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Abstract

Speech signal analysis is a crucial study that helps to develop methods for problems like
phoneme segmentation, speech recognition, speaker verification, etc. There are various
frameworks and techniques that support these problems. Frameworks like Hidden
Markov Modeling and Deep Learning are popular. The frameworks are efficient with
large data sets where intensive training is possible. However, this becomes challenging
in case of under-resourced language since sufficient data cannot be provided for the
intensive training.

To address the needs of these languages, suitablemethods are requiredwith the capability
to seek for significant clues with less amount of data. Structural processing methods
focus on understanding the signals differently compared to signal processing methods.
In this approach, a signal is treated as an image rather that a time series with different
samples at different time stamps. The need for these methods arises due to the limitations
in Hidden Markov Models. HMM contains states in which each state depends on at most
two neighboring states. This limits HMM to have a holistic view of the entire signal.

Recent developments in graph signal processing techniques give a way to analyze the
signals by using graph data structures. These methods enable to use combination of
temporal relations and frequency components while modeling the signals. The thesis
addresses the problems of speech characterization and segmentation while considering
the above mentioned issues. Different features like trajectories and Tree structures are
proposed and found to be useful for modeling speech signals that can be used further for
recognition. Three different features based on trajectories, graph structures and fractals
are proposed for segmentation task. The experiments were conducted on Indian accented
spoken English vowels, words and TIMIT sentence data. Tree structures and trajectories
were found to be useful in characterizing vowels and words, respectively. In the phoneme
segmentation experiments, words data were collected from people belonging to different
regions of India. The segmentation approaches are ascertained to be appropriate for
finding phoneme boundaries of phonetic units in spoken words and sentences. The
algorithms and obtained results are discussed in the thesis.
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Chapter 1
Introduction

Speech recognition is the process of understanding and extracting information in speech
signals. It hasmultiple applications in various domains like service industry, IoT (Internet
of Things), mobile devices, etc. It has got significance in the service industry where an
organization provides services through voice-enabled machines. IoT domain combines
devices that can handle different kinds of activities and gives accessing to these operations
targeting towards a particular task. Recent developments have increased the capabilities
of hand-held devices which opens a room for speech processing tools to improve the
services. Examples for this kind of applications are Google Voice Assistant, Apple Siri,
Microsoft Cortana, Amazon Alexa and so on. Apart from the commercial products,
there are many other platforms that support developers to build tailor-made systems.
Researchers are working to develop methods and procedures that can improve the
recognition process. There are well known frameworks in this area such as Hidden
Markov Models (HMMs), Neural Networks, Deep learning, etc. The common steps in
any framework are as follows:

1. Language Modeling
2. Data acquisition
3. Feature Extraction
4. Feature Modeling

The first step is specific towards languages where the characteristics of the language
is well understood to build a common structure for components of a language. The
second step gathers the speech data as recorded signals and the main characteristics of
these signals are transformed as features. These features are to be modeled consequently
to build systems that can recognize live data. There are different techniques and tools
that have been used at different levels of the framework. Feature extraction techniques
play a crucial role in processing and understanding the speech signals. In general, this
step can be handled in number of ways depending on the signal representation. There
are two ways of signal representation known as temporal representation and spectral
representation. The first one emphasizes on the temporal dynamics of a signal whereas
the second concentrates on the nature of frequency components. There are different
techniques for feature representation such as Linear Predictive Cepstral Coefficients
(LPCCs) method [1], Mel Frequency Cepstral Coefficients (MFCCs) [2] that are successful
in many speech- based tools. These features are modeled using methods like Markov
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models, Neural Networks, Deep Learning, etc. They are efficient in modeling the speech
signals for they use large amount of data sets. Even though these methods are effective,
research has been done to address issues in specific language contexts. This is important
because of less availability of data sets for some languages that are known as low resource
languages. The challenge is to solve the problem of speech recognitionwith small amount
of data. The success of this task depends on the efficiency of the steps that are discussed
earlier. The requirement of huge data sets is due to the fact that the methods do not
concentrate on useful and simple clues of speech signals. One of the approaches that
helps to understand the clues so that modeling can reflect these dynamics is structural
characteristics of signals.

1.1 Motivation

Themotivation for structural processing of speech signals has been addressed in [3]which
discusses that conventional HMMs could not model effectively the time dependency
among the frames in a speech signal. The effect of this is neglecting essential properties
of speech dynamics. Another problem is that dynamic articulation differences are not
considered in the modeling stage. To overcome these problems, frameworks that work
beyond the nature of HMMs have to be used for acoustic modeling. Another crucial thing
that is to be considered is that phonological structures of spoken units can contribute
to speech processing systems by adding important clues. Each phonetic unit can be
described by its unique structure. Structural distinctiveness is helpful in many problems
related to speech signal analysis [4]. Each speech activity occurs with the vibrations of
vocal cords. The generated speech signal is influenced by the physiological characteristics
of the vocal cords and the passage in which it travels. The acoustic signal that is produced
has a distinct structure for different sounds. If the speech activity is considered as an
event, it makes a path that the object travels forms a different structure for each sound.
The phonological structures of spoken units can be modeled in different ways. Acoustic
phonetics deals with modeling of speech signals. The characteristics of phonetic units
can be well understood from the geometrical properties of speech waveforms also. These
properties can give the clues that are important to understand and represent features of
speech sounds. Perceptual constancy [5] says that human ear can perceive the sounds
that are similar even though they have small variations in its structure. In the present
work, the structural components are used to define an appropriate representation so
that features of temporal dynamics [6] are used to model the underlying speech signals.
We proposed methods that can represent speech signals and are useful for processing
them. The contributions in this thesis are discussed in Section 1.3.
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1.2 Brief literature review

A trajectory is the path that an object in motion follows through space as a function
of time. Any object in motion through space may be called a Projectile. Yifan Gong [7]
defined trajectory in speech signal as a sequence of moving points. H. Gish and K. Ng
[8] proposed a segmental speech model for spotting keywords. The proposed segmental
model represents a speech segment by a set of features which includes a time varying
trajectory, a residual error covariance around the trajectory and the number of frames
in the segment. This feature set works as a model for a segment of speech signal. The
segmental model can be represented as:

C = ZB + E (1.1)

C in Equation 1.1 is calculated for N frames where each frame is represented by a
D dimensional feature vector. B is the parameter matrix for trajectory and E is the
residual error matrix. When combining models of different segments of a speech
signal, normalization is applied to maintain uniformity among the segments. This
normalization is handled by matrix Z. The parameters in this trajectory model are
estimated byMaximumLikelihood estimation procedure. This procedure uses likelihood
of a segment and probability of the model. These parameters are re-estimated so that the
final parameters are computed for the given segment. The procedure proposed in [8]
was used to classify vowels and secondary processing algorithm for spotting keywords.
The primary model was obtained by Hidden Markov Modeling (HMM). The concept of
parametric trajectory model has been extended to include time varying co-variances in
[9]. This allows to observe changes of co-variance structures along the trajectory. The
authors also proposed a method for distance measurement between speech segments
based on trajectory models. This was achieved by allowing three different co-variance
matrices existing over a single segment. B in Equation 1.1 is matrix of order R×D, where
R is the number of parameters used in the trajectory model and D is the number of
dimensions. The nature of parameters may be constant, linear or quadratic based on the
value used in R. It is proved in the parametric trajectory models that the performance is
superior using quadratic models.

This model has been investigated further in [10] and found to be useful for large
vocabulary speech. The authors developed Bayesian adaptation method for polynomial
trajectory segment model. In this method, Bayesian approach has been employed to
estimate the parameters. Instead of direct estimation, a shift in the parameters is used
which is useful in sharing these parameters across a class of models. We found a variation
of this approachwhich combines the Bayesian approach and neural networks in [11]. Here
the authors investigated trajectories of speech signal in Self Organizing Feature Maps
(SOFMs). SOFM is a neural network which has the capability to preserve the topological
relationship of the input space. But the challenge here is to represent multi-dimensional



10 Chapter 1 Introduction

speech signal on a 2-Dimensional network. To address this issue, posterior probability of
the response is maximized to obtain a more reliable trajectory from SOFM. The obtained
trajectory is like a graph in the SOFM network.

Apart from the direct approach of considering trajectory as it is, researchers tried to use
context information in the trajectory for different acoustic context. This kind of approach
is found in [7]. Here, context and duration of trajectories have been integrated in the
modeling. The procedure was motivated by understanding the need of including context
of the trajectory in a speech signal. The trajectories that are related to a particular acoustic
context can be clustered and can be used further to represent context variability also.
Later on the focus has been shifted to statistical modeling [12]. This modeling technique
assumes the feature vector is a point on mean path which has a number of straight
line segments. The model tries to understand the amount and rate of deviation of a
trajectory from this mean path.The parameters are estimated by using the Expectation
Maximization algorithm. One of the drawbacks in HiddenMarkov modeling is trajectory
folding i.e. HMM cannot discriminate the context from which a particular phoneme
has arrived. It is because of the limitation of the first Markov process where the past
observations do not influence the future observations. There are many ways in which this
problem can be solved. One of the solutions can be Stochastic trajectory models (STM)
[7]. In this method, clusters of trajectories have been modeled by a mixture of probability
density functions. In [13], we can find linear trajectory segmental model in which the
trajectory is defined with two parameters slope(m) and mid-time value(c). These two
parameters are used to characterize segmental behavior. The distribution of intra segment
and extra segment are assumed to be gaussian in this model. The model parameters
can be found by differentiating with respect to m and c. Segmental Feature Hidden
Markov Model (SFHMM) [14] was proposed to overcome weakness of the observation
independence asumption in conventional HMM. Parametric trajectories were used as
features in this modeling technique. The features of each segment contain acoustic
context information of adjacent segments. To adjust frames of different lengths, time-
normalization have been employed. Like conventionalHMM, the parameter re-estimation
have been done using methods similar to Baum-welch method.

One issue in segmental modeling methods is it’s usage of HMM recognition algorithms.
This didn’t help the methods to be established as complete alternatives to conventional
HMMs. The work reported in [15] proves that the understanding of relationships
between cepstrum, delta-cepstrum and delta-delta cepstrum helps to combine the
trajectory methods and HMM. In this technique, the trajectories are used for deciding
the state sequence in Viterbi algorithm. This could avoid discontinuity in mean squares
obtained in HMM procedure. The extension of this work can be found in [16]. The
method proposed here can work on HMMs with multiple Gaussian distributions. While
selecting the state sequence in Viterbi decoding, this method allows to select the state
with the best Gaussian distribution among the available states.
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1.3 Contributions

This thesis addresses the above mentioned issues through structural methods and
these methods are proved with application in recognition and segmentation tasks. The
contribution of the thesis is to understand the geometrical properties of speech signals
and find the suitable applications of these properties so that the objectives of structural
properties are served. The following list summarizes the contributions:

1. Trajectory features
2. Graph based methods
3. Fractal methods

1.4 Organization of the thesis

The thesis is organized as follows:

1. Chapter 2 discusses properties of the trajectory parameters that are useful for
studying signal characteristics. These properties are studied in the context of Indian
accented English spoken vowels. The chapter provides the study of two classes of
features in detail.

2. Chapter 3 gives a new representation to trajectory properties. The method that
is discussed is known as Tree based structural analysis. This approach proposes
a new arrangement of data components to process and characterize the spoken
units.

3. Chapter 4 explains geometrical properties for another problem i.e. Speech seg-
mentation. This work proves that the properties studied for characterization or
recognition can also be useful for finding the boundaries of different spoken units
present in a speech signal.

4. Chapter 5 provides an advanced method based on GSP to address the problem
of phoneme segmentation. This method is distinct in handling the attributes of
waveforms to make useful for finding the boundaries.

5. Chapter 6 describes a fractal based approach for phoneme segmentation.
6. The concluding remarks of the thesis and future perspectives are discussed in

Chapter 7.





Chapter2
Speech Signal analysis using Trajectory

Parameters

This chapter describes the importance of trajectory analysis for speech signal characteri-
zation. Here, we propose two classes of features where the dynamic nature of the signals
are captured as trajectory components. In Section 2.1, the significance of the problem
and solution with trajectory parameters is discussed. A brief review on trajectory and
similarity measures are discussed in Sections 2.2 and 2.3, respectively. The proposed
method with the feature extraction method is explained in Section 2.4. The data set used
and the environment of the program development are detailed in Section 2.6 and the
results are elaborated in Section 2.7. Finally, the future work is described in Section 2.8

2.1 Introduction

Trajectory is a path followed by an object with a proper direction. A speech signal can
be treated as a trajectory which is influenced by a particular speech activity. Each such
activity records the events in different styles and consists of distinct structures. The
structural components that are available in this path can be used to model the speech
events appropriately. Trajectory modeling helps to incorporate the temporal dynamics
of phonetic units. These include the changes and variations in structure of different
phonetic sounds. This helps in syllable classification that uses linguistic features such as
syllable duration, lexical stress and difference between mono and poly-syllabic words
[17].

The main advantage of trajectory with the combination of HMM has been addressed
by many researchers and is widely accepted technique. But the issue with the existing
mechanisms is its computational efficiency. The cost reduction is important because it
can affect the performance of the overall system. This requirement may not be crucial for
high configuration computers, but it matters for low computational devices. The present
feature extraction methods are targeted towards less-expensive systems. The first benefit
of the parameters is reduction in the complexity of feature computation. Second is the
comparatively less space requirement for the features than the popular methods like
LPCCs and MFCCs. As a result, the training time required would be less. Parameter
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extraction methods are discussed in detail with implementation technicalities. To prove
the effectiveness of these features, HMM was used for modeling. It is found in the study
that the proposed parameters are effective for the speech classification problem.

The main contribution of the work is proposed in [18]. The proposed features can be
classified into two categories as follows:

1. Peak attributes
2. Fréchet distance based parameters for waveform trajectories

2.2 Related Work

In a trajectory model, a speech signal is represented using parametric trajectory models
given by Equation 2.1:

C(n) = µ(n) + e(n), ∀n ∈ {1, ..., N} (2.1)

where C(n) is the set of cepstral properties in a speech segment of length N, µ(n) is the
mean feature vector and e(n) is the residual error term. H. Gish proposed a trajectory
model for vowel classification that uses Gaussian Mixture Models and time-varying
covariances [8]. Another variant of trajectory models is Polynomial trajectory Segmental
Models (PSMs) that can be used for modeling co-articulation effects through context-
dependent models. The PSM systems assume that the observations are generated by a
Gaussian process and the co-variance is assumed to be constant over a segment. The basic
parameter that is used here is a time-varying vector mean trajectory and is expressed in
Equation 2.2:

µ(t) = b1 + b2t + ... + brtr−1, ∀t ∈ [0, 1] (2.2)

where t is the normalized time [19]. Even though HMMs are successful, they use less
knowledge of the underlying signal. HMM associates each state with a single frame of
the speech signal which doesn’t capture the intra-segmental temporal variations [13].
Therefore, an alternative process called Segmental HMMs has been used to model speech
signals using parametric trajectories. In this process, a trajectory is obtained by using a
design matrix based on transitional information of contiguous frames. The model of this
system can be expressed using Equation 2.3:

P(Ct|Si, λ) = P(ZBt|Si, λ)P(Ct|ZBt, Si, λ) (2.3)

where Ct is the observation vector, ZBt is the unique trajectory at time t, λ is the
observation probability of Ct that occurs at state Si [14]. M. Firouzmand proposed a
discrete cosinemodel for amplitude trajectories of the form given by Equation 2.4.Models
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are estimated using the amplitudes of trajectory using Minimum Mean Square Error
(MMSE) [20].

