5.1 Simulator Setup

We implemented our proposed approaches on a full system simulator GEM-5 [118].

Table 7.4 shows the system parameters used in our simulations. The experiments

are conducted on the different configurations of Hybrid LLC and STT-RAM LLC

(L2 cache) and with different victim cache sizes. CACTI [19] and NVSIM [21]

simulator obtains the timing, energy, and area parameters of these configurations

at the 32nm technology node. Table 7.5 reports these values. Note that we have

also considered the energy consumption (including static and dynamic) along with

the latency overhead and circuit cost of victim cache in our experiments. The area

overheads are reported and modeled using NVSIM.
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LLC/
VC Size

LLC
Type

Static
Power
(mW)

Read
Energy

(nJ)

Write
Energy

(nJ)

Read
Latency

(ns)

Write
Latency

(ns)

LLC Size = 1MB
SRAM 138.7 0.116 0.116 1.874 1.874
STT 59.44 0.188 2.117 2.117 11.34

Hybrid 79.25
0.188/
0.116

2.117/
0.116

2.117/
1.874

11.34/
1.874

LLC Size = 2MB
SRAM 282.2 0.221 0.221 2.00 2.00
STT 92.68 0.285 2.147 2.336 11.54

Hybrid 140.1
0.285/
0.221

2.147/
0.221

2.336/
2.00

2.336/
2.00

LLC Size = 4MB
SRAM 554.3 0.330 0.330 2.180 2.180
STT 229.6 0.346 2.270 2.577 11.94

Hybrid 310.8
0.346/
0.330

2.270/
0.330

2.577/
2.180

11.94/
2.180

LLC Size = 8MB
SRAM 1094.5 0.432 0.432 2.043 2.043
STT 342.0 0.693 2.355 3.177 12.41

Hybrid 530.1
0.693/
0.432

2.355/
0.432

3.17/
2.043

12.41/
2.043

Victim Cache
VC Size = 16 Entries

SRAM
2.93 0.007 0.007 0.240 0.240

VC Size = 32 Entries 5.48 0.009 0.009 0.307 0.307
VC Size = 64 Entries 10.44 0.014 0.014 0.416 0.416

Iso Area Analysis
LLC Size = 6MB STT 285.8 0.520 2.31 2.87 12.17

Table 7.5: Timing and energy parameters for different LLC and VC configu-
rations

We compared our proposed approach against different baselines, existing approach,

and with the different variety of proposed approaches (in case of hybrid cache) as

mentioned below:

• Base pure STT and Base pure SRAM: The baseline architecture with

no data placement policy and uses Least Recently Used (LRU) as a replacement

policy.

• STT Main Cache with Victim Cache (VC): The baseline STT based main

cache architecture with integrated victim cache having no selective caching scheme

and uses LRU as a replacement policy.

• STT Main Cache with Write Latency aware Victim Cache (WLVC):

STT-RAM-based Non-volatile Cache with the support of caching the write-intensive

block in the victim cache. The victim cache uses WLRU as a replacement policy.

• Base HCA: The baseline hybrid cache architecture with integrated victim

cache having no data placement policy and uses LRU as a replacement technique.

• RWHCA [27] (denoted by R): An existing data placement approach that

places data according to the type of access to the different regions of HCA. Here,
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2-bit counters are used to capture the accesses of the block. When there is a

disproportion in the accesses in any of the regions, it leads to the migration of

blocks.

• HCA with Victim Cache and Placement policy (HCAVP) (denoted by

O): The baseline HCA that places the data to different regions upon LLC miss as

same as RWHCA. In this variety, the only difference with RWHCA is that there

are no counters associated with the blocks, and there is no migration process.

• HCAVP with AVBP: (denoted by P): Hybrid cache architecture with the

full support of placement policy that includes the placement of block from victim

cache upon hit to different regions of HCA.

• HCAVP with RDVCP: (denoted by Q): Hybrid Cache Architecture that

includes the initial block placement from main memory upon LLC miss and the

proposed region-based dynamic victim cache partitioning approach.

• HCAVP with AVBP and RDVCP (denoted by S): Hybrid cache architec-

ture integrated with all the proposed approaches.

In our simulations, we have considered the extra time taken for the accesses and

searching in the victim cache in the experiments. In particular, five cycles are

taken during the block swapping between the main hybrid/STT main cache and

the victim cache, and one cycle is taken for the searching of the block in the victim

cache. This is the extra cycle, as the search has already begun in parallel with

the main cache. The writing and the placement of the evicted LRU blocks from

the main STT/HCA to the victim cache will not fall into the critical path as the

victim cache is an independent structure and is not affected when a new request

comes to the main cache. We consider the 42-bit swap buffers in our experiments

for the tag swap operations.

In WLVC, we have set the size of the counters (RCij and WCij) associated with

each block of main cache set to 2-bit2. Note that these counters (RCij and WCij)

2Before choosing the size, we perform extensive analysis on the set of PARSEC and SPEC
benchmark suites and found out that in most of the cases both the read and write hits can be
accommodated in a 2-bit counter.
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Benchmark
suite

Benchmarks

PARSEC
v2.1

Canneal (Cann), Dedup (Ded), Fluidanimate (Fluid),
Freqmine (Freq), Streamcluster (Stream) X264

SPEC
CPU2006

Mix1: milc, hmmer, bzip2, soplex (High WBKI)
Mix2: dealii, sjeng, h264ref, tonto (Random mix)
Mix3: gobmk, tonto, sjeng, namd (Mid WBKI)
Mix4: calculix, astar, dealII, h264ref (Low WBKI)

Table 7.6: Benchmarks used for evaluation

are the saturating counter and made up of SRAM memory technology. On the

other hand, the size of the weight field (wt) and timestamp associated with each

block of the victim cache is set to 4 and 5-bits. The value of weight counter (wt) is

updated with each read and write in the victim cache as well on a miss. Note that

the extra time required for computing and updating the counters (including RCij,

WCij and wt) is not in the critical path (as it is done in parallel with writing and

reading of the block).

Whereas in RDVCP, to measure the evictions from the SRAM region, we added

two 12-bit counters, and to maintain the existing count and new count of the

victim region, four 5-bit counters are used.

7.5.2 Workloads

The proposed techniques are examined by using both multi-threaded: PARSEC [6]

and multi-programmed: SPEC CPU 2006 [7] benchmark suites. Six benchmarks

with medium input set are taken from PARSEC benchmarks and twelve bench-

mark with ref input set are used from SPEC. Section 7.5.1 lists the mixes of ap-

plications. The mixes (mix1, 3, and 4) composed of the multi-programmed bench-

marks are based upon the Write-Back per Kilo Instruction (WBKI). Whereas, the

mix2 shows the random composition of multi-programmed benchmarks.

7.6 Results and Analysis

Out of the different configurations of LLC and VC sizes, we select 4MB 16-way

set associative last level hybrid/STT main cache and 32-way (Vn) fully associative
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Policy Region O P Row

RWHCA
STT 35.8% 39.6% 1

SRAM -34.6% -37.1% 2
Total 5.52% 5.51% 3

Base HCA
STT 56.5% 59.1% 4

SRAM -171.5% -176.5% 5
Total -0.84% -0.85% 6

Base STT
STT 66.3% 68.3% 7
Total -1.91% -1.92% 8

Base SRAM
SRAM 38.4% 37.3% 9
Total -0.80% -0.82% 10

Table 7.7: Percentage savings in write accesses (higher is better)

victim cache. Similarly, the 4MB 16-way (partitioned into two regions: 12-way

STT and 4-way SRAM) associative hybrid cache architecture is considered for

RWHCA. In the simulations of WLVC, we set the values3 of I to 1M cycles and

Bias to +1. Whereas, in the simulations for RDVCP, we choose the value of Bias

to 500 and I to 1M cycles. The reason behind selecting these values and cache

configurations are explained in the later section, where we present brief results with

the different cache configurations and parameters values. We show the effects on

the following metrics: Write Savings (for only HCA), CPI Improvement, Execution

time, Miss Rate, and Energy Overhead.

7.6.1 Write Accesses

Figure 7.10 presents the normalized write accesses against RWHCA. Section 7.6

presents the percentage savings in write access by the techniques: O and P over

RWHCA and the base STT, SRAM, and HCA. Note that the negative value in

the table (row 2, 5, 8, and 10) imply the increase in writes. It shows that in the

proposed techniques, a larger number of writes are performed in the SRAM region

of HCA (row 2 and 5).

With respect to RWHCA, the saving in write accesses by policy P (39.6%) is

basically due to lesser writebacks by AVBP (row 1). However, a large number of

writebacks are redirected to the SRAM region (-37.1%) (row 2). Note that the

3We conducted extensive profiling for the different sets of values for I. And, accordingly, we
selected the most stable values.
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Figure 7.10: Normalized LLC writes of O and P against RWHCA (R) (lower
in STT is better)

improvement in the total write accesses (row-3) is basically due to the improvement

in the STT region as we have a 3:1 ratio in the hybrid cache of STT versus SRAM.

