
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Efficient Parallelization and

Performance Analysis of

Meta-heuristics on Many-core

Platforms

by

Manoj Kumar

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science and Engineering

Under the supervision of

Prof. Pinaki Mitra

June 2023

cseoff@iitg.ac.in
manoj.kumar@iitg.ac.in
cseoff@iitg.ac.in
pinaki@iitg.ac.in

Declaration of Authorship

I, Manoj Kumar, hereby confirm that:

� The work contained in this thesis is original and has been done by myself

under the general supervision of my supervisor.

� This work has not been submitted to any other Institute for any degree or

diploma.

� Whenever I have used materials (data, theoretical analysis, results) from

other sources, I have given due credit to the authors/researchers by citing

them in the text of the thesis and giving their details in the reference.

� Whenever I have quoted from the work of others, the source is always given.

Manoj Kumar

Research Scholar,

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

manoj.kumar@iitg.ac.in, manojngp13@gmail.com

Date: June 8, 2023

Place: IIT Guwahati

iii

Certificate

This is to certify that the thesis entitled “Efficient Parallelization and Per-

formance Analysis of Meta-heuristics on Many-core Platforms” being

submitted by Mr. Manoj Kumar to the department of Computer science and

Engineering, Indian Institute of Technology Guwahati, is a record of bonafide re-

search work under my supervision and is worthy of consideration for the award of

the degree of Doctor of Philosophy of the Institute.

Prof. Pinaki Mitra

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

pinaki@iitg.ac.in

Date: June 8, 2023

Place: IIT Guwahati

v

Dedicated to
my guru maharaji PREM RAWAT

and

my loving parents & wife.

vii

Acknowledgements

It is an immense pleasure for me to thank all the peoples who have supported me

during my Ph.D. stay at IIT Guwahati. First and foremost, I thank my supervisor

Prof. Pinaki Mitra for his guidance, encouragement, and extensive help over the

last four years. He has given me the freedom to pursue research ideas and develop

my research skills. I also thank Prof. Aryabartta Sahu for his in-depth guidance

for research works and encouraging me during my Ph.D. work. I profusely thank

him for correcting my silly mistakes again and again and keep me engaged on

Ph.D. work.

I am thankful to my Doctoral Committee Members: Prof. G. Sajith, Prof.

Sushanta Karmakar, and Dr. Rashmi Dutta Baruah for their productive and

constructive suggestions for my thesis work. I firmly believe that their opinions

and comments help me to shape up my final thesis. Additionally, my sincere

thanks to Prof. Jatindra Kumar Deka, the Head of the Department of Computer

Science and Engineering, and other department faculty members for their constant

support and helps.

I specially thanks to Dr. Rakesh Tripathi for encouraging and saving me from

many up and downs during entire Ph.D works. I would also like to thank Dr.

Bala for technical discussions and review for the my publications. I also thank to

one of my seniors Pradeep for motivating me during the research and Ph.D works.

My friends and well-wishers have greatly helped me and without their help my

work would not have been possible. I feel lucky to have a company of Dr. Sukarn,

Dr. Saptarshi, Dr. Hema, Dr. Surajit, Deepak(all PhDs). An uncountable number

of random discussions with them makes my life not dull and joyful. My thanks

are also due for Aditya, Pankaj, Naween, Birendra and many more (all College

and School mates) for their tremendous support to me which hardly few people

will get.

I sincerely thanks to Mr. Raktajit Pathak, Mr. Nanu Alan Kachari, Mr. Bhriguraj

Borah, Mr. Monojit Bhattacharjee, Mrs. Gauri Deori and all other department

staff members for helping me different ways and at different times during my stay at

IIT Guwahati. I would also like to thanks the student affairs section for providing

on-campus hostel facility. Last but not least, I am conveying my appreciation to

security guards, janitors, hostel mess, and canteen staffs for making my life smooth

in IITG campus.

ix

Above all, I am incredibly fortunate to have moral support and encouragement

from my parents and wife Supriya Bharti. I must say without their moral support

and continuous motivations, none of this would have been possible. Thank You

for everything to me. I feel sorry to my son Chunmun who didnt got to much love

from father because i am busy in my ph.d work.

Last but not least, I would like to thank those people who discourage, demoralize,

and menace me at different stages of life. All these motivate me to take something

as a challenge and work hard for it.

Abstract

Meta-heuristics are an efficient method for solving complex problems in science,

engineering, and industry. They explore the solution space efficiently to generate

a good solution in a reasonable time through a neighborhood or population-based

local search. Even if the meta-heuristics do it efficiently, for large instances (practi-

cal problems of science, engineering, or industry), generation of neighborhood and

evaluation of solution of single-solution based meta-heuristics or population-based

meta-heuristics takes a tremendous amount of time.

We used this highly parallel meta-heuristics solver to run on modern days mas-

sively parallel Graphics Processing Unit (GPU) to reduce the execution further.

In this work, we scheduled and mapped the application to take advantage of the

GPU’s architectural configuration to run efficiently by taking advantage of the

management of local memory, shared memory, and global memory of the acceler-

ator. Many GPU programmers use most coding styles or mapping strategies that

are adhoc based. We automated this mapping or coding approach so that the

accelerators are adequately used and improve the program’s performance.

In the later phase, we analyzed the performance of meta-heuristics on GPU by

using static and dynamic auto-tuning of application models on target architecture

for better performance. In this study, we evaluated the performance of various

meta-heuristics for the quadratic assignment problem (QAP), traveling salesman

problem (TSP), and permuted perceptron problem (PPP) using a massively par-

allel machine such as a GPU. These meta-heuristics included iterated local search

(ILS), simulated annealing (SA), genetic algorithm (GA), tabu search (TS), par-

ticle swarm optimization (PSO), and crow search algorithm (CSA). We achieved

the highest speedup, 127.56 on GPU using PSO for QAP, speedup 50.53 using

CSA for TSP, and speedup 165.62 using SA for PPP.

The thesis has thus demonstrated the practical management techniques for achiev-

ing the highest speedup and optimal solution on many-core architecture for real-life

optimization problems using meta-heuristics.

Contents

Declaration of Authorship iii

Certificate v

Acknowledgements ix

Abstract xi

List of Figures xix

List of Tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Objectives . 2

1.2 Motivations . 3

1.3 Efficient Parallelization of Meta-heuristics 4

1.4 Thesis Contributions . 6

1.4.1 Analysis of Meta-heuristics for Quadratic Assignment Prob-
lem in Accelerated Systems 7

1.4.2 Analysis of Iterated Local Search Meta-heuristic on GPU
Spatial Memory . 12

1.4.3 Analysis of Meta-heuristics for Traveling Salesman Problem
in Accelerated Systems . 13

1.4.4 Analysis of Meta-heuristics for Permuted Perceptron Prob-
lem in Accelerated Systems 13

1.5 Summary . 15

1.6 Organization of Thesis . 15

2 Introduction to Meta-heuristics 17

2.1 Optimization Problems . 18

2.2 Meta-heuristics . 19

2.2.1 Classification of Meta-heuristics 20

xiii

2.2.1.1 Single-solution-based Meta-heuristic 20

2.2.1.2 Population-based Meta-heuristic 20

2.3 Solution Representation . 21

2.3.1 Binary Encoding . 21

2.3.2 Discrete Vector Representation 22

2.3.3 Vector of Real Values . 22

2.3.4 Permutation Representation 23

2.4 Different Meta-heuristics . 25

2.4.1 Iterated Local Search (ILS) 26

2.4.2 Simulated Annealing (SA) 26

2.4.3 Genetic Algorithm (GA) . 27

2.4.4 Particle Swarm Optimization (PSO) 28

2.4.5 Crow Search Algorithm (CSA) 30

2.4.6 Tabu Search (TS) . 32

2.5 Performance Analysis of Meta-heuristics 32

2.6 Summary . 32

3 Introduction to Many-core Architecture 35

3.1 Multiprocessor Architecture . 35

3.1.1 Multi-core Architecture . 36

3.1.2 Symmetric Multiprocessor (SMP) 36

3.1.3 Simultaneous Multi-threading (SMT) 37

3.1.4 Distributed Memory Architecture 38

3.1.5 Intel Xeon Phi . 38

3.1.6 Single Instruction Multiple Thread (SIMT) 39

3.2 GPU Architecture . 40

3.3 CUDA Programming Model . 45

3.3.1 GPU Thread Mapping and Scheduling 46

3.3.2 GPU Memory Hierarchy . 46

3.4 Summary . 47

4 Analysis of Meta-heuristics for Quadratic Assignment Problem in
Accelerated Systems 49

4.1 Introduction . 49

4.2 Literature Review . 50

4.3 Motivation and Background . 53

4.4 Quadratic Assignment Problem (QAP) 53

4.4.1 Solution Evaluation for QAP 54

4.4.2 Incremental Solution Evaluation for QAP 54

4.5 The Accelerated System for QAP 55

4.6 Mapping Meta-heuristics for QAP to Multi-core, Pthread, and GPU 56

4.6.1 ILS Implementation . 57

4.6.1.1 ILS on Serial Machine 57

4.6.1.2 ILS using Pthread 58

4.6.1.3 ILS on GPU . 59

4.6.2 SA Implementation . 60

4.6.2.1 SA on Serial Machine 60

4.6.2.2 SA using Pthread 61

4.6.2.3 SA on GPU . 62

4.6.3 GA Implementation . 63

4.6.3.1 GA on Serial Machine 63

4.6.3.2 GA using Pthread 64

4.6.3.3 GA on GPU . 65

4.6.4 PSO Implementation . 66

4.6.4.1 PSO on Serial Machine 66

4.6.4.2 PSO using Pthread 66

4.6.4.3 PSO on GPU . 66

4.6.5 CSA Implementation . 68

4.6.5.1 CSA on Serial Machine 68

4.6.5.2 CSA using Pthread 69

4.6.5.3 CSA on GPU . 70

4.6.6 TS Implementation . 70

4.6.6.1 TS on Serial Machine 70

4.6.6.2 TS using Pthread 71

4.6.6.3 TS on GPU . 72

4.7 Experimental Results . 74

4.7.1 Comparison of the Serial, Pthread, and GPU Versions of
QAP Meta-heuristics . 74

4.7.2 Statistical Analysis of all the Meta-heuristics on GPU 76

4.8 Performance Analysis of Meta-heuristics 81

4.9 Task Graph Generation using Contech 84

4.9.1 Analysis of the Task Graphs 86

4.10 Summary . 87

5 Analysis of Iterated Local Search Meta-heuristic on GPU Spatial
Memory 89

5.1 Introduction . 89

5.2 GPU Memory Architecture . 90

5.2.1 Global Memory . 90

5.2.2 Shared Memory . 90

5.2.3 Constant Memory . 91

5.2.4 Texture Memory . 91

5.3 The Accelerated System . 92

5.4 Utilization of GPU Memory . 92

5.5 Experimental Results . 93

5.6 Summary . 95

6 Analysis of Meta-heuristics for Traveling Salesman Problem in
Accelerated Systems 97

6.1 Introduction . 97

6.2 Literature Review . 98

6.3 Traveling Salesman Problem . 99

6.4 Generating Neighbor Solution . 99

6.4.1 Incremental Solution Evaluation 99

6.5 Accelerated System for TSP . 100

6.6 Meta-heuristics Implementation . 100

6.6.1 ILS Implementation . 101

6.6.1.1 ILS on Serial Machine 101

6.6.1.2 ILS using Pthread 102

6.6.1.3 ILS on GPU . 103

6.6.2 SA Implementation . 103

6.6.2.1 SA on Serial Machine 103

6.6.2.2 SA using Pthread 104

6.6.2.3 SA on GPU . 105

6.6.3 GA Implementation . 105

6.6.3.1 GA on Serial Machine 105

6.6.3.2 GA using Pthread 107

6.6.3.3 GA on GPU . 107

6.6.4 PSO Implementation . 107

6.6.4.1 PSO on Serial Machine 107

6.6.4.2 PSO using Pthread 108

6.6.4.3 PSO on GPU . 109

6.6.5 CSA Implementation . 109

6.6.5.1 CSA on Serial Machine 109

6.6.5.2 CSA using Pthread 110

6.6.5.3 CSA on GPU . 110

6.6.6 TS Implementation . 111

6.6.6.1 TS on Serial Machine 111

6.6.6.2 TS using Pthread 111

6.6.6.3 TS on GPU . 112

6.7 Experimental Results and Analysis 113

6.8 Summary . 114

7 Analysis of Meta-heuristics for Permuted Perceptron Problem in
Accelerated Systems 117

7.1 Introduction . 117

7.2 Literature review . 118

7.3 Permuted Perceptron Problem (PPP) 119

7.4 Generating Neighbor Solutions . 120

7.5 Accelerated System used for PPP 120

7.6 Mapping SA for PPP to Multi-core and Many-core Architecture . . 121

7.6.1 SA Implementation . 122

7.6.1.1 SA on Multi-core Architecture 122

7.6.1.2 SA on Many-core Architecture 123

7.7 Experimental Results . 124

7.7.1 Comparison of the Multi and Many-core Architecture of
PPP with SA Meta-heuristic 124

7.8 Performance Analysis of SA Meta-heuristic 127

7.8.1 Contech Tools for Task Graph Generation 128

7.8.1.1 Analysis of the Task Graphs 130

7.9 Summary . 131

8 Conclusion 133

8.1 Summary of Contributions . 134

8.2 Scope for Future Work . 136

A Experimental Setup Parameter 139

A.1 GPU Parameter . 139

A.1.1 NVIDIA GeForce GTX 980 Ti Configuration 139

A.1.2 NVIDIA GeForce GTX 1050 Configuration 140

A.2 Meta-heuristics Parameter for QAP 140

A.3 Contech Tools Installations . 141

Bibliography 143

Publications Related to thesis 153

List of Figures

1.1 Parallel model of meta-heuristics 5

1.2 General model for local search meta-heuristics 7

2.1 Types of optimization methods . 19

2.2 Binary encoding for 1-hamming distance 22

2.3 Discrete vector representation . 23

2.4 A neighborhood for a continuous problem of two dimension 24

2.5 A neighborhood for permutation representation 24

2.6 fl < 1 . 31

2.7 fl > 1 . 31

3.1 Architecture of symmetric multiprocessor (SMP) 37

3.2 Intel Xeon Phi architecture . 39

3.3 Approximate area of CPU and GPU 40

3.4 Streaming multiprocessor of NVIDIA fermi architecture 41

3.5 CUDA programming model . 46

3.6 Memory hierarchy in GPU . 47

4.1 Crossover operator . 63

4.2 Mutation operator . 63

4.3 Exec. time of meta-heuristics for tai80a instance on CPU, Pthread,
and GPU . 77

4.4 Speedup on GPU for PSO . 78

4.5 Exec. time on GPU for class 1 instances 78

4.6 Exec. time on GPU for class 2 instances 79

4.7 Exec. time on GPU for class 3 instances 79

4.8 Exec. time on GPU for class 4 instances 80

4.9 Boxplot of exec.time on GPU for tai100a instance 80

4.10 Boxplot of exec.time on GPU for tai100b instance 81

4.11 Boxplot of exec.time on GPU for sko100a instance 81

4.12 Boxplot of exec.time on GPU for tai256c instance 82

4.13 Boxplots of objective value on GPU for tai100a instance 82

4.14 Boxplots of objective value on GPU for tai100b instance 83

4.15 Boxplots of objective value on GPU for sko100a instance 83

4.16 Boxplots of objective value on GPU for tai64c instance 84

4.17 Contech Task Graph Visualization 85

xix

4.18 Task graph of ILS for P1 . 86

4.19 Task graph of ILS for P2 . 86

4.20 Task graph of ILS for P3 . 86

5.1 GPU memory hierarchy . 91

5.2 Execution Time (seconds) on GPU 94

5.3 Speedup on GPU with respect to CPU 95

6.1 Solution before swap . 99

6.2 Solution after swap . 100

6.3 Exec. time on CPU, pthread, and GPU for instance a280 114

6.4 Speedup on GPU . 115

6.5 Speedup on GPU for PSO meta-heuristic 115

7.1 Binary encoding for one hamming distance 121

7.2 Speedup of PPP on GPU as compared to serial machine CPU . . . 127

7.3 Task graph of SA for P1 . 129

7.4 Task graph of SA for P2 . 129

7.5 Task graph of SA for P3 . 129

List of Tables

3.1 Number of cores and transistors in different processing system . . . 36

4.1 Percentage deviation and exec. time of QAP using ILS on CPU,
Pthread, and GPU . 58

4.2 Percentage deviation and exec. time of QAP using SA on CPU,
Pthread, and GPU . 61

4.3 Percentage deviation and exec. time of QAP using GA on CPU,
Pthread, and GPU . 64

4.4 Percentage deviation and exec. time of QAP using PSO on CPU,
Pthread, and GPU . 67

4.5 Percentage deviation and exec. time of QAP using CSA on CPU,
Pthread, and GPU . 69

4.6 Percentage deviation and exec. time of QAP using TS on CPU,
Pthread, and GPU . 72

4.7 A comparison of meta-heuristics on CPU, Pthread, and GPU of
taixxa instances . 76

4.8 A comparison of meta-heuristics on CPU and GPU of selected QAP
instances . 76

4.9 Percentage deviation of meta-heuristics on GPU for fixed exec.
time 2 sec. 76

4.10 A comparison of meta-heuristics on CPU and GPU for common
termination criterion (by fixing no. of evaluations) 77

4.11 gprof output . 83

5.1 Nvidia GeForce GTX 980 Ti Configuration 92

5.2 Percentage deviation and exec. time of QAP on GPU local, con-
stant, and shared memory . 93

5.3 Percentage deviation and exec. time of QAP on GPU texture, and
constant memory . 94

6.1 Percentage deviation and exec. time of TSP using ILS on CPU,
Pthread, and GPU . 102

6.2 Percentage deviation and exec. time of TSP using SA on CPU,
Pthread, and GPU . 104

6.3 Percentage deviation and exec. time of TSP using GA on CPU,
Pthread, and GPU . 106

xxi

6.4 Percentage deviation and exec. time of TSP using PSO on CPU,
Pthread, and GPU . 108

6.5 Percentage deviation and exec. time of TSP using CSA on CPU,
Pthread, and GPU . 110

6.6 Percentage deviation and exec. time of TSP using TS on CPU,
Pthread, and GPU . 112

6.7 percentage deviation and speedup on GPU for all meta-heuristics
for TSP . 113

7.1 No. of solutions and execution time of PPP on CPU and GPU
where no. of Imatrix is 10 . 125

7.2 No. of solutions and execution time of PPP on CPU and GPU
where no. of Imatrix is 1000 . 125

7.3 No. of solutions and execution time of PPP on CPU and GPU
where hd = 1 and no. of iteration 1000 126

7.4 No. of solutions and execution time of PPP on CPU and GPU
where hd = 2 and no. of iteration 1000 126

7.5 No. of solutions and execution time of PPP on CPU and GPU
where hd = 1 and fixed test case 1000 127

7.6 gprof output . 128

8.1 Highest speedup on GPU for instances of same size 100 for QAP . . 134

8.2 Highest speedup on GPU for instances of same size 100 for TSP . . 135

A.1 Nvidia GeForce GTX 980 Ti Configuration 140

A.2 Nvidia GeForce GTX 1050 Configuration 140

Abbreviations

CPU Central Processing Unit

GPU Graphics Processing Unit

ILS Iterated Local Search

SA Simulated Annealing

GA Genetic Algorithm

TS Tabu Search

PSO Particle Swarm Optimization

CSA Crow Search Algorithm

QAP Quadratic Assignment Problem

TSP Traveling Salesman Problem

ACO Ant Colony Optimization

PP Perceptron Problem

PPP Permuted Perceptron Problem

Pthread POSIX Thread

PC Personal Computer

SIMT Single Instruction Multiple Thread

SIMD Single Instruction Multiple Data

OS Operating System

MIMD Multiple Instructions and Multiple Data

SMP Symmetric Multiprocessor

I/O Input Output

ALU Arithmetic Logic Unit

SMT Simultaneous Multi-threading

MIC Many Integrated Core

TD Tag Directory

VPU Vector Processing Unit

KB Kilo Bytes

PCIe Peripheral Component Interconnect Express

DRAM Dynamic Random Access Memory

xxiii

Abbreviations xxiv

CUDA Compute Unified Device Architecture

SFU Special Function Unit

LD/ST Load or Store

SP Streaming Processor

SM Streaming Multiprocessor

GDDR5 Graphics Double Data Rate 5

HPC High Performance Computing

D Deviation

ET Execution Time

S Speedup

OpenMP Open Multi-Processing

MPI Message Passing Interface

FORTRAN FORmula TRANslation

QAPLIB Quadratic Assignment Problem Library

TSPLIB Traveling Salesman Problem Library

EA Evolutionary Algorithm

GM Global Memory

LM Local Memory

CM Constant Memory

SM Shared Memory

TM Texture Memory

Chapter 1

Introduction

Many real-world problems are complex and exciting to solve or to get near-optimal

solutions is becoming a sensitive area for researchers. These optimization problems

can be solved by the heuristics method for small-size instances, but for large-size

instances, it may take a considerable amount of time. There are many meta-

heuristics available [1] through which we can get near-optimal solutions to opti-

mization problems using massively parallel devices such as Graphics Processing

Unit.

We attempted Quadratic Assignment Problem (QAP) [2], Permuted Perceptron

Problem (PPP) [3], and Traveling Salesman Problem (TSP) [4] on targeted multi

or many-core architecture like GPU and Xeon-Phi co-processor using s meta-

heuristics (single solution based meta-heuristic), and p meta-heuristics (population-

based meta-heuristics). Many exact and heuristic methods can solve the QAP

problem [5]; however, heuristics take a considerable time for instances greater

than 20. Compared to problem-specific heuristic methods, meta-heuristics are

suitable for all problems. Thus, they have become one of the alternative methods

for solving the QAP, with many nature-inspired meta-heuristics being proposed

for this purpose. In this study, we have chosen a subset of single solution-based

meta-heuristics (i.e., the iterated local search (ILS), simulated annealing (SA),

and tabu search (TS)) and a subset of population-based meta-heuristics (i.e., the

1

Chapter 1. Introduction 2

genetic algorithm (GA), particle swarm optimization (PSO), and crow search algo-

rithm (CSA)) to find the optimal solution for QAP. In addition, we have considered

21 test instances from the QAP library (QAPLIB) [6] as a benchmark for QAP,

generated task graphs for the meta-heuristics using the Contech tool [7] for parallel

programs, and analyzed their performance.

Next, we attempted PPP. This problem is an NP-complete problem based on a

cryptographic identification scheme, which is well suited for resource-constrained

devices such as smart cards. PPP is derived from the perceptron problem (PP),

which is also an NP-complete problem. The perceptron problem is motivated by a

well-known perceptron in Neural Computing. We used SA meta-heuristics to get

the number of possible solutions, record the time on the serial device (CPU) and

the parallel device (GPU), and also computed the speedup on GPU as compared

to the CPU.

We also attempted TSP. This problem belongs to NP-complete class problems, and

it has many applications. Although, many recent meta-heuristics algorithms [8, 9]

are used to optimize the TSP. We used six meta-heuristics- ILS, SA, GA, PSO,

CSA, and TS to get the optimum tour in a reasonable time. Here we used TSPLIB

symmetric instances as a benchmark and computed the optimum tour on multi-

core device CPU, Pthread, and many-core device on GPU.

This research uses accelerated systems such as multi-core CPU, Pthread, and

GPU. We used two NVIDIA GPU cards: GeForce GTX 980 Ti and GeForce GTX

1050, and Contech tools to generate the different task graphs of different parallel

sections.

1.1 Objectives

The principle aim of this dissertation has been to parallelize the meta-heuristics to

reduce the overall execution time in an accelerated system. In this context, we can

use two ways for full utilization of GPU hardware: first is to generate neighborhood

Chapter 1. Introduction 3

on CPU and evaluate it on GPU, and second is generation and evaluation both

are on GPU. In the first approach the large data size generation of neighborhood

takes a long time either on CPU or GPU. If it is on CPU, then for evaluation,

we need to transfer data from CPU to GPU, which takes a considerable amount

of time. After re-evaluating GPU, we need to transfer the solution from GPU to

CPU. So this approach is not much more suitable. In the latter approach, both

generation and evaluation are on GPU; there is no need to transfer data from CPU

to GPU. So this approach is relatively more suitable. In particular, the objectives

of this work may be summarized as follows:

1. Performance analysis of meta-heuristics for combinatorial optimization prob-

lems through different profiling tools (gprof, gcov etc.).

2. Executing meta-heuristics in different levels of parallelism- algorithmic level,

iteration level, and solution level, and finding the appropriate parallel sec-

tions.

3. Generate and analyze the task graph using contech tools for each parallel

section.

4. Scheduling and mapping of task graphs on modern many-core architecture.

5. Mapping task graph considering memory architecture of the accelerated sys-

tem.

1.2 Motivations

In the last few years GPU have become famous for solving the combinatorial

optimization problem of large-size instances. Due to its high-performance, multi-

threaded, high-memory bandwidth and parallel architecture, it has become a grow-

ing interest in high-performance computing applications. Solving real and complex

problems by heuristics algorithms is more time-consuming on the CPU, and these

kind of algorithms do not apply to other optimization problems. Hence switching

Chapter 1. Introduction 4

to a meta-heuristic that applies to all problems i.e., not a problem-dependent al-

gorithm, has become attractive. However, for large-size instances, it takes several

years or even unlimited time to give acceptable solutions. Hence with the help

of GPU, it gives the solutions in a reasonable time. It motivates us to parallelize

the meta-heuristics algorithm on GPU. While using a GPU, there are three main

challenges in which still optimization is possible.

• Efficient communication must be required to optimize data transfer from

CPU to GPU and vice versa.

• Control of parallelization, which issues are thread generation and mapping

with data input.

• Efficient memory management, which emphasizes the required operation,

can be done on the most suitable memory.

As QAP is one of the most popular optimization problems, it has many appli-

cations in different domains. Solving QAP using heuristics methods for large

instances takes a lot of time. So it motivates us to solve QAP using different

meta-heuristics on GPU to reduce the execution time further and improve the

quality of optimal solutions.

PPP is one of the NP-complete class problems which is the best suitable for smart

card applications. We can test it with large randomly generated instances, which

motivates us to do more parallelization on the GPU to achieve the best perfor-

mance of the GPU.

TSP is similar to the QAP problem, with few variations, which motivates us to

implement TSP and analyze the performance of the GPU.

1.3 Efficient Parallelization of Meta-heuristics

E.G. Talbi [10] classified parallelization of meta-heuristics into three levels:algorithmic

level, iteration level and solution level which can be shown in Figure 1.1.

Chapter 1. Introduction 5

Figure 1.1: Parallel model of meta-heuristics

• Algorithmic Level: In this level, parallelization of meta-heuristics is problem-

independent, i.e., different meta-heuristics are executed in parallel without

cooperation. Each meta-heuristic may have different initial solutions for

S-meta-heuristics or different initial populations for P-meta-heuristics. In

addition to the initial solution, each meta-heuristic may have a different pa-

rameter like the tabu list size for tabu search, mutation, cross-over for the

evolutionary algorithm, etc. This parallel model is based on the master-

worker model in which workers implement meta-heuristics. The master de-

fines the different parameters used by the workers and determines the best

solution found among all workers.

• Iteration Level: In this iteration level, the aim is to parallelize every it-

eration of the meta-heuristics, which is problem-independent. Most of the

meta-heuristics belong to this level. For S-meta-heuristics, generation and

evaluation of the neighborhood can happen parallel. The generation of a

neighborhood can be parallelized by dividing the neighborhood into differ-

ent partitions. Each partition can be evaluated in parallel so that we can

find the best solution in a reasonable time. As each iteration progresses, the

best solution is improved until the stopping criteria are reached. Similarly,

for P-meta-heuristics, the initial population is divided, and the operation on

each element is in parallel.

Chapter 1. Introduction 6

• Solution Level: In this solution level, problem-dependent operations per-

formed on solutions are parallelized. This model is particularly used when

the objective function or the constraints are time, memory-consuming, and

input-output-intensive. Generally, objective functions are partitioned into

different partial functions, and each function is evaluated in parallel. So

one has to wait for all partial function evaluations before sending the fi-

nal result. In some problems, objective functions require access to a huge

database that a single machine cannot manage. The database is distributed

among different sites in this situation, and data parallelism is used to eval-

uate the objective function. In data parallelism, the same identical function

is evaluated on a different partition of the input data of the problem.

The main aim of parallelizing the meta-heuristics is to reduce the execution time.

In this context, we can use two ways for full utilization of GPU hardware; the first

is to generate neighborhood on CPU and evaluate it on GPU and the second is

generation and evaluation both are on GPU. Now, the first approach for the large

data generation of neighborhood takes a long time either on CPU or GPU. If it is

on CPU, then for evaluation, we need to transfer data from CPU to GPU, which

takes a tremendous amount of time, and after evaluation on GPU again, we need

to transfer the solution from GPU to CPU. So this approach is not much more

suitable. In the latter approach, both generation and evaluation on GPU, there is

no need to transfer data from CPU to GPU.

For the generation of the neighborhood, generally used local search algorithm,

shown in Figure 1.2. First, generate an initial solution, and at each iteration, a set

of neighboring solutions is generated and evaluated. The best solution is selected

and replaced with the current one. This process is continuously repeated until the

stopping criteria are reached.

1.4 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

Chapter 1. Introduction 7

Figure 1.2: General model for local search meta-heuristics

1.4.1 Analysis of Meta-heuristics for Quadratic Assign-

ment Problem in Accelerated Systems

First generate random initial solutions. At each iteration from initial solutions,

generate several neighbor solutions using adjacent pair-wise exchange permutation

method and evaluate; among these, the best solution is found and replaced with

the current solution. This process continues until the stopping criteria are reached.

For implementing ILS on serial machine (CPU), above all process is repeated and

evaluated all the n×(n−1)
2

neighbor solutions where n is the size of each solution.

At this stage, local optima reached; thus, for the next iteration, made the minimal

local solution the initial solution and repeated all the steps above. This process

continues until the stopping criteria reach. To avoid being stuck in local optima or

unable to get the best global minimum solution, took 500 random initial solutions,

and each initial solution iterated 10 times. ILS using Pthread: In this meta-

heuristic, instead of executing all initial solutions at a time, we assigned all the

initial solutions to several processors so that each could be utilized and get an equal

number of the initial solutions. Then, each part is assigned to different processors

so that all parts run in parallel. ILS on GPU: In general, there are three issues

Chapter 1. Introduction 8

in GPU where optimization is possible: 1) efficient communication between CPU

and GPU, in which the main issue is to optimize data transfer; 2) control of

parallelization, in which the issues are thread generation and mapping the threads

to data input; and 3) efficient memory management, which can be performed on

any memory. The parallel design of meta-heuristics to solve any combinatorial

optimization problem, such as the QAP, has a significant performance effect on

accelerated machines. In general, to run a program on GPU, three main steps

have to be followed: first, the data input is copied from CPU (host) to GPU

(device); second, the program is executed on GPU; and last, the result is sent back

from GPU to CPU. First, we set the kernel’s grid size and block size to generate

a number of threads to achieve the best performance with respect to executing

the ILS algorithm on GPU. For the implementation, we generated random initial

solutions on CPU, and from each initial solution, we generated neighbor solutions

and evaluated it on GPU. In this study, we took 500 initial solutions, and each

initial solution iterated 10 times to get the best possible optimal solution. All the

initial solutions were run in parallel and called the GPU, which also ran in parallel

to execute the evaluation cost function of neighbor solutions.