Ai(n) =

√
2
N

pi

∑
p=0

AipW(p)cos
((

n +
1
2
) pπ

N

)
(2.4)

Modeling continuous signal is beneficial to capture the dynamic nature of the entire
signal. In the present approach, features are extracted over the entire signal where
intra-segmental properties are captured effectively. In the next subsection, different
works related to trajectories in finding similarities are described.

2.3 Trajectories in similarity analysis

A trajectory can represent spatiality and order of the data with respect to time. Analyzing
trajectories can help to classify similar entities based on the relationships found. They are
useful in various applications that include GPS data, user profiling, location prediction,
time series analysis, pattern mining, etc. Methods that are useful in finding the patterns
are listed as follows:

I Merge Distance (MD)
I Multi Dimensional Scaling (MDS)
I Density based spatial clustering of applications with noise (DBSCAN)

Zelei et al. proposed a similarity finding method for predicting location based on a
person’s mobility features. This method is intended to find relationships between social
relations of a person and variances in trajectory so that the moving location can be
predicted apriori [21]. There have been applications inwhich spatial and temporal features
alone cannot give sufficient information about system behavior. This requirement has
lead to the use of multiple features based trajectories. In these approaches, a trajectory is
represented through a combination of three or more features. These methods are called
data fusion techniques. They merge the dynamic nature of different similarity properties
to generate a model [22]. The model used in this approach is given in Equation 2.5:

MMTD(t1, t2) = 1− (w1, w2)

(
dist1(t1, t2)

dist2(t1, t2)

)
(2.5)

where dist1 and dist2 are different similarity measurements and each measure is treated
with unequal weightages. MMTD is a maximum-minimum trajectory distance.

Zedong et al. proposed amethod for predicting location based on user similarity that uses
GPS trajectories. This approach combines spatio-temporal features and GPS coordinates
data to extract the similarities among different users. The ordering of the points can be
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achieved by incorporating timestamps into the system. To understand the similarity, a
Semantic Trajectory Distance (STD) was used. This distance is given by Equation 2.6.

STD = 1− |lcs(T1, T2)|
|T1|+ |T2| − |lcs(T1, T2)|

(2.6)

where |T1| and |T2| represent the length of trajectories and lcs(T1, T2) is a measurement
used to define the longest common sub-sequence. This method was proven to be effective
in finding the similarity between user mobility [23].

Trajectory data analysis has been used to improve navigation systems and traffic man-
agement also. Here, the navigation path was represented with features like traffic flow
information, location and motion. To build rich navigation systems, clustering algo-
rithms that are formed by a number of techniques have been used. One crucial similarity
measurement used in such clustering algorithms is Merge Distance (MD) [24]. For a
trajectory T that consists of a sequence of points where each point is represented by a
time point and distance between these points is given by l(p) = ∑ d(pi, pj), the Merge
distance is the length of the shortest trajectory that can represent two different trajectories
and is given by Equation 2.7:

MD(ti, tj) =
2l(ti, tj)

l(ti) + l(tj)
(2.7)

The present work focuses on proposing spatio-temporal features for speech trajectory
analysis. Shape-based signal properties are proposed for characterizing speech signals.
In the next section, the features and methodology are discussed in detail.

2.4 Proposed trajectory features

The present approach assumes that a signal is a series of segments where each segment
is a sequence of points. To characterize and understand similarity patterns in a signal,
two different parameters are defined as follows:

1. Peak attributes
2. Similarity distance measures

The common nature of these features is to capture the dynamic structural changes in the
entire signal as components that contain the crucial phonetic characteristics. To do this,
the proposed features concentrate on using the shape of the signal to model the temporal
patterns. Each subsequent subsection gives a detailed explanation of these features.
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2.4.1 Peak attributes of speech trajectory

These features focus on the dynamic nature of a signal in terms of signal’s spatio-temporal
behavior. The shape of the signal is characterized with a set of primitives. They are listed
as follows:

I Peak
I Valley
I Peak width

Figure 2.1: Peaks and valleys in a speech segment of vowel /a/

In a segment of speech let si−1, si and si+1 be consecutive samples, the terms mentioned
above are defined respectively as follows:

Definition 1 si is said to be a peak if si−1 < si > si+1, ∀i ∈ Z

Definition 2 si is said to be a valley if si−1 > si < si+1, ∀i ∈ Z

Definition 3 The sample pk being a peak point between any two valleys

vq and vr, the difference |r − q| is defined as width for the peak pk

∀k, q, r ∈ Z and q < k < r.

To understand the concepts, let us consider a sample speech segment shown in Figure
2.1. A peak is a local maxima in the signal whereas local minima is a valley. The peaks
and valleys are colored in red and green respectively. The central idea of the present
approach is that a speech signal is treated as a trajectory that records different acoustic
events at various instances of time. The properties of these events are analyzed to find
similarities among them. They are further modeled to form a generic representation for
these trajectories. Peaks are considered as acoustic events and their attributes are used to
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understand temporal variations in a signal. When a moving object is observed in terms
of the path that it forms in a trajectory, peak width is the duration that an object spends
in a particular event. With the changes in its duration, a new peak forms in the path of
a trajectory. The duration varies for each event by which a pattern can be observed for
an object that can distinguish among different phonetic structures. Since each phonetic

Algorithm 1: Trajectory parameter extraction
Input:
Sn: Input speech signal
Output:
Tn: Trajectory vector that contains peak attributes

1 begin
2 for i← 0 to length(Sn) do
3 if si−1 > si < si+1 then
4 Vi

⋃
i . Find valley positions for the given signal

5 for j← 0 to length(Vn) do
6 Ti

⋃ |Vj+1 −Vj| . Find the peak widths
7 return Tn

unit has a unique structure, the path that the spoken units can form is also distinct in its
structure [4]. In the present study, this dynamic nature of the spoken units is taken and
the similarity between them is used for classifying them. The classification is achieved
by using Hidden Markov Modeling (HMM). The steps involved in parameter extraction
are given in Algorithm 1. The peak widths of vowels /a/, /e/, /i/, /o/ and /u/ are
shown in Figure 2.2. The second proposed feature extraction method is explained in the
next subsection.

2.4.2 Fréchet distance based curve parameters of speech trajectory

The proposed features give an insight into the dynamic nature of a signal which captures
structural changes over the segments. Therefore, the variations of the entire signal can
be reflected in the features. Usually, features are dependent on the motion of trajectory
that varies at different instances of time. The normalized signal is divided into a number
of frames and the dynamics of speech signal are represented as structural changes in the
trajectory curve. Each trajectory represents the motion of an object across different time
instances. The dynamics or structural changes between adjacent frames are represented
by understanding the differences between the motion of trajectory. These properties
are represented by Fréchet distance between two curves. Each speech signal consists of
various acoustic events where those events can be characterized by the vibration of the
vocal tract. This is distinct for different events.
Fréchet distance [25] is a measure of similarity between curves which preserves the order
of data along with a time series. Let τ1 and τ2 be two trajectories that represent paths of
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Figure 2.2: Waveforms and Peak widths of vowels /a/, /e/, /i/, /o/ and /u/ respectively

any two objects with independent motions f and g respectively. The problem is to find
the smallest distance between these two objects while they move forward monotonically
while preserving its orientation. This distance can be defined as Equation 2.8:

δ(τ1, τ2) = Max f ,g|τ1, τ2| (2.8)

Fréchet distance was originally defined for walking dog problem [26]. In the problem, a
man walks with a dog where both follow different paths in the same direction but with
different velocities. The constraint for movements is limited for two cases only. They can
move forward or stop at any point of time as moving backward is not allowed. Therefore,
the Fréchet distance between these two objects is the shortest possible length of the leash
that is required to finish the walk. There are many algorithms available to solve this
problem. In the present work, we used the approach proposed by Thomas and Heikki
[27]. The algorithm considers three possible conditions at which man or dog can be.
They are as follows:

I Locationman = Locationdog
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I Locationman < Locationdog

I Locationman > Locationdog

In a trajectory space τ, let T1, T2 be two different trajectories and assume two points pi

and qi on T1 and T2 respectively. Then the distance between these two points is given by
Equation 2.9:

δ(pi, qi) = max(c[pi, qi], min(pi−1, qi−1)) (2.9)

where c[pi, qi] is the cost between objects at the present location and min(pi−1, qi−1) is
the minimum cost required in the previous move. This cost covers the effort needed
to travel between the points in 3 possible ways. The next point to be understood is
the representation of Fréchet metric for a speech signal. For a speech trajectory τ with
a sequence of acoustic events ti, ∀i ∈ Z, i.e. τs = {T1, T2, ..., Tn}, the pattern for τs is
defined as a sequence of similarity distance between a pair of trajectories (Ti, Ti+1). It is
given in Equation 2.10:

τp = δ(T1, T2), δ(T2, T3), ..., δ(Tn−1, Tn) (2.10)

where as δ : τs −→ τp is a mapping function between τs and τp. In each step, δ gives
the similarity between the consecutive pair of trajectories. Thus the overall pattern of a
trajectory is represented as a sequence of distances (δis). These values record the changes
between acoustic events and thus the structural changes can be found. The procedure for

Algorithm 2: Fréchet distance based feature extraction
Input:
Sn: Input speech signal
FN : Length of frame in samples
Output:
FDn: Vector of Fréchet distances between adjacent frames

1 begin
2 Normalize the input signal Sn
3 Divide Sn into number of frames with equal frame size
4 n f rames =

length(Sn)
FN

5 for i← 0 to n f rames do
6 FDi

⋃
Fréchet distance(Ti, Ti+1) . Find the Fréchet distance between each

adjacent frames in the signal
7 return FD

feature extraction in this approach is described in Algorithm 2. The extracted similarity
distance features using Algorithm 2 are used for classifying speech signals. An example
of Fréchet distance is shown in Figure 2.3. From Figure 2.3-b, it can be understood that
the shape of the feature vector represents the shape of source signal as shown in Figure
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Figure 2.3: Fréchet distance calculation for vowel /u/

2.3-a. So far, we discussed the procedure for feature extraction. Next, the method that is
used to model these features are discussed in the next subsection.

2.5 Speech modeling using G-HMM

Hidden Markov Model (HMM) is a statistical process in which events are hidden and
observations are known. An HMM can be defined as a system with number of states
and observation symbols with a set of probability functions as follows:

I State-transition probability distribution that gives probability of model being in
one state and going to another state in a single step

I Observation symbol probability distribution defines the distribution of symbols
for states in the system

I Initial state probability distribution defines the probability of each state being a
first state in the system
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A HMM assumes that the probability of a particular state depends on its previous state
(Markov assumption). The probability of output observation depends only on the state
from which the observation came not on any other states or observations (Conditional
Independence). In G-HMM, the observation symbols follow the normal distribution.
While designing a recognition system with HMM, we need to address three problems.
In the first problem, the probability of observation sequence is found given the model.
Second problem tries to find the state sequence from which the given observation
sequence came. The third problem adjusts the model parameters so that the probability
of the observation sequence is maximized. Algorithm 3 describes the sequence of steps
in which a model is generated using G-HMM and the crucial parameters required in
the training process are shown in Table 2.1. The HMM that was used consists of 5
states with a diagonal co-variance matrix. The total number of iterations required for
the convergence is ten. Finally, Viterbi algorithm has been used for decoding the state
sequence. The complete procedure for HMM is available in [28].

Algorithm 3: Model generation procedure
Input:
Sn[N]: Input speech signals
Output:
µn: Model parameters for given speech signals

1 begin
2 for i← 0 to Nsignals do
3 χi ← Extract_Features(Sn[i])

4 π ← start_probability
5 A← initial_transition_probability
6 θ ← Emission_probability
7 Initialize the means and covariance matrices
8 Predict the model parameters using HMM process

2.6 Experimental setup

The experiments were conducted on different datasets: vowels and digits. Each data set
contained 50 speaker’s data. Each vowel and digit were recorded 15 times for all speakers.
We have chosen speakers belonging to different regions in India. They included male
and female speakers. The data was recorded using the Cool Edit software with 16KHz
sampling rate, 16 bits resolution and mono channel. The data used in experiments were
normalized and DC component was removed. The programs needed for experiments
were implemented in Python 3.4. The libraries used are Numpy and Similarity measures
[29]. The next section discusses the results observed in the study.
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Table 2.1: Parameters of GHMM

Parameters Description Value

nComponents Number of states in HMM 5
Covariance type Type of the covariance matrix Diagonal

niters Maximum number of iterations 10

Decoder Algorithm used Viterbi

2.7 Results and Analysis

The study was conducted using two different features for the two different data sets
as mentioned in the previous section. Each analysis is presented in subsequent subsec-
tions.

2.7.1 Peak width analysis

The aim of the analysis is to find pattern by using peak widths. An interesting characteris-
tics observed is that vowels /a/, /e/ and /i/ have peak widths up to 20 whereas vowels
/o/ and /u/ has wider peak widths. This implies the number of peak components
available in vowels /a/, /e/ and /i/ are comparatively more than vowels /o/ and /u/.
It also means that the temporal variations are rapid in the vowels /a/, /e/ and /i/ and it
is less in /o/ and /u/. The variations observed in the feature vectors reflect the changes
in the source signals. So, it is inferred that the features are significant in identifying the
patterns of speech trajectories.

Peak widths are effective in steady state segments like vowels. Vowels have similar
behavior over time and therefore the patterns of vowels were captured by peak width
properties efficiently. Table 2.2 presents the results for intra-speaker variability and inter
speaker variability. It shows that the features are useful in distinguishing vowels and
digits in the intra-speaker data clearly. It gives a good classification for vowels also in the
intra-speaker case.

Table 2.2: Accuracy with Peak widths

Data base Intra Speaker Inter speaker
Vowels 96% 75%
Digits 89% 58%
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2.7.2 Fréchet distance-based analysis

In the study, it is found that the features are reasonable enough to characterize temporal
dynamics across phonemes. As discussed in Section 2, each digit data is trained
using HMM process where HMM creates models for different digits separately. The
classification accuracy was tested by checking different utterances with the created
models. The proposed features are effective in distinguishing the digit utterances within
the speaker. That means it has the potential to classify different words. Table 2.3 gives
the classification accuracy obtained in intra-speaker data for different digits. As shown
in the table, experiments were conducted with varying the frame sizes starting from 80
samples to 320 samples. It can be observed that accuracy drops down after frame size of
220 samples. Frèchet distance for words "Zero" to "Nine" are shown in Figure 2.4. These
graphs give an impression of structural variation among the digits clearly.

Table 2.3: Accuracy with Fréchet distance

S. No Frame size (in samples) Accuracy (%)
1 80 75
2 120 85
3 160 80
4 200 90
5 220 90
6 240 85
7 280 80

8 320 55

2.8 Conclusions

The chapter focuses on developing dynamic structural properties of speech signals using
two different features. Peak attributes and Fréchet distance are the two features used
to analyse the speech signals. In this study, it is inferred that the proposed features
are useful in capturing the structural properties of spoken units which is useful for
classification. One of the advantages of peak attributes is the extraction procedure
which is simple to compute. When compared with standard features LPCC and MFCC
where a frame of the speech signal is transformed to a vector, this method gives a
simple representation. Here, the entire signal is considered and it is transformed into a
vector that contains peak attributes. Another advantage is that the continuous temporal
pattern can be extracted in one pass without losing intra-segmental clues. Even though
the method is not highly accurate, it gives good accuracy for vowel classification and
digit classification comparatively with the existing parametric trajectory segmental
models (approximately 75%) [30] [3]. The modeling technique that was employed can be
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improved by considering the individual model characteristics of different speakers. This
will be the future scope of the present work.