Compared to Base HCA, the saving in the write accesses for STT region (59.1%)

(row 4) and the increase in the write for the SRAM region (-176.5%) (row 5) are

due to the appropriate placement of the different types of blocks in the different

regions of HCA.

Also, over the baselines, the region-wise significant gain is observed. But at the

same time, due to proper placement by the AVBP, the proposed technique main-

tain the same number of writes with the marginal increase (row 7, 8, 9, and 10).

Note that the write accesses results are not discussed for the policy Q and S as

they maintain results similar to O and P. Policies Q and S are policies for VC

optimization, and they do not affect STT writes.

Effect on endurance: With a lesser number of writebacks, our proposed tech-

nique improves the endurance (measured in terms of the number of writes in the

STT region, write traffic reduction) of the non-volatile region of the cache by sav-

ings the writebacks. In particular, the saving in the writeback traffic for P in the

STT region are 42.7% respectively over RWHCA.
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Figure 7.11: Normalized CPI with respect to Base STT-RAM (lower is better)

Policy O P Q S Row
RWHCA 1.35% 1.4% 1.70% 2.32% 1

Base HCA 2.08% 2.20% 2.42% 3.03% 2
Base STT 3.52% 3.60% 3.85% 4.43% 3

Table 7.8: Percentage improvement in CPI (higher is better)

7.6.2 CPI Improvement

7.6.2.1 Effect on NVM based Main Cache

Fig. 7.11 shows the normalized performance of the different techniques concern-

ing Base STT-RAM. Our proposed method: WLVC improves the performance

by 5.88% over Base STT, 3.45% against RWHCA, and 2.95% over VC. The per-

formance gain against Base STT is due to the retention of the victims in the

victim cache, which in turn saves costly memory access time upon hit. On the

other hand, the further speedup is due to the serving of request for write-intensive

blocks directly from the SRAM based victim cache. Compared to RWHCA, the

improvement in CPI by WLVC is basically due to increased evictions by the ex-

isting technique due to the partitioning of cache and the large data placement in

the limited sized SRAM region. Thus, replacing the SRAM main cache with STT-

RAM degrades performance by 9.3%. Using our proposed policy, this degradation

is brought down to 2.87%.
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Figure 7.12: Percentage improvement in CPI of R, O, P, Q and S against
Base STT (higher is better)

7.6.2.2 Effect on HCA based Main Cache

Figure 7.12 shows the percentage improvement in CPI concerning base STT. Sec-

tion 7.6.2.1 reports the percentage improvement values in performance against

different techniques: RWHCA, Base STT, and Base HCA. Over RWHCA, the

improvement (2.32%) is due to applied victim cache and the proposed policies

and the fewer number of writes operations (row-1). Compared to Base-HCA and

Base-STT (row-2 and 3), the improvements (3.03% and 4.43%) are due to the

placement policy, the victim cache with its proposed techniques, and large savings

in the write overhead in case of Base STT.

7.6.3 Execution Time Improvement

7.6.3.1 Effect on NVM based Main Cache

The normalized execution time concerning Base STT-RAM is shown in Fig. 7.13.

WLVC gets execution time gain of 5.43% with respect to Base STT, 3.38% concern-

ing RWHCA, and 2.90% against VC. These gains in execution time are because

we retain both victims and write-intensive blocks in victim cache and serve re-

quests directly from there. This reduces the overall memory access time due to

less off-chip access and saves on the swap overhead. In particular, we save 12.63%

on swaps. Thus, replacing SRAM based main cache with STT-RAM-based main
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Figure 7.13: Normalized execution time with respect to Base STT (lower is
better)

Policy O P Q S Row
RWHCA 1.42% 1.44% 1.70% 2.26% 1

Base HCA 2.23% 2.25% 2.51% 3.05% 2
Base STT 3.39% 3.41% 3.65% 4.18% 3

Table 7.9: Percentage improvement in execution time (higher is better)
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Figure 7.14: Percentage improvement in execution time of R, O, P, Q and S
against Base STT (higher is better)

cache degrades the execution time by 8.3%. By using WLVC, this degradation is

lower down to 2.44%.

7.6.3.2 Effect on HCA based Main Cache

The percentage improvement in execution time against Base STT is shown in

figure 7.14. Section 7.6.3.1 presents these improvement values against the existing

technique: RWHCA and the baselines HCA and STT. The improvements in the

execution time (2.26% to 4.18%) (row 1-3) are due to the improvement in the
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CPI and the reduction in the miss rate that in turn decreases the main memory

accesses.

Thus, by the use of Base pure STT as LLC, there is a degradation in performance

and execution time due to the costly write operations. The use of RWHCA can

overcome this overhead. However, with the proper placement policy in the HCA

and by the use of VC with the proposed policies, the performance can be improved

further.

7.6.4 Energy Consumption

7.6.4.1 Effect on NVM based Main Cache

Due to extra swap or migration operation and the accesses in the associated victim

cache structure, our proposed technique: WLVC consumes slightly more energy

compared to Base STT-RAM, as shown in Fig. 7.15. The respective percentage

overhead of total energy and dynamic energy of WLVC against Base STT is 8%

and 9.73%. But at the same time, due to performance gain, the savings in static

energy against Base STT is 5.43%. Concerning Base SRAM, the savings in energy

are 93.5% due to near-zero leakage power of STT-RAM. Concerning RWHCA,

WLVC gets an overall energy saving by 78.85%. These significant energy sav-

ings are due to the large leakage energy of the SRAM part incorporated with
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Policy Region O P Row

RWHCA
STT 26.6% 28.2% 1

SRAM -100.4% -104.7% 2
Total 13.77% 14.6% 3

Base HCA
STT 33.9% 35.2% 4

SRAM -37% -40% 5
Total 23.2% 24% 6

Base STT/
SRAM

STT 33.2% 33.8% 7
SRAM 41.8% 41.8% 8
Total 40.7% 40.8% 9

Table 7.10: Percentage improvement in the energy consumption (higher is
better)
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Figure 7.16: Normalized LLC energy consumption of O and P against
RWHCA (R) (lower is better)

the RWHCA. However, due to larger write entertainment by the SRAM partition

in the RWHCA, WLVC consumes more dynamic energy than RWHCA by 45%.

Compared to VC, the percentage savings in static and dynamic energy due to

lesser execution time and smaller swaps by the proposed technique is 2.9% and

5.98%, respectively.

7.6.4.2 Effect on HCA based Main Cache

The figure 7.16 shows the energy by the proposed techniques normalized with

respect to Base STT. Table 7.10 reports these improvement values. Note that

negative values (row 2 and 5) in the table implies the increase of energy. Over

RWHCA, the improvement of 14.6% in energy consumption is basically due to

lesser write operations (due to AVBP) (as evident from section 7.6) and no migra-

tions (that incurs extra energy) in the proposed technique. However, the increase
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Figure 7.17: Normalized miss rate with respect to Base SRAM (lower is
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in energy consumption in the SRAM region is due to large write accesses (as shown

in section 7.6). Compared to Base HCA, the energy improvements (35.2% in row-4

and 24% in row-6) are due to the appropriate placement of blocks in the different

regions. The same reason is applied to the energy increase in SRAM (row-5). Note

that the energy improvement values given at row 7 (33.8%) are the dynamic energy

improvement against the baseline STT. On the other hand, the values are given

at row 8 (42.3%), and 9 (41.3%) are against the SRAM for static energy and total

energy consumption. Note that we have also considered the energy consumption

due to victim cache (both static and dynamic energy) in our calculations. Note

that the energy consumption results are not discussed for the policy Q and S as

they maintain the same number of write accesses with O and P in the main hybrid

cache.

7.6.5 Miss Rate Improvement

7.6.5.1 Effect on NVM based Main Cache

Due to hits in the victim cache, the miss rate gain by the proposed technique:

WLVC over the Base STT-RAM and SRAM are 23.1% and 23.8%, respectively.

Over RWHCA, due to large data placement in the small-sized SRAM region of

an existing technique, WLVC gets a miss rate improvement of 31.8%. These

respective improvements can be seen from fig. 7.17. However, we get a marginal
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Policy O P Q S row
RWHCA 6.55% 5.96% 7.42% 7.81% 1

Base HCA 0% -0.6% 0.87% 1.26% 2
Base STT 0.3% -0.31% 1.16% 1.55% 3

Base SRAM 0.31% -0.33% 1.18% 1.57% 4

Table 7.11: Percentage improvement in miss rate (higher is better)
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Figure 7.18: Percentage increase in miss rate for R, O, P, Q and S against
Base STT (lower is better)

improvement of the miss rate in the proposed technique with respect to VC, which

is a technique similar to the proposed technique in terms of miss rate.