SA on the serial machine: To find the best solution among all neighbor solutions,

we applied SA. We fixed the main parameters of SA to be as follows: initial

temperature: 10, 000, cooling rate: 0.9999, and absolute temperature: 0.00001.

Initially, the algorithm starts with an initial temperature, and at every iteration,

the temperature is reduced to [current temperature × cooling rate], making it

the current temperature for the next iteration. This process continues until the

current temperature reaches the absolute temperature. SA using Pthread: Instead

of running all of the initial solutions sequentially on the CPU, we assigned them

to an equal number of processors. The optimal solution was found and compared

on each processor to get the globally optimal solution. SA on GPU: First, we

generated neighbor solutions from the initial solutions and evaluated them on

GPU. Then, the neighbor solutions’ entire assignment cost is copied back from

GPU to CPU. Afterward, we performed SA on the CPU to find the optimal

solution, and all neighbor solutions were evaluated in parallel by GPU.

Chapter 1. Introduction 9

GA on the serial machine: GA starts with a random initial population of solutions,

where the neighbor solutions are generated with the help of two operators, namely,

crossover and mutation. The crossover operator selects two random solutions from

the population of solutions. In this study, we used the tournament method. In

this method, first, a few solutions are randomly selected. Then, among them, the

best solution (with the least assignment cost) is selected. When two solutions

are selected, the crossover operator is employed to generate the new offspring and

then store it in the new population. In this study, we used one-point crossover and

then applied the mutation operator to the newly generated solution. We changed

the elements’ position for mutation and stored them in the new population. In

addition, we fixed the number of initial solutions as 5000 and the number of

iterations as 10. From the 5000 initial solutions, we generated 25000 neighbor

solutions using the crossover and mutation operators. In each iteration, the best

population of solutions was selected (i.e., 5000), becoming the current population,

with this process continuing until the termination condition is reached. GA using

Pthread: In this study, the neighbor solutions are assigned to an equal number of

processors, and each processor evaluates the solutions and stores their costs, and

then merges all solutions, out of which we chose the best 5000 solutions for the

next generation or iteration. GA on GPU: Using GA, we generated the random

initial population of solutions, then generated the offspring using the crossover and

mutation operators for the next generation and iteration. In GPU, we evaluated

the solutions in parallel until the stopping condition is reached, then the results

were sent back from GPU to CPU.

PSO on the serial machine: It starts with random initial solutions or a popula-

tion of particles, with each particle having a random initial velocity. Every particle

has it’s personal best based on its experience or history and global best for the

whole group of particles. In every iteration, each particle updates its velocity and

position. As the iteration continues, each particle converges toward the optimal

solution. In this study, velocity was measured in terms of the number of swaps

of positions inside a solution. PSO using Pthread: on pthread, an initial popula-

tion of solutions is assigned to an equal number of processors. As the algorithm

Chapter 1. Introduction 10

proceeds, every processor reaches the optimal solution. After the termination, all

the optimal solutions for the processors are combined, and among them, the best

solution is observed. PSO on GPU: In PSO, we observed the random position and

velocity of the whole swarm, which is generated on the CPU. The particle’s posi-

tion and velocity were used to generate the next position of the particles, which

was evaluated in parallel on GPU. Every member of the swarm updates its ve-

locity based on the position from the local optimum. After reaching the stopping

criteria, the final global optimum values were copied from GPU to CPU.

CSA on the serial machine: In CSA, first, we fixed the initial parameters such as

the flight length and probability of awareness. Initially, for the serial machine, we

generated a fixed number of initial solutions as the size of the input; with each

initial solution, we generated many neighbor solutions. Among these neighbor

solutions, we found the best one, which was used to initialize the memory of each

crow for each initial solution. As the iteration increases, each crow updates its

memory until the termination condition is reached. Among the memories of all

crows, we found the best one giving the optimal solution for the QAP, taking

flight length as 2 and probability of awareness as 0.15. CSA using Pthread: To

implement on Pthread; first, we divided the initial solutions among processors,

with each processor running the maximum number of iterations (initially fixed)

and updating the memory of each crow. All processors run in parallel, while

inside each processor, this algorithm runs serially. After completing the execution

of all processors, we found the best-updated memory among all crows that gives

our optimal solutions. CSA on GPU: To implement it on GPU; first, we fixed

the initial parameters. Then, we calculated the cost of the initial solutions on

the CPU, and from each initial solution, we generated the neighbor solutions.

Afterward, we evaluated the cost of the neighbor solutions on GPU. From each

initial solution, we found the best possible neighbor solution cost that is set to the

memories of each corresponding crow (for the initial solution). Consequently, we

run the CSA on the CPU to find the next positions of the crows, evaluate their

cost, and compare them to the solution stored in their memory. If the solution

gave the best result, then the corresponding crow’s memory was updated until the

Chapter 1. Introduction 11

termination criteria were reached. Finally, among the memories of all crows, we

found the best solution cost.

TS on the serial machine: In TS, first, we fixed the size of the tabulist as the

size of the instance. Then, we generated the fixed number of (size of tabulist)

random initial solutions, evaluated their cost, and stored them in tabulist. In

each iteration, we generated the neighbor solution through an adjacent pair-wise

exchange method and evaluated their cost; if it improves from the current solution,

then we updated the tabulist. This procedure will continue until it reaches the

terminating condition and finds the best optimal solution from tabulist. To avoid

being stuck in local minima, we implemented a diversification operator suggested

by Glover et al. [11] to generate a new solution. We fixed the maximum number

of failures as the size of the instance. In CPU, we fixed the number of iterations as

10. TS using Pthread: To implement on pthread; first we fixed tabulist size as the

size of the instance, and then generated a random initial solution, evaluated their

cost, and stored in tabulist. We call Pthread, and every thread gets the tabulist

and generates a neighbor solution; if it improves the current solution, then update

the tabulist. When Pthread joins, then merge all the thread in tabulist, and

from that, we get the best optimal solution. TS on GPU: To implement TS on

GPU, first we fixed the GPU parameters and then transferred the input data from

CPU to GPU. In GPU, we fixed the number of iterations as 10, and the size of

tabulist is the size of the instance. In each iteration of TS, we transfer the tabulist

from CPU to GPU. On GPU, we generate and evaluate the neighbor solution,

update the tabulist with the best optimal solution, and then update tabulist is

transferred back from GPU to CPU. This process continues until it reaches the

stopping condition. Finally, the best optimal solution is found from tabulist.

This work is fully discussed in Chapter 4.

Chapter 1. Introduction 12

1.4.2 Analysis of Iterated Local Search Meta-heuristic on

GPU Spatial Memory

Here ILS meta-heuristic is used for solving QAP on GPU spatial memory and com-

pared the execution time and speedup on GPU. The GPU supports programmable

memory, where a user can write a program for the use of memory to utilize the

resources of GPU architecture. Besides the global memory of GPU, it also has

fast memory systems such as the shared, constant, texture, and local memory.

By using the GPU spatial memory, it can be further reduce the execution time

for solving QAP. The GPU shared memory is used when data is required to be

accessed by all threads within a block. The GPU constant memory is used for

read-only data accessed uniformly by threads in a warp. It performs best when

all threads in warp access the exact location in the constant memory. Texture

memory is also read-only; it performs best when all reads in a warp are physically

adjacent to each other. The GPU local memory is used when data is required

to be accessed by only a particular thread i.e. data is only visible to the thread

that wrote it and ended when threads are destroyed. We implemented the ILS

meta-heuristic using the local, shared, and constant memory, and the results are

recorded. Because the QAP input, such as the distance matrix and flow matrix,

is always constant, we put it on a read-only memory (the constant memory). So

here, GPU is performing best on shared memory, while on constant memory, GPU

performance is worst. We used Nvidia GeForce GTX 980 Ti GPU card, which has

only 48KB constant memory or cache, so instances of size greater than 100 show

out of memory and not be executed. We also implemented texture memory along

with varying one with constant and texture memory, like we have put one-time

distance matrix input on constant memory and flow matrix on texture memory.

We observed that when we put on mixed with constant and texture memory,

speedup on GPU is more significant than only constant memory but worst than

only texture memory.

More details about this work are given in Chapter 5.

Chapter 1. Introduction 13

1.4.3 Analysis of Meta-heuristics for Traveling Salesman

Problem in Accelerated Systems

In this work, we analyze the performance of meta-heuristics for solving TSP. Here

we considered both types: Single solution-based (s-type) and Population-based

(p-type) meta-heuristics. We have taken s-type as ILS, SA, and CSA in this

study and p-type as GA, PSO, and TS. We also compared the optimum tour and

execution time between CPU, Pthread, and GPU and computed the speedup on

GPU. Here we have taken instances from TSPLIB [12] symmetric instances. We

generated neighbor solutions using the adjacent pair-wise exchange permutation

method and used incremental solution evaluation instead of executing the full

solution at a time. For incremental solution evaluation, we passed only the position

of cities or locations which is changed, and due to this, we calculated the change

of cost in the tour. We used the same process and same parameter as used in the

QAP for all the above meta-heuristics. We compared all meta-heuristics for each

TSP symmetric instance on GPU and calculated the speedup on GPU concerning

the CPU. We observed that for instance pr107, CSA is giving the highest speedup

50.53, and ILS is giving the best speedup for all other instances on GPU.

A more detailed description of this work is given in Chapter 6.

1.4.4 Analysis of Meta-heuristics for Permuted Perceptron

Problem in Accelerated Systems

In this work, we implemented PPP using SA meta-heuristic and used the binary

encoding method to generate the neighbor solution from the initial solution. We

generated one and two hamming distance neighborhoods. We observed that the

number of neighbor solutions increases as the hamming distance increases and the

GPU speeds up. SA on the serial machine: In CPU, first we randomly generated

the ε-matrix I of size m × n and a ε-vector Z of size n × 1; then we find the

multi-set matrix IZ of size m × 1, using this we calculated the histogram of

elements of a multi-set matrix. We again also generated a random ε-vector Z

Chapter 1. Introduction 14

as the candidate vector initial solution, and from that, we generated a neighbor

solution using hamming distance one. From each neighbor solution, we calculated

the multi-set matrix of size m×1. We calculated the energy function, then applied

SA to find the candidate vector solution. In the next iteration, we reduced the

temperature by the reducing factor at each iteration; this iteration will continue

until the temperature becomes 1. Finally, we noted the solution and made them

an initial solution for the next iteration, and this process will continue until it

reaches the maximum number of iterations. SA on GPU: For the implementation

of SA on GPU, first, we generated random ε I matrix of size m × n and ε Z

matrix of size n × 1. We find the multi-set matrix IZ on GPU, and results are

copied back from GPU to CPU. We also calculated the histogram of each odd

element of the multi-set matrix. Again we generated a random initial candidate

vector of size n×1, and from this initial solution, we generated neighbor solutions

using binary encoding with hamming distance one. We calculated the objective

function for each neighbor solution and applied the SA method to accept or reject

the neighbor solution. For each iteration, the SA method continues to run until

its temperature parameter T becomes one. We fixed the maximum number of

iterations as 1000 and T as the value of n. We also generated a neighbor solution

with a hamming distance of 2 and used SA meta-heuristics to solve PPP. We noted

the result in Table 7.4. From this table, we can see that the highest speedup on

GPU is 196 is obtained for instance size 121−81 while for instance size 151−167,

the speedup is 166. We analyzed the performance of the SA meta-heuristic on a

sequential machine and a GPU. First, by using a GNU profiling tool (i.e., gprof)

[13], the performance of SA meta-heuristics is checked for solving PPP on a serial

machine. We analyzed the performance of PPP, for instance size (101 − 117),

by randomly generating Imatrix and Zmatrix. We run 1000 iterations for each

solution on the sequential machine (i.e., CPU) and noted the results of the gprof

profiling tool. We generated the task graphs of each parallel section using the

Contech tools.

The detail description of this work is given in Chapter 7

Chapter 1. Introduction 15

1.5 Summary

Many researchers have shown an interest in solving optimization problems and

their applications using meta-heuristics in accelerated systems. We attempted

QAP using six meta-heuristics: ILS, SA, GA, PSO, CSA, and TS, and took in-

stances from QAPLIB. We considered mainly four different classes of different

instances. We implemented it on CPU, pthread, and GPU and examined the

speedup on pthread and GPU regarding CPU. The PSO meta-heuristics show the

highest speedup on GPU among all six meta-heuristics. We also notice that as

the size of the instance increases, the GPU resources are utilized more efficiently,

which results in more speedup on GPU. Additionally, as QAP input is read-only,

we implemented ILS on GPU spatial memory such as shared, constant, and tex-

ture for QAP, which increased the speedup compared to utilizing just the global

memory and enhanced GPU performance.

All the above six meta-heuristics are used for TSP in accelerated systems. Here

we considered the symmetric instances from TSPLIB. Among all these meta-

heuristics, CSA shows the highest speedup on GPU, and TS shows the lowest

speedup on GPU. Similarly, we used the SA meta-heuristic to examine the speedup

on GPU for PPP. For PPP, we randomly generated the input instance with dif-

ferent sizes and examined the speedup on the GPU.

In this dissertation, main aim to parallelize the different meta-heuristics and com-

pare them to get the most suitable meta-heuristics for accelerated systems opti-

mization problems.

1.6 Organization of Thesis

The rest of this thesis is organized as follows:

• Chapter 2 described the introduction of optimization problems and meta-

heuristics.

Chapter 1. Introduction 16

• Chapter 3 discusses the introduction of multi and many-core architecture.

• Chapter 4 presents the first contribution, which is the parallelization of six

meta-heuristics: ILS, SA, GA, PSO, CSA, and TS in accelerated systems:

multi-core CPU, Pthread, and many-core GPU for QAP.

• Chapter 5 described the logical extension of GPU hardware spatial memory

for QAP using the ILS meta-heuristic.

• Chapter 6 discusses another optimization problem TSP similar to QAP. We

used all six meta-heuristics: ILS, SA, GA, PSO, CSA, and TS in accelerated

systems.

• Chapter 7 demonstrates the parallelization of the simulated annealing meta-

heuristic for PPP in a many-core GPU architecture.

• Chapter 8 finally concludes the thesis.

Chapter 2

Introduction to Meta-heuristics

As described in Chapter 1, solving complex real-life optimization problems using

heuristics methods takes tremendous time for instances greater than 20. So, highly

massively parallel device architecture like GPU may reduce the execution time and

improve the optimal solution. The main goal of this thesis is to find which meta-

heuristics is most suitable for the optimization problems we have considered. We

initially summarize the preliminary concept of optimization problems and meta-

heuristics. We also discussed the basic algorithm used in each meta-heuristic.

The layout of this chapter is as follows: optimization problem is discussed in

section 2.1. Section 2.2 describes the meta-heuristics, solution representation is

described in section 2.3. Section 2.4 discusses the different meta-heuristics, per-

formance analysis of meta-heuristics is summarized in section 2.5 followed by the

summary of the chapter in section 2.6.

In this thesis, the terms instance or instances means that it is the input or

benchmark of the optimization problem.

17

Chapter 2. Introduction to Meta-heuristics 18

2.1 Optimization Problems

An optimization problem is the minimization or maximization of a cost function,

which can be mono-objective or multi-objective. This (these) function (s) is (are)

called as objective function (s). In this document, we are considering optimization

problems in a minimization context.

Mono-objective min f(x), x ∈ S

Multi-objective

min f(x) = (f1(x), f2(x), . . . , fn(x)) n ≥ 2

const.x ∈ S
(2.1)

where n is the number of objectives, x = (x1, x2, . . . , xk) is the vector repre-

senting the decision variables and S is the set of feasible solutions. f(x) =

(f1(x), f2(x), . . . , fn(x)) is the vector of objectives to be optimized. For n = 1

the objective function is called as mono-objective and for n ≥ 2 is called as multi-

objective optimization [14].

A mono-objective optimization problem aims to find a feasible solution that min-

imizes the objective function. In contrast, a multi-objective problem aims to find

the set of Pareto optimal solution, which is called the Pareto front. A solution

is called Pareto optimal if it is impossible to improve a given objective without

detriment any other objective.

For solving an optimization problem, proper optimization methods depending

upon the complexity of the problem, are utilized. Two types of optimization

methods are mainly utilized: exact methods and heuristics. Figure 2.1 illustrates

the different methods of optimization. Exact methods give the optimal solutions

and guarantee their optimality. However, the exact methods (branch and bound,

constraint programming, and dynamic programming) become impractical for large

instances of the problems [15, 16, 17].

Conversely, heuristic methods generate high-quality optimal solutions, but there is

no guarantee that optimal solutions are reached. Further heuristic can be classified

Chapter 2. Introduction to Meta-heuristics 19

Figure 2.1: Types of optimization methods

as: specific heuristic and meta-heuristics [10].

An specific heuristic is designed to solve a particular problem or instance, whereas a

meta-heuristic is generic and applicable to different problem types. Meta-heuristics

generally use randomization and local search they are based on the iterative im-

provement of either a single solution or a population of solutions.

2.2 Meta-heuristics

The word meta-heuristic made with two words meta (means upper) and heuristic

(means to search). So meta-heuristic is defined as an upper-level heuristic design

that helps to find or generate an acceptable optimal solution to an optimization

problem. However, it does not guarantee to find a globally optimal solution [18].

Heuristics are problem-dependent and deterministic techniques usually adapted to

the problem at hand. In order to maximize their efficiency, they take advantage

of the peculiarities of this problem. Thus, heuristics are usually too greedy and

tend to become trapped in local optima, which prevents them from obtaining the

optimal global solution. As opposed to this, meta-heuristics are non-deterministic

techniques independent of the problem. In this way, they can serve as black boxes

since they do not exploit any particularities of the problem. Their solution may

even deteriorate temporarily as they are not greedy.

Chapter 2. Introduction to Meta-heuristics 20

2.2.1 Classification of Meta-heuristics

Meta-heuristics are generic, randomized, and use local search to improve the

solution based on iterative improvement. These are classified into two cate-

gories: Single-solution based meta-heuristic (S-meta-heuristics) and population-

based meta-heuristics (P-meta-heuristics).

2.2.1.1 Single-solution-based Meta-heuristic

Single solution-based meta-heuristics (s meta-heuristics) manipulate and trans-

form a single solution during the search. These meta-heuristics are based on

exploitation-oriented i.e. they can intensify the search in local regions. They are

iterative techniques successfully applied to solve many real and complex problems.

They usually start with a randomly generated initial solution. As the algorithm

iterates, the current solution is replaced by another one chosen from its neighbor-

ing solutions. Famous examples of S-meta-heuristics are hill climbing, tabu search,

simulated annealing, iterative local search, and variable neighborhood search.

2.2.1.2 Population-based Meta-heuristic

The whole population of solutions is evolved in population-based meta-heuristics

(P meta-heuristics). These meta-heuristics are based on exploration-oriented i.e.

they provide better diversification in the entire search space. They start from an

initial population of solutions, and then they iteratively apply to generate the new

population and replace the current population with the newly generated popu-

lation. This process is carried out until the given stopping criteria are satisfied.

Famous examples of P-meta-heuristics are evolutionary algorithms, ant colony op-

timization, scatter search, and particle swarm optimization. The main sub-classes

of evolutionary algorithms are genetic algorithms, genetic programming, and evo-

lution strategies.

Chapter 2. Introduction to Meta-heuristics 21

2.3 Solution Representation

Designing any iterative meta-heuristic requires an encoding (representation) of a

solution. The encoding plays a significant role in any meta-heuristics efficiency

and effectiveness, so it constitutes an essential step in designing a meta-heuristic.

The encoding must be suitable and relevant to tackle the optimization problem.

A representation must have:

• Complete, that is, all solutions associated with the problem must be repre-

sented.

• A search path must exist between any two solutions of the search space,

especially the global optimum solution that can be attained.

• Easy to manipulate by the search operators.

Generally, four primary encoding techniques are used to represent a solution: bi-

nary encoding (e.g., Knapsack problem, Satisfiability problem), vector of discrete

values (e.g., location problem, assignment problem), permutation (e.g., Travel-

ing Salesperson Problem, Scheduling Problems) and vector of real values (e.g.,

continuous functions).

2.3.1 Binary Encoding

In a binary representation, a solution is represented by the vector (string) of

bits. Binary encoding is based on hamming distance. This distance represents the

number of positions between two strings of equal length in which corresponding

symbols differ.

1-Hamming distance neighborhood:- In this representation, the neighbor-

hood is generated by flipping one bit of the candidate vector solution (as shown

in Figure- 2.2). If the solution size is n, then the possible number of neighbors is

n, each of size n.

Chapter 2. Introduction to Meta-heuristics 22

Figure 2.2: Binary encoding for 1-hamming distance

2-Hamming distance neighborhood:- In this representation, a neighborhood

is generated by flipping two values of a candidate vector solution. For a candidate

solution of size n, total number of possible neighborhoods is n×(n−1)
2

.

Similarly for 3-hamming distance neighborhood, a neighborhood is generated by

flipping three values of a candidate solution and total number of possible neigh-

borhoods from a size n is n×(n−1)×(n−2)
6

.

2.3.2 Discrete Vector Representation

It is a variant of binary encoding with an extension that uses the alphabet
∑

. Each

variable in this representation has a value from the alphabet
∑

. For a discrete

vector of size n, the number of the neighborhood is (k − 1)× n if the cardinality

of the alphabet
∑

is k. Now for example consider a discrete vector of size n = 3

and alphabet
∑

= {0, 1, 2, 3, 4, 5} with cardinality k = 6. A neighborhood can be

generated by replacing every element of the candidate solution with the alphabet,

each one at a time. All the neighbors are shown in Figure 2.3. The total number

of neighborhoods generated is 15 (5× 3).

2.3.3 Vector of Real Values

This representation is mainly used in continuous optimization. Such a represen-

tation has the solution space as its neighborhood. The ball is a notion used to

Chapter 2. Introduction to Meta-heuristics 23

Figure 2.3: Discrete vector representation

define the neighborhood by R. Chelouah and P. Siarry [19]. Having a radius of r

and being centered on s, a ball with the formula B(s, r) includes all of the points

s′ such that ‖s′ − s‖ ≤ r. A collection of balls with a radius of h0, h1, . . . , hm are

considered with the current solution s as their center to achieve the homogeneous

exploration of the space.

Thus the space is partitioned into crowns ci(s, hi−1, hi) such that

ci(s, hi−1, hi) = s′|hi−1 ≤ ‖s′ − s‖ ≤ hi. (2.2)

By randomly selecting one point from each crown ci, with i ranging from 1 to m (as

illustrated in Figure 2.4), the m neighbours of s are determined. One thread to at

least one neighbour, which corresponds to one point inside each crown, is connected

with the mapping. This mapping is applied to the Weierstrass function [20].

2.3.4 Permutation Representation

• 2-Exchange Neighborhood: To generate a neighborhood using the pair-wise

exchange method is a standard way in permutation problems. For a per-

mutation of size n, the total number of possible neighborhood is n×(n−1)
2

.

Figure 2.5 shows all the possible neighbors of candidate solution {1, 0, 3, 2}

by exchanging the pairs of candidate solutions.

Chapter 2. Introduction to Meta-heuristics 24

Figure 2.4: A neighborhood for a continuous problem of two dimension

Figure 2.5: A neighborhood for permutation representation

Permutation encoding differs from all previous representations because the

mapping between neighbor and GPU thread is not straightforward. The

neighbor consists of two indexes (a swap in a permutation), and each thread

has a unique identifier. So, one mapping has to be considered to convert one

index into two, and another one to convert two indexes into one.

Proposition 2.1 (Two-to-one index transformation). If i and j are the

permutation representation’s indexes for the two elements to be swapped,

then the equivalent index f(i, j) in the neighborhood representation is equal

to i× (n− 1) + (j − 1)− i×(i+1)
2

, where n is the permutation size.

Proposition 2.2 (One-to-two index transformation). For an element with

index f(i, j) in the neighborhood representation, the equivalent index i in the

Chapter 2. Introduction to Meta-heuristics 25

permutation representation is equal to

n− 2−

⌊√
8× (m− f(i, j)− 1) + 1− 1

2

⌋

and j is equal to f(i, j)− i×(n−1)+ i×(i+1)
2

+1 in the permutation represen-

tation, where m denotes the neighborhood size and n denotes the permutation

size.

The proof of the above two proposition can be found in [21]. This mapping

is applied to solve the quadratic assignment problem.

• 3-Exchange Neighborhood: A neighborhood is generated by exchanging

three neighborhood values for large instances. For a neighborhood of size n,

total number of possible neighborhood is n×(n−1)×(n−2)
6

. For this mapping,

a transformation is needed to convert three-to-one and one-to-three index

transformations.

2.4 Different Meta-heuristics

Meta-heuristics do not guarantee finding a global optimal solution. They are classi-

fied into two types: single solution-based and population-based. In single solution-

based meta-heuristics, a single solution is used for manipulation and transforma-

tion during the search, whereas in population-based meta-heuristics, the whole

population is involved during the search. Moreover, in single solution-based meta-

heuristics, we can use the pairwise exchange method to generate neighbor solu-

tions that can be assessed using the incremental solution evaluation. However, in

population-based meta-heuristics, the generated neighbor solutions cannot be as-

sessed using the incremental solution evaluation, but we can evaluate a full solution

utilizing the constant memory, local memory, and shared memory of GPU.

Chapter 2. Introduction to Meta-heuristics 26

Algorithm 1 Iterated Local Search (ILS)

Input: Distance matrix and Flow matrix
Output: Optimal solution (local optimum).

1: s = s0; (Generate random initial solution s0)
2: while not Termination Criteria do
3: repeat
4: sb the best neighbor solution near s, and sb = s
5: Generate neighbor solution s′ from s (where s′ ∈ N(s))
6: Evaluate the neighbor solution s′ using objective function F .
7: if F (s′) is less than F (sb) then
8: sb = s′

9: end if
10: until All the neighbor solutions of s are explored
11: for next iteration s = sb
12: end while

2.4.1 Iterated Local Search (ILS)

It is a single solution-based meta-heuristic, which starts with an initial solution

that is randomly generated. At each iteration, it explores all possible neighbor

solutions generated from the initial solution, then evaluates the objective function

of each neighbor solution and compares it with the objective function of the current

solution. If it improves the cost function, then it replaces the neighbor solution

as the current solution. However, if all neighbor solutions are worse than the

current solution, it stops, indicating that the local optimum is reached. The basic

algorithm of ILS is illustrated using Algorithm 4.1.

2.4.2 Simulated Annealing (SA)

It is a stochastic single solution-based meta-heuristic, which generally starts with

an initial solution and an initial temperature parameter T . At each iteration, a

neighbor solution is generated, which is always accepted if it improves the cost

function, and accepted with probability if it is a non-improving solution, with

the probability of an accepted solution decreasing as the algorithm progresses. It

can be also formalized as if a current solution Sc has cost function f(Sc), while

Chapter 2. Introduction to Meta-heuristics 27

Algorithm 2 Simulated Annealing (SA)

Input: Cooling schedule
Output: Optimal solution.

1: s = s0; (Generate random initial solution s0)
2: T = Tmax; Set initial maximum temperature
3: while not Termination Criteria i.e. T < Tmin do
4: repeat
5: Generate random neighbor s′ from s (where s′ ∈ N(s))
6: Evaluate the neighbor solution s′ using objective function f .
7: ∆E = f(s′)− f(s);
8: if ∆E ≤ 0 then
9: s = s′ /∗ Accept the neighbor solution ∗/

10: else
11: Accept s′ with a probability e

−∆E
T

12: end if
13: until Equilibrium condition reached
14: T= g(T); /∗ Update the temperature ∗/
15: end while

the next neighbor solution Sn has cost function f(Sn). For a minimization prob-

lem, if f(Sn) is less than f(Sc), the solution Sn is accepted and assigned as the

next current solution. Otherwise, the solution Sn is accepted with probability

exp(f(Sc) − f(Sn))/T , where T is the current temperature. The basic SA algo-

rithm is illustrated using Algorithm 2.

2.4.3 Genetic Algorithm (GA)

It is a population-based meta-heuristic that belongs to the larger class of EAs,

which are generally good at diversification. It starts with many initial solutions

and with the help of three genetic operators (i.e., crossover, mutation, and selec-

tion), then it generates the next generation population of solutions, continuing

this process until reaching the termination criteria. In this study, we use a single-

point crossover operator to combine two randomly chosen solutions to generate

two new solutions. The mutation operator is used to randomly change the po-

sition of some elements in the selected solution, which generates a new solution

that prevents the sticking in local optima. The cost of all solutions is evaluated

using the objective function, which is then used to decide whether to eliminate or

Chapter 2. Introduction to Meta-heuristics 28

Algorithm 3 Genetic Algorithm

Input: Distance matrix and Flow matrix
Output: optimal solution.

1: Generate P=(P (O)); /∗ Generate random initial population ∗/
2: while not Termination Criteria do
3: repeat
4: Generate offspring P ′ with crossover operation and from P
5: Generate offspring by applying mutation operation on P ′

6: Evaluate the offspring P ′ using objective function F .
7: Find best population Pb
8: until All offspring of P are explored.
9: Replace P with Pb for the next generation

10: end while

retain these solutions. To generate a new population, low-cost solutions are kept,

whereas high-cost solutions are discarded, then the generated new population re-

places the current population, and the whole process is repeated until reaching

the termination condition. The basic GA is illustrated using Algorithm 3.

2.4.4 Particle Swarm Optimization (PSO)

It is a stochastic population-based meta-heuristic optimization technique, which

was developed by Russel Eberhart and James Kennedy [22] in 1995. PSO is a

nature-inspired meta-heuristic based on swarm intelligence where the movement

of each individual explores the search space. In a swarm, each individual gains

experience, called the personal best (pbest), which contributes to the group and

uses the experience of the group, called the global best (gbest), for evaluating

its own self. Thus, they pass the information in both directions, namely, from an

individual to the group and from the group to an individual. Shi and Eberhart [23]

proposed a mathematical formulation based on the inertia weight model for the

movement of particles in search space, with the coefficients being independent from

the optimization problem. In PSO, each particle is composed of three vectors:

~pi(t) that denotes the position vector, ~vi(t) that denotes the velocity vector, and

~ppbesti(t) that denotes the best local position vector of particle i. The velocity of

Chapter 2. Introduction to Meta-heuristics 29

Algorithm 4 Particle swarm optimization (PSO)

Input: Distance matrix and Flow matrix
Output: optimal solution.

1: Random initialization of position and velocity of each particle
2: repeat
3: Evaluate the objective function f(xi)
4: for all particles i do
5: Update velocities:
6: vi(t+ 1) = w ∗ vi(t) + θ1 × (pi − xi(t)) + θ2 × (pg − xi(t));
7: Move next position: xi(t+ 1) = xi(t) + vi(t+ 1);
8: if f(xi) < f(pbesti) then
9: pbest = xi;

10: end if
11: if f(xi) < f(gbesti) then
12: gbest = xi;
13: end if
14: Update (xi, vi);
15: end for
16: until Stopping criteria reached

a particle can be defined as

vid(t+ 1) = w ∗ vid(t) + c1θ1d(t)(ppbestid(t)− pid(t))

+c2θ2d(t)(pgbestd(t)− pid(t))
(2.3)

and the next position of the particle can be written as

pid(t+ 1) = pid(t) + vid(t+ 1) (2.4)

where pid(t), vid(t), ppbestid(t), and pgbestd(t) represent the current position, the

velocity, the best local position, and the best global position of particle i in di-

mension d at iteration t, respectively. θ1d and θ2d denote the random variables

between 0 and 1, w represents the inertia, while c1 and c2 are two positive con-

stants that show the personal influence and the social influence of a particle. The

basic algorithm of PSO is illustrated using Algorithm 4.