Figure 2.4: Fréchet distance of the words "Zero" to "Nine"





Chapter3
Characterization of Spoken English vowels

using Tree structures

The previous chapter discussed the features that are based on trajectory attributes. The
features were trained using G-HMM and the approach has been shown to be useful for
classifying vowels and digits. HMMs are efficient in modeling speech signals, but they
require complex computations and huge data for training. But for small set of speech
data, we cannot go for complicated tasks. Therefore, a simple process that can give
an efficient representation for spoken units is useful. In this direction, we propose a
new data representation for speech signals. The motivation for the work is the latest
developments in signal processing domain called Graph Signal Processing (GSP). Recent
trends have shown that the research is focusing on combining the approaches in signal
processing and graph theory [31]. This new area of interest addresses the study of
irregular structures found in different domains like social networks, citation networks,
etc. There are different signal processing concepts that have been used in this problem
domain. Here we address the problem of speech signal analysis using graph structures.
The representation was defined for spoken vowels of Indian accented English. The work
in this chapter has been published in [32]. A brief explanation for vowel characterization
is given in Section 3.1 and a related work on tree structures is given in Section 3.2. The
complete procedure is discussed in Section 3.3. The Experimental details are given in
Sections 3.4 and 3.5.

3.1 Motivation

Characterization of vowels in spoken English sentences plays a significant role in
designing speech processing systems. In this work, spoken English vowels are analysed
to find features which can help in their characterization. The outcome of the analysis
led to the proposal of a novel feature representation called tree structures for vowels. In
this approach, the vowels are represented as trees with their structural properties being
elements in the trees. These properties are extracted by understanding the geometrical
shapes of acoustic events found in waveforms. To prove the effectiveness of features, a
tree comparison is shown by calculating the tree distances. The computation of distance is
done by employing a tree matching algorithm. The performance of the proposed features
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are compared against the standard MFCC features. In the analysis, speech data of Indian
native speakers was used. The analysis procedures and the results obtained are presented.
In the area of speech recognition, the content in speech signal is understood to extract
meaningful features that can help subsequently in the recognition task. To accomplish
this, spectral feature extraction techniques like LPCC [33][34], MFCC [35], fundamental
frequency, formants, etc. and temporal features like energy, ZCR (Zero Crossing Rate),
pitch, etc. are found to be popularly used features in the speech recognition domain. In
the next subsection, a brief overview of tree structures is given.

3.2 Tree structures

The concept of waveform processing using tree structures was first proposed by Ehrich
[36]. The goal of tree structure is to construct a representation that reflects the spatial
structure of a waveform. The assumption here is that the necessary information can be
found in the peaks andvalleys of the obtainedwaveformof a speech signal. Tree structures
are constructed by scanning a waveform segment from left to right. The obtained peaks
and valleys are inserted into a tree structure in such a way that interpretation of the tree
can give meaningful information of the underlying waveform. This form of structure is
called a Relational tree since it not only contains the basic elements of the waveform, but
also the relationship among them. Each tree representation gives a unique pattern which
is the sequence of peaks in some order. This structure was studied and further modified
by Lu and Cheng by adding amplitude information of peaks. The resultant structure
was known as Skeletal tree [37]. Subsequently, it was modified to include temporal
information. The tree with all these quantities was called a Complete tree. The concept of
structural representation to process waveforms was used by Shaw et al. [38] to recognize
structural similarity in seismic and ECG classification. Waveforms are classified into
different types of signals by using a distance measurement. The tree structures have been
used by different researchers in domains like image profiling, handwritten signature
verification [39], text to speech synthesis(TTS) [40] and prosody modeling [41]. Fisher
and Ritchings proposed Attributed Relational tree [42] in which each node i.e. peak is
associated with amplitude and width. This method was used to characterize features
that are extracted from the waveform image profile. In the present work, the relational
tree approach is examined to observe the nature of vowels sounds and subsequently
to characterize them. The detailed method used in this work is presented in the next
section.
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3.3 Proposed method for vowel characterization

The whole framework consists of 4 major steps. They are listed as follows:

1. Pre-processing
2. Segmentation and Averaging
3. Tree structure generation
4. Tree comparison

In the first step, pre-processing the input signal is normalized to suppress the effect
of DC (Direct Current) component. Next, the normalized signal is segmented into a
number of frames with fixed length. The size of the frame is decided based on the
approximate pitch period of the input signals. Then the frames are processed to get the
average signal. These average signals are considered for constructing the tree structure.
There are two different types of trees for representing peaks and valleys separately.
The procedures used for tree construction are discussed in subsections 3.3.1 and 3.3.2.
Finally, the generated trees are compared to classify the vowels. The procedure for tree
comparison is discussed in Section 3.3.3. The primitives that are defined in Section 2.4.1
are used in this procedure.

3.3.1 Construction of Peak Tree

Next we define tree structures used in the present approach. Two structures have been
used as mentioned earlier for representing peaks and valleys individually. Peak tree
contains the peaks as basic nodes whereas valley tree contains valleys of the waveform. In
each peak and valley tree, the edges represent the relationship between peaks and valleys
respectively. The Peak tree contains the structure of the waveform in terms of changes
pertaining to the peaks. The procedure used for constructing this tree is described as
follows:

1. For each signal segment:

I Locate all the peaks in the frame

I Mark the highest peak and create a node in the tree. This node is the parent
node of a tree. The node divides tree structure into two parts, one in left side
of the parent node and another in right side of the parent. Highest peak is
computed using Algorithm 4 using the functionMax(). Createnode()method
inserts a node into the peak tree.

I The left subtree and right subtree incorporate peaks information of left and
right parts respectively.

2. Repeat Step-1 for left partition and right partition until all the peaks are inserted as
nodes in the tree.
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Algorithm 4: Peak tree construction
Input:
root: root node of the peak tree
peakarray: array of peak points
lb: lower bound of the peakarray
ub: upper bound of the peakarray
Output:
root: Root of the created peak tree

1 begin
2 CreatePeakTree

(
root, peakarray, lb, ub

)
3 if lb < ub then
4 mid←Max

(
peakarray

)
5 root← Createnode

(
mid

)
6 root.le f t← CreatePeakTree

(
root.le f t, peakarray, lb, mid− 1

)
7 root.right← CreatePeakTree(root.right, peakarray, mid + 1, ub)
8 return root

The algorithm works in a recursive fashion. To understand the process of peak
construction, consider an example. The normalized speech signal of Vowel /a/ is shown
in Figure 3.1-a . As discussed in procedure, this signal is segmented into frames to get
the average signal. Then, the average signal is processed to extract peaks and valleys
from which trees will be generated subsequently. The average signal for the vowel /a/ is
given in Figure 3.1-b and the trees generated for the same are shown in Figure 3.2. Figure
3.3 shows average signals for each vowel along with their source signals. Algorithm 4
gives the detailed steps of the peak tree construction. The procedure for the valley tree
construction is explained in the next subsection.

3.3.2 Construction of Valley Tree

Valley tree represents the properties of valleys in a waveform. The procedure for
constructing the tree is similar to peak tree generation. Here, the deepest valley in the
signal becomes the key element for partitioning. The recursive procedure for valley tree
creation is presented in Algorithm 5. In this algorithm, Min() returns the deepest valley
among the valleys.

3.3.3 Tree Comparison

The final step in the approach is comparing the trees. In this phase, the tree structures
obtained for each vowel by the procedure discussed in Sections 3.3.1 and 3.3.2 are used
for comparison. For the purpose of comparison, a tree edit distance algorithm has been
used. It finds the similarity between any two trees by calculating their edit distance.
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Figure 3.1: Normalized signal and its corresponding average signal
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Figure 3.2: Tree structures for Fig. 2 (T1 - Peak tree, T2 - Valley tree)

The edit distance between a pair of trees T1 and T2 is the minimal cost required for edit
operations to transform T1 to T2. The elementary operations required for this task are as
follows:

I Substitution - replaces label of a node
I Insertion - inserts a new node into tree
I Deletion - deletes an existing node from tree

Let (M, T1, T2) be a mapping, the cost of M can be given by Equation 3.1. Edit distance
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Figure 3.3: Source signal and average signals of vowels

can be computed using Equation 3.2 [43].

γ(M) = ∑
(v,w)εM

γ(v→ w) + ∑
vεN1

γ(v→ λ)

+ ∑
wεN2

γ(λ→ w)
(3.1)

D(T1, T2) = min{γ(M)|(M, T1, T2)} (3.2)

where:

I N1 is the set of nodes in T1

I N2 is the set of nodes in T2
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Algorithm 5: Valley tree construction
Input:
root: root node of the valley tree
valleyarray: array of valley points
lb: lower bound of the valleyarray
ub: upper bound of the valleyarray
Output:
root: Root of the created valley tree

1 begin
2 CreateValleyTree

(
root, valleyarray, lb, ub

)
3 if lb < ub then
4 mid←Min

(
valleyarray

)
5 root← Createnode

(
mid

)
6 root.le f t← CreateValleyTree

(
root.le f t, valleyarray, lb, mid− 1

)
7 root.right← CreateValleyTree(root.right, valleyarray, mid + 1, ub)
8 return root

I v→ w , v→ λ , λ→ w are edit operations

The edit distance algorithm that has been used in the present approach was proposed
by Zhang and Shasha. Apart from this, there are other methods available in literature
[44]. The motivation to use Zhang edit distance is its computation efficiency and its
ability to compare ordered trees. There are two significant properties for any ordered
tree matching algorithm. They are as follows:

1. Relation between root and child

2. Sibling order

We are not discussing the detailed steps of this algorithm here. The complete steps in
distance matching algorithm can be found in [45]. So far, we have seen the crucial steps
in the present approach. In the next section, the environment in which the experiments
have been conducted is discussed.

3.4 Experimental setup

In this section, we present the environment used for conducting our experiments. The
algorithms have been implemented using the Java programming language. We used 20
speaker’s data for the analysis. Each English vowel is recorded 10 times for all speakers.
We have chosen speakers belonging to different regions in India. They include male and
female speakers. The vowels were recorded using the Cool Edit software with 16KHz
sampling rate and mono channel and 16bits/sample. The data used in experiments were
normalized and DC component was removed. Each waveform is divided into number of
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frames of fixed length. We used window size of 95 samples for the experiments. The
results are discussed in the next section.

3.5 Results and Discussion

To summarize, the study has been focused on extracting phonological structures from
the waveform through tree structures. For showing the evidence that the proposed
structures are efficient to represent vowel sounds, intra speaker variability and inter
speaker variability are examined. This section is divided into two subsections. In
Subsection 3.5.1, the analysis concentrates on how well the variability among the vowels
holds good. And in Subsection 3.5.2, the analysis of vowels features over different
speakers are shown. Finally, the nature of patterns in noise conditions are also presented
in Subsection 3.5.3.

Table 3.1: Edit Distance between tree structures of each vowel for Speaker 10

Peak Tree Distances Valley Tree Distances
Vowels /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

/a/ 9 17 18 16 11 5 12 9 7 9
/e/ 15 10 21 15 15 12 9 8 8 15
/i/ 20 17 15 20 18 9 11 6 8 5
/o/ 9 17 19 4 12 8 9 8 4 6
/u/ 11 17 20 11 13 7 10 7 3 6

3.5.1 Intra Speaker Analysis of tree structures

The significance and interpretation of tree structures depend on two factors as follows:

1. Meaning of individual peak and valley trees in pattern analysis
2. Suitability of tree structures for spoken vowels

The former issue can be addressed by carefully understanding the structure itself. Each
peak ( or valley) tree contains the order of the peaks (or valleys) in terms of their
occurrence in a waveform. This encompasses the priorities of each peak (or valley) in a
speech signal from the highest to lowest. Therefore, the highest peak comes as root node
in peak tree and deepest valley appears as root node in valley tree.

When a tree structure is visited, each traversal (pre-order, post-order, in-order) of tree
gives different patterns of the underlying trees. These patterns correlate the changes in
the waveform at different instances. Suppose, a peak Pi with height X appears as root
node of a tree T1, that means P1 is the highest. There are various ways of arranging the
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same Pi in the tree. These different arrangements give a way to represent different orders
in which the components (peaks, valleys) can be placed. So the changes in waveform
of different vowels can be easily represented in the proposed structure. Now to answer
the suitability of the present approach, the outcome of the study has to be considered.
There are enough clues found by the experiments that these spoken units can be used
for vowel classification.

Intra vowel analysis is used to understand the similarities within the vowels. It gives
an insight into the nature of tree structures for different trees of the vowels. In the
comparison, both the peak trees and valley trees have been used. The edit distances
between tree structures of each vowel are shown in Table 3.2. These distances are the
average edit distances among the 5 utterances of each vowel for a speaker. The important
observations are as follows:

1. From Table 3.1, we can understand that the edit distances between peak trees of
respective vowels is the lowest among others except in case of vowel /i/. It has
collision properties of vowels /e/ and /o/. That means, the similarity between the
same vowels hold.

2. In case of valley tree representation, similar observations can be seen. Vowel /a/
has shared similarity with vowel /u/ and the vowel /i/ has similarity with vowel
/u/.

3. The distances between the valley trees are comparatively less while distance in
peak trees is more. Thus valley trees of vowels belonging to same speaker are more
similar than peak trees.

From the abovementioned inferences, it can beunderstood that valley tree representations
are better than peak trees for distinguishing within the same vowels.

3.5.2 Inter Vowel Analysis of tree structures

The tree edit distances between each vowel belonging to same speaker are compared to
find the suitability of tree structural representations for vowels. For this, both the tree
structures have been used. The selection of window size for the analysis is made on
empirical observations. It is observed that tree structural differences among the vowels
are distinguishable well in case of frame size 95 over the frame-sizes 75, 80, 85, 90, 95, 100,
120 and 135. The results of this analysis is presented for each vowel separately. It is found
that vowel /a/ has peak trees which has separate structures compared to another vowels
in 67% of speakers. There are collisions with other vowels /o/ and /u/ in remaining
cases. But the distance is found to be less. The variations in the valley trees of vowel /a/
are not clear enough to discriminate from other vowel structures. But the cases in which
peak tree has failed, valley tree is able to give good discrimination. Therefore, the analysis
has shown that better differentiation can be made by combining both the peak trees
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Table 3.2: Edit Distances between tree structures of each vowel for different speakers

Peak Tree Distances Valley Tree Distances
S.No /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/
1 3 8 12 2 3 2 6 8 1 3
2 4 11 16 3 9 4 8 6 2 3
3 4 2 4 4 5 3 3 4 4 4
4 5 13 15 2 3 3 9 10 1 3
5 10 12 12 6 2 5 10 10 4 1
6 9 12 12 6 4 6 10 7 5 1
7 5 7 10 3 4 3 7 9 2 3
8 7 9 10 3 2 6 8 9 1 1
9 5 9 9 5 4 4 8 9 4 3
10 5 13 13 6 4 3 10 7 4 1
11 6 10 7 6 4 5 7 6 4 1
12 8 13 16 4 5 6 8 8 3 3

and valley trees. The combined approach is able to recognize 70% of speakers. In case
of vowel /e/, 42% speakers have peak trees and valley trees that are different to other
vowels. In this case also the valley trees and peak trees can be combined to differentiate
the vowel structures. The combined approach gives 50% accuracy. The detailed average
edit distances between vowels of different speakers are given in Table 3.2. The accuracy
for each vowel in 3 different cases i.e. valley tree, peak tree and combined approach is
shown in Table 3.3. It is found that similarity in tree structures of valley is high compared
to the similarity in tree structures of peaks for different vowels. Even though distinction
can be drawn by the peak trees alone, valley trees play a key role to distinguish among
the vowels as it shows less similarity in some speakers where peak trees are unable
to discriminate. With peak tree, we can make clear distinction between vowels. But
comparison of vowels /o/ and /u/ shows that there is similarity in patterns of tree
structures between these two vowel sounds.