7.6.5.2 Effect on HCA based Main Cache

The miss rate improvement by the proposed techniques against the base STT is

given in figure 7.18. Section 7.6.5.2 reports the improvement percentages in miss

rate by the proposed varieties against the base STT, SRAM, HCA, and RWHCA.

We observe an improvement of 7.81% in the miss rate with the existing technique

RWHCA (row-1) due to the applied victim cache and its proposed optimized policy.

However, the proposed technique maintains the same miss rate with all baselines

that shows the effect of associating the victim cache with the main hybrid cache.

In other words, we can have policies to reduce writes in STT (e.g., RWHCA)

and use VC to make up for degradation. Besides, our intelligent block movement

policies also control the write endurance of HCA.
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Metrics Policy O P Q S
Writes
Savings

SRAM 2MB 27.6% 27.5% 27.9% 27.8%
STT 6MB -4.98% -5% -4.8% -4.9%

CPI
Gain

SRAM 2MB 4.38% 4.42% 4.72% 5.34%
STT 6MB 1.44% 1.48% 1.8% 2.43%

Exec. Time
Gain

SRAM 2MB 4.47% 4.5% 4.8% 5.3%
STT 6MB 1.56% 1.58% 1.85% 2.43%

Energy
Overhead

SRAM 2MB 8.7% 8.6% 8.3% 7.73%
STT 6MB 5.95% 5.9% 5.63% 5%

Table 7.12: Iso area analysis between proposed HCAs and base SRAM and
STT

7.6.6 Iso Area Analysis for HCA based Main Cache

Along with the detailed iso-capacity analysis, we have also presented an iso-area

analysis. In particular, within the same area footprint of proposed hybrid caches,

the analyses with different sizes of SRAM and STT are reported in table 7.12.

Note that the negative values in the table imply an increase in the metrics values.

During the analysis, we have assumed STT is three times denser than SRAM,

and henceforth, for 4MB hybrid caches (3MB STT and 1MB SRAM), we can

accommodate 2MB SRAM and 6MB STT with the same area footprint. Thus,

the results obtained by iso-area analyses indicate that there is a significant gain

in performance with marginal energy and write overhead.

7.6.7 Storage and Area Overhead

In WLVC, along with the victim cache, we incorporated 2-bit read and write coun-

ters with every block of the main cache and a 4 and 5-bits weight and timestamp

with every block of the victim cache. In addition to this, we add two 42-bit swap

buffers. All these constitute the storage overhead percentage of 0.771% over Base

STT-RAM for a 32-entry victim cache. The area overhead by the proposed design

concerning Base STT is 21.7%.

Whereas, the techniques with HCA, we incorporate a single bit r bit with each

entry of victim cache along with that two 42-bit swap buffers are used to facilitate

the tag swapping process between the main hybrid cache and the victim cache.

In addition, we used two 12-bit counters and four 5-bit counters to maintain the
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Cache
Configuration

Reference
Policy

CPI
Gain
(%)

Exe.
Time

Gain (%)

Miss
Rate

Gain (%)

EDP
Gain
(%)

M = 1MB
STT 12.04% 12.27% 46.4% -9.11%

STT+VC 5.55% 7.57% 4.02% 8.24%

M = 2MB
STT 8.70% 8.50% 43.50% -7.38%

STT+VC 3% 4.50% 1.71% 3.82%

M = 4 MB
STT 4.63% 4.80% 43.45% -3.47%

STT+VC 2.32% 2.56% 0.98% 3.20%

M = 8MB
STT 3.53% 3.92% 43.4% -2.61%

STT+VC 1.41% 1.44% 0.01% 1.83%

Table 7.13: Comparative analysis for different capacity of NVM LLC (M)

LLC
size

CPI
Gain
(%)

Write
Access
Gain
(%)

Exe.
Time
Gain
(%)

Miss
Rate
Gain
(%)

Energy
Gain
(%)

1MB 9.87% -2.6% 9.46% 3.33% 37.3%
2MB 7.61% -1.39% 7.17% 1.82% 37.1%
4MB 4.43% -1.8% 4.18% 1.55% 34.1%
8MB 2.8% -0.84% 2.5% 0.35% 32.1%

Table 7.14: Comparative analysis for different Hybrid LLC capacity

eviction and the count of the victim region in RDVCP. All these constitute the

storage overhead percentage of 0.05% with respect to Base pure STT (having no

victim cache associated) for 32 entry victim cache. On the other hand, the area

overhead percentage with respect to Base pure STT is 0.35% and with respect to

4MB 16-way set associative Base-HCA (contain 12-way STT and 4-way SRAM)

with no victim cache is 0.18%.

7.7 Parameter Comparative Analysis

In addition to the results presented in the previous section, we also experimented

with different configurations of main LLC STT/HCA and victim cache and, with

varying values for the parameters of proposed technique: WLVC and RDVCP. In

this section, we show the effect of various metrics in comparison to the chosen

parameters. The values are given against the Base STT.
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VC
Configuration

Reference
Policy

CPI
Gain
(%)

Exe.
Time

Gain (%)

Miss
Rate

Gain (%)

EDP
Gain
(%)

Vn = 16 entries
STT 3.35% 3.20% 42.6% -5.1%

STT+VC 1.6% 1.43% 0.73% 2.20%

Vn = 32 entries
STT 4.63% 4.80% 43.4% -3.47%

STT+VC 2.32% 2.57% 0.98% 3.20%

Vn = 64 entries
STT 5.10% 5.00% 44.5% -3.96%

STT+VC 2.00% 2.21% 2.2% 1.88%

Table 7.15: Comparative analysis for different victim cache sizes (Vn) for
NVM cache

Victim
size
(Vn)

CPI
Gain
(%)

Write
Access
Gain
(%)

Exe.
Time
Gain
(%)

Miss
Rate
Gain
(%)

Energy
Gain
(%)

16 Entries 4.1% -1.6% 3.83% 0.79% 34.9%
32 Entries 4.43% -1.8% 4.18% 1.55% 34.1%
64 Entries 4.83% -1.87% 4.85% 2.93% 33.1%

Table 7.16: Comparative analysis for different victim cache sizes (Vn) for HCA

7.7.1 Change in LLC size

Tables 7.13 and 7.14 shows the comparative analysis between different cache

capacities of the main cache associated with the victim cache. The tables show

gains obtained by the use of proposed policies over the reference policy: STT

(pure STT-RAM main cache) and STT+VC (STT-RAM main cache with VC

simple cache in case of WLVC). Cache capacity impacts the residency of the block.

Specifically, smaller sized cache suffers from large capacity miss as compared to

larger sized cache. As can be seen from the tables, the victim cache associated

with a small cache would be more beneficial as compared to the large cache.

The reason is that with a small cache, the victim cache holds blocks that are

evicted prematurely without finishing their lifetime. Further, by incorporating

our techniques, gain in the performance is observed. Thus, the embedded system

having a small capacity main cache can benefit from this proposal. Note that the

negative value implies the increase in metrics values.

7.7.2 Change in Number of VC entries (Vn)

Impact in metric value with different sizes of victim cache sizes is shown in ta-

bles 7.15 and 7.16. The number of victim cache entries impacts the residency of
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Thr
CPI
Gain
(%)

Exe.
Time

Gain (%)

EDP
Gain
(%)

Miss
Rate

Gain (%)
T=0 5.2% 7.05% -5.35% 41.5%
T=1 4.63% 4.8% -3.47% 43.45%
T=2 3.70% 3.5% -1.52% 44%

Table 7.17: Comparative analysis for different Bias (T ) for NVM main cache

the block in the victim cache. Larger victim cache gives good performance gain

and improvement in miss rate. However, the larger search time of fully associative

victim cache impacts the CPI gain and the EDP/Energy over the chosen victim

entries (32). On the other hand, smaller victim cache degrades the performance

with respect to STT-RAM as well as miss rate. Also, our technique gets a perfor-

mance improvement with respect to STT with victim cache (STT+VC). Thus, a

careful selection of victim cache size will make the hardware efficient. Note that

the negative value implies the increase in metrics values.

7.7.3 Change in Bias

7.7.3.1 Impact on NVM based Main Cache

Table 7.17 presents the impact of varying the Bias on different metrics value for

WLVC. Change of Bias impacts the decision of directly serving of a block from the

victim cache upon a hit. With smaller Bias value, the performance of the cache

is better as a large number of write-intensive blocks are served from the victim

cache itself with less number of swaps compared to reference case. However, this

impacts the EDP of the cache, with an increase in the miss rate, because the VC

is not able to store several entries. On the other hand, with the large Bias, the

performance impact is smaller compared to the reference case as the main cache

itself handles most of the writes.