Chapter 2. Introduction to Meta-heuristics 30

2.4.5 Crow Search Algorithm (CSA)

It is a nature-inspired meta-heuristic, which was developed by Askarzadeh [24] in

2016. This algorithm is based on crow intelligence in nature. Crows are very good

in observing other birds. For example, when other birds hide their excess food in

some places, the crows observe until the other birds leave, and then the crows steal

their food. Once the crows commit theft, they take extra precautions by moving to

another place and looking for future victims. In a crow of flock size N , the position

of a crow i at time (iteration) t in a d-dimensional environment is represented by

a vector pi,t (i = 1, 2, . . . , N ; t = 1, 2, . . . , tmax), where pi,t = [pi,t1 , p
i,t
2 , . . . , p

i,t
d],

and tmax denotes the maximum number of iterations. Because each crow has

a memory, mi,t denotes the memory (position of the hiding place) of crow i at

iteration t, being the best position obtained by crow i so far. Assuming that at

any iteration t, crow j wants to visit its hiding place mj,t, and crow i decides to

follow crow j, then in this situation, the following two cases may happen.

case 1: Crow j does not know that crow i is following it. Therefore, crow i will

approach the hiding place of crow j. Thus, the new position of crow i is represented

as

pi,t+1 = pi,t + ri × f i,tl × (mj,t − pi,t) (2.5)

where ri denotes a random number between 0 and 1 with a uniform distribution,

while f i,tl represents the flight length of crow i at iteration t.

case 2: Crow j knows that crow i is following it. Then, in this situation, crow

j will fool crow i by moving to another position in the search space so that its

hiding place remain protected. Therefore, by combining both cases 1 and 2, we

can write the position of crow i in the next iteration as

pi,t+1 =

p
i,t + ri × f i,tl × (mj,t − pi,t) rj ≥ PAj,t,

a random position otherwise

(2.6)

where rj denotes a random number between 0 and 1 with a uniform distribution,

while PAj,t denotes the probability of awareness of crow j at iteration t. The next

Chapter 2. Introduction to Meta-heuristics 31

Figure 2.6: fl < 1 Figure 2.7: fl > 1

Algorithm 5 Crow search algorithm (CSA)

Input: Distance matrix and Flow matrix
Output: optimal solution.

1: Randomly initialize the positions of crows of flock size N in a search space
2: Evaluate the positions of the crows
3: Initialize the memory of each crow
4: while t < tmax do
5: for i = 1 : N do
6: Randomly choose one of the crows among the flock of size N to follow

a crow (for example j)
7: Define the probability of awareness
8: if rj > PAj,t then
9: pi,t+1 = pi,t + ri × f i,tl × (mj,t − pi,t)

10: else
11: pi,t+1 = a random position in search space
12: end if
13: end for
14: Check the feasibility of the new positions
15: Evaluate the new position of the crows
16: Update the memory of crows
17: end while

position of crow i depends on the flight length, that is, if fl < 1, then the crows

next position is between pi,t and mj,t, as shown in Figure 2.6. Conversely, if fl > 1,

then the next position of the crow can be anywhere on the line, that is, it may

exceed the position mj,t, as illustrated in Figure 2.7. Hence, small values of fl

move toward the local search, whereas a large value of fl moves toward the global

search in the search space. The pseudo code of CSA is shown in Algorithm 5.

Chapter 2. Introduction to Meta-heuristics 32

2.4.6 Tabu Search (TS)

It is a single solution-based meta-heuristic, which is proposed by Glover [25].

It starts with a random initial solution and a memory-based tabulist. In each

iteration of tabu search, all neighbor solution is generated from an initial solution

and evaluated their cost to improve the current solution. In TS, to avoid local

minima a tabulist is introduced, which is a fixed-length list used to store the best

solution. In each iteration, the best solution is found, and compared with the

tabulist, if this solution improves from the solution stored in the tabulist, then the

tabulist is updated. So in this way, TS accepts not only the improved solution but

also accepts the non-improved solution. The performance of this meta-heuristic

depends on different parameters like neighbor solution generation and tabulist

implementation.

2.5 Performance Analysis of Meta-heuristics

After designing the meta-heuristic algorithm and execution on many-core archi-

tecture their performance must be analyzed on a fair basis. The following are the

essential steps for evaluation of performance of meta-heuristic algorithm:

• Design of meta-heuristic algorithms done according to the input instance

and the solution of the problem.

• Statistical analysis must be done on the obtained results with the help of

suitable optimization algorithms.

2.6 Summary

Real-world optimization problems are resolved using a variety of meta-heuristics.

Here we considered some single solution-based and population-based meta-heuristics

Chapter 2. Introduction to Meta-heuristics 33

to analyze their performances in optimization problems effectively. Single solution-

based meta-heuristics are initialized with only one solution, while population-based

meta-heuristics are initialized with a group of initial solutions. Here we discussed

the single solution as ILS, SA, and TS meta-heuristics, whereas population-based

GA, PSO, and CSA meta-heuristics. The solution that optimizes the objective

cost function is accepted in ILS and TS meta-heuristic. In contrast, in SA, both

the solutions that optimize the cost function and non optimize solutions are ac-

cepted. In GA, the best populations are selected in every iteration, and optimal

solutions are searched. In PSO, each particle optimizes its best in every iteration

to get the optimal solution. In CSA, each crow modernizes their memory to find

the optimal solution.

Chapter 3

Introduction to Many-core

Architecture

Chapters 1 and 2 discussed how meta-heuristics could be used to solve optimiza-

tion problems. However, they do not guarantee that the optimal solution will be

reached. It is possible to reduce execution time and improve optimal solutions

using massively parallel architectures like GPUs. We summarized the multi and

many-core architecture. In addition, we also discussed the different versions of

GPU architecture that are launched till the year 2022 with their necessary im-

provements from the previous release version from NVIDIA.

The rest of the chapter is organized as follows: multiprocessor architecture is

discussed in section 3.1. Section 3.2 described the architecture of GPU. CUDA

programming model is presented in section 3.3. Finally section 3.4 summarizes

the chapter.

3.1 Multiprocessor Architecture

In the last decades, main personal computers have been switching to include other

processing elements to gain high performance. We can classify the multiprocessor

architecture of the PC & work stations processor system into three categories (a)

35

Chapter 3. Introduction to Many-core Architecture 36

Number of cores #transistors Examples
Multi-core 4, 8, 12, 16 ≥ 55× 106 Intel Xeon Processor
Many-core 57, 60, 61 ≥ 5× 109 Intel Xeon Phi Co-Processor

GPU 512, 1024, 3072 ≥ 5× 109 NVIDIA GeForce GTX Titan

Table 3.1: Number of cores and transistors in different processing system

multi-core architecture, (b) many-core architecture, and (c) GPU/SIMT architec-

ture. Table 3.1 shows the number of cores, area, or transistors of the different

multiprocessor systems.

3.1.1 Multi-core Architecture

In multi-core architecture, ten or a hundred cores are generally there. In a multi-

core processor, two or more processors (also called cores) are built on a single

computing platform, and all cores run in parallel so that it enhances the overall

speed of the program. Every core is controlled separately by the operating sys-

tem (OS), and the OS scheduler assigns threads and processes to distinct cores.

It is physically possible to connect each processor to the same memory. IBM’s

POWER4 was the first general-purpose multi-core processor released in 2001 [26].

Multi-core processors are MIMD (multiple instructions and multiple data) i.e. dif-

ferent cores execute different threads (multiple instructions), operating on different

parts of memory (multiple data). In multi-core devices, designers may couple cores

tightly or loosely. For example, cores may or may not share caches; they may im-

plement shared memory or message passing inter-core communication methods.

3.1.2 Symmetric Multiprocessor (SMP)

In SMP architecture, two or more similar processors are connected to a single

shared main memory, providing full access to all I/O devices. SMP is controlled

by a single operating system that treats all processors equally and reserves no pro-

cessors for particular purposes. SMP architecture is the multiprocessor system’s

most popular and more accessible design.

Chapter 3. Introduction to Many-core Architecture 37

Figure 3.1: Architecture of symmetric multiprocessor (SMP)

Figure 3.1 shows the most common design of SMP for personal computers, work-

stations, and servers. The system bus connects all the processors, main memory,

and I/O (input/output) devices. Each processor in a multi-processor system has a

control unit, an ALU (arithmetic logic unit), registers, and cache. An SMP system

has a shared memory referred to as main memory, which two or more homoge-

neous processors share. Each processor can communicate through the common

data area of shared memory, but the direct signal exchange is also possible [27].

3.1.3 Simultaneous Multi-threading (SMT)

SMT is a technique that permits multiple threads issues to multiple functional

units in each cycle. SMT processor design supports instruction-level and thread-

level parallelism by issuing instructions from different threads in the same cy-

cle. Instruction-level parallelism comes from every single program or thread, and

thread-level parallelism comes from either a multi-threaded parallel program or

every single program from multi-programming workloads. Because it supports

both types of parallelism, it utilizes resources on processors more efficiently to

gain instruction throughput or speed up the processors. Hardware features of

SMT are a combination of super-scalars and multi-threaded processors, like the

ability to issue multiple instructions each cycle is inherited from super scalar and

represents the hardware state for several threads from multi-threaded processors.

SMT processors perform better than several processor designs such as super-scalar,

traditional multi-threaded, and on-chip multiprocessor architectures [28].

Chapter 3. Introduction to Many-core Architecture 38

3.1.4 Distributed Memory Architecture

Each processor has its local memory in a distributed memory architecture called

a multi-processor computer system. This system has several benefits; first, there

is no contention on the bus or switches. Each processor may use the bandwidth

available to its local memory without interference from other processors. Second,

as there is no bus, so no limit on the number of processors; the size of the system

depends on the network used to connect processors. Third, there are no cache

coherency problems; each processor operates on its data.

The main disadvantage of this technology is the more difficult inter-processor

communication. Generally, communication from one processor to another happens

through exchanging messages which causes extra overhead and is time-consuming.

Also, there is a chance to intercept by other processors.

3.1.5 Intel Xeon Phi

Co-processor Intel Xeon Phi [29] is built on the Intel Many-Integrated Core (MIC)

architecture. It has up to 61 cores connected by a high-performance on-die bidi-

rectional interconnect. Figure 3.2 illustrates the basic blocks of Intel Xeon Phi

architecture. Each core supports four hardware contexts simultaneously and exe-

cutes two instructions per clock cycle. Every core has an 8-way set associative 32

KB L1 data cache, 32 KB instruction cache, and 512 KB private L2 cache. The

L2 cache is kept fully coherent with each other by the tag directory (TD). Each

core has a vector processing unit (VPU) that executes mathematical functions and

16 single, 8 double floating-point operations per clock cycle. A bidirectional ring

interconnects all components (cores, TD, memory controller, PCIe, etc.). Every

memory address is mapped using a reversible one-to-one address hashing method

in 64 tag directories and eight memory controllers [30].

Chapter 3. Introduction to Many-core Architecture 39

Figure 3.2: Intel Xeon Phi architecture

3.1.6 Single Instruction Multiple Thread (SIMT)

SIMT (Single Instruction, Multiple Thread) is a parallel programming model used

in NVIDIA GPU in which multi-threading is performed by SIMD (Single Instruc-

tion, Multiple Data) processors. In SIMD, all cores execute the same instruction

on different data streams; examples are vector computers, and most modern com-

puters have SIMD architecture.

A critical difference between SIMD and SIMT is that SIMD exposes the width

to the software where as SIMT instructions specify the execution and branching

behavior of a single thread [31]. With the help of SIMD vector machines, SIMT

enables programmers to write thread-level parallel code for independent, scalar

threads and data parallel code for coordinated threads. There are three critical

features of SIMT that SIMD does not have, (a) single instruction, multiple register

sets, (b) single instruction, multiple addresses, and (c) single instruction, multiple

flow paths.

However, despite high latencies, SIMT and SMT use thread mechanisms to achieve

high throughput. SIMT is less flexible than SMT as (a) SIMT has low occupancy

and flows divergence, which reduces the performance, and (b) SIMT synchroniza-

tion options are minimal.

Chapter 3. Introduction to Many-core Architecture 40

Figure 3.3: Approximate area of CPU and GPU

3.2 GPU Architecture

Graphics Processing Unit (GPU) is not a single stand-alone device but a co-

processor to a CPU. GPU operates in conjunction with CPU through a PCI-

Express bus. In GPU computing terms, CPU is called the host, and GPU is called

the device, and the code running on CPU is called host code and the code running

on GPU is called device code. A high-performance sequential part runs on the

CPU, and a parallel part runs on GPU. GPU programming can run on compute

unified device architecture (CUDA), a parallel computing platform and program-

ming model invented by NVIDIA [31]. CUDA is an extension of C-like high-level

programming language. There are multiple advances in GPU architecture over

the years, some of the popular GPU architecture is Tesla (in 2006), Fermi (2010),

Kepler (2012), Maxwell (2014), Volta (2017), Turing (2018), Ampere (2020), and

Hopper (2022) developed by NVIDIA.

In Figure 3.3, the approximate CPU and GPU area is illustrated. In CPU number

of arithmetic and logic units (ALU) is negligible. However, the ALU, control unit,

and cache size are more prominent. But, in GPU, the number of ALU is vast,

along with a smaller amount of area dedicated to controlling the cache.

CPU is latency oriented, powerful ALU that reduces the operation latency, fewer

registers and SIMD units, and ample cash, which is most beneficial to converting

long latency memory accesses to short latency cache accesses sophisticated control

unit. It uses branch prediction to reduce branch latency and data forwarding

to reduce data latency. Mainly CPU is used for sequential parts where latency

matters, so it is more than ten times faster than GPU for sequential code.

Chapter 3. Introduction to Many-core Architecture 41

Figure 3.4: Streaming multiprocessor of NVIDIA fermi architecture

On the other hand, GPU has throughput-oriented cores, small caches, simple

control but a large number of threads to manage, and no branch prediction and

no data forwarding. Also, it has many energy-efficient ALU with long latency but

is heavily pipe-lined for high throughput, many registers, and many SIMD units.

Mainly GPU is used for parallel parts where throughput matters, so it can be

more than ten times faster than CPU for parallel code.

Figure 3.4 shows GPU Fermi architecture’s streaming multiprocessor (SM). Each

GPU consists of many SM, and each SM has a certain number of streaming pro-

cessors or processor cores. So it is possible to have thousands of threads executing

concurrently on a single GPU. Each core executes a single thread instruction in

a single instruction multiple data (SIMD) fashion, and the instruction unit dis-

tributes the current instruction to the cores. Each core has one arithmetic unit

that can perform single-precision floating point operations or 32-bit integer arith-

metic. In addition, each SM has special function units (SFUs), which can execute

more complex floating point operations such as reciprocal sine, cosine, and square

root with low cycle latency.

Chapter 3. Introduction to Many-core Architecture 42

The SM has load/store units and other components like registers files, warp sched-

uler, and dispatch unit. Thus GPU architecture consists of SM, interconnect net-

work, shared memory/L1 cache, uniform cache, and DRAM. Some of the GPU

architecture released are: Fermi, kepler, Maxwell, Pascal, Volta, Turing, Ampere,

and Hopper architecture.

Fermi Architecture: The Fermi architecture was the first complete GPU architec-

ture in high-performance computing (HPC) applications. It has 512 accelerator

cores which are also called CUDA cores. Fermi architecture has 16 SM each with

32 CUDA cores. Fermi has six 384-bit GDDR5 DRAM memory interfaces, which

can support up to a total of 6GB of global memory. Also, Fermi includes a 768 KB

L2 cache, which is shared by all SMs. Each SM has 16 load/store units, two warp

schedulers, two instruction dispatch units, and 4 special function units (SFUs).

Fermi also supports concurrent kernel execution, multiple kernels launched from

the same application executing on the same GPU simultaneously.

Kepler Architecture: The Kepler architecture, released in 2012, is a fast and highly

efficient high-performance computing architecture. Kepler K20X has 15 SMs and

six 64-bit memory controllers. Each SM consists of 192 single-precision CUDA

cores, 64 double-precision units, 32 special function unit and 32 load/store units

(LD/ST). The three important features in the Kepler architecture has: first, en-

hanced SMs; second, dynamic parallelism that allows the GPU to launch new

grids; and third, Hyper-Q: It adds more simultaneous hardware connections be-

tween the CPU and GPU so that CPU cores simultaneously run more tasks on

the GPU.

Maxwell Architecture: The Maxwell architecture, released in 2014, was the succes-

sor to Fermi. The first generation of Maxwell GPUs has the following advantages

over Fermi:

• It has enhanced streaming multiprocessor (SM), related to control logic

partitioning, workload balancing, clock-gating granularity, compiler-based

scheduling, number of instructions issued per clock cycle, and many other

enhancements which improve energy efficiency.

Chapter 3. Introduction to Many-core Architecture 43

• It has more significant dedicated shared memory, i.e., 64 KB per SM, unlike

Fermi and Kepler, which partitioned 64 KB into shared memory and L1

cache. It remains the per-thread block memory as 48 KB, but the total

shared memory increased, which improves the occupancy of SM. Dedicated

shared memory improvements are possible by combining the L1 cache and

texture memory.

• It has native shared memory atomic operations, which helps implement other

atomic operations. While Fermi or Kepler has a lock/update/unlock pat-

tern, which could be expensive for updates to a particular location in shared

memory.

• It has dynamic parallelism support in the mainstream that benefits devel-

opers to no need to implement special-case algorithms for high-end GPUs.

Pascal Architecture: It has a successor to Maxwell, released in 2016. It has the

following improvements over Maxwell architecture:

• It supports NVLink communication which enables a 5X increase in band-

width between Tesla Pascal GPUs and CPU, which results in significant

speed improvement over PCIe.

• It has high bandwidth HBM2 memory, which provides 3X memory perfor-

mance over Maxwell and Kepler GPUs.

• It has pascal unified memory Which helps developers not copy data from the

host to the device and vice-versa. It allows direct access to GPU all memory

as well as all system memory.

• It has computed preemption support, allowing higher priority tasks to inter-

rupt currently running tasks.

• It supports dynamic load balancing, which optimizes GPU resource utiliza-

tion.

Chapter 3. Introduction to Many-core Architecture 44

Volta Architecture: It was released in 2017, strictly marketed for professional

applications, with advanced technologies supporting HPC and artificial intelligence

applications. It has the following improvements over Pascal architecture:

• It was the first micro-architecture to use tensor cores (which is mainly for

specialized mathematical calculations). Tensor cores perform matrix opera-

tions for deep learning, and AI use cases.

• It has new SM architecture optimized for deep learning. Its SM is 50% more

energy efficient than previous Pascal architecture.

• It has a second-generation NVIDIA NVLink that gives high-speed inter-

connect, higher bandwidth, more links, and improved scalability for use in

multi-GPU and multi-GPU/CPU systems.

• It has enhanced unified memory that allows more accurate migrations of

pages to the processor and access more frequently. It has also enhanced

address translation service that allows GPU to access CPU’s page table

directly.

Turing Architecture: It was released in 2018 with the support of tensor cores and

consumer-focused GPUs. It has the following improvements over Volta architec-

ture:

• It has new SM architecture, also called Turing SM, that improves the shading

efficiency and 50% improvements in performance per Cuda-core compared

to pascal generations.

• It has tensor cores similar to volta architecture with an enhanced feature in

precision modes.

• It introduces real-time ray tracing (RTX), which enables a GPU to visualize

3D games into physically accurate shadows, reflection, and refraction, which

has applications in virtual reality (VR).

Chapter 3. Introduction to Many-core Architecture 45

• It has deep learning features for graphics as well as for inference. It utilizes

deep learning neural networks and a set of neural services to perform AI-

based functions that accelerate and enhance graphics applications.

Ampere Architecture: It was released in 2020, with enhancement from Turing

architecture in 3rd generation NVlink, 3rd generation tensor cores, and 2nd gen-

eration ray tracing cores. It provides tremendous speedup for AI training and

inference applications, HPC workloads, and data analytics.

Hopper Architecture: It is released in 2022, with enhancement from Ampere ar-

chitecture in 4th generation NVlink, and 4th generation tensor cores to perform

faster matrix computations. It supports distributed shared memory that allows

direct SM-to-SM communications for loads, stores, and atomics across multiple

SM shared memory blocks.

3.3 CUDA Programming Model

The CUDA programming model provides an abstraction for GPU architecture,

which helps to link the application program to its implementation on GPU hard-

ware. In this model, the CPU is the host, while the GPU is the device. For

executing any CUDA program, there are mainly three steps involved: first, copy

the input data from host memory to device memory i.e. host to device data trans-

fer; second, load GPU program and execute, and third, copy the results back from

device memory to host memory. CUDA kernel is a function that executes on GPU.

For running any application on GPU, a parallel portion is executed k times by k

threads in parallel while running on the CPU; it performs only once like a regular

C function. For declaring a CUDA kernel function global declaration specifier

is used in the beginning of the function name.

Chapter 3. Introduction to Many-core Architecture 46

Figure 3.5: CUDA programming model

3.3.1 GPU Thread Mapping and Scheduling

A group of threads is called a CUDA block, and a group of blocks is called a

grid. Each thread is mapped to one Cuda core, and a cuda block is mapped to

the streaming multiprocessor. A streaming multiprocessor can run multiple cuda

or thread blocks. All threads in one grid execute the same kernel. Figure 3.5

illustrates the cuda programming model. Each thread and block has bult-in 3D

variable index called as threadIdx and blockIdx.

3.3.2 GPU Memory Hierarchy

GPU consists of various types of memory, which is illustrated in Figure 3.6 and

described as follows:

Chapter 3. Introduction to Many-core Architecture 47

Figure 3.6: Memory hierarchy in GPU

Registers: Registers are private to each thread assigned to the thread, which is

not visible to other threads. The compiler decides on the registers utilization.

L1/Shared Memory (SMEM): Every SM has an on-chip memory that is very fast

and uses an L1 cache and shared memory. All threads in a CUDA block can share

the shared memory, and all CUDA blocks can share physical memory resources in

an SM.

Read-only Memory: Each SM has a read-only memory to kernel code: an instruc-

tion cache, constant memory, texture memory, and RO cache.

L2 Cache: L2 cache is shared across all SMs, so every thread in every block can

share this memory.

Global Memory: Global memory is DRAM which is the frame buffer size of GPU.

3.4 Summary

Multi and many-core architecture is improving their performance with release

in different versions. In GPU architecture, NVIDIA has released different ver-

sions with improvements from the previous version. Recent versions of GPU are

Chapter 3. Introduction to Many-core Architecture 48

used for deep learning, artificial intelligence, and virtual reality applications. This

thesis used Maxwell and Pascal GPU architecture with different CUDA cores.

The CUDA programming model helps the GPU architecture to be utilized effi-

ciently.

Chapter 4

Analysis of Meta-heuristics for

Quadratic Assignment Problem

in Accelerated Systems

In this chapter, we discuss the first contribution of the QAP and parallelization of

meta-heuristics: ILS, SA, GA, PSO, CSA, and TS in accelerated systems: multi-

core CPU, Pthread, and many-core GPU for QAP. In addition to this, We also

discussed the performance and statistical analysis of above all meta-heuristics and

compared them among these meta-heuristics. We also calculated the speedup on

Pthread and GPU concerning CPU.

4.1 Introduction

The quadratic assignment problem (QAP) is one of the most studied optimization

problems, as it is NP-hard and considered a classical challenge [32]. Owing to

its complexity and importance in real-life problems, it has attracted considerable

attention from many researchers, with many real-life problems having direct appli-

cations of the QAP such as the facility layout problem [33], the traveling salesman

problem [4], the bin packing problem [34], the maximum clique problem [35], the

49

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 50

scheduling problem [36], the graph partitioning problem [37], the keyboard layout

problem [38], the problem of memory layout in digital signal processors [39], and

the backboard wiring problem [40].

Many exact and heuristic methods can solve the QAP problem [5]; however, heuris-

tics take a considerable amount of time for instances of size greater than 20.

Compared to heuristic methods, which are problem-specific, meta-heuristics are

suitable for all types of problems. Thus, they have become one of the alternative

methods for solving the QAP, with many nature-inspired meta-heuristics being

proposed for this purpose. In this study, we have chosen some single solution-based

meta-heuristics and some population-based meta-heuristics to find the optimal so-

lution for QAP. In addition, we have considered 21 test instances from the QAP

library (QAPLIB) [6] as a benchmark for QAP, and generated task graphs for the

meta-heuristics using the Contech tool [7] for parallel programs and analyzed their

performance.

The rest of the chapter is organized as follows: literature review for QAP is dis-

cussed in section 4.2, and motivation and background are presented in section 4.3.

The QAP is defined in section 4.4. Section 4.5 describes the accelerated system

we used in this study. A description of the problem of mapping to architecture

is given in section 4.6. Section 4.7 presents the experimental results, while Sec-

tion 4.8 describes the performance analysis of the meta-heuristics. Section 4.9

presents the generation of task graphs using contech tools. Finally, we summarize

this chapter in the section 4.10.

4.2 Literature Review

Many works [41, 42] have been done related to solving optimization problems using

meta-heuristics in accelerated systems. Due to the increasing interest in writing

programming languages on GPUs, solving combinatorial optimization problems

has become popular. An evolutionary algorithm (EA), a population-based meta-

heuristic algorithm, was the first parallel algorithm developed on GPU. Wong et

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 51

al. [43] proposed the first GA on GPU, as they implemented fast evolutionary

programming based on mutation operators. They divided their work into three

phases: first, they generated the initial population in the central processing unit

(CPU) and then evaluated it in GPU; second, they compared the results for the

CPU or GPU; third, they transferred the final results from GPU to CPU. How-

ever, they implemented the replacement and selection operators on the CPU, thus

limiting the algorithm’s performance owing to the transfer of essential data from

CPU to GPU. This drawback has been overcome by Q. Yu et al. [44] who were

the first to implement a full parallelization of a G.A. on GPU. They represented

the population structure with a 2D toroidal grid in which each grid point denotes

one individual, using a crossover operator to generate a child for each individual,

selecting the best one among the neighborhood by taking one of its parents and it-

self. However, this implementation has not worked for the binary encoding scheme

of G.A., as it only works for vectors of real values. To overcome this problem, J.M.

Li et al. [45] have used specific genetic operators for the binary representation of

G.A.

In his study [46], Zhu implemented a parallel evolution strategy algorithm based

on a pattern search on GPU. He used multiple kernels on GPU with the selection

and crossover operators running on one kernel and the mutation and evaluation

operators running on the other kernel of GPU. At the same time, the remaining

processes were done on the CPU. He compared the performance of CPU and GPU

by considering a selected benchmark and analyzing the quality of solutions under

time limits.

Tsutsui et al. [47] used the shared memory management concept on GPU for

solving the QAP by GA. In their work, they designed a GA model divided into

two types of independent GAs, where each sub-population represents one thread

block. While the GPU implementation aims to maximize the utilization of shared

memory, the maximum number of threads runs on multiprocessors, thus coalesc-

ing the memory access. They compared the results for CPU and GPU, indicat-

ing that there is still room for performance improvement because they shuffled

the individual on CPU, which is time-consuming, and used a multiple-population

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 52

coarse-grained GA and not a single-population fine-grained one. Moreover, they

did not use the texture memory, a high-speed memory, and did not apply any

local search. Luong et al. [48] proposed a hybrid EA by mixing EA with local

search on GPU. They divided their model into three layers: high level (memory

allocation and data transfer), intermediate level (thread management), and low

level (memory management).

• High-level layer: In this layer, both the allocation of memory on GPU and data

transfer between CPU and GPU are done.

• Intermediate-level layer: This layer focuses on efficient thread mapping to the

neighborhood, as the GPU threads are light-weighted compared to the CPU

threads; thus, the context switch between the two threads is very slow. There-

fore, thread management is necessary for the generation of the neighborhood in

local search.

• Low-level layer: In this layer, kernel memory management is performed. Addi-

tionally, the authors manage the memory coalescing issues of unstructured data

by bounding the texture memory with the global memory, which is a read-only

memory.

Later, they tested the proposed algorithm on QAP by taking standard taillard

instances of size greater than 30, noted the CPU time and GPU time as well as

the texture memory, and analyzed the performance, showing that GPU is much

more efficient than CPU. Many meta-heuristics have been used to solve QAP using

GPU [49]; in this paper, the authors survey different works related to QAP using

meta-heuristics on GPU. A cooperative parallel tabu search algorithm is proposed

by James et al., for solving QAP [50]; in this paper, the authors compared variants

of tabu search with the proposed algorithm. In paper [51] E. Sonuc et al., parallel

multi-start SA for QAP on GPU is proposed and compared with TS, and the

authors indicated the GPU run times are 29 times faster than CPU. A parallel

genetic algorithm is proposed for QAP in [52] by H. Alfaif et al., in which authors

used new crossover and mutation are implemented on CPU and GPU, that shows

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 53

the optimal solutions for a few instances. In [53], R. Matousek et al. proposed a

mathematical programming technique for finding the lower bounds for QAP that

helps to construct the starting point for QAP. Silva et al., [54] considered four

variants of QAP and proposed a single framework to solve all of them; authors also

illustrated parallel memetic iterated tabu search as the most successful heuristics

for QAP. In [55], R. POVEDA et al. proposed a hybrid parallel meta-heuristics

algorithm for QAP. A parallel ILS meta-heuristic is implemented for QAP in

paper [56] by Özçetin et al. and calculated the speedup on GPU. Cheng et al. [57],

exposed a survey work on parallel GA on GPU architecture.

In paper [58], L. Stoltzfus et al. used to optimize the placement of data on GPU

memory architecture. The authors also compared the speedup of matrix multipli-

cation on different GPU architectures. A survey on GPU parallelization strategies

is discussed by M. Essaid et al. [59]. Here authors listed the different implemen-

tations of parallel meta-heuristics using GPU programming.

4.3 Motivation and Background

Many meta-heuristics are used for solving QAP [60]. Although, QAP belongs to

the NP-complete class [61] problem, using meta-heuristics on GPU [62], effective

near optimal solution on GPU can be achieved in reasonable time.

4.4 Quadratic Assignment Problem (QAP)

The main objective of the QAP is to minimize the assignment cost, that is, the

cost to assign n facilities to n locations. The assignment cost is calculated as the

sum of the cost of all pairs, that is, the product of the flows between facilities and

the distance between nodes corresponding to these facilities.

Assuming D = (dij) and F = (fij) to be two positive integer matrices of size n×n,

then the permutation of (1, 2, . . . , n) is the solution of QAP that minimizes the

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 54

objective function

Z(π) =
n∑
i=1

n∑
j=1

dijfπ(i)π(j) (4.1)

where π is any permutation of (1, 2, . . . , n) representing a solution of QAP, which is

also called the permutation representation. The functional value of the objective

function Z depends on both the distance and flow matrices, thus making the

QAP problem more difficult to solve, with each permuted solution representing a

neighbor solution. In this study, we use the pairwise exchange method to generate

a neighbor solution.

4.4.1 Solution Evaluation for QAP

To evaluate the solution, the evaluation function takes a substantial amount of

time. In this study, in the evaluation function, we pass one full solution at a time.

Because the assignment cost is the sum of the cost of all pairs of locations, to

calculate the cost for one location, it searches all facilities taking O(n) time, while

taking O(n2) times to calculate the cost for all locations.

4.4.2 Incremental Solution Evaluation for QAP

In the incremental solution evaluation, instead of passing one full solution at a time

and calculating the cost for every location, we only pass the changed locations of

neighbor solutions, with no changes to the remaining locations. Hence, instead of

calculating the cost for all locations, we only calculate the changed cost for that

solution; thus, it takes only O(n) times.