Table 3.3: Inter vowel analysis

Vowel Peak trees Valley trees Combined approach
/a/ 67% 25% 70%

/e/ 42% 42% 50%

/i/ 50% 42% 67%

/o/ 58% 58% 66%

/u/ 75% 67% 75%
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3.5.3 Nature of features in the presence of noise

In this section, the performance of the proposed approach for noisy signals is discussed.
The experiments have been conducted on noisy signals with Signal-to-Noise Ratio (SNR)
of 20dB. The type of noise is random white noise that has a normal or continuous
distribution [46]. The results found are interesting. The nature of these tree structures
could show stability over noisy signals also. The reason behind this is the special property

Table 3.4: Edit Distance between tree structures of each vowel for Speaker 10

Peak Tree Distances Valley Tree Distances
Vowels /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

/a/ 9 17 18 16 11 5 12 9 7 9
/e/ 15 10 21 15 15 12 9 8 8 15
/i/ 20 17 15 20 18 9 11 6 8 5
/o/ 9 17 19 4 12 8 9 8 4 6
/u/ 11 17 20 11 13 7 10 7 3 6

of monotonic scaling along the time [38]. It makes the structure stable even if there are
some perturbations occurring in the input signal. The comparison table for speaker 10 in
noisy signal environment is shown in Table 3.4. For the same speaker, the results have
been shown in Table 3.1 for clean speech signals. It can be seen that the essential features
that distinguish the vowels still hold in the tree structures.

3.6 Conclusions

In the present work, the vowel characterization problem has been addressed by a
structural processing technique. The idea is to treat a speech signal as an image instead of
a time series. To represent the temporal structure of a speech signal, tree structures have
been used. The detailed procedures for the tree construction and analysis were presented.
The results obtained in this process is promising even though it is not competing with
the current methods. The classification rate of parametric trajectory segmental models
has been 72% approximately [47] in case of vowels. This system used Mel Frequency
Cepstral Coefficients (MFCC) as features and segmental HMMs. Li. Deng reported
that the system with Hidden Dynamic Models (HDMs) with frequency warped LPCCs
give accuracy of 75% [48]. When the proposed approach is compared with the above
mentioned approaches, it does not give superior performance than them. Still there are
possibilities to improve the method by considering other properties of the speech signal.
For example, we considered only the order of peaks and valleys. But additional patterns
or clues can be found by concentrating on positions, width and distance between adjacent
peaks ( or valleys). To make the methods more useful in recognition tasks, models can
be generated with available graph learning algorithms.



38 Chapter 3 Characterization of Spoken English vowels using Tree structures

This chapter discusses amethod that understands the structure of a phonetic unit towards
classification. The properties of signal’s shape is not only pivotal in its characterization,
but also for phoneme boundary analysis. A study on this problem is discussed in Chapter
4.



Chapter4
SPEECH TRAJECTORIES FOR PHONEME

SEGMENTATION

In the previous chapters, the geometrical methods for signal characterization towards
recognition were discussed. In these methods, the attributes of the signal’s shape were
utilized.Another important problem in speechprocessingdomain is speech segmentation
or phoneme boundary detection. This task helps in improving the recognition quality
by providing proper segmentation information for phonemes or phonetic units. It is an
important step as inappropriate segmentation may lead to recognition accuracy falloff.
The problem is essential not only for recognition but also for annotation purposes also.
In general, segmentation algorithms rely on large data sets for training where data is
observed to find the patterns among them. But this process is not straight forward for
languages that are under resourced because of less availability of data sets. In this chapter,
a method that uses geometrical properties of waveform trajectory where intra-signal
variations are studied and are used for segmentation. The geometric properties are
extracted as linear structural changes in a rawwaveform. Themethodworks by extracting
useful attributes of the signal’s shape and these properties are combined further to
find the segmentation points. A correlation algorithm called Canonical Correlation
Analysis (CCA) is used to study the combined geometrical features. The data used in
the analysis are Indian accented English words. Finally it is found that the proposed
approach is useful in the segmentation task. This chapter is organized as follows: The
next section describes trajectory methods that were used for pattern analysis. Section 4.2
gives an overview of the CCA method. Section 4.3 explains the proposed approach for
segmentation. The data and experimental setup is described in Section 4.4. Section 4.5
explains the results found in the study and Section 4.6 concludes the chapter.

4.1 Trajectories for pattern analysis

In an Euclidean space, a trajectory is defined as a curve that is formed by the observation
of the path that a moving object makes. The points in the path are characterized as
ordered positional points. Trajectorymodels thatwere initially known as Linear Trajectory
Segmental Models (LTSMs) have been used to analyze speech signals for past 3 decades
[13]. Trajectories are suitable in pattern analysis for two reasons [49]:
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1. A speech trajectory is influenced by the context of the spoken words

2. Trajectories formed by different phonetic units can form independent clusters
based on the contextual information

However the models that are based on HMM are suitable for large vocabulary speech
recognition [50]. Trajectories are not only used for speech signal analysis, but also
for pattern analysis in different areas like road network [51], databases [52], traffic
management, etc.

A trajectory contains vital information like spatiality and temporal patterns about an
object. There can be different ways of treating trajectories: segments sequence and points
sequence. The similarity metrics to measure the affinity vary on the kind of trajectory.
The effectiveness of the comparison method depends on the underlying components
that the trajectory represent. Huanhuan et al. proposed a fusion based similarity method
for traffic flow patterns [24]. The method combines different techniques like Merge
Distance (MD), Multi Dimensional Scaling (MDS) and Density based Spatial Clustering
of applications with noise (DBSCAN) to identify traffic flow patterns and customary
routes from vehicle movements. One of the fusion techniques is given by Equation 2.5.
Next section describes the CCA technique.

4.2 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) was introduced by Hoteling for multi-variate
analysis. It helps to find the relation between multiple variables simultaneously that
makes analysis easy. The critical step in CCA is to find a set of transforming variables
that can transform variables such that the transformation in the corresponding new
coordinates is maximally correlated. In the process, a set of variables called as canonical
weights are used. The solution to this is computationally expensive and time consuming.
Therefore, it is convenient to solve the problem as an eigen value problem. The objective
function to solve CCA for two variables x and y can be expressed by Equation 4.1:

C =

 0 Cxy

Cyx 0

a

b

 = ρ2

Cxx 0

0 Cxx

 (4.1)

where Cxy is the covariance between variables and Cxx, Cyy are auto covariances of
variables x and y respectively. There are various applications of CCA in the signal
processing domain. It has been useful in finding relations which can help in multi-view
learning [53]. Heycem et.al. applied the technique for feature selection for the problem of
depression recognition from speech signals [54]. Wang et.al. used CCA to learn acoustic
features that can improve phonetic recognition [55]. Apart from the above mentioned
applications, CCA is also useful in areas like Blind Source Separation (BSS). In this
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problem, the aim is to recover the original signal when an unknown linear mixture of
statistically independent signals are available [56]. Another approach based on CCA
focuses on improving the signal to noise ratio (SNR) in EEG data signals that are recorded
from multiple channels [57].

In the present work, knowledge from a set of multiple features is used to detect boundary
points in a word. The complete procedure is explained in Section 4.3.

4.3 Proposed approach for segmentation

The proposed method uses cumulative knowledge of multiple geometric features and
combine these to form a multi-view trajectory feature vector. The feature vector is then
analyzed dynamically to extract phonetic boundaries. The crucial constituents of the
approach are as follows:

1. Basic feature set (τ)
2. Derived features (τD)

3. Multi-view boundary detection algorithm

Each component is explained in the following subsections. Basic and derived features
are defined in the next subsection. The segmentation algorithm is explained in Section
4.3.2.

4.3.1 Trajectory features

A speech signal records the nature of vibrations when the vocal chord moves for uttering
a sound. The resultant waveform consists of peaks and valleys which helps to understand
the salient features of the spoken sound and the speech characteristics of the person who
has uttered that sound. Thus the waveform records different acoustic events which can be
used for various purposes like classification, segmentation, etc. One of the crucial nature
of a trajectory is its shape. Each event that is recorded in a speech signal has a distinct
structure. The structural properties of phonetic units have become an interesting area of
study [4]. The reason for this is that the features correspond to phonetic characteristics
with variations in a lucid way. And also the structural properties of waveform trajectories
are useful in understanding the dynamic nature of different phonetic units. In the present
work, a set of geometric features are proposed to capture the transitional behavior of
the waveform that can be further used in identifying boundary points between different
phonetic units. The feature set as a whole contains two different classes i.e. primitive and
derived properties. The primitive properties are those characteristics that are inherent in
a waveform. They are listed as follows:
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1. Peak
2. Valley
3. Peak position
4. Valley position

In the second stage, the aforementioned features are transformed further to obtain
derived attributes. This set contains the following elements:

1. Peak width
2. Valley width
3. Slope of peaks and valleys
4. Disparity of peaks and valleys

For a segment of speech signal S[n] with size m, the terms are defined in Definitions 4 to
9.

Definition 4 Peak position is any integer k, such that 0 < k < m where peak is found
at kth location

Definition 5 Valley position is any integer k, such that 0 < k < m where valley is found
at kth location

Definition 6 The data point pk being a peak point between the valleys vq and vr, the
difference r− q is defined as peak width for the peak pk ∀k, q, r ∈ Z and q < k < r

Definition 7 The data point vk being a valley point between two peaks pq and pr, the
difference r− q is defined as Valley width of valley vk ∀k, q, r ∈ Z and q < k < r

Definition 8 The slope between two points x = (x1, y1) and y = (x2, y2) is defined by
Equation 4.2.

Slope(x, y) =
y2 − y1

x2 − x1
(4.2)

Definition 9 The Disparity between two points pi and pk is given by Equation 4.3.

Disparity(pi, pk) =
√
(pi − pk)2, ∀i, k ∈ Z (4.3)

To understand the terms, let us consider Figure 4.1. In the figure, peaks and valleys
are indicated as Pi and Vi respectively where i represents the sequence in which they
occur in a waveform. The next term, peak-width is the width of the curve in a waveform
between two valley positions. In the same way, valley width is the distance between two
peaks in which a valley is present. Slope is the general gradient between two points in
a geometric space. The points that are considered here are a pair of peaks (or valleys).
This feature gives information of two adjacent peaks (or valleys). In the segmentation
algorithm, the average slope between peaks (and valleys) of each frame in the source
signal is studied. Finally, the property ’Disparity’ between two points (peaks or valleys)
is the continuous variation between the heights of peaks and depth of valleys.
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The property ’slope’ considers the position at which the peaks (or valleys) occur whereas
’Disparity’ does not regard this property. The derived features of the word "Zero" are
shown in Figure 4.2. Figure 4.2-a shows the source signal in normalized form and Figure
4.2-b, Figure 4.2-c give slope of peaks and disparity respectively. Slope and disparity of
valleys are shown in Figure 4.2-d and Figure 4.2-e respectively. The procedure used for
segmentation is explained in next subsection.

Figure 4.1: Peaks and valleys of a segment of speech segment

4.3.2 Multi-view boundary detection algorithm

The features that are described in the previous section are analyzed to understand the
boundaries of the phonetic units. The algorithm observes the dynamic changes of the
waveform over the entire signal by capturing the variations of the waveform with the
extracted features. First, the given speech signal is divided into equal-sized frames.
A set of basic features (τ) are extracted from each signal. From the basic features, a
set of derived features are drawn. Thus the complete feature set is a matrix in which
each set of derived features are present. This is a multi-view representation of the
waveform trajectory features that will be processed to find the segmentation points. The
segmentation procedure comprises of two stages: In the first stage, the feature matrix
is analyzed by the CCA procedure which will give a set of coefficients for each feature
set simultaneously. These coefficients represent the correlation between subsets of each
feature set which will be used next. In the second stage, a pair of sequential frames that
are adjacent will be used to generate correlation coefficients. Finally, the coefficients
generated in first and second stages are then compared to get the variance between them.
The crucial steps in the segmentation procedure can be summarized as follows:

1. The input signal S[n] is divided into a set of frames f0, f1, ..., fn of equal size.

2. Each frame is then transformed to a set of primitive features : Sp, Sv, Spi, Vvi, where:

I Sp is set of peaks
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Figure 4.2: Derived Peak attributes (Slope, Disparity) for the word "zero"

I Sv is set of valleys
I Spi is set of integers that represent peak positions
I Vvi is set of integers that represent valley positions

3. The features obtained in Step 2 are then transformed to a set of trajectory features
τ = τsv, τsp, τdpv, τdp.

4. The feature sets τ are analyzed using CCA which gives a set of coefficients
represented by CCAτ .

5. The features sets belonging to subsequent frames are correlated to get the new
coefficients. Each set consists of features belonging to 3 adjacent frames. The
number of frames is empirically chosen so that variations can be captured in the
corresponding CCA coefficients.

6. Variance between coefficients computed in Step 4 and Step 5 are compared. The
peaks in this set forms the boundary points. Thus the peaks in each set are
combined to identify the boundary points using the CCAτ computed by Equation
4.4.

Bp = {CCAτdp ∪ CCAτdpv ∪ CCAτsp ∪ CCAτsv} (4.4)

The final variances obtained for each derived feature set are shown in Figure 4.3. From
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Figure 4.3: CCA variance of different features for the word "Zero"

the diagram, it can be observed that the changes needed for identifying the phonemic
variations are recorded in as peak points in the final variances. But different types of
variations can be seen separately from the features. Therefore it is required to combine
the points obtained from each feature to get the final boundary points. The detailed
algorithm is given in Algorithm 6 and the flowchart is shown in Figure A.1. In the next
section, the background setup used for the experiments is described.
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Algorithm 6: Boundary detection algorithm
Input:
S[n]: Speech segment of length n
k: Size of the frame
Output:
BP: Boundary points of phonetic units

1 begin
2 Step 1: Normalize S[n]
3 Step 2: Divide S[n] into frames with equal size k
4 Step 3: Let Fn be number of frames
5 for i← 0 to Fn do
6 Step 3.1: Find peaks using Definition 1
7 Step 3.2: Find valleys using Definition 2
8 Step 4: for i← 0 to Fn do
9 for j← 0 to Max(npeaks, nvalleys) do

10 Step 4.1
11 Tsp ← Slope(peaksj, peaksj+1)

12 Step 4.2 Tsv ← Slope(valleysj, valleysj+1)

13 Step 4.3 Tdp ← Disparity(peaksj, peaksj+1)

14 Step 4.4 Tdv ← Disparity(valleysj, valleysj+1)

15 τi ← {Tspi , Tsvi , Tdpi , Tdvi}
16 Step 5:
17 for i← 0 to Fn do
18 canonicalcoefi ← CCA(τi)

19 Step 6:
20 for i← 0 to Fn do
21 coeffnewi ← CCAvalidate((τi, ..., τi+3), (τi+3, ..., τi+6))
22 variancei ← CCAVariance(canonicalcoefi, coeffnewi)

23 Step 7: BP← peaks(variancesp) ∪ peaks(variancesv) ∪ peaks(variancedp) ∪
peaks(variancedv)

24 return BP
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4.4 Experimental setup

The algorithms were implemented using Python platform. The CCA implementation
that is available in Pyrcca [58] library was used in the algorithm. The data used in present
work is English digits belong to the Indian accent. The speakers belong to different
regions (states) in India. They include male and female speakers. We used 50 speaker’s
data in the analysis. Each English digit was recorded 15 times for all speakers. The digits
were recorded using the Cool Edit software with 16KHz sampling rate, mono channel
and 16 bits resolution. The performance of the algorithm for different cases are discussed
in the next section.