7.7.3.2 Impact on HCA based Main Cache

The change of bias with different metric values is reported in table 7.18. Change

of Bias affects the change of victim region partition size. The smaller bias value
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Bias
CPI
Gain
(%)

Write
Access
Gain
(%)

Exe.
Time
Gain
(%)

Miss
Rate
Gain
(%)

Energy
Gain
(%)

100 3.34% -1.54% 3.69% 1.07% 34.4%
250 3.98% -2.4% 4.01% 1.26% 33.8%
500 4.43% -1.8% 4.18% 1.55% 34.1%
1000 4.01% -2.61% 3.31% 0.97% 32.6%

Table 7.18: Comparative analysis for different Bias for HCA main cache

Interval
(I)

CPI
Imp.
(%)

Write
Access
Imp.
(%)

Exe.
Time
Imp.
(%)

Miss
Rate
Imp.
(%)

Energy
Imp.
(%)

I=0.5M 4.57% -2.7% 4.34% 2.01% 32.8%
I=1M 4.43% -1.8% 4.18% 1.55% 34.1%
I=2M 3.91% -2.42% 4.07% 0.78% 33.8%

Table 7.19: Comparative analysis for different interval (I) for HCA main cache

results in a frequent change in partition size and thereby creates instability in

the different regions of the victim cache (along with lesser CPI and execution

time improvement). On the other hand, large bias value causes a less frequent

reconfiguration of VC partition. This results in a large number of eviction from

the SRAM partition of the main hybrid cache, which is not able to remain in VC,

leading to an increase in the miss rate.

7.7.4 Change in Interval (I)

The impact for the change in the interval is presented only for the hybrid cache as

we have not got much difference in the metric value for NVM based main cache.

Table 7.19 shows the comparative analysis for distinct interval values. The interval

values affect the frequency of change in the partition size of the victim cache for

the different regions of the main hybrid cache. With a large interval, the frequency

of change in the partition is smaller, thereby increases the eviction from the SRAM

partition of the main hybrid and reduces the miss rate improvement. On the other

hand, smaller interval results in the frequent change in the partition size, which

creates instability in the different regions of the victim cache thereby increasing

the number of write accesses and energy in HCA.
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Thus, the careful selection of interval (I) and Bias values will result in more

efficient use of victim cache.

7.8 Conclusion

This chapter exploits the impact of associating victim cache with the NVM/HCA

based main cache. The victim cache aims to reduce the miss penalty by placing

the victims from the main cache in a fully associative SRAM based structure. In

NVM based main cache architecture, with each hit in the victim cache, a block

interchange is required between the main cache and victim cache. To save time

and energy due to these interchanges, we proposed a policy that caches the write-

intensive block inside the victim cache upon hits. These blocks are served from the

victim cache itself. Also, in victim cache, we have used Weighted Least Recently

Used (WLRU) Replacement Policy to evict the victim. In WLRU, the eviction

decision is based on both weight and the last accessed timestamp.

Whereas, in HCA, the victim cache is used to retain the evicted blocks from the

main cache. With each miss in the main hybrid cache, the victim cache is searched.

Upon a hit in the victim cache, we proposed a policy that effectively places the

block to the appropriate region of the hybrid cache based on the type of request

and the victim block’s dirty bit status. We also proposed a dynamic region-based

victim cache partition technique to manage the run time load and uneven evictions

from the SRAM region of the main hybrid cache. The partitioning technique

enables the victim cache to hold the victim dedicated to each region thereby it

increases the possibility of caching the most recently used blocks evicted from the

SRAM as well as STT partition of the main hybrid cache. Note that the main

aim of the proposed partitioning technique is to improve the efficacy of the victim

cache to store the appropriate number of blocks from each region.

To measure the efficacy of the proposed technique, we compared our proposed

techniques with one of the existing HCA techniques and with different baselines.

Experimental evaluation on a full system simulator shows that by associating
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victim cache with NVM/HCA based main cache, the proposals get significant

performance gains for different last level cache sizes. Thus, the effective use of

victim cache with the main hybrid cache aids in improving the performance and

makes the hardware overall efficient.





Chapter 8

Conclusion

This research work is motivated towards improving the utilization of emerging non-

volatile memory technologies and make them as a viable option for the last level

caches. Towards this, we worked in the following two directions: (i) to overcome

the costly write operations and improve the performance and reduce the energy

consumption, (ii) to extend the lifetime of the NVM caches affected due to the weak

write endurance and unwanted write variations. Towards proposing a solution for

the former direction, we make use of the concept of hybrid cache architecture where

a large portion of NVM is integrated with a small portion of SRAM. In this context,

two techniques were proposed in this dissertation that make use of prediction and

private blocks; and utilizing a victim cache. Whereas, for proposing a solution for

the latter direction, we proposed two kinds of wear leveling techniques: Intra-set

wear leveling (methods to minimize the write variation inside the cache set) and

Inter-set wear leveling (techniques to reduce the write variation across the cache

sets). This chapter sums up all the proposed contribution of this dissertation along

with the future directions for research.

8.1 Summary of Contributions

• Block Placement and Replacement Method to Counter Costly Write

Operations: To overcome the costly write operations, we used the concept

219
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of Hybrid Cache Architecture (HCA). In HCA, block placement is a critical

task as it is expected from the SRAM region to handle the writing pressure of

the applications; thereby, saving the NVM region from entertaining the writes.

Towards this, we reduce the number of writes in the NVM portion of the HCA by

using the concept of private blocks. In particular, we identified those blocks that

are exclusively accessed by higher-level caches and allocate these blocks to the

NVM portion as dataless entries. Additionally, to further save the writes in the

NVM portion of the cache, a Reuse Distance Aware Write Intensity Predictor

(RDAWIP) was employed in our proposal. The RDAWIP predicts the reuse

distance aware write intensity behavior of the cache block and appropriately

redirects the write-backs from L1 cache for the dataless entries of the NVM

portion to the SRAM region of L2 hybrid cache. Besides the prediction and

the placement of the block, we made use of different fields of the predictor in

block replacement decision. The replacement decision is inspired by the reuse

distance and the access behavior of the cache block. In a quad-core system, for

an 8MB 16 way set associative cache, the proposed method saves the number of

writes by 34.5% with 56.3% gain in energy, while maintaining the performance.

• Methods to mitigate the intra-set write variation: In this proposal, four

intra-set wear leveling techniques were proposed that work on the basic concept

of write restriction. These four methods works at the different granularities of

the cache bank: (1) Partitioning the cache vertically into multiple equal-sized

windows (one window comprises of multiple ways) (2) Partitioning the cache

horizontally into multiple equal-sized modules (one module consist of multiple

sets) (3) Way Level Granularity. The intra-set write variation is controlled by

selecting different window/ways/sub-ways as the read-only over different execu-

tion intervals. The window/way/sub-ways selection is made using i) round-robin

method or (ii) write counts for each way (inside the cache) / sub-way (inside

the module). In a quad-core system, for a 16MB 16 way set associative cache,

the proposed methods reduce the intra-set write variation in the range of 80%-

86.5% and improve the lifetime by 7.27 times over baseline and 5.86 over existing

technique, while maintaining the performance.
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• Methods to mitigate the inter-set write variation: In this work, two

techniques were introduced that were based on fellow sets and Dynamic Asso-

ciativity Management. In our proposals, sets are logically grouped into different

fellow sets. Each cache set in the group is divided into Normal (NP) and Re-

serve part (RP). Within each fellow group, to control the write variation across

the cache set, the heavily written sets spread out their writes to the RP of the

lightly written cache set. Two variations of the approach were designed (based

on the static and dynamic RP) and evaluated. In quad-core system, for 8 MB

16 way set associative cache, the proposed method reduces the inter-set write

variation in the range of 27.6% - 34% and improves the lifetime by 14.7 - 20.7%

over baseline and 6.58 - 12.11% over existing policies.

• Methods to improve the performance: In this proposal, to improve the

performance degraded due to costly write latency for NVM cache and the in-

creased miss rate for HCA, the victim cache was used. The integration of victim

cache with NVM cache requires an exchange of block between the main cache

and the victim cache. To save on the time to exchange and the subsequent

slow writes to these blocks in the NVM cache, we move only non-write inten-

sive blocks to the main cache based on their write intensity. Whereas, hits for

write-intensive blocks are served directly from the victim cache. In a quad-core

system, for 4MB 16 way associative cache, the proposed approach gets a perfor-

mance improvement of 5.88% over STT-RAM and 5.43% gain in execution time

with the marginal energy consumption. On the other hand, the employment

of victim cache with hybrid cache needs an effective block placement policy to

place the block into the appropriate region upon victim cache hit. An access

based block placement technique is presented in this context where the block

is placed based upon the type of access. Besides, to manage the run time load

and the uneven evictions from the SRAM partition, we gave a dynamic region-

based victim cache partitioning method to hold the victims dedicated to each

region. In quad-core system, for 4MB 16 way set associative cache, the proposed

method gets a performance improvement of 4.43% and 4.18% gain in execution

time with the reduction in 7.81% in miss rate over the existing HCA policy.
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Figure 8.1 summarizes the contributions of this thesis.