Pseudo code of incremental solution evaluation [63]:

int evaluateSwapCost(int N, int *t_sol, int Cost,

int r, int s, int **d_m, int **f_m)

{

int vr = t_sol[r]-1,vs = t_sol[s]-1,k,delta = 0;

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 55

delta = d_m[r][r] * (f_m[vs][vs]-f_m[vr][vr]) +

d_m[r][s] * (f_m[vs][vr]-f_m[vr][vs]) +

d_m[s][r] * (f_m[vr][vs]-f_m[vs][vr]) +

d_m[s][s] * (f_m[vr][vr]-f_m[vs][vs]);

for(k=0; k<N; k++)

{

int vk = t_sol[k]-1;

if(k != r && k != s)

{

delta +=(d_m[k][r] * (f_m[vk][vs]-f_m[vk][vr]) +

d_m[k][s] * (f_m[vk][vr]-f_m[vk][vs]) +

d_m[r][k] * (f_m[vs][vk]-f_m[vr][vk]) +

d_m[s][k] * (f_m[vr][vk]-f_m[vs][vk]));

}

}

Cost+=delta;

return Cost;

}

4.5 The Accelerated System for QAP

In a multi-core processor, two or more cores are built on a single computing plat-

form, with all cores running in parallel to enhance the overall speed of the program.

Each core is treated as a separate processor by the operating system and maps to

threads/processor by OS scheduler, and each processor is physically connected to

the same memory. Multi-core processors execute multiple instructions and process

multiple data on different cores at a time. In this study, we have used Intel(R)

Core(TM) i5-6500 CPU which has 3.2 GHZ clock speed and 4 CPU cores.

At present, the (GPU)-based system is a popular parallel processing system. GPU

is not a stand-alone single device, but it is connected to CPU through a peripheral

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 56

component interconnect express (PCI-e) bus. NVIDIA’s Compute unified device

architecture (CUDA) is a combination of several streaming multiprocessors (SMs).

Each SM consists of several scalar processors or CUDA cores that run in parallel,

has a load/store unit, a special functional unit (SFU), and shared memory and

caches (constant and texture caches), and shares a global memory of GPU. When

a kernel is launched by GPU, the threads of that kernel are distributed among the

SMs for execution.

In CUDA programming, a program runs on both CPU and GPU, with the task

being divided between the CPU host and GPU device. A program that runs on

CPU (the host code) calls the program that runs on GPU (the device code), which

is also called the kernel. As GPU threads are light weight, thread switching is a

low-cost operation. A CUDA core runs a single instruction on multiple threads.

A group of 32 threads is called warps. In a warp, all the threads run the same

instruction simultaneously. In this study, we used Nvidia GeForce GTX 980 Ti

GPU with 2816 CUDA cores and 6 GB DDR5 memory, 22 SM, and 64 warps per

SM. Additionally, We installed the CUDA toolkit 8.0 on this device.

4.6 Mapping Meta-heuristics for QAP to Multi-

core, Pthread, and GPU

The general approach for solving the QAP for all meta-heuristics is as follows.

First, we take the input as distance matrix and flow matrix. Then, it generates

a random initial solution of QAP, from which we obtain all possible neighbor

solutions and assess them using the evaluation function. If a neighbor solution

improves the objective of the current solution, then it replaces the current solu-

tion as the new solution. This process will continue until reaching the stopping

condition.

We have obtained the input instances from QAPLIB [6], with all the instances of

QAPLIB being available online on the QAPLIB website. We have taken instances

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 57

of size between 30 and 100 of taillard a, 60 and 150 of taillard b, 64 and 256 of

taillard c, 72 and 100a from sko and els19, kra30a, kra32, and ste36a of other set

as benchmarks for the QAP problem.

4.6.1 ILS Implementation

4.6.1.1 ILS on Serial Machine

Using ILS, we generated neighbor solutions from the initial solution with the ad-

jacent pairwise exchange permutation method. We started from the first position,

and then changed the position of the elements to the next nearby position. Af-

ter the new neighbor solution was generated, we assessed it using the evaluation

function. We compared the assignment cost with the current assignment cost; if

it was less than the current assignment cost, we chose the new solution as the

current solution. Thereby, we evaluated all the n×(n−1)
2

neighbor solutions. At this

stage, local optima were reached; thus, for the next iteration, we made the local

minimal solution the initial solution and repeated all the aforementioned steps.

This process continued until the stopping criteria were reached. To avoid being

stuck in local optima or not being able to get the best global minimum solution,

we took 500 random initial solutions, with each initial solution being iterated 10

times. Finally, we observed the objective value (obtained cost) and the execution

time (in seconds) to execute the whole program as in Table 4.1. In this table, the

percentage deviation (D) is calculated using Equation 4.2. The deviation of the

benchmarks on CPU increases slowly as the size of taillard a, b and c instances

increases from 30 to 100, 60 to 150, and 64 to 256 respectively; however, the exe-

cution time of the benchmarks increases more rapidly with the size. For instances

of class 3, sko 90 show less deviation and more execution time than sko 81. For

class 4 instances els19, kra30a, kra32, and ste36a the deviation and the execution

time increases as the size of the instances increases from 19 to 36. In Table 4.1,

speedup (S) is calculated using CPU exec. time
Pthread exec. time

for Pthread and CPU exec. time
GPU exec. time

for

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 58

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 4.87 0.871 4.87 0.240 3.63 4.87 0.192 4.54
tai35a 5.78 1.397 5.78 0.377 3.71 5.78 0.222 6.29
tai40a 7.13 2.058 7.13 0.711 2.89 7.13 0.243 8.47
tai50a 8.04 4.003 8.04 1.081 3.70 8.04 0.286 14.00
tai60a 8.47 7.099 8.47 1.887 3.76 8.47 0.331 21.45
tai80a 8.43 16.950 8.43 5.958 2.84 8.43 0.436 38.88
tai100a 8.87 34.224 8.87 10.431 3.28 8.87 0.618 55.38
Real-life like instances, class 2
tai60b 14.55 8.023 14.55 2.104 3.81 14.55 0.311 25.80
tai80b 17.29 19.037 17.29 4.967 3.83 17.29 0.419 45.43
tai100b 17.47 37.451 17.47 9.930 3.77 17.47 0.598 62.63
tai150b 17.64 126.210 17.64 33.723 3.74 17.64 1.514 83.36
tai64c 0.00 9.734 0.00 2.539 3.83 0.00 0.334 29.14
tai256c 4.91 769.284 4.91 206.234 3.73 4.91 7.153 107.55
Instances with grid-distances, class 3
sko72 8.83 14.397 8.83 3.622 3.97 8.83 0.367 39.23
sko81 9.09 20.491 9.09 5.167 3.97 9.09 0.425 48.21
sko90 9.03 28.188 9.03 7.081 3.98 9.03 0.493 57.18
sko100a 9.45 38.673 9.45 9.730 3.97 9.45 0.598 64.67
Real-life instances, class 4
els19 0.61 0.242 0.61 0.069 3.51 0.61 0.151 1.60
kra30a 9.20 1.003 9.20 0.266 3.77 9.20 0.190 5.28
kra32 9.41 1.219 9.41 0.322 3.79 9.41 0.200 6.10
ste36a 21.58 1.738 21.58 0.457 3.80 21.58 0.211 8.24

Table 4.1: Percentage deviation and exec. time of QAP using ILS on CPU,
Pthread, and GPU

GPU.

Deviation% =
(Objective V alue−QAPLIB Cost)

QAPLIB Cost
× 100. (4.2)

4.6.1.2 ILS using Pthread

In this meta-heuristic, instead of executing all initial solutions at a time, we as-

signed all the initial solutions to a number of processors so that each processor

could be utilized and get an equal number of the initial solutions. Then, each

part was assigned to different processors so that all parts could be run in parallel.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 59

Finally, Table 4.1 shows the optimal cost and execution time, with the percentage

deviation of all instances running on CPU and Pthread being the same; how-

ever, the execution time on Pthread was reduced in proportion to the number of

processors used.

4.6.1.3 ILS on GPU

Implementing meta-heuristics on a massively parallel architecture is not a straight-

forward task, as it requires considerable effort at the design and implementation

stages. In general, there are three issues in GPU where optimization is possi-

ble: 1) efficient communication between CPU and GPU, in which the main issue

is to optimize data transfer; 2) control of parallelization, in which the issues are

thread generation and mapping the threads to data input; and 3) efficient memory

management, which can be performed on any memory.

The parallel design of meta-heuristics to solve any combinatorial optimization

problem, such as the QAP, has a significant performance effect on accelerated

machines.

First, we set the grid size and block size of a kernel to generate a number of threads

to achieve the best performance with respect to executing the ILS algorithm on

GPU, which is written in Algorithm 6. For the implementation, we generated

random initial solutions on CPU, and from each initial solution we generated

neighbor solutions that were evaluated on GPU. In this study, we took 500 initial

solutions, with each initial solution being iterated 10 times to get the best possible

optimal solution. All the initial solutions were run in parallel and called the GPU,

which also ran in parallel to execute the evaluation cost function of neighbor

solutions. The percentage deviation and execution time on GPU are reported in

Table 4.1, which demonstrates that the execution time on GPU is less than that

on CPU. For example, the Pthread for tai100a instances takes 34.224 seconds

on CPU, while on GPU, it takes only 0.618 seconds, demonstrating that GPU

executes 55 times faster than CPU.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 60

Algorithm 6 Iterated Local Search (ILS) On GPU

Input: Distance matrix and Flow matrix
Output: Optimal solution (local optima).

1: Generate a random initial solution
2: Evaluate the objective function of the solution
3: Initialize the ILS parameters
4: while not Termination Criteria do
5: repeat
6: sb the best neighbor solution near s, and sb = s
7: Generate all neighbor solutions of s
8: Evaluate all the neighbor solutions of s using the objective function F

by GPU kernel in parallel
9: Results are sent back from GPU to CPU

10: if F (s′) is less than F (sb) then
11: sb = s′

12: end if
13: until All the neighbor solutions of s are explored
14: for next iteration s = sb
15: end while

4.6.2 SA Implementation

4.6.2.1 SA on Serial Machine

Using SA to execute the evaluation function, first, we generated all possible neigh-

bor solutions. Unlike executing the ILS for each neighbor solution to find the best

solution, we calculated the assignment cost of all the neighbor solutions at a time

and then stored the values for each solution. To find the best solution among all

neighbor solutions, we applied SA. We fixed the main parameters of SA to be as

follows: initial temperature: 10, 000, cooling rate: 0.9999, and absolute tempera-

ture: 0.00001. Initially, the algorithm starts with an initial temperature, and at

every iteration, the temperature is reduced to [current temperature×cooling rate]

making it the current temperature for the next iteration. This process continues

until the current temperature reaches the absolute temperature. The deviation

and execution time are reported in Table 4.2, where we can see that as the size of

instances increases from 80 to 100, the execution time also increases more rapidly.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 61

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 6.13 0.964 8.06 0.350 2.75 7.33 0.756 1.28
tai35a 8.16 1.568 8.92 0.507 3.09 7.14 0.825 1.90
tai40a 7.69 2.217 8.84 0.666 3.33 8.18 0.857 2.59
tai50a 9.17 4.286 9.60 1.551 2.76 8.98 0.973 4.40
tai60a 9.21 7.469 10.56 2.317 3.22 9.56 1.106 6.75
tai80a 9.18 17.825 9.26 5.235 3.40 9.30 1.458 12.23
tai100a 9.39 35.344 9.22 10.101 3.50 9.22 1.924 18.37
Real-life like instances, class 2
tai60b 13.36 8.511 13.60 2.394 3.56 14.06 1.050 8.11
tai80b 18.65 20.025 18.38 5.431 3.69 18.33 1.314 15.24
tai100b 18.70 39.161 18.95 10.470 3.74 19.12 1.689 23.19
tai150b 18.21 132.719 16.89 35.699 3.72 17.58 4.170 31.83
tai64c 0.09 10.372 0.19 2.897 3.58 0.00 1.145 9.06
tai256c 4.78 769.235 4.52 210.690 3.65 4.66 12.613 60.99
Instances with grid-distances, class 3
sko72 16.16 14.477 16.57 3.759 3.85 16.47 1.209 11.97
sko81 16.22 20.584 16.36 5.268 3.91 15.63 1.341 15.35
sko90 15.60 28.269 15.01 7.216 3.92 15.06 1.490 18.97
sko100a 14.40 38.652 14.01 9.878 3.91 14.58 1.696 22.79
Real-life instances, class 4
els19 0.52 0.274 0.89 0.176 1.56 0.00 0.338 0.81
kra30a 35.61 1.082 34.18 0.328 3.30 33.41 0.407 2.66
kra32 38.00 1.305 30.78 0.381 3.43 35.33 0.404 3.23
ste36a 74.76 1.841 86.67 0.524 3.51 88.37 0.480 3.84

Table 4.2: Percentage deviation and exec. time of QAP using SA on CPU,
Pthread, and GPU

4.6.2.2 SA using Pthread

In this study, we applied SA to find the best solution or local optima for every

initial solution. Therefore, instead of running all of the initial solutions sequentially

on CPU, we assigned them to an equal number of processors. On each processor,

the optimal solution was found and compared to get the globally optimal solution.

The percentage deviation and total execution time are reported in Table 4.2. In

Pthread implementation, processor utilization performs better as compared to

serial machine, with each part running in parallel. In Table 4.2, we can see that

its percentage deviation is not the same as that of CPU because of the random

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 62

generation of solutions. Additionally, the execution time on Pthread is reduced

almost in proportion to the number of processors; however, not because of the

overhead of Pthread.

4.6.2.3 SA on GPU

For the implementation of SA on GPU, first, we generated neighbor solutions from

the initial solutions and evaluated them on GPU. Then, the whole cost of the

neighbor solutions was transferred from GPU to CPU. Afterwards, we performed

SA on CPU to find the optimal solution after all neighbor solutions were evaluated

in parallel by GPU. The modified algorithm of SA is written in Algorithm 7, and

the execution results are reported in Table 4.2. In this table, CPU takes 35.344

seconds for tai100a execution, while GPU takes only 1.924 seconds. Moreover, we

can observe that for the large numbers of instances, GPU performs faster than

CPU, as compared to the small numbers of instances.

Algorithm 7 Simulated Annealing (SA) on GPU

Input: Cooling schedule
Output: Optimal solution.

1: Generate a random initial solution
2: Evaluate the objective function of the solution
3: Set the initial parameters for SA
4: while not Termination Criteria i.e. T < Tmin do
5: repeat
6: Generate random neighbor s′ from s (where s′ ∈ N(s))
7: Evaluate the neighbor solution s′ using the objective function f on GPU

in parallel.
8: Results are sent back from GPU to CPU.
9: ∆C = f(s′)− f(s); /∗ Difference in the assignment cost ∗/

10: if ∆C ≤ 0 then
11: s = s′ /∗ Accept the neighbor solution ∗/
12: else
13: Accept the neighbor solution s′ with a probability e

−∆C
T

14: end if
15: until Absolute Temperature (Equilibrium condition) is reached
16: T= g(T); /∗ Update the temperature = temperature× coolingRate ∗/
17: end while

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 63

Figure 4.1: Crossover operator
Figure 4.2: Mutation operator

4.6.3 GA Implementation

4.6.3.1 GA on Serial Machine

GA starts with a random initial population of solutions, where the neighbor solu-

tions are generated with the help of two operators, namely, crossover and mutation.

The crossover operator selects two random solutions from the population of solu-

tions. There are several methods for the random selection of individuals in this

algorithm, of which the roulette wheel and tournament methods are the most pop-

ular. In this study, we used the tournament method. In this method, first, a few

solutions are randomly selected. Then, among them, the best solution (which has

the least assignment cost) is selected.

When two solutions are selected, the crossover operator is employed to generate the

new offspring as shown in Figure 4.1, and then to store it in the new population.

In this study, we used one-point crossover, and then applied the mutation operator

to the newly generated solution. For mutation, we simply changed the position

of the elements as illustrated in Figure 4.2, and stored it in the new population.

In addition, we fixed the number of initial solutions as 5000 and the number of

iterations as 10. From the 5000 initial solutions, we generated 25000 neighbor

solutions using the crossover and mutation operators. In each iteration, the best

population of solutions was selected (5000), becoming the current population, with

this process continuing until the termination condition is reached. The percentage

deviation and execution time of GA are reported in Table 4.3, which shows that

as the instance size increases from 30 to 60, the execution time slightly increases,

but as the size increases from 60 to 80 and 100, the execution time increases more

rapidly.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 64

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 13.39 1.754 11.19 0.622 2.82 13.39 0.443 3.96
tai35a 15.49 2.224 13.84 0.759 2.93 15.49 0.490 4.54
tai40a 14.70 2.771 14.70 0.916 3.03 14.70 0.519 5.34
tai50a 15.22 3.688 14.72 1.147 3.22 15.22 0.599 6.16
tai60a 14.72 4.960 11.67 1.534 3.23 14.72 0.705 7.04
tai80a 12.80 8.192 12.80 2.419 3.39 12.80 0.865 9.47
tai100a 12.32 12.124 11.49 3.428 3.54 12.32 1.064 11.39
Real-life like instances, class 2
tai60b 45.18 4.985 40.28 1.524 3.27 45.18 0.691 7.21
tai80b 38.61 8.272 37.14 2.417 3.42 38.61 0.859 9.63
tai100b 38.50 12.065 38.50 3.454 3.49 38.50 1.071 11.27
tai150b 25.99 24.632 25.99 6.870 3.59 25.99 1.720 14.32
tai64c 13.77 5.510 13.77 1.703 3.24 13.77 0.720 7.65
tai256c 12.33 66.926 12.33 18.241 3.67 12.33 3.041 22.00
Instances with grid-distances, class 3
sko72 16.01 6.732 16.01 2.054 3.28 16.01 0.790 8.52
sko81 14.71 8.475 14.45 2.503 3.39 14.71 0.895 9.47
sko90 15.29 9.812 14.48 2.890 3.40 15.29 0.988 9.93
sko100a 14.14 12.090 12.76 3.515 3.44 14.14 1.070 11.30
Real-life instances, class 4
els19 64.19 1.097 0.93 0.446 2.46 64.19 0.382 2.87
kra30a 31.70 1.769 24.80 0.648 2.73 31.70 0.441 4.01
kra32 34.90 1.966 34.90 0.697 2.82 34.90 0.459 4.28
ste36a 86.77 2.289 48.62 0.802 2.85 86.77 0.486 4.71

Table 4.3: Percentage deviation and exec. time of QAP using GA on CPU,
Pthread, and GPU

4.6.3.2 GA using Pthread

In GA, the generated random initial solutions are called the population, with the

neighbor solutions being generated with the help of genetic operators, namely,

crossover and mutation. Afterwards, the neighbor solutions are evaluated in par-

allel, among them, the best population is chosen for the next generation. In this

study, the neighbor solutions are assigned to an equal number of processors, with

the number of neighbor solutions taken being 25000 and the initial population

being 5000. Each processor evaluates the solutions and store their costs, and then

merges all solutions, out of which we chose the best 5000 solutions for the next

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 65

Algorithm 8 Genetic Algorithm (GA) on GPU

Input: Distance matrix and Flow matrix
Output: Optimal solution.

1: Generate random initial population P
2: Set the initial parameters for GA
3: while not Termination Criteria do
4: repeat
5: Generate offspring P ′ with crossover operation and from P
6: Generate offspring by applying mutation operation on P ′

7: Copy offspring from CPU to GPU
8: Evaluate the offspring P ′ using the objective function F on GPU in

Parallel.
9: Results are sent back from GPU to CPU

10: Find the best population Pb
11: until All offspring of P are explored.
12: Replace P with Pb for the next generation
13: end while

generation or iteration. Table 4.3 shows the percentage deviation and execution

time using Pthread. Further, it shows that as the size of instances increases, the

execution time increases in proportion to the number of processors used (e.g.,

tai100a).

4.6.3.3 GA on GPU

Using GA, we generated the random initial population of solutions, then we gener-

ated the offspring using the crossover and mutation operators for next generation

and iteration. In GPU, we evaluated the solutions in parallel until the stopping

condition is reached, then the results were sent back from GPU to CPU. The mod-

ified algorithm for GA is written in Algorithm 8. The percentage deviation and

execution time to run on GPU are reported in Table 4.3. In this table, for tai100a

instance, CPU takes 12.124 seconds and GPU takes 1.064 seconds for execution.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 66

4.6.4 PSO Implementation

4.6.4.1 PSO on Serial Machine

PSO starts with random initial solutions or a population of particles, with each

particle having a random initial velocity. Every particle has its personal best

based on its experience or history, and global best for the whole group of particles.

In every iteration, each particle updates its velocity according to Equation 2.3

and position according to Equation 2.4. As the iteration continues, each particle

converges toward the optimal solution. In this study, velocity was measured in

terms of the number of swaps of positions inside a solution. In Equation 2.3, we

have taken the inertia factor (ω) 0.9, and two constants c1 and c2 as 2. The results

of PSO are reported in Table 4.4, showing that as the instance size increases up

to 40, the execution time slightly increases, but as the size increases from 50 to

100, the execution time on serial machine increases exponentially. Moreover, we

used 500 initial solutions, with each solution being iterated 10 times to obtain the

optimal solution.

4.6.4.2 PSO using Pthread

In this algorithm, an initial population of solutions is assigned to an equal number

of processors. As the algorithm proceeds, every processor reaches toward the

optimal solution. After the termination, all the optimal solutions for the processors

are combined, and among them, the best solution is observed. The percentage

deviation and execution time are reported in Table 4.4, with the Pthread execution

time being significantly reduced as compared to CPU.

4.6.4.3 PSO on GPU

In PSO, we observed the random position and velocity of the whole swarm, which

is generated on CPU. The particles position and velocity were used to generate

the next position of the particles, which was evaluated in parallel on GPU. Every

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 67

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 12.37 0.597 12.72 0.184 3.24 12.37 0.181 3.30
tai35a 12.30 1.132 13.44 0.310 3.65 12.30 0.244 4.64
tai40a 14.11 1.958 13.50 0.529 3.70 14.06 0.328 5.97
tai50a 13.15 4.677 14.04 1.279 3.66 13.15 0.500 9.35
tai60a 13.15 9.642 13.78 2.700 3.57 13.15 0.739 13.05
tai80a 12.32 30.559 12.08 8.282 3.69 12.54 1.390 21.98
tai100a 11.67 74.116 11.49 19.984 3.71 11.67 2.508 29.55
Real-life like instances, class 2
tai60b 35.96 11.479 35.91 3.045 3.77 35.96 0.402 28.55
tai80b 35.59 36.175 32.95 9.694 3.73 35.59 0.760 47.60
tai100b 32.20 87.717 32.20 23.397 3.75 32.20 1.366 64.21
tai150b 23.80 444.755 24.33 118.480 3.75 23.80 4.737 93.89
tai64c 8.63 14.915 6.96 3.912 3.81 8.63 0.454 32.85
tai256c 10.20 3784.968 10.20 1009.232 3.75 10.20 29.672 127.56
Instances with grid-distances, class 3
sko72 14.60 23.831 14.68 6.267 3.80 14.60 0.601 39.65
sko81 14.46 38.026 14.38 10.226 3.72 14.46 0.810 46.95
sko90 14.21 57.688 14.28 15.106 3.82 14.45 1.025 56.28
sko100a 13.76 87.812 13.43 23.410 3.75 13.76 1.373 63.96
Real-life instances, class 4
els19 53.20 0.140 51.10 0.085 1.65 53.20 0.056 2.50
kra30a 29.38 0.717 28.02 0.238 3.01 29.38 0.108 6.64
kra32 28.88 0.919 31.67 0.296 3.10 29.36 0.118 7.79
ste36a 59.16 1.571 61.73 0.437 3.59 59.16 0.145 10.83

Table 4.4: Percentage deviation and exec. time of QAP using PSO on CPU,
Pthread, and GPU

member of the swarm update its velocity based on the position from the local

optimum. After reaching the stopping criteria, the final global optimum values

were copied from GPU to CPU. The modified algorithm is written in Algorithm 9.

The percentage deviation and execution time on GPU are reported in Table 4.4.

It shows that the percentage deviation for both CPU and GPU are approximately

equal, but the execution time on GPU is less than that on CPU, as for tai100a

instance, CPU takes 74.116 seconds for execution, while GPU only takes 2.508

seconds. Moreover, as the size of the instances increases, GPU gives faster results

as compared to CPU.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 68

Algorithm 9 Particle Swarm Optimization (PSO) On GPU

Input: Distance matrix and Flow matrix
Output: Optimal solution.

1: Random initialization of the position and velocity of the whole swarm
2: Set the initial parameters for PSO
3: repeat
4: Evaluate the objective function f(pi)
5: for all particles i do
6: Update velocities:
7: vi(t+ 1) = w ∗ vi(t) + c1θ1(t)(ppbesti(t)− pi(t)) + c2θ2(t)(pgbest(t)− pi(t))
8: Move next position: pi(t+ 1) = pi(t) + vi(t+ 1);
9: if f(pi) < f(pbesti) then

10: pbest = pi;
11: end if
12: if f(pi) < f(gbesti) then
13: gbest = pi;
14: end if
15: Update (pi, vi);
16: end for
17: until Stopping criteria reached

4.6.5 CSA Implementation

4.6.5.1 CSA on Serial Machine

In CSA, first, we fixed the initial parameters such as the flight length and probabil-

ity of awareness. When the probability of awareness decreases, then it searches in

the local region (exploitation-oriented), whereas when it increases, it explores the

search space (exploration-oriented). Initially, for the serial machine, we generated

a fixed number of initial solutions as the size of input, with each initial solu-

tion generating a neighbor solution using the adjacent pairwise exchange method.

Among these neighbor solutions, we found the best one, which was used to initial-

ize the memory of each crow for each initial solution. As the iteration increases,

each crow updates its memory until the termination condition is reached. Among

the memories of all crows, we found the best one giving the optimal solution for

the QAP, taking flight length as 2, and probability of awareness as 0.15.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 69

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 16.75 0.195 13.34 0.275 0.71 14.79 0.149 1.31
tai35a 17.29 0.492 13.56 0.648 0.76 16.73 0.174 2.83
tai40a 14.23 0.695 15.05 0.808 0.86 15.80 0.200 3.48
tai50a 6.04 1.500 14.43 0.562 2.67 16.25 0.260 5.77
tai60a 14.38 0.988 14.46 0.460 2.15 15.49 0.300 3.29
tai80a 13.12 0.887 13.26 0.799 1.11 13.19 0.402 2.21
tai100a 10.99 6.232 12.51 3.183 1.96 12.53 0.509 12.24
Real-life like instances, class 2
tai60b 39.83 0.425 42.82 0.508 0.84 41.36 0.300 1.42
tai80b 25.90 2.534 36.99 1.651 1.53 41.00 0.429 5.91
tai100b 17.76 3.485 36.72 2.884 1.21 37.97 0.506 6.89
tai150b 24.54 9.141 24.79 5.922 1.54 26.08 0.792 11.54
tai64c 10.45 0.723 8.82 0.531 1.36 14.08 0.322 2.25
tai256c 11.65 84.351 10.52 22.504 3.75 12.99 1.398 60.34
Instances with grid-distances, class 3
sko72 15.72 3.067 15.63 0.749 4.09 15.68 0.363 8.45
sko81 15.66 4.093 15.40 0.777 5.27 16.11 0.655 6.25
sko90 14.35 3.882 14.74 1.795 2.16 15.16 0.456 8.51
sko100a 6.69 4.751 12.52 1.155 4.11 14.40 0.651 7.30
Real-life instances, class 4
els19 74.81 0.179 56.17 0.224 0.80 47.73 0.112 1.60
kra30a 34.41 0.244 38.46 0.239 1.02 33.95 0.150 1.63
kra32 13.42 0.153 32.73 0.490 0.31 36.18 0.160 0.96
ste36a 38.30 0.177 84.65 0.281 0.63 88.35 0.180 0.98

Table 4.5: Percentage deviation and exec. time of QAP using CSA on CPU,
Pthread, and GPU

4.6.5.2 CSA using Pthread

To implement on Pthread, first, we divided the initial solutions among processors,

with each processor running the maximum number of iterations (initially fixed)

and updating the memory of each crow. All processors run in parallel, while inside

each processor this algorithm runs serially. After completing the execution of all

processors, we found the best updated memory among all crows that gives our

optimal solutions, with the results represented in Table 4.5.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 70

4.6.5.3 CSA on GPU

To implement CSA on GPU, first, we fixed the initial parameters. Then, we

calculated the cost of the initial solutions on CPU, and from each initial solution

we generated the neighbor solutions using the adjacent pairwise exchange method.

Afterwards, we evaluated the cost of the neighbor solutions on GPU. From each

initial solution, we found the best possible neighbor solution cost that is set to

the memories of each corresponding crow (for initial solution). Consequently, we

run the CSA on CPU to find the next positions of the crows and evaluate their

cost, and compared them to the solution stored in their memory. If the solution

gave the best result, then the memory of the corresponding crow was updated

until reaching the termination criteria. Finally, among the memories of all crows,

we found the best solution cost, which is reported in Table 4.5. The modified

algorithm for CSA is described in Algorithm 10. In Table 4.5, we can see that the

percentage deviation has a slight difference on CPU, Pthread, and GPU because

of the random generation of the initial positions; however, the execution time on

GPU is significantly less that on CPU, as for tai100a instance, CPU takes 6.232

seconds, while GPU takes only 0.509 seconds.

4.6.6 TS Implementation

4.6.6.1 TS on Serial Machine

In TS, first, we fixed the size of the tabulist as the size of the instance. Then,

we generated the fixed number of (size of tabulist) random initial solution and

evaluated their cost and stored it in the tabulist. In each iteration, we generated

the neighbor solution, through adjacent pairwise exchange methods and evaluated

their cost, if it improves from the current solution then, we updated the tabulist.

This procedure will continue until it reaches the terminating condition, and found

the best optimal solution from the tabulist. To avoid, stuck in local minima, we

implemented a diversification operator suggested by James et al. [50] to generate a

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 71

Algorithm 10 Crow Search Algorithm (CSA) On GPU

Input: Distance matrix and Flow matrix
Output: Optimal solution found.

1: Random initialization of positions of each crow in a search space
2: Evaluate using the objective function for positions of the crows
3: Random initialization of the memory of each crow
4: Set initial parameters for CSA
5: Generate and evaluate neighbor solution on GPU
6: Update the memory for each crow with the best neighbor solution cost
7: while t < tmax do
8: for i = 1 : N do
9: Evaluate objective function f(pi)

10: Randomly choose one of the crows among flock of size N to follow crows
(e.g., j)

11: Define the probability of awareness (PA)
12: if rj > PAj,t then
13: pi,t+1 = pi,t + ri × f i,tl × (mj,t − pi,t)
14: else
15: pi,t+1 = a random position in search space
16: end if
17: end for
18: Check the new positions feasibility using the objective function
19: Evaluate the newly position of crows using the evaluate function
20: Update the memory of crows
21: end while

new solution. We fixed the maximum number of failures (none of the tabulist ele-

ments not get updated in an iteration) as the size of the instance. We implemented

diversification for a solution by simply changing the position of elements with step

size from 2 to the size of the instance, i.e. if the step size is 2 then all odd position

elements get placed first serially, then even position elements get placed there after

to generate a new solution. In the CPU, we fixed the number of iterations as 10.

In Table 4.6 execution time and percentage deviation are reported.