4.5 Results and analysis

In the present study, a set of trajectory features are considered to beuseful after conducting
experiments on various properties. The properties that were observed are shown in
Table 4.1. Figure 4.4 gives an idea of the nature of these features. They were not used as
part of feature set in the segmentation process. They are useful in understanding the
characteristics of regions belonging to different phonetic units. Some observations are
presented in each subsequent subsections separately. The analysis of the algorithm’s
nature for peaks and valleys are presented separately in subsequent subsections.

Table 4.1: Attributes used for analysis

S.No. Attribute
1 Peak

2 Peak width

3 Peak position

4 Average difference between adjacent peak values

5 Average slope between adjacent peak values

6 Valley

7 Valley width

8 Valley position

9 Average difference between adjacent valley values

10 Average slope between adjacent valley values
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Figure 4.4: Peak statistics of the word "zero"

4.5.1 Peak attributes analysis

To understand meaningful cues from speech, an analysis of the nature of peaks in
different classes of sounds like vowels, fricatives and stops are done. These clues are
further used to find the boundaries of phonemes. It is helpful to know the regions
where changes are occurring corresponding to the behaviour of attributes. Peaks can
be classified into different types based on height and width. Vowels like /i/ and /e/
have regions with higher peaks and vowels /a/, /o/ and /u/ have wider peaks. Figure
4.2 shows different statistics of peaks. We can understand that the vowel regions have
comparatively wider peaks than non-vowel regions. The analysis of slope feature vector
can be done in two ways:

1. Slope between adjacent peaks in the same frame

2. Slope between peaks of adjacent frames

This attribute is used for understanding structural significance at phoneme boundaries.
Slope between adjacent peaks in the same frame does not have much variations.The
difference between frames belonging to the same phonetic unit is small. But it is observed
that this value is more at the phoneme boundaries. Slope between peaks of vowel
regions and non-vowel regions give enough variations that helps in understanding the
boundary points. Figure 4.5 and Figure 4.6 show slope and disparity between peaks of
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adjacent frames for the words "Zero" to "Nine". It can be observed that the changes in
the waveforms are evident so that structural clues can be captured by features. There is
an interesting phenomena observed especially in vowel regions. There is a linear growth
of the slope and disparity at the beginning of the vowel region and both start decaying
at the middle part and continuing till the boundary is reached. This nature is observed
both in intra-frame and inter-frame analysis. There is a sudden increase in the slope
value at the boundaries of different phonemes. The average disparity between peaks

Figure 4.5: Slope between peaks of the words "Zero" to "Nine" for a speaker

Figure 4.6: Disparity between peaks of the words "Zero" to "Nine" for a speaker

within vowel region is more than non-vowel regions. Figure 4.2 shows the disparity
between peaks for the word "Zero". We can observe that there are prominent changes
at boundary frames. The distance between inter frame analysis is to understand the
nature of the peak values with their neighbouring frames. This distance is more at the
phoneme boundaries when compared to interior regions of phonemes. Anyhow this
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value is more in vowel regions like the intra frame difference. The difference between two
frames is stable in the regions belonging to the same phoneme. Therefore it is inferred
that intra frame difference can be used to identify the syllable boundaries whereas inter
frame difference is useful in identifying phoneme boundaries. Figure 4.2 shows distance
between peaks in adjacent frames for the word "Zero". It also shows that changes can be
observed clearly at boundary frames of phoneme or syllable.

4.5.2 Valley attributes analysis

The second crucial feature of waveform in the framework is valley attributes. In this class,
the nature of valleys was studied by understanding the properties of deeper valleys,
shallow valleys, positive valleys, negative valleys, etc. Figure 4.7 shows the statistics of
these attributes. The above mentioned properties with mean and standard deviation
of valleys are shown in each sub figure. These graphs suggest that there is a temporal
variation across the frames in these statistics which implies that the properties are
significant for phoneme boundary analysis. We can understand variations in valleys for
different segments of the speech sub-units.

Figure 4.7: Valley statistics for the word "zero"

The observations from the analysis are listed below:



4.5 Results and analysis 51

1. Deeper valleys and narrow valleys are foundmore in vowel regions than non-vowel
regions.

2. Valleys in vowels are wide.
3. Standard deviation in vowel regions are comparatively higher than non-vowel

regions.

These qualities mean that the structural variation can be exploited from valley features
also. For example, vowels /i/ and /o/ have differences in the properties in terms of
valleys. Vowel /i/ has deeper valleys compared to vowel /o/. It shows that there is
more deviation between vowel and non-vowel regions. These statistics suggest that it is
meaningful to use valley properties for understanding structural significance. The two
properties Slope and disparity of the words "Zero" to "Nine" are shown in Figure 4.8,
and Figure 4.9, respectively. We can see the structural consistency in different utterances
of the same digit for a speaker.

Figure 4.8: Slope between valleys of the words "Zero" to "Nine" for a speaker

4.5.3 Characteristics of the method in noisy conditions

The method was also evaluated in the presence of noise in input signals. Here, the white
noise up to 20dB SNR was considered. Figure 4.10 shows a source speech signal along
with the CCA coefficients of each feature vector. A comparison between Figure 4.3 and
Figure 4.10 helps in understanding the nature of the algorithm in noisy signals. The first
point to understand is that there is a variation in structure of same feature vectors. In this
example, the disparity vector differs in variance of CCA coefficients. The noise presence
makes the adjacent frames belonging to two different phonetic units much higher in their
variation that is reflected in the CCA coefficients. The multi-view analysis enables the
method to learn necessary clues from different vectors. Therefore, the failure of capturing
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Figure 4.9: Disparity between valleys of the words "Zero" to "Nine" for a speaker

the boundary points in one case does not influence much in the final boundary points.
So the results suggest that the proposed approach can be effective in noisy conditions
also.

4.5.4 Performance of the algorithm

The proposed approach is successful in identifying the boundary points in 90% of the
cases. The mis-identification of boundary points are influenced by speaker’s character-
istics in failure cases. This include accent, pauses between the phonetic units, etc. The
time complexity of approach includes two major parts including feature extraction step
and CCA. Time complexities of different steps are as follows:

1. Peak and valley computation: O(n).
2. Finding the trajectory properties need constant time O(1) for each elementary

operation which constitutes a linear time complexity O(n) for n samples.
3. Lastly, CCA algorithm requires O(n3) time complexity equivalent to eigen value

decompositions method [59].

Therefore total time complexity of the approach works out to [ O(n) + 4 x O(n) + 2 x
O(n3)]. The run time requirement of the method is approximately 470 milli seconds.
The method was tested on a system with the following configuration:

- Processor : i5 (3.20 GHz)
- Memory : 8 GB
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Figure 4.10: CCA variance of features for the word "Zero" in noise condition

4.6 Conclusions

In this chapter, a phoneme segmentation approach based on multi view geometrical
features is proposed. The structural properties of speech trajectories are used to find
the boundaries between phonetic units using the CCA method. The dissimilarities
in geometrical features across a speech trajectory are used as parameters to identify
boundary points. To prove the approach, Indian accented spoken English digits data was
used in the experiments. The experiments gave reasonable results from which we can
infer that the method is effective in identifying the boundary points. Since the approach
does not require a training process, the requirement of large data sets are dispensed
with. Also as the complexity of the method is reasonable, the run time is less and hence
the method is suitable for low or zero resource languages. The data set has been shared
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in ∗

for the future use of the researchers. One of the problems with the approach discussed in
this chapter is its inadequacy to find boundaries in a long sentence. Second issue in this
approach is it requires multiple features. We investigated this issue further and found an
approach that is capable of working with single set of features. This method is explained
in Chapter 5.

∗ IITG DIGITS: https://drive.google.com/drive/folders/1px1p2p5QRNNvFvLJT9hgkA93N7U twzs



Chapter5
Phoneme Segmentation using Graph Eigen

values

A phoneme segmentation algorithm based on geometrical structures of speech signals
was discussed in the previous chapter. This technique works well for words and did
not fare well in case of sentences. In this chapter, a graph based method for phoneme
boundary detection is proposed. This method uses graph structures to analyze the
wave forms. The approach is novel as it uses graph structure that has been proposed in
[60]. Graph structure representation is entirely different to conventional speech signal
analysis approaches. First, the data structure is explained with respect to a waveform.
Next, the representation has been verified against the speech signals by studying the
variation among different utterances using Graph Edit Distance. Using this, structural
similarity among the phonetic segments is understood. Finally a segmentation algorithm
is designed with graph eigen values. This chapter is organized as follows: An overview
of graph representation is given in Section 5.1. The motivation for using graph based
approach for signal analysis is described in Section 5.2. The proposed framework is
elaborated in Section 5.3. Experimental setup and results are discussed in Sections 5.8
and 5.9 respectively.

5.1 Graph structures as features for signal representation

Recent developments [61] in signal processing techniques have made it easy to represent
and analyze time series data using graph structures. There are several advantages in
using graphs for feature representation. Similarly, structural based methods [3] are
becoming a significant way to understand speech signals. It is evident that the objective
of these procedures is to bring together phonetic features and speech dynamics. The
advantage of these methods is to make the systems adaptive to speaker variability. Even
though several structural processing methods have been utilized to process complex
data, graphs on the other hand are suitable to store spatial and temporal data.

In general, a graph signal can be defined as follows:

G = {V, A} (5.1)
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where :

V (set of vertices) = vi, ∀i ≤ N
A (set of weighted edges) = (vi, vj), ∀i, j ≤ N
N is the number of vertices

In a graph, the components of a signal are represented as nodes and the edges represent
similarity or closeness between these nodes. Causality in time series represents the
order in which the events have occurred [62]. This is an important property which gives
an useful ordering of the acoustic events in a speech signal. Graphs can be used to
establish this property by adding edges between two nodes [61]. These reasons make
graph analysis an effective way to study the changes in a time series. The methods that
are available for analyzing graph structures are presented in the next subsection.

5.2 Graph based methods for identifying changes in time series

The idea of graph based methods for analysing time series can be seen from change point
detection algorithms. In this approach, each data point is represented as a node in a
graph and the complete time series as sequence of sub graphs. The structural transitions
of the sub graphs help to identify the changes in the time series. This can be accomplished
in different ways. Finding the sparsest cut of a graph is found to be a useful method
to study the changes [63]. To understand the sparse nature of a graph, the following
definitions are useful. A cut of a graph is defined as a partition of a vertex set into two
subsets. A sparsest cut in a graph contains minimum number of edges among all the
cuts. The sparsity of the cut is calculated using the spectral scan method. The approach
proposed by Chen [64] uses a new parameter that is defined in Equation 5.2 .

RG(t) = ∑
(i,j)εG

[
Igi(t)≠gj(t) , gi(t) = Ii>t

]
(5.2)

where:

G is the similarity graph on observations {yi}
RG(t) signifies the number of edges that are connected between sample points before

time instant t and after the time instant t
Ix is an indicator function for any occurence of event x. It can take true or false values

He. et.al proposed K-Nearest Neighbors (K-NN) [65] as a test parameter that uses the
number of graphs that have close proximity to a graph. In this method, each graph is
treated as vertex and the edges are added between them. The vertex or subgraph with
least number of edges is detected as the boundary point. Another variation of K-NN is
proposed in [66]. Further, Gaussian graph signals [67] are signal processing techniques
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where the input data is processed as graph structures. This approach uses Cumulative
Sum (CUSUM) in which the pre-event knowledge and post-event are used. To know
post-changes, Generalized Likelihood Ratio (GLR) has been used. The methods that are
discussed so far have not been applied in speech signal analysis. A method for phoneme
segmentation based on graph structures is proposed in the next section.

5.3 Proposed Framework

This section discusses the proposed framework in detail. The central idea is to process
a speech signal as a graph. Here, a set of graphs are used to represent the complete
signal where each graph substitute a segment of speech. Finally, a series of graphs are
formed to represent a signal. This sequence of graphs are analyzed to understand the
relation between each pair of adjacent graphs and subsequently this information is used
for phoneme boundary detection. In other words, the framework is a triplet

〈
χ, δG, µ

〉
,

where:

I χ - graph mapping function

I δG - similarity function

I µ - boundary detection criteria

Initially, the graph structure that is required in the analysis is constructed using a graph
mapping function. The function transforms the input speech signal into a series of
graphs. This will be processed further with a similarity function to extract essential
parameters to find the boundary points. To do this, a boundary detection criteria is used.
Each step is explained elaborately in the subsequent sections. Section 5.4 explains graph
mapping function and the graph structure has been verified with a study using Graph
Edit Distance in Section 5.5. Section 5.6 describes the similarity function and Section 5.7
details the boundary detection algorithm.

5.4 Graph mapping function (χ)

First we define the basic components of the graph structure. In a segment of speech
S[n] = {xi, xi+1, ..., xn, ∀i ∈N, ∀i ≥ 0}, let xi−1, xi and xi+1 be consecutive samples.

The primitives peak and valley are defined as follows:

1. Peak: si is said to be a peak if the relation si−1 < si > si+1 holds ∀i ∈N, i ≥ 0
2. Valley:si is said to be a valley if the relation si−1 > si < si+1 holds ∀i ∈N, i ≥ 0
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Now the graph G in this context is a set of vertices and edges. The vertices or nodes in
this graph are peaks and valleys in the speech signal. Each vertex label is defined based
on the position of peak (valley) in the given speech segment. Each node is associated
with a weight i.e. the height and depth of peak and valley respectively. The edges in this
graph are of three types. They are:

1. (vi, vi+1) - edge between two adjacent vertices
2. (vi, pj) - edge between vertex and peak
3. (pj, pj+1) - edge between two adjacent peaks

For a speech signal S[n] = {si, si+1, ..., sn, ∀i ∈ N, i ≥ 0} where n is the number of
segments with equal size, the function χ is defined in Equation 5.3.

χ : S→ G (5.3)

where:

I G is a set of graphs
I χ is an onto function. It maps each si to one of the elements in G.