Aim of the Thesis: Longevity Enhancement
of Non-Volatile Caches in CMPs
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RDAWIP + Private
Blocks

 A prediction based block
placement and replacement

 policy for HCA that
 incorporates dataless

entry for private blocks 

Max Write savings: 34.5%
Max Energy gains: 56.3%

Intra-set Wear Leveling

 Four wear-leveling
policies were proposed

that work on the
concept of write 

restriction 

Max intra-set variation 
reduction: 86.5%

Max Lifetime
 gain: 7.3 times

Victim Cache

Integrating VC with HCA/
NVM cache by overcoming

the challenges of
VC employment

Max CPI gain: 5.88%
Max execution time

 Gain: 5.43%

Inter-set Wear Leveling

Two DAM based
approaches were

proposed that make use
of fellow sets 

Max inter-set variation
reduction: 34%

Max Lifetime
 Gains: 20.7%

4 MB / 8 MB / 16 MB L2 as LLC

Figure 8.1: Summary of the thesis contributions. The results are shown for
different capacities (4MB, 8MB and 16MB) of LLCs. Note that, the proposed
architectures are also evaluated with various cache configurations and with dif-

ferent prior works.
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8.2 Scope for Future Work

The contributions of this thesis can be extended in several ways. Some of these

possible future research directions are listed below:

• For each presented proposals in this thesis, there are some changes needed in

the functionality of the cache controller. In the future, all the changes required

will be modeled, and the extra power, timing, and area will be considered to

measure the actual efficacy of each proposal.

• Our proposed intra-set wear-leveling techniques reduce the significant amount

of write variation at the different granularity of cache bank. In the future,

the write restriction can further be explored at the level of a cache blocks and

memory cells to reduce the unwanted write variation.

• The fellow set based DAM inter-set wear leveling approach works well to improve

the lifetime. But, the fellow group established by the proposals are having the

fixed location cache sets. Considering the dynamic behavior of the application,

different fellow groups having different write pattern behavior. In particular,

some of the fellow groups are lightly written, and some of them are heavily

written. By considering this fact, an appropriate dynamic mapping policy can

be proposed that forms the fellow groups with different locations of cache set

rather than deterministic location of cache sets.

• Victim Cache can further be attached with the NVM/HCA based L1 cache to

enhance its performance. Basically, towards applying this, we need an effective

method that takes care of the various challenges to employ victim cache with

NVM based L1 cache to improve the performance of the system.





Appendix A

Simulation Framework

This appendix focuses on the experimental setup used in our approaches. The

entire experiments given in this dissertation are performed on a full-system simu-

lation framework. Fundamentally, the full system simulators model the electronic

system as a whole, including CMPs. The system on which the full system simu-

lator executes is called as the host system and the virtual environment setup by

the full system framework is called as target system. Additionally, the full system

framework develops the flavors of CMPs by including the multiple modules for the

CPU cores, the multi-level private or shared cache hierarchies, memory controllers

and system, and I/O devices. These multiple small systems are all together con-

nected and communicated by the well known Network-on-Chip (NoC) module that

has been attached in the full system framework. Contrary to the instruction set

simulator, the full system simulator allows the applications to execute indepen-

dently through an Operation System (OS) installed on the target system. Also,

the target system allows the kernel modules of the OS to run through the virtual

drivers as normally on a real hardware system.

Precisely, simulators are the set of computer programs that run on the host sys-

tems; thus, any functionality developed for the target system can be easily altered

to meet the new design requirement. For instance, the conventional cache made

up of SRAM modeled on a full system framework can be changed to NVM cache

or the hybrid cache at both banks as well as way based granularity. For design
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space investigation in the target system, the basic preliminary parameters like

cache size, associativity, number of banks, etc. can be easily altered. The brief

history of computer architecture simulators is discussed in the next section with

their importance in academic and industrial research.

A.1 Computer Architecture Simulators

A computer architecture simulator or an architecture simulator is a set of the

software programs that are used to investigate the power and performance of

any modeled computer system. The modeled system can be either (a) full sys-

tem that simulates the complete computing system, or, (b) target microprocessor

called instruction set simulator. Amid, the various simulation techniques, discrete

event simulation, and trace-driven simulators/emulators are commonly used by

the computer architects [125]. As the emulators are simulators with hardware de-

sign constraints, thus, we choose to use discrete event and trace-driven simulators

in our experimental analysis.

In the real time fabrication, the actual imitation of modern CMPs is compli-

cated [126], expensive and highly integrated as it contains the number of cores,

multi-level cache hierarchies of different sizes, memory controllers, NoC, etc. on a

single wafer real-estate. Additionally, for the experimental analysis, altering the

various design parameters of the architecture before the deployment for the same

is required. For instance, while developing any wear-leveling technique, we need a

heavyweight result analysis that can generate different design choices for the next

generation computing system. In this context, once the approach is implemented

in the simulator, we can conduct various experiments for different cache associa-

tivity, different cache sizes, and with the different parameters used in the method.

On real hardware, the prototyping of each architecture with different design space

exploration is impractical in the academic research environment [127, 118]. Fur-

thermore, the real hardware prototype built by using Field Programmable Gate

Arrays (FPGA) does not have user-friendly debugging space. The costlier tools
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and the complex designing process for a single academic project comprising of

multiple small design proposals are not always possible. For instance, in this

dissertation, the multiple wear-leveling techniques: SWWR, DWWR, DWAWR,

FSSRP, FSDRP, Polf, Swap-Shift are designed with the in-depth lifetime and the

write variation analysis on different cache sizes and associativity. Thus, the com-

puter architects use the simulators to conduct their experiments in a timely and

cost-effective manner and to evaluate the proposed designs in the context of power

and performance over the existing ones [126, 128]. Maximum of the listed state of

the art works illustrated in Chapter 2 are implemented and evaluated using full

system simulators.

The oldest and the first machine simulator, SimOS [129], simulates the machine

hardware through the service given by the underlying operating system. Later, the

extensively known architectural simulator, SimpleScalar [130] has been developed

to model the set of super-scalar processors. Even though SimpleScalar is widely

accepted, it does not support the multi-core systems. Soon afterward, the multi-

ple simulators have been designed for the fault analysis [131], event-driven simula-

tion [132], and verification tool for micro-processor based on virtual machines [133].

As the simulator runs with the help of the host system, the performance of the

simulator will heavily depend upon the performance of the host machine. In partic-

ular, if the throughput of real hardware increases, the full system cab be modeled

without affecting performance [128]. In addition, some of the simulators have

immanently sequential nature that execute slower than the ones which have inher-

ently parallelized environments. Over the previous years, many simulators have de-

veloped for various needs and requirements [126, 118, 131, 132, 133, 134, 135, 136].

The full system simulators can be classified into two types: Timing and Func-

tional [127, 118]. As the name suggests, the functional simulator mostly depicts

the real functionalities or the activities of an actual system. Whereas, the tim-

ing based full system simulator models the real-time behavior of the system that

follows a discrete event simulation technique. Furthermore, it imitates the func-

tionality of an actual system with the timings on which the task has to be triggered.
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Generally, the timing simulation is needed for comparing the LLC performance in

modern CMPs.

A.1.1 GEM-5

The gem5 [118] simulation framework is combination of the best features of M5 [128]

and GEMS [127] simulation tools. The M5 provides the diverse CPU models and

multiple Instruction Set Architectures (ISA), whereas, the GEMS augmented de-

tailed and flexible memory system with the support of cache coherence protocols

and the complete interconnection network. This subsection briefly discusses the

features and the modules of M5 and GEMS along with their limitations.

A.1.1.1 M5

The M5 is a full system execution driven simulator that generates the complete tar-

get system or a virtual machine which runs on top of a host system. M5 simulator

is an open-source and acts as an alternative to the commercial Simics simulator.

It was initially intended/developed to analyze the throughput of interconnect and

network protocols by modeling multiple client-server machines. Furthermore, it

is flexible enough to model and support diverse CPU models, including in-order

and out-of-order cores with the capability of both memory, I/O and OS devel-

opment. Besides this, M5 assists by supporting different ISAs, such as ALPHA,

ARM, MIPS, Power, SPARC, and X86. M5 is fast enough to execute realistic

benchmark suites, like SPECWEB99 [137], Netperf [138], Surge, iSCSI, etc.

The main aim of architectural research is to model the next-generation architecture

to support the ever changing/variable computing system. In this dissertation,

we propose emerging NVM architectures that cope up with the increasing data

demands. The full system framework provided by the M5 is suitable to design such

future memory architecture without any physical overheads. Also, with respect

to the commercial industry, the designing and the verification of such emerging

memories in M5 with the constraints of limited time and space is also useful
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enough. Moreover, the development of the software for future hardware can be

done parallelly as the simulated framework provides the taste of the whole system.