4.6.6.2 TS using Pthread

To implement on Pthread, first, we fixed tabulist size as the size of the instance,

and then generated a random initial solution, evaluated their cost, and stored it

in the tabulist. We call Pthread and every thread gets the tabulist, generates

a neighbor solution, if it improves the current solution then update the tabulist.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 72

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

unstructured, randomly generated instances, class 1
tai30a 10.98 0.083 8.14 0.039 2.13 10.98 0.018 4.61
tai35a 11.66 0.144 9.53 0.052 2.77 11.66 0.026 5.54
tai40a 11.76 0.238 9.28 0.073 3.26 11.76 0.036 6.61
tai50a 11.54 0.576 11.30 0.191 3.02 11.54 0.064 9.00
tai60a 12.14 1.218 12.03 0.407 2.99 12.14 0.106 11.49
tai80a 11.25 3.865 11.12 1.231 3.14 11.25 0.259 14.92
tai100a 11.12 10.218 10.81 3.218 3.18 11.12 0.553 18.48
Real-life like instances, class 2
tai60b 30.52 1.207 28.86 0.398 3.03 30.52 0.105 11.50
tai80b 32.75 3.859 27.80 1.280 3.01 32.75 0.256 15.07
tai100b 32.21 9.581 29.95 2.991 3.20 32.21 0.568 16.87
tai150b 23.88 49.494 22.01 16.992 2.91 23.88 2.399 20.63
tai64c 0.59 1.456 0.59 0.389 3.74 0.59 0.116 12.55
tai256c 12.96 481.051 8.62 137.210 3.51 12.96 17.449 27.57
Instances with grid-distances, class 3
sko72 12.98 2.486 11.54 0.781 3.18 12.98 0.187 13.29
sko81 12.92 4.071 12.54 1.322 3.08 12.92 0.265 15.36
sko90 12.72 6.160 11.88 1.921 3.21 12.72 0.380 16.21
sko100a 11.81 9.553 12.04 3.041 3.14 11.81 0.540 17.69
Real-life instances, class 4
els19 50.0 0.019 3.47 0.013 1.46 50.0 0.007 2.71
kra30a 20.04 0.083 17.39 0.037 2.24 20.04 0.019 4.37
kra32 21.86 0.106 16.91 0.040 2.65 21.86 0.021 5.05
ste36a 50.51 0.161 43.25 0.061 2.64 50.51 0.028 5.75

Table 4.6: Percentage deviation and exec. time of QAP using TS on CPU,
Pthread, and GPU

When Pthread join then merges all the thread tabulists and from that, we get the

best optimal solution, which is reported in Table 4.6.

4.6.6.3 TS on GPU

To implement TS on GPU, first, we fixed the GPU parameters and then transferred

the input data from CPU to GPU. In GPU, we fixed the number of iterations as 10

and the size of the tabulist as the size of the instance. In each iteration of TS, we

generate and evaluate the neighbor solution on GPU, copy the neighbor solution

objective value from GPU to CPU host memory, compared with the tabulist, and

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 73

Algorithm 11 Tabu Search (TS) On GPU

Input: Distance matrix and Flow matrix
Output: Optimal solution found.

1: Random initialization of an initial solution
2: Evaluate the solution using objective function
3: Set initial parameters for TS
4: Initialize tabulist
5: repeat
6: for each generated neighbor solution on GPU do
7: Evaluate neighbor solution using objective function
8: Insert the resulting objective value into the neighbor solution objective

value
9: end for

10: Copy the neighbor solution objective value from GPU to CPU host memory
11: for each neighbor solution objective value do
12: Compare with tabulist
13: if It improves the objective function then
14: Select that neighbor solution
15: Update the tabulist
16: end if
17: end for
18: Copy the selected solution on GPU device memory
19: if tabulist fails to update and reached maxFailures then
20: Perform diversification
21: end if
22: until a maximum number of iterations reached

if the objective value improves the objective function, then update the tabulist

and select the best neighbor solution. Finally copy the selected neighbor solution

on GPU device memory. This process continues until it reaches the stopping

condition. The modified algorithm of TS is described in Algorithm 11. Finally, the

best optimal solution is found from the tabulist and results are noted in Table 4.6.

Here in Table 4.6, we can see that speed up on GPU is increases as the size of the

instance increases. The deviation on Pthread is less, as compared to CPU and

GPU; because here each thread is executing with a separate tabulist, so it explores

more new solutions and gives less deviation.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 74

4.7 Experimental Results

4.7.1 Comparison of the Serial, Pthread, and GPU Ver-

sions of QAP Meta-heuristics

In this study, we have considered four classes of QAP instances classified by

Thomas Stutzle [64]. These are unstructured, randomly generated instances (class

1), real-life like instances (class 2), instances with grid-distances (class 3), and

real-life instances (class 4). For each instance, we calculated the objective value

of QAP by implementing each meta-heuristic on serial, Pthread, and GPU ma-

chines. We calculated the difference between the objective value and the standard

QAPLIB cost for each instance. Further, for each meta-heuristic, we have con-

sidered the average deviation and average execution time for CPU, Pthread, and

GPU for all four classes of instances. The Comparison for all meta-heuristics are

reported in Table 4.7, which demonstrates that ILS produces the least deviation

from the standard optimal cost, but it takes a slightly more execution time to run

on GPU as compared to CSA. Moreover, we can also see that CSA demonstrates

more deviation, but it executes too quickly to get the optimal solution and that

the GPU version on GPU, average computation is up to 28 times faster than serial

machines on CPU for taixxa instances.

We also compared the execution time of different meta-heuristics (ILS, SA, GA,

PSO, CSA, and TS) between CPU, Pthread, and GPU for only one instance tai80a,

which is illustrated in Figure 4.3 shows that the CSA performance is superior to

other meta-heuristics. In addition, for tai80a instances on CPU and Pthread,

PSO takes more time for execution compared to other meta-heuristics, while on

GPU, GA takes more time for execution as compared to other meta-heuristics.

We analyzed the speedup on GPU of PSO meta-heuristic for all the considered

instances, which is illustrated in Figure 4.4, here we can see that for tai256c

maximum speedup around 128 is achieved.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 75

Figure 4.5 shows the execution time for class 1 instances for all targeted meta-

heuristics on GPU. The SA is showing worst-performance up to size 80 (up to

tai80a), but for tai100a the PSO is taking the highest time on GPU. We can also

observe that as the size of the instances increases, the execution time on GPU and

their speedup also increases. In Figure 4.6, tai256c is taking more time on GPU

among all the class 2 instances. Execution time for class 3 instances is illustrated in

Figure 4.7; in this figure, SA is showing the worst performance among all the other

meta-heuristics. Figure 4.8 illustrates the execution time for class 4 instances, and

the TS demonstrating the best performance among all the other meta-heuristics.

We also compared the execution time (ET) and percentage deviation (D) on CPU,

Pthread, and on GPU, for selected instances and noted the result in Table 4.8,

here we can see PSO is taking more time to execute in CPU but it gives the highest

speedup around 128 on GPU because as in PSO, every particle used to update

the velocity based on the target of optimal cost, so for large size instances the

amount of parallelization in PSO is increases and velocity of the particle is getting

calculated efficiently, and hence a higher speedup on GPU is achieved for large

size instances. We compared the percentage deviation of all meta-heuristics by

fixing the execution time 2 seconds on GPU, which is illustrated in Table 4.9. In

this table for tai100a and tai150b the ILS approach, for tai100b and sko100a the

TS approach, for tai256c the SA approach is showing less deviation from standard

QAP libraries.

We fixed the number of evaluations of the cost function for all the considered

meta-heuristics as (500× 10×
(
n
2

)
), where n is the size of the input instance. We

reported the result in Table 4.10, here we can see that for instances of the same

size 100; of tai100a, tai100b, and sko100a, GA takes more times and TS gives

the best score (or less percentage deviation) as compared to all other considered

meta-heuristics.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 76

Metaheuristics D
ET

CPU
ET

Pthread
ET

GPU
ILS 7.37 9.515 2.955 0.333
SA 8.72 9.953 2.961 1.128
GA 13.70 5.102 1.546 0.669

PSO 12.83 17.526 4.753 0.841
CSA 14.01 1.570 0.962 0.285
TS 11.10 2.334 0.745 0.152

Table 4.7: A comparison of meta-heuristics on CPU, Pthread, and GPU of
taixxa instances

I ILS SA GA PSO CSA TS
CPU D ET D ET D ET D ET D ET D ET
tai100a 8.9 34.22 9.4 35.34 12.3 12.12 11.7 74.12 11.0 6.23 11.1 10.22
tai100b 17.5 37.45 18.7 39.16 38.5 12.07 32.2 87.72 17.8 3.49 32.2 9.58
sko100a 9.5 38.67 14.4 38.65 14.1 12.09 13.8 87.81 6.7 4.75 11.8 9.55
tai150b 17.6 126.21 18.2 132.72 26.0 24.63 23.8 444.76 24.5 9.14 23.9 49.49
tai256c 4.9 769.28 4.8 769.24 12.3 66.93 10.2 3784.97 11.7 84.35 13.0 481.05
GPU
tai100a 8.9 0.62 9.2 1.92 12.3 1.06 11.7 2.51 12.5 0.51 11.1 0.55
tai100b 17.5 0.60 19.1 1.69 38.5 1.07 32.2 1.37 38.0 0.51 32.2 0.57
sko100a 9.5 0.60 14.6 1.70 14.1 1.07 13.8 1.37 14.4 0.65 11.8 0.54
tai150b 17.6 1.51 17.6 4.17 26.0 1.72 23.9 4.74 26.1 0.79 23.9 2.40
tai256c 4.9 7.15 4.7 12.61 12.3 3.04 10.2 29.67 13.0 1.40 13.0 17.45

Table 4.8: A comparison of meta-heuristics on CPU and GPU of selected
QAP instances

Instance ILS SA GA PSO CSA TS
tai100a 8.55 8.95 12.32 11.49 12.53 12.27
tai100b 17.47 18.14 38.5 32.2 37.97 10.42
sko100a 9.05 14.02 14.14 12.56 14.4 5.01
tai150b 17.64 17.91 25.99 23.48 26.08 24.7
tai256c 4.96 4.95 12.33 11.55 12.99 14.32

Table 4.9: Percentage deviation of meta-heuristics on GPU for fixed exec.
time 2 sec.

4.7.2 Statistical Analysis of all the Meta-heuristics on GPU

We analyzed all the meta-heuristics for selected instances of the same size as

tai100a, tai100b, sko100a, and for large size instance tai256c on GPU. We con-

sidered execution times of 20 runs for each of the selected instances and plotted

the boxplot for each instance. Boxplot is a standardized way for analyzing the

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 77

I ILS SA GA PSO CSA TS
CPU D ET D ET D ET D ET D ET D ET
tai30a 4.9 0.87 6.1 0.96 14.4 17.47 12.4 0.60 15.8 0.02 5.9 1.24
tai64c 0.0 9.73 0.1 10.37 14.7 273.50 8.6 14.91 17.3 0.25 0.1 16.77
tai100a 8.9 34.22 9.4 35.34 12.8 1310.56 11.7 74.12 12.5 1.84 5.2 51.19
tai100b 17.5 37.45 18.7 39.16 41.2 1297.18 32.2 87.72 37.5 2.15 9.2 50.12
sko100a 9.5 38.67 14.4 38.65 15.0 1374.29 13.8 87.81 14.3 2.02 3.8 60.66
GPU
tai30a 4.9 0.19 7.3 0.76 14.4 4.33 12.4 0.18 14.8 0.01 5.9 0.22
tai64c 0.0 0.33 0.0 1.15 14.7 35.36 8.6 0.45 14.1 0.01 0.1 0.78
tai100a 8.9 0.62 9.2 1.92 12.8 131.44 11.7 2.51 12.5 0.02 5.2 2.44
tai100b 17.5 0.60 19.1 1.69 41.2 131.44 32.2 1.37 38.0 0.02 9.2 2.50
sko100a 9.5 0.60 14.6 1.70 15.0 131.62 13.8 1.37 14.4 0.02 3.8 2.46

Table 4.10: A comparison of meta-heuristics on CPU and GPU for common
termination criterion (by fixing no. of evaluations)

 0

 5

 10

 15

 20

 25

 30

 35

 40

ILS SA GA PSO CSA TS

T
im

e
 (

in
 s

e
c
)

Di�erent Meta-heuristics

Time for tai80a instance in sec

CPU
Pthread

GPU

Figure 4.3: Exec. time of meta-heuristics for tai80a instance on CPU,
Pthread, and GPU

data, using this we can find minimum, first quartile, median, third quartile, max-

imum, and outliers for the data. Figure 4.9 shows the execution time for tai100a

instance on GPU. The meta-heuristics SA and TS showing very little variance

while CSA shows higher variance among all meta-heuristics. For the tai100b in-

stance, Figure 4.10 PSO shows the outliers and CSA gives the highest variance.

Figure 4.11 illustrates the execution time for the sko100a instance, in this case,

also the meta-heuristic CSA has the most variance and PSO has the very little

variance in execution time. For large size instance, tai256c execution time is shown

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 78

 0

 20

 40

 60

 80

 100

 120

 140

tai30a

tai35a

tai50a

tai60a

tai80a

tai100a

tai60b

tai80b

tai100b

tai150b

tai64c

tai256c

sko72

sko81

sko90

sko100a

els19

kra30a

kra32

ste36a

S
p
e
e
d
u
p

Instances

Speedup of PSO in GPU

Speedup

Figure 4.4: Speedup on GPU for PSO

 0

 1

 2

 3

 4

 5

tai30a tai35a tai40a tai50a tai60a tai80a tai100a

T
im

e
 (

in
 s

e
c
)

Class 1 instances

Di�erent Meta-heuristics running on GPU

ILS
SA
GA

PSO
CSA

TS

Figure 4.5: Exec. time on GPU for class 1 instances

in Figure 4.12, GA have very less and CSA have the highest variance among all

the meta-heuristics.

For all the meta-heuristics, we plotted boxplots by setting the same termination

criteria as the number of evaluations of the cost function (500 × 10 ×
(
n
2

)
) on

GPU, where n denotes the size of input instance. For this, we choose instances

of the same size as tai100a, tai100b, sko100a, and other instances as tai64c. We

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 79

 0

 5

 10

 15

 20

 25

 30

tai64c tai256c tai60b tai80b tai100b tai150b

T
im

e
 (

in
 s

e
c
)

Class 2 instances

Di�erent Meta-heuristics running on GPU

ILS
SA
GA

PSO
CSA

TS

Figure 4.6: Exec. time on GPU for class 2 instances

 0

 0.5

 1

 1.5

 2

sko72 sko81 sko90 sko100a

T
im

e
 (

in
 s

e
c
)

Class 3 instances

Di�erent Meta-heuristics running on GPU

ILS
SA
GA

PSO
CSA

TS

Figure 4.7: Exec. time on GPU for class 3 instances

considered the optimal cost of 20 runs for each selected instances. Figure 4.13

shows the optimal cost of all the considered meta-heuristics for tai100a instance,

here SA shows the high variance while GA shows the high deviation, and TS gives

the best optimal cost (or less deviation) from standard QAPLIB. Similarly in

Figure 4.14 for tai100b instance. For sko100a instance; in Figure 4.15, SA shows

the high variance and high deviation from PSO, while TS shows the least deviation

among all the considered meta-heuristics. We also considered other instance as

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 80

 0

 0.2

 0.4

 0.6

 0.8

 1

els19 kra30a kra32 ste36a

T
im

e
 (

in
 s

e
c
)

Class 4 instances

Di�erent Meta-heuristics running on GPU

ILS
SA
GA

PSO
CSA

TS

Figure 4.8: Exec. time on GPU for class 4 instances

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

ILS SA PSO GA CSA TS

ti
m

e
(i

n
 s

ec
)

Metaheuristics

tai100a instance

Figure 4.9: Boxplot of exec.time on GPU for tai100a instance

tai64c of taillard c type instance and the result for this shown in Figure 4.16, here

again, SA shows the high variance and GA high deviation, but SA demonstrates

the less deviation as compared to PSO, GA, and CSA and the winner TS shows

the best optimal cost among all the considered meta-heuristics.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 81

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

ILS SA PSO GA CSA TS

ti
m

e
(i

n
 s

ec
)

Metaheuristics

tai100b instance

Figure 4.10: Boxplot of exec.time on GPU for tai100b instance

 0.5

 1

 1.5

 2

 2.5

 3

ILS SA PSO GA CSA TS

ti
m

e
(i

n
 s

ec
)

Metaheuristics

sko100a instance

Figure 4.11: Boxplot of exec.time on GPU for sko100a instance

4.8 Performance Analysis of Meta-heuristics

In this section, we conduct a performance analysis of the targeted meta-heuristics

on a sequential machine. We used a GNU profiling tool (i.e., gprof) [13] to check

the performance of meta-heuristics on a QAP program on a serial machine. We

analyzed the performance of QAP by fixing 500 initial solutions, with each solution

running 10 iterations on the sequential machine (i.e., CPU) by taking the standard

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 82

 0

 5

 10

 15

 20

 25

 30

 35

ILS SA PSO GA CSA TS

ti
m

e
(i

n
 s

ec
)

Metaheuristics

tai256c instance

Figure 4.12: Boxplot of exec.time on GPU for tai256c instance

 2.2x107

 2.22x107

 2.24x107

 2.26x107

 2.28x107

 2.3x107

 2.32x107

 2.34x107

 2.36x107

 2.38x107

ILS SA PSO GA CSA TS

O
b

je
ct

iv
e

v
al

u
e

Metaheuristics

tai100a instance

Figure 4.13: Boxplots of objective value on GPU for tai100a instance

taillard instances from QAPLIB [6]. The results of one instance tai35a on the gprof

profiling tool are shown below in Table 4.11.

The above gprof results (in Table 4.11) shows that QAP spent 99.94% of time on

evaluateCost function. Thus, if we parallelize the evaluateCost function, then the

performance of QAP will improve. When we analyzed the program, we found the

following three main parallel sections:

• Parallel section (P1): Generation of the best solution from many initial solutions

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 83

 1.25x109

 1.3x109

 1.35x109

 1.4x109

 1.45x109

 1.5x109

 1.55x109

 1.6x109

 1.65x109

 1.7x109

ILS SA PSO GA CSA TS

O
b

je
ct

iv
e

v
al

u
e

Metaheuristics

tai100b instance

Figure 4.14: Boxplots of objective value on GPU for tai100b instance

 156000

 158000

 160000

 162000

 164000

 166000

 168000

 170000

 172000

 174000

 176000

ILS SA PSO GA CSA TS

O
b

je
ct

iv
e

v
al

u
e

Metaheuristics

sko100a instance

Figure 4.15: Boxplots of objective value on GPU for sko100a instance

gprof output

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

99.94 26.61 26.61 6125500 4.34 4.34 evaluateCost

0.19 26.66 0.05 main

0.04 26.67 0.01 6125000 0.00 0.00 swap

0.00 26.67 0.00 8640 0.00 0.00 cost_solution

Table 4.11: gprof output

in parallel, where each processor handles the work of one initial solution. It

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 84

 1.85x106

 1.9x106

 1.95x106

 2x106

 2.05x106

 2.1x106

 2.15x106

ILS SA PSO GA CSA TS

O
b

je
ct

iv
e

v
al

u
e

Metaheuristics

tai64c instance

Figure 4.16: Boxplots of objective value on GPU for tai64c instance

involves many iterations of the neighbor solutions generation, evaluation, and

selection.

• Parallel section (P2): Generation of many neighbor solutions and then conduct-

ing evaluation of these neighbor solutions in parallel, where each solution is

evaluated by a processor.

• Parallel section (P3): Evaluation of a single solution in parallel.

4.9 Task Graph Generation using Contech

Contech is an open source compiler-based framework developed by Railing [65]

to generate task graphs from parallel programming. This framework generates

task graphs by following a combination of programming languages such as C,

C++, FORTRAN, pthreads, OpenMP, or MPI. The task graphs generated by

Contech are represented using four tasks: creates (C), joins (J), sync (S), and

barrier (B), while the other task work (W) represents all the tasks in the task

graph. The Create (C) task increases the possibility of parallelism, where the

execution of two or more actions can be done simultaneously. The Join (J) task is

the opposite of the create task, as two or more actions are joined together, which

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 85

Figure 4.17: Contech Task Graph Visualization

reduces the parallelism. The Sync (S) task gives the orders between the tasks

without affecting the parallelism in the task graph. Generally, the sync task may

has a semaphore or condition variable, when the tasks are waiting for each other.

Contrary to the sync task, where the order between the tasks is one to one (e.g.,

lock or one to many: condition variable), the Barrier (B) task is all to all. The

Work task includes an execution sequence and memory action which is same as

in the program. The Contech task graph representation is shown in Figure 4.17,

in which each Contech task is denoted by < ContextID >:< SequenceID >,

where context ID denotes the thread ID and sequence ID denotes the consistently

increasing or non-decreasing identifier for each context in the task graph. The

Dependency between the two tasks is denoted by the arrow in the task graph.

We generated the task graph for ILS using Contech tools by fixing the initial

numbers of solutions and iteration, and wrote the ILS program using the C and

OpenMP programming languages.

The task graph for parallel section P1 is shown in Figure 4.18. This figure demon-

strates that there are many create (c) and join (j) actions that can be parallelized,

which is the function of parallel section P2. Additionally, the main task with

thread id 0 has 12 dependencies.

The task graph of parallel section P2 is represented in Figure 4.19. This figure

shows that there is one more parallel section P3 that can be parallelized. In

parallel section P2 the main task with thread id 0 has 8 dependencies.

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 86

Figure 4.18:
Task graph of ILS

for P1

Figure 4.19:
Task graph of ILS

for P2

Figure 4.20:
Task graph of ILS

for P3

The last parallel section P3 is represented in Figure 4.20, demonstrating the exis-

tence of many create and join actions that have a small dependency. Thus, each

dependency can be parallelized using many small cores.

4.9.1 Analysis of the Task Graphs

We analyzed the task graph based on the suitable input from gprof profiling tools

and Contech task graph generation tools. Based on the analysis, we suggest the

suitable target architecture for each parallel section of the task graph.

• Target for parallel section P1: From Figure 4.18, we can see that the P1 parallel

section is suitable for the OpenMP type of parallelism with executing threads

on a bigger core (e.g., Intel Xeon, Pentium cores). The reasons behind this

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 87

suggestion are: (a) it generates neighbor solutions, evaluate them, find the

best solution, and then repeat the process with many iterations for each initial

solution; and (b) one processor is responsible for finding the best solution from

one initial solution.

• Target for parallel section P2: From Figure 4.19, this parallel section generates

many neighbor solutions from the initial solutions, with the evaluation of all

neighbor solutions done in parallel independently. Each neighbor solution eval-

uation takes a small amount of time, but is called for numerous times. Thus,

the GPU or SIMD architecture is suitable for this parallel section.

• Target for parallel section P3: From figure 4.20, as we evaluate the individual

solutions in parallel, this parallel section involves a reduction operation. Thus,

OpenMP is suitable for this parallel section, and many chunks of reduction can

be done efficiently on a smaller number of bigger cores.

4.10 Summary

This chapter explored which meta-heuristic is the most suitable for solving the

QAP using the best available, accelerated machine. We compared the execution

time and optimal cost with the recent optimal cost from QAPLIB; we achieved

127 times speedup on GPU compared to the serial version on CPU.

In this study, we compared the sequential and parallel execution of algorithms by

applying both types of meta-heuristics (i.e., single solution-based and population-

based) on an accelerated machine, finding that among the six studied meta-

heuristics, ILS (for small instance) and SA (for large instance) for all the four

classes [64] demonstrates the least deviation from the recent standard online li-

brary QAPLIB. For small-size instances, the meta-heuristic TS shows the least

average run-time on GPU, and CSA has the least average run-time on CPU, while

for large-size instances, CSA shows the least execution time in GPU. By using the

uniform termination condition for all the meta-heuristics by fixing the number of

Chapter 4. Analysis of Meta-heuristics for QAP in Accelerated Systems 88

evaluations of the cost function, the meta-heuristic TS shows the least deviation

among all other considered meta-heuristics. Moreover, we analyzed the perfor-

mance of meta-heuristics by finding the most appropriate parallel section, based

on which we mapped each parallel section to the architecture.

Chapter 5

Analysis of Iterated Local Search

Meta-heuristic on GPU Spatial

Memory

This chapter deals with a logical extension of GPU hardware spatial memory for

QAP using the ILS meta-heuristic. Here we discuss the use of memory properties

for efficient utilization of GPU hardware and performance analysis of the ILS

meta-heuristic.

5.1 Introduction

As we discussed, the detailed analysis of meta-heuristics for QAP is in Chapter 4.

Here we focused mainly on the utilization of GPU different memories. GPU has

a highly complex memory hierarchy to exploit its potential for paralyzing the

data. An NVIDIA GPU Kepler architecture generally has more than eight types

of memories (global, shared, constant, texture, and various caches). In paper [58]

by Stoltzfus et al., the works have shown that using proper utilization of GPU

memory hierarchy for placing the data improves the performance of the GPU.

In QAP, we have taken the input in matrix form, which is distance matrix and

89

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 90

flow matrix ; these matrices do not change during the entire program execution.

So, mapping it on the read-only memory (constant, and texture) improves the

performance from using only global memory.

The layout of this chapter is as follows: GPU memory architecture is discussed in

section 5.2, then we describe the accelerated system or GPU used in this work in

section 5.3. We illustrated the utilization of GPU memory in section 5.4. Experi-

mental results are recorded in the section 5.4 followed by summary in section 5.6.

5.2 GPU Memory Architecture

To effectively utilize the computational capability of GPUs, memory access effi-

ciency is crucial. GPU is equipped with different levels of memory with different

characteristics, namely, global, constant, texture, shared, and registers, as shown

in Figure 5.1. A high level overview of each memory is described in the following

section.

5.2.1 Global Memory

Global memory is the most significant off-chip memory, considered the GPU’s main

memory by default. It has limited bandwidth and long latencies compared to on-

chip memory or cache. Global memory is located in device memory, accessible by

memory transactions of 32, 64, or 128 bytes. The memory transactions, which are

in terms of 32, 64, or 128 bytes, can be only read or written. The throughput of

GPU memory varies based on the compute capability of the GPU device.

5.2.2 Shared Memory

Shared memory is on-chip memory, which has low latency and high bandwidth.

GPUs use shared memory to distribute processing among all the active threads in

the streaming multiprocessor (SM).

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 91

Figure 5.1: GPU memory hierarchy

5.2.3 Constant Memory

Constant memory is read-only memory, which is stored in the device memory. It

physically has the exact location as global memory. This memory space is globally

visible to all threads.

5.2.4 Texture Memory

Texture memory is also a read-only memory. It has off-chip memory space, which

is optimized for the 2D spatial locality, so the threads in a warp that use it to

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 92

access 2D data will achieve the best performance. It is mainly suited for those

threads that access memory addresses close to each other in 2D.

5.3 The Accelerated System

We used a GPU card from Nvidia, the GeForce GTX 980 Ti, which has 2816

CUDA cores, 6 GB DDR5 RAM, 22 streaming multiprocessor (SM), and 64 warps

per SM. This device has the CUDA toolkit 8.0 installed. Table 5.1 describes the

short overview of GPU cards.

Table 5.1: Nvidia GeForce GTX 980 Ti Configuration

No. of multiprocessors 22
No. of registers per block 65536
Global memory 5.94 MB
Constant memory 64 KB
Shared memory per block 48 KB
Warp size 32
Maximum no. of threads per block 1024
Maximum no. of threads per multiprocessors 2048
Maximum no. of warps per multiprocessors 64

5.4 Utilization of GPU Memory

The GPU supports programmable memory, where a user can write a program for

the use of memory to utilize the resources of GPU architecture. Besides the global

memory of GPU, it also has fast memory systems such as the shared, constant,

texture, and local memory. By using the GPU spatial memory, we can further

reduce the execution time for solving QAP. GPU shared memory is used when all

threads within a block need to access the same data. The GPU constant memory

is used for read-only data accessed uniformly by threads in a warp. It performs

best when all threads in warp access the exact location in the constant memory.

Texture memory is also read-only; it performs best when all reads in a warp are

physically adjacent to each other. The GPU local memory is used when data is

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 93

Instance
GPU(GM+LM) GPU(GM+CM) GPU(GM+SM)
D

(%)
ET

time
S

D
(%)

ET
time

S
D

(%)
ET

time
S

tai30a 4.87 0.205 4.26 4.87 0.511 1.7 4.87 0.175 4.98
tai35a 5.78 0.236 5.93 5.78 0.612 2.28 5.78 0.196 7.13
tai40a 7.13 0.261 7.89 7.13 0.757 2.72 7.13 0.211 9.77
tai50a 8.04 0.306 13.07 8.04 1.01 3.96 8.04 0.249 16.1
tai60a 8.47 0.36 19.74 8.47 1.268 5.6 8.47 0.287 24.69
tai80a 8.43 0.48 35.3 8.43 3.267 5.19 8.43 0.403 42.08
tai100a 8.87 0.677 50.52 8.87 Out Out 8.87 0.674 50.77

Table 5.2: Percentage deviation and exec. time of QAP on GPU local, con-
stant, and shared memory

required to be accessed by only a particular thread i.e. data is only visible to the

thread that wrote it and ended when threads are destroyed.

5.5 Experimental Results

We implemented the ILS meta-heuristic using the local, shared, and constant

memory and the results are reported in Table 5.2. Because the QAP input, such

as the distance matrix and flow matrix, is always constant, we put it on a read-only

memory i.e. the Constant memory. In this table 5.2, we can see that for instance

tai80a the speedup on GPU for local memory is 35.3, constant memory is 5.19,

and shared memory is 42.08. So here, on Shared memory, GPU is performing best,

while on constant memory, GPU performance is worst. We used Nvidia GeForce

GTX 980 Ti GPU card, which has only 48KB Constant memory or cache, so

instances of size greater than 100 show out of memory and are not executed.

We also implemented texture memory by varying one with constant and texture

memory, like we have put one-time distance matrix input on constant memory

and flow matrix on texture memory. Similarly, we put the distance matrix on

texture memory and the flow matrix on constant memory for another variation.

We noted the results in Table 5.3. In this table, we observed that when we put

on mixed with constant and texture memory, speedup on GPU is more significant

than only constant memory but worst than only texture memory. For instance,

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 94

Instance
GPU (GM+TM)

GPU(GM+
CM(d)+TM(f))

GPU(GM+
TM(d)+CM(f))

D
(%)

ET
time

S
D

(%)
ET

time
S

D
(%)

ET
time

S

tai30a 4.87 0.193 4.52 4.87 0.226 3.85 4.87 0.224 3.88
tai35a 5.78 0.22 6.34 5.78 0.301 4.64 5.78 0.312 4.47
tai40a 7.13 0.241 8.52 7.13 0.37 5.55 7.13 0.388 5.3
tai50a 8.04 0.285 14.02 8.04 0.505 7.92 8.04 0.548 7.3
tai60a 8.47 0.33 21.51 8.47 0.623 11.39 8.47 0.683 10.4
tai80a 8.43 0.435 39 8.43 0.931 18.2 8.43 0.949 17.86
tai100a 8.87 0.619 55.31 8.87 1.626 21.04 8.87 2.941 11.63

Table 5.3: Percentage deviation and exec. time of QAP on GPU texture, and
constant memory

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

tai80a tai60a tai50a tai40a tai35a tai30a

E
x
e
c
u
ti

o
n
 T

im
e
 o

n
 G

P
U

Instance

Solving QAP using ILS by applying GPU Spatial Memory

GM
LM
TM
CM
SM

CM(d)+TM(f)
TM(d)+CM(f)

Figure 5.2: Execution Time (seconds) on GPU

tai80a speedup on GPU for distance matrix on constant memory and flow matrix

on texture memory is 18.2, which is greater than for only constant memory 5.19

and lesser than for only texture memory 39. We compared the execution time

on GPU with different memory as illustrated in Figure 5.2, and it shows that as

the size of the instance grows, the execution time on the GPU also grows. We

compared the speedup on GPU concerning CPU is shown in Figure 5.3, here in

this figure, for instance, tai80a we got the highest speedup on GPU using shared

memory.