Therefore, the graph mapping function transforms a set of speech segments into a series
of graphs. There can be three different structures possible for any segment of the speech
signal. The difference is to reflect the varied number of peaks (or valleys). That means
the number of peaks and valleys may not be identical everywhere. So the graph can
accommodate these changes accordingly with respect to the number of peaks and valleys.
The 3 different cases mentioned can be as given below:

1. Number of peaks and valleys are same
2. Number of peaks is greater than number of valleys
3. Number of peaks is less than number of valleys

The major steps in the approach are summarized as follows:

1. The speech signal is segmented into different non-overlapped frames of 15 ms.
2. Each frame is represented as a graph with vertices as peaks and valleys.
3. Edges of this graph are added as follows:

a) An edge is added between every adjacent vertices

b) An edge is added between every adjacent peaks

c) An edge is added between consecutive peaks and vertices

The detailed steps in graph construction are given in Algorithm 7. This process results in
a structure similar to the Figure 5.1. The effectiveness of the proposed graph structure has
to be proven before hand to develop a segmentation algorithm. Therefore, we studied
the suitability of the graph structure which is explained in Section 5.5.
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Algorithm 7: Graph construction
Input:
S[N]: Speech signal of size N samples
Output:
G[nframes]: Graphs for nframes

1 begin
2 Divide S[N] into n f rames
3 for i← 0 to n f rames do
4 Peaksi

⋃
pi . Find peaks for each segment

5 Valleysi
⋃

vi . Find valleys for each segment
6 for i← 0 to n f rames do
7 Gi

⋃
peaksi . Add peak node to graph

8 Gi
⋃

valleysi . Add valley node to graph
9 niters← argmin(peaksn, valleysn)

10 for j← 0 to niters do
11 Ei

⋃
(vi, vi+1) . Add edge (vi, vi+1)

12 Ei
⋃
(vi, pi) . Add edge (vi, pi)

13 Ei
⋃
(pi, pi+1) . Add edge (pi, pi+1)

14 if Valleysn > niters then
15 for k← 0 to Valleysn do
16 Ei

⋃
(vk, vk+1) . Add edge (vk, vk+1)

17 else
18 for k← 0 to Peaksn do
19 Ei

⋃
(pk, pk+1) . Add edge (pk, pk+1)

Pi Pi+1 Pi+2 Pn

Vi Vi+1 Vn

Figure 5.1: General structure of graph representation of a speech segment
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5.5 Validation of the graph structure for phoneme

segmentation

The appropriateness of graph structure can be understood by observing the patterns that
are evident in a series of graphs. A pair of graphs (G1, G2) can be compared by a criterion
called Graph Edit Distance (GED). GED can be defined as the effort needed to transform
one graph to another graph in isomorphic form. There are numerous algorithms [68]
available in literature to compute the graph edit distance. In general, the computation
of GED considers all the possible ways of replacing the nodes of a source graph G1 to
transform it to the target graph G2. The possible operations in this process would be
substitution, insertion and deletion of nodes. The GED algorithm proposed by Reisen
[69] [70] has been used as it requires polynomial time complexity. This algorithm works
in two stages that are enlisted below.

1. Cost matrix representation
2. Cost matrix computation

C =



c11 c12 ... c1m c1ε α ... α

c21 c22 ... c2m α c2ε . .

. . . . .

. . . . .

. . . .

cn1 cn2 ... cnm α ... α cnε

cε1 α ... α 0 0 ... 0

α cε2 ... . 0

. . . . .

. . . . .

. . . . .

α ... α cεn 0 ... 0 0



(5.4)

5.5.1 Cost matrix representation

The cost matrix of (Gi, Gj) is represented in a matrix of order |n + m| × |n + m|, where n
is the number of nodes in Gi and m is the number of nodes in Gj. The cost matrix is of the
form given in Equation 5.4. Thismatrix C is partitioned into four parts C00, C01, C10, C11 to
make provision for storing costs needed for node substitutions, insertions and deletions
as mentioned earlier. C00 stores the costs for transforming G1 to G2 in terms of node
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substitutions and C01 is the deletion costs required. The node insertion costs are reflected
in the diagonal of C10. The 4th partition C11 is kept as 0 since no costs are required for
null operations.

5.5.2 Cost matrix computation

The second crucial step of computing costmatrix is obtained by usingMunkre’s algorithm
[71]. For any two graphs G1 and G2, with vertex set V1 and V2 respectively, Munkre’s
algorithm works by mapping the nodes of V1 to the nodes of V2 such that the resulting
cost is optimal. The initial costs of cost matrix C in Equation 5.4 are assigned by using
Equations 5.5, 5.6 and 5.5.2. The entries in the matrix are modified using Munkre’s
assignment algorithm to get the final optimal cost of edit operations. The detailed
algorithm for this process is found in [69].

cij =

 0 if edges are same

1 otherwise
(5.5)

cεj =

 1 if nodes are same

∞ otherwise
(5.6)

ciε =

 1 if nodes are same

∞ otherwise
(5.7)

To illustrate the procedure, consider the waveform in Figure 5.2(a). After effective graph
transformation, the edit distance between each pair of graphs for the adjacent frames
is shown in Figure 5.2(b). It can be observed from the graph that there are different
ranges of GEDs that constitute to different phonetic regions of the word. We can see
clearly that there is a sudden change of GED that is associated with the change in the
phonetic unit. GED patterns for different words are depicted in Figure A.2. In general,
GED between vowel and non-vowel regions are higher comparatively with the other
combinations. However, this property differ in case of long vowels where dissimilar
structures are found in the same phoneme segment with less variability. The boundaries
between vowels and non vowels are clear in nature whereas the unvoiced sounds like
/k/ and /s/ in the word /six/, /e/ and /v/ in /seven/ are indistinguishable. The
GEDs of the words (digits) "Zero" to "Nine" along with the wave forms are shown in
Figure A.2. The study with the afore-mentioned observations suggest that the proposed
structure can be useful in distinguishing phonetic units. Therefore, these structures can
be used as representation in a segmentation procedure. We can infer from the study that
the GED as a parameter representation may not be useful in finding the segmentation
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Figure 5.2: GED for an utterance of "Zero"

points since identical graph structures are possible for different phonetic units. This is
caused due to the isomorphic structural transformation used in GED. Therefore, there is
a need for a relevant feature representation for graph structure. In the next section, a
feature representation based on graph eigen values is discussed that is used as similarity
parameter in the segmentation procedure.

5.6 Graph Eigen values

In the previous section, the structural similarity between the graphs belonging to different
segments of speech signal are shown. This proves the point that the graph can be used
to represent the shape of a signal segment. The next step is to use this similarity as a
measurement to actually understand the shape of a signal. The parameter that is to
be used would be graph frequency. The frequency of vertices of a graph is retrieved
and will be used as a parameter for finding the variation across the signal. The main
component that is used in the approach is graph eigen value [72]. For a graph G, its
adjacency matrix represented by A(G) and Laplacian as L(G), then the eigen values
λ(G) of graph G are equivalent to the eigen values of L(G). The term L(G) is given by
Equation 5.8. Here D(G) represents the diagonal matrix that consistis of degrees of G.
The elements of Ł(G) is a square matrix of size n× n and the elements are given by
Equation 5.9. The condition for λ(G) to be eigen value is if and only if L(G) is singular
and it can be expressed in terms of determinant given by Equation 5.10. The eigen values
are computed by using Lanczos algorithm [73] [74] [75]. It depends on a parameter called
Rayleigh quotient that is given by Equation 5.11. Here A is adjacent matrix and u, uT are
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associated eigen vector and its transpose. A useful property of spectral theorem is that
any vector that is orthogonal to A can diagonalize it.

L(G) = D(G)− A(G) (5.8)

L(G)ij =

 degreei, if i = j

−A(G)ij, if i ≠ j
(5.9)

|L(G)− λ(G)| = 0 (5.10)

r(u) =
uT Au
uTu

(5.11)

The summary of steps for computing eigen values for a speech signal segment is as
follows:

1. Each speech signal is converted to its corresponding graph representation using
graph mapping function (χ) that is discussed in Section 5.4.

2. The graphs generated in Step-1 are a set of adjacency matrices and referred to as
AG and its corresponding degree matrix is referred to as DG.

3. Next, the Laplacian is computed using the Equations 5.8 and 5.9.
4. LG is used to find the eigen values of the underlying graph of speech signal Si.

This procedure is also referred to as Lanczos algorithm.

An example of graph eigen value for the word "Zero" is shown in Figure 5.3.

Figure 5.3: Largest graph eigen value for a speech utterance of the word "Zero"
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5.7 Segmentation algorithm using graph eigen value

In Section 5.6, the complete procedure for computing graph eigen values was discussed.
Eigen values are the central features that have been used in the approach. These features
are to be processed to find the required temporal changes in the speech signal. The
third component i.e. boundary detection criteria is used to accomplish this. The criteria
that we use here internally employs Canonical Correlation Analysis (CCA) components.
CCA finds the relationship between two variables by correlating them with a linear
combination of variables that maximize the relationship. It can be used for two crucial
reasons. First, co-variation between two variables can be derived with a small number of
the linear combination. Second, the important features that can cause the co-variation can
be understood. Graph eigen values corresponding to each speech segment is analyzed by
CCA to find the crucial components represented as CCA components. These components
are further analyzed to understand the variance between each pair of adjacent speech
segments.
For each set of ’n’ features that represent ’k’ frames, the algorithm generates CCA
mapping by projecting on each variable in the ’k’ values. The procedure works in two
steps as follows:

1. CCA mapping of ’k’ variables is generated
2. Computation of variance between each set of ’k’ variables

In the first step, ’k’ elements are chosen from the available features. Each subsequent
iterations slide towards right side for ’m’ positions. This is a simple sliding window
approach with a window size of ’k’ and shift in ’m’ positions. For ’n’ elements, it requires
n−m iterations for each step to calculate CCA mapping of ’k’ variables. In the second
stage, the correlation components that are calculated is used to understand the variance
among them. This variance serves as an index for boundary points. The peaks in the
variance signify the sudden changes in the speech signal. The steps in the segmentation
algorithm are listed as follows:

1. Divide the input signal into a set of frames with equal length
2. The speech segments generated in Step-1 are transformed to a series of graphs

G = g0, g1, g2, ..., gn where n is the number of speech frames
3. After successful transformation, each graph is used to find graph eigen values

using the procedure discussed in Section 5.6
4. The feature vector that is given by Step 3 is further processed by the boundary

detection algorithm that is given in Algorithm 8. The algorithm generates a set of
boundary points designated as B which gives start or end points of the phonemes.

A CCA computation of the eigen values for an utterance of the word "Four" is shown
in Figure 5.4. We can see the boundaries of spoken units at the peak points in Figure
5.4-(c).
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In the next section, the details of the data set, libraries and tools are explained.

Figure 5.4: Boundary points of the word "Four"

Algorithm 8: Boundary detection algorithm
Input:
S[N]: Speech signal of size N samples
Output:
B[nsegments]: Boundaries of phonemes

1 begin
2 Step 1: Divide S[N] into n f rames
3 Step 2: for i← 0 to n f rames do
4 Gi ← Construct Graph(si) . Construct graph for si using Algorithm 7
5 Step 3: Compute graph eigen values for each graph
6 for i← 0 to length(G) do
7 L(gi)← D(gi)− A(gi) . Laplacian of graph gi

8 gei ←
UT(gi)A(gi)U(gi)

UT(gi)U(gi)

9 Step 4: Find variance between each pair of frames
10 for i← 0 to length(G) do
11 cvi ← CCA(gei, gei+1)

12 for j← 0 to length(G) do
13 Vj ← Variance(cvj, cvj+1)

14 for k← 0 to length(V) do
15 if vk is a peak then
16 Bk ← vk
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5.8 Experimental Evaluation

The environment includes the following components:

I A set of programs
I Libraries
I Dataset consisting of recorded digits

The programs used in the approach were implemented using Python programming
language. Libraries include Networkx [76]. Scipy [77], and Pyrcca [58]. Networkx package
accommodates built-in functions for manipulating complex graph structures. Using this
library, sophisticated operations can be performed on graphs. Scipy is a standard Python
library that supports routines for numeric operations. Finally, CCA implementation is
available in Pyrcca. It supports regularized and kernel versions of CCA. In the present
approach, regularized CCA has been used.

As the central objective of our research is to develop methods for low-resource languages,
the data that we used belongs to native Indian English speakers. India is a country where
the spoken English is influenced by the native Indian language. As a subcontinent, India
has wide variety of languages in use. Each state has various dialects that differ in their
speaking style. The data was collected from the people belonging to different regions
that includes both male and female speakers of the age ranging from 20 to 26 years.
There are 40 speakers involved in the recordings. Each digit was spoken 15 times thus a
total of 6000 samples have been analyzed. The recordings were done using the Cool Edit
software with 16KHz sampling rate, mono channel and 16 bits per sample. This data was
used in one of the approaches published in [60]. The phoneme list in each word is given
in Table 5.1. The analysis and the results obtained in the study are discussed in the next
section.

5.9 Results and discussion

Graph structures are useful in representing the structural properties of acoustic events
in an uttered word. This was proven with the help of pattern comparison using GED.
Further-more, graph eigen values exhibit distinct properties that are essential to identify
the abrupt changes that subsequently can be used for finding phoneme boundaries.
The speech utterances were divided into equal sized frames with 160 samples (10 msec)
without overlap. This frame size has been found to be an effective one compared to other
frame sizes such as 100, 200 and 320. After a series of experiments with diverse segment
sizes, finally the segment size was selected to continue with the experiments. Figure 5.5
shows largest eigen values of different words starting from "Zero" to "Nine". Each graph
has 15 utterances of each word. Usually, the graph eigen values span in the range of 20 to



5.10 Conclusions 67

200 depends on the phonetic unit and its context. Especially vowel /u/ is superior to
other vowels unlike vowel /o/ which is found to be inferior as seen in Figure 5.5-(a) and
5.5-(g) respectively.

Table 5.1: List of words

S.No Word Phonemes

1 Zero /z/, /i/, /r/, /o/

2 One /w/, /a/, /n/

3 Two /t/, /u/

4 Three /th/, /r/, /i/

5 Four /f/, /o/, /r/

6 Five /f/, /a/, /i/, /v/

7 Six /s/,/i/, /k/,/s/

8 Seven /s/, /e/, /v/, /e/, /n/

9 Eight /e/, /i/, /t/

10 Nine /n/, /a/, /i/, /n/

Essential variations to understand the boundary points are evident in the feature vectors
in variance observed by CCA. However, there are few exceptions where changes are
not noticeable. These are the silent regions that occur at the starting and ending of the
words. The phonetic units with varying structures have dissimilar eigen values that
influences the CCA variance. The speaker’s speaking style can be a factor that decides
occurrence of silence in an uttered word. Successively, it becomes difficult to identify the
actual boundaries between two different phonemes as they share a common structure
and the features have a low CCA variance. CCA variances of different words along with
source speech signal and graph eigen values are depicted in Figures A.3 through A.12. In
these figures, boundary points are identified at peak points of respective CCA variance.
Table 5.2 shows segmentation accuracy of 10 different speakers. Successful detection rate
varies from 74% to 84% with a comprehensive accuracy of 80% approximately.

5.10 Conclusions

In this chapter, a graph based method for analysing the phoneme boundaries has been
proposed. The proposed graph structure was validated by comparing with Graph Edit
Distance algorithm. After verifying the structures, a complete segmentation algorithm
has been formulated by using graph eigen values and CCAmethod. The approach works
by understanding the speech signal’s shape through a sequence of graph structures. The
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proposed segmentation algorithm was evaluated in a low-resource data set of native
Indian English speakers. The method has been found to be effective for the word data
set with a success rate of 80% approximately.
Despite of its ability to find the phoneme boundaries in isolated words, it is not suitable
for finding boundaries in a long sentence. This is due to the limitation of variance
property that could not distinguish in a long span duration. To overcome the problem, a
segmentation technique is proposed inChapter 6 that uses fractal geometry to understand
the properties of speech signal and capture the essential clues to segment phonemes in
sentences.