A.1.1.2 Restrictions in M5

M5 has a powerful capabilities, still it lacks behind to model detailed and flexi-

ble memory system supporting multiple coherence protocols and interconnection

network that are needed to simulate the CMPs. In particular, M5 simulates only

the point to point snooping based interconnection and caches that are not scalable

and flexible for the CMPs. GEMS [127], a timed simulator has been proposed and

that is merged and works on top of M5. The purpose of designing the GEMS is to

model the complete memory hierarchy of CMPs with coherence management and

on-chip communications through the Network-on-Chip (NoC). The timing simu-

lation feature provided by GEMS helps to evaluate different CMP architectures.

The brief details on GEMS are provided in the next sections. GEMS cannot work

alone without the M5, hence, the functional behavior is disjoint with the timing

models.

A.1.1.3 GEMS

GEMS [127] has two major modules: Ruby and Garnet [139]. Ruby simulates the

complete memory hierarchy of CMPs comprising of L1 cache, L2 cache, memory

banks, directories, etc. Each component of Ruby is called as “Machine” and is

identified by its unique ID: called MachineID. The on-chip communication between

these machines is determined by their MachineIDs and is through the underlying

NoC, managed by Garnet. The CMP based architecture model in Ruby uses Gar-

net for providing on-chip communications. Garnet models the real-time events for

transferring packets through the NoC. Additionally, Garnet also models a variety

of network topologies for NoC with different design options.

The block fetch request from the M5 processor is passed to the Ruby modules

of GEMS. For the fetch request, the very first level of cache,i.e., L1 detects the
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miss or hit. If the block is found in the first level, the M5 core continues its

execution. Otherwise, the block request from the generated core is stalled until

GEMS completes its simulation for the miss. The timing dependent functional

simulation is controlled and driven by Ruby.

With each L1, a sequencer is incorporated that manages the request from the cor-

responding core. In CMPs, there will be multiple levels of caches that deals the

cache requests simultaneously. With each level of cache, a controller is attached

that performs all the functionalities related to the cache by taking into consider-

ation consistency and persistence of shared data. The domain-specific language

called SLICC is used to manage the modeling of such controllers. In particular,

SLICC manages all the operations and the communications of the controller with

the other machines in the system. Other than that, one of the biggest concern

with the CMP based cache structure is to manage the coherence in the shared

cache. Multiple coherence protocols have been implemented in GEMS that are

governed by the different modules of controllers. These controllers are commu-

nicate through message passing, which is supported by the NoC. The designing

of the protocol is the responsibility of SLICC as it is the combined duty of the

controllers.

A.1.1.4 CMP Architecture Supported by GEMS

GEMS supports SNUCA based cache architecture, which is very robust and can

be configured with a different set of features like cache size, number of banks, hit

time, miss penalty, access latency, etc. These parameters can be easily modified

by altering the configuration file. Other than these, some additional parameters

can be set based on the architecture demand, such as block-size, number of virtual

networks, replacement policy, cache associativity, etc. In each experiment for

the baseline and the proposed architectures, we use the MESI protocol, which is

termed as “MESI-CMP” protocol in GEMS.

GEMS models the baseline cache architecture where the read and write latency

to perform the respective operations are same. In our work, to implement the
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asymmetric access latencies for NVMs and hybrid caches, we use the concept of

bank contention. Bank contention allows the respective bank to entertain only one

access request at a time. To facilitate this process, we made some changes in the

protocol level to manage the coherence. In particular, the programs written in the

SLICC has been modified to support the proposed architectures. Also, to support

the proposed designs that run on top of the baseline NVMs, other internal struc-

tures of the memory system have been altered. For instance, to implement the

Victim Cache, a new cache structure has been added with the existing cache mem-

ory. To validate this, rigorous testing has been done to guarantee the correctness

of the proposed work. At last, compilation of GEMS builds the new architecture

design.

A.1.1.5 Result Analysis

As GEM5 is a full system simulator, it can run a real set of applications on the

simulated architecture. During the experiments, GEM5 logs the various statistics

of the running application. Some of the important information needed in this

dissertation are described below:

• Total Cycle Executed: The metric records the summation of all the cycles exe-

cuted for all cores. Besides this, GEM5 also collects the executed cycles (com-

prising of busy and idle cycles) for the individual core.

• Total Simulated Instruction: This collects the each cores number of executed

instructions as well as outputs the summation of total instructions executed.

• L1 Demand Access: GEM5 also records the demand accesses including demand

hit and miss for each L1 bank private to a core.

• L2 Demand Access: It records the individual demand hit and misses for each

shared L2 bank.

Other than that, we have also added some of the additional metrics that are needed

to analyze the conducted simulations for the hybrid and NVM caches:
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• NVM Read/Write Hits: The metrics are needed for the hybrid cache. It collects

the number of reads, and the writes incurred in the NVM portion.

• SRAM Read/Write Hits: This implies the same as the NVM hits, but for the

SRAM portion of the hybrid cache.

• InterV/IntraV: The metric records the coefficient of write variations (as given

in Equations 2.1 and 2.2) present in the non-volatile cache bank.

• Cache Block Write: The metric outputs the number of individual writes for

each cache block. It is used to calculate the lifetime improvement (as given in

Equations 2.3 and 2.4) by the proposed approaches.

Apart from these metrics, the other metrics like Cycle Per Instruction (CPI),

Instruction Per Cycle (IPC), Miss Per Thousand Kilo Instructions (MPKI), etc.

are easily derived or calculated from the given documented metrics provided by

GEM5.

A.1.1.6 GEM-5 Limitations

With many unique features and different types of ISA and CPU support, there

are some limitations associated with GEM-5, which are as follows:

• GEM-5 is unsuitable for memory and cluster exploration [140]. GEM-5 assumes

that there is an interface available from each tile to the main memory. As a

result, only the access latency to the memory is captured but not the actual

traffic from the directory/LLC to the memory.

• Several previous studies [141, 142, 143] pointed out the inaccuracies in the sim-

ulation results over different ISAs by the GEM-5. These inaccuracies are due

to imprecise decoding of instructions into micro-operations, high cache misses,

and over-estimated branch misprediction [144].
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A.1.2 Timing and Power Modeling Tools: CACTI and

NVSIM

The GEM5 full system framework simulates many real sets of applications by uti-

lizing the underlying architecture. However, this framework is not able to model

the timing, power, and area for different memory technologies and at different

cache level granularities. CACTI 6.5 [19] and NVSIM [21] are two well known

simulators in the computer architecture research community, that take some of

the architectural parameters like - cache memory technology, cache size, cache

associativity, cache level, block size, access technique (UCA or NUCA), etc to

simulate the cache at device/circuit level. CACTI 6.5 is responsible for mod-

eling the traditional SRAM caches, whereas, NVSIM models different emerging

NVM memory technologies like STT-RAM, ReRAM, PCRAM, and the NAND

flash. By modeling the architecture at the device level, the simulators output the

power consumption, area overheads, cache access time, etc. Based upon the ITRS

reports [10, 145, 146], the NVM and the SRAM memory technology fabricated

caches can be of three categories based on the power and performance modes: (a)

HP: known as High Performance cell that consumes large power and very fast in

the access operation; (b) LSTP: Low STandby Power cells, incurs low power when

idle. However, their accessing is slower than the HP as the transition from the low

power standby mode to active mode incurs extra cycles; (c) LOP, known as the

Low Operating Power cells that incurs less power both in standby as well as active

mode. It is the slowest among the three methods. Among these modes, we have

chosen the HP mode for the cache construction in our work. Furthermore, CACTI

and NVSIM support three types of cache access techniques: fast, sequential, and

normal. In our work, we have used the fast mode of accessing the cache. In fast

mode, both data and tag arrays are searched concurrently to identify hit or miss.

For calculating the power consumption, the transistor length plays a prominent

role here, and it is also known as the technology parameter in CACTI and NVSIM.

In our work, we have used the transistor of the channel length of 32nm and the

temperature of 350K. Internally, NVSIM uses empirical modeling methodology
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of CACTI, but it also includes several other new features which are described as

below:

• It facilitates the user to model their memory cell configuration.

• It gives the various design optimization options for buffer like latency, area and

balance optimization.

• It facilitates the user to model the memory banks in a bus like structure rather

than only in the H-Tree structure.

• It models the various types of data sensing schemes rather than only the voltage

based sensing.

A.2 Benchmarks

As reported in the previous section, the full system simulator like GEM5 runs

real benchmarks on a simulated architecture. Based on the stats collected from

these simulations, the performance of the architecture is evaluated. The power

and the performance results of the simulated architecture give enough idea to the

researcher and the hardware manufacturer about the real-world behavior of the

new architecture design. To facilitate this process, several benchmarks suites like

PARSEC [6], SPEC CPU 2006 [7], SPLASH-2 [147], etc. are available in the

market. In this dissertation, we have used multi-threaded PARSEC benchmarks

and multi-programmed SPEC CPU 2006 benchmark suite to test our architecture

design. The detailed description of these benchmark suites are given below:

In this dissertation, we have not considered the SPLASH-2 benchmark for the

evaluation as their small input size cannot be used for the large-sized LLC.
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A.2.1 PARSEC

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [6],

a benchmark suite made up of the next generation multi-threaded applications.