Chapter 5. Analysis of ILS Meta-heuristic on GPU Spatial Memory 95

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

tai80a tai60a tai50a tai40a tai35a tai30a

S
p
e
e
d
u
p
 o

n
 G

P
U

Instance

Solving QAP using ILS by applying GPU Spatial Memory

GM
LM
TM
CM
SM

CM(d)+TM(f)
TM(d)+CM(f)

Figure 5.3: Speedup on GPU with respect to CPU

5.6 Summary

In this chapter, we used GPU spatial memory and compared the execution time

and speedup on GPU. We have found that by adequately utilizing GPU memory,

we can reduce the execution time and increase the speedup on GPU. Here, shared

memory performs better for instances of size up to 80 when we mix the constant

and texture memory, the performance increases from using only constant memory

while decreasing from using only texture memory.

Chapter 6

Analysis of Meta-heuristics for

Traveling Salesman Problem in

Accelerated Systems

In this chapter, we discuss another optimization problem TSP similar to QAP. We

again used all six meta-heuristics: ILS, SA, GA, PSO, CSA, and TS in accelerated

systems. We also did the performance analysis of all meta-heuristics and mapped

each parallel section to the appropriate architecture. Finally, we compared all

meta-heuristics and calculated the speedup on GPU.

6.1 Introduction

In this work, we analyze the performance of meta-heuristics for solving TSP. Here

we considered both types of meta-heuristics: single solution-based (s-type) and

population-based (p-type) meta-heuristics. We have taken s-type as ILS, SA,

and CSA in this study and p-type as GA, PSO, and TS. We also compared the

optimum tour and execution time between CPU, Pthread, and GPU and computed

the speedup on GPU. Here we have taken instances from TSPLIB [12] symmetric

instances.

97

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 98

This chapter is organized as follows: literature review is discussed in section 6.2,

brief description of TSP is described in section 6.3, method for generating of

neighbor solution is discussed in section 6.4. Section 6.5 shows the accelerated

system used for TSP, various meta-heuristics implementation are illustrated in

section 6.6. Section 6.7 described the experimental results and analysis. Finally

we summarized this chapter in section 6.8.

6.2 Literature Review

TSP belongs to NP-complete class problems [66]. It has many applications in

engineering problems such as electronic circuit design, network optimization, ve-

hicle routing, etc. [67, 68]. Grefenstette et al. [69] used GA to solve TSP, and

many transform operators are used to improving a solution in each generation. In

paper [70], Scholz et al. described the historical development of GA for TSP. In

paper [71], Uchida et al. used ant colony optimization for solving TSP on GPU.

He used GPU coalesced access memory to optimize the results further. Semin

Kang and others [72] used GA on GPU for solving TSP by using a constructive

crossover operator. In paper [73], Fosin et al. used local search operators on GPU

for symmetric TSP. ILS is parallelized on GPU using 2-opt and 3-opt local search

operators [74]. In paper [75], Bali et al. used PSO to accelerate on GPU for TSP.

In paper [76], Yelmewad et al. used a parallel iterative hill climbing algorithm

for solving TSP large-size instances on GPU. The authors also demonstrated the

impact of storing data in different GPU memory and showed improvement using

texture memory in place of global memory and speedup 181 on GPU compared to

sequential part on CPU. Ant colony optimization (ACO) meta-heuristic is paral-

lelized on GPU [77], Menezes et al. compare coarse- grain and fine-grain parallel

ACO. In paper [78], Abbasi et al. used GA for solving TSP on multi-core and

many-core systems. Here, the authors used three different GPU kernels to run

concurrently for GA operators and showed the highest speedup of 58.35 on GPU.

Another work of TSP based on GPU is done by Qiao et al. [79], where authors

used multiple k-opt heuristics to parallelize on GPU and show speedup on GPU.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 99

Now researchers are looking for machine learning approach [80, 81] to select the

best meta-heuristics for solving TSP, in this context Huerta et al. [82], proposed

a any-time automatic algorithm selection methods for TSP.

6.3 Traveling Salesman Problem

Given n cities and a distance matrix dn,n, where each element dij represents the

distance between the cities i and j, then a problem is to find a tour that minimizes

the total distance. A tour visits each city exactly once.

6.4 Generating Neighbor Solution

We used the adjacent pairwise exchange method in this work to generate neighbor

solutions. If a solution has n cities then n × (n − 1)/2 neighbor solutions are

generated.

6.4.1 Incremental Solution Evaluation

Instead of passing the whole solution, we passed the only index position to swap

the elements of a solution; with that help, we got more speedup compared to

giving the complete solution every time. Due to the swapping of two components,

four positions are affected in a complete solution: the distance between swapped

elements and their neighbor elements. Let us take an example of a complete

solution with two positions r and s out of the full size N . If in a solution, position

r and s are to be swapped, then the changes in the solution cost are represented

as ∆(x), which is as follows-

Figure 6.1: Solution before swap

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 100

Figure 6.2: Solution after swap

∆(x) =

{
+
(
d(s, r − 1) + d(s, r + 1)

)
−
(
d(r, r − 1) + d(r, r + 1)

)
+
(
d(r, s− 1) + d(r, s+ 1)

)
−
(
d(s, s− 1) + d(s, s+ 1)

)}
(6.1)

Where d(x1, x2) denotes the distance between points x1 and x2. In Equation 6.1,

if the index r = 1, then we consider r − 1 = N and if s = N , then we consider

s + 1 = 1, where N is the size of the solution or position of the last element in a

solution.

6.5 Accelerated System for TSP

In this work, we used Nvidia GeForce GTX 980 Ti GPU with 2816 CUDA cores

and 6 GB DDR5 memory, 22 SM, and 64 warps per SM. Additionally, We installed

the CUDA toolkit 8.0 on this device.

6.6 Meta-heuristics Implementation

We analyzed the solution of TSP by applying both types of meta-heuristics (sin-

gle solution and population-based meta-heuristics) on the serial machine, POSIX

thread (Pthread) and GPU. The general approach for solving TSP is for all meta-

heuristics is as first we take the input as TSPLIB instances in the form of city

number, x-coordinate, y-coordinate (tsp matrix). Then generated a random initial

solution (tour) of TSP; from that initial solution, we generated all possible neigh-

bor solutions and evaluated them using the evaluation function. If it improves the

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 101

objective of the solution, then replace the current solution with a new solution.

This process will continue until it reaches the stopping condition.

We have taken TSPLIB [12] instances from online TSP library. Here we considered

only symmetric TSP instances from size 51 to 1379 of different instances. In this

work, we used 25 different instances to analyze the performance of different meta-

heuristics.

6.6.1 ILS Implementation

6.6.1.1 ILS on Serial Machine

Using ILS, we generated neighbor solutions from the initial solution with the ad-

jacent pairwise exchange permutation method. We started from the first position

and then changed the position of the elements to the next nearby position. After

generating the new neighbor solution, we assessed it using the evaluation function.

We compared the assignment cost with the current assignment cost; if it was less

than the current one, we chose the new solution as the current one. Thereby,

we evaluated all the n×(n−1)
2

neighbor solutions. At this stage, local optima were

reached; thus, for the next iteration, we made the minimal local solution the initial

solution and repeated all the above-mentioned steps. This process continued until

the stopping criteria were reached. To avoid being stuck in local optima or unable

to get the best global minimum solution, we took 500 random initial solutions,

with each initial solution being iterated 10 times. Finally, we observed the ob-

jective value and the execution time (in seconds) to execute the whole program

as in Table 6.1. In this table, the percentage deviation (D) is calculated using

Equation 6.2. We considered 20 TSPLIB symmetric instances. Here in Table 6.1,

we can observe that some instances have the highest deviation, like instance lin318

has the 1038 deviation percentage because it may require more exploration of ini-

tial solutions and number of iterations. Here instance a280 shows the highest

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 102

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 927 22.31 927 4.22 5.29 922 0.92 24.17
berlin52 13 0.54 13 0.15 3.55 13 0.11 4.81
bier127 313 3.23 313 0.87 3.73 313 0.28 11.48
eil51 142 0.52 142 0.14 3.69 120 0.11 4.65
eil76 210 1.17 210 0.31 3.75 205 0.16 7.47
gil262 812 13.88 812 3.68 3.77 811 0.82 17.01
kroa100 368 2.01 368 0.53 3.79 367 0.21 9.65
kroa150 559 4.52 559 1.24 3.65 559 0.35 13.08
kroa200 705 8.05 705 2.15 3.74 705 0.53 15.24
krob100 371 2.02 371 0.53 3.8 371 0.21 9.53
krob150 541 4.53 541 1.19 3.79 541 0.35 12.86
krob200 712 8.07 712 2.16 3.74 711 0.53 15.15
kroc100 403 2.01 403 0.54 3.69 402 0.21 9.63
krod100 379 2 379 0.54 3.71 379 0.2 9.97
kroe100 377 2 377 0.53 3.79 376 0.21 9.53
lin105 428 2.22 428 0.59 3.79 427 0.23 9.52
lin318 1038 20.38 1038 5.42 3.76 1037 1.16 17.5
pr107 595 2.3 595 0.61 3.75 594 0.23 9.91
pr124 668 3.09 668 0.84 3.67 668 0.27 11.36
pr136 473 3.73 473 0.99 3.76 473 0.31 12.08

Table 6.1: Percentage deviation and exec. time of TSP using ILS on CPU,
Pthread, and GPU

speedup 24.17 on GPU.

Deviation% =
(Objective V alue− TSPLIB Cost)

TSPLIB Cost
× 100. (6.2)

6.6.1.2 ILS using Pthread

In this meta-heuristic for implementing on pthread, instead of executing all initial

solutions at a time, we assigned all the initial solutions to several processors so

each could be utilized and get an equal number of the initial solutions. Then, each

part was assigned to different processors so that all parts could be run in parallel.

Finally, Table 6.1 shows the optimal cost and execution time using pthread. Here

deviation of all instances is the same as on CPU; only execution time is different.

Here for instance a280, the speedup on Pthread is 5.29.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 103

6.6.1.3 ILS on GPU

In general, to run a program on GPU, three main steps have to be followed: first,

the data input is copied from CPU (host) to GPU (device); second, the program

is executed on GPU; and last, the result is sent back from GPU to CPU.

First, we set the kernel’s grid size and block size to generate several threads to

achieve the best performance with respect to executing the ILS algorithm on GPU.

For the implementation, we generated random initial solutions on CPU, and from

each initial solution, we generated neighbor solutions that were evaluated on GPU.

In this study, we took 500 initial solutions, with each initial solution being iterated

10 times to get the best possible optimal solution. All the initial solutions were run

in parallel and called the GPU, which also ran in parallel to execute the evaluation

cost function of neighbor solutions. The percentage deviation and execution time

on GPU are reported in Table 6.1, demonstrating that the execution time on GPU

is less than that on CPU. For example, the instance a280 has execution time on

CPU is 22.31, on Pthread is 4.22 while on GPU is 0.92, which shows 24.17 faster

on GPU. For instance berlin52, we got the minimum deviation 13% among all

other instances.

6.6.2 SA Implementation

6.6.2.1 SA on Serial Machine

Using SA to execute the evaluation function, first, we generated all possible neigh-

bor solutions. Unlike executing the ILS for each neighbor solution to find the best

solution, we calculated the assignment cost of all the neighbor solutions simultane-

ously and then stored the values for each solution. To find the best solution among

all neighbor solutions, we applied SA. We fixed the main parameters of SA to be

as follows: initial temperature: 10, 000, cooling rate: 0.9999, and absolute tem-

perature: 0.00001. First, the algorithm starts with an initial temperature, and at

every iteration, the temperature is reduced to [current temperature×cooling rate],

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 104

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 1100 20.54 1104 19.99 1.03 1101 4.22 4.87
berlin52 102 0.71 118 0.76 0.94 112 0.32 2.23
bier127 357 4.51 347 4.96 0.91 348 1.26 3.59
eil51 212 0.68 211 0.67 1.01 202 0.3 2.27
eil76 283 1.5 287 1.51 1 288 0.47 3.17
gil262 912 18.02 930 17.85 1.01 924 3.7 4.87
kroa100 568 2.72 581 2.83 0.96 587 0.77 3.52
kroa150 723 6.13 735 5.97 1.03 739 1.49 4.11
kroa200 886 11.17 919 11.53 0.97 939 2.5 4.47
krob100 534 2.7 516 2.8 0.97 524 0.77 3.52
krob150 746 6.1 752 6.61 0.92 732 1.51 4.05
krob200 884 10.9 861 12 0.91 912 2.49 4.38
kroc100 574 2.74 592 3.1 0.88 565 0.78 3.52
krod100 529 2.7 524 3.14 0.86 533 0.77 3.51
kroe100 545 2.72 529 3.09 0.88 546 0.77 3.54
lin105 623 2.95 597 3.21 0.92 618 0.81 3.65
lin318 1186 27.63 1192 31.62 0.87 1183 6 4.61
nrw1379 2299 569.93 2300 518.83 1.1 2315 101.94 5.59
pr1002 2289 284.57 2271 405.17 0.7 2275 70.7 4.03
pr107 908 3.24 967 3.95 0.82 924 1.01 3.22
pr124 873 4.33 881 5.2 0.83 874 1.27 3.4
pr136 626 5.22 630 6.46 0.81 621 1.51 3.45

Table 6.2: Percentage deviation and exec. time of TSP using SA on CPU,
Pthread, and GPU

making it the current temperature for the next iteration. This process continues

until the current temperature reaches the absolute temperature. The deviation

and execution time are reported in Table 6.2, where we can see that as the size of

instances increases, the execution time increases more rapidly.

6.6.2.2 SA using Pthread

In this study, we applied SA to find the best solution or local optima for every ini-

tial solution. Therefore, instead of running all of the initial solutions sequentially

on the CPU, we assigned them to an equal number of processors. The optimal

solution was found and compared on each processor to get the globally optimal

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 105

solution. The percentage deviation and total execution time are reported in Ta-

ble 6.2. In Pthread implementation, processor utilization performs better than a

serial machine, with each part running in parallel. In Table 6.2, we can see that

its percentage deviation is not the same as that of the CPU because of the random

generation of solutions. Additionally, the execution time on Pthread is reduced,

and because of overhead for some of the instances like lin318 it gives the worst

than CPU.

6.6.2.3 SA on GPU

For the implementation of SA on GPU, first, we generated neighbor solutions from

the initial solutions and evaluated them on GPU. Then, the entire cost of the

neighbor solutions was transferred from GPU to CPU. Afterward, we performed

SA on the CPU to find the optimal solution after GPU evaluated all neighbor

solutions in parallel. The execution results are reported in Table 6.2. In this

table, for instance, nrw1379, the execution time on CPU is 569.93 seconds while

on GPU is 101.94, which shows the 5.59 times fast on GPU as compared to CPU.

6.6.3 GA Implementation

6.6.3.1 GA on Serial Machine

GA starts with a random initial population of solutions, where the neighbor solu-

tions are generated with the help of two operators, namely, crossover and mutation.

The crossover operator selects two random solutions from the population of solu-

tions. Several methods for the random selection of individuals in this algorithm, of

which the roulette wheel and tournament methods are the most popular. In this

study, we used the tournament method. In this method, first, a few solutions are

randomly selected. Then, among them, the best solution (with the minor assign-

ment cost) is selected. When two solutions are selected, the crossover operator is

employed to generate the new offspring and then store it in the new population.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 106

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 1119 7.35 1108 3.51 2.1 1114 5.98 1.23
berlin52 136 1.46 93 0.76 1.91 136 1.3 1.12
bier127 378 3.34 387 1.67 2 378 2.74 1.22
eil51 238 1.65 221 0.75 2.18 233 1.29 1.28
eil76 312 2.09 303 1.07 1.97 299 1.76 1.19
gil262 939 8.67 939 3.33 2.61 935 5.17 1.68
kroa100 609 2.76 583 1.37 2.01 609 2.2 1.25
kroa150 765 4.05 750 1.96 2.06 764 3.08 1.32
kroa200 919 5.39 945 2.6 2.07 919 4.01 1.34
krob100 559 2.75 542 1.35 2.03 559 2.19 1.26
krob150 763 4.67 759 1.94 2.41 762 3.18 1.47
krob200 885 5.76 926 2.59 2.23 884 4.27 1.35
kroc100 574 2.74 578 1.36 2.02 574 2.18 1.26
krod100 544 3.6 551 1.35 2.67 544 2.2 1.63
kroe100 583 2.77 562 1.37 2.02 582 2.16 1.28
lin105 614 3.69 616 1.4 2.62 614 2.27 1.62
lin318 1205 11.05 1169 4.23 2.61 1204 6.4 1.73
nrw1379 2324 39.67 2317 365.03 0.11 2323 34.17 1.16
pr1002 2292 25.15 2294 151.91 0.17 2292 21.8 1.15
pr107 989 2.93 972 1.46 2.01 989 2.37 1.24
pr124 942 4.4 936 1.67 2.64 942 2.69 1.63
pr136 656 3.69 646 1.79 2.06 656 2.86 1.29

Table 6.3: Percentage deviation and exec. time of TSP using GA on CPU,
Pthread, and GPU

In this study, we used one-point crossover and then applied the mutation oper-

ator to the newly generated solution. For mutation, we changed the position of

the elements and stored them in the new population. In addition, we fixed the

number of initial solutions as 500 and the number of iterations as 10. From the

500 initial solutions, we generated 25000 neighbor solutions using the crossover

and mutation operators. In each iteration, the best population of solutions was

selected (i.e., 500), becoming the current population, with this process continuing

until the termination condition is reached. The percentage deviation and execu-

tion time of GA are reported in Table 6.3, which shows that as the size of the

instance increases, the execution time also increases.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 107

6.6.3.2 GA using Pthread

In GA, the generated random initial solutions are called the population, with the

neighbor solutions being generated with the help of genetic operators, namely,

crossover and mutation. Afterward, the neighbor solutions are evaluated in par-

allel; among them, the best population is chosen for the next generation. In this

study, the neighbor solutions are assigned to an equal number of processors, with

the number of neighbor solutions taken being 25000 and the initial population be-

ing 500. Each processor evaluates the solutions, stores their costs, and then merges

all solutions, out of which we chose the best 500 solutions for the next generation

or iteration. Table 6.3 shows the percentage deviation and execution time using

Pthread. Further, it shows that as the size of instances increases, the execution

time increases in proportion to the number of processors used (e.g., lin318).

6.6.3.3 GA on GPU

Using GA, we generated the random initial population of solutions; then, we

generated the offspring using the crossover and mutation operators for the next

generation and iteration. In GPU, we evaluated the solutions in parallel until

the stopping condition was reached, then the results were sent back from GPU to

CPU. The percentage deviation and execution time to run on GPU are reported

in Table 6.3. In this table, for instance, berlin52, the execution time on CPU is

1.46 seconds while on GPU is 1.3 seconds, which shows the speedup on GPU.

6.6.4 PSO Implementation

6.6.4.1 PSO on Serial Machine

PSO starts with random initial solutions or a population of particles, with each

particle having a random initial velocity. Every particle has its personal best

based on its experience or history and global best for the whole group of particles.

In every iteration, each particle updates its velocity according to Equation 2.3

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 108

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 1083 81.88 1071 21.92 3.74 1077 16.67 4.91
berlin52 109 0.55 114 0.19 2.92 113 0.15 3.68
bier127 361 7.67 370 2.08 3.69 383 1.41 5.44
eil51 203 0.51 205 0.17 3.01 199 0.14 3.67
eil76 286 1.67 278 0.48 3.47 274 0.36 4.67
gil262 912 67.14 895 17.74 3.78 902 13.64 4.92
kroa100 546 3.79 546 1.03 3.66 556 0.73 5.18
kroa150 724 12.62 725 3.41 3.7 711 2.33 5.42
kroa200 881 30.02 902 8 3.75 908 5.94 5.06
krob100 517 3.76 501 1.05 3.57 521 0.73 5.15
krob150 730 12.61 727 3.41 3.69 730 2.29 5.5
krob200 859 29.88 890 8.01 3.73 879 5.99 4.99
kroc100 552 3.77 563 1.05 3.6 566 0.73 5.14
krod100 520 3.76 484 1.04 3.6 494 0.73 5.16
kroe100 532 3.77 529 1.06 3.55 527 0.73 5.16
lin105 588 4.35 598 1.12 3.87 596 0.83 5.23
lin318 1174 119.73 1161 32.14 3.73 1168 24.25 4.94
pr107 937 4.62 921 1.26 3.66 962 0.87 5.29
pr124 870 7.13 841 1.94 3.68 902 1.31 5.43
pr136 599 9.43 620 2.55 3.69 634 1.71 5.51

Table 6.4: Percentage deviation and exec. time of TSP using PSO on CPU,
Pthread, and GPU

and position according to Equation 2.4. As the iteration continues, each particle

converges toward the optimal solution. In this study, velocity was measured in

terms of the number of swaps of positions inside a solution. In Equation 2.3, we

have taken the inertia factor (ω) 0.9, and two constants c1 and c2 as 2. The results

of PSO are reported in Table 6.4, showing that for instance of equal size like

kroc100, krod100, kroe100 execution time is almost same. Moreover, we used 500

initial solutions, with each solution being iterated 10 times to obtain the optimal

solution.

6.6.4.2 PSO using Pthread

In this meta-heuristic for implementing on pthread, an initial population of solu-

tions is assigned to an equal number of processors. As the algorithm proceeds,

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 109

every processor reaches the optimal solution. After the termination, all the optimal

solutions for the processors are combined, and among them, the best solution is

observed. The percentage deviation and execution time are reported in Table 6.4,

with the Pthread execution time being significantly reduced as compared to CPU.

6.6.4.3 PSO on GPU

In PSO, we observed the random position and velocity of the whole swarm, which

is generated on the CPU. The particle’s position and velocity were used to generate

the next position of the particles, which was evaluated in parallel on GPU. Every

member of the swarm updates its velocity based on the position from the local

optimum. After reaching the stopping criteria, the final global optimum values

were copied from GPU to CPU. The percentage deviation and execution time on

GPU are reported in Table 6.4. Here from this table, for instance, pr136 the

speedup on GPU is 5.51.

6.6.5 CSA Implementation

6.6.5.1 CSA on Serial Machine

In CSA, first, we fixed the initial parameters such as the flight length and probabil-

ity of awareness. When the probability of awareness decreases, then it searches in

the local region (exploitation-oriented), whereas when it increases, it explores the

search space (exploration-oriented). Initially, for the serial machine, we generated

a fixed number of initial solutions as the size of the input, with each initial solu-

tion generating a neighbor solution using the adjacent pairwise exchange method.

Among these neighbor solutions, we found the best one, which was used to initial-

ize the memory of each crow for each initial solution. As the iteration increases,

each crow updates its memory until the termination condition is reached. Among

the memories of all crows, we found the best one giving the optimal solution for

the TSP, taking flight length as 2 and probability of awareness as 0.15.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 110

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 1109 4.78 1051 27.44 0.17 1107 3.94 1.21
berlin52 92 0.37 95 1.48 0.25 101 0.33 1.14
bier127 361 1.15 349 4.99 0.23 407 1.92 0.6
eil51 218 0.29 198 1.61 0.18 185 0.58 0.51
eil76 282 0.5 275 2.65 0.19 287 1.06 0.48
gil262 912 3.33 875 22.85 0.15 904 2.79 1.19
kroa100 570 1.55 532 5.13 0.3 550 0.73 2.14
kroa150 584 1.49 693 8.78 0.17 720 1.68 0.89
kroa200 931 3.59 866 14.27 0.25 919 3.19 1.12
krob100 541 0.72 488 3.62 0.2 509 1.29 0.56
krob150 725 1.99 695 8.51 0.23 751 3.29 0.6
krob200 868 2.48 850 13.68 0.18 913 2.24 1.11
kroc100 576 1.64 525 3.43 0.48 559 1.14 1.43
krod100 540 0.5 500 3.96 0.13 534 0.61 0.81
kroe100 558 1.13 509 3.71 0.3 562 0.98 1.15
lin105 476 1.11 586 4.79 0.23 630 1.63 0.68
lin318 1177 9.29 1149 35.23 0.26 1194 2.91 3.19
pr1002 2238 92.06 2209 327.59 0.28 2273 20.57 4.48
pr107 951 92.06 846 4.33 21.26 959 1.82 50.53
pr124 876 1.2 866 6.56 0.18 950 0.76 1.58
pr136 637 0.77 597 7.68 0.1 648 2.4 0.32

Table 6.5: Percentage deviation and exec. time of TSP using CSA on CPU,
Pthread, and GPU

6.6.5.2 CSA using Pthread

To implement on Pthread, first, we divided the initial solutions among processors,

with each processor running the maximum number of iterations (initially fixed)

and updating the memory of each crow. All processors run in parallel, while inside

each processor, this algorithm runs serially. After completing the execution of all

processors, we found the best-updated memory among all crows that gives our

optimal solutions, with the results represented in Table 6.5.

6.6.5.3 CSA on GPU

To implement CSA on GPU, first, we fixed the initial parameters. Then, we

calculated the cost of the initial solutions on the CPU, and from each initial

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 111

solution, we generated the neighbor solutions using the adjacent pairwise exchange

method. Afterward, we evaluated the cost of the neighbor solutions on GPU. From

each initial solution, we found the best possible neighbor solution cost that is set to

the memories of each corresponding crow (for the initial solution). Consequently,

we run the CSA on the CPU to find the next positions of the crows, evaluate their

cost, and compare them to the solution stored in their memory. If the solution

gave the best result, then the corresponding crow’s memory was updated until

the termination criteria were reached. Finally, among the memories of all crows,

we found the best solution cost, which is reported in Table 6.5. In Table 6.5,

the percentage deviation and execution time are different on CPU, Pthread, and

GPU. Here for instance pr107 the speedup on GPU is 50.53.

6.6.6 TS Implementation

6.6.6.1 TS on Serial Machine

In TS, first, we fixed the size of the tabulist as the size of the instance. Then,

we generated the fixed number of (size of tabulist) random initial solutions and

evaluated their cost, and stored them in tabulist. In each iteration, we generated

the neighbor solution through an adjacent pair-wise exchange method and eval-

uated their cost; if it improves from the current solution, then we updated the

tabulist. This procedure will continue until it reaches the terminating condition

and finds the best optimal solution from tabulist. To avoid being stuck in local

minima, we implemented a diversification operator suggested by James et al. [50]

to generate a new solution. We fixed the maximum number of failures as the size

of the instance. In CPU, we fixed the number of iterations as 10. In Table 6.6

execution time and percentage deviation are reported.

6.6.6.2 TS using Pthread

To implement on Pthread, we first fixed tabulist size as the instance’s size, then

generated random initial solutions, evaluated their cost, and stored them in the

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 112

Instance
CPU Pthread GPU

D
(%)

ET
time

D
(%)

ET
time

S
D

(%)
ET

time
S

a280 1055 223.91 969 99.7 2.25 1049 156.56 1.43
berlin52 -49 0.34 -62 0.12 2.75 -49 0.21 1.62
bier127 227 10.86 239 4.76 2.28 227 7.46 1.46
eil51 29 0.32 -9 0.13 2.55 27 0.21 1.55
eil76 132 1.4 136 0.55 2.54 129 0.93 1.5
gil262 898 173.96 806 75.82 2.29 894 120.24 1.45
kroa100 422 4.2 360 1.85 2.28 422 2.87 1.47
kroa150 600 20.08 550 9.08 2.21 600 14.18 1.42
kroa200 861 66.03 754 27.57 2.4 861 43.52 1.52
krob100 387 4.43 314 1.7 2.6 387 2.84 1.56
krob150 667 20.56 553 9.41 2.18 666 14.04 1.46
krob200 812 60.59 734 29.47 2.06 812 43.81 1.38
kroc100 404 4.45 343 1.78 2.5 404 2.86 1.56
krod100 395 4.49 355 1.82 2.46 395 2.86 1.57
kroe100 401 4.36 366 1.73 2.52 401 2.87 1.52
lin105 486 5.47 358 2.19 2.5 486 3.45 1.58
lin318 1195 381.31 1076 188.33 2.02 1195 268.05 1.42
pr107 751 5.37 624 2.22 2.42 751 3.7 1.45
pr124 761 9.79 676 4.41 2.22 761 6.64 1.47
pr136 548 13.17 478 6.28 2.1 548 9.54 1.38

Table 6.6: Percentage deviation and exec. time of TSP using TS on CPU,
Pthread, and GPU

tabulist. We call pthread, and every thread gets the tabulist and generates a

neighbor solution; if it improves the current solution, then update the tabulist.

When Pthread join, then merge all the thread tabulist, and from that, we get the

best optimal solution, which is reported in Table 6.6.

6.6.6.3 TS on GPU

To implement TS on GPU, first, we fixed the GPU parameters and then transferred

the input data from the CPU to GPU. In GPU, we fixed the number of iterations

as 10, and the size of the tabulist is the size of the instance. In each iteration

of TS, we transfer the tabulist from CPU to GPU. On GPU, we generate and

evaluate the neighbor solution, update the tabulist with the best optimal solution,

and then the updated tabulist is transferred back from GPU to CPU. This process

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 113

Instance
ILS SA GA PSO CSA TS

D
(%)

S
D

(%)
S

D
(%)

S
D

(%)
S

D
(%)

S
D

(%)
S

a280 922 24.17 1101 4.87 1114 1.23 1077 4.91 1107 1.21 1049 1.43
berlin52 13 4.81 112 2.23 136 1.12 113 3.68 101 1.14 -49 1.62
bier127 313 11.48 348 3.59 378 1.22 383 5.44 407 0.6 227 1.46
eil51 120 4.65 202 2.27 233 1.28 199 3.67 185 0.51 27 1.55
eil76 205 7.47 288 3.17 299 1.19 274 4.67 287 0.48 129 1.5
gil262 811 17.01 924 4.87 935 1.68 902 4.92 904 1.19 894 1.45
kroa100 367 9.65 587 3.52 609 1.25 556 5.18 550 2.14 422 1.47
kroa150 559 13.08 739 4.11 764 1.32 711 5.42 720 0.89 600 1.42
kroa200 705 15.24 939 4.47 919 1.34 908 5.06 919 1.12 861 1.52
krob100 371 9.53 524 3.52 559 1.26 521 5.15 509 0.56 387 1.56
krob150 541 12.86 732 4.05 762 1.47 730 5.5 751 0.6 666 1.46
krob200 711 15.15 912 4.38 884 1.35 879 4.99 913 1.11 812 1.38
kroc100 402 9.63 565 3.52 574 1.26 566 5.14 559 1.43 404 1.56
krod100 379 9.97 533 3.51 544 1.63 494 5.16 534 0.81 395 1.57
kroe100 376 9.53 546 3.54 582 1.28 527 5.16 562 1.15 401 1.52
lin105 427 9.52 618 3.65 614 1.62 596 5.23 630 0.68 486 1.58
lin318 1037 17.5 1183 4.61 1204 1.73 1168 4.94 1194 3.19 1195 1.42
pr107 594 9.91 924 3.22 989 1.24 962 5.29 959 50.53 751 1.45
pr124 668 11.36 874 3.4 942 1.63 902 5.43 950 1.58 761 1.47
pr136 473 12.08 621 3.45 656 1.29 634 5.51 648 0.32 548 1.38

Table 6.7: percentage deviation and speedup on GPU for all meta-heuristics
for TSP

continues until it reaches the stopping condition. Finally, the best optimal solution

is found from tabulist, and results are noted in Table 6.6. Here in Table 6.6, we

can see that, for instance, berlin52 the optimum tour is under-performed than the

TSPLIB optimum tour, and the speedup on GPU is 1.62.