Table 5.2: Segmentation accuracy for speakers 1 to 10 out of 40 speakers

XXXXXXXXXXXDigit
Speaker 1 2 3 4 5 6 7 8 9 10

Zero 12 12 12 13 13 13 12 13 13 12

One 14 11 10 11 14 11 10 11 12 12

Two 15 12 13 11 10 09 13 12 10 10

Three 14 12 12 14 12 13 12 11 10 11

Four 13 11 11 13 12 12 11 11 12 12

Five 13 12 12 13 13 10 12 12 12 13

Six 11 12 13 12 13 13 13 12 13 14

Seven 10 10 12 10 14 10 12 14 13 12

Eight 12 12 13 12 11 10 13 13 14 12

Nine 13 10 11 12 13 10 11 12 11 14
Total Accuracy (%) 84.7 76 79.3 80.6 83.3 74 79.3 80.7 80 81.3
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Figure 5.5: Graph eigen values of different utterances of the words "Zero" and "One"





Chapter6
Fractal Features for Phoneme Boundary

Analysis

The previous chapter discussed a graph based method for boundary detection. In this
chapter a method for phoneme segmentation based on fractal analysis is presented.
Fractal analysis is a well known approach in image processing and computer graphics.
Fractals were introduced for understanding and measuring the properties of irregular
shapes in nature. However this has not been thoroughly studied in the context of
speech signals even though it has several useful properties that are suitable for signal
analysis. Being a structural processing method, fractals have the capability to analyze
the waveform properties. These properties are studied in this work and a segmentation
procedure has been developed to identify phoneme boundaries in isolated word and
sentences. In the study, the approach is found to be useful and computational efficient.
The sections in the chapter are organized as follows: Section 6.1 gives a brief introduction
to theoretical background. Section 6.2 explains the procedure used. Sections 6.3, 6.4
describes the environment used for experiments and results respectively. Section 6.5
gives concluding remarks of the chapter.

6.1 Fractals and speech signal analysis

Fractal geometry is an area that provides methods for analyzing irregular structures that
exist in nature. This concept was first introduced by Mandelbrot [78] for characterizing
objects that have irregular shapes. Fractals can be characterized by two properties:
self-similarity and self-affinity. The property self-affinity belongs to only artificial shapes
which are used in computer graphics. The natural objects are generally defined as
self-similar objects. Self Similarity can be measured by a parameter called similarity-ratio
and is defined in Equation 6.1.

r(N) =
1

N
1
D

(6.1)
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Equation 6.1 can be rewritten as

D =

log
[

Nl

Nl + 1

]
log
[

Ll + 1
Ll

] (6.2)

where:

l: construction level
Nl : number of segments in a curve
Ll : length of each segment

Fractal Dimension (FD) is another parameter that is used for characterizing fractal objects.
This property helps in understanding the similarity between any two objects. A variety
of approaches that are used to compute FD are described in the next subsection.

6.1.1 Approaches to compute fractal dimension

Often speech signal is represented as a waveform and it is considered as an open
curve in two dimensions. A speech waveform exhibits both fractal characteristics and
self-similarity. Analysing speech wave forms through fractals helps in understanding
the shape of the underlying curve of a speech segment [78]. As discussed earlier, FD
can be used to understand the properties of a signal shape. There are various methods
available in literature for computing FD. Table 6.1 summarizes these approaches.

Table 6.1: Methods for computing fractal dimension

S. No. Method Parameters
1 BC Number of grid squares covered by object

2 ASM Number of speech samples crossing a certain
threshold

3 IFS FD obtained from a series of IFS parameters
4 Wavelet Wavelet coefficients based on mother wavelet

5 PCA Principal component matrix computed on trajec-
tory state vector

Box counting method [79] is popular among the methods that are available. In this
method, a grid of squares is used as a reference object. This is also known as structuring
element. The FD computation of any object is simplified just by counting the number
of squares that the object covers. The relation between FD and the number of objects
(squares) is given by Equation 6.3.

N(n) ∝ n−D (6.3)
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where N(n) is the number of objects whose linear dimension exceeds n and D is the
dimension. But this method is proven to be invalid for speech signals due to conceptual
inconsistency. An alternative method called Amplitude Scale Method (ASM) that is
relevant for speech signal analysis has been proposed by Senevirathne et al. [80]. A
crucial step in measuring FD for a speech signal is given by Equation 6.4.

D = lim
Tn→0

ln[N(Tn)]

ln(
1
Tn

)
(6.4)

where Tn is a threshold and N(Tn) is the number of threshold points considered. The
threshold (Tn) is computed using different amplitude levels of the samples in a signal.
The third method that is described next is Iterated Function System (IFS) in which
an iterative procedure is used for extracting the IFS parameters [81]. A finite set of
transformation functions are applied for parameter estimation. They are subsequently
used in the process of FD computation. The transformation function is given in Equation
6.5.

W =
N⋃

i=1

wi(x, y) (6.5)

where: wi(x, y) =

∣∣∣∣∣∣ai 0

ci di

∣∣∣∣∣∣
∣∣∣∣∣∣xy
∣∣∣∣∣∣ +
∣∣∣∣∣∣ei

fi

∣∣∣∣∣∣ and ai, ci, di, ei, fi are parameters generated from

iterative IFS procedure and N is number of frames in the speech signal. Wavelet and PCA
work by signal’s decomposition and parameter reduction respectively. The approaches
using wavelets and PCA are reported in [82], [83] and [84]. In the present approach,
Mathematical Morphology (MM) has been used for fractal analysis. The reasons behind
the usage of MM and the detailed steps for calculating the FD are discussed in the
subsequent subsection.

6.1.2 Mathematical morphology for speech signal analysis

Morphology is a general concept which is used in areas like biology, linguistics, material
science and signal processing. Speech processing involves the concepts of linguistics and
signal processing. In linguistics, morphology is used for analysing the internal structures
of different words in a language. Mathematical morphology [85] uses lattice theory and
integral algebra. The key idea of morphological analysis is the understanding of the
features of the regions in an image by filling those regions by different operators. There
are various applications of morphology for both image processing [86] and speech signal
processing.
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The validity of the application of MM principles for speech signal analysis depends on
the following two properties:

1. Partial ordering
2. Each subset should have a maximum and minimum

To check the above mentioned properties in the context of a speech signal, consider any
speech signal x[n] where x[n] ⊂ R. Any set that is a subset of R satisfies the property
partial ordering � by the relation ≤ for any pair of elements xi, xj ∀i, j,∈N. The second
property is satisfied in x[n] because of the existence of peaks and valleys in the signal.
They are the local maxima and local minima of any subset of elements in x[n]. Therefore
MM principles can be applied for speech signal analysis.
Maragos proposed an approach for calculating the FD based on morphological covering
[87]. This method was used effectively for phoneme recognition in combination with
Mel Frequency Cepstral Coefficients (MFCCs). The present approach uses the principles
of MM for the task of phoneme segmentation. The usage of fractals and MM in phoneme
segmentation is not a new problem. These concepts have been used independently for
phoneme boundary analysis. For example, Steinberg proposed a method to understand
formant characteristics in speech spectrograms [88]. In his approach,Watershed transform
(WT) was utilized for the segmentation task. This method takes motivation from natural
phenomena occurring in geography. It was proven successful, but only for spectrograms.
The input signal which has been used in the proposed approach is the raw waveform of
speech. The steps in the proposed approach are explained in Section 6.2.

6.2 Proposed method for Phoneme boundary analysis

In this section, themodules in the proposed approach are detailed. The present framework
consists of 3 major parts as follows:

1. Structuring element (G)

2. Area function (A)

3. Boundary detection criteria ()

The modules mentioned above have different objectives in the phoneme segmentation
framework. The structuring element (G) and area function (A) were used in the work
of Maragos and can be found in [87]. In his work, Maragos used these functions as basis
for computing fractal dimension whereas the present approach uses it for calculating
the area of a speech signal. The individual functions are explained in the following
subsections.
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6.2.1 Structuring element G

In mathematical morphology, operations are performed on the curve by associating
each curve with a structuring element. This serves as a reference window or boundary
for which the properties of the underlying curve are captured. There are different
possible shapes (rectangle, triangle) which can be used as a reference object. The present
approach uses a rectangle window. A window can be characterized by its width and
height. The width of a structuring element of a sample si is defined based on its left and
right neighbors si−1, si+1 respectively ∀i, 0 ≤ i ≤ N. The height is defined as given by
Equation 6.6.

h =
Dynamic range o f signal

Number o f samples
(6.6)

The purpose of window element is as follows:

1. To apply the structuring element for each sample in a signal
2. To compute the area property
3. To control the movement of the structuring element once the area is known

The area can be computed using Algorithm 9. In the algorithm, Steps 4 through 7 are
devoted to compute the structuring element.

6.2.2 Computing the area of the curve

The area for any given speech signal S[n] is the cumulative area that is covered by all the
samples s0, s1, ..., sk. It is simply defined as the difference between dilation and erosion
for a sample si and is given in Equation 6.7:

A =
N

∑
n=0

[
(S⊕ Gε)[n]− (S	 Gε)[n]

]
(6.7)

The terms (S ⊕ Gε)[n] and (S 	 Gε)[n] are dilation and erosion respectively. These
operations are the primitive operators of mathematical morphology. For an input signal
S, and structuring element G, the dilation and erosion are given in Equations 6.8 and 6.9
respectively.

S⊕ G[n] = max
−1≤k≤1

{S[n + k] + G[k]}, ε = 1

S⊕ G[n] = (S⊕ Gε)⊕ G, ε ≥ 2
(6.8)
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S	 G[n] = min
−1≤k≤1

{S[n + k]− G[k]}, ε = 1

S	 G[n] = (S	 Gε)	 G, ε ≥ 2
(6.9)

where S is the input signal and G is the structuring element which is given by the value
h that was described in Subsection 6.2.1.

Algorithm 9: ComputeArea algorithm
Input:
s[i]: single frame of input signal
ε: 1 to n f rames

2
h: structuring element given by Equation 6.6
Output:
X: log areas of the given frame
Y: log areas of ε

1 begin
2 Step 1:
3 for i← 1 to length(s[i]) do
4 a1 ← si−1
5 a2 ← si + h
6 a3 ← si+1
7 a4 ← si − h
8 if ε = 1 then
9 dilation← Argmax(a1, a2, a3)

10 erosion← Argmin(a1, a2, a4)

11 else
12 dilation← Argmax(a1, a2, a3) + (ε− 1) ∗ h

erosion← Argmin(a1, a2, a4)− (ε− 1) ∗ h
13 area← area + (dilation− erosion)

14 Step 2: area← area + ε2

15 Step 3: Xn ← log(area)

By dilation operator, structuring element captures the features of a dilated image (signal),
whereas erosion ensures the full contribution of the eroded speech segment. Another
important parameter used in the procedure is ε (jumping factor). This is used for
correlating different samples of the signal. Ideally this value can have a value in range
of 1..n, where n is the number of samples in a speech segment. For any sample si,
ε = 1 correlates si with its adjacent elements si−1 and si+1. For ε = 2, the proximity for
correlation will be si−2 to si+2. In the present approach, the highest value used for ε is
NF/2, where NF is the number of speech segments available in the given input signal
S[n]. As a whole, the function A defined in Equation 6.7 fills the curve of a speech
segment which is subsequently treated as a topographical image. This is further used as
the main feature for analysing the shape of the input signal. This process is described in
Steps 3 to 13 of Algorithm 9 and depicted in Figure 6.1-(b). After filling the curve with
area (A) function, the next step is to identify the proper points using which a signal can
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be segmented. This process is decided by employing boundary detection criteria and is
explained in the next subsection.

Figure 6.1: Steps in the boundary detection algorithm

6.2.3 Boundary detection criteria (λ)

Boundary detection criteria is used to find the exact phoneme boundary in the given
input signal. It is the crucial and final step in identifying the exact frame in which the
segmentation point exists. For this process, the range of area function is used as features.
The distribution of the features gives an important pattern where the set of minimum
points (valleys) and maximum points (peaks) occur at different positions. It is observed
that the valley points in the waveform are the locations where changes in acoustic events
are most prominent. Therefore segmentation criteria is defined on the nature of these
valley points. A valley here is defined as follows:

Valley: In a segment of speech let si−1, si and si+1 be consecutive samples, then si is
said to be a valley if si−1 > si < si+1 where ∀i ∈ Z.
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According to the above definition, there are multiple valleys found in the obtained
features. But they are not the required segmentation points. Therefore these spurious
valleys need to be discarded to get the exact boundaries. This is achieved by using the
heuristics H1, H2 and H3.

H1 For any segment Si and valley set Vi ∈ Si , select a valley point vij such that
vij = Argmin(Vi).

H2 Let Bi be the set of valleys obtained by H1 and Ci is the cluster in which Bi belongs,
then select only one element Bij from Bi.

H3 Let B = B0, B1, B2, ..., Bn is the set of boundaries for the set S = S0, S1, S2, ..., Sn

given by H2.

Bj ∈

 EB, iff j ≥ 3× imax, ∀imax, j ≥ 1

EB, iff j ≥ 3× imax + 1 ,∀imax, j = 0
(6.10)

where:

- imax is the highest element of the set EB
- EB is the final set of segment points
- Bj is the new segment point

The valley points obtained by the heuristics H1, H2 andH3 are used as final segmentation
points. The selection of valleys are illustrated in Figure 6.1-(d). The steps that have been
illustrated constitutes the algorithm that is detailed in Algorithm 9.

6.3 Experimental setup

This section describes the environment that was used for conducting experiments. The
algorithms were implemented using the Java programming language and Python. The
English spoken digits of native Indian speakers have been used as data set. This contains
50 speakers belonging to different regions in India which includes males and females. 15
utterances of each digit are used. The digits were recorded using the CoolEdit software
with 16 kHz sampling rate withmono channel. The data that was used in the experiments
were normalized and DC component was removed. Each waveform is divided into a
number of frames of fixed length. We used window size of 100 samples with an overlap
of 20 samples. Experiments have been conducted on both clean and noisy speech signals.
Apart from the above said data set, the algorithm has been tested on a small subset of
TIMIT sentences data set. In the experiments, we analyzed 10 different sentences for 40
speakers which consists of different dialects. The results are discussed in the next section.
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Figure 6.2: Area of different words (’Zero’ to ’Nine’)
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6.4 Results and discussion

The proposed algorithm is effective in finding the phoneme boundaries using the area
feature of the fractal. The area of the speech utterances for different digits belonging
to a speaker are shown in Figure 6.2. There are different characteristics that have
been observed by the function. The crucial points in observations can be discussed for
different phonemic transitions. It gives different areas for the phonemic sounds like
vowels, consonants, fricatives, etc. The behaviour of phonemes at transition points have
been found to be remarkable. They provide clues for identifying the proper segmentation
point. As a result, the method provides correct segment point in all the cases. The final
boundary points that are calculated can be used for separating the spoken units rather
that the individual phonemes. There are some issues that have been observed which
can cause faulty segmentation. These observations are summarized in Table 6.2. As
mentioned earlier, experiments were conducted on TIMIT sentence data set also. The
graphs of two sentences spoken by two different speakers are shown in Figure 6.3 and
Figure 6.4 respectively. In these figures, the area graph and boundary points of the
algorithm for 2 different stages are shown. Area graph contains the possible boundary
points that are found in the sentence. These points are further filtered to remove spurious
boundaries and are shown in the third sub graph. The exact boundary points are at valley
points in this graph. In the case of sentences, the approach is efficient in finding the word
boundaries clearly. Even though it fails in few cases while detecting segmentation points
for phonemes like /k/, /n/, /t/, /u/, /ly/, /Aa/ and /l/, the overall segmentation
rate is reasonable in both the data sets. These failures can be characterized by the
nature of data where the speaking style of speaker influences the boundaries of actual
phonemes.