The PARSEC benchmarks are developed for the evaluation and the validation

of the next generation CMPs. It is the collaborative project between Princeton

University and Intel to develop such benchmark applications that help the re-

search community for efficient design of future computing systems. The PARSEC

benchmark suite is open-source and is widely accepted in the architecture research

community. It is used in both academic as well as industrial research. Some of

the essential objectives of PARSEC are given below:

• Next generation applications for different real-world problems.

• Distinct input size for each and every application.

• Focus on multi-threaded applications.

The benchmarks that were used before PARSEC are application-specific and are

executed in the serial fashion [6]. PARSEC version 2.1 has 12 applications, and

each application is parallelized and multi-threaded. These applications are selected

from diverse real-world areas like computer vision, animation physics, finance,

media processing, etc. The detailed description of PARSEC benchmarks is given in

table A.1 [6]. Typically, the multi-threaded application exchanges data between its

spawned threads. The data sharing and exchange description of these benchmarks

are reported in table A.2 [6].

The term benchmarks are also called alternatively as workload, application

or program.

Each benchmarks in PARSEC has its own working set with different input sizes:

large, medium, small, etc. Based upon the requirement and their architecture

design, users can run workloads with any size of input set.
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Program/
Benchmarks

Application
Domain

Parallelization Working-
SetModel Granularity

blackscholes Financial Analysis data-parallel coarse small
bodytrack Computer Vision data-parallel medium medium
canneal Engineering unstructured fine unbounded
dedup Enterprise Storage pipeline medium unbounded
facesim Animation data-parallel coarse large
ferret Similarity Search pipeline medium unbounded
fluidanimate Animation data-parallel fine large
freqmine Data Mining data-parallel medium unbounded
streamcluster Data Mining data-parallel medium medium
swaptions Financial Analysis data-parallel coarse medium
vips Media Processing data-parallel coarse medium
x264 Media Processing pipeline coarse medium

Table A.1: The inherent key characteristics of PARSEC benchmarks

Program/
Benchmarks

Data Usage

Sharing Exchange

blackscholes, swaptions low low
bodytrack, freqmine high medium
canneal, dedup, ferret, x264 high high
facesim, fluidanimate, streamcluster, vips low medium

Table A.2: The data usage behavior of PARSEC benchmarks

A.2.1.1 Benchmark Descriptions

This section illustrates the properties of few PARSEC benchmarks that are used

to evaluated our proposed architecture designs. The detailed content for the rest

of the PARSEC benchmarks is reported in [6].

Bodytrack: The body track application records the 3D view of the human body

through various cameras. An annealed practice filter is used to capture the 3D

view using foreground and edge silhouette. In this application, the input video

that contains many frames is used to select as reference frame. Different frames

at different time-stamp are selected, and the likelihood value is computed with

the reference frame. The likelihood is a degree of the 3D body alignment with its

foreground and its edges in the image frame. The likelihood value is calculated
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by considering two attributes: the foreground and the edge distance map. The

benchmark has a persistent thread pool where the main thread assigns the task

to the thread pool. Before proceeding further, the main thread has to wait for the

remaining threads to complete their execution.

Fluidanimate: Due to the increasing importance of physical simulation and real-

time animation of computer games, the fluidanimate application is included in the

PARSEC benchmark suite. It is an Intel RMS application that uses Smoothed

Particle Hydrodynamic method [148]. For modeling the incompressible fluid for

interactive animation, fluidanimate uses five kernels. The application produces

output based on interpreting and discovering the surface of thick fluid.

Freqmine: It is an Intel RMS application developed by Concordia University.

The reason for the inclusion of freqmine workload in the PARSEC suite is the

increasing demand for data mining techniques. The freqmine application is used

for Frequent Itemset MIning (FIMI) [149] with an array-based version of frequent

pattern growth. The FIMI is the foundation of Association Rule Mining (ARM),

which is a common data mining problem for areas like market data, log analysis,

protein sequence, etc. The application uses three kernels and is parallelized with

OpenMP.

Swaption: It is an Intel RMS workload that is used for pricing the portfolio by

using the Heath-Jarrow-Morton (HJM) [150] method. Due to increased impor-

tance of Partial Differential Equation (PDE) and the Monte Carlo Simulation,

the Swaption workload is added into the PARSEC benchmarks. In Swaption, the

behavior of the HJM model is non-Markovian, which prevents the solving of PDE

for the computation of price. Thus, the application uses the Monte Carlo Simu-

lation. The application stores all the portfolio in the swaption array, where each

of the array entry represents a derivative. The array is further divided into the

number of blocks that is same as the number of spawned threads. Hence, to ensure
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parallelism, each block is assigned to a thread. To compute a price, the swaption

application iterates through all the blocks and calls the module HJM Swaption

blocking.

Canneal: The canneal workload uses the cache-aware Simulated Annealing (SA)

technique to minimize the routing cost of chip design. SA is a well-known method

to approximate the global optimum in a large search space. The canneal ap-

plication randomly chooses two pairs of elements and swaps them. During each

iteration, to increase the data reuse, the algorithm discards only one element that

effectively reduces the cache capacity misses. The canneal application is included

in the PARSEC benchmark to represent the engineering workloads for fine-grained

parallelism and lock-free synchronization.

Dedup: The dedup application compresses the data stream. It uses the mix of

global and local compression to achieve a better compression ratio. Such kind of

compression is also called as deduplication. The reason to include dedup workload

in the PARSEC is due to deduplication as it is the mainstream method to cal-

culate storage footprint for the next-generation computing system. Furthermore,

the dedup application is also used to compress the communication data for future

generation network systems.

Streamcluster: The streamcluster application is used to solve the online cluster-

ing problem. The workload finds the median for the streams of input points and

forms different clusters. Afterwards, each point is assigned to the nearest center of

the cluster. It uses the sum of squared distance metric to measure the effectiveness

of clustering. The reason behind the inclusion of this application in the PARSEC

benchmark suite is due to increasing importance of data mining algorithms and

the predominant problem of streaming characteristics.
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X264: The X264 application is an H.264/AVC (Advanced Video Coding) video

encoder that adds the new features in encoding such as variable block-size motion

compensation (VBSMC) or context-adaptive binary arithmetic coding (CBAC),

high-resolution color information, increased sample bit depth precision etc. The

X264 workload allows the H.264 encoder to generate high-quality encoding output

with a lower bit rate at the cost of increased encoding and decoding time. More-

over, the application uses motion compensation technique to remove the data

redundancy. The X264 application is flexible and is used for fulfilling different

demands such as video conferencing and HD movie distribution.

A.2.2 SPEC CPU 2006

Standard Performance Evaluation Corporation (SPEC) CPU 2006 [7], is an industry-

standardized, CPU intensive benchmark suite. The SPEC benchmarks are devel-

oped to emphasize the performance of the compiler, the computer processor (CPU)

and the memory architecture. It includes two benchmark suites that concentrate

on two different types of compute-intensive performance.

• CINT2006 benchmark suite: Measures the compute-intensive integer per-

formance. The suite contains 12 different benchmarks. The description of these

workloads is given in table A.3 [7].

• CFP2006 benchmark suite: Measures the compute-intensive floating-point

performance. The suite contains 17 different benchmarks test. The detail de-

scription of these workloads is given in table A.4 [7].

SPEC CPU 2006 suite is designed to measure the compute-intensive performance

of the next generation hardware by using the programs from the real-world ap-

plications. SPEC CPU 2006 workload has different ways to quantify computer

performance. One way (SPECrate metric) is to measure the number of tasks that

the computer can complete in a definite time; also called a rate measurement,

throughput, or capacity. Another way (SPECspeed metric) is to measure the

speed with which a computer completes a single task.
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Workload
Programming

Language
Application

Domain
400.perlbench C Programming Language
401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization
445.gobmk C Artificial Intelligence: Go
456.hmmer C Search Gene Sequence
458.sjeng C Artificial Intelligence: chess
462.libquantum C Physics / Quantum Computing
464.h264ref C Video Compression
471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms
483.xalancbmk C++ XML Processing

Table A.3: The inherent key characteristics of CINT2006 benchmark suite

Workload
Programming

Language
Application

Domain
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry
433.milc C Physics/Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C, Fortran Biochemistry / Molecular Dynamics
436.cactusADM C, Fortran Physics / General Relativity
437.leslie3d Fortran Fluid Dynamics
444.namd C++ Biology / Molecular Dynamics
447.dealII C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454.calculix C, Fortran Structural Mechanics
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.lbm C Fluid Dynamics
481.wrf C, Fortran Weather
482.sphinx3 C Speech recognition

Table A.4: The inherent key characteristics of CFP2006 benchmark suite
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A.2.2.1 Benchmark Descriptions

Here we describe the properties of some of the SPEC benchmarks that have been

used in our work for the evaluation of different CMP based architectures. The

detailed description about the rest of the benchmarks is reported in [7].