6.7 Experimental Results and Analysis

We compared all the meta-heuristics for each TSP symmetric instance on GPU and

calculated the speedup on GPU concerning the CPU, which is noted in Table 6.7.

Here from this table, we can observe that for input instance pr107, CSA is giving

the highest speedup 50.53, and ILS offers the best speedup for all other instances

on GPU.

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 114

 0

 50

 100

 150

 200

ILS SA TS GA PSO CSA

T
im

e
 (

in
 s

e
c
)

Di�erent Meta-heuristics

Time for a280 instance in sec

CPU
Pthread

GPU

Figure 6.3: Exec. time on CPU, pthread, and GPU for instance a280

Figure 6.3, illustrates the execution time (in seconds) for all above meta-heuristics

on CPU, pthread, and GPU for one TSPLIB instance a280. Here we observed

that the TS meta-heuristic took the highest time on CPU, pthread, and GPU,

while the ILS meta-heuristic took less time on GPU and performed best for a280

instance.

According to Figure 6.4, when we compare the speedup of GPU for all the meta-

heuristics and all the considered TSPLIB instances, the GPU provides the highest

speedup of 50.53 for input instance pr107, and ILS performs best in most of

the remaining input instances. We have illustrated the speedup on GPU for one

meta-heuristic PSO in Figure 6.5; here, we observe that for all the considered

input instances, the speedup on GPU has significantly less variation.

6.8 Summary

We used six meta-heuristics: ILS, SA, GA, PSO, CSA, and TS for solving TSP

and implemented on CPU, Pthread, and GPU. We have considered 21 symmet-

ric instances from TSPLIB. We observe that the CSA meta-heuristic records the

highest speedup 50.53 for instance pr107 and ILS records second highest speedup

Chapter 6. Analysis of Meta-heuristics for TSP in Accelerated Systems 115

 0

 10

 20

 30

 40

 50

a280

berlin52

bier127

eil51

eil76

gil262

pr107

pr124

pr136

kroa100

kroa150

kroa200

krob100

krob150

krob200

kroc100

krod100

kroe100

lin105

lin318

S
p
e
e
d
u
p

Instances

Speedup of GPU for TSP

ILS
SA

CSA
GA

PSO
TS

Figure 6.4: Speedup on GPU

 0

 2

 4

 6

 8

 10

a280

berlin52

bier127

eil51

eil76

gil262

kroa100

kroa150

kroa200

krob100

krob150

krob200

kroc100

krod100

kroe100

lin105

lin318

pr107

pr124

pr136

S
p
e
e
d
u
p

Instances

Speedup of PSO in GPU for TSP

Speedup

Figure 6.5: Speedup on GPU for PSO meta-heuristic

24.17 for a280 input instance. The PSO meta-heuristics records speedup 5.51 on

GPU. We also observe that the instance with similar nature like kroa100, kroa150,

and kroa200 shows the speedup increases as their sizes increases for most of the

meta-heuristics ILS, SA, and GA while for others PSO, CSA, and TS gives the

speedup with slightly variation.

Chapter 7

Analysis of Meta-heuristics for

Permuted Perceptron Problem in

Accelerated Systems

In this chapter, we proposed an efficient method for permuted perceptron prob-

lems using simulated annealing meta-heuristic in massively parallel many-core

architecture graphics processing units. We parallelize the simulated annealing

meta-heuristic for PPP in many-core architecture GPU. We discussed the perfor-

mance and statistical analysis of the SA meta-heuristic and calculated the speedup

on GPU concerning multi-core CPU.

7.1 Introduction

Nowadays, solving complex and real-world problems using meta-heuristics is ever-

increasing; however, it gives the approximate solution, but it takes a huge amount

of time for large instances. The execution time can be reduced with modern

massively parallel accelerated systems. The permuted perceptron problem (PPP)

introduced by Pointcheval [3] belongs to the NP-complete class problem. This

problem is well suited for smart cards.

117

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 118

Many meta-heuristics such as genetic algorithm, tabu search, and ant colony op-

timization have been widely used in the crypt-analysis of classical cipher [83] and

vigenere cipher [84]. In this paper, we analyzed the performance of PPP using the

simulated annealing (SA) meta-heuristic in accelerated systems like- multi-core

processors and graphics processing units (GPUs).

The chapter is organized as follows: literature review is described in section 7.2,

the definition of PPP is described section 7.3. The method for neighbor solutions

generation is described in Section 7.4. The overview of accelerated systems is

discussed in section 7.5. The mapping of SA meta-heuristic to architecture is

explained in section 7.6. The experimental results are reported in Section 7.7.

Section 7.8 illustrates the performance analysis of SA meta-heuristic. Finally, we

summarize this chapter in section 7.9.

7.2 Literature review

In [3] Pointcheval introduced the identification scheme based on permuted percep-

tron problem, which is derived from the simpler one but still NP-complete problem

known as perceptron problem (PP). In this paper, the author suggested that the

matrix size (m, n = m + 16) is harder to solve for an attack on a smart card

application. Here authors used SA to find the number of solutions and time for

PPP.

Knudsen and Meier [85] describe the attack on Pointcheval identification scheme

by carrying out a set of runs. The authors noted the result for carrying out a

new set of runs and fixed those elements where there is complete agreement; By

repeating runs, if the same values are obtained for particular bits, the authors

assume that those bits are actually set correctly. Through this approach, authors

solve PP instances 180 times faster than Pointcheval for instance size (151, 167)

but no upper bound given on sizes achievable. The authors also used a new cost

function to solve PPP with histogram punishment. In paper [86], fault injection

and timing analysis of PPP is introduced. Here fault injection is used in the

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 119

SA meta-heuristic where terminating criteria are fixed as the maximum number

of failures to not accepting any solutions. The authors also modified the cost

function by inducing some constant in the cost function.

VanLuong [87] has taken as a case study of PPP of a local search algorithm

on GPU. In this paper, the authors generated neighbor solutions from the initial

solution by binary encoding technique and solved PPP using the tabu search meta-

heuristic. The authors used one hamming distance to generate neighbor solutions

from an initial solution, executed them on GPU, and compared the results between

GPU and GPU with texture memory. He also used two hamming distances to

generate neighbor solutions from an initial solution and again compared GPU and

GPU texture memory. He found that GPU with texture memory gives 40 times

faster than GPU.

7.3 Permuted Perceptron Problem (PPP)

A new identification scheme based on the perceptron problem was introduced

by Pointcheval [3], which is used in resource-constrained devices like smart cards.

Authors used ε-vector and ε-matrix to define perceptron and permuted perceptron

problems. An ε-vector contains all the elements of a vector that are either +1 or

−1, similarly an ε-matrix contains elements only +1 and −1. PP can de defined

as, given an input of an ε-matrix I of size m×n, then to find an ε-vector Z of size

n such that IZ ≥ 0. In a similar way, PPP can be defined as, given an input of

an ε-matrix I of size m × n, and a multi-set S of non-positive integers of size m,

then to find an ε-vector Z of size n such that-

{{(IZ)jj = {1, . . . ,m}}} = S. (7.1)

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 120

7.4 Generating Neighbor Solutions

We generated many neighbor solutions from each initial solution using the binary

encoding method in this work. The binary encoding method represents any solu-

tion as a vector (string) of bits. This method is based on the Hamming distance,

which represents the number of positions between two strings of equal length in

which corresponding symbols differ.

1-Hamming distance neighborhood:- A neighbor solution is generated by

flipping one bit of the initial (candidate) solution in this representation. This

representation is shown in Figure 7.1. In this representation n neighbor solutions,

each of size n is generated from an initial solution of size n.

2-Hamming distance neighborhood:- In this representation, a neighbor solu-

tion is generated by flipping two values of an initial (candidate) solution. Thus

n×(n−1)
2

neighbor solutions each of size n are generated from an initial solution of

size n.

In a similar way for a 3-hamming distance neighborhood, neighbor solutions are

generated by flipping three values from an initial (candidate) solution. Thus

n×(n−1)×(n−2)
6

neighbor solutions each of size n are generated from an initial solu-

tion of size n.

7.5 Accelerated System used for PPP

Generally, multi-core processors have two or more cores assembled on a single

computing platform. To enhance the execution speed of a program, all cores

of the multi-core processor are running in parallel. The operating system (OS)

treats each core as a separate processor, and the OS scheduler maps each core

to threads/processor, and the same memory is physically mapped with them.

Multi-core processors can process multiple instructions and multiple data. In this

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 121

Figure 7.1: Binary encoding for one hamming distance

work, we used a CPU with 4 cores and a 3.2 GHz clock speed processor of Intel(R)

Core (TM) i5− 6500.

Here it is used Nvidia GeForce GTX 1050 GPU which has 4 GB DDR5 memory,

5 SMs, and each SMs has 128 CUDA cores i.e. a total of 640 Cuda cores. We

installed and used Cuda toolkit 10.1 on Nvidia GeForce GTX 1050 GPU card.

7.6 Mapping SA for PPP to Multi-core and Many-

core Architecture

In [3], the authors expressed the energy function mathematically using Equation

7.2 for solving PP by applying a simulated annealing meta-heuristic. The can-

didate vector Z is a solution for PP if and only if the energy function E(Z) is

minimum (i.e. E(Z) = 0).

E(Z) =
1

2

m∑
i=1

(‖(IZ)i‖ − (IZ)i) (7.2)

However, this energy function is not suited for finding PPP solutions. Knudsen

and Meier [85] mathematically expressed a new energy function for simulated

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 122

annealing meta-heuristic to find a solution for PPP in Equation 7.3.

E(Z) = g1

m∑
i=1

(‖(IZ ′)i‖ − (IZ ′)i) + g2

n∑
i=1

(‖Hi −H ′i‖) (7.3)

Where H represents the histogram vector over the integers. If m,n is odd then

Hi is set for only odd values of i, 1 ≤ i ≤ n. Z ′ is the candidate vector, H ′i is the

histogram for finding a ε-vector Z, and g1 ≥ 30, g2 = 1.

7.6.1 SA Implementation

We implemented SA meta-heuristic on multi-core CPU and many-core GPU archi-

tecture. We fixed the initial parameter of the SA meta-heuristic as Temperature

T as 1000 and cooling rate as 0.001.

7.6.1.1 SA on Multi-core Architecture

In multi-core architecture (CPU), first, we randomly generated the ε-matrix I of

size m×n and a ε-vector Z of size n×1; then, we find the multiset matrix IZ of size

m× 1, using this we calculated the histogram of elements of multiset matrix. We

again also generated a random ε-vector Z as the candidate vector initial solution,

and from that, the neighbor solution is generated using one hamming distance.

We found m× 1 multiset matrix from each neighbor solution. We calculated the

energy function using Equation 7.3, then applied SA to find the candidate vector

solution. In the next iteration, we reduced the temperature by the reducing factor

at each iteration; this iteration will continue until the temperature becomes 1.

Finally, we noted the solution and made them the initial solution for the next

iteration, and this process will continue until it reaches the maximum number of

iterations.

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 123

Algorithm 12 Simulated Annealing (SA) on GPU

Input: size of matrix m and n.
Output: Desired solution.

1: Generate a random ε I and Z matrix
2: Evaluate the objective function of the solution
3: Generate random initial candidate solution
4: Set the initial parameters for SA
5: for all neighbor solutions Z ′ do
6: while not Termination Criteria i.e. T < 1 do
7: repeat
8: Evaluate the multi-set matrix IZ ′ on GPU in parallel.
9: Results are sent back from GPU to CPU.

10: ∆C = g1(‖f(IZ ′) − f(IZ)‖) + g2(‖H − H ′‖); /∗ H and H ′ are
histogram of initial and neighbor solution ∗/

11: if ∆C = 0 then
12: Z = Z ′ /∗ Accept the neighbor solution ∗/
13: else
14: Accept the neighbor solution Z ′ with a probability e

−∆C
T

15: end if
16: until Absolute Temperature (Equilibrium condition) is reached
17: T= g(T); /∗ Update the temperature = temperature×coolingRate ∗/
18: end while
19: end for

7.6.1.2 SA on Many-core Architecture

In many-core architecture (GPU), we implemented SA. We first, generated a ran-

dom ε I matrix of size m× n and ε Z matrix of size n× 1. We find the multi-set

matrix IZ on GPU, and results are copied back from GPU to CPU. We also

calculated the histogram of each odd element of the multi-set matrix. Again we

generated a random initial candidate vector of size n × 1, and from this initial

solution, we generated neighbor solutions using binary encoding with hamming

distance one. We calculated the objective function’s cost for each neighbor solu-

tion and applied the SA meta-heuristic to accept or reject the neighbor solution.

For each iteration, the SA meta-heuristic continues to run until its temperature

parameter T becomes one. We fixed the maximum number of iterations as 1000

and T as the value of n. The modified algorithm of SA on GPU is described in

Algorithm 12; here in this algorithm, we have taken g1 and g2 as constant whose

value is 30 and 1 respectively.

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 124

7.7 Experimental Results

Here speedup and number of solutions are compared between multi and many-core

architecture for SA meta-heuristic. We have taken instance size with different

variations and also we reported the results with the hamming distance one and

two. We also fixed the number of solutions space and analyzed the speedup on

GPU.

7.7.1 Comparison of the Multi and Many-core Architec-

ture of PPP with SA Meta-heuristic

We compared the execution time and the number of solutions between multi-

core (CPU) and many-core (GPU) for different instance sizes from 73 to 1301

by varying the randomly generated Imatrix. In this report we considered the

instance size by varying the m and n like m = n,m > n,m < n, and n = m+ 16.

In one experiment, we fixed the number of Imatrix as 10 and 1000; in another, we

randomly generated the number of Imatrix as 1000. We reported the result by

considering the number of Imatrix as 10 in Table 7.1. Here in this table, we can see

that as the size of the instance increases speedup on GPU, it also increases. Here,

for instance size 101 − 117, we found 16 number of solutions and execution time

0.168 seconds on CPU, while on GPU number of solutions is 70 and execution time

is 0.034 seconds, so here GPU gives more number of solutions and also speedup

is 4.87. Similarly, we reported the result in Table 7.2 for 1000 Imatrices. Here we

observed that as the no. of Imatrices increased no. of solutions also increased as

well as speedup on GPU is also increased. In Table 7.2 for instance size 101−117,

no. of solutions, execution time on CPU and GPU are 2318, 20.189 seconds and

5327, 2.383 seconds respectively.

We computed the PPP using randomly generated Imatrix, and neighbor solutions

are generated using hamming distance one. Each neighbor solution is iterated

1000 times, and the best neighbor solution is chosen using the SA meta-heuristic.

After execution, we noted the result in Table 7.3. Here again, we observed that as

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 125

Instance
CPU GPU

speedup
no. of sols. Time (in sec.) no. of sols. Time (in sec.)

73-73 9 0.048 30 0.010 4.86
81-81 27 0.148 40 0.014 10.74
101-101 27 0.217 50 0.024 8.91
101-81 35 0.140 70 0.026 5.41
121-81 35 0.294 67 0.036 8.28
101-117 16 0.168 70 0.034 4.87
121-137 18 0.433 50 0.036 11.87
151-167 20 0.702 40 0.047 14.90
301-317 22 5.806 47 0.209 27.80
601-617 31 47.519 66 1.133 41.93
801-817 30 118.524 67 2.074 57.16
1001-1017 30 224.113 68 3.137 71.45
1301-1317 42 573.927 90 7.118 80.63

Table 7.1: No. of solutions and execution time of PPP on CPU and GPU
where no. of Imatrix is 10

Instance
CPU GPU

speedup
no. of sols. Time (in sec.) no. of sols. Time (in sec.)

73-73 1825 5.453 5918 1.301 4.19
81-81 2286 9.555 2436 0.879 10.87
101-101 2296 17.947 4394 2.111 8.50
101-81 1922 10.814 3453 1.316 8.22
121-81 1989 18.234 2948 1.399 13.04
101-117 2318 20.189 5327 2.383 8.47
121-137 2595 39.593 4251 2.663 14.87
151-167 164 81.144 5115 5.227 15.52
301-317 1764 617.803 5593 18.706 33.03

Table 7.2: No. of solutions and execution time of PPP on CPU and GPU
where no. of Imatrix is 1000

the instance size increased, the GPU speedup also increased. We also generated

neighbor solutions using hamming distance 2 and results are noted in Table 7.4.

Here in this Table 7.4, as the neighbor solutions space increased, speedup on GPU

is also increased and it gives up to 165 for instance size (151 − 167). Here for

instance size 101 − 117, no. of solutions, execution time on CPU and GPU are

2586, 1733.122 seconds and 3795, 16.515 seconds respectively.

When we fixed the total number of solution space or test cases as 1000 and neighbor

solutions are generated using hamming distance one, then we reported the results

in Table 7.5. In Table 7.5, as the no. of solutions space is reduced, the no. of

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 126

Instance
CPU GPU

speedup
no. of sols. Time (in sec.) no. of sols. Time (in sec.)

73-73 1567 4.420 4000 0.989 4.47
81-81 1949 7.999 5986 1.639 4.88
101-101 2593 20.649 3970 1.682 12.27
101-81 1951 10.062 4101 1.486 6.77
121-81 2168 13.913 3883 1.691 8.23
101-117 2233 20.383 5907 2.500 8.15
121-137 2267 33.072 8271 4.422 7.48
151-167 322 78.634 5999 5.213 15.08
301-317 2940 644.409 5702 17.938 35.92

Table 7.3: No. of solutions and execution time of PPP on CPU and GPU
where hd = 1 and no. of iteration 1000

Instance
CPU GPU

speedup
no. of sols. Time (in sec.) no. of sols. Time (in sec.)

73-73 1931 296.891 4043 5.440 54.58
81-81 2091 412.136 4613 6.085 67.72
101-101 2399 1110.418 4741 12.013 92.43
101-81 764 529.524 4491 6.946 76.23
121-81 1713 831.306 2394 4.247 195.75
101-117 2586 1733.122 3795 16.515 104.94
121-137 2750 3982.322 4817 29.278 136.02
151-167 2794 8764.841 5195 52.923 165.62

Table 7.4: No. of solutions and execution time of PPP on CPU and GPU
where hd = 2 and no. of iteration 1000

solutions and speedup on GPU is also reduced. Here, for instance size 101− 117,

no. of solutions, execution time on CPU and GPU are 5, 0.051 seconds and 970,

0.449 seconds, respectively. Here on GPU, instead of taking less time, it takes

more time from CPU because of less no. of solution space, and GPU takes more

time in setting up and initialization than execution. We analyzed the speedup on

GPU for all four above versions Imatrix10, Imatrix1000, hamming distance one

with iteration 1000, and hamming distance two with iteration 1000 in Figure 7.2.

From Figure 7.2, we can see that for hamming distance two, speedup on GPU is

high for all the instance sizes, and the highest speedup is achieved for the instance

size (121− 81).

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 127

Instance
CPU GPU

speedup
no. of sols. Time (in sec.) no. of sols. Time (in sec.)

73-73 8 0.023 1000 0.342 0.07
81-81 8 0.048 1000 0.306 0.16
101-101 5 0.042 1000 0.404 0.10
101-81 8 0.040 1000 0.345 0.12
121-81 6 0.046 1000 0.435 0.11
101-117 5 0.051 970 0.449 0.11
121-137 4 0.061 1000 0.532 0.12
151-167 3 0.093 1000 0.920 0.10
301-317 2 0.503 1000 2.949 0.17
601-617 1 1.954 1000 17.404 0.11
801-817 0 2.376 1000 31.376 0.08
1001-1017 0 4.082 1000 48.916 0.08
1301-1317 0 6.311 1000 85.257 0.07

Table 7.5: No. of solutions and execution time of PPP on CPU and GPU
where hd = 1 and fixed test case 1000

 0

 50

 100

 150

 200

73-73

81-81

101-101

101-81

121-81

101-117

121-137

151-167

S
p
e
e
d
 u

p

Instance size

speedup of PPP on GPU compared to CPU

Imatrix10
Imatrix1000

HM1-1000
HM2-1000

Figure 7.2: Speedup of PPP on GPU as compared to serial machine CPU

7.8 Performance Analysis of SA Meta-heuristic

In this section, we analyzed the performance of the SA meta-heuristic on a sequen-

tial machine and a GPU. First, by using a GNU profiling tool (i.e., gprof) [13], the

performance of SA meta-heuristic is checked for solving PPP on a serial machine.

We analyzed the performance of PPP, for instance size (101− 117), by randomly

generating Imatrix and Zmatrix. For each solution, we run 1000 iterations on

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 128

gprof output

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

66.80 14.38 14.38 466481 30.82 30.82 IZ_matrix

31.26 21.10 6.73 466481 14.42 14.42 findHistogram

0.93 21.30 0.20 465481 0.43 0.43 energyFunction

0.74 21.46 0.16 main

0.37 21.54 0.08 103000 0.78 0.78 rpermute

0.00 21.54 0.00 4 0.00 0.00 cpuSecond

Table 7.6: gprof output

the sequential machine (i.e., CPU) and noted the results of the gprof profiling

tool, which are shown in Table 7.6.

Here from the above gprof results, we can see that only the IZ matrix function

is taking 66.80% of the whole execution time. So parallelization of the IZ matrix

function will increase the performance of PPP. After analyzing the program, we

found the three most probable parallel sections, which are as follows:

• Parallel section (P1): In this parallel section, we generated the best solutions

from many initial solutions involving many iterations. Neighbor solutions are

generated and evaluated in each iteration, and the best solution is selected for

the next iteration.

• Parallel section (P2): We generated many neighbor solutions from each initial

solution that can be parallelized in this parallel section.

• Parallel section (P3): In this parallel section, each solution is evaluated to get

the cost function, which can be done in parallel.

The task graph of each parallel section is generated by some specific tools-Contech.

7.8.1 Contech Tools for Task Graph Generation

First, we convert the program from C programming to OpenMP to generate the

task graph using contech tools. Then we generated the task graph for each parallel

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 129

Figure 7.3:
Task graph of

SA for P1

Figure 7.4:
Task
graph
of
SA
for
P2

Figure 7.5: Task graph of SA
for P3

section by taking the number of initial solutions as two and the number of iterations

as one.

Figure 7.3 represents the task graph of parallel section P1. If additional initial

solutions and iterations are performed, we can observe from this figure that there

are numerous create (C) and join (J) activities that can be parallelized. Here the

thread id 0 is the main task with 16 dependencies.

Figure 7.4 represents the task graph of parallel section P2. In this section also,

there are many create, and join functions that can be parallelized concurrently.

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 130

Here also, the thread id 0 is the main task with 16 dependencies.

Figure 7.5 represents the last parallel section P3, in which many small create and

join functions are there which can be parallelized simultaneously.

7.8.1.1 Analysis of the Task Graphs

We analyzed the results of gprof tools, and we found the probable parallel section

using this. We generated the task graph of SA meta-heuristic through Contech

tools. After analysis of the task graph, we suggest the most suitable target archi-

tecture for each parallel section.

• Suitable architecture for parallel section P1: In Figure 4.18, we can see that

there are many create and join has long sequence id so more significant core

like Intel Xeon is the most suitable architecture for best parallelization. In this

parallel section, several neighbor solutions are generated and evaluated for each

initial solution, and this process is repeated for each iteration. Here for each

initial solution, one processor is responsible for finding the best optimal solution.

• Suitable architecture for parallel section P2: In Figure 4.19, the generation of

many neighbor solutions from one initial solution can be parallelized. Paral-

lelizing this section requires calling each neighbor’s solution numerous times

to evaluate the cost function. GPUs or SIMD architectures are best for this

purpose.

• Suitable architecture for parallel section P3: In Figure 4.20, many create and

join functions can be executed simultaneously. In this parallel section, each

neighbor solution is evaluated which involves a reduction operation. So for a

less number of bigger cores, OpenMP is the most suitable.

Chapter 7. Analysis of Meta-heuristics for PPP in Accelerated Systems 131

7.9 Summary

The main aim of this work is to find the speedup on many-core architecture like

GPU concerning the serial machine-like CPU for solving PPP using SA meta-

heuristic. In this work, first, we briefly introduce the SA meta-heuristic and the

many-core architecture. We analyzed the performance of the SA meta-heuristic

on GPU as well as on CPU in terms of execution time and the resultant number

of solutions of PPP.

In this chapter, we compared the execution time between CPU and GPU; we found

that as the size of the instance increases speedup of GPU is also increased, i.e.,

for large size instances, GPU performance is best. Here, for input instance size

151− 167 using hamming distance two, we got the highest speedup around 165.

Chapter 8

Conclusion

This research uses many-core architecture to parallelize meta-heuristics for com-

binatorial optimization problems. We considered the quadratic assignment, trav-

eling salesman, and permuted perceptron problems in this work. Towards this, we

worked in the following two directions: (i) to find the parallel sections and effi-

ciently map them to the architecture, and (ii) to test the different meta-heuristics

for different optimization problems. Towards proposing a solution for the former

direction, we considered the serial architecture as a multi-core CPU and parallel

architecture as NVIDIA GPU. We generated a task graph using contech tools and

different profiling tools like gprof, Valgrind, etc.. We manipulated the parallel

sections and mapped them to the serial and parallel architecture. We also used

shared, constant, texture, local, and global memory in this context. Whereas,

for proposing a solution for the latter direction, we used two different types of

meta-heuristics: (i) single solution-based meta-heuristics: ILS, SA, and TS, and

(ii) population-based meta-heuristics: GA, PSO, and CSA. This chapter sums up

all the proposed contributions of this dissertation along with the future directions

for research.

133

Chapter 8. Conclusion 134

Meta-heuristics
Highest Instance of size 100
class 2
tai256c

S

class 1
tai100a

S

class 2
tai100b

S

class 3
sko100a

S
ILS 107.55 55.38 62.63 64.67
SA 60.99 18 23.19 22.79
GA 22.0 11.39 11.27 11.30
PSO 127.56 29.55 64.21 63.96
CSA 60.34 12.24 6.89 7.30
TS 27.57 18.48 16.87 17.69

Table 8.1: Highest speedup on GPU for instances of same size 100 for QAP

8.1 Summary of Contributions

• Analysis of Meta-heuristics for QAP in Accelerated Systems: Here,

we used different meta-heuristics (ILS, SA, GA, PSO, CSA, and TS) on the

massively parallel device GPU. We have taken standard instances from QAPLIB

and categories among four classes: class (1) unstructured, randomly generated

instances, e.g. taixxa, class (2) real-life like instances, e.g. taixxb, taixxc, class

(3) instances with grid-distances, e.g. skoxx, skoxxa class (4) real life instances,

e.g. elsxx, kraxxa, kraxx, stexxa. We calculated the speedup on pthread and

GPU compared to CPU, and deviation of optimal solution from the standard

QAPLIB library. We used adjacent pairwise exchange methods to generate the

neighbor solutions from initial solutions. We implemented all the above six

meta-heuristics and analyzed their performances by generating the task graph

using contech tools. We also compared all the above six meta-heuristics and the

results reported in Table 8.1. Here we can see that the highest speedup, 127.56

is achieved with the PSO meta-heuristic. When we compare with instances of

the same size for different classes, then ILS shows the highest speedup 64.67 on

GPU. We found that the speedup for a given meta-heuristic increased as the

size of the instances increased because the GPU’s hardware and resources are

used more effectively for large-size instances. This is the probable reason that

GPU is showing the highest speedup for instance tai256c for all meta-heuristics.

• Analysis of ILS Meta-heuristic for QAP on GPU Spatial Memory:

In this work, we utilized the GPU architectural properties in terms of memory

Chapter 8. Conclusion 135

Meta-heuristics
Highest Instance of size 100

Instance S
kroa100

S
krob100

S
kroc100

S
ILS a280 24.17 9.65 9.53 9.63
SA nrw1379 5.59 3.52 3.52 3.52
GA lin318 1.73 1.25 1.26 1.26
PSO pr136 5.51 5.18 5.15 5.14
CSA pr107 50.53 2.14 0.56 1.43
TS berlin52 1.62 1.47 1.56 1.56

Table 8.2: Highest speedup on GPU for instances of same size 100 for TSP

to efficiently parallelize the ILS meta-heuristic. We used shared, texture, con-

stant, local, and global memories of the GPU. We put the read-only instances

like distance and flow matrices on read-only memories constant and texture

memories. By putting the instances of different memories, shared memory gives

the best while constant memory gives the worst performance on GPU speedup.

When we mix the input instances with constant and texture memory by varying

one time on constant and another time on texture memory, then the speedup

on GPU is more significant than only constant memory but worse than only

texture memory.

• Analysis of Meta-heuristics for TSP in Accelerated Systems:

Like QAP, we used the above six meta-heuristics (ILS, SA, GA, PSO, CSA,

and TS) to implement TSP. We have taken standard symmetric instances from

TSPLIB. We used adjacent pairwise exchange permutation methods to gener-

ate neighbor solutions from initial solutions. Instead of evaluating a complete

neighbor solution in each iteration, we used incremental solution evaluation to

minimize the data transfer time from CPU to GPU. We implemented all the

above six meta-heuristics on CPU, pthread, and GPU and recorded the speedup

on GPU. We compared the performance of the six meta-heuristics mentioned

above on the GPU, and Table 8.2 shows the results.

Here we can see that in Table 8.2, CSA is recorded the highest speedup 50.53

for instance pr107, and TS shows the lowest speedup 1.62 for instance berlin52

on GPU, among all the above meta-heuristics. When we compared the same

size 100 of three different instances (kroa100, krob100, kroc100), the ILS, PSO,

Chapter 8. Conclusion 136

and CSA recorded highest speedup for kroa100, SA equal speedup, and GA and

TS showed equal for krob100, kroc100 instances.

• Analysis of Meta-heuristics for PPP in Accelerated Systems: In this

work, we used only the SA meta-heuristic on GPU. Here we considered the

initial solutions in terms of 1 and −1, which we generated randomly of size from

73 to 1301. We used a binary encoding method with hamming distances one

and two to generate the neighbor solutions from an initial solution. Here we

considered the instance size by varying the m and n like m = n,m > n,m < n,

and n = m + 16. Generally, input instances of size with a difference of 16 are

challenging to solve for PPP and take a huge amount of time. In this work, we

fixed the number of Imatrix as 10 and 1000 both ways manually and randomly.

We analyzed the performance of the SA meta-heuristic and recorded the desired

number of solutions and execution time on CPU and GPU. We also calculated

the speedup on the GPU. We achieved the highest speedup, 165.62, for instance

151-167 using hamming distance two and number of iteration 1000 among all

considered instances from 73 to 151. We obtained the speedup 27.80 and 33.03

when we fixed the no. of Imatrix 10 and 1000, respectively for instance 301-317.

Here we observed that as the size of the instance increases, the generation of

neighbor solutions also increases, and the resource utilization of GPU is more

efficient, resulting in more GPU speedup.

8.2 Scope for Future Work

The contributions of this thesis can be extended in several ways. Some of these

possible future research directions are listed below:

• For each considered optimization problem in this thesis, with the help of GPU

hardware properties like setting the GPU device parameter performance of con-

sidered meta-heuristics may be improved.

Chapter 8. Conclusion 137

• Our proposed methods can be extended to multi GPU and cluster systems. Here

again performance of these meta-heuristics may be improved.

• By applying recent new noble meta-heuristics, solutions for QAP, PPP, and

TSP optimization problems can be improved further.