In the next subsection, the performance of the algorithm on noisy data is discussed.

6.4.1 Performance in noisy conditions

It is observed that the algorithm is less sensitive to the noise conditions. The reason is
that the parameter Area remains unchanged with respect to the change of amplitude in
the input signal. i.e. A(S[n]) = A(S[n− n0]) where A(S[n]) is the area of the original
signal and A(S[n − n0]) is the area of the shifted signal. This is due to the nature
of morphological erosion and dilation operations. These operations along with the
structuring element G are invariant to constant shifts of amplitude in S[n] [85]. In the
present method, we have used log(A) as a parameter mentioned in Step-3 of Algorithm
9. So the changes in amplitude cannot have a substantial effect in this value that reflects
on the overall shape of the feature curve. This can be observed in the graphs of the feature
vectors. The plots of feature vectors and the boundary points detected for clean signals
and noisy signals are shown in Figures 6.5-k, 6.5-l, 6.6-K and Figure 6.6-L respectively .
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Figure 6.3: Boundary points for the sentence "Don’t ask me to carry an oily rag like that"

We can see that there is very little difference in the locations detected as segmentation
points.

6.4.2 Time complexity and comparison with existing methods

The observations lead to a conclusion that the present approach is not data driven and
less complex in terms of run time. The complete segmentation procedure for a sentence
can be completed in approximately 600 msec with time complexity O(n3) for a speech
signal of length n which includes the pre-processing step. System configuration in which
the experiments have been conducted is as follows:

- Processor : i5 (3.20 GHz)
- Memory : 8 GB

After evaluating a set of experiments with words and sentences, it is found that the
method gives reasonable performance in terms of finding the boundary points. Also, the
performance of the proposed approach is compared with the existing methods. Table
6.3 summarizes the results. The proposed fractal segmentation algorithm works in 89%
cases in Indian accented words and 87% cases for TIMIT sentences. The main advantage
of the approach is it works in a single iteration by observing the properties of speech
utterance and does not require a training process. This emphasises the usefulness of the
approach.
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Figure 6.4: Boundary points for the sentence "Although always alone, we survive"

Figure 6.5: Comparison of clean and noisy signals (k, l)

Figure 6.6: Boundary points of word /eight/ (K, L) for speaker Sp4
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Table 6.2: Issues in segmentation

S. No. Word Remarks

1 Zero Phonemes /Z/ and /i/ are combined in
some cases

2 One All units are segmented

3 Two /u/ has some spurious points

4 Three There is confusion in distinguishing /r/
and /i/

5 Four Vowel /o/ has spurious boundaries within
it

6 Five All units are segmented

7 Six /k/ and /s/ are sometimes combined as a
single unit

8 Seven /e/ and /v/ does not have clear boundaries

9 Eight The transitions of /e/ and /i/ have confu-
sion

10 Nine Phonemes /i/ and /n/ are combined in few
cases

Table 6.3: Performance comparison

S. No. Method Data set Accuracy

1 LSTMs [89] TIMIT 93 %

2 GMM [90] TIMIT 81%

3 HMM [91] Hindi sentences 73.7%

4 Proposed approach Digits (Indian accent) 88.7%

5 Proposed approach TIMIT 87%

6.5 Conclusions

In this chapter, a method for phoneme segmentation that uses fractal approach was
proposed. The central feature that has been used is area under the waveform. This
method works on the raw speech signal and gives frame level segment point in which
phoneme boundary exists. To understand the performance, experiments were conducted
on Spoken English digits of native Indian speakers and small set of TIMIT sentences
data set. The detailed procedure with the results are discussed. It has been observed that
the algorithm works accurately for 88.7% for the words and 87% for the TIMIT sentences.
This correctness is comparable with the existing state of the art methods even though it
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is not superior in nature. The comparison with the current research methods is shown in
Table 6.3. Therefore, the method can be effectively used in ASR systems to tokenize the
events which can help in labelling them.



Chapter7
Conclusions and Future work

This thesis addresses a new direction towards speech signal analysis and understanding
based on structural processing. The approaches concentrate on the shape analysis of the
speech signals. Each approach consists of a set of features and an analysis method. The
proposed features can be classified into two categories as follows:

I Geometrical

I Graph based

Geometrical features are useful in understanding the properties of speech signals by
their elementary geometrical properties whereas graph-based methods organize the
primitives of wave forms so that patterns can be captured. It is found that both these
classes of features are useful for the task of recognition and segmentation. In the first
category, there are 3 attributes that are used and are enlisted below.

1. Peak attributes

2. Trajectory features computed with Fréchet distance

3. Tree structures

A trajectory based approach was discussed in Chapter 2. It uses two different features
known as peak attributes and similarity features. The first one focuses on waveform
primitives called peaks whereas the second one considers a trajectory representation
for the entire utterance. The structural properties of the acoustic events that occur in
different regions of spoken units are embodied in peak attributes. This nature makes
them effective to characterize the spoken units that consists of single phonemes like
vowels. The classification accuracy that was obtained with peak attributes was 75% for
vowels and 58% for words.

The second type of trajectory parameters based on similarity measurement provided
adequate clues that give a better classification for isolated words than the former one. The
reason is that the temporal dynamics of an entire utterance is obtained in these features
bywhich the knowledge of the complete structure is captured. This is not possible in peak
attributes since they represent the segment-wise nature of individual events (or entities).
These features were modeled using HMMs and it is proven to be efficient for classifying
vowels and isolated words. This method resulted in 58% classification accuracy with
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digits in inter-speaker case similar to the formermethodwhereas it successfully classified
90% in intra-speaker variability which is an improvement compared to 89% for peak
attributes. This leads to an opinion that the classification capability of both the features
are analogous.

Even though the approach is simple in terms of computational efficiency, we worked
towards reducing the load of modeling without compromising the essence of the in-
herent structural properties. This goal to a new representation for waveform called
Tree-structures was proposed in Chapter 3. Tree structure representation can be thought
of a new means in characterization of spoken units. The approach considers the speech
utterance at one go to form a holistic view and build a structural template. The represen-
tation arranges the primary entities of a waveform in a tree structure such that a pattern
can be found. The final structure is subsequently used for classifying the phonetic units.
The adequacy of the structures is proven with comparison using Zhang and Shasha
Tree edit distance algorithm. A study was conducted by observing the pattern matching
between a pair of trees that covers all the combinations of vowels. In the study, we found
that the trees provided distinct patterns. The classification that was achieved with tree
matching is 75%. It covers both the intra-speaker and inter speaker cases.

In the classification experiments, 7500 samples that consists of English spoken vowels
and digits were used. There are 5 vowels and 10 digits uttered 15 times each. The data
was recorded by 50 speakers belonging to different regions of India. People in each
region speak different accents. Besides their suitability for recognizing the phonetic units,
structural properties have exciting features to detect the boundaries between different
phonetic regions. The geometrical features have been used for analyzing the phoneme
boundaries in different contexts like words and sentences. To address this problem, three
classes of features are proposed in the thesis.

1. Multi-way trajectory features

2. Graph-based features

3. Fractal features

The principles of structural components have been studied in variousways by using trivial
geometrical features of peaks and valleys. The first approach was explained in Chapter 4.
It uses multiple sets of features and the variation in the structure was analysed using a
correlation analysis technique called CCA. The procedure was successful in identifying
the boundaries between spoken units in a speech utterance. The issue with this approach
is its requirement of multiple features since each kind of feature set captures different
type of information. The problem of segmentation was further studied using graph based
approach which was described in Chapter 5. The graph-based representation gives a way
to represent the structure of different segments in the speech signal. Each segment gives
a structural representation for individual segments. The similarity in these structures
are used to capture the changes so that a point can be identified where a phoneme starts
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Table 7.1: Methods Summary

S. No. Method Problem Database Accuracy (%)
1 Peak attributes Recognition Vowels 96
2 Peak attributes Recognition Digits 89
3 Fréchet distance Recognition Digits 90
4 Tree structures Recognition Vowels 70
5 Trajectory features Segmentation Digits 90
6 Graph eigen values Segmentation Digits 80
7 Fractal features Segmentation Digits 89
8 Fractal features Segmentation TIMIT 87

or ends. To match the pattern of a sequence of graphs, a Graph Edit Distance (GED)
measurement was used. This pattern matching shows that the graph representation is
appropriate for capturing the dissimilarity between two frames. However the GED was
not advisable in graph comparison over long utterances because of its computational
complexity. Therefore, a graph eigen value was taken as criteria in place of GED for
similarity matching. This parameter represents frequency of vertex connectivity in a
graph. Using this as a measure of change, a complete segmentation was designed. The
method was successful in segmenting the phonemes in a word, but it was not efficient in
sentences. To overcome this issue, a fractal based approach was proposed in Chapter 6.
Fractal approach understands structural similarity across the speech utterance by using
fractal properties. The properties are computedwith simplemathematical morphological
operations. The method was studied for identifying segmentation boundaries in words
and sentences. In the study, it is found that the approach is capable of finding the
phoneme boundaries. The issues with the detailed results are discussed in the thesis.
In summary, the success rate of the segmentation algorithm is found to be 89% for
words and 87% for sentences. The segmentation algorithms were tested on two different
data sets consisting of words and sentences. There are 6000 utterances of 10 different
words in the word database. The data was recorded by 40 different speakers belonging
to different regions of India with varied accents. The sentences is a subset of TIMIT
database that consists of 400 sentences of 40 different speakers from 10 different dialects.
The approaches discussed in the thesis with the respective performance are shown in
Table 7.1.

The boundary detection methods proposed in the thesis can be commonly referred
to as single-scan algorithms. This class of techniques work by examining the clues
available in the respective input signal. The nature of the algorithm does not depend
on multiple instances of the same spoken units also. This is beneficial mainly for low-
resource languages where huge amount of data is not in place to support development
of segmentation procedures. Other advantage is that the computational requirement
for segmentation is reasonably low as it is in the range of 550 msec to 650 msec for the
fractal approach. This makes techniques to be suitable for annotation and segmentation



88 Chapter 7 Conclusions and Future work

in low resource devices also.

7.1 Future research directions

The studies so far conducted with the approaches have brought new insights through
which speech signal analysis can be improved further. They are enlisted below.

1. The tree structures take into account the order in which the peaks and valleys
occur. This didn’t involve the frequency entity that a segment of a spoken unit
contains. Therefore, they can be enhanced further by accommodating additional
information of peaks and valleys. One possible aspect is to use amplitude (or
height) of the peaks. In addition to that, a generic representation for the trees that
represent the same phonetic unit can be modeled. Immediate choice to do this is a
Median tree representation that gives a universal structure to a set of trees.

2. The Fréchet distance features are not modeled accurately for varied accents and
speaking styles. But the method is proven effective to hold the variability that
occur at different phonetic contexts. Being a low-cost feature, they can be combined
with trees to provide better solutions. In the new method, feature vector will be
represented as a tree instead of a rawwaveform. In the thesis, we considered the tree
structures for vowels alone. On the other hand, the similarity patterns represented
with Fréchet distance features have crucial temporal dynamics of multiple phonetic
units. They can be investigated further for inventing new intuitions towards
phonemes classification.

3. Graph eigen value is a versatile attribute that can be used not only for graph
structures, but also for acquiring important elements from multiple features. This
aspect can help to combine multiple features. Especially this is a useful tool to
process multi-way geometrical features to form a single set. Finally, eigen value
can capture the essential components so that the variation can be used for either
phoneme classification or segmentation.

4. Graph-based analysis is a new way of understanding the speech signals. The basic
structure stores waveform primitives and holds relationships among the entities in
terms of ordering and causality. Alongside, properties like priority, amplitude can
also be utilized.

5. In our work, only the segmentation problem has been addressed. Still it has a
breadth to explore other problems with this. The patterns shown by Graph Edit
Distance follow a common structural variation for a set of speech utterances with
multiple phonemes. This can be used to extract useful information from a set of
graphs by using existing graph learning algorithms.
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A.1 CoolEdit Pro

Cool Edit Pro is an audio analysis tool that supports recording, editing and analyzing the
sound recordings in a variety of ways. It supports two different representations temporal
and frequency of waveforms. The sounds can be recorded with different sampling rates
and varied number of channels. It works in Windows platform.

A.2 Networkx

Networkx is a library in Python platform by which a complex graph structures can be
programmed. It supports operations such as creation, manipulation of various types
of graphs that include digraphs and multi-graphs. Implementation of standard graph
algorithms are available in this package. The nodes of a graph can be preliminary data
types or complex data components like images and XML records. The Python methods
that were used in the programs are as follows:

I Graph.add_node(): It is simple method that adds a node into the graph
I Graph.add_edge(): This method adds an edge with or without a weight
I Networkx.adjacency_matrix(): Returns the adjacency matrix representation of an

underlying graph

A.3 Similarity measures

Similarity measures is a Python library that supports the quantification of the difference
between two arbitrary curves. It consists of methods to support different operations such
as DTW (Dynamic Time Warping) and Fréchet distance. The latest version available is
similaritymeasures 0.4.3.
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A.4 PyGSP

PyGSP is another Python library that provides methods and classes to process graph
signals. It is built based on the Spectral graph theory. Few operations that it gives are
enlisted below:

I Computing fourier basis
I Interpolation of signals
I Filters
I Graph eigen values

In the thesis work, two operations compute_fourier_basis() and estimate_lmax() were
used. The former method calculates the full decomposition of eigen value whereas the
later estimates the largest eigen value in an eigen vector.

A.5 Pyrcca

Pyrcca is a Python package used for estimating the CCA of a set of variables. The
methods in this package enables to perform different steps of the process of correlation
analysis. They include:

I pyrcca.train()
I pyrcca.compute_ev()
I pyrcca.validate()

After creating an object of CCA, the set of variables are to be used for generating
correlation weights. This process is done by the train() method. The weights that were
estimated are used for estimating variance component between the variables by using
compute_ev() method. The last method validate() is generally used for evaluating the
weights that were computed.

A.6 Hmmlearn

Hmmlearn gives an implementation of Hidden Markov Models. It facilitates model
parameters such as transition probability matrix, initial probability matrix and training
process. The crucial steps in the process of HMM training can be done with the help of
the following methods:

I hmm.GaussianHMM() - build a HMM instance
I fit() - creates HMM
I predict() - obtain state sequence in HMM
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A.7 Flowchart for the boundary detection algorithm using

trajectory parameters

Figure A.1: Flowchart for the boundary detection algorithm
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A.8 Graph Edit Distance for words "Zero" to "Nine"

Figure A.2: Graph Edit Distance for words "Zero" to "Nine"
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A.9 CCA variances of graph eigen values

Figure A.3: CCA variance of graph eigen values for "Zero"

Figure A.4: CCA variance of graph eigen values for "One"
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Figure A.5: CCA variance of graph eigen values for "Two"

Figure A.6: CCA variance of graph eigen values for "Three"



A.9 CCA variances of graph eigen values 97

Figure A.7: CCA variance of graph eigen values for "Four"

Figure A.8: CCA variance of graph eigen values for "Five"
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Figure A.9: CCA variance of graph eigen values for "Six"

Figure A.10: CCA variance of graph eigen values for "Seven"
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Figure A.11: CCA variance of graph eigen values for "Eight"

Figure A.12: CCA variance of graph eigen values for "Nine"
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