• CINT2006 benchmarks

1. 400.perlbench: The workload is a partial version of Perl v5.8.7. It in-

cludes the email indexers: SpamAssassin and MHonArc and the tool specd-

iff that checks the benchmark output.

2. 401.bzip2: The application is based on julian Seward’s bzip2 version 1.0.3.

All the compression and decompression process in this benchmark is done

entirely in memory, rather than I/O.

3. 403.gcc: The workload is based upon GCC ver 3.2. The workload runs

as a compiler with many optimization flags enabled. It generates machine

code for the AMD Opteron processor.

4. 429.mcf: The benchmark is derived from MCF, a program used for vehicle

scheduling in public mass transportation. It exploits a simple network

algorithm to schedule public transport.

5. 445.gobmk: The program plays an artificial game: Go, a simple-looking

but deep complex inside.

6. 456.hmmer: The workload is used in computational biology to search

DNA sequence pattern. The application uses statistical hidden Markov

model of multiple sequence alignment.

7. 458.sjeng: The workload is based on the program Sjeng ver. 11.2 that

plays chess and a variety of chess variants like losing chess and drop-chess.

8. 462.libquantum: The workload models a quantum computer that is

based on quantum mechanics and solves real hard tasks in polynomial

time. To facilitate this process, it uses Shor’s polynomial-time factoriza-

tion algorithm.
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9. 464.h264ref: The workload is an implementation of H.264/AVC coding

technique that is expected to replace MPEG2.

10. 471.omnetpp: The workload models a vast ethernet network using dis-

crete event simulation.

11. 473.astar: The workload is derived from the well known 2D-path finding

libraries used in AI games. It models different variants of A* path-finding

algorithms based upon the requirement.

• CFP2006 benchmarks

1. 410.bwaves: The workload models the blast wave as a three dimensional

transonic transient laminar viscous flow.

2. 416.gamess: The workload models the different varieties of quantum

chemical computations. It performs the self-consistent field calculations

using Multi-Configuration Self-Consistent Field, Restricted Hartree Fock

method, and Restricted open-shell Hartree-Fock.

3. 433.milc: The workload models the four-dimensional SU(3) lattice gauge

theory using Von-Neumann MIMD parallel machines.

4. 434.zeusmp: The workload models the astrophysical phenomena. The

application resolves the problems in three spatial dimensions with a wide

variety of boundary constraints.

5. 435.gromacs: It is used to perform molecular dynamics. It models the

Newtonian equations of motion for systems with hundreds to millions of

particles.

6. 436.cactusADM: The workload is a combination of Cactus, an open-

source problem-solving environment, and BenchADM, kernel representa-

tive of numerical relativity. The application solves the Einstein evolution

equation using leapfrog numerical method.

7. 437.leslie3d: The workload is based on LESlie3d (Large-Eddy Simula-

tions with Linear-Eddy Model in 3D). It solves the problem of Computa-

tional Fluid Dynamics (CFD) using MacCormack predictor-corrector time

integration scheme.
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8. 444.namd: The workload models the large bio-molecular systems. It tests

the atoms of apolipoprotein A-I.

9. 447.dealII: The workload is based on deal.II, a library targeted at adaptive

finite elements and error estimation. The application provides a solution

for the Helmholtz-type equation with non-constant coefficients.

10. 450.soplex: The application provides solution for the linear program using

a simplex algorithm and sparse linear algebra.

11. 454.calculix: The workload is derived from CalculiX, finite element code

for linear and nonlinear three-dimensional structural application. The ap-

plication provides the solution for buckling, eigen mode analysis, etc.

12. 465.tonto: The workload is an open-source quantum chemistry package.

It performs the calculation of Hartree-Fock wave function to match exper-

imental X-ray diffraction data.

13. 470.lbm: The workload implements Lattice-Boltzmann Method to model

incompressible fluid in 3D.

A.3 Simulation Procedure

In this dissertation, we have used several multi-threaded and multi-programmed

benchmarks for the simulation analysis. This section illustrates all the multi-

programmed and multi-threaded benchmarks that we made from the SPEC CPU

2006 and PARSEC benchmarks.

A.3.1 Multi-threaded vs Multi-programmed Workloads

Every benchmark in the PARSEC suite is the multi-threaded workload. The

number of threads in each program depends upon the input size and load of the

program. Most of the benchmarks take the number of threads as a command-line

argument. In all PARSEC benchmarks, during the execution, the multi-threading
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Multi-threaded Benchmarks
Bodytrack, Canneal, Dedup,

Fluidanimate, Freqmine, Streamcluster,
Swaptions, X264

Multi-programmed Benchmarks
Dual Core Quad Core

Mixes Details Mixes Details
Mix1 lbm, cactusADM Mix1 lbm, mcf, bwaves, leslie3d
Mix2 mcf, zeusmp Mix2 zeusmp, gromacs, gamess, cactusADM
Mix3 leslie3d, gromacs Mix3 lbm, mcf, gromacs, gamess
Mix4 leslie3d, gamess Mix4 perlbench, gcc, omnetpp, libquantum
Mix5 perlbench, bzip2 Mix5 milc, hmmer, bzip2, soplex
Mix6 mcf, cactusADM Mix6 perlbench, gcc, milc, hmmer
Mix7 omnetpp, hmmer Mix7 dealII, sjeng, h264ref, tonto
Mix8 gcc, bzip2 Mix8 gobmk, calculix, astar, namd
Mix9 dealII, namd Mix9 gobmk, tonto, sjeng, namd
Mix10 calculix, tonto - -
Mix11 h264ref, gobmk - -
Mix12 dealII, gobmk - -

Table A.5: List of all the multi-threaded and multi-programmed benchmarks
used for the simulations in this dissertation

occurs in a specific period called Region Of Interest (ROI). In particular, the

real PARSEC application execution happens in the ROI. The input scanning,

initialization of the variable, etc. are performed before ROI, and once the ROI

execution is completed, the workload terminates after generating the output.

The multi-programmed benchmarks are built by merging multiple SPEC CPU

2006 benchmarks through m5 commands in the virtual target system. The phrase

‘merging’ implies that different processes are executing on the different cores until

a process completes the specified number of instructions. For instance, by running

the 4 SPEC process like bzip2, mcf, milc, and leslie3d, we can make a multi-

programmed mix for a four-core CMP. In multi-programmed benchmarks, the

phrase benchmark represents the combined workloads.
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A.3.2 Benchmarks Used in Our Simulations

Based on the multi-threaded and multi-programmed workloads provided by PAR-

SEC and SPEC CPU 2006, different mixtures of the workloads for the simulation

can be made. These mixtures can be either of single PARSEC benchmark ap-

plication with multiple threads or a mix of different processes from the SPEC

CPU 2006. Table A.5 presents the details of the benchmarks that we used in our

simulation analysis.

A.3.3 Benchmark Running Process

To run multi-threaded benchmarks, we run a PARSEC workload on the target

machine up to the completion of the workload. In this process, four stats are

dumped in the generated stats file that comprises of (a) statistics for M5 full system

booting process, (b) statistic before reaching ROI that include the initialization

of benchmarks and the spawning of the threads, (c) the statistics in the ROI and

(d) the statistics from the end of the ROI to the simulation exit. Our focus is on

the third stats that is ROI which represents the actual execution of the PARSEC

applications.

On the other hand, to run multi-programmed benchmarks, the very first step is

to load all the applications one by one. Each application is then executed for

250 million instructions for warm-up. Here, the warm-up phase is essential to go

beyond the compulsory misses in the cache, which allows the proposed architecture

to settle properly in the simulator. After warming-up, each workload is run for one

billion instructions to collect the required stats needed to analyze the performance

of the proposed design.

A.3.4 Comparing Different CMP Architecture

The effectiveness of the proposed CMP architecture with other existing architec-

tures are compared in terms of IPC, energy consumption, EDP, lifetime, write
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variation, implementation overhead, etc. To facilitate this process, we have im-

plemented all our proposed and prior designs on GEM5 (full system simulator).

On top of the framework, we execute different PARSEC and SPEC CPU 2006

workloads. Different variety of statistics are recorded during the execution of each

workload as reported in section A.1.1.5. Based on the stats generated, the efficacy

of architectures is evaluated.

Generally, the architecture is engineered with different choices and design config-

urations, for instance, with different cache associativity, various cache sizes, block

sharing capabilities, etc. Whenever needed, we will provide the appropriate de-

tails in the relevant chapters/sections. For all the architectures with a different

configuration, the process of executing a benchmark is kept the same to maintain

regularity. Separate result of each workload is illustrated, and the geometric mean

of all benchmarks are derived in our result sections.
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