• By considering other optimization problems apart from three (QAP, PPP, TSP),

performance of accelerated machine may be improved.

Appendix A

Experimental Setup Parameter

This appendix focuses on the experimental setup used in our approaches. In

this dissertation, we used two hardware: CPU and GPU. In GPU, we used two

different cards GPU the first is the NVIDIA Ge Force GTX 1050 GPU card, and

another one is NVIDIA Ge Force GTX 980 Ti GPU card. We used the CUDA

C programming model to write and run the code on a heterogeneous system. We

used Intel(R) Core (TM) i5-6500 CPU, with a 3.2 GHz clock speed and 4 CPU

cores. We also used some profiling tools like gprof and gcov to check the memory

leaks. Contech tools we used for generating the task graph for different parallel

sections of meta-heuristics.

A.1 GPU Parameter

A.1.1 NVIDIA GeForce GTX 980 Ti Configuration

The detailed configuration of NVIDIA GeForce GTX 980 Ti is listed in Table A.1.

139

Appendix A. Experimental Setup Parameter 140

Table A.1: Nvidia GeForce GTX 980 Ti Configuration

Architecture Maxwell 2.0
No. of CUDA cores 2816
No. of multiprocessors 22
CUDA cores/multiprocessor 128
No. of registers per block 65536
Global memory 6 GB DDR5
Constant memory 64 KB
Shared memory per block 48 KB
Warp size 32
Maximum no. of threads per block 1024
Maximum no. of threads per multiprocessors 2048
Maximum no. of warps per multiprocessors 64

Table A.2: Nvidia GeForce GTX 1050 Configuration

Architecture Pascal
No. of CUDA cores 640
No. of multiprocessors 5
CUDA cores/multiprocessor 128
No. of registers per block 65536
Global memory 4 GB DDR5
Constant memory 64 KB
Shared memory per block 48 KB
Warp size 32
Maximum no. of threads per block 1024
Maximum no. of threads per multiprocessors 2048
Maximum no. of warps per multiprocessors 64

A.1.2 NVIDIA GeForce GTX 1050 Configuration

The detailed configuration of NVIDIA GeForce GTX 1050 is listed in Table A.2.

A.2 Meta-heuristics Parameter for QAP

In this work, we have taken the following parameters for the meta-heuristics of

solving QAP.

• Iterated local search (ILS): Number of initial solution=500, number of

iteration=10.

Appendix A. Experimental Setup Parameter 141

• Particle swarm optimization (PSO): Number of initial solution=500, num-

ber of iteration=10

• Simulated annealing (SA): Number of initial solution=500, number of iteration=10

• Crow search algorithm (CSA): Number of initial solution=size of input

instance, Number of iteration=5000

• Tabu search (TS): Number of initial solution=size of input instance, Number

of iteration=10.

• Genetic algorithm (GA): Number of initial solution=5000, number of iteration=10,

Number of neighbor solution=25000

A.3 Contech Tools Installations

Following are the steps used for installing the Contech tools-

1. First download the Contech software http://bprail.github.io/contech/

2. unzip in ubuntu home using tar xvzf bprail-contech-f085829.tar.gz

3. Download llvm3.8.0 prebuilt binaries from

http://releases.llvm.org/download.html

4. Rename llvm as llvm_temp in bprail-contech-f085829 and

paste prebuilt binaries and rename as llvm

5. In Makefile set the path as

CONTECH_HOME=/home/manoj/bprail-contech-f085829/

LLVM_HOME=/home/manoj/bprail-contech-f085829/llvm/

6. Then make locally

7. Make the the envtsetting.sh file as

export LLVM_DIR=/home/manoj/bprail-contech-f085829/llvm/

export LLVM_HOME=/home/manoj/bprail-contech-f085829/llvm/

export CONTECH_LLVM_HOME=/home/manoj/bprail-contech-f085829/llvm/

export CONTECH_HOME=/home/manoj/bprail-contech-f085829/

Appendix A. Experimental Setup Parameter 142

export LD_LIBRARY_PATH=/home/manoj/bprail-contech-f085829/common/taskLib/

export PATH=$PATH:/home/manoj/bprail-contech-f085829/llvm/bin/

8. Run envtsetting.sh using source envtsetting.sh

9. Go to llvm-contech then do cmake . Or cmake And make or make .

If -flto error comes then go to that file and

remove the argument -flto from -flto as

If some .so file or llvm lib file is not linking then

make the link using pointer like

ls -l file2

lrwxrwxrwx 1 root root 5 Mar 31 03:54 file2 -> file1

(here file 2 is pointing file 1)

10. Make the new dir and put C or OMP file to run

11. Make run.sh in new dir as

if libomp.so not found after running ./a.out then set path

export LD_LIBRARY_PATH=/home/manoj/bprail-contech-f085829/llvm/lib

../scripts/contech_wrapper_par.py -fopenmp pi.c #this is used for running

omp program from Contech

./a.out #this is generated

binary and simply run

as usually

../middle/middle /tmp/contech_fe Abstest1.graph #this is used after

generating trace file

contech_fe which is in

temp, used for generating

task graph

../backend/TaskGraphVisualizer/taskViz Abstest1.graph

#used for

visuallizing the

graph in .png format

Run either as a whole like sh run.sh or one by one.

Bibliography

[1] I. Boussad, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuris-

tics,” Information Sciences, vol. 237, pp. 82 – 117, 2013.

[2] T. C. Koopmans and M. Beckmann, “Assignment Problems and the Location

of Economic Activities,” Econometrica: journal of the Econometric Society,

pp. 53–76, 1957.

[3] D. Pointcheval, “A new identification scheme based on the perceptrons prob-

lem.” Springer, 1995, pp. 319–328.

[4] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman

problem,” Biosystems, vol. 43, no. 2, pp. 73 – 81, 1997.

[5] C. W. COMMANDER, “A survey of the quadratic assignment problem, with

applications,” Ph.D. dissertation, UNIVERSITY OF FLORIDA, 2003.

[6] R. E. Burkard, S. E. Karisch, and F. Rendl, “QAPLIB &Ndash; A Quadratic

Assignment ProblemLibrary,” J. of Global Optimization, vol. 10, no. 4, pp.

391–403, Jun. 1997.

[7] B. P. Railing, E. R. Hein, P. Vassenko, and T. M. Conte, “Contech: A tool

for analyzing parallel programs,” Georgia Institute of Technology, Tech. Rep.,

2013.

[8] K. Panwar and K. Deep, “Discrete grey wolf optimizer for symmetric travel-

ling salesman problem,” Applied Soft Computing, vol. 105, p. 107298, 2021.

143

Bibliography 144

[9] P. Stodola, P. Otř́ısal, and K. Hasilová, “Adaptive ant colony optimization

with node clustering applied to the travelling salesman problem,” Swarm and

Evolutionary Computation, p. 101056, 2022.

[10] E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley Pub-

lishing, 2009.

[11] F. Glover, “A template for scatter search and path relinking,” in European

conference on artificial evolution. Springer, 1997, pp. 1–51.

[12] G. Reinelt, “TSPLIB- A Traveling Salesman Problem Library,” ORSA Jour-

nal of Computing, vol. 3, no. 4, pp. 376–384, 1991.

[13] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A Call Graph

Execution Profiler,” SIGPLAN Not., vol. 39, no. 4, pp. 49–57, Apr. 2004.

[14] T. Luong, “Parallel metaheuristics on gpu,” Ph.D. dissertation, Ph. D. thesis,

INRIA Lille, 2011.

[15] D. Bertsimas and R. Demir, “An approximate dynamic programming

approach to multidimensional knapsack problems,” Management Science,

vol. 48, no. 4, pp. 550–565, 2002.

[16] C. Blum, J. Puchinger, G. R. Raidl, A. Roli et al., “A brief survey on hybrid

metaheuristics,” Proceedings of BIOMA, pp. 3–18, 2010.

[17] H. Wang and B. Alidaee, “A new hybrid-heuristic for large-scale combina-

torial optimization: A case of quadratic assignment problem,” Computers &

Industrial Engineering, vol. 179, p. 109220, 2023.

[18] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:

Overview and conceptual comparison,” ACM computing surveys (CSUR),

vol. 35, no. 3, pp. 268–308, 2003.

[19] R. Chelouah and P. Siarry, “Tabu Search Applied to Global Optimization,”

European Journal of Operational Research, vol. 123, no. 2, pp. 256 – 270,

2000.

Bibliography 145

[20] E. Lutton and J. Levy Vehel, “Holder Functions and Deception of Genetic

Algorithms,” Evolutionary Computation, IEEE Transactions on, vol. 2, no. 2,

pp. 56–71, Jul 1998.

[21] T. V. Luong, N. Melab, and E.-G. Talbi, “GPU Computing for Parallel Lo-

cal Search Metaheuristic Algorithms,” Computers, IEEE Transactions on,

vol. 62, no. 1, pp. 173–185, Jan 2013.

[22] R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle swarm

theory,” in Proc. of symposium on micro machine and human science, vol. 1.

New York, NY, 1995, pp. 39–43.

[23] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” May 1998,

pp. 69–73.

[24] A. Askarzadeh, “A novel metaheuristic method for solving constrained en-

gineering optimization problems: Crow search algorithm,” Computers and

Structures, vol. 169, pp. 1 – 12, 2016.

[25] F. Glover, “Future paths for integer programming and links to artificial in-

telligence,” Computers operations research, vol. 13, no. 5, pp. 533–549, 1986.

[26] A. Vajda, “Multi-core and Many-core Processor Architectures,” in Program-

ming Many-Core Chips. Springer US, 2011, pp. 9–43.

[27] M. Rantonen, T. Frantti, and K. Leivisk, “Fuzzy Expert System for Load

Balancing in Symmetric Multiprocessor Systems,” Expert Systems with Ap-

plications, vol. 37, no. 12, pp. 8711 – 8720, 2010.

[28] S. Eggers, J. Emer, H. Leby, J. Lo, R. Stamm, and D. Tullsen, “Simultaneous

Multithreading: A Platform for Next-Generation Processors,” Micro, IEEE,

vol. 17, no. 5, pp. 12–19, Sep 1997.

[29] P. Panigrahi, S. Kanchiraju, A. Srinivasan, P. Baruah, and C. Sudheer, “Op-

timizing MPI Collectives on Intel MIC through Effective use of Cache,” Dec

2014, pp. 88–93.

Bibliography 146

[30] Intel Xeon Phi Coprocessor System Software Developers Guide, march, 2014.

[Online]. Available: http://www.intel.com/content/www/us/en/processors/

xeon/xeon-phi-coprocessor-system-software-developers-guide.html

[31] NVIDIA, “CUDA C Programming Guide,” September 2015, version 7.5.

[32] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and

T. Querido, “A survey for the quadratic assignment problem,” European Jour-

nal of Operational Research, vol. 176, no. 2, pp. 657 – 690, 2007.

[33] R. D. Meller and K.-Y. Gau, “The facility layout problem: Recent and emerg-

ing trends and perspectives,” Journal of Manufacturing Systems, vol. 15,

no. 5, pp. 351 – 366, 1996.

[34] A. Stawowy, “Evolutionary based heuristic for bin packing problem,” Com-

puters and Industrial Engineering, vol. 55, no. 2, pp. 465 – 474, 2008.

[35] R. Carraghan and P. M. Pardalos, “An exact algorithm for the maximum

clique problem,” Operations Research Letters, vol. 9, no. 6, pp. 375 – 382,

1990.

[36] A. M. Geoffrion and G. W. Graves, “Scheduling parallel production lines

with changeover costs: Practical application of a quadratic assignment/lp

approach,” Operations Research, vol. 24, no. 4, pp. 595–610, 1976.

[37] P. Kadluczka and K. Wala, “Tabu search and genetic algorithms for the gen-

eralized graph partitioning problem,” Control and cybernetics, vol. 24, pp.

459–476, 1995.

[38] M. Pollatschek, H. Gershoni, and Y. Radday, “Optimization of typewriter

keyboard by computer-simulation,” Angewandte Informatik, no. 10, pp. 438–

439, 1976.

[39] B. Wess and T. Zeitlhofer, “On the phase coupling problem between data

memory layout generation and address pointer assignment.” Springer, 2004,

pp. 152–166.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html

Bibliography 147

[40] L. Steinberg, “The backboard wiring problem: A placement algorithm,” Siam

Review, vol. 3, no. 1, pp. 37–50, 1961.

[41] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent ad-

vances and new trends,” International Transactions in Operational Research,

vol. 20, no. 1, pp. 1–48, 2013.

[42] P. Krömer, J. Platoš, and V. Snášel, “Nature-inspired meta-heuristics on

modern gpus: state of the art and brief survey of selected algorithms,” Inter-

national Journal of Parallel Programming, vol. 42, no. 5, pp. 681–709, 2014.

[43] M.-L. Wong, T.-T. Wong, and K.-L. Fok, “Parallel Evolutionary Algorithms

on Graphics Processing Unit,” in Evolutionary Computation, 2005. The 2005

IEEE Congress on, vol. 3, Sept 2005, pp. 2286–2293 Vol. 3.

[44] Q. Yu, C. Chen, and Z. Pan, “Parallel Genetic Algorithms on Programmable

Graphics Hardware,” in Advances in Natural Computation, ser. Lecture Notes

in Computer Science, L. Wang, K. Chen, and Y. Ong, Eds. Springer, 2005,

vol. 3612, pp. 1051–1059.

[45] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An Efficient Fine-grained Par-

allel Genetic Algorithm Based on GPU-Accelerated,” in Network and Parallel

Computing Workshops, 2007. NPC Workshops. IFIP International Confer-

ence on, Sept 2007, pp. 855–862.

[46] W. Zhu, “A Study of Parallel Evolution Strategy: Pattern Search on a GPU

Computing Platform,” ser. GEC ’09. ACM, 2009, pp. 765–772.

[47] S. Tsutsui and N. Fujimoto, “Solving Quadratic Assignment Problems by

Genetic Algorithms with GPU Computation: A Case Study,” ser. GECCO

’09. ACM, 2009, pp. 2523–2530.

[48] T. Van Luong, N. Melab, and E. Talbi, “Parallel Hybrid Evolutionary Algo-

rithms on GPU,” in Evolutionary Computation (CEC), 2010 IEEE Congress

on, July 2010, pp. 1–8.

Bibliography 148

[49] O. Abdelkafi, L. Idoumghar, and J. Lepagnot, “A survey on the metaheuristics

applied to qap for the graphics processing units,” Parallel Processing Letters,

vol. 26, no. 03, p. 1650013, 2016.

[50] T. James, C. Rego, and F. Glover, “A cooperative parallel tabu search al-

gorithm for the quadratic assignment problem,” European Journal of Opera-

tional Research, vol. 195, no. 3, pp. 810–826, 2009.

[51] E. Sonuc, B. Sen, and S. Bayir, “A cooperative gpu-based parallel multistart

simulated annealing algorithm for quadratic assignment problem,” Engineer-

ing Science and Technology, an International Journal, vol. 21, no. 5, pp.

843–849, 2018.

[52] H. Alfaifi and Y. Daadaa, “Parallel improved genetic algorithm for the

quadratic assignment problem,” International Journal of Advanced Computer

Science and Applications, vol. 13, no. 5, 2022.

[53] R. Matousek, L. Dobrovsky, and J. Kudela, “How to start a heuristic? utiliz-

ing lower bounds for solving the quadratic assignment problem,” International

Journal of Industrial Engineering Computations, vol. 13, no. 2, pp. 151–164,

2022.

[54] A. Silva, L. C. Coelho, and M. Darvish, “Quadratic assignment problem

variants: A survey and an effective parallel memetic iterated tabu search,”

European Journal of Operational Research, vol. 292, no. 3, pp. 1066–1084,

2021.

[55] R. POVEDA, E. CARDENAS, and O. GARCIA, “Hybrid of cellular parallel

genetic algorithm and greedy 2-opt local search to solve quadratic assignment

problem using cuda,” Journal of Engineering Science and Technology, vol. 15,

no. 5, pp. 3082–3095, 2020.

[56] E. Özçetin and G. Öztürk, “A parallel iterated local search algorithm on

gpus for quadratic assignment problem,” International Journal of Engineering

Technologies IJET, vol. 4, no. 2, pp. 124–128, 2018.

Bibliography 149

[57] J. R. Cheng and M. Gen, “Accelerating genetic algorithms with gpu comput-

ing: A selective overview,” Computers & Industrial Engineering, vol. 128, pp.

514–525, 2019.

[58] L. Stoltzfus, M. Emani, P.-H. Lin, and C. Liao, “Data placement optimization

in gpu memory hierarchy using predictive modeling,” in Proceedings of the

Workshop on Memory Centric High Performance Computing, 2018, pp. 45–

49.

[59] M. Essaid, L. Idoumghar, J. Lepagnot, and M. Brévilliers, “Gpu paralleliza-

tion strategies for metaheuristics: a survey,” International Journal of Parallel,

Emergent and Distributed Systems, vol. 34, no. 5, pp. 497–522, 2019.

[60] M. Bashiri and H. Karimi, “Effective heuristics and meta-heuristics for the

quadratic assignment problem with tuned parameters and analytical compar-

isons,” Journal of Industrial Engineering International, vol. 8, no. 1, pp. 1–9,

2012.

[61] S. Sahni and T. Gonzalez, “P-Complete Approximation Problems,” J. ACM,

vol. 23, no. 3, pp. 555–565, Jul. 1976.

[62] S. Memeti, S. Pllana, A. Binotto, J. Ko lodziej, and I. Brandic, “Using meta-

heuristics and machine learning for software optimization of parallel comput-

ing systems: a systematic literature review,” Computing, vol. 101, no. 8, pp.

893–936, 2019.

[63] T. V. T. Van Luong, L. Loukil, N. Melab, and E.-G. Talbi, “A gpu-based

iterated tabu search for solving the quadratic 3-dimensional assignment prob-

lem,” in ACS/IEEE International Conference on Computer Systems and

Applications-AICCSA 2010. IEEE, 2010, pp. 1–8.

[64] T. Stützle, “Iterated local search for the quadratic assignment problem,” Eu-

ropean Journal of Operational Research, vol. 174, no. 3, pp. 1519–1539, 2006.

Bibliography 150

[65] B. P. Railing, E. R. Hein, and T. M. Conte, “Contech: Efficiently generating

dynamic task graphs for arbitrary parallel programs,” ACM Trans. Archit.

Code Optim., vol. 12, no. 2, pp. 25:1–25:24, Jul. 2015.

[66] R. M. Karp, “On the computational complexity of combinatorial problems,”

Networks, vol. 5, no. 1, pp. 45–68, 1975.

[67] J. Wu, L. Zhou, Z. Du, Y. Lv et al., “Mixed steepest descent algorithm for the

traveling salesman problem and application in air logistics,” Transportation

Research Part E: Logistics and Transportation Review, vol. 126, pp. 87–102,

2019.

[68] P. Baniasadi, M. Foumani, K. Smith-Miles, and V. Ejov, “A transformation

technique for the clustered generalized traveling salesman problem with ap-

plications to logistics,” European Journal of Operational Research, vol. 285,

no. 2, pp. 444–457, 2020.

[69] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algo-

rithms for the traveling salesman problem,” in Proceedings of the first Inter-

national Conference on Genetic Algorithms and their Applications, vol. 160,

no. 168. Lawrence Erlbaum, 1985, pp. 160–168.

[70] J. Scholz, “Genetic algorithms and the traveling salesman problem a historical

review,” arXiv preprint arXiv:1901.05737, 2019.

[71] A. Uchida, Y. Ito, and K. Nakano, “Accelerating ant colony optimisation

for the travelling salesman problem on the gpu,” International Journal of

Parallel, Emergent and Distributed Systems, vol. 29, no. 4, pp. 401–420, 2014.

[72] S. Kang, S.-S. Kim, J. Won, and Y.-M. Kang, “Gpu-based parallel genetic

approach to large-scale travelling salesman problem,” The Journal of Super-

computing, vol. 72, no. 11, pp. 4399–4414, 2016.

[73] J. Fosin, D. Davidović, and T. Carić, “A gpu implementation of lo-

cal search operators for symmetric travelling salesman problem,” Promet-

Traffic&Transportation, vol. 25, no. 3, pp. 225–234, 2013.

Bibliography 151

[74] K. Rocki and R. Suda, “Accelerating 2-opt and 3-opt local search using gpu in

the travelling salesman problem,” in 2012 International Conference on High

Performance Computing & Simulation (HPCS). IEEE, 2012, pp. 489–495.

[75] O. Bali, W. Elloumi, P. Krömer, and A. M. Alimi, “Gpu particle swarm

optimization applied to travelling salesman problem,” in 2015 IEEE 9th In-

ternational Symposium on Embedded Multicore/Many-core Systems-on-Chip.

IEEE, 2015, pp. 112–119.

[76] P. Yelmewad and B. Talawar, “Near optimal solution for traveling salesman

problem using gpu,” in 2018 IEEE International Conference on Electronics,

Computing and Communication Technologies (CONECCT). IEEE, 2018,

pp. 1–6.

[77] B. A. Menezes, H. Kuchen, H. A. A. Neto, and F. B. de Lima Neto, “Paral-

lelization strategies for gpu-based ant colony optimization solving the travel-

ing salesman problem,” in 2019 IEEE Congress on Evolutionary Computation

(CEC). IEEE, 2019, pp. 3094–3101.

[78] M. Abbasi and M. Rafiee, “Efficient parallelization of a genetic algorithm

solution on the traveling salesman problem with multi-core and many-core

systems,” International Journal of Engineering, vol. 33, no. 7, pp. 1257–1265,

2020.

[79] W.-B. Qiao and J.-C. Créput, “Multiple k- opt evaluation multiple k- opt

moves with gpu high performance local search to large-scale traveling sales-

man problems,” Annals of Mathematics and Artificial Intelligence, vol. 88,

no. 4, pp. 347–365, 2020.

[80] A. François, Q. Cappart, and L.-M. Rousseau, “How to evaluate machine

learning approaches for combinatorial optimization: Application to the trav-

elling salesman problem,” arXiv preprint arXiv:1909.13121, 2019.

[81] U. J. Mele, X. Chou, L. M. Gambardella, and R. Montemanni, “Reinforce-

ment learning and additional rewards for the traveling salesman problem,” in

Bibliography 152

2021 The 8th International Conference on Industrial Engineering and Appli-

cations (Europe), 2021, pp. 198–204.

[82] I. I. Huerta, D. A. Neira, D. A. Ortega, V. Varas, J. Godoy, and R. Aśın-

Achá, “Improving the state-of-the-art in the traveling salesman problem: An

anytime automatic algorithm selection,” Expert Systems with Applications,

vol. 187, p. 115948, 2022.

[83] P. Garg, “Evolutionary computation algorithms for cryptanalysis: A study,”

arXiv preprint arXiv:1006.5745, 2010.

[84] A. K. Bhateja, A. Bhateja, S. Chaudhury, and P. Saxena, “Cryptanalysis of

vigenere cipher using cuckoo search,” Applied Soft Computing, vol. 26, pp.

315–324, 2015.

[85] L. R. Knudsen and W. Meier, “Cryptanalysis of an identification scheme based

on the permuted perceptron problem,” in Advances in Cryptology — EURO-

CRYPT ’99, J. Stern, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, pp. 363–374.

[86] J. A. Clark and J. L. Jacob, “Fault injection and a timing channel on an

analysis technique,” in Advances in Cryptology — EUROCRYPT 2002, L. R.

Knudsen, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.

181–196.

[87] T. Van Luong, N. Melab, and E.-G. Talbi, “Local search algorithms on graph-

ics processing units. a case study: The permutation perceptron problem,” in

EvoCOP, 2010, pp. 264–275.

Publications Related to Thesis

Journal(s):

• M. Kumar, A. Sahu, and P. Mitra, “A comparison of different metaheuris-

tics for the quadratic assignment problem in accelerated systems,” Applied Soft

Computing, Elsevier, Volume 100, March 2021, Pages 106927.

Conferences:

• M. Kumar, P. Mitra, “Solving Quadratic Assignment Problem Using Crow

Search Algorithm in Accelerated Systems”, International Conference on Ma-

chine Learning, Image Processing, Network Security and Data Sciences (MIND),

Springer, 2020.

• M. Kumar, P. Mitra, “Solving Quadratic Assignment Problem using Iterated

Local Search on GPU Spatial Memory”, International Conference on Applied

Computational Intelligence & Analytics (ACIA), AIP, 2022.

Under Review:

• M. Kumar, A. Sahu, and P. Mitra, “A comparative study on permuted percep-

tron problem using simulated annealing in accelerated systems”, The Journal

of Supercomputing, Springer, 2022. [Submitted]

• M. Kumar, A. Sahu, and P. Mitra, “A comparison of different metaheuristics

for the travelling salesman problem in accelerated systems”. [To be communi-

cated]

	Declaration of Authorship
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Motivations
	1.3 Efficient Parallelization of Meta-heuristics
	1.4 Thesis Contributions
	1.4.1 Analysis of Meta-heuristics for Quadratic Assignment Problem in Accelerated Systems
	1.4.2 Analysis of Iterated Local Search Meta-heuristic on GPU Spatial Memory
	1.4.3 Analysis of Meta-heuristics for Traveling Salesman Problem in Accelerated Systems
	1.4.4 Analysis of Meta-heuristics for Permuted Perceptron Problem in Accelerated Systems

	1.5 Summary
	1.6 Organization of Thesis

	2 Introduction to Meta-heuristics
	2.1 Optimization Problems
	2.2 Meta-heuristics
	2.2.1 Classification of Meta-heuristics
	2.2.1.1 Single-solution-based Meta-heuristic
	2.2.1.2 Population-based Meta-heuristic

	2.3 Solution Representation
	2.3.1 Binary Encoding
	2.3.2 Discrete Vector Representation
	2.3.3 Vector of Real Values
	2.3.4 Permutation Representation

	2.4 Different Meta-heuristics
	2.4.1 Iterated Local Search (ILS)
	2.4.2 Simulated Annealing (SA)
	2.4.3 Genetic Algorithm (GA)
	2.4.4 Particle Swarm Optimization (PSO)
	2.4.5 Crow Search Algorithm (CSA)
	2.4.6 Tabu Search (TS)

	2.5 Performance Analysis of Meta-heuristics
	2.6 Summary

	3 Introduction to Many-core Architecture
	3.1 Multiprocessor Architecture
	3.1.1 Multi-core Architecture
	3.1.2 Symmetric Multiprocessor (SMP)
	3.1.3 Simultaneous Multi-threading (SMT)
	3.1.4 Distributed Memory Architecture
	3.1.5 Intel Xeon Phi
	3.1.6 Single Instruction Multiple Thread (SIMT)

	3.2 GPU Architecture
	3.3 CUDA Programming Model
	3.3.1 GPU Thread Mapping and Scheduling
	3.3.2 GPU Memory Hierarchy

	3.4 Summary

	4 Analysis of Meta-heuristics for Quadratic Assignment Problem in Accelerated Systems
	4.1 Introduction
	4.2 Literature Review
	4.3 Motivation and Background
	4.4 Quadratic Assignment Problem (QAP)
	4.4.1 Solution Evaluation for QAP
	4.4.2 Incremental Solution Evaluation for QAP

	4.5 The Accelerated System for QAP
	4.6 Mapping Meta-heuristics for QAP to Multi-core, Pthread, and GPU
	4.6.1 ILS Implementation
	4.6.1.1 ILS on Serial Machine
	4.6.1.2 ILS using Pthread
	4.6.1.3 ILS on GPU

	4.6.2 SA Implementation
	4.6.2.1 SA on Serial Machine
	4.6.2.2 SA using Pthread
	4.6.2.3 SA on GPU

	4.6.3 GA Implementation
	4.6.3.1 GA on Serial Machine
	4.6.3.2 GA using Pthread
	4.6.3.3 GA on GPU

	4.6.4 PSO Implementation
	4.6.4.1 PSO on Serial Machine
	4.6.4.2 PSO using Pthread
	4.6.4.3 PSO on GPU

	4.6.5 CSA Implementation
	4.6.5.1 CSA on Serial Machine
	4.6.5.2 CSA using Pthread
	4.6.5.3 CSA on GPU

	4.6.6 TS Implementation
	4.6.6.1 TS on Serial Machine
	4.6.6.2 TS using Pthread
	4.6.6.3 TS on GPU

	4.7 Experimental Results
	4.7.1 Comparison of the Serial, Pthread, and GPU Versions of QAP Meta-heuristics
	4.7.2 Statistical Analysis of all the Meta-heuristics on GPU

	4.8 Performance Analysis of Meta-heuristics
	4.9 Task Graph Generation using Contech
	4.9.1 Analysis of the Task Graphs

	4.10 Summary

	5 Analysis of Iterated Local Search Meta-heuristic on GPU Spatial Memory
	5.1 Introduction
	5.2 GPU Memory Architecture
	5.2.1 Global Memory
	5.2.2 Shared Memory
	5.2.3 Constant Memory
	5.2.4 Texture Memory

	5.3 The Accelerated System
	5.4 Utilization of GPU Memory
	5.5 Experimental Results
	5.6 Summary

	6 Analysis of Meta-heuristics for Traveling Salesman Problem in Accelerated Systems
	6.1 Introduction
	6.2 Literature Review
	6.3 Traveling Salesman Problem
	6.4 Generating Neighbor Solution
	6.4.1 Incremental Solution Evaluation

	6.5 Accelerated System for TSP
	6.6 Meta-heuristics Implementation
	6.6.1 ILS Implementation
	6.6.1.1 ILS on Serial Machine
	6.6.1.2 ILS using Pthread
	6.6.1.3 ILS on GPU

	6.6.2 SA Implementation
	6.6.2.1 SA on Serial Machine
	6.6.2.2 SA using Pthread
	6.6.2.3 SA on GPU

	6.6.3 GA Implementation
	6.6.3.1 GA on Serial Machine
	6.6.3.2 GA using Pthread
	6.6.3.3 GA on GPU

	6.6.4 PSO Implementation
	6.6.4.1 PSO on Serial Machine
	6.6.4.2 PSO using Pthread
	6.6.4.3 PSO on GPU

	6.6.5 CSA Implementation
	6.6.5.1 CSA on Serial Machine
	6.6.5.2 CSA using Pthread
	6.6.5.3 CSA on GPU

	6.6.6 TS Implementation
	6.6.6.1 TS on Serial Machine
	6.6.6.2 TS using Pthread
	6.6.6.3 TS on GPU

	6.7 Experimental Results and Analysis
	6.8 Summary

	7 Analysis of Meta-heuristics for Permuted Perceptron Problem in Accelerated Systems
	7.1 Introduction
	7.2 Literature review
	7.3 Permuted Perceptron Problem (PPP)
	7.4 Generating Neighbor Solutions
	7.5 Accelerated System used for PPP
	7.6 Mapping SA for PPP to Multi-core and Many-core Architecture
	7.6.1 SA Implementation
	7.6.1.1 SA on Multi-core Architecture
	7.6.1.2 SA on Many-core Architecture

	7.7 Experimental Results
	7.7.1 Comparison of the Multi and Many-core Architecture of PPP with SA Meta-heuristic

	7.8 Performance Analysis of SA Meta-heuristic
	7.8.1 Contech Tools for Task Graph Generation
	7.8.1.1 Analysis of the Task Graphs

	7.9 Summary

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Scope for Future Work

	A Experimental Setup Parameter
	A.1 GPU Parameter
	A.1.1 NVIDIA GeForce GTX 980 Ti Configuration
	A.1.2 NVIDIA GeForce GTX 1050 Configuration

	A.2 Meta-heuristics Parameter for QAP
	A.3 Contech Tools Installations

	Bibliography
	Publications Related to thesis

